1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * An RTC driver for Allwinner A31/A23
5 * Copyright (c) 2014, Chen-Yu Tsai <wens@csie.org>
9 * An RTC driver for Allwinner A10/A20
11 * Copyright (c) 2013, Carlo Caione <carlo.caione@gmail.com>
14 #include <linux/clk.h>
15 #include <linux/clk-provider.h>
16 #include <linux/delay.h>
17 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/interrupt.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
25 #include <linux/of_address.h>
26 #include <linux/of_device.h>
27 #include <linux/platform_device.h>
28 #include <linux/rtc.h>
29 #include <linux/slab.h>
30 #include <linux/types.h>
32 /* Control register */
33 #define SUN6I_LOSC_CTRL 0x0000
34 #define SUN6I_LOSC_CTRL_KEY (0x16aa << 16)
35 #define SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS BIT(15)
36 #define SUN6I_LOSC_CTRL_ALM_DHMS_ACC BIT(9)
37 #define SUN6I_LOSC_CTRL_RTC_HMS_ACC BIT(8)
38 #define SUN6I_LOSC_CTRL_RTC_YMD_ACC BIT(7)
39 #define SUN6I_LOSC_CTRL_EXT_LOSC_EN BIT(4)
40 #define SUN6I_LOSC_CTRL_EXT_OSC BIT(0)
41 #define SUN6I_LOSC_CTRL_ACC_MASK GENMASK(9, 7)
43 #define SUN6I_LOSC_CLK_PRESCAL 0x0008
46 #define SUN6I_RTC_YMD 0x0010
47 #define SUN6I_RTC_HMS 0x0014
49 /* Alarm 0 (counter) */
50 #define SUN6I_ALRM_COUNTER 0x0020
51 #define SUN6I_ALRM_CUR_VAL 0x0024
52 #define SUN6I_ALRM_EN 0x0028
53 #define SUN6I_ALRM_EN_CNT_EN BIT(0)
54 #define SUN6I_ALRM_IRQ_EN 0x002c
55 #define SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN BIT(0)
56 #define SUN6I_ALRM_IRQ_STA 0x0030
57 #define SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND BIT(0)
59 /* Alarm 1 (wall clock) */
60 #define SUN6I_ALRM1_EN 0x0044
61 #define SUN6I_ALRM1_IRQ_EN 0x0048
62 #define SUN6I_ALRM1_IRQ_STA 0x004c
63 #define SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND BIT(0)
66 #define SUN6I_ALARM_CONFIG 0x0050
67 #define SUN6I_ALARM_CONFIG_WAKEUP BIT(0)
69 #define SUN6I_LOSC_OUT_GATING 0x0060
70 #define SUN6I_LOSC_OUT_GATING_EN_OFFSET 0
75 #define SUN6I_DATE_GET_DAY_VALUE(x) ((x) & 0x0000001f)
76 #define SUN6I_DATE_GET_MON_VALUE(x) (((x) & 0x00000f00) >> 8)
77 #define SUN6I_DATE_GET_YEAR_VALUE(x) (((x) & 0x003f0000) >> 16)
78 #define SUN6I_LEAP_GET_VALUE(x) (((x) & 0x00400000) >> 22)
83 #define SUN6I_TIME_GET_SEC_VALUE(x) ((x) & 0x0000003f)
84 #define SUN6I_TIME_GET_MIN_VALUE(x) (((x) & 0x00003f00) >> 8)
85 #define SUN6I_TIME_GET_HOUR_VALUE(x) (((x) & 0x001f0000) >> 16)
90 #define SUN6I_DATE_SET_DAY_VALUE(x) ((x) & 0x0000001f)
91 #define SUN6I_DATE_SET_MON_VALUE(x) ((x) << 8 & 0x00000f00)
92 #define SUN6I_DATE_SET_YEAR_VALUE(x) ((x) << 16 & 0x003f0000)
93 #define SUN6I_LEAP_SET_VALUE(x) ((x) << 22 & 0x00400000)
98 #define SUN6I_TIME_SET_SEC_VALUE(x) ((x) & 0x0000003f)
99 #define SUN6I_TIME_SET_MIN_VALUE(x) ((x) << 8 & 0x00003f00)
100 #define SUN6I_TIME_SET_HOUR_VALUE(x) ((x) << 16 & 0x001f0000)
103 * The year parameter passed to the driver is usually an offset relative to
104 * the year 1900. This macro is used to convert this offset to another one
105 * relative to the minimum year allowed by the hardware.
107 * The year range is 1970 - 2033. This range is selected to match Allwinner's
108 * driver, even though it is somewhat limited.
110 #define SUN6I_YEAR_MIN 1970
111 #define SUN6I_YEAR_OFF (SUN6I_YEAR_MIN - 1900)
114 * There are other differences between models, including:
116 * - number of GPIO pins that can be configured to hold a certain level
117 * - crypto-key related registers (H5, H6)
118 * - boot process related (super standby, secondary processor entry address)
119 * registers (R40, H6)
120 * - SYS power domain controls (R40)
121 * - DCXO controls (H6)
122 * - RC oscillator calibration (H6)
124 * These functions are not covered by this driver.
126 struct sun6i_rtc_clk_data
{
127 unsigned long rc_osc_rate
;
128 unsigned int fixed_prescaler
: 16;
129 unsigned int has_prescaler
: 1;
130 unsigned int has_out_clk
: 1;
131 unsigned int export_iosc
: 1;
132 unsigned int has_losc_en
: 1;
133 unsigned int has_auto_swt
: 1;
136 struct sun6i_rtc_dev
{
137 struct rtc_device
*rtc
;
138 const struct sun6i_rtc_clk_data
*data
;
144 struct clk_hw
*int_osc
;
146 struct clk
*ext_losc
;
151 static struct sun6i_rtc_dev
*sun6i_rtc
;
153 static unsigned long sun6i_rtc_osc_recalc_rate(struct clk_hw
*hw
,
154 unsigned long parent_rate
)
156 struct sun6i_rtc_dev
*rtc
= container_of(hw
, struct sun6i_rtc_dev
, hw
);
159 val
= readl(rtc
->base
+ SUN6I_LOSC_CTRL
);
160 if (val
& SUN6I_LOSC_CTRL_EXT_OSC
)
163 if (rtc
->data
->fixed_prescaler
)
164 parent_rate
/= rtc
->data
->fixed_prescaler
;
166 if (rtc
->data
->has_prescaler
) {
167 val
= readl(rtc
->base
+ SUN6I_LOSC_CLK_PRESCAL
);
168 val
&= GENMASK(4, 0);
171 return parent_rate
/ (val
+ 1);
174 static u8
sun6i_rtc_osc_get_parent(struct clk_hw
*hw
)
176 struct sun6i_rtc_dev
*rtc
= container_of(hw
, struct sun6i_rtc_dev
, hw
);
178 return readl(rtc
->base
+ SUN6I_LOSC_CTRL
) & SUN6I_LOSC_CTRL_EXT_OSC
;
181 static int sun6i_rtc_osc_set_parent(struct clk_hw
*hw
, u8 index
)
183 struct sun6i_rtc_dev
*rtc
= container_of(hw
, struct sun6i_rtc_dev
, hw
);
190 spin_lock_irqsave(&rtc
->lock
, flags
);
191 val
= readl(rtc
->base
+ SUN6I_LOSC_CTRL
);
192 val
&= ~SUN6I_LOSC_CTRL_EXT_OSC
;
193 val
|= SUN6I_LOSC_CTRL_KEY
;
194 val
|= index
? SUN6I_LOSC_CTRL_EXT_OSC
: 0;
195 if (rtc
->data
->has_losc_en
) {
196 val
&= ~SUN6I_LOSC_CTRL_EXT_LOSC_EN
;
197 val
|= index
? SUN6I_LOSC_CTRL_EXT_LOSC_EN
: 0;
199 writel(val
, rtc
->base
+ SUN6I_LOSC_CTRL
);
200 spin_unlock_irqrestore(&rtc
->lock
, flags
);
205 static const struct clk_ops sun6i_rtc_osc_ops
= {
206 .recalc_rate
= sun6i_rtc_osc_recalc_rate
,
208 .get_parent
= sun6i_rtc_osc_get_parent
,
209 .set_parent
= sun6i_rtc_osc_set_parent
,
212 static void __init
sun6i_rtc_clk_init(struct device_node
*node
,
213 const struct sun6i_rtc_clk_data
*data
)
215 struct clk_hw_onecell_data
*clk_data
;
216 struct sun6i_rtc_dev
*rtc
;
217 struct clk_init_data init
= {
218 .ops
= &sun6i_rtc_osc_ops
,
221 const char *iosc_name
= "rtc-int-osc";
222 const char *clkout_name
= "osc32k-out";
223 const char *parents
[2];
226 rtc
= kzalloc(sizeof(*rtc
), GFP_KERNEL
);
231 clk_data
= kzalloc(struct_size(clk_data
, hws
, 3), GFP_KERNEL
);
237 spin_lock_init(&rtc
->lock
);
239 rtc
->base
= of_io_request_and_map(node
, 0, of_node_full_name(node
));
240 if (IS_ERR(rtc
->base
)) {
241 pr_crit("Can't map RTC registers");
245 reg
= SUN6I_LOSC_CTRL_KEY
;
246 if (rtc
->data
->has_auto_swt
) {
247 /* Bypass auto-switch to int osc, on ext losc failure */
248 reg
|= SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS
;
249 writel(reg
, rtc
->base
+ SUN6I_LOSC_CTRL
);
252 /* Switch to the external, more precise, oscillator, if present */
253 if (of_get_property(node
, "clocks", NULL
)) {
254 reg
|= SUN6I_LOSC_CTRL_EXT_OSC
;
255 if (rtc
->data
->has_losc_en
)
256 reg
|= SUN6I_LOSC_CTRL_EXT_LOSC_EN
;
258 writel(reg
, rtc
->base
+ SUN6I_LOSC_CTRL
);
260 /* Yes, I know, this is ugly. */
263 /* Only read IOSC name from device tree if it is exported */
264 if (rtc
->data
->export_iosc
)
265 of_property_read_string_index(node
, "clock-output-names", 2,
268 rtc
->int_osc
= clk_hw_register_fixed_rate_with_accuracy(NULL
,
271 rtc
->data
->rc_osc_rate
,
273 if (IS_ERR(rtc
->int_osc
)) {
274 pr_crit("Couldn't register the internal oscillator\n");
278 parents
[0] = clk_hw_get_name(rtc
->int_osc
);
279 /* If there is no external oscillator, this will be NULL and ... */
280 parents
[1] = of_clk_get_parent_name(node
, 0);
282 rtc
->hw
.init
= &init
;
284 init
.parent_names
= parents
;
285 /* ... number of clock parents will be 1. */
286 init
.num_parents
= of_clk_get_parent_count(node
) + 1;
287 of_property_read_string_index(node
, "clock-output-names", 0,
290 rtc
->losc
= clk_register(NULL
, &rtc
->hw
);
291 if (IS_ERR(rtc
->losc
)) {
292 pr_crit("Couldn't register the LOSC clock\n");
296 of_property_read_string_index(node
, "clock-output-names", 1,
298 rtc
->ext_losc
= clk_register_gate(NULL
, clkout_name
, init
.name
,
299 0, rtc
->base
+ SUN6I_LOSC_OUT_GATING
,
300 SUN6I_LOSC_OUT_GATING_EN_OFFSET
, 0,
302 if (IS_ERR(rtc
->ext_losc
)) {
303 pr_crit("Couldn't register the LOSC external gate\n");
308 clk_data
->hws
[0] = &rtc
->hw
;
309 clk_data
->hws
[1] = __clk_get_hw(rtc
->ext_losc
);
310 if (rtc
->data
->export_iosc
) {
311 clk_data
->hws
[2] = rtc
->int_osc
;
314 of_clk_add_hw_provider(node
, of_clk_hw_onecell_get
, clk_data
);
321 static const struct sun6i_rtc_clk_data sun6i_a31_rtc_data
= {
322 .rc_osc_rate
= 667000, /* datasheet says 600 ~ 700 KHz */
326 static void __init
sun6i_a31_rtc_clk_init(struct device_node
*node
)
328 sun6i_rtc_clk_init(node
, &sun6i_a31_rtc_data
);
330 CLK_OF_DECLARE_DRIVER(sun6i_a31_rtc_clk
, "allwinner,sun6i-a31-rtc",
331 sun6i_a31_rtc_clk_init
);
333 static const struct sun6i_rtc_clk_data sun8i_a23_rtc_data
= {
334 .rc_osc_rate
= 667000, /* datasheet says 600 ~ 700 KHz */
339 static void __init
sun8i_a23_rtc_clk_init(struct device_node
*node
)
341 sun6i_rtc_clk_init(node
, &sun8i_a23_rtc_data
);
343 CLK_OF_DECLARE_DRIVER(sun8i_a23_rtc_clk
, "allwinner,sun8i-a23-rtc",
344 sun8i_a23_rtc_clk_init
);
346 static const struct sun6i_rtc_clk_data sun8i_h3_rtc_data
= {
347 .rc_osc_rate
= 16000000,
348 .fixed_prescaler
= 32,
354 static void __init
sun8i_h3_rtc_clk_init(struct device_node
*node
)
356 sun6i_rtc_clk_init(node
, &sun8i_h3_rtc_data
);
358 CLK_OF_DECLARE_DRIVER(sun8i_h3_rtc_clk
, "allwinner,sun8i-h3-rtc",
359 sun8i_h3_rtc_clk_init
);
360 /* As far as we are concerned, clocks for H5 are the same as H3 */
361 CLK_OF_DECLARE_DRIVER(sun50i_h5_rtc_clk
, "allwinner,sun50i-h5-rtc",
362 sun8i_h3_rtc_clk_init
);
364 static const struct sun6i_rtc_clk_data sun50i_h6_rtc_data
= {
365 .rc_osc_rate
= 16000000,
366 .fixed_prescaler
= 32,
374 static void __init
sun50i_h6_rtc_clk_init(struct device_node
*node
)
376 sun6i_rtc_clk_init(node
, &sun50i_h6_rtc_data
);
378 CLK_OF_DECLARE_DRIVER(sun50i_h6_rtc_clk
, "allwinner,sun50i-h6-rtc",
379 sun50i_h6_rtc_clk_init
);
382 * The R40 user manual is self-conflicting on whether the prescaler is
383 * fixed or configurable. The clock diagram shows it as fixed, but there
384 * is also a configurable divider in the RTC block.
386 static const struct sun6i_rtc_clk_data sun8i_r40_rtc_data
= {
387 .rc_osc_rate
= 16000000,
388 .fixed_prescaler
= 512,
390 static void __init
sun8i_r40_rtc_clk_init(struct device_node
*node
)
392 sun6i_rtc_clk_init(node
, &sun8i_r40_rtc_data
);
394 CLK_OF_DECLARE_DRIVER(sun8i_r40_rtc_clk
, "allwinner,sun8i-r40-rtc",
395 sun8i_r40_rtc_clk_init
);
397 static const struct sun6i_rtc_clk_data sun8i_v3_rtc_data
= {
398 .rc_osc_rate
= 32000,
402 static void __init
sun8i_v3_rtc_clk_init(struct device_node
*node
)
404 sun6i_rtc_clk_init(node
, &sun8i_v3_rtc_data
);
406 CLK_OF_DECLARE_DRIVER(sun8i_v3_rtc_clk
, "allwinner,sun8i-v3-rtc",
407 sun8i_v3_rtc_clk_init
);
409 static irqreturn_t
sun6i_rtc_alarmirq(int irq
, void *id
)
411 struct sun6i_rtc_dev
*chip
= (struct sun6i_rtc_dev
*) id
;
412 irqreturn_t ret
= IRQ_NONE
;
415 spin_lock(&chip
->lock
);
416 val
= readl(chip
->base
+ SUN6I_ALRM_IRQ_STA
);
418 if (val
& SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND
) {
419 val
|= SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND
;
420 writel(val
, chip
->base
+ SUN6I_ALRM_IRQ_STA
);
422 rtc_update_irq(chip
->rtc
, 1, RTC_AF
| RTC_IRQF
);
426 spin_unlock(&chip
->lock
);
431 static void sun6i_rtc_setaie(int to
, struct sun6i_rtc_dev
*chip
)
434 u32 alrm_irq_val
= 0;
435 u32 alrm_wake_val
= 0;
439 alrm_val
= SUN6I_ALRM_EN_CNT_EN
;
440 alrm_irq_val
= SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN
;
441 alrm_wake_val
= SUN6I_ALARM_CONFIG_WAKEUP
;
443 writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND
,
444 chip
->base
+ SUN6I_ALRM_IRQ_STA
);
447 spin_lock_irqsave(&chip
->lock
, flags
);
448 writel(alrm_val
, chip
->base
+ SUN6I_ALRM_EN
);
449 writel(alrm_irq_val
, chip
->base
+ SUN6I_ALRM_IRQ_EN
);
450 writel(alrm_wake_val
, chip
->base
+ SUN6I_ALARM_CONFIG
);
451 spin_unlock_irqrestore(&chip
->lock
, flags
);
454 static int sun6i_rtc_gettime(struct device
*dev
, struct rtc_time
*rtc_tm
)
456 struct sun6i_rtc_dev
*chip
= dev_get_drvdata(dev
);
460 * read again in case it changes
463 date
= readl(chip
->base
+ SUN6I_RTC_YMD
);
464 time
= readl(chip
->base
+ SUN6I_RTC_HMS
);
465 } while ((date
!= readl(chip
->base
+ SUN6I_RTC_YMD
)) ||
466 (time
!= readl(chip
->base
+ SUN6I_RTC_HMS
)));
468 rtc_tm
->tm_sec
= SUN6I_TIME_GET_SEC_VALUE(time
);
469 rtc_tm
->tm_min
= SUN6I_TIME_GET_MIN_VALUE(time
);
470 rtc_tm
->tm_hour
= SUN6I_TIME_GET_HOUR_VALUE(time
);
472 rtc_tm
->tm_mday
= SUN6I_DATE_GET_DAY_VALUE(date
);
473 rtc_tm
->tm_mon
= SUN6I_DATE_GET_MON_VALUE(date
);
474 rtc_tm
->tm_year
= SUN6I_DATE_GET_YEAR_VALUE(date
);
479 * switch from (data_year->min)-relative offset to
480 * a (1900)-relative one
482 rtc_tm
->tm_year
+= SUN6I_YEAR_OFF
;
487 static int sun6i_rtc_getalarm(struct device
*dev
, struct rtc_wkalrm
*wkalrm
)
489 struct sun6i_rtc_dev
*chip
= dev_get_drvdata(dev
);
494 spin_lock_irqsave(&chip
->lock
, flags
);
495 alrm_en
= readl(chip
->base
+ SUN6I_ALRM_IRQ_EN
);
496 alrm_st
= readl(chip
->base
+ SUN6I_ALRM_IRQ_STA
);
497 spin_unlock_irqrestore(&chip
->lock
, flags
);
499 wkalrm
->enabled
= !!(alrm_en
& SUN6I_ALRM_EN_CNT_EN
);
500 wkalrm
->pending
= !!(alrm_st
& SUN6I_ALRM_EN_CNT_EN
);
501 rtc_time64_to_tm(chip
->alarm
, &wkalrm
->time
);
506 static int sun6i_rtc_setalarm(struct device
*dev
, struct rtc_wkalrm
*wkalrm
)
508 struct sun6i_rtc_dev
*chip
= dev_get_drvdata(dev
);
509 struct rtc_time
*alrm_tm
= &wkalrm
->time
;
510 struct rtc_time tm_now
;
511 unsigned long time_now
= 0;
512 unsigned long time_set
= 0;
513 unsigned long time_gap
= 0;
516 ret
= sun6i_rtc_gettime(dev
, &tm_now
);
518 dev_err(dev
, "Error in getting time\n");
522 time_set
= rtc_tm_to_time64(alrm_tm
);
523 time_now
= rtc_tm_to_time64(&tm_now
);
524 if (time_set
<= time_now
) {
525 dev_err(dev
, "Date to set in the past\n");
529 time_gap
= time_set
- time_now
;
531 if (time_gap
> U32_MAX
) {
532 dev_err(dev
, "Date too far in the future\n");
536 sun6i_rtc_setaie(0, chip
);
537 writel(0, chip
->base
+ SUN6I_ALRM_COUNTER
);
538 usleep_range(100, 300);
540 writel(time_gap
, chip
->base
+ SUN6I_ALRM_COUNTER
);
541 chip
->alarm
= time_set
;
543 sun6i_rtc_setaie(wkalrm
->enabled
, chip
);
548 static int sun6i_rtc_wait(struct sun6i_rtc_dev
*chip
, int offset
,
549 unsigned int mask
, unsigned int ms_timeout
)
551 const unsigned long timeout
= jiffies
+ msecs_to_jiffies(ms_timeout
);
555 reg
= readl(chip
->base
+ offset
);
561 } while (time_before(jiffies
, timeout
));
566 static int sun6i_rtc_settime(struct device
*dev
, struct rtc_time
*rtc_tm
)
568 struct sun6i_rtc_dev
*chip
= dev_get_drvdata(dev
);
572 rtc_tm
->tm_year
-= SUN6I_YEAR_OFF
;
575 date
= SUN6I_DATE_SET_DAY_VALUE(rtc_tm
->tm_mday
) |
576 SUN6I_DATE_SET_MON_VALUE(rtc_tm
->tm_mon
) |
577 SUN6I_DATE_SET_YEAR_VALUE(rtc_tm
->tm_year
);
579 if (is_leap_year(rtc_tm
->tm_year
+ SUN6I_YEAR_MIN
))
580 date
|= SUN6I_LEAP_SET_VALUE(1);
582 time
= SUN6I_TIME_SET_SEC_VALUE(rtc_tm
->tm_sec
) |
583 SUN6I_TIME_SET_MIN_VALUE(rtc_tm
->tm_min
) |
584 SUN6I_TIME_SET_HOUR_VALUE(rtc_tm
->tm_hour
);
586 /* Check whether registers are writable */
587 if (sun6i_rtc_wait(chip
, SUN6I_LOSC_CTRL
,
588 SUN6I_LOSC_CTRL_ACC_MASK
, 50)) {
589 dev_err(dev
, "rtc is still busy.\n");
593 writel(time
, chip
->base
+ SUN6I_RTC_HMS
);
596 * After writing the RTC HH-MM-SS register, the
597 * SUN6I_LOSC_CTRL_RTC_HMS_ACC bit is set and it will not
598 * be cleared until the real writing operation is finished
601 if (sun6i_rtc_wait(chip
, SUN6I_LOSC_CTRL
,
602 SUN6I_LOSC_CTRL_RTC_HMS_ACC
, 50)) {
603 dev_err(dev
, "Failed to set rtc time.\n");
607 writel(date
, chip
->base
+ SUN6I_RTC_YMD
);
610 * After writing the RTC YY-MM-DD register, the
611 * SUN6I_LOSC_CTRL_RTC_YMD_ACC bit is set and it will not
612 * be cleared until the real writing operation is finished
615 if (sun6i_rtc_wait(chip
, SUN6I_LOSC_CTRL
,
616 SUN6I_LOSC_CTRL_RTC_YMD_ACC
, 50)) {
617 dev_err(dev
, "Failed to set rtc time.\n");
624 static int sun6i_rtc_alarm_irq_enable(struct device
*dev
, unsigned int enabled
)
626 struct sun6i_rtc_dev
*chip
= dev_get_drvdata(dev
);
629 sun6i_rtc_setaie(enabled
, chip
);
634 static const struct rtc_class_ops sun6i_rtc_ops
= {
635 .read_time
= sun6i_rtc_gettime
,
636 .set_time
= sun6i_rtc_settime
,
637 .read_alarm
= sun6i_rtc_getalarm
,
638 .set_alarm
= sun6i_rtc_setalarm
,
639 .alarm_irq_enable
= sun6i_rtc_alarm_irq_enable
642 #ifdef CONFIG_PM_SLEEP
643 /* Enable IRQ wake on suspend, to wake up from RTC. */
644 static int sun6i_rtc_suspend(struct device
*dev
)
646 struct sun6i_rtc_dev
*chip
= dev_get_drvdata(dev
);
648 if (device_may_wakeup(dev
))
649 enable_irq_wake(chip
->irq
);
654 /* Disable IRQ wake on resume. */
655 static int sun6i_rtc_resume(struct device
*dev
)
657 struct sun6i_rtc_dev
*chip
= dev_get_drvdata(dev
);
659 if (device_may_wakeup(dev
))
660 disable_irq_wake(chip
->irq
);
666 static SIMPLE_DEV_PM_OPS(sun6i_rtc_pm_ops
,
667 sun6i_rtc_suspend
, sun6i_rtc_resume
);
669 static int sun6i_rtc_probe(struct platform_device
*pdev
)
671 struct sun6i_rtc_dev
*chip
= sun6i_rtc
;
677 platform_set_drvdata(pdev
, chip
);
679 chip
->irq
= platform_get_irq(pdev
, 0);
683 ret
= devm_request_irq(&pdev
->dev
, chip
->irq
, sun6i_rtc_alarmirq
,
684 0, dev_name(&pdev
->dev
), chip
);
686 dev_err(&pdev
->dev
, "Could not request IRQ\n");
690 /* clear the alarm counter value */
691 writel(0, chip
->base
+ SUN6I_ALRM_COUNTER
);
693 /* disable counter alarm */
694 writel(0, chip
->base
+ SUN6I_ALRM_EN
);
696 /* disable counter alarm interrupt */
697 writel(0, chip
->base
+ SUN6I_ALRM_IRQ_EN
);
699 /* disable week alarm */
700 writel(0, chip
->base
+ SUN6I_ALRM1_EN
);
702 /* disable week alarm interrupt */
703 writel(0, chip
->base
+ SUN6I_ALRM1_IRQ_EN
);
705 /* clear counter alarm pending interrupts */
706 writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND
,
707 chip
->base
+ SUN6I_ALRM_IRQ_STA
);
709 /* clear week alarm pending interrupts */
710 writel(SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND
,
711 chip
->base
+ SUN6I_ALRM1_IRQ_STA
);
713 /* disable alarm wakeup */
714 writel(0, chip
->base
+ SUN6I_ALARM_CONFIG
);
716 clk_prepare_enable(chip
->losc
);
718 device_init_wakeup(&pdev
->dev
, 1);
720 chip
->rtc
= devm_rtc_allocate_device(&pdev
->dev
);
721 if (IS_ERR(chip
->rtc
))
722 return PTR_ERR(chip
->rtc
);
724 chip
->rtc
->ops
= &sun6i_rtc_ops
;
725 chip
->rtc
->range_max
= 2019686399LL; /* 2033-12-31 23:59:59 */
727 ret
= rtc_register_device(chip
->rtc
);
731 dev_info(&pdev
->dev
, "RTC enabled\n");
737 * As far as RTC functionality goes, all models are the same. The
738 * datasheets claim that different models have different number of
739 * registers available for non-volatile storage, but experiments show
740 * that all SoCs have 16 registers available for this purpose.
742 static const struct of_device_id sun6i_rtc_dt_ids
[] = {
743 { .compatible
= "allwinner,sun6i-a31-rtc" },
744 { .compatible
= "allwinner,sun8i-a23-rtc" },
745 { .compatible
= "allwinner,sun8i-h3-rtc" },
746 { .compatible
= "allwinner,sun8i-r40-rtc" },
747 { .compatible
= "allwinner,sun8i-v3-rtc" },
748 { .compatible
= "allwinner,sun50i-h5-rtc" },
749 { .compatible
= "allwinner,sun50i-h6-rtc" },
752 MODULE_DEVICE_TABLE(of
, sun6i_rtc_dt_ids
);
754 static struct platform_driver sun6i_rtc_driver
= {
755 .probe
= sun6i_rtc_probe
,
758 .of_match_table
= sun6i_rtc_dt_ids
,
759 .pm
= &sun6i_rtc_pm_ops
,
762 builtin_platform_driver(sun6i_rtc_driver
);