gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / scsi / aacraid / aachba.c
blobeb72ac8136c3243fb07fd01a36940ebd9d5eba0e
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Adaptec AAC series RAID controller driver
4 * (c) Copyright 2001 Red Hat Inc.
6 * based on the old aacraid driver that is..
7 * Adaptec aacraid device driver for Linux.
9 * Copyright (c) 2000-2010 Adaptec, Inc.
10 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
11 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
13 * Module Name:
14 * aachba.c
16 * Abstract: Contains Interfaces to manage IOs.
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/types.h>
22 #include <linux/pci.h>
23 #include <linux/spinlock.h>
24 #include <linux/slab.h>
25 #include <linux/completion.h>
26 #include <linux/blkdev.h>
27 #include <linux/uaccess.h>
28 #include <linux/highmem.h> /* For flush_kernel_dcache_page */
29 #include <linux/module.h>
31 #include <asm/unaligned.h>
33 #include <scsi/scsi.h>
34 #include <scsi/scsi_cmnd.h>
35 #include <scsi/scsi_device.h>
36 #include <scsi/scsi_host.h>
38 #include "aacraid.h"
40 /* values for inqd_pdt: Peripheral device type in plain English */
41 #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */
42 #define INQD_PDT_PROC 0x03 /* Processor device */
43 #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */
44 #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */
45 #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */
46 #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */
48 #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */
49 #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */
52 * Sense codes
55 #define SENCODE_NO_SENSE 0x00
56 #define SENCODE_END_OF_DATA 0x00
57 #define SENCODE_BECOMING_READY 0x04
58 #define SENCODE_INIT_CMD_REQUIRED 0x04
59 #define SENCODE_UNRECOVERED_READ_ERROR 0x11
60 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A
61 #define SENCODE_INVALID_COMMAND 0x20
62 #define SENCODE_LBA_OUT_OF_RANGE 0x21
63 #define SENCODE_INVALID_CDB_FIELD 0x24
64 #define SENCODE_LUN_NOT_SUPPORTED 0x25
65 #define SENCODE_INVALID_PARAM_FIELD 0x26
66 #define SENCODE_PARAM_NOT_SUPPORTED 0x26
67 #define SENCODE_PARAM_VALUE_INVALID 0x26
68 #define SENCODE_RESET_OCCURRED 0x29
69 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E
70 #define SENCODE_INQUIRY_DATA_CHANGED 0x3F
71 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39
72 #define SENCODE_DIAGNOSTIC_FAILURE 0x40
73 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44
74 #define SENCODE_INVALID_MESSAGE_ERROR 0x49
75 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c
76 #define SENCODE_OVERLAPPED_COMMAND 0x4E
79 * Additional sense codes
82 #define ASENCODE_NO_SENSE 0x00
83 #define ASENCODE_END_OF_DATA 0x05
84 #define ASENCODE_BECOMING_READY 0x01
85 #define ASENCODE_INIT_CMD_REQUIRED 0x02
86 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00
87 #define ASENCODE_INVALID_COMMAND 0x00
88 #define ASENCODE_LBA_OUT_OF_RANGE 0x00
89 #define ASENCODE_INVALID_CDB_FIELD 0x00
90 #define ASENCODE_LUN_NOT_SUPPORTED 0x00
91 #define ASENCODE_INVALID_PARAM_FIELD 0x00
92 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01
93 #define ASENCODE_PARAM_VALUE_INVALID 0x02
94 #define ASENCODE_RESET_OCCURRED 0x00
95 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00
96 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03
97 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00
98 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80
99 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00
100 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00
101 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00
102 #define ASENCODE_OVERLAPPED_COMMAND 0x00
104 #define BYTE0(x) (unsigned char)(x)
105 #define BYTE1(x) (unsigned char)((x) >> 8)
106 #define BYTE2(x) (unsigned char)((x) >> 16)
107 #define BYTE3(x) (unsigned char)((x) >> 24)
109 /* MODE_SENSE data format */
110 typedef struct {
111 struct {
112 u8 data_length;
113 u8 med_type;
114 u8 dev_par;
115 u8 bd_length;
116 } __attribute__((packed)) hd;
117 struct {
118 u8 dens_code;
119 u8 block_count[3];
120 u8 reserved;
121 u8 block_length[3];
122 } __attribute__((packed)) bd;
123 u8 mpc_buf[3];
124 } __attribute__((packed)) aac_modep_data;
126 /* MODE_SENSE_10 data format */
127 typedef struct {
128 struct {
129 u8 data_length[2];
130 u8 med_type;
131 u8 dev_par;
132 u8 rsrvd[2];
133 u8 bd_length[2];
134 } __attribute__((packed)) hd;
135 struct {
136 u8 dens_code;
137 u8 block_count[3];
138 u8 reserved;
139 u8 block_length[3];
140 } __attribute__((packed)) bd;
141 u8 mpc_buf[3];
142 } __attribute__((packed)) aac_modep10_data;
144 /*------------------------------------------------------------------------------
145 * S T R U C T S / T Y P E D E F S
146 *----------------------------------------------------------------------------*/
147 /* SCSI inquiry data */
148 struct inquiry_data {
149 u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */
150 u8 inqd_dtq; /* RMB | Device Type Qualifier */
151 u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */
152 u8 inqd_rdf; /* AENC | TrmIOP | Response data format */
153 u8 inqd_len; /* Additional length (n-4) */
154 u8 inqd_pad1[2];/* Reserved - must be zero */
155 u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
156 u8 inqd_vid[8]; /* Vendor ID */
157 u8 inqd_pid[16];/* Product ID */
158 u8 inqd_prl[4]; /* Product Revision Level */
161 /* Added for VPD 0x83 */
162 struct tvpd_id_descriptor_type_1 {
163 u8 codeset:4; /* VPD_CODE_SET */
164 u8 reserved:4;
165 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */
166 u8 reserved2:4;
167 u8 reserved3;
168 u8 identifierlength;
169 u8 venid[8];
170 u8 productid[16];
171 u8 serialnumber[8]; /* SN in ASCII */
175 struct tvpd_id_descriptor_type_2 {
176 u8 codeset:4; /* VPD_CODE_SET */
177 u8 reserved:4;
178 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */
179 u8 reserved2:4;
180 u8 reserved3;
181 u8 identifierlength;
182 struct teu64id {
183 u32 Serial;
184 /* The serial number supposed to be 40 bits,
185 * bit we only support 32, so make the last byte zero. */
186 u8 reserved;
187 u8 venid[3];
188 } eu64id;
192 struct tvpd_id_descriptor_type_3 {
193 u8 codeset : 4; /* VPD_CODE_SET */
194 u8 reserved : 4;
195 u8 identifiertype : 4; /* VPD_IDENTIFIER_TYPE */
196 u8 reserved2 : 4;
197 u8 reserved3;
198 u8 identifierlength;
199 u8 Identifier[16];
202 struct tvpd_page83 {
203 u8 DeviceType:5;
204 u8 DeviceTypeQualifier:3;
205 u8 PageCode;
206 u8 reserved;
207 u8 PageLength;
208 struct tvpd_id_descriptor_type_1 type1;
209 struct tvpd_id_descriptor_type_2 type2;
210 struct tvpd_id_descriptor_type_3 type3;
214 * M O D U L E G L O B A L S
217 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *sgmap);
218 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg);
219 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg);
220 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd,
221 struct aac_raw_io2 *rio2, int sg_max);
222 static long aac_build_sghba(struct scsi_cmnd *scsicmd,
223 struct aac_hba_cmd_req *hbacmd,
224 int sg_max, u64 sg_address);
225 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2,
226 int pages, int nseg, int nseg_new);
227 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
228 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd);
229 #ifdef AAC_DETAILED_STATUS_INFO
230 static char *aac_get_status_string(u32 status);
231 #endif
234 * Non dasd selection is handled entirely in aachba now
237 static int nondasd = -1;
238 static int aac_cache = 2; /* WCE=0 to avoid performance problems */
239 static int dacmode = -1;
240 int aac_msi;
241 int aac_commit = -1;
242 int startup_timeout = 180;
243 int aif_timeout = 120;
244 int aac_sync_mode; /* Only Sync. transfer - disabled */
245 int aac_convert_sgl = 1; /* convert non-conformable s/g list - enabled */
247 module_param(aac_sync_mode, int, S_IRUGO|S_IWUSR);
248 MODULE_PARM_DESC(aac_sync_mode, "Force sync. transfer mode"
249 " 0=off, 1=on");
250 module_param(aac_convert_sgl, int, S_IRUGO|S_IWUSR);
251 MODULE_PARM_DESC(aac_convert_sgl, "Convert non-conformable s/g list"
252 " 0=off, 1=on");
253 module_param(nondasd, int, S_IRUGO|S_IWUSR);
254 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices."
255 " 0=off, 1=on");
256 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR);
257 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n"
258 "\tbit 0 - Disable FUA in WRITE SCSI commands\n"
259 "\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n"
260 "\tbit 2 - Disable only if Battery is protecting Cache");
261 module_param(dacmode, int, S_IRUGO|S_IWUSR);
262 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC."
263 " 0=off, 1=on");
264 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR);
265 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the"
266 " adapter for foreign arrays.\n"
267 "This is typically needed in systems that do not have a BIOS."
268 " 0=off, 1=on");
269 module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR);
270 MODULE_PARM_DESC(msi, "IRQ handling."
271 " 0=PIC(default), 1=MSI, 2=MSI-X)");
272 module_param(startup_timeout, int, S_IRUGO|S_IWUSR);
273 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for"
274 " adapter to have it's kernel up and\n"
275 "running. This is typically adjusted for large systems that do not"
276 " have a BIOS.");
277 module_param(aif_timeout, int, S_IRUGO|S_IWUSR);
278 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for"
279 " applications to pick up AIFs before\n"
280 "deregistering them. This is typically adjusted for heavily burdened"
281 " systems.");
283 int aac_fib_dump;
284 module_param(aac_fib_dump, int, 0644);
285 MODULE_PARM_DESC(aac_fib_dump, "Dump controller fibs prior to IOP_RESET 0=off, 1=on");
287 int numacb = -1;
288 module_param(numacb, int, S_IRUGO|S_IWUSR);
289 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control"
290 " blocks (FIB) allocated. Valid values are 512 and down. Default is"
291 " to use suggestion from Firmware.");
293 int acbsize = -1;
294 module_param(acbsize, int, S_IRUGO|S_IWUSR);
295 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)"
296 " size. Valid values are 512, 2048, 4096 and 8192. Default is to use"
297 " suggestion from Firmware.");
299 int update_interval = 30 * 60;
300 module_param(update_interval, int, S_IRUGO|S_IWUSR);
301 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync"
302 " updates issued to adapter.");
304 int check_interval = 60;
305 module_param(check_interval, int, S_IRUGO|S_IWUSR);
306 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health"
307 " checks.");
309 int aac_check_reset = 1;
310 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR);
311 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the"
312 " adapter. a value of -1 forces the reset to adapters programmed to"
313 " ignore it.");
315 int expose_physicals = -1;
316 module_param(expose_physicals, int, S_IRUGO|S_IWUSR);
317 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays."
318 " -1=protect 0=off, 1=on");
320 int aac_reset_devices;
321 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR);
322 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization.");
324 int aac_wwn = 1;
325 module_param_named(wwn, aac_wwn, int, S_IRUGO|S_IWUSR);
326 MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n"
327 "\t0 - Disable\n"
328 "\t1 - Array Meta Data Signature (default)\n"
329 "\t2 - Adapter Serial Number");
332 static inline int aac_valid_context(struct scsi_cmnd *scsicmd,
333 struct fib *fibptr) {
334 struct scsi_device *device;
336 if (unlikely(!scsicmd || !scsicmd->scsi_done)) {
337 dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n"));
338 aac_fib_complete(fibptr);
339 return 0;
341 scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
342 device = scsicmd->device;
343 if (unlikely(!device)) {
344 dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n"));
345 aac_fib_complete(fibptr);
346 return 0;
348 return 1;
352 * aac_get_config_status - check the adapter configuration
353 * @common: adapter to query
355 * Query config status, and commit the configuration if needed.
357 int aac_get_config_status(struct aac_dev *dev, int commit_flag)
359 int status = 0;
360 struct fib * fibptr;
362 if (!(fibptr = aac_fib_alloc(dev)))
363 return -ENOMEM;
365 aac_fib_init(fibptr);
367 struct aac_get_config_status *dinfo;
368 dinfo = (struct aac_get_config_status *) fib_data(fibptr);
370 dinfo->command = cpu_to_le32(VM_ContainerConfig);
371 dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
372 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
375 status = aac_fib_send(ContainerCommand,
376 fibptr,
377 sizeof (struct aac_get_config_status),
378 FsaNormal,
379 1, 1,
380 NULL, NULL);
381 if (status < 0) {
382 printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
383 } else {
384 struct aac_get_config_status_resp *reply
385 = (struct aac_get_config_status_resp *) fib_data(fibptr);
386 dprintk((KERN_WARNING
387 "aac_get_config_status: response=%d status=%d action=%d\n",
388 le32_to_cpu(reply->response),
389 le32_to_cpu(reply->status),
390 le32_to_cpu(reply->data.action)));
391 if ((le32_to_cpu(reply->response) != ST_OK) ||
392 (le32_to_cpu(reply->status) != CT_OK) ||
393 (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
394 printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
395 status = -EINVAL;
398 /* Do not set XferState to zero unless receives a response from F/W */
399 if (status >= 0)
400 aac_fib_complete(fibptr);
402 /* Send a CT_COMMIT_CONFIG to enable discovery of devices */
403 if (status >= 0) {
404 if ((aac_commit == 1) || commit_flag) {
405 struct aac_commit_config * dinfo;
406 aac_fib_init(fibptr);
407 dinfo = (struct aac_commit_config *) fib_data(fibptr);
409 dinfo->command = cpu_to_le32(VM_ContainerConfig);
410 dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
412 status = aac_fib_send(ContainerCommand,
413 fibptr,
414 sizeof (struct aac_commit_config),
415 FsaNormal,
416 1, 1,
417 NULL, NULL);
418 /* Do not set XferState to zero unless
419 * receives a response from F/W */
420 if (status >= 0)
421 aac_fib_complete(fibptr);
422 } else if (aac_commit == 0) {
423 printk(KERN_WARNING
424 "aac_get_config_status: Foreign device configurations are being ignored\n");
427 /* FIB should be freed only after getting the response from the F/W */
428 if (status != -ERESTARTSYS)
429 aac_fib_free(fibptr);
430 return status;
433 static void aac_expose_phy_device(struct scsi_cmnd *scsicmd)
435 char inq_data;
436 scsi_sg_copy_to_buffer(scsicmd, &inq_data, sizeof(inq_data));
437 if ((inq_data & 0x20) && (inq_data & 0x1f) == TYPE_DISK) {
438 inq_data &= 0xdf;
439 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
444 * aac_get_containers - list containers
445 * @common: adapter to probe
447 * Make a list of all containers on this controller
449 int aac_get_containers(struct aac_dev *dev)
451 struct fsa_dev_info *fsa_dev_ptr;
452 u32 index;
453 int status = 0;
454 struct fib * fibptr;
455 struct aac_get_container_count *dinfo;
456 struct aac_get_container_count_resp *dresp;
457 int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
459 if (!(fibptr = aac_fib_alloc(dev)))
460 return -ENOMEM;
462 aac_fib_init(fibptr);
463 dinfo = (struct aac_get_container_count *) fib_data(fibptr);
464 dinfo->command = cpu_to_le32(VM_ContainerConfig);
465 dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
467 status = aac_fib_send(ContainerCommand,
468 fibptr,
469 sizeof (struct aac_get_container_count),
470 FsaNormal,
471 1, 1,
472 NULL, NULL);
473 if (status >= 0) {
474 dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
475 maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
476 if (fibptr->dev->supplement_adapter_info.supported_options2 &
477 AAC_OPTION_SUPPORTED_240_VOLUMES) {
478 maximum_num_containers =
479 le32_to_cpu(dresp->MaxSimpleVolumes);
481 aac_fib_complete(fibptr);
483 /* FIB should be freed only after getting the response from the F/W */
484 if (status != -ERESTARTSYS)
485 aac_fib_free(fibptr);
487 if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
488 maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
489 if (dev->fsa_dev == NULL ||
490 dev->maximum_num_containers != maximum_num_containers) {
492 fsa_dev_ptr = dev->fsa_dev;
494 dev->fsa_dev = kcalloc(maximum_num_containers,
495 sizeof(*fsa_dev_ptr), GFP_KERNEL);
497 kfree(fsa_dev_ptr);
498 fsa_dev_ptr = NULL;
501 if (!dev->fsa_dev)
502 return -ENOMEM;
504 dev->maximum_num_containers = maximum_num_containers;
506 for (index = 0; index < dev->maximum_num_containers; index++) {
507 dev->fsa_dev[index].devname[0] = '\0';
508 dev->fsa_dev[index].valid = 0;
510 status = aac_probe_container(dev, index);
512 if (status < 0) {
513 printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
514 break;
517 return status;
520 static void get_container_name_callback(void *context, struct fib * fibptr)
522 struct aac_get_name_resp * get_name_reply;
523 struct scsi_cmnd * scsicmd;
525 scsicmd = (struct scsi_cmnd *) context;
527 if (!aac_valid_context(scsicmd, fibptr))
528 return;
530 dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
531 BUG_ON(fibptr == NULL);
533 get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
534 /* Failure is irrelevant, using default value instead */
535 if ((le32_to_cpu(get_name_reply->status) == CT_OK)
536 && (get_name_reply->data[0] != '\0')) {
537 char *sp = get_name_reply->data;
538 int data_size = sizeof_field(struct aac_get_name_resp, data);
540 sp[data_size - 1] = '\0';
541 while (*sp == ' ')
542 ++sp;
543 if (*sp) {
544 struct inquiry_data inq;
545 char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
546 int count = sizeof(d);
547 char *dp = d;
548 do {
549 *dp++ = (*sp) ? *sp++ : ' ';
550 } while (--count > 0);
552 scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq));
553 memcpy(inq.inqd_pid, d, sizeof(d));
554 scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq));
558 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
560 aac_fib_complete(fibptr);
561 scsicmd->scsi_done(scsicmd);
565 * aac_get_container_name - get container name, none blocking.
567 static int aac_get_container_name(struct scsi_cmnd * scsicmd)
569 int status;
570 int data_size;
571 struct aac_get_name *dinfo;
572 struct fib * cmd_fibcontext;
573 struct aac_dev * dev;
575 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
577 data_size = sizeof_field(struct aac_get_name_resp, data);
579 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
581 aac_fib_init(cmd_fibcontext);
582 dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
583 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
585 dinfo->command = cpu_to_le32(VM_ContainerConfig);
586 dinfo->type = cpu_to_le32(CT_READ_NAME);
587 dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
588 dinfo->count = cpu_to_le32(data_size - 1);
590 status = aac_fib_send(ContainerCommand,
591 cmd_fibcontext,
592 sizeof(struct aac_get_name_resp),
593 FsaNormal,
594 0, 1,
595 (fib_callback)get_container_name_callback,
596 (void *) scsicmd);
599 * Check that the command queued to the controller
601 if (status == -EINPROGRESS)
602 return 0;
604 printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status);
605 aac_fib_complete(cmd_fibcontext);
606 return -1;
609 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd)
611 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
613 if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1))
614 return aac_scsi_cmd(scsicmd);
616 scsicmd->result = DID_NO_CONNECT << 16;
617 scsicmd->scsi_done(scsicmd);
618 return 0;
621 static void _aac_probe_container2(void * context, struct fib * fibptr)
623 struct fsa_dev_info *fsa_dev_ptr;
624 int (*callback)(struct scsi_cmnd *);
625 struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context;
626 int i;
629 if (!aac_valid_context(scsicmd, fibptr))
630 return;
632 scsicmd->SCp.Status = 0;
633 fsa_dev_ptr = fibptr->dev->fsa_dev;
634 if (fsa_dev_ptr) {
635 struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr);
636 __le32 sup_options2;
638 fsa_dev_ptr += scmd_id(scsicmd);
639 sup_options2 =
640 fibptr->dev->supplement_adapter_info.supported_options2;
642 if ((le32_to_cpu(dresp->status) == ST_OK) &&
643 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
644 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
645 if (!(sup_options2 & AAC_OPTION_VARIABLE_BLOCK_SIZE)) {
646 dresp->mnt[0].fileinfo.bdevinfo.block_size = 0x200;
647 fsa_dev_ptr->block_size = 0x200;
648 } else {
649 fsa_dev_ptr->block_size =
650 le32_to_cpu(dresp->mnt[0].fileinfo.bdevinfo.block_size);
652 for (i = 0; i < 16; i++)
653 fsa_dev_ptr->identifier[i] =
654 dresp->mnt[0].fileinfo.bdevinfo
655 .identifier[i];
656 fsa_dev_ptr->valid = 1;
657 /* sense_key holds the current state of the spin-up */
658 if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY))
659 fsa_dev_ptr->sense_data.sense_key = NOT_READY;
660 else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY)
661 fsa_dev_ptr->sense_data.sense_key = NO_SENSE;
662 fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol);
663 fsa_dev_ptr->size
664 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
665 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
666 fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0);
668 if ((fsa_dev_ptr->valid & 1) == 0)
669 fsa_dev_ptr->valid = 0;
670 scsicmd->SCp.Status = le32_to_cpu(dresp->count);
672 aac_fib_complete(fibptr);
673 aac_fib_free(fibptr);
674 callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr);
675 scsicmd->SCp.ptr = NULL;
676 (*callback)(scsicmd);
677 return;
680 static void _aac_probe_container1(void * context, struct fib * fibptr)
682 struct scsi_cmnd * scsicmd;
683 struct aac_mount * dresp;
684 struct aac_query_mount *dinfo;
685 int status;
687 dresp = (struct aac_mount *) fib_data(fibptr);
688 if (!aac_supports_2T(fibptr->dev)) {
689 dresp->mnt[0].capacityhigh = 0;
690 if ((le32_to_cpu(dresp->status) == ST_OK) &&
691 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) {
692 _aac_probe_container2(context, fibptr);
693 return;
696 scsicmd = (struct scsi_cmnd *) context;
698 if (!aac_valid_context(scsicmd, fibptr))
699 return;
701 aac_fib_init(fibptr);
703 dinfo = (struct aac_query_mount *)fib_data(fibptr);
705 if (fibptr->dev->supplement_adapter_info.supported_options2 &
706 AAC_OPTION_VARIABLE_BLOCK_SIZE)
707 dinfo->command = cpu_to_le32(VM_NameServeAllBlk);
708 else
709 dinfo->command = cpu_to_le32(VM_NameServe64);
711 dinfo->count = cpu_to_le32(scmd_id(scsicmd));
712 dinfo->type = cpu_to_le32(FT_FILESYS);
713 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
715 status = aac_fib_send(ContainerCommand,
716 fibptr,
717 sizeof(struct aac_query_mount),
718 FsaNormal,
719 0, 1,
720 _aac_probe_container2,
721 (void *) scsicmd);
723 * Check that the command queued to the controller
725 if (status < 0 && status != -EINPROGRESS) {
726 /* Inherit results from VM_NameServe, if any */
727 dresp->status = cpu_to_le32(ST_OK);
728 _aac_probe_container2(context, fibptr);
732 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *))
734 struct fib * fibptr;
735 int status = -ENOMEM;
737 if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) {
738 struct aac_query_mount *dinfo;
740 aac_fib_init(fibptr);
742 dinfo = (struct aac_query_mount *)fib_data(fibptr);
744 if (fibptr->dev->supplement_adapter_info.supported_options2 &
745 AAC_OPTION_VARIABLE_BLOCK_SIZE)
746 dinfo->command = cpu_to_le32(VM_NameServeAllBlk);
747 else
748 dinfo->command = cpu_to_le32(VM_NameServe);
750 dinfo->count = cpu_to_le32(scmd_id(scsicmd));
751 dinfo->type = cpu_to_le32(FT_FILESYS);
752 scsicmd->SCp.ptr = (char *)callback;
753 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
755 status = aac_fib_send(ContainerCommand,
756 fibptr,
757 sizeof(struct aac_query_mount),
758 FsaNormal,
759 0, 1,
760 _aac_probe_container1,
761 (void *) scsicmd);
763 * Check that the command queued to the controller
765 if (status == -EINPROGRESS)
766 return 0;
768 if (status < 0) {
769 scsicmd->SCp.ptr = NULL;
770 aac_fib_complete(fibptr);
771 aac_fib_free(fibptr);
774 if (status < 0) {
775 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
776 if (fsa_dev_ptr) {
777 fsa_dev_ptr += scmd_id(scsicmd);
778 if ((fsa_dev_ptr->valid & 1) == 0) {
779 fsa_dev_ptr->valid = 0;
780 return (*callback)(scsicmd);
784 return status;
788 * aac_probe_container - query a logical volume
789 * @dev: device to query
790 * @cid: container identifier
792 * Queries the controller about the given volume. The volume information
793 * is updated in the struct fsa_dev_info structure rather than returned.
795 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd)
797 scsicmd->device = NULL;
798 return 0;
801 static void aac_probe_container_scsi_done(struct scsi_cmnd *scsi_cmnd)
803 aac_probe_container_callback1(scsi_cmnd);
806 int aac_probe_container(struct aac_dev *dev, int cid)
808 struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL);
809 struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL);
810 int status;
812 if (!scsicmd || !scsidev) {
813 kfree(scsicmd);
814 kfree(scsidev);
815 return -ENOMEM;
817 scsicmd->list.next = NULL;
818 scsicmd->scsi_done = aac_probe_container_scsi_done;
820 scsicmd->device = scsidev;
821 scsidev->sdev_state = 0;
822 scsidev->id = cid;
823 scsidev->host = dev->scsi_host_ptr;
825 if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0)
826 while (scsicmd->device == scsidev)
827 schedule();
828 kfree(scsidev);
829 status = scsicmd->SCp.Status;
830 kfree(scsicmd);
831 return status;
834 /* Local Structure to set SCSI inquiry data strings */
835 struct scsi_inq {
836 char vid[8]; /* Vendor ID */
837 char pid[16]; /* Product ID */
838 char prl[4]; /* Product Revision Level */
842 * InqStrCopy - string merge
843 * @a: string to copy from
844 * @b: string to copy to
846 * Copy a String from one location to another
847 * without copying \0
850 static void inqstrcpy(char *a, char *b)
853 while (*a != (char)0)
854 *b++ = *a++;
857 static char *container_types[] = {
858 "None",
859 "Volume",
860 "Mirror",
861 "Stripe",
862 "RAID5",
863 "SSRW",
864 "SSRO",
865 "Morph",
866 "Legacy",
867 "RAID4",
868 "RAID10",
869 "RAID00",
870 "V-MIRRORS",
871 "PSEUDO R4",
872 "RAID50",
873 "RAID5D",
874 "RAID5D0",
875 "RAID1E",
876 "RAID6",
877 "RAID60",
878 "Unknown"
881 char * get_container_type(unsigned tindex)
883 if (tindex >= ARRAY_SIZE(container_types))
884 tindex = ARRAY_SIZE(container_types) - 1;
885 return container_types[tindex];
888 /* Function: setinqstr
890 * Arguments: [1] pointer to void [1] int
892 * Purpose: Sets SCSI inquiry data strings for vendor, product
893 * and revision level. Allows strings to be set in platform dependent
894 * files instead of in OS dependent driver source.
897 static void setinqstr(struct aac_dev *dev, void *data, int tindex)
899 struct scsi_inq *str;
900 struct aac_supplement_adapter_info *sup_adap_info;
902 sup_adap_info = &dev->supplement_adapter_info;
903 str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
904 memset(str, ' ', sizeof(*str));
906 if (sup_adap_info->adapter_type_text[0]) {
907 int c;
908 char *cp;
909 char *cname = kmemdup(sup_adap_info->adapter_type_text,
910 sizeof(sup_adap_info->adapter_type_text),
911 GFP_ATOMIC);
912 if (!cname)
913 return;
915 cp = cname;
916 if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C'))
917 inqstrcpy("SMC", str->vid);
918 else {
919 c = sizeof(str->vid);
920 while (*cp && *cp != ' ' && --c)
921 ++cp;
922 c = *cp;
923 *cp = '\0';
924 inqstrcpy(cname, str->vid);
925 *cp = c;
926 while (*cp && *cp != ' ')
927 ++cp;
929 while (*cp == ' ')
930 ++cp;
931 /* last six chars reserved for vol type */
932 if (strlen(cp) > sizeof(str->pid))
933 cp[sizeof(str->pid)] = '\0';
934 inqstrcpy (cp, str->pid);
936 kfree(cname);
937 } else {
938 struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype);
940 inqstrcpy (mp->vname, str->vid);
941 /* last six chars reserved for vol type */
942 inqstrcpy (mp->model, str->pid);
945 if (tindex < ARRAY_SIZE(container_types)){
946 char *findit = str->pid;
948 for ( ; *findit != ' '; findit++); /* walk till we find a space */
949 /* RAID is superfluous in the context of a RAID device */
950 if (memcmp(findit-4, "RAID", 4) == 0)
951 *(findit -= 4) = ' ';
952 if (((findit - str->pid) + strlen(container_types[tindex]))
953 < (sizeof(str->pid) + sizeof(str->prl)))
954 inqstrcpy (container_types[tindex], findit + 1);
956 inqstrcpy ("V1.0", str->prl);
959 static void build_vpd83_type3(struct tvpd_page83 *vpdpage83data,
960 struct aac_dev *dev, struct scsi_cmnd *scsicmd)
962 int container;
964 vpdpage83data->type3.codeset = 1;
965 vpdpage83data->type3.identifiertype = 3;
966 vpdpage83data->type3.identifierlength = sizeof(vpdpage83data->type3)
967 - 4;
969 for (container = 0; container < dev->maximum_num_containers;
970 container++) {
972 if (scmd_id(scsicmd) == container) {
973 memcpy(vpdpage83data->type3.Identifier,
974 dev->fsa_dev[container].identifier,
975 16);
976 break;
981 static void get_container_serial_callback(void *context, struct fib * fibptr)
983 struct aac_get_serial_resp * get_serial_reply;
984 struct scsi_cmnd * scsicmd;
986 BUG_ON(fibptr == NULL);
988 scsicmd = (struct scsi_cmnd *) context;
989 if (!aac_valid_context(scsicmd, fibptr))
990 return;
992 get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr);
993 /* Failure is irrelevant, using default value instead */
994 if (le32_to_cpu(get_serial_reply->status) == CT_OK) {
995 /*Check to see if it's for VPD 0x83 or 0x80 */
996 if (scsicmd->cmnd[2] == 0x83) {
997 /* vpd page 0x83 - Device Identification Page */
998 struct aac_dev *dev;
999 int i;
1000 struct tvpd_page83 vpdpage83data;
1002 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1004 memset(((u8 *)&vpdpage83data), 0,
1005 sizeof(vpdpage83data));
1007 /* DIRECT_ACCESS_DEVIC */
1008 vpdpage83data.DeviceType = 0;
1009 /* DEVICE_CONNECTED */
1010 vpdpage83data.DeviceTypeQualifier = 0;
1011 /* VPD_DEVICE_IDENTIFIERS */
1012 vpdpage83data.PageCode = 0x83;
1013 vpdpage83data.reserved = 0;
1014 vpdpage83data.PageLength =
1015 sizeof(vpdpage83data.type1) +
1016 sizeof(vpdpage83data.type2);
1018 /* VPD 83 Type 3 is not supported for ARC */
1019 if (dev->sa_firmware)
1020 vpdpage83data.PageLength +=
1021 sizeof(vpdpage83data.type3);
1023 /* T10 Vendor Identifier Field Format */
1024 /* VpdcodesetAscii */
1025 vpdpage83data.type1.codeset = 2;
1026 /* VpdIdentifierTypeVendorId */
1027 vpdpage83data.type1.identifiertype = 1;
1028 vpdpage83data.type1.identifierlength =
1029 sizeof(vpdpage83data.type1) - 4;
1031 /* "ADAPTEC " for adaptec */
1032 memcpy(vpdpage83data.type1.venid,
1033 "ADAPTEC ",
1034 sizeof(vpdpage83data.type1.venid));
1035 memcpy(vpdpage83data.type1.productid,
1036 "ARRAY ",
1037 sizeof(
1038 vpdpage83data.type1.productid));
1040 /* Convert to ascii based serial number.
1041 * The LSB is the the end.
1043 for (i = 0; i < 8; i++) {
1044 u8 temp =
1045 (u8)((get_serial_reply->uid >> ((7 - i) * 4)) & 0xF);
1046 if (temp > 0x9) {
1047 vpdpage83data.type1.serialnumber[i] =
1048 'A' + (temp - 0xA);
1049 } else {
1050 vpdpage83data.type1.serialnumber[i] =
1051 '0' + temp;
1055 /* VpdCodeSetBinary */
1056 vpdpage83data.type2.codeset = 1;
1057 /* VpdidentifiertypeEUI64 */
1058 vpdpage83data.type2.identifiertype = 2;
1059 vpdpage83data.type2.identifierlength =
1060 sizeof(vpdpage83data.type2) - 4;
1062 vpdpage83data.type2.eu64id.venid[0] = 0xD0;
1063 vpdpage83data.type2.eu64id.venid[1] = 0;
1064 vpdpage83data.type2.eu64id.venid[2] = 0;
1066 vpdpage83data.type2.eu64id.Serial =
1067 get_serial_reply->uid;
1068 vpdpage83data.type2.eu64id.reserved = 0;
1071 * VpdIdentifierTypeFCPHName
1072 * VPD 0x83 Type 3 not supported for ARC
1074 if (dev->sa_firmware) {
1075 build_vpd83_type3(&vpdpage83data,
1076 dev, scsicmd);
1079 /* Move the inquiry data to the response buffer. */
1080 scsi_sg_copy_from_buffer(scsicmd, &vpdpage83data,
1081 sizeof(vpdpage83data));
1082 } else {
1083 /* It must be for VPD 0x80 */
1084 char sp[13];
1085 /* EVPD bit set */
1086 sp[0] = INQD_PDT_DA;
1087 sp[1] = scsicmd->cmnd[2];
1088 sp[2] = 0;
1089 sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X",
1090 le32_to_cpu(get_serial_reply->uid));
1091 scsi_sg_copy_from_buffer(scsicmd, sp,
1092 sizeof(sp));
1096 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1098 aac_fib_complete(fibptr);
1099 scsicmd->scsi_done(scsicmd);
1103 * aac_get_container_serial - get container serial, none blocking.
1105 static int aac_get_container_serial(struct scsi_cmnd * scsicmd)
1107 int status;
1108 struct aac_get_serial *dinfo;
1109 struct fib * cmd_fibcontext;
1110 struct aac_dev * dev;
1112 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1114 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
1116 aac_fib_init(cmd_fibcontext);
1117 dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext);
1119 dinfo->command = cpu_to_le32(VM_ContainerConfig);
1120 dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID);
1121 dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
1122 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1124 status = aac_fib_send(ContainerCommand,
1125 cmd_fibcontext,
1126 sizeof(struct aac_get_serial_resp),
1127 FsaNormal,
1128 0, 1,
1129 (fib_callback) get_container_serial_callback,
1130 (void *) scsicmd);
1133 * Check that the command queued to the controller
1135 if (status == -EINPROGRESS)
1136 return 0;
1138 printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status);
1139 aac_fib_complete(cmd_fibcontext);
1140 return -1;
1143 /* Function: setinqserial
1145 * Arguments: [1] pointer to void [1] int
1147 * Purpose: Sets SCSI Unit Serial number.
1148 * This is a fake. We should read a proper
1149 * serial number from the container. <SuSE>But
1150 * without docs it's quite hard to do it :-)
1151 * So this will have to do in the meantime.</SuSE>
1154 static int setinqserial(struct aac_dev *dev, void *data, int cid)
1157 * This breaks array migration.
1159 return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X",
1160 le32_to_cpu(dev->adapter_info.serial[0]), cid);
1163 static inline void set_sense(struct sense_data *sense_data, u8 sense_key,
1164 u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer)
1166 u8 *sense_buf = (u8 *)sense_data;
1167 /* Sense data valid, err code 70h */
1168 sense_buf[0] = 0x70; /* No info field */
1169 sense_buf[1] = 0; /* Segment number, always zero */
1171 sense_buf[2] = sense_key; /* Sense key */
1173 sense_buf[12] = sense_code; /* Additional sense code */
1174 sense_buf[13] = a_sense_code; /* Additional sense code qualifier */
1176 if (sense_key == ILLEGAL_REQUEST) {
1177 sense_buf[7] = 10; /* Additional sense length */
1179 sense_buf[15] = bit_pointer;
1180 /* Illegal parameter is in the parameter block */
1181 if (sense_code == SENCODE_INVALID_CDB_FIELD)
1182 sense_buf[15] |= 0xc0;/* Std sense key specific field */
1183 /* Illegal parameter is in the CDB block */
1184 sense_buf[16] = field_pointer >> 8; /* MSB */
1185 sense_buf[17] = field_pointer; /* LSB */
1186 } else
1187 sense_buf[7] = 6; /* Additional sense length */
1190 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
1192 if (lba & 0xffffffff00000000LL) {
1193 int cid = scmd_id(cmd);
1194 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
1195 cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1196 SAM_STAT_CHECK_CONDITION;
1197 set_sense(&dev->fsa_dev[cid].sense_data,
1198 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1199 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1200 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1201 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1202 SCSI_SENSE_BUFFERSIZE));
1203 cmd->scsi_done(cmd);
1204 return 1;
1206 return 0;
1209 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
1211 return 0;
1214 static void io_callback(void *context, struct fib * fibptr);
1216 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1218 struct aac_dev *dev = fib->dev;
1219 u16 fibsize, command;
1220 long ret;
1222 aac_fib_init(fib);
1223 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
1224 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) &&
1225 !dev->sync_mode) {
1226 struct aac_raw_io2 *readcmd2;
1227 readcmd2 = (struct aac_raw_io2 *) fib_data(fib);
1228 memset(readcmd2, 0, sizeof(struct aac_raw_io2));
1229 readcmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
1230 readcmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1231 readcmd2->byteCount = cpu_to_le32(count *
1232 dev->fsa_dev[scmd_id(cmd)].block_size);
1233 readcmd2->cid = cpu_to_le16(scmd_id(cmd));
1234 readcmd2->flags = cpu_to_le16(RIO2_IO_TYPE_READ);
1235 ret = aac_build_sgraw2(cmd, readcmd2,
1236 dev->scsi_host_ptr->sg_tablesize);
1237 if (ret < 0)
1238 return ret;
1239 command = ContainerRawIo2;
1240 fibsize = sizeof(struct aac_raw_io2) +
1241 ((le32_to_cpu(readcmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212));
1242 } else {
1243 struct aac_raw_io *readcmd;
1244 readcmd = (struct aac_raw_io *) fib_data(fib);
1245 readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1246 readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1247 readcmd->count = cpu_to_le32(count *
1248 dev->fsa_dev[scmd_id(cmd)].block_size);
1249 readcmd->cid = cpu_to_le16(scmd_id(cmd));
1250 readcmd->flags = cpu_to_le16(RIO_TYPE_READ);
1251 readcmd->bpTotal = 0;
1252 readcmd->bpComplete = 0;
1253 ret = aac_build_sgraw(cmd, &readcmd->sg);
1254 if (ret < 0)
1255 return ret;
1256 command = ContainerRawIo;
1257 fibsize = sizeof(struct aac_raw_io) +
1258 ((le32_to_cpu(readcmd->sg.count)-1) * sizeof(struct sgentryraw));
1261 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1263 * Now send the Fib to the adapter
1265 return aac_fib_send(command,
1266 fib,
1267 fibsize,
1268 FsaNormal,
1269 0, 1,
1270 (fib_callback) io_callback,
1271 (void *) cmd);
1274 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1276 u16 fibsize;
1277 struct aac_read64 *readcmd;
1278 long ret;
1280 aac_fib_init(fib);
1281 readcmd = (struct aac_read64 *) fib_data(fib);
1282 readcmd->command = cpu_to_le32(VM_CtHostRead64);
1283 readcmd->cid = cpu_to_le16(scmd_id(cmd));
1284 readcmd->sector_count = cpu_to_le16(count);
1285 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1286 readcmd->pad = 0;
1287 readcmd->flags = 0;
1289 ret = aac_build_sg64(cmd, &readcmd->sg);
1290 if (ret < 0)
1291 return ret;
1292 fibsize = sizeof(struct aac_read64) +
1293 ((le32_to_cpu(readcmd->sg.count) - 1) *
1294 sizeof (struct sgentry64));
1295 BUG_ON (fibsize > (fib->dev->max_fib_size -
1296 sizeof(struct aac_fibhdr)));
1298 * Now send the Fib to the adapter
1300 return aac_fib_send(ContainerCommand64,
1301 fib,
1302 fibsize,
1303 FsaNormal,
1304 0, 1,
1305 (fib_callback) io_callback,
1306 (void *) cmd);
1309 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1311 u16 fibsize;
1312 struct aac_read *readcmd;
1313 struct aac_dev *dev = fib->dev;
1314 long ret;
1316 aac_fib_init(fib);
1317 readcmd = (struct aac_read *) fib_data(fib);
1318 readcmd->command = cpu_to_le32(VM_CtBlockRead);
1319 readcmd->cid = cpu_to_le32(scmd_id(cmd));
1320 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1321 readcmd->count = cpu_to_le32(count *
1322 dev->fsa_dev[scmd_id(cmd)].block_size);
1324 ret = aac_build_sg(cmd, &readcmd->sg);
1325 if (ret < 0)
1326 return ret;
1327 fibsize = sizeof(struct aac_read) +
1328 ((le32_to_cpu(readcmd->sg.count) - 1) *
1329 sizeof (struct sgentry));
1330 BUG_ON (fibsize > (fib->dev->max_fib_size -
1331 sizeof(struct aac_fibhdr)));
1333 * Now send the Fib to the adapter
1335 return aac_fib_send(ContainerCommand,
1336 fib,
1337 fibsize,
1338 FsaNormal,
1339 0, 1,
1340 (fib_callback) io_callback,
1341 (void *) cmd);
1344 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1346 struct aac_dev *dev = fib->dev;
1347 u16 fibsize, command;
1348 long ret;
1350 aac_fib_init(fib);
1351 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
1352 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) &&
1353 !dev->sync_mode) {
1354 struct aac_raw_io2 *writecmd2;
1355 writecmd2 = (struct aac_raw_io2 *) fib_data(fib);
1356 memset(writecmd2, 0, sizeof(struct aac_raw_io2));
1357 writecmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
1358 writecmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1359 writecmd2->byteCount = cpu_to_le32(count *
1360 dev->fsa_dev[scmd_id(cmd)].block_size);
1361 writecmd2->cid = cpu_to_le16(scmd_id(cmd));
1362 writecmd2->flags = (fua && ((aac_cache & 5) != 1) &&
1363 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1364 cpu_to_le16(RIO2_IO_TYPE_WRITE|RIO2_IO_SUREWRITE) :
1365 cpu_to_le16(RIO2_IO_TYPE_WRITE);
1366 ret = aac_build_sgraw2(cmd, writecmd2,
1367 dev->scsi_host_ptr->sg_tablesize);
1368 if (ret < 0)
1369 return ret;
1370 command = ContainerRawIo2;
1371 fibsize = sizeof(struct aac_raw_io2) +
1372 ((le32_to_cpu(writecmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212));
1373 } else {
1374 struct aac_raw_io *writecmd;
1375 writecmd = (struct aac_raw_io *) fib_data(fib);
1376 writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1377 writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1378 writecmd->count = cpu_to_le32(count *
1379 dev->fsa_dev[scmd_id(cmd)].block_size);
1380 writecmd->cid = cpu_to_le16(scmd_id(cmd));
1381 writecmd->flags = (fua && ((aac_cache & 5) != 1) &&
1382 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1383 cpu_to_le16(RIO_TYPE_WRITE|RIO_SUREWRITE) :
1384 cpu_to_le16(RIO_TYPE_WRITE);
1385 writecmd->bpTotal = 0;
1386 writecmd->bpComplete = 0;
1387 ret = aac_build_sgraw(cmd, &writecmd->sg);
1388 if (ret < 0)
1389 return ret;
1390 command = ContainerRawIo;
1391 fibsize = sizeof(struct aac_raw_io) +
1392 ((le32_to_cpu(writecmd->sg.count)-1) * sizeof (struct sgentryraw));
1395 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1397 * Now send the Fib to the adapter
1399 return aac_fib_send(command,
1400 fib,
1401 fibsize,
1402 FsaNormal,
1403 0, 1,
1404 (fib_callback) io_callback,
1405 (void *) cmd);
1408 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1410 u16 fibsize;
1411 struct aac_write64 *writecmd;
1412 long ret;
1414 aac_fib_init(fib);
1415 writecmd = (struct aac_write64 *) fib_data(fib);
1416 writecmd->command = cpu_to_le32(VM_CtHostWrite64);
1417 writecmd->cid = cpu_to_le16(scmd_id(cmd));
1418 writecmd->sector_count = cpu_to_le16(count);
1419 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1420 writecmd->pad = 0;
1421 writecmd->flags = 0;
1423 ret = aac_build_sg64(cmd, &writecmd->sg);
1424 if (ret < 0)
1425 return ret;
1426 fibsize = sizeof(struct aac_write64) +
1427 ((le32_to_cpu(writecmd->sg.count) - 1) *
1428 sizeof (struct sgentry64));
1429 BUG_ON (fibsize > (fib->dev->max_fib_size -
1430 sizeof(struct aac_fibhdr)));
1432 * Now send the Fib to the adapter
1434 return aac_fib_send(ContainerCommand64,
1435 fib,
1436 fibsize,
1437 FsaNormal,
1438 0, 1,
1439 (fib_callback) io_callback,
1440 (void *) cmd);
1443 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1445 u16 fibsize;
1446 struct aac_write *writecmd;
1447 struct aac_dev *dev = fib->dev;
1448 long ret;
1450 aac_fib_init(fib);
1451 writecmd = (struct aac_write *) fib_data(fib);
1452 writecmd->command = cpu_to_le32(VM_CtBlockWrite);
1453 writecmd->cid = cpu_to_le32(scmd_id(cmd));
1454 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1455 writecmd->count = cpu_to_le32(count *
1456 dev->fsa_dev[scmd_id(cmd)].block_size);
1457 writecmd->sg.count = cpu_to_le32(1);
1458 /* ->stable is not used - it did mean which type of write */
1460 ret = aac_build_sg(cmd, &writecmd->sg);
1461 if (ret < 0)
1462 return ret;
1463 fibsize = sizeof(struct aac_write) +
1464 ((le32_to_cpu(writecmd->sg.count) - 1) *
1465 sizeof (struct sgentry));
1466 BUG_ON (fibsize > (fib->dev->max_fib_size -
1467 sizeof(struct aac_fibhdr)));
1469 * Now send the Fib to the adapter
1471 return aac_fib_send(ContainerCommand,
1472 fib,
1473 fibsize,
1474 FsaNormal,
1475 0, 1,
1476 (fib_callback) io_callback,
1477 (void *) cmd);
1480 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd)
1482 struct aac_srb * srbcmd;
1483 u32 flag;
1484 u32 timeout;
1485 struct aac_dev *dev = fib->dev;
1487 aac_fib_init(fib);
1488 switch(cmd->sc_data_direction){
1489 case DMA_TO_DEVICE:
1490 flag = SRB_DataOut;
1491 break;
1492 case DMA_BIDIRECTIONAL:
1493 flag = SRB_DataIn | SRB_DataOut;
1494 break;
1495 case DMA_FROM_DEVICE:
1496 flag = SRB_DataIn;
1497 break;
1498 case DMA_NONE:
1499 default: /* shuts up some versions of gcc */
1500 flag = SRB_NoDataXfer;
1501 break;
1504 srbcmd = (struct aac_srb*) fib_data(fib);
1505 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1506 srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd)));
1507 srbcmd->id = cpu_to_le32(scmd_id(cmd));
1508 srbcmd->lun = cpu_to_le32(cmd->device->lun);
1509 srbcmd->flags = cpu_to_le32(flag);
1510 timeout = cmd->request->timeout/HZ;
1511 if (timeout == 0)
1512 timeout = (dev->sa_firmware ? AAC_SA_TIMEOUT : AAC_ARC_TIMEOUT);
1513 srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds
1514 srbcmd->retry_limit = 0; /* Obsolete parameter */
1515 srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len);
1516 return srbcmd;
1519 static struct aac_hba_cmd_req *aac_construct_hbacmd(struct fib *fib,
1520 struct scsi_cmnd *cmd)
1522 struct aac_hba_cmd_req *hbacmd;
1523 struct aac_dev *dev;
1524 int bus, target;
1525 u64 address;
1527 dev = (struct aac_dev *)cmd->device->host->hostdata;
1529 hbacmd = (struct aac_hba_cmd_req *)fib->hw_fib_va;
1530 memset(hbacmd, 0, 96); /* sizeof(*hbacmd) is not necessary */
1531 /* iu_type is a parameter of aac_hba_send */
1532 switch (cmd->sc_data_direction) {
1533 case DMA_TO_DEVICE:
1534 hbacmd->byte1 = 2;
1535 break;
1536 case DMA_FROM_DEVICE:
1537 case DMA_BIDIRECTIONAL:
1538 hbacmd->byte1 = 1;
1539 break;
1540 case DMA_NONE:
1541 default:
1542 break;
1544 hbacmd->lun[1] = cpu_to_le32(cmd->device->lun);
1546 bus = aac_logical_to_phys(scmd_channel(cmd));
1547 target = scmd_id(cmd);
1548 hbacmd->it_nexus = dev->hba_map[bus][target].rmw_nexus;
1550 /* we fill in reply_qid later in aac_src_deliver_message */
1551 /* we fill in iu_type, request_id later in aac_hba_send */
1552 /* we fill in emb_data_desc_count later in aac_build_sghba */
1554 memcpy(hbacmd->cdb, cmd->cmnd, cmd->cmd_len);
1555 hbacmd->data_length = cpu_to_le32(scsi_bufflen(cmd));
1557 address = (u64)fib->hw_error_pa;
1558 hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32));
1559 hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff));
1560 hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
1562 return hbacmd;
1565 static void aac_srb_callback(void *context, struct fib * fibptr);
1567 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd)
1569 u16 fibsize;
1570 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1571 long ret;
1573 ret = aac_build_sg64(cmd, (struct sgmap64 *) &srbcmd->sg);
1574 if (ret < 0)
1575 return ret;
1576 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1578 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1579 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1581 * Build Scatter/Gather list
1583 fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
1584 ((le32_to_cpu(srbcmd->sg.count) & 0xff) *
1585 sizeof (struct sgentry64));
1586 BUG_ON (fibsize > (fib->dev->max_fib_size -
1587 sizeof(struct aac_fibhdr)));
1590 * Now send the Fib to the adapter
1592 return aac_fib_send(ScsiPortCommand64, fib,
1593 fibsize, FsaNormal, 0, 1,
1594 (fib_callback) aac_srb_callback,
1595 (void *) cmd);
1598 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd)
1600 u16 fibsize;
1601 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1602 long ret;
1604 ret = aac_build_sg(cmd, (struct sgmap *)&srbcmd->sg);
1605 if (ret < 0)
1606 return ret;
1607 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1609 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1610 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1612 * Build Scatter/Gather list
1614 fibsize = sizeof (struct aac_srb) +
1615 (((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
1616 sizeof (struct sgentry));
1617 BUG_ON (fibsize > (fib->dev->max_fib_size -
1618 sizeof(struct aac_fibhdr)));
1621 * Now send the Fib to the adapter
1623 return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1,
1624 (fib_callback) aac_srb_callback, (void *) cmd);
1627 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd)
1629 if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac &&
1630 (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64))
1631 return FAILED;
1632 return aac_scsi_32(fib, cmd);
1635 static int aac_adapter_hba(struct fib *fib, struct scsi_cmnd *cmd)
1637 struct aac_hba_cmd_req *hbacmd = aac_construct_hbacmd(fib, cmd);
1638 struct aac_dev *dev;
1639 long ret;
1641 dev = (struct aac_dev *)cmd->device->host->hostdata;
1643 ret = aac_build_sghba(cmd, hbacmd,
1644 dev->scsi_host_ptr->sg_tablesize, (u64)fib->hw_sgl_pa);
1645 if (ret < 0)
1646 return ret;
1649 * Now send the HBA command to the adapter
1651 fib->hbacmd_size = 64 + le32_to_cpu(hbacmd->emb_data_desc_count) *
1652 sizeof(struct aac_hba_sgl);
1654 return aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, fib,
1655 (fib_callback) aac_hba_callback,
1656 (void *) cmd);
1659 static int aac_send_safw_bmic_cmd(struct aac_dev *dev,
1660 struct aac_srb_unit *srbu, void *xfer_buf, int xfer_len)
1662 struct fib *fibptr;
1663 dma_addr_t addr;
1664 int rcode;
1665 int fibsize;
1666 struct aac_srb *srb;
1667 struct aac_srb_reply *srb_reply;
1668 struct sgmap64 *sg64;
1669 u32 vbus;
1670 u32 vid;
1672 if (!dev->sa_firmware)
1673 return 0;
1675 /* allocate FIB */
1676 fibptr = aac_fib_alloc(dev);
1677 if (!fibptr)
1678 return -ENOMEM;
1680 aac_fib_init(fibptr);
1681 fibptr->hw_fib_va->header.XferState &=
1682 ~cpu_to_le32(FastResponseCapable);
1684 fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry) +
1685 sizeof(struct sgentry64);
1687 /* allocate DMA buffer for response */
1688 addr = dma_map_single(&dev->pdev->dev, xfer_buf, xfer_len,
1689 DMA_BIDIRECTIONAL);
1690 if (dma_mapping_error(&dev->pdev->dev, addr)) {
1691 rcode = -ENOMEM;
1692 goto fib_error;
1695 srb = fib_data(fibptr);
1696 memcpy(srb, &srbu->srb, sizeof(struct aac_srb));
1698 vbus = (u32)le16_to_cpu(
1699 dev->supplement_adapter_info.virt_device_bus);
1700 vid = (u32)le16_to_cpu(
1701 dev->supplement_adapter_info.virt_device_target);
1703 /* set the common request fields */
1704 srb->channel = cpu_to_le32(vbus);
1705 srb->id = cpu_to_le32(vid);
1706 srb->lun = 0;
1707 srb->function = cpu_to_le32(SRBF_ExecuteScsi);
1708 srb->timeout = 0;
1709 srb->retry_limit = 0;
1710 srb->cdb_size = cpu_to_le32(16);
1711 srb->count = cpu_to_le32(xfer_len);
1713 sg64 = (struct sgmap64 *)&srb->sg;
1714 sg64->count = cpu_to_le32(1);
1715 sg64->sg[0].addr[1] = cpu_to_le32(upper_32_bits(addr));
1716 sg64->sg[0].addr[0] = cpu_to_le32(lower_32_bits(addr));
1717 sg64->sg[0].count = cpu_to_le32(xfer_len);
1720 * Copy the updated data for other dumping or other usage if needed
1722 memcpy(&srbu->srb, srb, sizeof(struct aac_srb));
1724 /* issue request to the controller */
1725 rcode = aac_fib_send(ScsiPortCommand64, fibptr, fibsize, FsaNormal,
1726 1, 1, NULL, NULL);
1728 if (rcode == -ERESTARTSYS)
1729 rcode = -ERESTART;
1731 if (unlikely(rcode < 0))
1732 goto bmic_error;
1734 srb_reply = (struct aac_srb_reply *)fib_data(fibptr);
1735 memcpy(&srbu->srb_reply, srb_reply, sizeof(struct aac_srb_reply));
1737 bmic_error:
1738 dma_unmap_single(&dev->pdev->dev, addr, xfer_len, DMA_BIDIRECTIONAL);
1739 fib_error:
1740 aac_fib_complete(fibptr);
1741 aac_fib_free(fibptr);
1742 return rcode;
1745 static void aac_set_safw_target_qd(struct aac_dev *dev, int bus, int target)
1748 struct aac_ciss_identify_pd *identify_resp;
1750 if (dev->hba_map[bus][target].devtype != AAC_DEVTYPE_NATIVE_RAW)
1751 return;
1753 identify_resp = dev->hba_map[bus][target].safw_identify_resp;
1754 if (identify_resp == NULL) {
1755 dev->hba_map[bus][target].qd_limit = 32;
1756 return;
1759 if (identify_resp->current_queue_depth_limit <= 0 ||
1760 identify_resp->current_queue_depth_limit > 255)
1761 dev->hba_map[bus][target].qd_limit = 32;
1762 else
1763 dev->hba_map[bus][target].qd_limit =
1764 identify_resp->current_queue_depth_limit;
1767 static int aac_issue_safw_bmic_identify(struct aac_dev *dev,
1768 struct aac_ciss_identify_pd **identify_resp, u32 bus, u32 target)
1770 int rcode = -ENOMEM;
1771 int datasize;
1772 struct aac_srb_unit srbu;
1773 struct aac_srb *srbcmd;
1774 struct aac_ciss_identify_pd *identify_reply;
1776 datasize = sizeof(struct aac_ciss_identify_pd);
1777 identify_reply = kmalloc(datasize, GFP_KERNEL);
1778 if (!identify_reply)
1779 goto out;
1781 memset(&srbu, 0, sizeof(struct aac_srb_unit));
1783 srbcmd = &srbu.srb;
1784 srbcmd->flags = cpu_to_le32(SRB_DataIn);
1785 srbcmd->cdb[0] = 0x26;
1786 srbcmd->cdb[2] = (u8)((AAC_MAX_LUN + target) & 0x00FF);
1787 srbcmd->cdb[6] = CISS_IDENTIFY_PHYSICAL_DEVICE;
1789 rcode = aac_send_safw_bmic_cmd(dev, &srbu, identify_reply, datasize);
1790 if (unlikely(rcode < 0))
1791 goto mem_free_all;
1793 *identify_resp = identify_reply;
1795 out:
1796 return rcode;
1797 mem_free_all:
1798 kfree(identify_reply);
1799 goto out;
1802 static inline void aac_free_safw_ciss_luns(struct aac_dev *dev)
1804 kfree(dev->safw_phys_luns);
1805 dev->safw_phys_luns = NULL;
1809 * aac_get_safw_ciss_luns() Process topology change
1810 * @dev: aac_dev structure
1812 * Execute a CISS REPORT PHYS LUNS and process the results into
1813 * the current hba_map.
1815 static int aac_get_safw_ciss_luns(struct aac_dev *dev)
1817 int rcode = -ENOMEM;
1818 int datasize;
1819 struct aac_srb *srbcmd;
1820 struct aac_srb_unit srbu;
1821 struct aac_ciss_phys_luns_resp *phys_luns;
1823 datasize = sizeof(struct aac_ciss_phys_luns_resp) +
1824 (AAC_MAX_TARGETS - 1) * sizeof(struct _ciss_lun);
1825 phys_luns = kmalloc(datasize, GFP_KERNEL);
1826 if (phys_luns == NULL)
1827 goto out;
1829 memset(&srbu, 0, sizeof(struct aac_srb_unit));
1831 srbcmd = &srbu.srb;
1832 srbcmd->flags = cpu_to_le32(SRB_DataIn);
1833 srbcmd->cdb[0] = CISS_REPORT_PHYSICAL_LUNS;
1834 srbcmd->cdb[1] = 2; /* extended reporting */
1835 srbcmd->cdb[8] = (u8)(datasize >> 8);
1836 srbcmd->cdb[9] = (u8)(datasize);
1838 rcode = aac_send_safw_bmic_cmd(dev, &srbu, phys_luns, datasize);
1839 if (unlikely(rcode < 0))
1840 goto mem_free_all;
1842 if (phys_luns->resp_flag != 2) {
1843 rcode = -ENOMSG;
1844 goto mem_free_all;
1847 dev->safw_phys_luns = phys_luns;
1849 out:
1850 return rcode;
1851 mem_free_all:
1852 kfree(phys_luns);
1853 goto out;
1856 static inline u32 aac_get_safw_phys_lun_count(struct aac_dev *dev)
1858 return get_unaligned_be32(&dev->safw_phys_luns->list_length[0])/24;
1861 static inline u32 aac_get_safw_phys_bus(struct aac_dev *dev, int lun)
1863 return dev->safw_phys_luns->lun[lun].level2[1] & 0x3f;
1866 static inline u32 aac_get_safw_phys_target(struct aac_dev *dev, int lun)
1868 return dev->safw_phys_luns->lun[lun].level2[0];
1871 static inline u32 aac_get_safw_phys_expose_flag(struct aac_dev *dev, int lun)
1873 return dev->safw_phys_luns->lun[lun].bus >> 6;
1876 static inline u32 aac_get_safw_phys_attribs(struct aac_dev *dev, int lun)
1878 return dev->safw_phys_luns->lun[lun].node_ident[9];
1881 static inline u32 aac_get_safw_phys_nexus(struct aac_dev *dev, int lun)
1883 return *((u32 *)&dev->safw_phys_luns->lun[lun].node_ident[12]);
1886 static inline u32 aac_get_safw_phys_device_type(struct aac_dev *dev, int lun)
1888 return dev->safw_phys_luns->lun[lun].node_ident[8];
1891 static inline void aac_free_safw_identify_resp(struct aac_dev *dev,
1892 int bus, int target)
1894 kfree(dev->hba_map[bus][target].safw_identify_resp);
1895 dev->hba_map[bus][target].safw_identify_resp = NULL;
1898 static inline void aac_free_safw_all_identify_resp(struct aac_dev *dev,
1899 int lun_count)
1901 int luns;
1902 int i;
1903 u32 bus;
1904 u32 target;
1906 luns = aac_get_safw_phys_lun_count(dev);
1908 if (luns < lun_count)
1909 lun_count = luns;
1910 else if (lun_count < 0)
1911 lun_count = luns;
1913 for (i = 0; i < lun_count; i++) {
1914 bus = aac_get_safw_phys_bus(dev, i);
1915 target = aac_get_safw_phys_target(dev, i);
1917 aac_free_safw_identify_resp(dev, bus, target);
1921 static int aac_get_safw_attr_all_targets(struct aac_dev *dev)
1923 int i;
1924 int rcode = 0;
1925 u32 lun_count;
1926 u32 bus;
1927 u32 target;
1928 struct aac_ciss_identify_pd *identify_resp = NULL;
1930 lun_count = aac_get_safw_phys_lun_count(dev);
1932 for (i = 0; i < lun_count; ++i) {
1934 bus = aac_get_safw_phys_bus(dev, i);
1935 target = aac_get_safw_phys_target(dev, i);
1937 rcode = aac_issue_safw_bmic_identify(dev,
1938 &identify_resp, bus, target);
1940 if (unlikely(rcode < 0))
1941 goto free_identify_resp;
1943 dev->hba_map[bus][target].safw_identify_resp = identify_resp;
1946 out:
1947 return rcode;
1948 free_identify_resp:
1949 aac_free_safw_all_identify_resp(dev, i);
1950 goto out;
1954 * aac_set_safw_attr_all_targets- update current hba map with data from FW
1955 * @dev: aac_dev structure
1956 * @phys_luns: FW information from report phys luns
1957 * @rescan: Indicates scan type
1959 * Update our hba map with the information gathered from the FW
1961 static void aac_set_safw_attr_all_targets(struct aac_dev *dev)
1963 /* ok and extended reporting */
1964 u32 lun_count, nexus;
1965 u32 i, bus, target;
1966 u8 expose_flag, attribs;
1968 lun_count = aac_get_safw_phys_lun_count(dev);
1970 dev->scan_counter++;
1972 for (i = 0; i < lun_count; ++i) {
1974 bus = aac_get_safw_phys_bus(dev, i);
1975 target = aac_get_safw_phys_target(dev, i);
1976 expose_flag = aac_get_safw_phys_expose_flag(dev, i);
1977 attribs = aac_get_safw_phys_attribs(dev, i);
1978 nexus = aac_get_safw_phys_nexus(dev, i);
1980 if (bus >= AAC_MAX_BUSES || target >= AAC_MAX_TARGETS)
1981 continue;
1983 if (expose_flag != 0) {
1984 dev->hba_map[bus][target].devtype =
1985 AAC_DEVTYPE_RAID_MEMBER;
1986 continue;
1989 if (nexus != 0 && (attribs & 8)) {
1990 dev->hba_map[bus][target].devtype =
1991 AAC_DEVTYPE_NATIVE_RAW;
1992 dev->hba_map[bus][target].rmw_nexus =
1993 nexus;
1994 } else
1995 dev->hba_map[bus][target].devtype =
1996 AAC_DEVTYPE_ARC_RAW;
1998 dev->hba_map[bus][target].scan_counter = dev->scan_counter;
2000 aac_set_safw_target_qd(dev, bus, target);
2004 static int aac_setup_safw_targets(struct aac_dev *dev)
2006 int rcode = 0;
2008 rcode = aac_get_containers(dev);
2009 if (unlikely(rcode < 0))
2010 goto out;
2012 rcode = aac_get_safw_ciss_luns(dev);
2013 if (unlikely(rcode < 0))
2014 goto out;
2016 rcode = aac_get_safw_attr_all_targets(dev);
2017 if (unlikely(rcode < 0))
2018 goto free_ciss_luns;
2020 aac_set_safw_attr_all_targets(dev);
2022 aac_free_safw_all_identify_resp(dev, -1);
2023 free_ciss_luns:
2024 aac_free_safw_ciss_luns(dev);
2025 out:
2026 return rcode;
2029 int aac_setup_safw_adapter(struct aac_dev *dev)
2031 return aac_setup_safw_targets(dev);
2034 int aac_get_adapter_info(struct aac_dev* dev)
2036 struct fib* fibptr;
2037 int rcode;
2038 u32 tmp, bus, target;
2039 struct aac_adapter_info *info;
2040 struct aac_bus_info *command;
2041 struct aac_bus_info_response *bus_info;
2043 if (!(fibptr = aac_fib_alloc(dev)))
2044 return -ENOMEM;
2046 aac_fib_init(fibptr);
2047 info = (struct aac_adapter_info *) fib_data(fibptr);
2048 memset(info,0,sizeof(*info));
2050 rcode = aac_fib_send(RequestAdapterInfo,
2051 fibptr,
2052 sizeof(*info),
2053 FsaNormal,
2054 -1, 1, /* First `interrupt' command uses special wait */
2055 NULL,
2056 NULL);
2058 if (rcode < 0) {
2059 /* FIB should be freed only after
2060 * getting the response from the F/W */
2061 if (rcode != -ERESTARTSYS) {
2062 aac_fib_complete(fibptr);
2063 aac_fib_free(fibptr);
2065 return rcode;
2067 memcpy(&dev->adapter_info, info, sizeof(*info));
2069 dev->supplement_adapter_info.virt_device_bus = 0xffff;
2070 if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
2071 struct aac_supplement_adapter_info * sinfo;
2073 aac_fib_init(fibptr);
2075 sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr);
2077 memset(sinfo,0,sizeof(*sinfo));
2079 rcode = aac_fib_send(RequestSupplementAdapterInfo,
2080 fibptr,
2081 sizeof(*sinfo),
2082 FsaNormal,
2083 1, 1,
2084 NULL,
2085 NULL);
2087 if (rcode >= 0)
2088 memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo));
2089 if (rcode == -ERESTARTSYS) {
2090 fibptr = aac_fib_alloc(dev);
2091 if (!fibptr)
2092 return -ENOMEM;
2097 /* reset all previous mapped devices (i.e. for init. after IOP_RESET) */
2098 for (bus = 0; bus < AAC_MAX_BUSES; bus++) {
2099 for (target = 0; target < AAC_MAX_TARGETS; target++) {
2100 dev->hba_map[bus][target].devtype = 0;
2101 dev->hba_map[bus][target].qd_limit = 0;
2106 * GetBusInfo
2109 aac_fib_init(fibptr);
2111 bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
2113 memset(bus_info, 0, sizeof(*bus_info));
2115 command = (struct aac_bus_info *)bus_info;
2117 command->Command = cpu_to_le32(VM_Ioctl);
2118 command->ObjType = cpu_to_le32(FT_DRIVE);
2119 command->MethodId = cpu_to_le32(1);
2120 command->CtlCmd = cpu_to_le32(GetBusInfo);
2122 rcode = aac_fib_send(ContainerCommand,
2123 fibptr,
2124 sizeof (*bus_info),
2125 FsaNormal,
2126 1, 1,
2127 NULL, NULL);
2129 /* reasoned default */
2130 dev->maximum_num_physicals = 16;
2131 if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
2132 dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
2133 dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
2136 if (!dev->in_reset) {
2137 char buffer[16];
2138 tmp = le32_to_cpu(dev->adapter_info.kernelrev);
2139 printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
2140 dev->name,
2141 dev->id,
2142 tmp>>24,
2143 (tmp>>16)&0xff,
2144 tmp&0xff,
2145 le32_to_cpu(dev->adapter_info.kernelbuild),
2146 (int)sizeof(dev->supplement_adapter_info.build_date),
2147 dev->supplement_adapter_info.build_date);
2148 tmp = le32_to_cpu(dev->adapter_info.monitorrev);
2149 printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
2150 dev->name, dev->id,
2151 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
2152 le32_to_cpu(dev->adapter_info.monitorbuild));
2153 tmp = le32_to_cpu(dev->adapter_info.biosrev);
2154 printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
2155 dev->name, dev->id,
2156 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
2157 le32_to_cpu(dev->adapter_info.biosbuild));
2158 buffer[0] = '\0';
2159 if (aac_get_serial_number(
2160 shost_to_class(dev->scsi_host_ptr), buffer))
2161 printk(KERN_INFO "%s%d: serial %s",
2162 dev->name, dev->id, buffer);
2163 if (dev->supplement_adapter_info.vpd_info.tsid[0]) {
2164 printk(KERN_INFO "%s%d: TSID %.*s\n",
2165 dev->name, dev->id,
2166 (int)sizeof(dev->supplement_adapter_info
2167 .vpd_info.tsid),
2168 dev->supplement_adapter_info.vpd_info.tsid);
2170 if (!aac_check_reset || ((aac_check_reset == 1) &&
2171 (dev->supplement_adapter_info.supported_options2 &
2172 AAC_OPTION_IGNORE_RESET))) {
2173 printk(KERN_INFO "%s%d: Reset Adapter Ignored\n",
2174 dev->name, dev->id);
2178 dev->cache_protected = 0;
2179 dev->jbod = ((dev->supplement_adapter_info.feature_bits &
2180 AAC_FEATURE_JBOD) != 0);
2181 dev->nondasd_support = 0;
2182 dev->raid_scsi_mode = 0;
2183 if(dev->adapter_info.options & AAC_OPT_NONDASD)
2184 dev->nondasd_support = 1;
2187 * If the firmware supports ROMB RAID/SCSI mode and we are currently
2188 * in RAID/SCSI mode, set the flag. For now if in this mode we will
2189 * force nondasd support on. If we decide to allow the non-dasd flag
2190 * additional changes changes will have to be made to support
2191 * RAID/SCSI. the function aac_scsi_cmd in this module will have to be
2192 * changed to support the new dev->raid_scsi_mode flag instead of
2193 * leaching off of the dev->nondasd_support flag. Also in linit.c the
2194 * function aac_detect will have to be modified where it sets up the
2195 * max number of channels based on the aac->nondasd_support flag only.
2197 if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
2198 (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
2199 dev->nondasd_support = 1;
2200 dev->raid_scsi_mode = 1;
2202 if (dev->raid_scsi_mode != 0)
2203 printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
2204 dev->name, dev->id);
2206 if (nondasd != -1)
2207 dev->nondasd_support = (nondasd!=0);
2208 if (dev->nondasd_support && !dev->in_reset)
2209 printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
2211 if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32))
2212 dev->needs_dac = 1;
2213 dev->dac_support = 0;
2214 if ((sizeof(dma_addr_t) > 4) && dev->needs_dac &&
2215 (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) {
2216 if (!dev->in_reset)
2217 printk(KERN_INFO "%s%d: 64bit support enabled.\n",
2218 dev->name, dev->id);
2219 dev->dac_support = 1;
2222 if(dacmode != -1) {
2223 dev->dac_support = (dacmode!=0);
2226 /* avoid problems with AAC_QUIRK_SCSI_32 controllers */
2227 if (dev->dac_support && (aac_get_driver_ident(dev->cardtype)->quirks
2228 & AAC_QUIRK_SCSI_32)) {
2229 dev->nondasd_support = 0;
2230 dev->jbod = 0;
2231 expose_physicals = 0;
2234 if (dev->dac_support) {
2235 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(64))) {
2236 if (!dev->in_reset)
2237 dev_info(&dev->pdev->dev, "64 Bit DAC enabled\n");
2238 } else if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(32))) {
2239 dev_info(&dev->pdev->dev, "DMA mask set failed, 64 Bit DAC disabled\n");
2240 dev->dac_support = 0;
2241 } else {
2242 dev_info(&dev->pdev->dev, "No suitable DMA available\n");
2243 rcode = -ENOMEM;
2247 * Deal with configuring for the individualized limits of each packet
2248 * interface.
2250 dev->a_ops.adapter_scsi = (dev->dac_support)
2251 ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32)
2252 ? aac_scsi_32_64
2253 : aac_scsi_64)
2254 : aac_scsi_32;
2255 if (dev->raw_io_interface) {
2256 dev->a_ops.adapter_bounds = (dev->raw_io_64)
2257 ? aac_bounds_64
2258 : aac_bounds_32;
2259 dev->a_ops.adapter_read = aac_read_raw_io;
2260 dev->a_ops.adapter_write = aac_write_raw_io;
2261 } else {
2262 dev->a_ops.adapter_bounds = aac_bounds_32;
2263 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
2264 sizeof(struct aac_fibhdr) -
2265 sizeof(struct aac_write) + sizeof(struct sgentry)) /
2266 sizeof(struct sgentry);
2267 if (dev->dac_support) {
2268 dev->a_ops.adapter_read = aac_read_block64;
2269 dev->a_ops.adapter_write = aac_write_block64;
2271 * 38 scatter gather elements
2273 dev->scsi_host_ptr->sg_tablesize =
2274 (dev->max_fib_size -
2275 sizeof(struct aac_fibhdr) -
2276 sizeof(struct aac_write64) +
2277 sizeof(struct sgentry64)) /
2278 sizeof(struct sgentry64);
2279 } else {
2280 dev->a_ops.adapter_read = aac_read_block;
2281 dev->a_ops.adapter_write = aac_write_block;
2283 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
2284 if (!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
2286 * Worst case size that could cause sg overflow when
2287 * we break up SG elements that are larger than 64KB.
2288 * Would be nice if we could tell the SCSI layer what
2289 * the maximum SG element size can be. Worst case is
2290 * (sg_tablesize-1) 4KB elements with one 64KB
2291 * element.
2292 * 32bit -> 468 or 238KB 64bit -> 424 or 212KB
2294 dev->scsi_host_ptr->max_sectors =
2295 (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
2298 if (!dev->sync_mode && dev->sa_firmware &&
2299 dev->scsi_host_ptr->sg_tablesize > HBA_MAX_SG_SEPARATE)
2300 dev->scsi_host_ptr->sg_tablesize = dev->sg_tablesize =
2301 HBA_MAX_SG_SEPARATE;
2303 /* FIB should be freed only after getting the response from the F/W */
2304 if (rcode != -ERESTARTSYS) {
2305 aac_fib_complete(fibptr);
2306 aac_fib_free(fibptr);
2309 return rcode;
2313 static void io_callback(void *context, struct fib * fibptr)
2315 struct aac_dev *dev;
2316 struct aac_read_reply *readreply;
2317 struct scsi_cmnd *scsicmd;
2318 u32 cid;
2320 scsicmd = (struct scsi_cmnd *) context;
2322 if (!aac_valid_context(scsicmd, fibptr))
2323 return;
2325 dev = fibptr->dev;
2326 cid = scmd_id(scsicmd);
2328 if (nblank(dprintk(x))) {
2329 u64 lba;
2330 switch (scsicmd->cmnd[0]) {
2331 case WRITE_6:
2332 case READ_6:
2333 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
2334 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2335 break;
2336 case WRITE_16:
2337 case READ_16:
2338 lba = ((u64)scsicmd->cmnd[2] << 56) |
2339 ((u64)scsicmd->cmnd[3] << 48) |
2340 ((u64)scsicmd->cmnd[4] << 40) |
2341 ((u64)scsicmd->cmnd[5] << 32) |
2342 ((u64)scsicmd->cmnd[6] << 24) |
2343 (scsicmd->cmnd[7] << 16) |
2344 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2345 break;
2346 case WRITE_12:
2347 case READ_12:
2348 lba = ((u64)scsicmd->cmnd[2] << 24) |
2349 (scsicmd->cmnd[3] << 16) |
2350 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2351 break;
2352 default:
2353 lba = ((u64)scsicmd->cmnd[2] << 24) |
2354 (scsicmd->cmnd[3] << 16) |
2355 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2356 break;
2358 printk(KERN_DEBUG
2359 "io_callback[cpu %d]: lba = %llu, t = %ld.\n",
2360 smp_processor_id(), (unsigned long long)lba, jiffies);
2363 BUG_ON(fibptr == NULL);
2365 scsi_dma_unmap(scsicmd);
2367 readreply = (struct aac_read_reply *)fib_data(fibptr);
2368 switch (le32_to_cpu(readreply->status)) {
2369 case ST_OK:
2370 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2371 SAM_STAT_GOOD;
2372 dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE;
2373 break;
2374 case ST_NOT_READY:
2375 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2376 SAM_STAT_CHECK_CONDITION;
2377 set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY,
2378 SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0);
2379 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2380 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2381 SCSI_SENSE_BUFFERSIZE));
2382 break;
2383 case ST_MEDERR:
2384 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2385 SAM_STAT_CHECK_CONDITION;
2386 set_sense(&dev->fsa_dev[cid].sense_data, MEDIUM_ERROR,
2387 SENCODE_UNRECOVERED_READ_ERROR, ASENCODE_NO_SENSE, 0, 0);
2388 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2389 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2390 SCSI_SENSE_BUFFERSIZE));
2391 break;
2392 default:
2393 #ifdef AAC_DETAILED_STATUS_INFO
2394 printk(KERN_WARNING "io_callback: io failed, status = %d\n",
2395 le32_to_cpu(readreply->status));
2396 #endif
2397 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2398 SAM_STAT_CHECK_CONDITION;
2399 set_sense(&dev->fsa_dev[cid].sense_data,
2400 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2401 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2402 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2403 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2404 SCSI_SENSE_BUFFERSIZE));
2405 break;
2407 aac_fib_complete(fibptr);
2409 scsicmd->scsi_done(scsicmd);
2412 static int aac_read(struct scsi_cmnd * scsicmd)
2414 u64 lba;
2415 u32 count;
2416 int status;
2417 struct aac_dev *dev;
2418 struct fib * cmd_fibcontext;
2419 int cid;
2421 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2423 * Get block address and transfer length
2425 switch (scsicmd->cmnd[0]) {
2426 case READ_6:
2427 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd)));
2429 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
2430 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2431 count = scsicmd->cmnd[4];
2433 if (count == 0)
2434 count = 256;
2435 break;
2436 case READ_16:
2437 dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd)));
2439 lba = ((u64)scsicmd->cmnd[2] << 56) |
2440 ((u64)scsicmd->cmnd[3] << 48) |
2441 ((u64)scsicmd->cmnd[4] << 40) |
2442 ((u64)scsicmd->cmnd[5] << 32) |
2443 ((u64)scsicmd->cmnd[6] << 24) |
2444 (scsicmd->cmnd[7] << 16) |
2445 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2446 count = (scsicmd->cmnd[10] << 24) |
2447 (scsicmd->cmnd[11] << 16) |
2448 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
2449 break;
2450 case READ_12:
2451 dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd)));
2453 lba = ((u64)scsicmd->cmnd[2] << 24) |
2454 (scsicmd->cmnd[3] << 16) |
2455 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2456 count = (scsicmd->cmnd[6] << 24) |
2457 (scsicmd->cmnd[7] << 16) |
2458 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2459 break;
2460 default:
2461 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd)));
2463 lba = ((u64)scsicmd->cmnd[2] << 24) |
2464 (scsicmd->cmnd[3] << 16) |
2465 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2466 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2467 break;
2470 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
2471 cid = scmd_id(scsicmd);
2472 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
2473 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2474 SAM_STAT_CHECK_CONDITION;
2475 set_sense(&dev->fsa_dev[cid].sense_data,
2476 ILLEGAL_REQUEST, SENCODE_LBA_OUT_OF_RANGE,
2477 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2478 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2479 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2480 SCSI_SENSE_BUFFERSIZE));
2481 scsicmd->scsi_done(scsicmd);
2482 return 0;
2485 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
2486 smp_processor_id(), (unsigned long long)lba, jiffies));
2487 if (aac_adapter_bounds(dev,scsicmd,lba))
2488 return 0;
2490 * Alocate and initialize a Fib
2492 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
2493 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2494 status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count);
2497 * Check that the command queued to the controller
2499 if (status == -EINPROGRESS)
2500 return 0;
2502 printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status);
2504 * For some reason, the Fib didn't queue, return QUEUE_FULL
2506 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
2507 scsicmd->scsi_done(scsicmd);
2508 aac_fib_complete(cmd_fibcontext);
2509 aac_fib_free(cmd_fibcontext);
2510 return 0;
2513 static int aac_write(struct scsi_cmnd * scsicmd)
2515 u64 lba;
2516 u32 count;
2517 int fua;
2518 int status;
2519 struct aac_dev *dev;
2520 struct fib * cmd_fibcontext;
2521 int cid;
2523 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2525 * Get block address and transfer length
2527 if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */
2529 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2530 count = scsicmd->cmnd[4];
2531 if (count == 0)
2532 count = 256;
2533 fua = 0;
2534 } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
2535 dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd)));
2537 lba = ((u64)scsicmd->cmnd[2] << 56) |
2538 ((u64)scsicmd->cmnd[3] << 48) |
2539 ((u64)scsicmd->cmnd[4] << 40) |
2540 ((u64)scsicmd->cmnd[5] << 32) |
2541 ((u64)scsicmd->cmnd[6] << 24) |
2542 (scsicmd->cmnd[7] << 16) |
2543 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2544 count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
2545 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
2546 fua = scsicmd->cmnd[1] & 0x8;
2547 } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
2548 dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd)));
2550 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
2551 | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2552 count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
2553 | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2554 fua = scsicmd->cmnd[1] & 0x8;
2555 } else {
2556 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd)));
2557 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2558 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2559 fua = scsicmd->cmnd[1] & 0x8;
2562 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
2563 cid = scmd_id(scsicmd);
2564 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
2565 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2566 SAM_STAT_CHECK_CONDITION;
2567 set_sense(&dev->fsa_dev[cid].sense_data,
2568 ILLEGAL_REQUEST, SENCODE_LBA_OUT_OF_RANGE,
2569 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2570 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2571 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2572 SCSI_SENSE_BUFFERSIZE));
2573 scsicmd->scsi_done(scsicmd);
2574 return 0;
2577 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
2578 smp_processor_id(), (unsigned long long)lba, jiffies));
2579 if (aac_adapter_bounds(dev,scsicmd,lba))
2580 return 0;
2582 * Allocate and initialize a Fib then setup a BlockWrite command
2584 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
2585 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2586 status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua);
2589 * Check that the command queued to the controller
2591 if (status == -EINPROGRESS)
2592 return 0;
2594 printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status);
2596 * For some reason, the Fib didn't queue, return QUEUE_FULL
2598 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
2599 scsicmd->scsi_done(scsicmd);
2601 aac_fib_complete(cmd_fibcontext);
2602 aac_fib_free(cmd_fibcontext);
2603 return 0;
2606 static void synchronize_callback(void *context, struct fib *fibptr)
2608 struct aac_synchronize_reply *synchronizereply;
2609 struct scsi_cmnd *cmd = context;
2611 if (!aac_valid_context(cmd, fibptr))
2612 return;
2614 dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
2615 smp_processor_id(), jiffies));
2616 BUG_ON(fibptr == NULL);
2619 synchronizereply = fib_data(fibptr);
2620 if (le32_to_cpu(synchronizereply->status) == CT_OK)
2621 cmd->result = DID_OK << 16 |
2622 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2623 else {
2624 struct scsi_device *sdev = cmd->device;
2625 struct aac_dev *dev = fibptr->dev;
2626 u32 cid = sdev_id(sdev);
2627 printk(KERN_WARNING
2628 "synchronize_callback: synchronize failed, status = %d\n",
2629 le32_to_cpu(synchronizereply->status));
2630 cmd->result = DID_OK << 16 |
2631 COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2632 set_sense(&dev->fsa_dev[cid].sense_data,
2633 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2634 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2635 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2636 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2637 SCSI_SENSE_BUFFERSIZE));
2640 aac_fib_complete(fibptr);
2641 aac_fib_free(fibptr);
2642 cmd->scsi_done(cmd);
2645 static int aac_synchronize(struct scsi_cmnd *scsicmd)
2647 int status;
2648 struct fib *cmd_fibcontext;
2649 struct aac_synchronize *synchronizecmd;
2650 struct scsi_device *sdev = scsicmd->device;
2651 struct aac_dev *aac;
2653 aac = (struct aac_dev *)sdev->host->hostdata;
2654 if (aac->in_reset)
2655 return SCSI_MLQUEUE_HOST_BUSY;
2658 * Allocate and initialize a Fib
2660 cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd);
2662 aac_fib_init(cmd_fibcontext);
2664 synchronizecmd = fib_data(cmd_fibcontext);
2665 synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
2666 synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
2667 synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd));
2668 synchronizecmd->count =
2669 cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
2670 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2673 * Now send the Fib to the adapter
2675 status = aac_fib_send(ContainerCommand,
2676 cmd_fibcontext,
2677 sizeof(struct aac_synchronize),
2678 FsaNormal,
2679 0, 1,
2680 (fib_callback)synchronize_callback,
2681 (void *)scsicmd);
2684 * Check that the command queued to the controller
2686 if (status == -EINPROGRESS)
2687 return 0;
2689 printk(KERN_WARNING
2690 "aac_synchronize: aac_fib_send failed with status: %d.\n", status);
2691 aac_fib_complete(cmd_fibcontext);
2692 aac_fib_free(cmd_fibcontext);
2693 return SCSI_MLQUEUE_HOST_BUSY;
2696 static void aac_start_stop_callback(void *context, struct fib *fibptr)
2698 struct scsi_cmnd *scsicmd = context;
2700 if (!aac_valid_context(scsicmd, fibptr))
2701 return;
2703 BUG_ON(fibptr == NULL);
2705 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2707 aac_fib_complete(fibptr);
2708 aac_fib_free(fibptr);
2709 scsicmd->scsi_done(scsicmd);
2712 static int aac_start_stop(struct scsi_cmnd *scsicmd)
2714 int status;
2715 struct fib *cmd_fibcontext;
2716 struct aac_power_management *pmcmd;
2717 struct scsi_device *sdev = scsicmd->device;
2718 struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata;
2720 if (!(aac->supplement_adapter_info.supported_options2 &
2721 AAC_OPTION_POWER_MANAGEMENT)) {
2722 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2723 SAM_STAT_GOOD;
2724 scsicmd->scsi_done(scsicmd);
2725 return 0;
2728 if (aac->in_reset)
2729 return SCSI_MLQUEUE_HOST_BUSY;
2732 * Allocate and initialize a Fib
2734 cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd);
2736 aac_fib_init(cmd_fibcontext);
2738 pmcmd = fib_data(cmd_fibcontext);
2739 pmcmd->command = cpu_to_le32(VM_ContainerConfig);
2740 pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT);
2741 /* Eject bit ignored, not relevant */
2742 pmcmd->sub = (scsicmd->cmnd[4] & 1) ?
2743 cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT);
2744 pmcmd->cid = cpu_to_le32(sdev_id(sdev));
2745 pmcmd->parm = (scsicmd->cmnd[1] & 1) ?
2746 cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0;
2747 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2750 * Now send the Fib to the adapter
2752 status = aac_fib_send(ContainerCommand,
2753 cmd_fibcontext,
2754 sizeof(struct aac_power_management),
2755 FsaNormal,
2756 0, 1,
2757 (fib_callback)aac_start_stop_callback,
2758 (void *)scsicmd);
2761 * Check that the command queued to the controller
2763 if (status == -EINPROGRESS)
2764 return 0;
2766 aac_fib_complete(cmd_fibcontext);
2767 aac_fib_free(cmd_fibcontext);
2768 return SCSI_MLQUEUE_HOST_BUSY;
2772 * aac_scsi_cmd() - Process SCSI command
2773 * @scsicmd: SCSI command block
2775 * Emulate a SCSI command and queue the required request for the
2776 * aacraid firmware.
2779 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
2781 u32 cid, bus;
2782 struct Scsi_Host *host = scsicmd->device->host;
2783 struct aac_dev *dev = (struct aac_dev *)host->hostdata;
2784 struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
2786 if (fsa_dev_ptr == NULL)
2787 return -1;
2789 * If the bus, id or lun is out of range, return fail
2790 * Test does not apply to ID 16, the pseudo id for the controller
2791 * itself.
2793 cid = scmd_id(scsicmd);
2794 if (cid != host->this_id) {
2795 if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) {
2796 if((cid >= dev->maximum_num_containers) ||
2797 (scsicmd->device->lun != 0)) {
2798 scsicmd->result = DID_NO_CONNECT << 16;
2799 goto scsi_done_ret;
2803 * If the target container doesn't exist, it may have
2804 * been newly created
2806 if (((fsa_dev_ptr[cid].valid & 1) == 0) ||
2807 (fsa_dev_ptr[cid].sense_data.sense_key ==
2808 NOT_READY)) {
2809 switch (scsicmd->cmnd[0]) {
2810 case SERVICE_ACTION_IN_16:
2811 if (!(dev->raw_io_interface) ||
2812 !(dev->raw_io_64) ||
2813 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2814 break;
2815 /* fall through */
2816 case INQUIRY:
2817 case READ_CAPACITY:
2818 case TEST_UNIT_READY:
2819 if (dev->in_reset)
2820 return -1;
2821 return _aac_probe_container(scsicmd,
2822 aac_probe_container_callback2);
2823 default:
2824 break;
2827 } else { /* check for physical non-dasd devices */
2828 bus = aac_logical_to_phys(scmd_channel(scsicmd));
2830 if (bus < AAC_MAX_BUSES && cid < AAC_MAX_TARGETS &&
2831 dev->hba_map[bus][cid].devtype
2832 == AAC_DEVTYPE_NATIVE_RAW) {
2833 if (dev->in_reset)
2834 return -1;
2835 return aac_send_hba_fib(scsicmd);
2836 } else if (dev->nondasd_support || expose_physicals ||
2837 dev->jbod) {
2838 if (dev->in_reset)
2839 return -1;
2840 return aac_send_srb_fib(scsicmd);
2841 } else {
2842 scsicmd->result = DID_NO_CONNECT << 16;
2843 goto scsi_done_ret;
2848 * else Command for the controller itself
2850 else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */
2851 (scsicmd->cmnd[0] != TEST_UNIT_READY))
2853 dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
2854 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2855 set_sense(&dev->fsa_dev[cid].sense_data,
2856 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2857 ASENCODE_INVALID_COMMAND, 0, 0);
2858 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2859 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2860 SCSI_SENSE_BUFFERSIZE));
2861 goto scsi_done_ret;
2864 switch (scsicmd->cmnd[0]) {
2865 case READ_6:
2866 case READ_10:
2867 case READ_12:
2868 case READ_16:
2869 if (dev->in_reset)
2870 return -1;
2871 return aac_read(scsicmd);
2873 case WRITE_6:
2874 case WRITE_10:
2875 case WRITE_12:
2876 case WRITE_16:
2877 if (dev->in_reset)
2878 return -1;
2879 return aac_write(scsicmd);
2881 case SYNCHRONIZE_CACHE:
2882 if (((aac_cache & 6) == 6) && dev->cache_protected) {
2883 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2884 SAM_STAT_GOOD;
2885 break;
2887 /* Issue FIB to tell Firmware to flush it's cache */
2888 if ((aac_cache & 6) != 2)
2889 return aac_synchronize(scsicmd);
2890 /* fall through */
2891 case INQUIRY:
2893 struct inquiry_data inq_data;
2895 dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid));
2896 memset(&inq_data, 0, sizeof (struct inquiry_data));
2898 if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) {
2899 char *arr = (char *)&inq_data;
2901 /* EVPD bit set */
2902 arr[0] = (scmd_id(scsicmd) == host->this_id) ?
2903 INQD_PDT_PROC : INQD_PDT_DA;
2904 if (scsicmd->cmnd[2] == 0) {
2905 /* supported vital product data pages */
2906 arr[3] = 3;
2907 arr[4] = 0x0;
2908 arr[5] = 0x80;
2909 arr[6] = 0x83;
2910 arr[1] = scsicmd->cmnd[2];
2911 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2912 sizeof(inq_data));
2913 scsicmd->result = DID_OK << 16 |
2914 COMMAND_COMPLETE << 8 |
2915 SAM_STAT_GOOD;
2916 } else if (scsicmd->cmnd[2] == 0x80) {
2917 /* unit serial number page */
2918 arr[3] = setinqserial(dev, &arr[4],
2919 scmd_id(scsicmd));
2920 arr[1] = scsicmd->cmnd[2];
2921 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2922 sizeof(inq_data));
2923 if (aac_wwn != 2)
2924 return aac_get_container_serial(
2925 scsicmd);
2926 scsicmd->result = DID_OK << 16 |
2927 COMMAND_COMPLETE << 8 |
2928 SAM_STAT_GOOD;
2929 } else if (scsicmd->cmnd[2] == 0x83) {
2930 /* vpd page 0x83 - Device Identification Page */
2931 char *sno = (char *)&inq_data;
2932 sno[3] = setinqserial(dev, &sno[4],
2933 scmd_id(scsicmd));
2934 if (aac_wwn != 2)
2935 return aac_get_container_serial(
2936 scsicmd);
2937 scsicmd->result = DID_OK << 16 |
2938 COMMAND_COMPLETE << 8 |
2939 SAM_STAT_GOOD;
2940 } else {
2941 /* vpd page not implemented */
2942 scsicmd->result = DID_OK << 16 |
2943 COMMAND_COMPLETE << 8 |
2944 SAM_STAT_CHECK_CONDITION;
2945 set_sense(&dev->fsa_dev[cid].sense_data,
2946 ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD,
2947 ASENCODE_NO_SENSE, 7, 2);
2948 memcpy(scsicmd->sense_buffer,
2949 &dev->fsa_dev[cid].sense_data,
2950 min_t(size_t,
2951 sizeof(dev->fsa_dev[cid].sense_data),
2952 SCSI_SENSE_BUFFERSIZE));
2954 break;
2956 inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */
2957 inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
2958 inq_data.inqd_len = 31;
2959 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
2960 inq_data.inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */
2962 * Set the Vendor, Product, and Revision Level
2963 * see: <vendor>.c i.e. aac.c
2965 if (cid == host->this_id) {
2966 setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types));
2967 inq_data.inqd_pdt = INQD_PDT_PROC; /* Processor device */
2968 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2969 sizeof(inq_data));
2970 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2971 SAM_STAT_GOOD;
2972 break;
2974 if (dev->in_reset)
2975 return -1;
2976 setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
2977 inq_data.inqd_pdt = INQD_PDT_DA; /* Direct/random access device */
2978 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
2979 return aac_get_container_name(scsicmd);
2981 case SERVICE_ACTION_IN_16:
2982 if (!(dev->raw_io_interface) ||
2983 !(dev->raw_io_64) ||
2984 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2985 break;
2987 u64 capacity;
2988 char cp[13];
2989 unsigned int alloc_len;
2991 dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
2992 capacity = fsa_dev_ptr[cid].size - 1;
2993 cp[0] = (capacity >> 56) & 0xff;
2994 cp[1] = (capacity >> 48) & 0xff;
2995 cp[2] = (capacity >> 40) & 0xff;
2996 cp[3] = (capacity >> 32) & 0xff;
2997 cp[4] = (capacity >> 24) & 0xff;
2998 cp[5] = (capacity >> 16) & 0xff;
2999 cp[6] = (capacity >> 8) & 0xff;
3000 cp[7] = (capacity >> 0) & 0xff;
3001 cp[8] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff;
3002 cp[9] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3003 cp[10] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
3004 cp[11] = (fsa_dev_ptr[cid].block_size) & 0xff;
3005 cp[12] = 0;
3007 alloc_len = ((scsicmd->cmnd[10] << 24)
3008 + (scsicmd->cmnd[11] << 16)
3009 + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]);
3011 alloc_len = min_t(size_t, alloc_len, sizeof(cp));
3012 scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len);
3013 if (alloc_len < scsi_bufflen(scsicmd))
3014 scsi_set_resid(scsicmd,
3015 scsi_bufflen(scsicmd) - alloc_len);
3017 /* Do not cache partition table for arrays */
3018 scsicmd->device->removable = 1;
3020 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3021 SAM_STAT_GOOD;
3022 break;
3025 case READ_CAPACITY:
3027 u32 capacity;
3028 char cp[8];
3030 dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
3031 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
3032 capacity = fsa_dev_ptr[cid].size - 1;
3033 else
3034 capacity = (u32)-1;
3036 cp[0] = (capacity >> 24) & 0xff;
3037 cp[1] = (capacity >> 16) & 0xff;
3038 cp[2] = (capacity >> 8) & 0xff;
3039 cp[3] = (capacity >> 0) & 0xff;
3040 cp[4] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff;
3041 cp[5] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3042 cp[6] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
3043 cp[7] = (fsa_dev_ptr[cid].block_size) & 0xff;
3044 scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp));
3045 /* Do not cache partition table for arrays */
3046 scsicmd->device->removable = 1;
3047 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3048 SAM_STAT_GOOD;
3049 break;
3052 case MODE_SENSE:
3054 int mode_buf_length = 4;
3055 u32 capacity;
3056 aac_modep_data mpd;
3058 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
3059 capacity = fsa_dev_ptr[cid].size - 1;
3060 else
3061 capacity = (u32)-1;
3063 dprintk((KERN_DEBUG "MODE SENSE command.\n"));
3064 memset((char *)&mpd, 0, sizeof(aac_modep_data));
3066 /* Mode data length */
3067 mpd.hd.data_length = sizeof(mpd.hd) - 1;
3068 /* Medium type - default */
3069 mpd.hd.med_type = 0;
3070 /* Device-specific param,
3071 bit 8: 0/1 = write enabled/protected
3072 bit 4: 0/1 = FUA enabled */
3073 mpd.hd.dev_par = 0;
3075 if (dev->raw_io_interface && ((aac_cache & 5) != 1))
3076 mpd.hd.dev_par = 0x10;
3077 if (scsicmd->cmnd[1] & 0x8)
3078 mpd.hd.bd_length = 0; /* Block descriptor length */
3079 else {
3080 mpd.hd.bd_length = sizeof(mpd.bd);
3081 mpd.hd.data_length += mpd.hd.bd_length;
3082 mpd.bd.block_length[0] =
3083 (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3084 mpd.bd.block_length[1] =
3085 (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
3086 mpd.bd.block_length[2] =
3087 fsa_dev_ptr[cid].block_size & 0xff;
3089 mpd.mpc_buf[0] = scsicmd->cmnd[2];
3090 if (scsicmd->cmnd[2] == 0x1C) {
3091 /* page length */
3092 mpd.mpc_buf[1] = 0xa;
3093 /* Mode data length */
3094 mpd.hd.data_length = 23;
3095 } else {
3096 /* Mode data length */
3097 mpd.hd.data_length = 15;
3100 if (capacity > 0xffffff) {
3101 mpd.bd.block_count[0] = 0xff;
3102 mpd.bd.block_count[1] = 0xff;
3103 mpd.bd.block_count[2] = 0xff;
3104 } else {
3105 mpd.bd.block_count[0] = (capacity >> 16) & 0xff;
3106 mpd.bd.block_count[1] = (capacity >> 8) & 0xff;
3107 mpd.bd.block_count[2] = capacity & 0xff;
3110 if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
3111 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
3112 mpd.hd.data_length += 3;
3113 mpd.mpc_buf[0] = 8;
3114 mpd.mpc_buf[1] = 1;
3115 mpd.mpc_buf[2] = ((aac_cache & 6) == 2)
3116 ? 0 : 0x04; /* WCE */
3117 mode_buf_length = sizeof(mpd);
3120 if (mode_buf_length > scsicmd->cmnd[4])
3121 mode_buf_length = scsicmd->cmnd[4];
3122 else
3123 mode_buf_length = sizeof(mpd);
3124 scsi_sg_copy_from_buffer(scsicmd,
3125 (char *)&mpd,
3126 mode_buf_length);
3127 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3128 SAM_STAT_GOOD;
3129 break;
3131 case MODE_SENSE_10:
3133 u32 capacity;
3134 int mode_buf_length = 8;
3135 aac_modep10_data mpd10;
3137 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
3138 capacity = fsa_dev_ptr[cid].size - 1;
3139 else
3140 capacity = (u32)-1;
3142 dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
3143 memset((char *)&mpd10, 0, sizeof(aac_modep10_data));
3144 /* Mode data length (MSB) */
3145 mpd10.hd.data_length[0] = 0;
3146 /* Mode data length (LSB) */
3147 mpd10.hd.data_length[1] = sizeof(mpd10.hd) - 1;
3148 /* Medium type - default */
3149 mpd10.hd.med_type = 0;
3150 /* Device-specific param,
3151 bit 8: 0/1 = write enabled/protected
3152 bit 4: 0/1 = FUA enabled */
3153 mpd10.hd.dev_par = 0;
3155 if (dev->raw_io_interface && ((aac_cache & 5) != 1))
3156 mpd10.hd.dev_par = 0x10;
3157 mpd10.hd.rsrvd[0] = 0; /* reserved */
3158 mpd10.hd.rsrvd[1] = 0; /* reserved */
3159 if (scsicmd->cmnd[1] & 0x8) {
3160 /* Block descriptor length (MSB) */
3161 mpd10.hd.bd_length[0] = 0;
3162 /* Block descriptor length (LSB) */
3163 mpd10.hd.bd_length[1] = 0;
3164 } else {
3165 mpd10.hd.bd_length[0] = 0;
3166 mpd10.hd.bd_length[1] = sizeof(mpd10.bd);
3168 mpd10.hd.data_length[1] += mpd10.hd.bd_length[1];
3170 mpd10.bd.block_length[0] =
3171 (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3172 mpd10.bd.block_length[1] =
3173 (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
3174 mpd10.bd.block_length[2] =
3175 fsa_dev_ptr[cid].block_size & 0xff;
3177 if (capacity > 0xffffff) {
3178 mpd10.bd.block_count[0] = 0xff;
3179 mpd10.bd.block_count[1] = 0xff;
3180 mpd10.bd.block_count[2] = 0xff;
3181 } else {
3182 mpd10.bd.block_count[0] =
3183 (capacity >> 16) & 0xff;
3184 mpd10.bd.block_count[1] =
3185 (capacity >> 8) & 0xff;
3186 mpd10.bd.block_count[2] =
3187 capacity & 0xff;
3190 if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
3191 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
3192 mpd10.hd.data_length[1] += 3;
3193 mpd10.mpc_buf[0] = 8;
3194 mpd10.mpc_buf[1] = 1;
3195 mpd10.mpc_buf[2] = ((aac_cache & 6) == 2)
3196 ? 0 : 0x04; /* WCE */
3197 mode_buf_length = sizeof(mpd10);
3198 if (mode_buf_length > scsicmd->cmnd[8])
3199 mode_buf_length = scsicmd->cmnd[8];
3201 scsi_sg_copy_from_buffer(scsicmd,
3202 (char *)&mpd10,
3203 mode_buf_length);
3205 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3206 SAM_STAT_GOOD;
3207 break;
3209 case REQUEST_SENSE:
3210 dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
3211 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
3212 sizeof(struct sense_data));
3213 memset(&dev->fsa_dev[cid].sense_data, 0,
3214 sizeof(struct sense_data));
3215 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3216 SAM_STAT_GOOD;
3217 break;
3219 case ALLOW_MEDIUM_REMOVAL:
3220 dprintk((KERN_DEBUG "LOCK command.\n"));
3221 if (scsicmd->cmnd[4])
3222 fsa_dev_ptr[cid].locked = 1;
3223 else
3224 fsa_dev_ptr[cid].locked = 0;
3226 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3227 SAM_STAT_GOOD;
3228 break;
3230 * These commands are all No-Ops
3232 case TEST_UNIT_READY:
3233 if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) {
3234 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3235 SAM_STAT_CHECK_CONDITION;
3236 set_sense(&dev->fsa_dev[cid].sense_data,
3237 NOT_READY, SENCODE_BECOMING_READY,
3238 ASENCODE_BECOMING_READY, 0, 0);
3239 memcpy(scsicmd->sense_buffer,
3240 &dev->fsa_dev[cid].sense_data,
3241 min_t(size_t,
3242 sizeof(dev->fsa_dev[cid].sense_data),
3243 SCSI_SENSE_BUFFERSIZE));
3244 break;
3246 /* fall through */
3247 case RESERVE:
3248 case RELEASE:
3249 case REZERO_UNIT:
3250 case REASSIGN_BLOCKS:
3251 case SEEK_10:
3252 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3253 SAM_STAT_GOOD;
3254 break;
3256 case START_STOP:
3257 return aac_start_stop(scsicmd);
3259 /* FALLTHRU */
3260 default:
3262 * Unhandled commands
3264 dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n",
3265 scsicmd->cmnd[0]));
3266 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3267 SAM_STAT_CHECK_CONDITION;
3268 set_sense(&dev->fsa_dev[cid].sense_data,
3269 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
3270 ASENCODE_INVALID_COMMAND, 0, 0);
3271 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
3272 min_t(size_t,
3273 sizeof(dev->fsa_dev[cid].sense_data),
3274 SCSI_SENSE_BUFFERSIZE));
3277 scsi_done_ret:
3279 scsicmd->scsi_done(scsicmd);
3280 return 0;
3283 static int query_disk(struct aac_dev *dev, void __user *arg)
3285 struct aac_query_disk qd;
3286 struct fsa_dev_info *fsa_dev_ptr;
3288 fsa_dev_ptr = dev->fsa_dev;
3289 if (!fsa_dev_ptr)
3290 return -EBUSY;
3291 if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
3292 return -EFAULT;
3293 if (qd.cnum == -1) {
3294 if (qd.id < 0 || qd.id >= dev->maximum_num_containers)
3295 return -EINVAL;
3296 qd.cnum = qd.id;
3297 } else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1)) {
3298 if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
3299 return -EINVAL;
3300 qd.instance = dev->scsi_host_ptr->host_no;
3301 qd.bus = 0;
3302 qd.id = CONTAINER_TO_ID(qd.cnum);
3303 qd.lun = CONTAINER_TO_LUN(qd.cnum);
3305 else return -EINVAL;
3307 qd.valid = fsa_dev_ptr[qd.cnum].valid != 0;
3308 qd.locked = fsa_dev_ptr[qd.cnum].locked;
3309 qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
3311 if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
3312 qd.unmapped = 1;
3313 else
3314 qd.unmapped = 0;
3316 strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
3317 min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
3319 if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
3320 return -EFAULT;
3321 return 0;
3324 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
3326 struct aac_delete_disk dd;
3327 struct fsa_dev_info *fsa_dev_ptr;
3329 fsa_dev_ptr = dev->fsa_dev;
3330 if (!fsa_dev_ptr)
3331 return -EBUSY;
3333 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
3334 return -EFAULT;
3336 if (dd.cnum >= dev->maximum_num_containers)
3337 return -EINVAL;
3339 * Mark this container as being deleted.
3341 fsa_dev_ptr[dd.cnum].deleted = 1;
3343 * Mark the container as no longer valid
3345 fsa_dev_ptr[dd.cnum].valid = 0;
3346 return 0;
3349 static int delete_disk(struct aac_dev *dev, void __user *arg)
3351 struct aac_delete_disk dd;
3352 struct fsa_dev_info *fsa_dev_ptr;
3354 fsa_dev_ptr = dev->fsa_dev;
3355 if (!fsa_dev_ptr)
3356 return -EBUSY;
3358 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
3359 return -EFAULT;
3361 if (dd.cnum >= dev->maximum_num_containers)
3362 return -EINVAL;
3364 * If the container is locked, it can not be deleted by the API.
3366 if (fsa_dev_ptr[dd.cnum].locked)
3367 return -EBUSY;
3368 else {
3370 * Mark the container as no longer being valid.
3372 fsa_dev_ptr[dd.cnum].valid = 0;
3373 fsa_dev_ptr[dd.cnum].devname[0] = '\0';
3374 return 0;
3378 int aac_dev_ioctl(struct aac_dev *dev, unsigned int cmd, void __user *arg)
3380 switch (cmd) {
3381 case FSACTL_QUERY_DISK:
3382 return query_disk(dev, arg);
3383 case FSACTL_DELETE_DISK:
3384 return delete_disk(dev, arg);
3385 case FSACTL_FORCE_DELETE_DISK:
3386 return force_delete_disk(dev, arg);
3387 case FSACTL_GET_CONTAINERS:
3388 return aac_get_containers(dev);
3389 default:
3390 return -ENOTTY;
3396 * aac_srb_callback
3397 * @context: the context set in the fib - here it is scsi cmd
3398 * @fibptr: pointer to the fib
3400 * Handles the completion of a scsi command to a non dasd device
3404 static void aac_srb_callback(void *context, struct fib * fibptr)
3406 struct aac_srb_reply *srbreply;
3407 struct scsi_cmnd *scsicmd;
3409 scsicmd = (struct scsi_cmnd *) context;
3411 if (!aac_valid_context(scsicmd, fibptr))
3412 return;
3414 BUG_ON(fibptr == NULL);
3416 srbreply = (struct aac_srb_reply *) fib_data(fibptr);
3418 scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */
3420 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) {
3421 /* fast response */
3422 srbreply->srb_status = cpu_to_le32(SRB_STATUS_SUCCESS);
3423 srbreply->scsi_status = cpu_to_le32(SAM_STAT_GOOD);
3424 } else {
3426 * Calculate resid for sg
3428 scsi_set_resid(scsicmd, scsi_bufflen(scsicmd)
3429 - le32_to_cpu(srbreply->data_xfer_length));
3433 scsi_dma_unmap(scsicmd);
3435 /* expose physical device if expose_physicald flag is on */
3436 if (scsicmd->cmnd[0] == INQUIRY && !(scsicmd->cmnd[1] & 0x01)
3437 && expose_physicals > 0)
3438 aac_expose_phy_device(scsicmd);
3441 * First check the fib status
3444 if (le32_to_cpu(srbreply->status) != ST_OK) {
3445 int len;
3447 pr_warn("aac_srb_callback: srb failed, status = %d\n",
3448 le32_to_cpu(srbreply->status));
3449 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
3450 SCSI_SENSE_BUFFERSIZE);
3451 scsicmd->result = DID_ERROR << 16
3452 | COMMAND_COMPLETE << 8
3453 | SAM_STAT_CHECK_CONDITION;
3454 memcpy(scsicmd->sense_buffer,
3455 srbreply->sense_data, len);
3459 * Next check the srb status
3461 switch ((le32_to_cpu(srbreply->srb_status))&0x3f) {
3462 case SRB_STATUS_ERROR_RECOVERY:
3463 case SRB_STATUS_PENDING:
3464 case SRB_STATUS_SUCCESS:
3465 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3466 break;
3467 case SRB_STATUS_DATA_OVERRUN:
3468 switch (scsicmd->cmnd[0]) {
3469 case READ_6:
3470 case WRITE_6:
3471 case READ_10:
3472 case WRITE_10:
3473 case READ_12:
3474 case WRITE_12:
3475 case READ_16:
3476 case WRITE_16:
3477 if (le32_to_cpu(srbreply->data_xfer_length)
3478 < scsicmd->underflow)
3479 pr_warn("aacraid: SCSI CMD underflow\n");
3480 else
3481 pr_warn("aacraid: SCSI CMD Data Overrun\n");
3482 scsicmd->result = DID_ERROR << 16
3483 | COMMAND_COMPLETE << 8;
3484 break;
3485 case INQUIRY:
3486 scsicmd->result = DID_OK << 16
3487 | COMMAND_COMPLETE << 8;
3488 break;
3489 default:
3490 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3491 break;
3493 break;
3494 case SRB_STATUS_ABORTED:
3495 scsicmd->result = DID_ABORT << 16 | ABORT << 8;
3496 break;
3497 case SRB_STATUS_ABORT_FAILED:
3499 * Not sure about this one - but assuming the
3500 * hba was trying to abort for some reason
3502 scsicmd->result = DID_ERROR << 16 | ABORT << 8;
3503 break;
3504 case SRB_STATUS_PARITY_ERROR:
3505 scsicmd->result = DID_PARITY << 16
3506 | MSG_PARITY_ERROR << 8;
3507 break;
3508 case SRB_STATUS_NO_DEVICE:
3509 case SRB_STATUS_INVALID_PATH_ID:
3510 case SRB_STATUS_INVALID_TARGET_ID:
3511 case SRB_STATUS_INVALID_LUN:
3512 case SRB_STATUS_SELECTION_TIMEOUT:
3513 scsicmd->result = DID_NO_CONNECT << 16
3514 | COMMAND_COMPLETE << 8;
3515 break;
3517 case SRB_STATUS_COMMAND_TIMEOUT:
3518 case SRB_STATUS_TIMEOUT:
3519 scsicmd->result = DID_TIME_OUT << 16
3520 | COMMAND_COMPLETE << 8;
3521 break;
3523 case SRB_STATUS_BUSY:
3524 scsicmd->result = DID_BUS_BUSY << 16
3525 | COMMAND_COMPLETE << 8;
3526 break;
3528 case SRB_STATUS_BUS_RESET:
3529 scsicmd->result = DID_RESET << 16
3530 | COMMAND_COMPLETE << 8;
3531 break;
3533 case SRB_STATUS_MESSAGE_REJECTED:
3534 scsicmd->result = DID_ERROR << 16
3535 | MESSAGE_REJECT << 8;
3536 break;
3537 case SRB_STATUS_REQUEST_FLUSHED:
3538 case SRB_STATUS_ERROR:
3539 case SRB_STATUS_INVALID_REQUEST:
3540 case SRB_STATUS_REQUEST_SENSE_FAILED:
3541 case SRB_STATUS_NO_HBA:
3542 case SRB_STATUS_UNEXPECTED_BUS_FREE:
3543 case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
3544 case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
3545 case SRB_STATUS_DELAYED_RETRY:
3546 case SRB_STATUS_BAD_FUNCTION:
3547 case SRB_STATUS_NOT_STARTED:
3548 case SRB_STATUS_NOT_IN_USE:
3549 case SRB_STATUS_FORCE_ABORT:
3550 case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
3551 default:
3552 #ifdef AAC_DETAILED_STATUS_INFO
3553 pr_info("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x -scsi status 0x%x\n",
3554 le32_to_cpu(srbreply->srb_status) & 0x3F,
3555 aac_get_status_string(
3556 le32_to_cpu(srbreply->srb_status) & 0x3F),
3557 scsicmd->cmnd[0],
3558 le32_to_cpu(srbreply->scsi_status));
3559 #endif
3561 * When the CC bit is SET by the host in ATA pass thru CDB,
3562 * driver is supposed to return DID_OK
3564 * When the CC bit is RESET by the host, driver should
3565 * return DID_ERROR
3567 if ((scsicmd->cmnd[0] == ATA_12)
3568 || (scsicmd->cmnd[0] == ATA_16)) {
3570 if (scsicmd->cmnd[2] & (0x01 << 5)) {
3571 scsicmd->result = DID_OK << 16
3572 | COMMAND_COMPLETE << 8;
3573 break;
3574 } else {
3575 scsicmd->result = DID_ERROR << 16
3576 | COMMAND_COMPLETE << 8;
3577 break;
3579 } else {
3580 scsicmd->result = DID_ERROR << 16
3581 | COMMAND_COMPLETE << 8;
3582 break;
3585 if (le32_to_cpu(srbreply->scsi_status)
3586 == SAM_STAT_CHECK_CONDITION) {
3587 int len;
3589 scsicmd->result |= SAM_STAT_CHECK_CONDITION;
3590 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
3591 SCSI_SENSE_BUFFERSIZE);
3592 #ifdef AAC_DETAILED_STATUS_INFO
3593 pr_warn("aac_srb_callback: check condition, status = %d len=%d\n",
3594 le32_to_cpu(srbreply->status), len);
3595 #endif
3596 memcpy(scsicmd->sense_buffer,
3597 srbreply->sense_data, len);
3601 * OR in the scsi status (already shifted up a bit)
3603 scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
3605 aac_fib_complete(fibptr);
3606 scsicmd->scsi_done(scsicmd);
3609 static void hba_resp_task_complete(struct aac_dev *dev,
3610 struct scsi_cmnd *scsicmd,
3611 struct aac_hba_resp *err) {
3613 scsicmd->result = err->status;
3614 /* set residual count */
3615 scsi_set_resid(scsicmd, le32_to_cpu(err->residual_count));
3617 switch (err->status) {
3618 case SAM_STAT_GOOD:
3619 scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8;
3620 break;
3621 case SAM_STAT_CHECK_CONDITION:
3623 int len;
3625 len = min_t(u8, err->sense_response_data_len,
3626 SCSI_SENSE_BUFFERSIZE);
3627 if (len)
3628 memcpy(scsicmd->sense_buffer,
3629 err->sense_response_buf, len);
3630 scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8;
3631 break;
3633 case SAM_STAT_BUSY:
3634 scsicmd->result |= DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8;
3635 break;
3636 case SAM_STAT_TASK_ABORTED:
3637 scsicmd->result |= DID_ABORT << 16 | ABORT << 8;
3638 break;
3639 case SAM_STAT_RESERVATION_CONFLICT:
3640 case SAM_STAT_TASK_SET_FULL:
3641 default:
3642 scsicmd->result |= DID_ERROR << 16 | COMMAND_COMPLETE << 8;
3643 break;
3647 static void hba_resp_task_failure(struct aac_dev *dev,
3648 struct scsi_cmnd *scsicmd,
3649 struct aac_hba_resp *err)
3651 switch (err->status) {
3652 case HBA_RESP_STAT_HBAMODE_DISABLED:
3654 u32 bus, cid;
3656 bus = aac_logical_to_phys(scmd_channel(scsicmd));
3657 cid = scmd_id(scsicmd);
3658 if (dev->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) {
3659 dev->hba_map[bus][cid].devtype = AAC_DEVTYPE_ARC_RAW;
3660 dev->hba_map[bus][cid].rmw_nexus = 0xffffffff;
3662 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
3663 break;
3665 case HBA_RESP_STAT_IO_ERROR:
3666 case HBA_RESP_STAT_NO_PATH_TO_DEVICE:
3667 scsicmd->result = DID_OK << 16 |
3668 COMMAND_COMPLETE << 8 | SAM_STAT_BUSY;
3669 break;
3670 case HBA_RESP_STAT_IO_ABORTED:
3671 scsicmd->result = DID_ABORT << 16 | ABORT << 8;
3672 break;
3673 case HBA_RESP_STAT_INVALID_DEVICE:
3674 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
3675 break;
3676 case HBA_RESP_STAT_UNDERRUN:
3677 /* UNDERRUN is OK */
3678 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3679 break;
3680 case HBA_RESP_STAT_OVERRUN:
3681 default:
3682 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
3683 break;
3689 * aac_hba_callback
3690 * @context: the context set in the fib - here it is scsi cmd
3691 * @fibptr: pointer to the fib
3693 * Handles the completion of a native HBA scsi command
3696 void aac_hba_callback(void *context, struct fib *fibptr)
3698 struct aac_dev *dev;
3699 struct scsi_cmnd *scsicmd;
3701 struct aac_hba_resp *err =
3702 &((struct aac_native_hba *)fibptr->hw_fib_va)->resp.err;
3704 scsicmd = (struct scsi_cmnd *) context;
3706 if (!aac_valid_context(scsicmd, fibptr))
3707 return;
3709 WARN_ON(fibptr == NULL);
3710 dev = fibptr->dev;
3712 if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF))
3713 scsi_dma_unmap(scsicmd);
3715 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) {
3716 /* fast response */
3717 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3718 goto out;
3721 switch (err->service_response) {
3722 case HBA_RESP_SVCRES_TASK_COMPLETE:
3723 hba_resp_task_complete(dev, scsicmd, err);
3724 break;
3725 case HBA_RESP_SVCRES_FAILURE:
3726 hba_resp_task_failure(dev, scsicmd, err);
3727 break;
3728 case HBA_RESP_SVCRES_TMF_REJECTED:
3729 scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8;
3730 break;
3731 case HBA_RESP_SVCRES_TMF_LUN_INVALID:
3732 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
3733 break;
3734 case HBA_RESP_SVCRES_TMF_COMPLETE:
3735 case HBA_RESP_SVCRES_TMF_SUCCEEDED:
3736 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3737 break;
3738 default:
3739 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
3740 break;
3743 out:
3744 aac_fib_complete(fibptr);
3746 if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF)
3747 scsicmd->SCp.sent_command = 1;
3748 else
3749 scsicmd->scsi_done(scsicmd);
3754 * aac_send_srb_fib
3755 * @scsicmd: the scsi command block
3757 * This routine will form a FIB and fill in the aac_srb from the
3758 * scsicmd passed in.
3761 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
3763 struct fib* cmd_fibcontext;
3764 struct aac_dev* dev;
3765 int status;
3767 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
3768 if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
3769 scsicmd->device->lun > 7) {
3770 scsicmd->result = DID_NO_CONNECT << 16;
3771 scsicmd->scsi_done(scsicmd);
3772 return 0;
3776 * Allocate and initialize a Fib then setup a BlockWrite command
3778 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
3779 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
3780 status = aac_adapter_scsi(cmd_fibcontext, scsicmd);
3783 * Check that the command queued to the controller
3785 if (status == -EINPROGRESS)
3786 return 0;
3788 printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status);
3789 aac_fib_complete(cmd_fibcontext);
3790 aac_fib_free(cmd_fibcontext);
3792 return -1;
3797 * aac_send_hba_fib
3798 * @scsicmd: the scsi command block
3800 * This routine will form a FIB and fill in the aac_hba_cmd_req from the
3801 * scsicmd passed in.
3803 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd)
3805 struct fib *cmd_fibcontext;
3806 struct aac_dev *dev;
3807 int status;
3809 dev = shost_priv(scsicmd->device->host);
3810 if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
3811 scsicmd->device->lun > AAC_MAX_LUN - 1) {
3812 scsicmd->result = DID_NO_CONNECT << 16;
3813 scsicmd->scsi_done(scsicmd);
3814 return 0;
3818 * Allocate and initialize a Fib then setup a BlockWrite command
3820 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
3821 if (!cmd_fibcontext)
3822 return -1;
3824 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
3825 status = aac_adapter_hba(cmd_fibcontext, scsicmd);
3828 * Check that the command queued to the controller
3830 if (status == -EINPROGRESS)
3831 return 0;
3833 pr_warn("aac_hba_cmd_req: aac_fib_send failed with status: %d\n",
3834 status);
3835 aac_fib_complete(cmd_fibcontext);
3836 aac_fib_free(cmd_fibcontext);
3838 return -1;
3842 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *psg)
3844 unsigned long byte_count = 0;
3845 int nseg;
3846 struct scatterlist *sg;
3847 int i;
3849 // Get rid of old data
3850 psg->count = 0;
3851 psg->sg[0].addr = 0;
3852 psg->sg[0].count = 0;
3854 nseg = scsi_dma_map(scsicmd);
3855 if (nseg <= 0)
3856 return nseg;
3858 psg->count = cpu_to_le32(nseg);
3860 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3861 psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
3862 psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
3863 byte_count += sg_dma_len(sg);
3865 /* hba wants the size to be exact */
3866 if (byte_count > scsi_bufflen(scsicmd)) {
3867 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3868 (byte_count - scsi_bufflen(scsicmd));
3869 psg->sg[i-1].count = cpu_to_le32(temp);
3870 byte_count = scsi_bufflen(scsicmd);
3872 /* Check for command underflow */
3873 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3874 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3875 byte_count, scsicmd->underflow);
3878 return byte_count;
3882 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg)
3884 unsigned long byte_count = 0;
3885 u64 addr;
3886 int nseg;
3887 struct scatterlist *sg;
3888 int i;
3890 // Get rid of old data
3891 psg->count = 0;
3892 psg->sg[0].addr[0] = 0;
3893 psg->sg[0].addr[1] = 0;
3894 psg->sg[0].count = 0;
3896 nseg = scsi_dma_map(scsicmd);
3897 if (nseg <= 0)
3898 return nseg;
3900 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3901 int count = sg_dma_len(sg);
3902 addr = sg_dma_address(sg);
3903 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
3904 psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
3905 psg->sg[i].count = cpu_to_le32(count);
3906 byte_count += count;
3908 psg->count = cpu_to_le32(nseg);
3909 /* hba wants the size to be exact */
3910 if (byte_count > scsi_bufflen(scsicmd)) {
3911 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3912 (byte_count - scsi_bufflen(scsicmd));
3913 psg->sg[i-1].count = cpu_to_le32(temp);
3914 byte_count = scsi_bufflen(scsicmd);
3916 /* Check for command underflow */
3917 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3918 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3919 byte_count, scsicmd->underflow);
3922 return byte_count;
3925 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg)
3927 unsigned long byte_count = 0;
3928 int nseg;
3929 struct scatterlist *sg;
3930 int i;
3932 // Get rid of old data
3933 psg->count = 0;
3934 psg->sg[0].next = 0;
3935 psg->sg[0].prev = 0;
3936 psg->sg[0].addr[0] = 0;
3937 psg->sg[0].addr[1] = 0;
3938 psg->sg[0].count = 0;
3939 psg->sg[0].flags = 0;
3941 nseg = scsi_dma_map(scsicmd);
3942 if (nseg <= 0)
3943 return nseg;
3945 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3946 int count = sg_dma_len(sg);
3947 u64 addr = sg_dma_address(sg);
3948 psg->sg[i].next = 0;
3949 psg->sg[i].prev = 0;
3950 psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
3951 psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
3952 psg->sg[i].count = cpu_to_le32(count);
3953 psg->sg[i].flags = 0;
3954 byte_count += count;
3956 psg->count = cpu_to_le32(nseg);
3957 /* hba wants the size to be exact */
3958 if (byte_count > scsi_bufflen(scsicmd)) {
3959 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3960 (byte_count - scsi_bufflen(scsicmd));
3961 psg->sg[i-1].count = cpu_to_le32(temp);
3962 byte_count = scsi_bufflen(scsicmd);
3964 /* Check for command underflow */
3965 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3966 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3967 byte_count, scsicmd->underflow);
3970 return byte_count;
3973 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd,
3974 struct aac_raw_io2 *rio2, int sg_max)
3976 unsigned long byte_count = 0;
3977 int nseg;
3978 struct scatterlist *sg;
3979 int i, conformable = 0;
3980 u32 min_size = PAGE_SIZE, cur_size;
3982 nseg = scsi_dma_map(scsicmd);
3983 if (nseg <= 0)
3984 return nseg;
3986 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3987 int count = sg_dma_len(sg);
3988 u64 addr = sg_dma_address(sg);
3990 BUG_ON(i >= sg_max);
3991 rio2->sge[i].addrHigh = cpu_to_le32((u32)(addr>>32));
3992 rio2->sge[i].addrLow = cpu_to_le32((u32)(addr & 0xffffffff));
3993 cur_size = cpu_to_le32(count);
3994 rio2->sge[i].length = cur_size;
3995 rio2->sge[i].flags = 0;
3996 if (i == 0) {
3997 conformable = 1;
3998 rio2->sgeFirstSize = cur_size;
3999 } else if (i == 1) {
4000 rio2->sgeNominalSize = cur_size;
4001 min_size = cur_size;
4002 } else if ((i+1) < nseg && cur_size != rio2->sgeNominalSize) {
4003 conformable = 0;
4004 if (cur_size < min_size)
4005 min_size = cur_size;
4007 byte_count += count;
4010 /* hba wants the size to be exact */
4011 if (byte_count > scsi_bufflen(scsicmd)) {
4012 u32 temp = le32_to_cpu(rio2->sge[i-1].length) -
4013 (byte_count - scsi_bufflen(scsicmd));
4014 rio2->sge[i-1].length = cpu_to_le32(temp);
4015 byte_count = scsi_bufflen(scsicmd);
4018 rio2->sgeCnt = cpu_to_le32(nseg);
4019 rio2->flags |= cpu_to_le16(RIO2_SG_FORMAT_IEEE1212);
4020 /* not conformable: evaluate required sg elements */
4021 if (!conformable) {
4022 int j, nseg_new = nseg, err_found;
4023 for (i = min_size / PAGE_SIZE; i >= 1; --i) {
4024 err_found = 0;
4025 nseg_new = 2;
4026 for (j = 1; j < nseg - 1; ++j) {
4027 if (rio2->sge[j].length % (i*PAGE_SIZE)) {
4028 err_found = 1;
4029 break;
4031 nseg_new += (rio2->sge[j].length / (i*PAGE_SIZE));
4033 if (!err_found)
4034 break;
4036 if (i > 0 && nseg_new <= sg_max) {
4037 int ret = aac_convert_sgraw2(rio2, i, nseg, nseg_new);
4039 if (ret < 0)
4040 return ret;
4042 } else
4043 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT);
4045 /* Check for command underflow */
4046 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
4047 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
4048 byte_count, scsicmd->underflow);
4051 return byte_count;
4054 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, int pages, int nseg, int nseg_new)
4056 struct sge_ieee1212 *sge;
4057 int i, j, pos;
4058 u32 addr_low;
4060 if (aac_convert_sgl == 0)
4061 return 0;
4063 sge = kmalloc_array(nseg_new, sizeof(struct sge_ieee1212), GFP_ATOMIC);
4064 if (sge == NULL)
4065 return -ENOMEM;
4067 for (i = 1, pos = 1; i < nseg-1; ++i) {
4068 for (j = 0; j < rio2->sge[i].length / (pages * PAGE_SIZE); ++j) {
4069 addr_low = rio2->sge[i].addrLow + j * pages * PAGE_SIZE;
4070 sge[pos].addrLow = addr_low;
4071 sge[pos].addrHigh = rio2->sge[i].addrHigh;
4072 if (addr_low < rio2->sge[i].addrLow)
4073 sge[pos].addrHigh++;
4074 sge[pos].length = pages * PAGE_SIZE;
4075 sge[pos].flags = 0;
4076 pos++;
4079 sge[pos] = rio2->sge[nseg-1];
4080 memcpy(&rio2->sge[1], &sge[1], (nseg_new-1)*sizeof(struct sge_ieee1212));
4082 kfree(sge);
4083 rio2->sgeCnt = cpu_to_le32(nseg_new);
4084 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT);
4085 rio2->sgeNominalSize = pages * PAGE_SIZE;
4086 return 0;
4089 static long aac_build_sghba(struct scsi_cmnd *scsicmd,
4090 struct aac_hba_cmd_req *hbacmd,
4091 int sg_max,
4092 u64 sg_address)
4094 unsigned long byte_count = 0;
4095 int nseg;
4096 struct scatterlist *sg;
4097 int i;
4098 u32 cur_size;
4099 struct aac_hba_sgl *sge;
4101 nseg = scsi_dma_map(scsicmd);
4102 if (nseg <= 0) {
4103 byte_count = nseg;
4104 goto out;
4107 if (nseg > HBA_MAX_SG_EMBEDDED)
4108 sge = &hbacmd->sge[2];
4109 else
4110 sge = &hbacmd->sge[0];
4112 scsi_for_each_sg(scsicmd, sg, nseg, i) {
4113 int count = sg_dma_len(sg);
4114 u64 addr = sg_dma_address(sg);
4116 WARN_ON(i >= sg_max);
4117 sge->addr_hi = cpu_to_le32((u32)(addr>>32));
4118 sge->addr_lo = cpu_to_le32((u32)(addr & 0xffffffff));
4119 cur_size = cpu_to_le32(count);
4120 sge->len = cur_size;
4121 sge->flags = 0;
4122 byte_count += count;
4123 sge++;
4126 sge--;
4127 /* hba wants the size to be exact */
4128 if (byte_count > scsi_bufflen(scsicmd)) {
4129 u32 temp;
4131 temp = le32_to_cpu(sge->len) - byte_count
4132 - scsi_bufflen(scsicmd);
4133 sge->len = cpu_to_le32(temp);
4134 byte_count = scsi_bufflen(scsicmd);
4137 if (nseg <= HBA_MAX_SG_EMBEDDED) {
4138 hbacmd->emb_data_desc_count = cpu_to_le32(nseg);
4139 sge->flags = cpu_to_le32(0x40000000);
4140 } else {
4141 /* not embedded */
4142 hbacmd->sge[0].flags = cpu_to_le32(0x80000000);
4143 hbacmd->emb_data_desc_count = (u8)cpu_to_le32(1);
4144 hbacmd->sge[0].addr_hi = (u32)cpu_to_le32(sg_address >> 32);
4145 hbacmd->sge[0].addr_lo =
4146 cpu_to_le32((u32)(sg_address & 0xffffffff));
4149 /* Check for command underflow */
4150 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
4151 pr_warn("aacraid: cmd len %08lX cmd underflow %08X\n",
4152 byte_count, scsicmd->underflow);
4154 out:
4155 return byte_count;
4158 #ifdef AAC_DETAILED_STATUS_INFO
4160 struct aac_srb_status_info {
4161 u32 status;
4162 char *str;
4166 static struct aac_srb_status_info srb_status_info[] = {
4167 { SRB_STATUS_PENDING, "Pending Status"},
4168 { SRB_STATUS_SUCCESS, "Success"},
4169 { SRB_STATUS_ABORTED, "Aborted Command"},
4170 { SRB_STATUS_ABORT_FAILED, "Abort Failed"},
4171 { SRB_STATUS_ERROR, "Error Event"},
4172 { SRB_STATUS_BUSY, "Device Busy"},
4173 { SRB_STATUS_INVALID_REQUEST, "Invalid Request"},
4174 { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"},
4175 { SRB_STATUS_NO_DEVICE, "No Device"},
4176 { SRB_STATUS_TIMEOUT, "Timeout"},
4177 { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"},
4178 { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"},
4179 { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"},
4180 { SRB_STATUS_BUS_RESET, "Bus Reset"},
4181 { SRB_STATUS_PARITY_ERROR, "Parity Error"},
4182 { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
4183 { SRB_STATUS_NO_HBA, "No HBA"},
4184 { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"},
4185 { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
4186 { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
4187 { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
4188 { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"},
4189 { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"},
4190 { SRB_STATUS_INVALID_LUN, "Invalid LUN"},
4191 { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"},
4192 { SRB_STATUS_BAD_FUNCTION, "Bad Function"},
4193 { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"},
4194 { SRB_STATUS_NOT_STARTED, "Not Started"},
4195 { SRB_STATUS_NOT_IN_USE, "Not In Use"},
4196 { SRB_STATUS_FORCE_ABORT, "Force Abort"},
4197 { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
4198 { 0xff, "Unknown Error"}
4201 char *aac_get_status_string(u32 status)
4203 int i;
4205 for (i = 0; i < ARRAY_SIZE(srb_status_info); i++)
4206 if (srb_status_info[i].status == status)
4207 return srb_status_info[i].str;
4209 return "Bad Status Code";
4212 #endif