1 // SPDX-License-Identifier: GPL-2.0+
3 * Copyright 2008-2009 Freescale Semiconductor, Inc. All Rights Reserved.
4 * Copyright 2010 Orex Computed Radiography
8 * This driver uses the 47-bit 32 kHz counter in the Freescale DryIce block
9 * to implement a Linux RTC. Times and alarms are truncated to seconds.
10 * Since the RTC framework performs API locking via rtc->ops_lock the
11 * only simultaneous accesses we need to deal with is updating DryIce
12 * registers while servicing an alarm.
14 * Note that reading the DSR (DryIce Status Register) automatically clears
15 * the WCF (Write Complete Flag). All DryIce writes are synchronized to the
16 * LP (Low Power) domain and set the WCF upon completion. Writes to the
17 * DIER (DryIce Interrupt Enable Register) are the only exception. These
18 * occur at normal bus speeds and do not set WCF. Periodic interrupts are
19 * not supported by the hardware.
23 #include <linux/clk.h>
24 #include <linux/delay.h>
25 #include <linux/module.h>
26 #include <linux/platform_device.h>
27 #include <linux/rtc.h>
28 #include <linux/sched.h>
29 #include <linux/spinlock.h>
30 #include <linux/workqueue.h>
33 /* DryIce Register Definitions */
35 #define DTCMR 0x00 /* Time Counter MSB Reg */
36 #define DTCLR 0x04 /* Time Counter LSB Reg */
38 #define DCAMR 0x08 /* Clock Alarm MSB Reg */
39 #define DCALR 0x0c /* Clock Alarm LSB Reg */
40 #define DCAMR_UNSET 0xFFFFFFFF /* doomsday - 1 sec */
42 #define DCR 0x10 /* Control Reg */
43 #define DCR_TDCHL (1 << 30) /* Tamper-detect configuration hard lock */
44 #define DCR_TDCSL (1 << 29) /* Tamper-detect configuration soft lock */
45 #define DCR_KSSL (1 << 27) /* Key-select soft lock */
46 #define DCR_MCHL (1 << 20) /* Monotonic-counter hard lock */
47 #define DCR_MCSL (1 << 19) /* Monotonic-counter soft lock */
48 #define DCR_TCHL (1 << 18) /* Timer-counter hard lock */
49 #define DCR_TCSL (1 << 17) /* Timer-counter soft lock */
50 #define DCR_FSHL (1 << 16) /* Failure state hard lock */
51 #define DCR_TCE (1 << 3) /* Time Counter Enable */
52 #define DCR_MCE (1 << 2) /* Monotonic Counter Enable */
54 #define DSR 0x14 /* Status Reg */
55 #define DSR_WTD (1 << 23) /* Wire-mesh tamper detected */
56 #define DSR_ETBD (1 << 22) /* External tamper B detected */
57 #define DSR_ETAD (1 << 21) /* External tamper A detected */
58 #define DSR_EBD (1 << 20) /* External boot detected */
59 #define DSR_SAD (1 << 19) /* SCC alarm detected */
60 #define DSR_TTD (1 << 18) /* Temperature tamper detected */
61 #define DSR_CTD (1 << 17) /* Clock tamper detected */
62 #define DSR_VTD (1 << 16) /* Voltage tamper detected */
63 #define DSR_WBF (1 << 10) /* Write Busy Flag (synchronous) */
64 #define DSR_WNF (1 << 9) /* Write Next Flag (synchronous) */
65 #define DSR_WCF (1 << 8) /* Write Complete Flag (synchronous)*/
66 #define DSR_WEF (1 << 7) /* Write Error Flag */
67 #define DSR_CAF (1 << 4) /* Clock Alarm Flag */
68 #define DSR_MCO (1 << 3) /* monotonic counter overflow */
69 #define DSR_TCO (1 << 2) /* time counter overflow */
70 #define DSR_NVF (1 << 1) /* Non-Valid Flag */
71 #define DSR_SVF (1 << 0) /* Security Violation Flag */
73 #define DIER 0x18 /* Interrupt Enable Reg (synchronous) */
74 #define DIER_WNIE (1 << 9) /* Write Next Interrupt Enable */
75 #define DIER_WCIE (1 << 8) /* Write Complete Interrupt Enable */
76 #define DIER_WEIE (1 << 7) /* Write Error Interrupt Enable */
77 #define DIER_CAIE (1 << 4) /* Clock Alarm Interrupt Enable */
78 #define DIER_SVIE (1 << 0) /* Security-violation Interrupt Enable */
80 #define DMCR 0x1c /* DryIce Monotonic Counter Reg */
82 #define DTCR 0x28 /* DryIce Tamper Configuration Reg */
83 #define DTCR_MOE (1 << 9) /* monotonic overflow enabled */
84 #define DTCR_TOE (1 << 8) /* time overflow enabled */
85 #define DTCR_WTE (1 << 7) /* wire-mesh tamper enabled */
86 #define DTCR_ETBE (1 << 6) /* external B tamper enabled */
87 #define DTCR_ETAE (1 << 5) /* external A tamper enabled */
88 #define DTCR_EBE (1 << 4) /* external boot tamper enabled */
89 #define DTCR_SAIE (1 << 3) /* SCC enabled */
90 #define DTCR_TTE (1 << 2) /* temperature tamper enabled */
91 #define DTCR_CTE (1 << 1) /* clock tamper enabled */
92 #define DTCR_VTE (1 << 0) /* voltage tamper enabled */
94 #define DGPR 0x3c /* DryIce General Purpose Reg */
97 * struct imxdi_dev - private imxdi rtc data
98 * @pdev: pionter to platform dev
99 * @rtc: pointer to rtc struct
100 * @ioaddr: IO registers pointer
101 * @clk: input reference clock
102 * @dsr: copy of the DSR register
103 * @irq_lock: interrupt enable register (DIER) lock
104 * @write_wait: registers write complete queue
105 * @write_mutex: serialize registers write
106 * @work: schedule alarm work
109 struct platform_device
*pdev
;
110 struct rtc_device
*rtc
;
111 void __iomem
*ioaddr
;
115 wait_queue_head_t write_wait
;
116 struct mutex write_mutex
;
117 struct work_struct work
;
122 * The DryIce unit is a complex security/tamper monitor device. To be able do
123 * its job in a useful manner it runs a bigger statemachine to bring it into
124 * security/tamper failure state and once again to bring it out of this state.
126 * This unit can be in one of three states:
128 * - "NON-VALID STATE"
129 * always after the battery power was removed
131 * if one of the enabled security events has happened
133 * if the unit works as expected
135 * Everything stops when the unit enters the failure state including the RTC
136 * counter (to be able to detect the time the security event happened).
138 * The following events (when enabled) let the DryIce unit enter the failure
141 * - wire-mesh-tamper detect
142 * - external tamper B detect
143 * - external tamper A detect
144 * - temperature tamper detect
145 * - clock tamper detect
146 * - voltage tamper detect
147 * - RTC counter overflow
148 * - monotonic counter overflow
151 * If we find the DryIce unit in "FAILURE STATE" and the TDCHL cleared, we
152 * can only detect this state. In this case the unit is completely locked and
153 * must force a second "SYSTEM POR" to bring the DryIce into the
154 * "NON-VALID STATE" + "FAILURE STATE" where a recovery is possible.
155 * If the TDCHL is set in the "FAILURE STATE" we are out of luck. In this case
156 * a battery power cycle is required.
158 * In the "NON-VALID STATE" + "FAILURE STATE" we can clear the "FAILURE STATE"
159 * and recover the DryIce unit. By clearing the "NON-VALID STATE" as the last
160 * task, we bring back this unit into life.
164 * Do a write into the unit without interrupt support.
165 * We do not need to check the WEF here, because the only reason this kind of
166 * write error can happen is if we write to the unit twice within the 122 us
167 * interval. This cannot happen, since we are using this function only while
168 * setting up the unit.
170 static void di_write_busy_wait(const struct imxdi_dev
*imxdi
, u32 val
,
173 /* do the register write */
174 writel(val
, imxdi
->ioaddr
+ reg
);
177 * now it takes four 32,768 kHz clock cycles to take
178 * the change into effect = 122 us
180 usleep_range(130, 200);
183 static void di_report_tamper_info(struct imxdi_dev
*imxdi
, u32 dsr
)
187 dtcr
= readl(imxdi
->ioaddr
+ DTCR
);
189 dev_emerg(&imxdi
->pdev
->dev
, "DryIce tamper event detected\n");
190 /* the following flags force a transition into the "FAILURE STATE" */
192 dev_emerg(&imxdi
->pdev
->dev
, "%sVoltage Tamper Event\n",
193 dtcr
& DTCR_VTE
? "" : "Spurious ");
196 dev_emerg(&imxdi
->pdev
->dev
, "%s32768 Hz Clock Tamper Event\n",
197 dtcr
& DTCR_CTE
? "" : "Spurious ");
200 dev_emerg(&imxdi
->pdev
->dev
, "%sTemperature Tamper Event\n",
201 dtcr
& DTCR_TTE
? "" : "Spurious ");
204 dev_emerg(&imxdi
->pdev
->dev
,
205 "%sSecure Controller Alarm Event\n",
206 dtcr
& DTCR_SAIE
? "" : "Spurious ");
209 dev_emerg(&imxdi
->pdev
->dev
, "%sExternal Boot Tamper Event\n",
210 dtcr
& DTCR_EBE
? "" : "Spurious ");
213 dev_emerg(&imxdi
->pdev
->dev
, "%sExternal Tamper A Event\n",
214 dtcr
& DTCR_ETAE
? "" : "Spurious ");
217 dev_emerg(&imxdi
->pdev
->dev
, "%sExternal Tamper B Event\n",
218 dtcr
& DTCR_ETBE
? "" : "Spurious ");
221 dev_emerg(&imxdi
->pdev
->dev
, "%sWire-mesh Tamper Event\n",
222 dtcr
& DTCR_WTE
? "" : "Spurious ");
225 dev_emerg(&imxdi
->pdev
->dev
,
226 "%sMonotonic-counter Overflow Event\n",
227 dtcr
& DTCR_MOE
? "" : "Spurious ");
230 dev_emerg(&imxdi
->pdev
->dev
, "%sTimer-counter Overflow Event\n",
231 dtcr
& DTCR_TOE
? "" : "Spurious ");
234 static void di_what_is_to_be_done(struct imxdi_dev
*imxdi
,
235 const char *power_supply
)
237 dev_emerg(&imxdi
->pdev
->dev
, "Please cycle the %s power supply in order to get the DryIce/RTC unit working again\n",
241 static int di_handle_failure_state(struct imxdi_dev
*imxdi
, u32 dsr
)
245 dev_dbg(&imxdi
->pdev
->dev
, "DSR register reports: %08X\n", dsr
);
247 /* report the cause */
248 di_report_tamper_info(imxdi
, dsr
);
250 dcr
= readl(imxdi
->ioaddr
+ DCR
);
252 if (dcr
& DCR_FSHL
) {
253 /* we are out of luck */
254 di_what_is_to_be_done(imxdi
, "battery");
258 * with the next SYSTEM POR we will transit from the "FAILURE STATE"
259 * into the "NON-VALID STATE" + "FAILURE STATE"
261 di_what_is_to_be_done(imxdi
, "main");
266 static int di_handle_valid_state(struct imxdi_dev
*imxdi
, u32 dsr
)
268 /* initialize alarm */
269 di_write_busy_wait(imxdi
, DCAMR_UNSET
, DCAMR
);
270 di_write_busy_wait(imxdi
, 0, DCALR
);
272 /* clear alarm flag */
274 di_write_busy_wait(imxdi
, DSR_CAF
, DSR
);
279 static int di_handle_invalid_state(struct imxdi_dev
*imxdi
, u32 dsr
)
284 * lets disable all sources which can force the DryIce unit into
285 * the "FAILURE STATE" for now
287 di_write_busy_wait(imxdi
, 0x00000000, DTCR
);
288 /* and lets protect them at runtime from any change */
289 di_write_busy_wait(imxdi
, DCR_TDCSL
, DCR
);
291 sec
= readl(imxdi
->ioaddr
+ DTCMR
);
293 dev_warn(&imxdi
->pdev
->dev
,
294 "The security violation has happened at %u seconds\n",
297 * the timer cannot be set/modified if
298 * - the TCHL or TCSL bit is set in DCR
300 dcr
= readl(imxdi
->ioaddr
+ DCR
);
301 if (!(dcr
& DCR_TCE
)) {
302 if (dcr
& DCR_TCHL
) {
303 /* we are out of luck */
304 di_what_is_to_be_done(imxdi
, "battery");
307 if (dcr
& DCR_TCSL
) {
308 di_what_is_to_be_done(imxdi
, "main");
313 * - the timer counter stops/is stopped if
314 * - its overflow flag is set (TCO in DSR)
315 * -> clear overflow bit to make it count again
316 * - NVF is set in DSR
317 * -> clear non-valid bit to make it count again
318 * - its TCE (DCR) is cleared
319 * -> set TCE to make it count
320 * - it was never set before
321 * -> write a time into it (required again if the NVF was set)
324 di_write_busy_wait(imxdi
, DSR_NVF
, DSR
);
325 /* clear overflow flag */
326 di_write_busy_wait(imxdi
, DSR_TCO
, DSR
);
327 /* enable the counter */
328 di_write_busy_wait(imxdi
, dcr
| DCR_TCE
, DCR
);
329 /* set and trigger it to make it count */
330 di_write_busy_wait(imxdi
, sec
, DTCMR
);
332 /* now prepare for the valid state */
333 return di_handle_valid_state(imxdi
, __raw_readl(imxdi
->ioaddr
+ DSR
));
336 static int di_handle_invalid_and_failure_state(struct imxdi_dev
*imxdi
, u32 dsr
)
341 * now we must first remove the tamper sources in order to get the
342 * device out of the "FAILURE STATE"
343 * To disable any of the following sources we need to modify the DTCR
345 if (dsr
& (DSR_WTD
| DSR_ETBD
| DSR_ETAD
| DSR_EBD
| DSR_SAD
|
346 DSR_TTD
| DSR_CTD
| DSR_VTD
| DSR_MCO
| DSR_TCO
)) {
347 dcr
= __raw_readl(imxdi
->ioaddr
+ DCR
);
348 if (dcr
& DCR_TDCHL
) {
350 * the tamper register is locked. We cannot disable the
351 * tamper detection. The TDCHL can only be reset by a
352 * DRYICE POR, but we cannot force a DRYICE POR in
353 * softwere because we are still in "FAILURE STATE".
354 * We need a DRYICE POR via battery power cycling....
358 * we cannot disable them without a DRYICE POR
360 di_what_is_to_be_done(imxdi
, "battery");
363 if (dcr
& DCR_TDCSL
) {
364 /* a soft lock can be removed by a SYSTEM POR */
365 di_what_is_to_be_done(imxdi
, "main");
370 /* disable all sources */
371 di_write_busy_wait(imxdi
, 0x00000000, DTCR
);
373 /* clear the status bits now */
374 di_write_busy_wait(imxdi
, dsr
& (DSR_WTD
| DSR_ETBD
| DSR_ETAD
|
375 DSR_EBD
| DSR_SAD
| DSR_TTD
| DSR_CTD
| DSR_VTD
|
376 DSR_MCO
| DSR_TCO
), DSR
);
378 dsr
= readl(imxdi
->ioaddr
+ DSR
);
379 if ((dsr
& ~(DSR_NVF
| DSR_SVF
| DSR_WBF
| DSR_WNF
|
380 DSR_WCF
| DSR_WEF
)) != 0)
381 dev_warn(&imxdi
->pdev
->dev
,
382 "There are still some sources of pain in DSR: %08x!\n",
383 dsr
& ~(DSR_NVF
| DSR_SVF
| DSR_WBF
| DSR_WNF
|
387 * now we are trying to clear the "Security-violation flag" to
388 * get the DryIce out of this state
390 di_write_busy_wait(imxdi
, DSR_SVF
, DSR
);
393 dsr
= readl(imxdi
->ioaddr
+ DSR
);
395 dev_crit(&imxdi
->pdev
->dev
,
396 "Cannot clear the security violation flag. We are ending up in an endless loop!\n");
398 di_what_is_to_be_done(imxdi
, "battery");
403 * now we have left the "FAILURE STATE" and ending up in the
404 * "NON-VALID STATE" time to recover everything
406 return di_handle_invalid_state(imxdi
, dsr
);
409 static int di_handle_state(struct imxdi_dev
*imxdi
)
414 dsr
= readl(imxdi
->ioaddr
+ DSR
);
416 switch (dsr
& (DSR_NVF
| DSR_SVF
)) {
418 dev_warn(&imxdi
->pdev
->dev
, "Invalid stated unit detected\n");
419 rc
= di_handle_invalid_state(imxdi
, dsr
);
422 dev_warn(&imxdi
->pdev
->dev
, "Failure stated unit detected\n");
423 rc
= di_handle_failure_state(imxdi
, dsr
);
425 case DSR_NVF
| DSR_SVF
:
426 dev_warn(&imxdi
->pdev
->dev
,
427 "Failure+Invalid stated unit detected\n");
428 rc
= di_handle_invalid_and_failure_state(imxdi
, dsr
);
431 dev_notice(&imxdi
->pdev
->dev
, "Unlocked unit detected\n");
432 rc
= di_handle_valid_state(imxdi
, dsr
);
439 * enable a dryice interrupt
441 static void di_int_enable(struct imxdi_dev
*imxdi
, u32 intr
)
445 spin_lock_irqsave(&imxdi
->irq_lock
, flags
);
446 writel(readl(imxdi
->ioaddr
+ DIER
) | intr
,
447 imxdi
->ioaddr
+ DIER
);
448 spin_unlock_irqrestore(&imxdi
->irq_lock
, flags
);
452 * disable a dryice interrupt
454 static void di_int_disable(struct imxdi_dev
*imxdi
, u32 intr
)
458 spin_lock_irqsave(&imxdi
->irq_lock
, flags
);
459 writel(readl(imxdi
->ioaddr
+ DIER
) & ~intr
,
460 imxdi
->ioaddr
+ DIER
);
461 spin_unlock_irqrestore(&imxdi
->irq_lock
, flags
);
465 * This function attempts to clear the dryice write-error flag.
467 * A dryice write error is similar to a bus fault and should not occur in
468 * normal operation. Clearing the flag requires another write, so the root
469 * cause of the problem may need to be fixed before the flag can be cleared.
471 static void clear_write_error(struct imxdi_dev
*imxdi
)
475 dev_warn(&imxdi
->pdev
->dev
, "WARNING: Register write error!\n");
477 /* clear the write error flag */
478 writel(DSR_WEF
, imxdi
->ioaddr
+ DSR
);
480 /* wait for it to take effect */
481 for (cnt
= 0; cnt
< 1000; cnt
++) {
482 if ((readl(imxdi
->ioaddr
+ DSR
) & DSR_WEF
) == 0)
486 dev_err(&imxdi
->pdev
->dev
,
487 "ERROR: Cannot clear write-error flag!\n");
491 * Write a dryice register and wait until it completes.
493 * This function uses interrupts to determine when the
494 * write has completed.
496 static int di_write_wait(struct imxdi_dev
*imxdi
, u32 val
, int reg
)
501 /* serialize register writes */
502 mutex_lock(&imxdi
->write_mutex
);
504 /* enable the write-complete interrupt */
505 di_int_enable(imxdi
, DIER_WCIE
);
509 /* do the register write */
510 writel(val
, imxdi
->ioaddr
+ reg
);
512 /* wait for the write to finish */
513 ret
= wait_event_interruptible_timeout(imxdi
->write_wait
,
514 imxdi
->dsr
& (DSR_WCF
| DSR_WEF
), msecs_to_jiffies(1));
518 } else if (ret
== 0) {
519 dev_warn(&imxdi
->pdev
->dev
,
520 "Write-wait timeout "
521 "val = 0x%08x reg = 0x%08x\n", val
, reg
);
524 /* check for write error */
525 if (imxdi
->dsr
& DSR_WEF
) {
526 clear_write_error(imxdi
);
531 mutex_unlock(&imxdi
->write_mutex
);
537 * read the seconds portion of the current time from the dryice time counter
539 static int dryice_rtc_read_time(struct device
*dev
, struct rtc_time
*tm
)
541 struct imxdi_dev
*imxdi
= dev_get_drvdata(dev
);
544 now
= readl(imxdi
->ioaddr
+ DTCMR
);
545 rtc_time64_to_tm(now
, tm
);
551 * set the seconds portion of dryice time counter and clear the
554 static int dryice_rtc_set_time(struct device
*dev
, struct rtc_time
*tm
)
556 struct imxdi_dev
*imxdi
= dev_get_drvdata(dev
);
560 dcr
= readl(imxdi
->ioaddr
+ DCR
);
561 dsr
= readl(imxdi
->ioaddr
+ DSR
);
563 if (!(dcr
& DCR_TCE
) || (dsr
& DSR_SVF
)) {
564 if (dcr
& DCR_TCHL
) {
565 /* we are even more out of luck */
566 di_what_is_to_be_done(imxdi
, "battery");
569 if ((dcr
& DCR_TCSL
) || (dsr
& DSR_SVF
)) {
570 /* we are out of luck for now */
571 di_what_is_to_be_done(imxdi
, "main");
576 /* zero the fractional part first */
577 rc
= di_write_wait(imxdi
, 0, DTCLR
);
581 rc
= di_write_wait(imxdi
, rtc_tm_to_time64(tm
), DTCMR
);
585 return di_write_wait(imxdi
, readl(imxdi
->ioaddr
+ DCR
) | DCR_TCE
, DCR
);
588 static int dryice_rtc_alarm_irq_enable(struct device
*dev
,
589 unsigned int enabled
)
591 struct imxdi_dev
*imxdi
= dev_get_drvdata(dev
);
594 di_int_enable(imxdi
, DIER_CAIE
);
596 di_int_disable(imxdi
, DIER_CAIE
);
602 * read the seconds portion of the alarm register.
603 * the fractional part of the alarm register is always zero.
605 static int dryice_rtc_read_alarm(struct device
*dev
, struct rtc_wkalrm
*alarm
)
607 struct imxdi_dev
*imxdi
= dev_get_drvdata(dev
);
610 dcamr
= readl(imxdi
->ioaddr
+ DCAMR
);
611 rtc_time64_to_tm(dcamr
, &alarm
->time
);
613 /* alarm is enabled if the interrupt is enabled */
614 alarm
->enabled
= (readl(imxdi
->ioaddr
+ DIER
) & DIER_CAIE
) != 0;
616 /* don't allow the DSR read to mess up DSR_WCF */
617 mutex_lock(&imxdi
->write_mutex
);
619 /* alarm is pending if the alarm flag is set */
620 alarm
->pending
= (readl(imxdi
->ioaddr
+ DSR
) & DSR_CAF
) != 0;
622 mutex_unlock(&imxdi
->write_mutex
);
628 * set the seconds portion of dryice alarm register
630 static int dryice_rtc_set_alarm(struct device
*dev
, struct rtc_wkalrm
*alarm
)
632 struct imxdi_dev
*imxdi
= dev_get_drvdata(dev
);
635 /* write the new alarm time */
636 rc
= di_write_wait(imxdi
, rtc_tm_to_time64(&alarm
->time
), DCAMR
);
641 di_int_enable(imxdi
, DIER_CAIE
); /* enable alarm intr */
643 di_int_disable(imxdi
, DIER_CAIE
); /* disable alarm intr */
648 static const struct rtc_class_ops dryice_rtc_ops
= {
649 .read_time
= dryice_rtc_read_time
,
650 .set_time
= dryice_rtc_set_time
,
651 .alarm_irq_enable
= dryice_rtc_alarm_irq_enable
,
652 .read_alarm
= dryice_rtc_read_alarm
,
653 .set_alarm
= dryice_rtc_set_alarm
,
657 * interrupt handler for dryice "normal" and security violation interrupt
659 static irqreturn_t
dryice_irq(int irq
, void *dev_id
)
661 struct imxdi_dev
*imxdi
= dev_id
;
663 irqreturn_t rc
= IRQ_NONE
;
665 dier
= readl(imxdi
->ioaddr
+ DIER
);
666 dsr
= readl(imxdi
->ioaddr
+ DSR
);
668 /* handle the security violation event */
669 if (dier
& DIER_SVIE
) {
672 * Disable the interrupt when this kind of event has
674 * There cannot be more than one event of this type,
675 * because it needs a complex state change
676 * including a main power cycle to get again out of
679 di_int_disable(imxdi
, DIER_SVIE
);
680 /* report the violation */
681 di_report_tamper_info(imxdi
, dsr
);
686 /* handle write complete and write error cases */
687 if (dier
& DIER_WCIE
) {
688 /*If the write wait queue is empty then there is no pending
689 operations. It means the interrupt is for DryIce -Security.
690 IRQ must be returned as none.*/
691 if (list_empty_careful(&imxdi
->write_wait
.head
))
694 /* DSR_WCF clears itself on DSR read */
695 if (dsr
& (DSR_WCF
| DSR_WEF
)) {
696 /* mask the interrupt */
697 di_int_disable(imxdi
, DIER_WCIE
);
699 /* save the dsr value for the wait queue */
702 wake_up_interruptible(&imxdi
->write_wait
);
707 /* handle the alarm case */
708 if (dier
& DIER_CAIE
) {
709 /* DSR_WCF clears itself on DSR read */
711 /* mask the interrupt */
712 di_int_disable(imxdi
, DIER_CAIE
);
714 /* finish alarm in user context */
715 schedule_work(&imxdi
->work
);
723 * post the alarm event from user context so it can sleep
724 * on the write completion.
726 static void dryice_work(struct work_struct
*work
)
728 struct imxdi_dev
*imxdi
= container_of(work
,
729 struct imxdi_dev
, work
);
731 /* dismiss the interrupt (ignore error) */
732 di_write_wait(imxdi
, DSR_CAF
, DSR
);
734 /* pass the alarm event to the rtc framework. */
735 rtc_update_irq(imxdi
->rtc
, 1, RTC_AF
| RTC_IRQF
);
739 * probe for dryice rtc device
741 static int __init
dryice_rtc_probe(struct platform_device
*pdev
)
743 struct imxdi_dev
*imxdi
;
744 int norm_irq
, sec_irq
;
747 imxdi
= devm_kzalloc(&pdev
->dev
, sizeof(*imxdi
), GFP_KERNEL
);
753 imxdi
->ioaddr
= devm_platform_ioremap_resource(pdev
, 0);
754 if (IS_ERR(imxdi
->ioaddr
))
755 return PTR_ERR(imxdi
->ioaddr
);
757 spin_lock_init(&imxdi
->irq_lock
);
759 norm_irq
= platform_get_irq(pdev
, 0);
763 /* the 2nd irq is the security violation irq
764 * make this optional, don't break the device tree ABI
766 sec_irq
= platform_get_irq(pdev
, 1);
768 sec_irq
= IRQ_NOTCONNECTED
;
770 init_waitqueue_head(&imxdi
->write_wait
);
772 INIT_WORK(&imxdi
->work
, dryice_work
);
774 mutex_init(&imxdi
->write_mutex
);
776 imxdi
->rtc
= devm_rtc_allocate_device(&pdev
->dev
);
777 if (IS_ERR(imxdi
->rtc
))
778 return PTR_ERR(imxdi
->rtc
);
780 imxdi
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
781 if (IS_ERR(imxdi
->clk
))
782 return PTR_ERR(imxdi
->clk
);
783 rc
= clk_prepare_enable(imxdi
->clk
);
788 * Initialize dryice hardware
791 /* mask all interrupts */
792 writel(0, imxdi
->ioaddr
+ DIER
);
794 rc
= di_handle_state(imxdi
);
798 rc
= devm_request_irq(&pdev
->dev
, norm_irq
, dryice_irq
,
799 IRQF_SHARED
, pdev
->name
, imxdi
);
801 dev_warn(&pdev
->dev
, "interrupt not available.\n");
805 rc
= devm_request_irq(&pdev
->dev
, sec_irq
, dryice_irq
,
806 IRQF_SHARED
, pdev
->name
, imxdi
);
808 dev_warn(&pdev
->dev
, "security violation interrupt not available.\n");
809 /* this is not an error, see above */
812 platform_set_drvdata(pdev
, imxdi
);
814 imxdi
->rtc
->ops
= &dryice_rtc_ops
;
815 imxdi
->rtc
->range_max
= U32_MAX
;
817 rc
= rtc_register_device(imxdi
->rtc
);
824 clk_disable_unprepare(imxdi
->clk
);
829 static int __exit
dryice_rtc_remove(struct platform_device
*pdev
)
831 struct imxdi_dev
*imxdi
= platform_get_drvdata(pdev
);
833 flush_work(&imxdi
->work
);
835 /* mask all interrupts */
836 writel(0, imxdi
->ioaddr
+ DIER
);
838 clk_disable_unprepare(imxdi
->clk
);
844 static const struct of_device_id dryice_dt_ids
[] = {
845 { .compatible
= "fsl,imx25-rtc" },
849 MODULE_DEVICE_TABLE(of
, dryice_dt_ids
);
852 static struct platform_driver dryice_rtc_driver
= {
855 .of_match_table
= of_match_ptr(dryice_dt_ids
),
857 .remove
= __exit_p(dryice_rtc_remove
),
860 module_platform_driver_probe(dryice_rtc_driver
, dryice_rtc_probe
);
862 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
863 MODULE_AUTHOR("Baruch Siach <baruch@tkos.co.il>");
864 MODULE_DESCRIPTION("IMX DryIce Realtime Clock Driver (RTC)");
865 MODULE_LICENSE("GPL");