gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / scsi / aacraid / commsup.c
blobddd73f6798af1c959f49387c14bf02c43e1b4549
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Adaptec AAC series RAID controller driver
4 * (c) Copyright 2001 Red Hat Inc.
6 * based on the old aacraid driver that is..
7 * Adaptec aacraid device driver for Linux.
9 * Copyright (c) 2000-2010 Adaptec, Inc.
10 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
11 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
13 * Module Name:
14 * commsup.c
16 * Abstract: Contain all routines that are required for FSA host/adapter
17 * communication.
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/crash_dump.h>
23 #include <linux/types.h>
24 #include <linux/sched.h>
25 #include <linux/pci.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/completion.h>
29 #include <linux/blkdev.h>
30 #include <linux/delay.h>
31 #include <linux/kthread.h>
32 #include <linux/interrupt.h>
33 #include <linux/bcd.h>
34 #include <scsi/scsi.h>
35 #include <scsi/scsi_host.h>
36 #include <scsi/scsi_device.h>
37 #include <scsi/scsi_cmnd.h>
39 #include "aacraid.h"
41 /**
42 * fib_map_alloc - allocate the fib objects
43 * @dev: Adapter to allocate for
45 * Allocate and map the shared PCI space for the FIB blocks used to
46 * talk to the Adaptec firmware.
49 static int fib_map_alloc(struct aac_dev *dev)
51 if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE)
52 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
53 else
54 dev->max_cmd_size = dev->max_fib_size;
55 if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) {
56 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
57 } else {
58 dev->max_cmd_size = dev->max_fib_size;
61 dprintk((KERN_INFO
62 "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n",
63 &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue,
64 AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
65 dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev,
66 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr))
67 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
68 &dev->hw_fib_pa, GFP_KERNEL);
69 if (dev->hw_fib_va == NULL)
70 return -ENOMEM;
71 return 0;
74 /**
75 * aac_fib_map_free - free the fib objects
76 * @dev: Adapter to free
78 * Free the PCI mappings and the memory allocated for FIB blocks
79 * on this adapter.
82 void aac_fib_map_free(struct aac_dev *dev)
84 size_t alloc_size;
85 size_t fib_size;
86 int num_fibs;
88 if(!dev->hw_fib_va || !dev->max_cmd_size)
89 return;
91 num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
92 fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
93 alloc_size = fib_size * num_fibs + ALIGN32 - 1;
95 dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va,
96 dev->hw_fib_pa);
98 dev->hw_fib_va = NULL;
99 dev->hw_fib_pa = 0;
102 void aac_fib_vector_assign(struct aac_dev *dev)
104 u32 i = 0;
105 u32 vector = 1;
106 struct fib *fibptr = NULL;
108 for (i = 0, fibptr = &dev->fibs[i];
109 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
110 i++, fibptr++) {
111 if ((dev->max_msix == 1) ||
112 (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
113 - dev->vector_cap))) {
114 fibptr->vector_no = 0;
115 } else {
116 fibptr->vector_no = vector;
117 vector++;
118 if (vector == dev->max_msix)
119 vector = 1;
125 * aac_fib_setup - setup the fibs
126 * @dev: Adapter to set up
128 * Allocate the PCI space for the fibs, map it and then initialise the
129 * fib area, the unmapped fib data and also the free list
132 int aac_fib_setup(struct aac_dev * dev)
134 struct fib *fibptr;
135 struct hw_fib *hw_fib;
136 dma_addr_t hw_fib_pa;
137 int i;
138 u32 max_cmds;
140 while (((i = fib_map_alloc(dev)) == -ENOMEM)
141 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
142 max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1;
143 dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB;
144 if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3)
145 dev->init->r7.max_io_commands = cpu_to_le32(max_cmds);
147 if (i<0)
148 return -ENOMEM;
150 memset(dev->hw_fib_va, 0,
151 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) *
152 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
154 /* 32 byte alignment for PMC */
155 hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
156 hw_fib = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
157 (hw_fib_pa - dev->hw_fib_pa));
159 /* add Xport header */
160 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
161 sizeof(struct aac_fib_xporthdr));
162 hw_fib_pa += sizeof(struct aac_fib_xporthdr);
165 * Initialise the fibs
167 for (i = 0, fibptr = &dev->fibs[i];
168 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
169 i++, fibptr++)
171 fibptr->flags = 0;
172 fibptr->size = sizeof(struct fib);
173 fibptr->dev = dev;
174 fibptr->hw_fib_va = hw_fib;
175 fibptr->data = (void *) fibptr->hw_fib_va->data;
176 fibptr->next = fibptr+1; /* Forward chain the fibs */
177 init_completion(&fibptr->event_wait);
178 spin_lock_init(&fibptr->event_lock);
179 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
180 hw_fib->header.SenderSize =
181 cpu_to_le16(dev->max_fib_size); /* ?? max_cmd_size */
182 fibptr->hw_fib_pa = hw_fib_pa;
183 fibptr->hw_sgl_pa = hw_fib_pa +
184 offsetof(struct aac_hba_cmd_req, sge[2]);
186 * one element is for the ptr to the separate sg list,
187 * second element for 32 byte alignment
189 fibptr->hw_error_pa = hw_fib_pa +
190 offsetof(struct aac_native_hba, resp.resp_bytes[0]);
192 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
193 dev->max_cmd_size + sizeof(struct aac_fib_xporthdr));
194 hw_fib_pa = hw_fib_pa +
195 dev->max_cmd_size + sizeof(struct aac_fib_xporthdr);
199 *Assign vector numbers to fibs
201 aac_fib_vector_assign(dev);
204 * Add the fib chain to the free list
206 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
208 * Set 8 fibs aside for management tools
210 dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue];
211 return 0;
215 * aac_fib_alloc_tag-allocate a fib using tags
216 * @dev: Adapter to allocate the fib for
218 * Allocate a fib from the adapter fib pool using tags
219 * from the blk layer.
222 struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd)
224 struct fib *fibptr;
226 fibptr = &dev->fibs[scmd->request->tag];
228 * Null out fields that depend on being zero at the start of
229 * each I/O
231 fibptr->hw_fib_va->header.XferState = 0;
232 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
233 fibptr->callback_data = NULL;
234 fibptr->callback = NULL;
235 fibptr->flags = 0;
237 return fibptr;
241 * aac_fib_alloc - allocate a fib
242 * @dev: Adapter to allocate the fib for
244 * Allocate a fib from the adapter fib pool. If the pool is empty we
245 * return NULL.
248 struct fib *aac_fib_alloc(struct aac_dev *dev)
250 struct fib * fibptr;
251 unsigned long flags;
252 spin_lock_irqsave(&dev->fib_lock, flags);
253 fibptr = dev->free_fib;
254 if(!fibptr){
255 spin_unlock_irqrestore(&dev->fib_lock, flags);
256 return fibptr;
258 dev->free_fib = fibptr->next;
259 spin_unlock_irqrestore(&dev->fib_lock, flags);
261 * Set the proper node type code and node byte size
263 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
264 fibptr->size = sizeof(struct fib);
266 * Null out fields that depend on being zero at the start of
267 * each I/O
269 fibptr->hw_fib_va->header.XferState = 0;
270 fibptr->flags = 0;
271 fibptr->callback = NULL;
272 fibptr->callback_data = NULL;
274 return fibptr;
278 * aac_fib_free - free a fib
279 * @fibptr: fib to free up
281 * Frees up a fib and places it on the appropriate queue
284 void aac_fib_free(struct fib *fibptr)
286 unsigned long flags;
288 if (fibptr->done == 2)
289 return;
291 spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
292 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
293 aac_config.fib_timeouts++;
294 if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
295 fibptr->hw_fib_va->header.XferState != 0) {
296 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
297 (void*)fibptr,
298 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
300 fibptr->next = fibptr->dev->free_fib;
301 fibptr->dev->free_fib = fibptr;
302 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
306 * aac_fib_init - initialise a fib
307 * @fibptr: The fib to initialize
309 * Set up the generic fib fields ready for use
312 void aac_fib_init(struct fib *fibptr)
314 struct hw_fib *hw_fib = fibptr->hw_fib_va;
316 memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
317 hw_fib->header.StructType = FIB_MAGIC;
318 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
319 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
320 hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
321 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
325 * fib_deallocate - deallocate a fib
326 * @fibptr: fib to deallocate
328 * Will deallocate and return to the free pool the FIB pointed to by the
329 * caller.
332 static void fib_dealloc(struct fib * fibptr)
334 struct hw_fib *hw_fib = fibptr->hw_fib_va;
335 hw_fib->header.XferState = 0;
339 * Commuication primitives define and support the queuing method we use to
340 * support host to adapter commuication. All queue accesses happen through
341 * these routines and are the only routines which have a knowledge of the
342 * how these queues are implemented.
346 * aac_get_entry - get a queue entry
347 * @dev: Adapter
348 * @qid: Queue Number
349 * @entry: Entry return
350 * @index: Index return
351 * @nonotify: notification control
353 * With a priority the routine returns a queue entry if the queue has free entries. If the queue
354 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
355 * returned.
358 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
360 struct aac_queue * q;
361 unsigned long idx;
364 * All of the queues wrap when they reach the end, so we check
365 * to see if they have reached the end and if they have we just
366 * set the index back to zero. This is a wrap. You could or off
367 * the high bits in all updates but this is a bit faster I think.
370 q = &dev->queues->queue[qid];
372 idx = *index = le32_to_cpu(*(q->headers.producer));
373 /* Interrupt Moderation, only interrupt for first two entries */
374 if (idx != le32_to_cpu(*(q->headers.consumer))) {
375 if (--idx == 0) {
376 if (qid == AdapNormCmdQueue)
377 idx = ADAP_NORM_CMD_ENTRIES;
378 else
379 idx = ADAP_NORM_RESP_ENTRIES;
381 if (idx != le32_to_cpu(*(q->headers.consumer)))
382 *nonotify = 1;
385 if (qid == AdapNormCmdQueue) {
386 if (*index >= ADAP_NORM_CMD_ENTRIES)
387 *index = 0; /* Wrap to front of the Producer Queue. */
388 } else {
389 if (*index >= ADAP_NORM_RESP_ENTRIES)
390 *index = 0; /* Wrap to front of the Producer Queue. */
393 /* Queue is full */
394 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
395 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
396 qid, atomic_read(&q->numpending));
397 return 0;
398 } else {
399 *entry = q->base + *index;
400 return 1;
405 * aac_queue_get - get the next free QE
406 * @dev: Adapter
407 * @index: Returned index
408 * @priority: Priority of fib
409 * @fib: Fib to associate with the queue entry
410 * @wait: Wait if queue full
411 * @fibptr: Driver fib object to go with fib
412 * @nonotify: Don't notify the adapter
414 * Gets the next free QE off the requested priorty adapter command
415 * queue and associates the Fib with the QE. The QE represented by
416 * index is ready to insert on the queue when this routine returns
417 * success.
420 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
422 struct aac_entry * entry = NULL;
423 int map = 0;
425 if (qid == AdapNormCmdQueue) {
426 /* if no entries wait for some if caller wants to */
427 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
428 printk(KERN_ERR "GetEntries failed\n");
431 * Setup queue entry with a command, status and fib mapped
433 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
434 map = 1;
435 } else {
436 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
437 /* if no entries wait for some if caller wants to */
440 * Setup queue entry with command, status and fib mapped
442 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
443 entry->addr = hw_fib->header.SenderFibAddress;
444 /* Restore adapters pointer to the FIB */
445 hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */
446 map = 0;
449 * If MapFib is true than we need to map the Fib and put pointers
450 * in the queue entry.
452 if (map)
453 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
454 return 0;
458 * Define the highest level of host to adapter communication routines.
459 * These routines will support host to adapter FS commuication. These
460 * routines have no knowledge of the commuication method used. This level
461 * sends and receives FIBs. This level has no knowledge of how these FIBs
462 * get passed back and forth.
466 * aac_fib_send - send a fib to the adapter
467 * @command: Command to send
468 * @fibptr: The fib
469 * @size: Size of fib data area
470 * @priority: Priority of Fib
471 * @wait: Async/sync select
472 * @reply: True if a reply is wanted
473 * @callback: Called with reply
474 * @callback_data: Passed to callback
476 * Sends the requested FIB to the adapter and optionally will wait for a
477 * response FIB. If the caller does not wish to wait for a response than
478 * an event to wait on must be supplied. This event will be set when a
479 * response FIB is received from the adapter.
482 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
483 int priority, int wait, int reply, fib_callback callback,
484 void *callback_data)
486 struct aac_dev * dev = fibptr->dev;
487 struct hw_fib * hw_fib = fibptr->hw_fib_va;
488 unsigned long flags = 0;
489 unsigned long mflags = 0;
490 unsigned long sflags = 0;
492 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
493 return -EBUSY;
495 if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))
496 return -EINVAL;
499 * There are 5 cases with the wait and response requested flags.
500 * The only invalid cases are if the caller requests to wait and
501 * does not request a response and if the caller does not want a
502 * response and the Fib is not allocated from pool. If a response
503 * is not requested the Fib will just be deallocaed by the DPC
504 * routine when the response comes back from the adapter. No
505 * further processing will be done besides deleting the Fib. We
506 * will have a debug mode where the adapter can notify the host
507 * it had a problem and the host can log that fact.
509 fibptr->flags = 0;
510 if (wait && !reply) {
511 return -EINVAL;
512 } else if (!wait && reply) {
513 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
514 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
515 } else if (!wait && !reply) {
516 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
517 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
518 } else if (wait && reply) {
519 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
520 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
523 * Map the fib into 32bits by using the fib number
526 hw_fib->header.SenderFibAddress =
527 cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
529 /* use the same shifted value for handle to be compatible
530 * with the new native hba command handle
532 hw_fib->header.Handle =
533 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
536 * Set FIB state to indicate where it came from and if we want a
537 * response from the adapter. Also load the command from the
538 * caller.
540 * Map the hw fib pointer as a 32bit value
542 hw_fib->header.Command = cpu_to_le16(command);
543 hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
545 * Set the size of the Fib we want to send to the adapter
547 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
548 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
549 return -EMSGSIZE;
552 * Get a queue entry connect the FIB to it and send an notify
553 * the adapter a command is ready.
555 hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
558 * Fill in the Callback and CallbackContext if we are not
559 * going to wait.
561 if (!wait) {
562 fibptr->callback = callback;
563 fibptr->callback_data = callback_data;
564 fibptr->flags = FIB_CONTEXT_FLAG;
567 fibptr->done = 0;
569 FIB_COUNTER_INCREMENT(aac_config.FibsSent);
571 dprintk((KERN_DEBUG "Fib contents:.\n"));
572 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command)));
573 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
574 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState)));
575 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va));
576 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
577 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
579 if (!dev->queues)
580 return -EBUSY;
582 if (wait) {
584 spin_lock_irqsave(&dev->manage_lock, mflags);
585 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
586 printk(KERN_INFO "No management Fibs Available:%d\n",
587 dev->management_fib_count);
588 spin_unlock_irqrestore(&dev->manage_lock, mflags);
589 return -EBUSY;
591 dev->management_fib_count++;
592 spin_unlock_irqrestore(&dev->manage_lock, mflags);
593 spin_lock_irqsave(&fibptr->event_lock, flags);
596 if (dev->sync_mode) {
597 if (wait)
598 spin_unlock_irqrestore(&fibptr->event_lock, flags);
599 spin_lock_irqsave(&dev->sync_lock, sflags);
600 if (dev->sync_fib) {
601 list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
602 spin_unlock_irqrestore(&dev->sync_lock, sflags);
603 } else {
604 dev->sync_fib = fibptr;
605 spin_unlock_irqrestore(&dev->sync_lock, sflags);
606 aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
607 (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
608 NULL, NULL, NULL, NULL, NULL);
610 if (wait) {
611 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
612 if (wait_for_completion_interruptible(&fibptr->event_wait)) {
613 fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
614 return -EFAULT;
616 return 0;
618 return -EINPROGRESS;
621 if (aac_adapter_deliver(fibptr) != 0) {
622 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
623 if (wait) {
624 spin_unlock_irqrestore(&fibptr->event_lock, flags);
625 spin_lock_irqsave(&dev->manage_lock, mflags);
626 dev->management_fib_count--;
627 spin_unlock_irqrestore(&dev->manage_lock, mflags);
629 return -EBUSY;
634 * If the caller wanted us to wait for response wait now.
637 if (wait) {
638 spin_unlock_irqrestore(&fibptr->event_lock, flags);
639 /* Only set for first known interruptable command */
640 if (wait < 0) {
642 * *VERY* Dangerous to time out a command, the
643 * assumption is made that we have no hope of
644 * functioning because an interrupt routing or other
645 * hardware failure has occurred.
647 unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
648 while (!try_wait_for_completion(&fibptr->event_wait)) {
649 int blink;
650 if (time_is_before_eq_jiffies(timeout)) {
651 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
652 atomic_dec(&q->numpending);
653 if (wait == -1) {
654 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
655 "Usually a result of a PCI interrupt routing problem;\n"
656 "update mother board BIOS or consider utilizing one of\n"
657 "the SAFE mode kernel options (acpi, apic etc)\n");
659 return -ETIMEDOUT;
662 if (unlikely(aac_pci_offline(dev)))
663 return -EFAULT;
665 if ((blink = aac_adapter_check_health(dev)) > 0) {
666 if (wait == -1) {
667 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
668 "Usually a result of a serious unrecoverable hardware problem\n",
669 blink);
671 return -EFAULT;
674 * Allow other processes / CPUS to use core
676 schedule();
678 } else if (wait_for_completion_interruptible(&fibptr->event_wait)) {
679 /* Do nothing ... satisfy
680 * wait_for_completion_interruptible must_check */
683 spin_lock_irqsave(&fibptr->event_lock, flags);
684 if (fibptr->done == 0) {
685 fibptr->done = 2; /* Tell interrupt we aborted */
686 spin_unlock_irqrestore(&fibptr->event_lock, flags);
687 return -ERESTARTSYS;
689 spin_unlock_irqrestore(&fibptr->event_lock, flags);
690 BUG_ON(fibptr->done == 0);
692 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
693 return -ETIMEDOUT;
694 return 0;
697 * If the user does not want a response than return success otherwise
698 * return pending
700 if (reply)
701 return -EINPROGRESS;
702 else
703 return 0;
706 int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback,
707 void *callback_data)
709 struct aac_dev *dev = fibptr->dev;
710 int wait;
711 unsigned long flags = 0;
712 unsigned long mflags = 0;
713 struct aac_hba_cmd_req *hbacmd = (struct aac_hba_cmd_req *)
714 fibptr->hw_fib_va;
716 fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA);
717 if (callback) {
718 wait = 0;
719 fibptr->callback = callback;
720 fibptr->callback_data = callback_data;
721 } else
722 wait = 1;
725 hbacmd->iu_type = command;
727 if (command == HBA_IU_TYPE_SCSI_CMD_REQ) {
728 /* bit1 of request_id must be 0 */
729 hbacmd->request_id =
730 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
731 fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD;
732 } else
733 return -EINVAL;
736 if (wait) {
737 spin_lock_irqsave(&dev->manage_lock, mflags);
738 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
739 spin_unlock_irqrestore(&dev->manage_lock, mflags);
740 return -EBUSY;
742 dev->management_fib_count++;
743 spin_unlock_irqrestore(&dev->manage_lock, mflags);
744 spin_lock_irqsave(&fibptr->event_lock, flags);
747 if (aac_adapter_deliver(fibptr) != 0) {
748 if (wait) {
749 spin_unlock_irqrestore(&fibptr->event_lock, flags);
750 spin_lock_irqsave(&dev->manage_lock, mflags);
751 dev->management_fib_count--;
752 spin_unlock_irqrestore(&dev->manage_lock, mflags);
754 return -EBUSY;
756 FIB_COUNTER_INCREMENT(aac_config.NativeSent);
758 if (wait) {
760 spin_unlock_irqrestore(&fibptr->event_lock, flags);
762 if (unlikely(aac_pci_offline(dev)))
763 return -EFAULT;
765 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
766 if (wait_for_completion_interruptible(&fibptr->event_wait))
767 fibptr->done = 2;
768 fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT);
770 spin_lock_irqsave(&fibptr->event_lock, flags);
771 if ((fibptr->done == 0) || (fibptr->done == 2)) {
772 fibptr->done = 2; /* Tell interrupt we aborted */
773 spin_unlock_irqrestore(&fibptr->event_lock, flags);
774 return -ERESTARTSYS;
776 spin_unlock_irqrestore(&fibptr->event_lock, flags);
777 WARN_ON(fibptr->done == 0);
779 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
780 return -ETIMEDOUT;
782 return 0;
785 return -EINPROGRESS;
789 * aac_consumer_get - get the top of the queue
790 * @dev: Adapter
791 * @q: Queue
792 * @entry: Return entry
794 * Will return a pointer to the entry on the top of the queue requested that
795 * we are a consumer of, and return the address of the queue entry. It does
796 * not change the state of the queue.
799 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
801 u32 index;
802 int status;
803 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
804 status = 0;
805 } else {
807 * The consumer index must be wrapped if we have reached
808 * the end of the queue, else we just use the entry
809 * pointed to by the header index
811 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
812 index = 0;
813 else
814 index = le32_to_cpu(*q->headers.consumer);
815 *entry = q->base + index;
816 status = 1;
818 return(status);
822 * aac_consumer_free - free consumer entry
823 * @dev: Adapter
824 * @q: Queue
825 * @qid: Queue ident
827 * Frees up the current top of the queue we are a consumer of. If the
828 * queue was full notify the producer that the queue is no longer full.
831 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
833 int wasfull = 0;
834 u32 notify;
836 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
837 wasfull = 1;
839 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
840 *q->headers.consumer = cpu_to_le32(1);
841 else
842 le32_add_cpu(q->headers.consumer, 1);
844 if (wasfull) {
845 switch (qid) {
847 case HostNormCmdQueue:
848 notify = HostNormCmdNotFull;
849 break;
850 case HostNormRespQueue:
851 notify = HostNormRespNotFull;
852 break;
853 default:
854 BUG();
855 return;
857 aac_adapter_notify(dev, notify);
862 * aac_fib_adapter_complete - complete adapter issued fib
863 * @fibptr: fib to complete
864 * @size: size of fib
866 * Will do all necessary work to complete a FIB that was sent from
867 * the adapter.
870 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
872 struct hw_fib * hw_fib = fibptr->hw_fib_va;
873 struct aac_dev * dev = fibptr->dev;
874 struct aac_queue * q;
875 unsigned long nointr = 0;
876 unsigned long qflags;
878 if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
879 dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
880 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
881 kfree(hw_fib);
882 return 0;
885 if (hw_fib->header.XferState == 0) {
886 if (dev->comm_interface == AAC_COMM_MESSAGE)
887 kfree(hw_fib);
888 return 0;
891 * If we plan to do anything check the structure type first.
893 if (hw_fib->header.StructType != FIB_MAGIC &&
894 hw_fib->header.StructType != FIB_MAGIC2 &&
895 hw_fib->header.StructType != FIB_MAGIC2_64) {
896 if (dev->comm_interface == AAC_COMM_MESSAGE)
897 kfree(hw_fib);
898 return -EINVAL;
901 * This block handles the case where the adapter had sent us a
902 * command and we have finished processing the command. We
903 * call completeFib when we are done processing the command
904 * and want to send a response back to the adapter. This will
905 * send the completed cdb to the adapter.
907 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
908 if (dev->comm_interface == AAC_COMM_MESSAGE) {
909 kfree (hw_fib);
910 } else {
911 u32 index;
912 hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
913 if (size) {
914 size += sizeof(struct aac_fibhdr);
915 if (size > le16_to_cpu(hw_fib->header.SenderSize))
916 return -EMSGSIZE;
917 hw_fib->header.Size = cpu_to_le16(size);
919 q = &dev->queues->queue[AdapNormRespQueue];
920 spin_lock_irqsave(q->lock, qflags);
921 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
922 *(q->headers.producer) = cpu_to_le32(index + 1);
923 spin_unlock_irqrestore(q->lock, qflags);
924 if (!(nointr & (int)aac_config.irq_mod))
925 aac_adapter_notify(dev, AdapNormRespQueue);
927 } else {
928 printk(KERN_WARNING "aac_fib_adapter_complete: "
929 "Unknown xferstate detected.\n");
930 BUG();
932 return 0;
936 * aac_fib_complete - fib completion handler
937 * @fib: FIB to complete
939 * Will do all necessary work to complete a FIB.
942 int aac_fib_complete(struct fib *fibptr)
944 struct hw_fib * hw_fib = fibptr->hw_fib_va;
946 if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
947 fib_dealloc(fibptr);
948 return 0;
952 * Check for a fib which has already been completed or with a
953 * status wait timeout
956 if (hw_fib->header.XferState == 0 || fibptr->done == 2)
957 return 0;
959 * If we plan to do anything check the structure type first.
962 if (hw_fib->header.StructType != FIB_MAGIC &&
963 hw_fib->header.StructType != FIB_MAGIC2 &&
964 hw_fib->header.StructType != FIB_MAGIC2_64)
965 return -EINVAL;
967 * This block completes a cdb which orginated on the host and we
968 * just need to deallocate the cdb or reinit it. At this point the
969 * command is complete that we had sent to the adapter and this
970 * cdb could be reused.
973 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
974 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
976 fib_dealloc(fibptr);
978 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
981 * This handles the case when the host has aborted the I/O
982 * to the adapter because the adapter is not responding
984 fib_dealloc(fibptr);
985 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
986 fib_dealloc(fibptr);
987 } else {
988 BUG();
990 return 0;
994 * aac_printf - handle printf from firmware
995 * @dev: Adapter
996 * @val: Message info
998 * Print a message passed to us by the controller firmware on the
999 * Adaptec board
1002 void aac_printf(struct aac_dev *dev, u32 val)
1004 char *cp = dev->printfbuf;
1005 if (dev->printf_enabled)
1007 int length = val & 0xffff;
1008 int level = (val >> 16) & 0xffff;
1011 * The size of the printfbuf is set in port.c
1012 * There is no variable or define for it
1014 if (length > 255)
1015 length = 255;
1016 if (cp[length] != 0)
1017 cp[length] = 0;
1018 if (level == LOG_AAC_HIGH_ERROR)
1019 printk(KERN_WARNING "%s:%s", dev->name, cp);
1020 else
1021 printk(KERN_INFO "%s:%s", dev->name, cp);
1023 memset(cp, 0, 256);
1026 static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index)
1028 return le32_to_cpu(((__le32 *)aifcmd->data)[index]);
1032 static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd)
1034 switch (aac_aif_data(aifcmd, 1)) {
1035 case AifBuCacheDataLoss:
1036 if (aac_aif_data(aifcmd, 2))
1037 dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n",
1038 aac_aif_data(aifcmd, 2));
1039 else
1040 dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n");
1041 break;
1042 case AifBuCacheDataRecover:
1043 if (aac_aif_data(aifcmd, 2))
1044 dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n",
1045 aac_aif_data(aifcmd, 2));
1046 else
1047 dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n");
1048 break;
1053 * aac_handle_aif - Handle a message from the firmware
1054 * @dev: Which adapter this fib is from
1055 * @fibptr: Pointer to fibptr from adapter
1057 * This routine handles a driver notify fib from the adapter and
1058 * dispatches it to the appropriate routine for handling.
1061 #define AIF_SNIFF_TIMEOUT (500*HZ)
1062 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
1064 struct hw_fib * hw_fib = fibptr->hw_fib_va;
1065 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
1066 u32 channel, id, lun, container;
1067 struct scsi_device *device;
1068 enum {
1069 NOTHING,
1070 DELETE,
1071 ADD,
1072 CHANGE
1073 } device_config_needed = NOTHING;
1075 /* Sniff for container changes */
1077 if (!dev || !dev->fsa_dev)
1078 return;
1079 container = channel = id = lun = (u32)-1;
1082 * We have set this up to try and minimize the number of
1083 * re-configures that take place. As a result of this when
1084 * certain AIF's come in we will set a flag waiting for another
1085 * type of AIF before setting the re-config flag.
1087 switch (le32_to_cpu(aifcmd->command)) {
1088 case AifCmdDriverNotify:
1089 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1090 case AifRawDeviceRemove:
1091 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1092 if ((container >> 28)) {
1093 container = (u32)-1;
1094 break;
1096 channel = (container >> 24) & 0xF;
1097 if (channel >= dev->maximum_num_channels) {
1098 container = (u32)-1;
1099 break;
1101 id = container & 0xFFFF;
1102 if (id >= dev->maximum_num_physicals) {
1103 container = (u32)-1;
1104 break;
1106 lun = (container >> 16) & 0xFF;
1107 container = (u32)-1;
1108 channel = aac_phys_to_logical(channel);
1109 device_config_needed = DELETE;
1110 break;
1113 * Morph or Expand complete
1115 case AifDenMorphComplete:
1116 case AifDenVolumeExtendComplete:
1117 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1118 if (container >= dev->maximum_num_containers)
1119 break;
1122 * Find the scsi_device associated with the SCSI
1123 * address. Make sure we have the right array, and if
1124 * so set the flag to initiate a new re-config once we
1125 * see an AifEnConfigChange AIF come through.
1128 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
1129 device = scsi_device_lookup(dev->scsi_host_ptr,
1130 CONTAINER_TO_CHANNEL(container),
1131 CONTAINER_TO_ID(container),
1132 CONTAINER_TO_LUN(container));
1133 if (device) {
1134 dev->fsa_dev[container].config_needed = CHANGE;
1135 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
1136 dev->fsa_dev[container].config_waiting_stamp = jiffies;
1137 scsi_device_put(device);
1143 * If we are waiting on something and this happens to be
1144 * that thing then set the re-configure flag.
1146 if (container != (u32)-1) {
1147 if (container >= dev->maximum_num_containers)
1148 break;
1149 if ((dev->fsa_dev[container].config_waiting_on ==
1150 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1151 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1152 dev->fsa_dev[container].config_waiting_on = 0;
1153 } else for (container = 0;
1154 container < dev->maximum_num_containers; ++container) {
1155 if ((dev->fsa_dev[container].config_waiting_on ==
1156 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1157 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1158 dev->fsa_dev[container].config_waiting_on = 0;
1160 break;
1162 case AifCmdEventNotify:
1163 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1164 case AifEnBatteryEvent:
1165 dev->cache_protected =
1166 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
1167 break;
1169 * Add an Array.
1171 case AifEnAddContainer:
1172 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1173 if (container >= dev->maximum_num_containers)
1174 break;
1175 dev->fsa_dev[container].config_needed = ADD;
1176 dev->fsa_dev[container].config_waiting_on =
1177 AifEnConfigChange;
1178 dev->fsa_dev[container].config_waiting_stamp = jiffies;
1179 break;
1182 * Delete an Array.
1184 case AifEnDeleteContainer:
1185 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1186 if (container >= dev->maximum_num_containers)
1187 break;
1188 dev->fsa_dev[container].config_needed = DELETE;
1189 dev->fsa_dev[container].config_waiting_on =
1190 AifEnConfigChange;
1191 dev->fsa_dev[container].config_waiting_stamp = jiffies;
1192 break;
1195 * Container change detected. If we currently are not
1196 * waiting on something else, setup to wait on a Config Change.
1198 case AifEnContainerChange:
1199 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1200 if (container >= dev->maximum_num_containers)
1201 break;
1202 if (dev->fsa_dev[container].config_waiting_on &&
1203 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1204 break;
1205 dev->fsa_dev[container].config_needed = CHANGE;
1206 dev->fsa_dev[container].config_waiting_on =
1207 AifEnConfigChange;
1208 dev->fsa_dev[container].config_waiting_stamp = jiffies;
1209 break;
1211 case AifEnConfigChange:
1212 break;
1214 case AifEnAddJBOD:
1215 case AifEnDeleteJBOD:
1216 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1217 if ((container >> 28)) {
1218 container = (u32)-1;
1219 break;
1221 channel = (container >> 24) & 0xF;
1222 if (channel >= dev->maximum_num_channels) {
1223 container = (u32)-1;
1224 break;
1226 id = container & 0xFFFF;
1227 if (id >= dev->maximum_num_physicals) {
1228 container = (u32)-1;
1229 break;
1231 lun = (container >> 16) & 0xFF;
1232 container = (u32)-1;
1233 channel = aac_phys_to_logical(channel);
1234 device_config_needed =
1235 (((__le32 *)aifcmd->data)[0] ==
1236 cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1237 if (device_config_needed == ADD) {
1238 device = scsi_device_lookup(dev->scsi_host_ptr,
1239 channel,
1241 lun);
1242 if (device) {
1243 scsi_remove_device(device);
1244 scsi_device_put(device);
1247 break;
1249 case AifEnEnclosureManagement:
1251 * If in JBOD mode, automatic exposure of new
1252 * physical target to be suppressed until configured.
1254 if (dev->jbod)
1255 break;
1256 switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1257 case EM_DRIVE_INSERTION:
1258 case EM_DRIVE_REMOVAL:
1259 case EM_SES_DRIVE_INSERTION:
1260 case EM_SES_DRIVE_REMOVAL:
1261 container = le32_to_cpu(
1262 ((__le32 *)aifcmd->data)[2]);
1263 if ((container >> 28)) {
1264 container = (u32)-1;
1265 break;
1267 channel = (container >> 24) & 0xF;
1268 if (channel >= dev->maximum_num_channels) {
1269 container = (u32)-1;
1270 break;
1272 id = container & 0xFFFF;
1273 lun = (container >> 16) & 0xFF;
1274 container = (u32)-1;
1275 if (id >= dev->maximum_num_physicals) {
1276 /* legacy dev_t ? */
1277 if ((0x2000 <= id) || lun || channel ||
1278 ((channel = (id >> 7) & 0x3F) >=
1279 dev->maximum_num_channels))
1280 break;
1281 lun = (id >> 4) & 7;
1282 id &= 0xF;
1284 channel = aac_phys_to_logical(channel);
1285 device_config_needed =
1286 ((((__le32 *)aifcmd->data)[3]
1287 == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1288 (((__le32 *)aifcmd->data)[3]
1289 == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1290 ADD : DELETE;
1291 break;
1293 break;
1294 case AifBuManagerEvent:
1295 aac_handle_aif_bu(dev, aifcmd);
1296 break;
1300 * If we are waiting on something and this happens to be
1301 * that thing then set the re-configure flag.
1303 if (container != (u32)-1) {
1304 if (container >= dev->maximum_num_containers)
1305 break;
1306 if ((dev->fsa_dev[container].config_waiting_on ==
1307 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1308 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1309 dev->fsa_dev[container].config_waiting_on = 0;
1310 } else for (container = 0;
1311 container < dev->maximum_num_containers; ++container) {
1312 if ((dev->fsa_dev[container].config_waiting_on ==
1313 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1314 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1315 dev->fsa_dev[container].config_waiting_on = 0;
1317 break;
1319 case AifCmdJobProgress:
1321 * These are job progress AIF's. When a Clear is being
1322 * done on a container it is initially created then hidden from
1323 * the OS. When the clear completes we don't get a config
1324 * change so we monitor the job status complete on a clear then
1325 * wait for a container change.
1328 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1329 (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1330 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1331 for (container = 0;
1332 container < dev->maximum_num_containers;
1333 ++container) {
1335 * Stomp on all config sequencing for all
1336 * containers?
1338 dev->fsa_dev[container].config_waiting_on =
1339 AifEnContainerChange;
1340 dev->fsa_dev[container].config_needed = ADD;
1341 dev->fsa_dev[container].config_waiting_stamp =
1342 jiffies;
1345 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1346 ((__le32 *)aifcmd->data)[6] == 0 &&
1347 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1348 for (container = 0;
1349 container < dev->maximum_num_containers;
1350 ++container) {
1352 * Stomp on all config sequencing for all
1353 * containers?
1355 dev->fsa_dev[container].config_waiting_on =
1356 AifEnContainerChange;
1357 dev->fsa_dev[container].config_needed = DELETE;
1358 dev->fsa_dev[container].config_waiting_stamp =
1359 jiffies;
1362 break;
1365 container = 0;
1366 retry_next:
1367 if (device_config_needed == NOTHING) {
1368 for (; container < dev->maximum_num_containers; ++container) {
1369 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1370 (dev->fsa_dev[container].config_needed != NOTHING) &&
1371 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1372 device_config_needed =
1373 dev->fsa_dev[container].config_needed;
1374 dev->fsa_dev[container].config_needed = NOTHING;
1375 channel = CONTAINER_TO_CHANNEL(container);
1376 id = CONTAINER_TO_ID(container);
1377 lun = CONTAINER_TO_LUN(container);
1378 break;
1382 if (device_config_needed == NOTHING)
1383 return;
1386 * If we decided that a re-configuration needs to be done,
1387 * schedule it here on the way out the door, please close the door
1388 * behind you.
1392 * Find the scsi_device associated with the SCSI address,
1393 * and mark it as changed, invalidating the cache. This deals
1394 * with changes to existing device IDs.
1397 if (!dev || !dev->scsi_host_ptr)
1398 return;
1400 * force reload of disk info via aac_probe_container
1402 if ((channel == CONTAINER_CHANNEL) &&
1403 (device_config_needed != NOTHING)) {
1404 if (dev->fsa_dev[container].valid == 1)
1405 dev->fsa_dev[container].valid = 2;
1406 aac_probe_container(dev, container);
1408 device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1409 if (device) {
1410 switch (device_config_needed) {
1411 case DELETE:
1412 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1413 scsi_remove_device(device);
1414 #else
1415 if (scsi_device_online(device)) {
1416 scsi_device_set_state(device, SDEV_OFFLINE);
1417 sdev_printk(KERN_INFO, device,
1418 "Device offlined - %s\n",
1419 (channel == CONTAINER_CHANNEL) ?
1420 "array deleted" :
1421 "enclosure services event");
1423 #endif
1424 break;
1425 case ADD:
1426 if (!scsi_device_online(device)) {
1427 sdev_printk(KERN_INFO, device,
1428 "Device online - %s\n",
1429 (channel == CONTAINER_CHANNEL) ?
1430 "array created" :
1431 "enclosure services event");
1432 scsi_device_set_state(device, SDEV_RUNNING);
1434 /* FALLTHRU */
1435 case CHANGE:
1436 if ((channel == CONTAINER_CHANNEL)
1437 && (!dev->fsa_dev[container].valid)) {
1438 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1439 scsi_remove_device(device);
1440 #else
1441 if (!scsi_device_online(device))
1442 break;
1443 scsi_device_set_state(device, SDEV_OFFLINE);
1444 sdev_printk(KERN_INFO, device,
1445 "Device offlined - %s\n",
1446 "array failed");
1447 #endif
1448 break;
1450 scsi_rescan_device(&device->sdev_gendev);
1452 default:
1453 break;
1455 scsi_device_put(device);
1456 device_config_needed = NOTHING;
1458 if (device_config_needed == ADD)
1459 scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1460 if (channel == CONTAINER_CHANNEL) {
1461 container++;
1462 device_config_needed = NOTHING;
1463 goto retry_next;
1467 static void aac_schedule_bus_scan(struct aac_dev *aac)
1469 if (aac->sa_firmware)
1470 aac_schedule_safw_scan_worker(aac);
1471 else
1472 aac_schedule_src_reinit_aif_worker(aac);
1475 static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1477 int index, quirks;
1478 int retval;
1479 struct Scsi_Host *host = aac->scsi_host_ptr;
1480 int jafo = 0;
1481 int bled;
1482 u64 dmamask;
1483 int num_of_fibs = 0;
1486 * Assumptions:
1487 * - host is locked, unless called by the aacraid thread.
1488 * (a matter of convenience, due to legacy issues surrounding
1489 * eh_host_adapter_reset).
1490 * - in_reset is asserted, so no new i/o is getting to the
1491 * card.
1492 * - The card is dead, or will be very shortly ;-/ so no new
1493 * commands are completing in the interrupt service.
1495 aac_adapter_disable_int(aac);
1496 if (aac->thread && aac->thread->pid != current->pid) {
1497 spin_unlock_irq(host->host_lock);
1498 kthread_stop(aac->thread);
1499 aac->thread = NULL;
1500 jafo = 1;
1504 * If a positive health, means in a known DEAD PANIC
1505 * state and the adapter could be reset to `try again'.
1507 bled = forced ? 0 : aac_adapter_check_health(aac);
1508 retval = aac_adapter_restart(aac, bled, reset_type);
1510 if (retval)
1511 goto out;
1514 * Loop through the fibs, close the synchronous FIBS
1516 retval = 1;
1517 num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
1518 for (index = 0; index < num_of_fibs; index++) {
1520 struct fib *fib = &aac->fibs[index];
1521 __le32 XferState = fib->hw_fib_va->header.XferState;
1522 bool is_response_expected = false;
1524 if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1525 (XferState & cpu_to_le32(ResponseExpected)))
1526 is_response_expected = true;
1528 if (is_response_expected
1529 || fib->flags & FIB_CONTEXT_FLAG_WAIT) {
1530 unsigned long flagv;
1531 spin_lock_irqsave(&fib->event_lock, flagv);
1532 complete(&fib->event_wait);
1533 spin_unlock_irqrestore(&fib->event_lock, flagv);
1534 schedule();
1535 retval = 0;
1538 /* Give some extra time for ioctls to complete. */
1539 if (retval == 0)
1540 ssleep(2);
1541 index = aac->cardtype;
1544 * Re-initialize the adapter, first free resources, then carefully
1545 * apply the initialization sequence to come back again. Only risk
1546 * is a change in Firmware dropping cache, it is assumed the caller
1547 * will ensure that i/o is queisced and the card is flushed in that
1548 * case.
1550 aac_free_irq(aac);
1551 aac_fib_map_free(aac);
1552 dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr,
1553 aac->comm_phys);
1554 aac->comm_addr = NULL;
1555 aac->comm_phys = 0;
1556 kfree(aac->queues);
1557 aac->queues = NULL;
1558 kfree(aac->fsa_dev);
1559 aac->fsa_dev = NULL;
1561 dmamask = DMA_BIT_MASK(32);
1562 quirks = aac_get_driver_ident(index)->quirks;
1563 if (quirks & AAC_QUIRK_31BIT)
1564 retval = pci_set_dma_mask(aac->pdev, dmamask);
1565 else if (!(quirks & AAC_QUIRK_SRC))
1566 retval = pci_set_dma_mask(aac->pdev, dmamask);
1567 else
1568 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1570 if (quirks & AAC_QUIRK_31BIT && !retval) {
1571 dmamask = DMA_BIT_MASK(31);
1572 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1575 if (retval)
1576 goto out;
1578 if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1579 goto out;
1581 if (jafo) {
1582 aac->thread = kthread_run(aac_command_thread, aac, "%s",
1583 aac->name);
1584 if (IS_ERR(aac->thread)) {
1585 retval = PTR_ERR(aac->thread);
1586 aac->thread = NULL;
1587 goto out;
1590 (void)aac_get_adapter_info(aac);
1591 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1592 host->sg_tablesize = 34;
1593 host->max_sectors = (host->sg_tablesize * 8) + 112;
1595 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1596 host->sg_tablesize = 17;
1597 host->max_sectors = (host->sg_tablesize * 8) + 112;
1599 aac_get_config_status(aac, 1);
1600 aac_get_containers(aac);
1602 * This is where the assumption that the Adapter is quiesced
1603 * is important.
1605 scsi_host_complete_all_commands(host, DID_RESET);
1607 retval = 0;
1608 out:
1609 aac->in_reset = 0;
1612 * Issue bus rescan to catch any configuration that might have
1613 * occurred
1615 if (!retval && !is_kdump_kernel()) {
1616 dev_info(&aac->pdev->dev, "Scheduling bus rescan\n");
1617 aac_schedule_bus_scan(aac);
1620 if (jafo) {
1621 spin_lock_irq(host->host_lock);
1623 return retval;
1626 int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1628 unsigned long flagv = 0;
1629 int retval, unblock_retval;
1630 struct Scsi_Host *host = aac->scsi_host_ptr;
1631 int bled;
1633 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1634 return -EBUSY;
1636 if (aac->in_reset) {
1637 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1638 return -EBUSY;
1640 aac->in_reset = 1;
1641 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1644 * Wait for all commands to complete to this specific
1645 * target (block maximum 60 seconds). Although not necessary,
1646 * it does make us a good storage citizen.
1648 scsi_host_block(host);
1650 /* Quiesce build, flush cache, write through mode */
1651 if (forced < 2)
1652 aac_send_shutdown(aac);
1653 spin_lock_irqsave(host->host_lock, flagv);
1654 bled = forced ? forced :
1655 (aac_check_reset != 0 && aac_check_reset != 1);
1656 retval = _aac_reset_adapter(aac, bled, reset_type);
1657 spin_unlock_irqrestore(host->host_lock, flagv);
1659 unblock_retval = scsi_host_unblock(host, SDEV_RUNNING);
1660 if (!retval)
1661 retval = unblock_retval;
1662 if ((forced < 2) && (retval == -ENODEV)) {
1663 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1664 struct fib * fibctx = aac_fib_alloc(aac);
1665 if (fibctx) {
1666 struct aac_pause *cmd;
1667 int status;
1669 aac_fib_init(fibctx);
1671 cmd = (struct aac_pause *) fib_data(fibctx);
1673 cmd->command = cpu_to_le32(VM_ContainerConfig);
1674 cmd->type = cpu_to_le32(CT_PAUSE_IO);
1675 cmd->timeout = cpu_to_le32(1);
1676 cmd->min = cpu_to_le32(1);
1677 cmd->noRescan = cpu_to_le32(1);
1678 cmd->count = cpu_to_le32(0);
1680 status = aac_fib_send(ContainerCommand,
1681 fibctx,
1682 sizeof(struct aac_pause),
1683 FsaNormal,
1684 -2 /* Timeout silently */, 1,
1685 NULL, NULL);
1687 if (status >= 0)
1688 aac_fib_complete(fibctx);
1689 /* FIB should be freed only after getting
1690 * the response from the F/W */
1691 if (status != -ERESTARTSYS)
1692 aac_fib_free(fibctx);
1696 return retval;
1699 int aac_check_health(struct aac_dev * aac)
1701 int BlinkLED;
1702 unsigned long time_now, flagv = 0;
1703 struct list_head * entry;
1705 /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1706 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1707 return 0;
1709 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1710 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1711 return 0; /* OK */
1714 aac->in_reset = 1;
1716 /* Fake up an AIF:
1717 * aac_aifcmd.command = AifCmdEventNotify = 1
1718 * aac_aifcmd.seqnum = 0xFFFFFFFF
1719 * aac_aifcmd.data[0] = AifEnExpEvent = 23
1720 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1721 * aac.aifcmd.data[2] = AifHighPriority = 3
1722 * aac.aifcmd.data[3] = BlinkLED
1725 time_now = jiffies/HZ;
1726 entry = aac->fib_list.next;
1729 * For each Context that is on the
1730 * fibctxList, make a copy of the
1731 * fib, and then set the event to wake up the
1732 * thread that is waiting for it.
1734 while (entry != &aac->fib_list) {
1736 * Extract the fibctx
1738 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1739 struct hw_fib * hw_fib;
1740 struct fib * fib;
1742 * Check if the queue is getting
1743 * backlogged
1745 if (fibctx->count > 20) {
1747 * It's *not* jiffies folks,
1748 * but jiffies / HZ, so do not
1749 * panic ...
1751 u32 time_last = fibctx->jiffies;
1753 * Has it been > 2 minutes
1754 * since the last read off
1755 * the queue?
1757 if ((time_now - time_last) > aif_timeout) {
1758 entry = entry->next;
1759 aac_close_fib_context(aac, fibctx);
1760 continue;
1764 * Warning: no sleep allowed while
1765 * holding spinlock
1767 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1768 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1769 if (fib && hw_fib) {
1770 struct aac_aifcmd * aif;
1772 fib->hw_fib_va = hw_fib;
1773 fib->dev = aac;
1774 aac_fib_init(fib);
1775 fib->type = FSAFS_NTC_FIB_CONTEXT;
1776 fib->size = sizeof (struct fib);
1777 fib->data = hw_fib->data;
1778 aif = (struct aac_aifcmd *)hw_fib->data;
1779 aif->command = cpu_to_le32(AifCmdEventNotify);
1780 aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1781 ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1782 ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1783 ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1784 ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1787 * Put the FIB onto the
1788 * fibctx's fibs
1790 list_add_tail(&fib->fiblink, &fibctx->fib_list);
1791 fibctx->count++;
1793 * Set the event to wake up the
1794 * thread that will waiting.
1796 complete(&fibctx->completion);
1797 } else {
1798 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1799 kfree(fib);
1800 kfree(hw_fib);
1802 entry = entry->next;
1805 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1807 if (BlinkLED < 0) {
1808 printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n",
1809 aac->name, BlinkLED);
1810 goto out;
1813 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1815 out:
1816 aac->in_reset = 0;
1817 return BlinkLED;
1820 static inline int is_safw_raid_volume(struct aac_dev *aac, int bus, int target)
1822 return bus == CONTAINER_CHANNEL && target < aac->maximum_num_containers;
1825 static struct scsi_device *aac_lookup_safw_scsi_device(struct aac_dev *dev,
1826 int bus,
1827 int target)
1829 if (bus != CONTAINER_CHANNEL)
1830 bus = aac_phys_to_logical(bus);
1832 return scsi_device_lookup(dev->scsi_host_ptr, bus, target, 0);
1835 static int aac_add_safw_device(struct aac_dev *dev, int bus, int target)
1837 if (bus != CONTAINER_CHANNEL)
1838 bus = aac_phys_to_logical(bus);
1840 return scsi_add_device(dev->scsi_host_ptr, bus, target, 0);
1843 static void aac_put_safw_scsi_device(struct scsi_device *sdev)
1845 if (sdev)
1846 scsi_device_put(sdev);
1849 static void aac_remove_safw_device(struct aac_dev *dev, int bus, int target)
1851 struct scsi_device *sdev;
1853 sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1854 scsi_remove_device(sdev);
1855 aac_put_safw_scsi_device(sdev);
1858 static inline int aac_is_safw_scan_count_equal(struct aac_dev *dev,
1859 int bus, int target)
1861 return dev->hba_map[bus][target].scan_counter == dev->scan_counter;
1864 static int aac_is_safw_target_valid(struct aac_dev *dev, int bus, int target)
1866 if (is_safw_raid_volume(dev, bus, target))
1867 return dev->fsa_dev[target].valid;
1868 else
1869 return aac_is_safw_scan_count_equal(dev, bus, target);
1872 static int aac_is_safw_device_exposed(struct aac_dev *dev, int bus, int target)
1874 int is_exposed = 0;
1875 struct scsi_device *sdev;
1877 sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1878 if (sdev)
1879 is_exposed = 1;
1880 aac_put_safw_scsi_device(sdev);
1882 return is_exposed;
1885 static int aac_update_safw_host_devices(struct aac_dev *dev)
1887 int i;
1888 int bus;
1889 int target;
1890 int is_exposed = 0;
1891 int rcode = 0;
1893 rcode = aac_setup_safw_adapter(dev);
1894 if (unlikely(rcode < 0)) {
1895 goto out;
1898 for (i = 0; i < AAC_BUS_TARGET_LOOP; i++) {
1900 bus = get_bus_number(i);
1901 target = get_target_number(i);
1903 is_exposed = aac_is_safw_device_exposed(dev, bus, target);
1905 if (aac_is_safw_target_valid(dev, bus, target) && !is_exposed)
1906 aac_add_safw_device(dev, bus, target);
1907 else if (!aac_is_safw_target_valid(dev, bus, target) &&
1908 is_exposed)
1909 aac_remove_safw_device(dev, bus, target);
1911 out:
1912 return rcode;
1915 static int aac_scan_safw_host(struct aac_dev *dev)
1917 int rcode = 0;
1919 rcode = aac_update_safw_host_devices(dev);
1920 if (rcode)
1921 aac_schedule_safw_scan_worker(dev);
1923 return rcode;
1926 int aac_scan_host(struct aac_dev *dev)
1928 int rcode = 0;
1930 mutex_lock(&dev->scan_mutex);
1931 if (dev->sa_firmware)
1932 rcode = aac_scan_safw_host(dev);
1933 else
1934 scsi_scan_host(dev->scsi_host_ptr);
1935 mutex_unlock(&dev->scan_mutex);
1937 return rcode;
1940 void aac_src_reinit_aif_worker(struct work_struct *work)
1942 struct aac_dev *dev = container_of(to_delayed_work(work),
1943 struct aac_dev, src_reinit_aif_worker);
1945 wait_event(dev->scsi_host_ptr->host_wait,
1946 !scsi_host_in_recovery(dev->scsi_host_ptr));
1947 aac_reinit_aif(dev, dev->cardtype);
1951 * aac_handle_sa_aif Handle a message from the firmware
1952 * @dev: Which adapter this fib is from
1953 * @fibptr: Pointer to fibptr from adapter
1955 * This routine handles a driver notify fib from the adapter and
1956 * dispatches it to the appropriate routine for handling.
1958 static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr)
1960 int i;
1961 u32 events = 0;
1963 if (fibptr->hbacmd_size & SA_AIF_HOTPLUG)
1964 events = SA_AIF_HOTPLUG;
1965 else if (fibptr->hbacmd_size & SA_AIF_HARDWARE)
1966 events = SA_AIF_HARDWARE;
1967 else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE)
1968 events = SA_AIF_PDEV_CHANGE;
1969 else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE)
1970 events = SA_AIF_LDEV_CHANGE;
1971 else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE)
1972 events = SA_AIF_BPSTAT_CHANGE;
1973 else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE)
1974 events = SA_AIF_BPCFG_CHANGE;
1976 switch (events) {
1977 case SA_AIF_HOTPLUG:
1978 case SA_AIF_HARDWARE:
1979 case SA_AIF_PDEV_CHANGE:
1980 case SA_AIF_LDEV_CHANGE:
1981 case SA_AIF_BPCFG_CHANGE:
1983 aac_scan_host(dev);
1985 break;
1987 case SA_AIF_BPSTAT_CHANGE:
1988 /* currently do nothing */
1989 break;
1992 for (i = 1; i <= 10; ++i) {
1993 events = src_readl(dev, MUnit.IDR);
1994 if (events & (1<<23)) {
1995 pr_warn(" AIF not cleared by firmware - %d/%d)\n",
1996 i, 10);
1997 ssleep(1);
2002 static int get_fib_count(struct aac_dev *dev)
2004 unsigned int num = 0;
2005 struct list_head *entry;
2006 unsigned long flagv;
2009 * Warning: no sleep allowed while
2010 * holding spinlock. We take the estimate
2011 * and pre-allocate a set of fibs outside the
2012 * lock.
2014 num = le32_to_cpu(dev->init->r7.adapter_fibs_size)
2015 / sizeof(struct hw_fib); /* some extra */
2016 spin_lock_irqsave(&dev->fib_lock, flagv);
2017 entry = dev->fib_list.next;
2018 while (entry != &dev->fib_list) {
2019 entry = entry->next;
2020 ++num;
2022 spin_unlock_irqrestore(&dev->fib_lock, flagv);
2024 return num;
2027 static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool,
2028 struct fib **fib_pool,
2029 unsigned int num)
2031 struct hw_fib **hw_fib_p;
2032 struct fib **fib_p;
2034 hw_fib_p = hw_fib_pool;
2035 fib_p = fib_pool;
2036 while (hw_fib_p < &hw_fib_pool[num]) {
2037 *(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL);
2038 if (!(*(hw_fib_p++))) {
2039 --hw_fib_p;
2040 break;
2043 *(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL);
2044 if (!(*(fib_p++))) {
2045 kfree(*(--hw_fib_p));
2046 break;
2051 * Get the actual number of allocated fibs
2053 num = hw_fib_p - hw_fib_pool;
2054 return num;
2057 static void wakeup_fibctx_threads(struct aac_dev *dev,
2058 struct hw_fib **hw_fib_pool,
2059 struct fib **fib_pool,
2060 struct fib *fib,
2061 struct hw_fib *hw_fib,
2062 unsigned int num)
2064 unsigned long flagv;
2065 struct list_head *entry;
2066 struct hw_fib **hw_fib_p;
2067 struct fib **fib_p;
2068 u32 time_now, time_last;
2069 struct hw_fib *hw_newfib;
2070 struct fib *newfib;
2071 struct aac_fib_context *fibctx;
2073 time_now = jiffies/HZ;
2074 spin_lock_irqsave(&dev->fib_lock, flagv);
2075 entry = dev->fib_list.next;
2077 * For each Context that is on the
2078 * fibctxList, make a copy of the
2079 * fib, and then set the event to wake up the
2080 * thread that is waiting for it.
2083 hw_fib_p = hw_fib_pool;
2084 fib_p = fib_pool;
2085 while (entry != &dev->fib_list) {
2087 * Extract the fibctx
2089 fibctx = list_entry(entry, struct aac_fib_context,
2090 next);
2092 * Check if the queue is getting
2093 * backlogged
2095 if (fibctx->count > 20) {
2097 * It's *not* jiffies folks,
2098 * but jiffies / HZ so do not
2099 * panic ...
2101 time_last = fibctx->jiffies;
2103 * Has it been > 2 minutes
2104 * since the last read off
2105 * the queue?
2107 if ((time_now - time_last) > aif_timeout) {
2108 entry = entry->next;
2109 aac_close_fib_context(dev, fibctx);
2110 continue;
2114 * Warning: no sleep allowed while
2115 * holding spinlock
2117 if (hw_fib_p >= &hw_fib_pool[num]) {
2118 pr_warn("aifd: didn't allocate NewFib\n");
2119 entry = entry->next;
2120 continue;
2123 hw_newfib = *hw_fib_p;
2124 *(hw_fib_p++) = NULL;
2125 newfib = *fib_p;
2126 *(fib_p++) = NULL;
2128 * Make the copy of the FIB
2130 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
2131 memcpy(newfib, fib, sizeof(struct fib));
2132 newfib->hw_fib_va = hw_newfib;
2134 * Put the FIB onto the
2135 * fibctx's fibs
2137 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
2138 fibctx->count++;
2140 * Set the event to wake up the
2141 * thread that is waiting.
2143 complete(&fibctx->completion);
2145 entry = entry->next;
2148 * Set the status of this FIB
2150 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2151 aac_fib_adapter_complete(fib, sizeof(u32));
2152 spin_unlock_irqrestore(&dev->fib_lock, flagv);
2156 static void aac_process_events(struct aac_dev *dev)
2158 struct hw_fib *hw_fib;
2159 struct fib *fib;
2160 unsigned long flags;
2161 spinlock_t *t_lock;
2163 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2164 spin_lock_irqsave(t_lock, flags);
2166 while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
2167 struct list_head *entry;
2168 struct aac_aifcmd *aifcmd;
2169 unsigned int num;
2170 struct hw_fib **hw_fib_pool, **hw_fib_p;
2171 struct fib **fib_pool, **fib_p;
2173 set_current_state(TASK_RUNNING);
2175 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
2176 list_del(entry);
2178 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2179 spin_unlock_irqrestore(t_lock, flags);
2181 fib = list_entry(entry, struct fib, fiblink);
2182 hw_fib = fib->hw_fib_va;
2183 if (dev->sa_firmware) {
2184 /* Thor AIF */
2185 aac_handle_sa_aif(dev, fib);
2186 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2187 goto free_fib;
2190 * We will process the FIB here or pass it to a
2191 * worker thread that is TBD. We Really can't
2192 * do anything at this point since we don't have
2193 * anything defined for this thread to do.
2195 memset(fib, 0, sizeof(struct fib));
2196 fib->type = FSAFS_NTC_FIB_CONTEXT;
2197 fib->size = sizeof(struct fib);
2198 fib->hw_fib_va = hw_fib;
2199 fib->data = hw_fib->data;
2200 fib->dev = dev;
2202 * We only handle AifRequest fibs from the adapter.
2205 aifcmd = (struct aac_aifcmd *) hw_fib->data;
2206 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
2207 /* Handle Driver Notify Events */
2208 aac_handle_aif(dev, fib);
2209 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2210 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2211 goto free_fib;
2214 * The u32 here is important and intended. We are using
2215 * 32bit wrapping time to fit the adapter field
2218 /* Sniff events */
2219 if (aifcmd->command == cpu_to_le32(AifCmdEventNotify)
2220 || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) {
2221 aac_handle_aif(dev, fib);
2225 * get number of fibs to process
2227 num = get_fib_count(dev);
2228 if (!num)
2229 goto free_fib;
2231 hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *),
2232 GFP_KERNEL);
2233 if (!hw_fib_pool)
2234 goto free_fib;
2236 fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL);
2237 if (!fib_pool)
2238 goto free_hw_fib_pool;
2241 * Fill up fib pointer pools with actual fibs
2242 * and hw_fibs
2244 num = fillup_pools(dev, hw_fib_pool, fib_pool, num);
2245 if (!num)
2246 goto free_mem;
2249 * wakeup the thread that is waiting for
2250 * the response from fw (ioctl)
2252 wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool,
2253 fib, hw_fib, num);
2255 free_mem:
2256 /* Free up the remaining resources */
2257 hw_fib_p = hw_fib_pool;
2258 fib_p = fib_pool;
2259 while (hw_fib_p < &hw_fib_pool[num]) {
2260 kfree(*hw_fib_p);
2261 kfree(*fib_p);
2262 ++fib_p;
2263 ++hw_fib_p;
2265 kfree(fib_pool);
2266 free_hw_fib_pool:
2267 kfree(hw_fib_pool);
2268 free_fib:
2269 kfree(fib);
2270 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2271 spin_lock_irqsave(t_lock, flags);
2274 * There are no more AIF's
2276 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2277 spin_unlock_irqrestore(t_lock, flags);
2280 static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str,
2281 u32 datasize)
2283 struct aac_srb *srbcmd;
2284 struct sgmap64 *sg64;
2285 dma_addr_t addr;
2286 char *dma_buf;
2287 struct fib *fibptr;
2288 int ret = -ENOMEM;
2289 u32 vbus, vid;
2291 fibptr = aac_fib_alloc(dev);
2292 if (!fibptr)
2293 goto out;
2295 dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr,
2296 GFP_KERNEL);
2297 if (!dma_buf)
2298 goto fib_free_out;
2300 aac_fib_init(fibptr);
2302 vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus);
2303 vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target);
2305 srbcmd = (struct aac_srb *)fib_data(fibptr);
2307 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
2308 srbcmd->channel = cpu_to_le32(vbus);
2309 srbcmd->id = cpu_to_le32(vid);
2310 srbcmd->lun = 0;
2311 srbcmd->flags = cpu_to_le32(SRB_DataOut);
2312 srbcmd->timeout = cpu_to_le32(10);
2313 srbcmd->retry_limit = 0;
2314 srbcmd->cdb_size = cpu_to_le32(12);
2315 srbcmd->count = cpu_to_le32(datasize);
2317 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
2318 srbcmd->cdb[0] = BMIC_OUT;
2319 srbcmd->cdb[6] = WRITE_HOST_WELLNESS;
2320 memcpy(dma_buf, (char *)wellness_str, datasize);
2322 sg64 = (struct sgmap64 *)&srbcmd->sg;
2323 sg64->count = cpu_to_le32(1);
2324 sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16));
2325 sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2326 sg64->sg[0].count = cpu_to_le32(datasize);
2328 ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb),
2329 FsaNormal, 1, 1, NULL, NULL);
2331 dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr);
2334 * Do not set XferState to zero unless
2335 * receives a response from F/W
2337 if (ret >= 0)
2338 aac_fib_complete(fibptr);
2341 * FIB should be freed only after
2342 * getting the response from the F/W
2344 if (ret != -ERESTARTSYS)
2345 goto fib_free_out;
2347 out:
2348 return ret;
2349 fib_free_out:
2350 aac_fib_free(fibptr);
2351 goto out;
2354 int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now)
2356 struct tm cur_tm;
2357 char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ";
2358 u32 datasize = sizeof(wellness_str);
2359 time64_t local_time;
2360 int ret = -ENODEV;
2362 if (!dev->sa_firmware)
2363 goto out;
2365 local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60));
2366 time64_to_tm(local_time, 0, &cur_tm);
2367 cur_tm.tm_mon += 1;
2368 cur_tm.tm_year += 1900;
2369 wellness_str[8] = bin2bcd(cur_tm.tm_hour);
2370 wellness_str[9] = bin2bcd(cur_tm.tm_min);
2371 wellness_str[10] = bin2bcd(cur_tm.tm_sec);
2372 wellness_str[12] = bin2bcd(cur_tm.tm_mon);
2373 wellness_str[13] = bin2bcd(cur_tm.tm_mday);
2374 wellness_str[14] = bin2bcd(cur_tm.tm_year / 100);
2375 wellness_str[15] = bin2bcd(cur_tm.tm_year % 100);
2377 ret = aac_send_wellness_command(dev, wellness_str, datasize);
2379 out:
2380 return ret;
2383 int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now)
2385 int ret = -ENOMEM;
2386 struct fib *fibptr;
2387 __le32 *info;
2389 fibptr = aac_fib_alloc(dev);
2390 if (!fibptr)
2391 goto out;
2393 aac_fib_init(fibptr);
2394 info = (__le32 *)fib_data(fibptr);
2395 *info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */
2396 ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal,
2397 1, 1, NULL, NULL);
2400 * Do not set XferState to zero unless
2401 * receives a response from F/W
2403 if (ret >= 0)
2404 aac_fib_complete(fibptr);
2407 * FIB should be freed only after
2408 * getting the response from the F/W
2410 if (ret != -ERESTARTSYS)
2411 aac_fib_free(fibptr);
2413 out:
2414 return ret;
2418 * aac_command_thread - command processing thread
2419 * @dev: Adapter to monitor
2421 * Waits on the commandready event in it's queue. When the event gets set
2422 * it will pull FIBs off it's queue. It will continue to pull FIBs off
2423 * until the queue is empty. When the queue is empty it will wait for
2424 * more FIBs.
2427 int aac_command_thread(void *data)
2429 struct aac_dev *dev = data;
2430 DECLARE_WAITQUEUE(wait, current);
2431 unsigned long next_jiffies = jiffies + HZ;
2432 unsigned long next_check_jiffies = next_jiffies;
2433 long difference = HZ;
2436 * We can only have one thread per adapter for AIF's.
2438 if (dev->aif_thread)
2439 return -EINVAL;
2442 * Let the DPC know it has a place to send the AIF's to.
2444 dev->aif_thread = 1;
2445 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2446 set_current_state(TASK_INTERRUPTIBLE);
2447 dprintk ((KERN_INFO "aac_command_thread start\n"));
2448 while (1) {
2450 aac_process_events(dev);
2453 * Background activity
2455 if ((time_before(next_check_jiffies,next_jiffies))
2456 && ((difference = next_check_jiffies - jiffies) <= 0)) {
2457 next_check_jiffies = next_jiffies;
2458 if (aac_adapter_check_health(dev) == 0) {
2459 difference = ((long)(unsigned)check_interval)
2460 * HZ;
2461 next_check_jiffies = jiffies + difference;
2462 } else if (!dev->queues)
2463 break;
2465 if (!time_before(next_check_jiffies,next_jiffies)
2466 && ((difference = next_jiffies - jiffies) <= 0)) {
2467 struct timespec64 now;
2468 int ret;
2470 /* Don't even try to talk to adapter if its sick */
2471 ret = aac_adapter_check_health(dev);
2472 if (ret || !dev->queues)
2473 break;
2474 next_check_jiffies = jiffies
2475 + ((long)(unsigned)check_interval)
2476 * HZ;
2477 ktime_get_real_ts64(&now);
2479 /* Synchronize our watches */
2480 if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec)
2481 && (now.tv_nsec > (NSEC_PER_SEC / HZ)))
2482 difference = HZ + HZ / 2 -
2483 now.tv_nsec / (NSEC_PER_SEC / HZ);
2484 else {
2485 if (now.tv_nsec > NSEC_PER_SEC / 2)
2486 ++now.tv_sec;
2488 if (dev->sa_firmware)
2489 ret =
2490 aac_send_safw_hostttime(dev, &now);
2491 else
2492 ret = aac_send_hosttime(dev, &now);
2494 difference = (long)(unsigned)update_interval*HZ;
2496 next_jiffies = jiffies + difference;
2497 if (time_before(next_check_jiffies,next_jiffies))
2498 difference = next_check_jiffies - jiffies;
2500 if (difference <= 0)
2501 difference = 1;
2502 set_current_state(TASK_INTERRUPTIBLE);
2504 if (kthread_should_stop())
2505 break;
2508 * we probably want usleep_range() here instead of the
2509 * jiffies computation
2511 schedule_timeout(difference);
2513 if (kthread_should_stop())
2514 break;
2516 if (dev->queues)
2517 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2518 dev->aif_thread = 0;
2519 return 0;
2522 int aac_acquire_irq(struct aac_dev *dev)
2524 int i;
2525 int j;
2526 int ret = 0;
2528 if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
2529 for (i = 0; i < dev->max_msix; i++) {
2530 dev->aac_msix[i].vector_no = i;
2531 dev->aac_msix[i].dev = dev;
2532 if (request_irq(pci_irq_vector(dev->pdev, i),
2533 dev->a_ops.adapter_intr,
2534 0, "aacraid", &(dev->aac_msix[i]))) {
2535 printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
2536 dev->name, dev->id, i);
2537 for (j = 0 ; j < i ; j++)
2538 free_irq(pci_irq_vector(dev->pdev, j),
2539 &(dev->aac_msix[j]));
2540 pci_disable_msix(dev->pdev);
2541 ret = -1;
2544 } else {
2545 dev->aac_msix[0].vector_no = 0;
2546 dev->aac_msix[0].dev = dev;
2548 if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
2549 IRQF_SHARED, "aacraid",
2550 &(dev->aac_msix[0])) < 0) {
2551 if (dev->msi)
2552 pci_disable_msi(dev->pdev);
2553 printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
2554 dev->name, dev->id);
2555 ret = -1;
2558 return ret;
2561 void aac_free_irq(struct aac_dev *dev)
2563 int i;
2565 if (aac_is_src(dev)) {
2566 if (dev->max_msix > 1) {
2567 for (i = 0; i < dev->max_msix; i++)
2568 free_irq(pci_irq_vector(dev->pdev, i),
2569 &(dev->aac_msix[i]));
2570 } else {
2571 free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
2573 } else {
2574 free_irq(dev->pdev->irq, dev);
2576 if (dev->msi)
2577 pci_disable_msi(dev->pdev);
2578 else if (dev->max_msix > 1)
2579 pci_disable_msix(dev->pdev);