gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / rtc / rtc-imxdi.c
blobf21dc6b16d88a0bc409fc2f477b09be0e7542e06
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright 2008-2009 Freescale Semiconductor, Inc. All Rights Reserved.
4 * Copyright 2010 Orex Computed Radiography
5 */
7 /*
8 * This driver uses the 47-bit 32 kHz counter in the Freescale DryIce block
9 * to implement a Linux RTC. Times and alarms are truncated to seconds.
10 * Since the RTC framework performs API locking via rtc->ops_lock the
11 * only simultaneous accesses we need to deal with is updating DryIce
12 * registers while servicing an alarm.
14 * Note that reading the DSR (DryIce Status Register) automatically clears
15 * the WCF (Write Complete Flag). All DryIce writes are synchronized to the
16 * LP (Low Power) domain and set the WCF upon completion. Writes to the
17 * DIER (DryIce Interrupt Enable Register) are the only exception. These
18 * occur at normal bus speeds and do not set WCF. Periodic interrupts are
19 * not supported by the hardware.
22 #include <linux/io.h>
23 #include <linux/clk.h>
24 #include <linux/delay.h>
25 #include <linux/module.h>
26 #include <linux/platform_device.h>
27 #include <linux/rtc.h>
28 #include <linux/sched.h>
29 #include <linux/spinlock.h>
30 #include <linux/workqueue.h>
31 #include <linux/of.h>
33 /* DryIce Register Definitions */
35 #define DTCMR 0x00 /* Time Counter MSB Reg */
36 #define DTCLR 0x04 /* Time Counter LSB Reg */
38 #define DCAMR 0x08 /* Clock Alarm MSB Reg */
39 #define DCALR 0x0c /* Clock Alarm LSB Reg */
40 #define DCAMR_UNSET 0xFFFFFFFF /* doomsday - 1 sec */
42 #define DCR 0x10 /* Control Reg */
43 #define DCR_TDCHL (1 << 30) /* Tamper-detect configuration hard lock */
44 #define DCR_TDCSL (1 << 29) /* Tamper-detect configuration soft lock */
45 #define DCR_KSSL (1 << 27) /* Key-select soft lock */
46 #define DCR_MCHL (1 << 20) /* Monotonic-counter hard lock */
47 #define DCR_MCSL (1 << 19) /* Monotonic-counter soft lock */
48 #define DCR_TCHL (1 << 18) /* Timer-counter hard lock */
49 #define DCR_TCSL (1 << 17) /* Timer-counter soft lock */
50 #define DCR_FSHL (1 << 16) /* Failure state hard lock */
51 #define DCR_TCE (1 << 3) /* Time Counter Enable */
52 #define DCR_MCE (1 << 2) /* Monotonic Counter Enable */
54 #define DSR 0x14 /* Status Reg */
55 #define DSR_WTD (1 << 23) /* Wire-mesh tamper detected */
56 #define DSR_ETBD (1 << 22) /* External tamper B detected */
57 #define DSR_ETAD (1 << 21) /* External tamper A detected */
58 #define DSR_EBD (1 << 20) /* External boot detected */
59 #define DSR_SAD (1 << 19) /* SCC alarm detected */
60 #define DSR_TTD (1 << 18) /* Temperature tamper detected */
61 #define DSR_CTD (1 << 17) /* Clock tamper detected */
62 #define DSR_VTD (1 << 16) /* Voltage tamper detected */
63 #define DSR_WBF (1 << 10) /* Write Busy Flag (synchronous) */
64 #define DSR_WNF (1 << 9) /* Write Next Flag (synchronous) */
65 #define DSR_WCF (1 << 8) /* Write Complete Flag (synchronous)*/
66 #define DSR_WEF (1 << 7) /* Write Error Flag */
67 #define DSR_CAF (1 << 4) /* Clock Alarm Flag */
68 #define DSR_MCO (1 << 3) /* monotonic counter overflow */
69 #define DSR_TCO (1 << 2) /* time counter overflow */
70 #define DSR_NVF (1 << 1) /* Non-Valid Flag */
71 #define DSR_SVF (1 << 0) /* Security Violation Flag */
73 #define DIER 0x18 /* Interrupt Enable Reg (synchronous) */
74 #define DIER_WNIE (1 << 9) /* Write Next Interrupt Enable */
75 #define DIER_WCIE (1 << 8) /* Write Complete Interrupt Enable */
76 #define DIER_WEIE (1 << 7) /* Write Error Interrupt Enable */
77 #define DIER_CAIE (1 << 4) /* Clock Alarm Interrupt Enable */
78 #define DIER_SVIE (1 << 0) /* Security-violation Interrupt Enable */
80 #define DMCR 0x1c /* DryIce Monotonic Counter Reg */
82 #define DTCR 0x28 /* DryIce Tamper Configuration Reg */
83 #define DTCR_MOE (1 << 9) /* monotonic overflow enabled */
84 #define DTCR_TOE (1 << 8) /* time overflow enabled */
85 #define DTCR_WTE (1 << 7) /* wire-mesh tamper enabled */
86 #define DTCR_ETBE (1 << 6) /* external B tamper enabled */
87 #define DTCR_ETAE (1 << 5) /* external A tamper enabled */
88 #define DTCR_EBE (1 << 4) /* external boot tamper enabled */
89 #define DTCR_SAIE (1 << 3) /* SCC enabled */
90 #define DTCR_TTE (1 << 2) /* temperature tamper enabled */
91 #define DTCR_CTE (1 << 1) /* clock tamper enabled */
92 #define DTCR_VTE (1 << 0) /* voltage tamper enabled */
94 #define DGPR 0x3c /* DryIce General Purpose Reg */
96 /**
97 * struct imxdi_dev - private imxdi rtc data
98 * @pdev: pionter to platform dev
99 * @rtc: pointer to rtc struct
100 * @ioaddr: IO registers pointer
101 * @clk: input reference clock
102 * @dsr: copy of the DSR register
103 * @irq_lock: interrupt enable register (DIER) lock
104 * @write_wait: registers write complete queue
105 * @write_mutex: serialize registers write
106 * @work: schedule alarm work
108 struct imxdi_dev {
109 struct platform_device *pdev;
110 struct rtc_device *rtc;
111 void __iomem *ioaddr;
112 struct clk *clk;
113 u32 dsr;
114 spinlock_t irq_lock;
115 wait_queue_head_t write_wait;
116 struct mutex write_mutex;
117 struct work_struct work;
120 /* Some background:
122 * The DryIce unit is a complex security/tamper monitor device. To be able do
123 * its job in a useful manner it runs a bigger statemachine to bring it into
124 * security/tamper failure state and once again to bring it out of this state.
126 * This unit can be in one of three states:
128 * - "NON-VALID STATE"
129 * always after the battery power was removed
130 * - "FAILURE STATE"
131 * if one of the enabled security events has happened
132 * - "VALID STATE"
133 * if the unit works as expected
135 * Everything stops when the unit enters the failure state including the RTC
136 * counter (to be able to detect the time the security event happened).
138 * The following events (when enabled) let the DryIce unit enter the failure
139 * state:
141 * - wire-mesh-tamper detect
142 * - external tamper B detect
143 * - external tamper A detect
144 * - temperature tamper detect
145 * - clock tamper detect
146 * - voltage tamper detect
147 * - RTC counter overflow
148 * - monotonic counter overflow
149 * - external boot
151 * If we find the DryIce unit in "FAILURE STATE" and the TDCHL cleared, we
152 * can only detect this state. In this case the unit is completely locked and
153 * must force a second "SYSTEM POR" to bring the DryIce into the
154 * "NON-VALID STATE" + "FAILURE STATE" where a recovery is possible.
155 * If the TDCHL is set in the "FAILURE STATE" we are out of luck. In this case
156 * a battery power cycle is required.
158 * In the "NON-VALID STATE" + "FAILURE STATE" we can clear the "FAILURE STATE"
159 * and recover the DryIce unit. By clearing the "NON-VALID STATE" as the last
160 * task, we bring back this unit into life.
164 * Do a write into the unit without interrupt support.
165 * We do not need to check the WEF here, because the only reason this kind of
166 * write error can happen is if we write to the unit twice within the 122 us
167 * interval. This cannot happen, since we are using this function only while
168 * setting up the unit.
170 static void di_write_busy_wait(const struct imxdi_dev *imxdi, u32 val,
171 unsigned reg)
173 /* do the register write */
174 writel(val, imxdi->ioaddr + reg);
177 * now it takes four 32,768 kHz clock cycles to take
178 * the change into effect = 122 us
180 usleep_range(130, 200);
183 static void di_report_tamper_info(struct imxdi_dev *imxdi, u32 dsr)
185 u32 dtcr;
187 dtcr = readl(imxdi->ioaddr + DTCR);
189 dev_emerg(&imxdi->pdev->dev, "DryIce tamper event detected\n");
190 /* the following flags force a transition into the "FAILURE STATE" */
191 if (dsr & DSR_VTD)
192 dev_emerg(&imxdi->pdev->dev, "%sVoltage Tamper Event\n",
193 dtcr & DTCR_VTE ? "" : "Spurious ");
195 if (dsr & DSR_CTD)
196 dev_emerg(&imxdi->pdev->dev, "%s32768 Hz Clock Tamper Event\n",
197 dtcr & DTCR_CTE ? "" : "Spurious ");
199 if (dsr & DSR_TTD)
200 dev_emerg(&imxdi->pdev->dev, "%sTemperature Tamper Event\n",
201 dtcr & DTCR_TTE ? "" : "Spurious ");
203 if (dsr & DSR_SAD)
204 dev_emerg(&imxdi->pdev->dev,
205 "%sSecure Controller Alarm Event\n",
206 dtcr & DTCR_SAIE ? "" : "Spurious ");
208 if (dsr & DSR_EBD)
209 dev_emerg(&imxdi->pdev->dev, "%sExternal Boot Tamper Event\n",
210 dtcr & DTCR_EBE ? "" : "Spurious ");
212 if (dsr & DSR_ETAD)
213 dev_emerg(&imxdi->pdev->dev, "%sExternal Tamper A Event\n",
214 dtcr & DTCR_ETAE ? "" : "Spurious ");
216 if (dsr & DSR_ETBD)
217 dev_emerg(&imxdi->pdev->dev, "%sExternal Tamper B Event\n",
218 dtcr & DTCR_ETBE ? "" : "Spurious ");
220 if (dsr & DSR_WTD)
221 dev_emerg(&imxdi->pdev->dev, "%sWire-mesh Tamper Event\n",
222 dtcr & DTCR_WTE ? "" : "Spurious ");
224 if (dsr & DSR_MCO)
225 dev_emerg(&imxdi->pdev->dev,
226 "%sMonotonic-counter Overflow Event\n",
227 dtcr & DTCR_MOE ? "" : "Spurious ");
229 if (dsr & DSR_TCO)
230 dev_emerg(&imxdi->pdev->dev, "%sTimer-counter Overflow Event\n",
231 dtcr & DTCR_TOE ? "" : "Spurious ");
234 static void di_what_is_to_be_done(struct imxdi_dev *imxdi,
235 const char *power_supply)
237 dev_emerg(&imxdi->pdev->dev, "Please cycle the %s power supply in order to get the DryIce/RTC unit working again\n",
238 power_supply);
241 static int di_handle_failure_state(struct imxdi_dev *imxdi, u32 dsr)
243 u32 dcr;
245 dev_dbg(&imxdi->pdev->dev, "DSR register reports: %08X\n", dsr);
247 /* report the cause */
248 di_report_tamper_info(imxdi, dsr);
250 dcr = readl(imxdi->ioaddr + DCR);
252 if (dcr & DCR_FSHL) {
253 /* we are out of luck */
254 di_what_is_to_be_done(imxdi, "battery");
255 return -ENODEV;
258 * with the next SYSTEM POR we will transit from the "FAILURE STATE"
259 * into the "NON-VALID STATE" + "FAILURE STATE"
261 di_what_is_to_be_done(imxdi, "main");
263 return -ENODEV;
266 static int di_handle_valid_state(struct imxdi_dev *imxdi, u32 dsr)
268 /* initialize alarm */
269 di_write_busy_wait(imxdi, DCAMR_UNSET, DCAMR);
270 di_write_busy_wait(imxdi, 0, DCALR);
272 /* clear alarm flag */
273 if (dsr & DSR_CAF)
274 di_write_busy_wait(imxdi, DSR_CAF, DSR);
276 return 0;
279 static int di_handle_invalid_state(struct imxdi_dev *imxdi, u32 dsr)
281 u32 dcr, sec;
284 * lets disable all sources which can force the DryIce unit into
285 * the "FAILURE STATE" for now
287 di_write_busy_wait(imxdi, 0x00000000, DTCR);
288 /* and lets protect them at runtime from any change */
289 di_write_busy_wait(imxdi, DCR_TDCSL, DCR);
291 sec = readl(imxdi->ioaddr + DTCMR);
292 if (sec != 0)
293 dev_warn(&imxdi->pdev->dev,
294 "The security violation has happened at %u seconds\n",
295 sec);
297 * the timer cannot be set/modified if
298 * - the TCHL or TCSL bit is set in DCR
300 dcr = readl(imxdi->ioaddr + DCR);
301 if (!(dcr & DCR_TCE)) {
302 if (dcr & DCR_TCHL) {
303 /* we are out of luck */
304 di_what_is_to_be_done(imxdi, "battery");
305 return -ENODEV;
307 if (dcr & DCR_TCSL) {
308 di_what_is_to_be_done(imxdi, "main");
309 return -ENODEV;
313 * - the timer counter stops/is stopped if
314 * - its overflow flag is set (TCO in DSR)
315 * -> clear overflow bit to make it count again
316 * - NVF is set in DSR
317 * -> clear non-valid bit to make it count again
318 * - its TCE (DCR) is cleared
319 * -> set TCE to make it count
320 * - it was never set before
321 * -> write a time into it (required again if the NVF was set)
323 /* state handled */
324 di_write_busy_wait(imxdi, DSR_NVF, DSR);
325 /* clear overflow flag */
326 di_write_busy_wait(imxdi, DSR_TCO, DSR);
327 /* enable the counter */
328 di_write_busy_wait(imxdi, dcr | DCR_TCE, DCR);
329 /* set and trigger it to make it count */
330 di_write_busy_wait(imxdi, sec, DTCMR);
332 /* now prepare for the valid state */
333 return di_handle_valid_state(imxdi, __raw_readl(imxdi->ioaddr + DSR));
336 static int di_handle_invalid_and_failure_state(struct imxdi_dev *imxdi, u32 dsr)
338 u32 dcr;
341 * now we must first remove the tamper sources in order to get the
342 * device out of the "FAILURE STATE"
343 * To disable any of the following sources we need to modify the DTCR
345 if (dsr & (DSR_WTD | DSR_ETBD | DSR_ETAD | DSR_EBD | DSR_SAD |
346 DSR_TTD | DSR_CTD | DSR_VTD | DSR_MCO | DSR_TCO)) {
347 dcr = __raw_readl(imxdi->ioaddr + DCR);
348 if (dcr & DCR_TDCHL) {
350 * the tamper register is locked. We cannot disable the
351 * tamper detection. The TDCHL can only be reset by a
352 * DRYICE POR, but we cannot force a DRYICE POR in
353 * softwere because we are still in "FAILURE STATE".
354 * We need a DRYICE POR via battery power cycling....
357 * out of luck!
358 * we cannot disable them without a DRYICE POR
360 di_what_is_to_be_done(imxdi, "battery");
361 return -ENODEV;
363 if (dcr & DCR_TDCSL) {
364 /* a soft lock can be removed by a SYSTEM POR */
365 di_what_is_to_be_done(imxdi, "main");
366 return -ENODEV;
370 /* disable all sources */
371 di_write_busy_wait(imxdi, 0x00000000, DTCR);
373 /* clear the status bits now */
374 di_write_busy_wait(imxdi, dsr & (DSR_WTD | DSR_ETBD | DSR_ETAD |
375 DSR_EBD | DSR_SAD | DSR_TTD | DSR_CTD | DSR_VTD |
376 DSR_MCO | DSR_TCO), DSR);
378 dsr = readl(imxdi->ioaddr + DSR);
379 if ((dsr & ~(DSR_NVF | DSR_SVF | DSR_WBF | DSR_WNF |
380 DSR_WCF | DSR_WEF)) != 0)
381 dev_warn(&imxdi->pdev->dev,
382 "There are still some sources of pain in DSR: %08x!\n",
383 dsr & ~(DSR_NVF | DSR_SVF | DSR_WBF | DSR_WNF |
384 DSR_WCF | DSR_WEF));
387 * now we are trying to clear the "Security-violation flag" to
388 * get the DryIce out of this state
390 di_write_busy_wait(imxdi, DSR_SVF, DSR);
392 /* success? */
393 dsr = readl(imxdi->ioaddr + DSR);
394 if (dsr & DSR_SVF) {
395 dev_crit(&imxdi->pdev->dev,
396 "Cannot clear the security violation flag. We are ending up in an endless loop!\n");
397 /* last resort */
398 di_what_is_to_be_done(imxdi, "battery");
399 return -ENODEV;
403 * now we have left the "FAILURE STATE" and ending up in the
404 * "NON-VALID STATE" time to recover everything
406 return di_handle_invalid_state(imxdi, dsr);
409 static int di_handle_state(struct imxdi_dev *imxdi)
411 int rc;
412 u32 dsr;
414 dsr = readl(imxdi->ioaddr + DSR);
416 switch (dsr & (DSR_NVF | DSR_SVF)) {
417 case DSR_NVF:
418 dev_warn(&imxdi->pdev->dev, "Invalid stated unit detected\n");
419 rc = di_handle_invalid_state(imxdi, dsr);
420 break;
421 case DSR_SVF:
422 dev_warn(&imxdi->pdev->dev, "Failure stated unit detected\n");
423 rc = di_handle_failure_state(imxdi, dsr);
424 break;
425 case DSR_NVF | DSR_SVF:
426 dev_warn(&imxdi->pdev->dev,
427 "Failure+Invalid stated unit detected\n");
428 rc = di_handle_invalid_and_failure_state(imxdi, dsr);
429 break;
430 default:
431 dev_notice(&imxdi->pdev->dev, "Unlocked unit detected\n");
432 rc = di_handle_valid_state(imxdi, dsr);
435 return rc;
439 * enable a dryice interrupt
441 static void di_int_enable(struct imxdi_dev *imxdi, u32 intr)
443 unsigned long flags;
445 spin_lock_irqsave(&imxdi->irq_lock, flags);
446 writel(readl(imxdi->ioaddr + DIER) | intr,
447 imxdi->ioaddr + DIER);
448 spin_unlock_irqrestore(&imxdi->irq_lock, flags);
452 * disable a dryice interrupt
454 static void di_int_disable(struct imxdi_dev *imxdi, u32 intr)
456 unsigned long flags;
458 spin_lock_irqsave(&imxdi->irq_lock, flags);
459 writel(readl(imxdi->ioaddr + DIER) & ~intr,
460 imxdi->ioaddr + DIER);
461 spin_unlock_irqrestore(&imxdi->irq_lock, flags);
465 * This function attempts to clear the dryice write-error flag.
467 * A dryice write error is similar to a bus fault and should not occur in
468 * normal operation. Clearing the flag requires another write, so the root
469 * cause of the problem may need to be fixed before the flag can be cleared.
471 static void clear_write_error(struct imxdi_dev *imxdi)
473 int cnt;
475 dev_warn(&imxdi->pdev->dev, "WARNING: Register write error!\n");
477 /* clear the write error flag */
478 writel(DSR_WEF, imxdi->ioaddr + DSR);
480 /* wait for it to take effect */
481 for (cnt = 0; cnt < 1000; cnt++) {
482 if ((readl(imxdi->ioaddr + DSR) & DSR_WEF) == 0)
483 return;
484 udelay(10);
486 dev_err(&imxdi->pdev->dev,
487 "ERROR: Cannot clear write-error flag!\n");
491 * Write a dryice register and wait until it completes.
493 * This function uses interrupts to determine when the
494 * write has completed.
496 static int di_write_wait(struct imxdi_dev *imxdi, u32 val, int reg)
498 int ret;
499 int rc = 0;
501 /* serialize register writes */
502 mutex_lock(&imxdi->write_mutex);
504 /* enable the write-complete interrupt */
505 di_int_enable(imxdi, DIER_WCIE);
507 imxdi->dsr = 0;
509 /* do the register write */
510 writel(val, imxdi->ioaddr + reg);
512 /* wait for the write to finish */
513 ret = wait_event_interruptible_timeout(imxdi->write_wait,
514 imxdi->dsr & (DSR_WCF | DSR_WEF), msecs_to_jiffies(1));
515 if (ret < 0) {
516 rc = ret;
517 goto out;
518 } else if (ret == 0) {
519 dev_warn(&imxdi->pdev->dev,
520 "Write-wait timeout "
521 "val = 0x%08x reg = 0x%08x\n", val, reg);
524 /* check for write error */
525 if (imxdi->dsr & DSR_WEF) {
526 clear_write_error(imxdi);
527 rc = -EIO;
530 out:
531 mutex_unlock(&imxdi->write_mutex);
533 return rc;
537 * read the seconds portion of the current time from the dryice time counter
539 static int dryice_rtc_read_time(struct device *dev, struct rtc_time *tm)
541 struct imxdi_dev *imxdi = dev_get_drvdata(dev);
542 unsigned long now;
544 now = readl(imxdi->ioaddr + DTCMR);
545 rtc_time64_to_tm(now, tm);
547 return 0;
551 * set the seconds portion of dryice time counter and clear the
552 * fractional part.
554 static int dryice_rtc_set_time(struct device *dev, struct rtc_time *tm)
556 struct imxdi_dev *imxdi = dev_get_drvdata(dev);
557 u32 dcr, dsr;
558 int rc;
560 dcr = readl(imxdi->ioaddr + DCR);
561 dsr = readl(imxdi->ioaddr + DSR);
563 if (!(dcr & DCR_TCE) || (dsr & DSR_SVF)) {
564 if (dcr & DCR_TCHL) {
565 /* we are even more out of luck */
566 di_what_is_to_be_done(imxdi, "battery");
567 return -EPERM;
569 if ((dcr & DCR_TCSL) || (dsr & DSR_SVF)) {
570 /* we are out of luck for now */
571 di_what_is_to_be_done(imxdi, "main");
572 return -EPERM;
576 /* zero the fractional part first */
577 rc = di_write_wait(imxdi, 0, DTCLR);
578 if (rc != 0)
579 return rc;
581 rc = di_write_wait(imxdi, rtc_tm_to_time64(tm), DTCMR);
582 if (rc != 0)
583 return rc;
585 return di_write_wait(imxdi, readl(imxdi->ioaddr + DCR) | DCR_TCE, DCR);
588 static int dryice_rtc_alarm_irq_enable(struct device *dev,
589 unsigned int enabled)
591 struct imxdi_dev *imxdi = dev_get_drvdata(dev);
593 if (enabled)
594 di_int_enable(imxdi, DIER_CAIE);
595 else
596 di_int_disable(imxdi, DIER_CAIE);
598 return 0;
602 * read the seconds portion of the alarm register.
603 * the fractional part of the alarm register is always zero.
605 static int dryice_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
607 struct imxdi_dev *imxdi = dev_get_drvdata(dev);
608 u32 dcamr;
610 dcamr = readl(imxdi->ioaddr + DCAMR);
611 rtc_time64_to_tm(dcamr, &alarm->time);
613 /* alarm is enabled if the interrupt is enabled */
614 alarm->enabled = (readl(imxdi->ioaddr + DIER) & DIER_CAIE) != 0;
616 /* don't allow the DSR read to mess up DSR_WCF */
617 mutex_lock(&imxdi->write_mutex);
619 /* alarm is pending if the alarm flag is set */
620 alarm->pending = (readl(imxdi->ioaddr + DSR) & DSR_CAF) != 0;
622 mutex_unlock(&imxdi->write_mutex);
624 return 0;
628 * set the seconds portion of dryice alarm register
630 static int dryice_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
632 struct imxdi_dev *imxdi = dev_get_drvdata(dev);
633 int rc;
635 /* write the new alarm time */
636 rc = di_write_wait(imxdi, rtc_tm_to_time64(&alarm->time), DCAMR);
637 if (rc)
638 return rc;
640 if (alarm->enabled)
641 di_int_enable(imxdi, DIER_CAIE); /* enable alarm intr */
642 else
643 di_int_disable(imxdi, DIER_CAIE); /* disable alarm intr */
645 return 0;
648 static const struct rtc_class_ops dryice_rtc_ops = {
649 .read_time = dryice_rtc_read_time,
650 .set_time = dryice_rtc_set_time,
651 .alarm_irq_enable = dryice_rtc_alarm_irq_enable,
652 .read_alarm = dryice_rtc_read_alarm,
653 .set_alarm = dryice_rtc_set_alarm,
657 * interrupt handler for dryice "normal" and security violation interrupt
659 static irqreturn_t dryice_irq(int irq, void *dev_id)
661 struct imxdi_dev *imxdi = dev_id;
662 u32 dsr, dier;
663 irqreturn_t rc = IRQ_NONE;
665 dier = readl(imxdi->ioaddr + DIER);
666 dsr = readl(imxdi->ioaddr + DSR);
668 /* handle the security violation event */
669 if (dier & DIER_SVIE) {
670 if (dsr & DSR_SVF) {
672 * Disable the interrupt when this kind of event has
673 * happened.
674 * There cannot be more than one event of this type,
675 * because it needs a complex state change
676 * including a main power cycle to get again out of
677 * this state.
679 di_int_disable(imxdi, DIER_SVIE);
680 /* report the violation */
681 di_report_tamper_info(imxdi, dsr);
682 rc = IRQ_HANDLED;
686 /* handle write complete and write error cases */
687 if (dier & DIER_WCIE) {
688 /*If the write wait queue is empty then there is no pending
689 operations. It means the interrupt is for DryIce -Security.
690 IRQ must be returned as none.*/
691 if (list_empty_careful(&imxdi->write_wait.head))
692 return rc;
694 /* DSR_WCF clears itself on DSR read */
695 if (dsr & (DSR_WCF | DSR_WEF)) {
696 /* mask the interrupt */
697 di_int_disable(imxdi, DIER_WCIE);
699 /* save the dsr value for the wait queue */
700 imxdi->dsr |= dsr;
702 wake_up_interruptible(&imxdi->write_wait);
703 rc = IRQ_HANDLED;
707 /* handle the alarm case */
708 if (dier & DIER_CAIE) {
709 /* DSR_WCF clears itself on DSR read */
710 if (dsr & DSR_CAF) {
711 /* mask the interrupt */
712 di_int_disable(imxdi, DIER_CAIE);
714 /* finish alarm in user context */
715 schedule_work(&imxdi->work);
716 rc = IRQ_HANDLED;
719 return rc;
723 * post the alarm event from user context so it can sleep
724 * on the write completion.
726 static void dryice_work(struct work_struct *work)
728 struct imxdi_dev *imxdi = container_of(work,
729 struct imxdi_dev, work);
731 /* dismiss the interrupt (ignore error) */
732 di_write_wait(imxdi, DSR_CAF, DSR);
734 /* pass the alarm event to the rtc framework. */
735 rtc_update_irq(imxdi->rtc, 1, RTC_AF | RTC_IRQF);
739 * probe for dryice rtc device
741 static int __init dryice_rtc_probe(struct platform_device *pdev)
743 struct imxdi_dev *imxdi;
744 int norm_irq, sec_irq;
745 int rc;
747 imxdi = devm_kzalloc(&pdev->dev, sizeof(*imxdi), GFP_KERNEL);
748 if (!imxdi)
749 return -ENOMEM;
751 imxdi->pdev = pdev;
753 imxdi->ioaddr = devm_platform_ioremap_resource(pdev, 0);
754 if (IS_ERR(imxdi->ioaddr))
755 return PTR_ERR(imxdi->ioaddr);
757 spin_lock_init(&imxdi->irq_lock);
759 norm_irq = platform_get_irq(pdev, 0);
760 if (norm_irq < 0)
761 return norm_irq;
763 /* the 2nd irq is the security violation irq
764 * make this optional, don't break the device tree ABI
766 sec_irq = platform_get_irq(pdev, 1);
767 if (sec_irq <= 0)
768 sec_irq = IRQ_NOTCONNECTED;
770 init_waitqueue_head(&imxdi->write_wait);
772 INIT_WORK(&imxdi->work, dryice_work);
774 mutex_init(&imxdi->write_mutex);
776 imxdi->rtc = devm_rtc_allocate_device(&pdev->dev);
777 if (IS_ERR(imxdi->rtc))
778 return PTR_ERR(imxdi->rtc);
780 imxdi->clk = devm_clk_get(&pdev->dev, NULL);
781 if (IS_ERR(imxdi->clk))
782 return PTR_ERR(imxdi->clk);
783 rc = clk_prepare_enable(imxdi->clk);
784 if (rc)
785 return rc;
788 * Initialize dryice hardware
791 /* mask all interrupts */
792 writel(0, imxdi->ioaddr + DIER);
794 rc = di_handle_state(imxdi);
795 if (rc != 0)
796 goto err;
798 rc = devm_request_irq(&pdev->dev, norm_irq, dryice_irq,
799 IRQF_SHARED, pdev->name, imxdi);
800 if (rc) {
801 dev_warn(&pdev->dev, "interrupt not available.\n");
802 goto err;
805 rc = devm_request_irq(&pdev->dev, sec_irq, dryice_irq,
806 IRQF_SHARED, pdev->name, imxdi);
807 if (rc) {
808 dev_warn(&pdev->dev, "security violation interrupt not available.\n");
809 /* this is not an error, see above */
812 platform_set_drvdata(pdev, imxdi);
814 imxdi->rtc->ops = &dryice_rtc_ops;
815 imxdi->rtc->range_max = U32_MAX;
817 rc = rtc_register_device(imxdi->rtc);
818 if (rc)
819 goto err;
821 return 0;
823 err:
824 clk_disable_unprepare(imxdi->clk);
826 return rc;
829 static int __exit dryice_rtc_remove(struct platform_device *pdev)
831 struct imxdi_dev *imxdi = platform_get_drvdata(pdev);
833 flush_work(&imxdi->work);
835 /* mask all interrupts */
836 writel(0, imxdi->ioaddr + DIER);
838 clk_disable_unprepare(imxdi->clk);
840 return 0;
843 #ifdef CONFIG_OF
844 static const struct of_device_id dryice_dt_ids[] = {
845 { .compatible = "fsl,imx25-rtc" },
846 { /* sentinel */ }
849 MODULE_DEVICE_TABLE(of, dryice_dt_ids);
850 #endif
852 static struct platform_driver dryice_rtc_driver = {
853 .driver = {
854 .name = "imxdi_rtc",
855 .of_match_table = of_match_ptr(dryice_dt_ids),
857 .remove = __exit_p(dryice_rtc_remove),
860 module_platform_driver_probe(dryice_rtc_driver, dryice_rtc_probe);
862 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
863 MODULE_AUTHOR("Baruch Siach <baruch@tkos.co.il>");
864 MODULE_DESCRIPTION("IMX DryIce Realtime Clock Driver (RTC)");
865 MODULE_LICENSE("GPL");