gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / scsi / aic7xxx / aic79xx_core.c
bloba336a458c9783cb507052debe9bbfeab9d69a994
1 /*
2 * Core routines and tables shareable across OS platforms.
4 * Copyright (c) 1994-2002 Justin T. Gibbs.
5 * Copyright (c) 2000-2003 Adaptec Inc.
6 * All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification.
14 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
15 * substantially similar to the "NO WARRANTY" disclaimer below
16 * ("Disclaimer") and any redistribution must be conditioned upon
17 * including a substantially similar Disclaimer requirement for further
18 * binary redistribution.
19 * 3. Neither the names of the above-listed copyright holders nor the names
20 * of any contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
23 * Alternatively, this software may be distributed under the terms of the
24 * GNU General Public License ("GPL") version 2 as published by the Free
25 * Software Foundation.
27 * NO WARRANTY
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
36 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
37 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGES.
40 * $Id: //depot/aic7xxx/aic7xxx/aic79xx.c#250 $
43 #include "aic79xx_osm.h"
44 #include "aic79xx_inline.h"
45 #include "aicasm/aicasm_insformat.h"
47 /***************************** Lookup Tables **********************************/
48 static const char *const ahd_chip_names[] =
50 "NONE",
51 "aic7901",
52 "aic7902",
53 "aic7901A"
57 * Hardware error codes.
59 struct ahd_hard_error_entry {
60 uint8_t errno;
61 const char *errmesg;
64 static const struct ahd_hard_error_entry ahd_hard_errors[] = {
65 { DSCTMOUT, "Discard Timer has timed out" },
66 { ILLOPCODE, "Illegal Opcode in sequencer program" },
67 { SQPARERR, "Sequencer Parity Error" },
68 { DPARERR, "Data-path Parity Error" },
69 { MPARERR, "Scratch or SCB Memory Parity Error" },
70 { CIOPARERR, "CIOBUS Parity Error" },
72 static const u_int num_errors = ARRAY_SIZE(ahd_hard_errors);
74 static const struct ahd_phase_table_entry ahd_phase_table[] =
76 { P_DATAOUT, MSG_NOOP, "in Data-out phase" },
77 { P_DATAIN, MSG_INITIATOR_DET_ERR, "in Data-in phase" },
78 { P_DATAOUT_DT, MSG_NOOP, "in DT Data-out phase" },
79 { P_DATAIN_DT, MSG_INITIATOR_DET_ERR, "in DT Data-in phase" },
80 { P_COMMAND, MSG_NOOP, "in Command phase" },
81 { P_MESGOUT, MSG_NOOP, "in Message-out phase" },
82 { P_STATUS, MSG_INITIATOR_DET_ERR, "in Status phase" },
83 { P_MESGIN, MSG_PARITY_ERROR, "in Message-in phase" },
84 { P_BUSFREE, MSG_NOOP, "while idle" },
85 { 0, MSG_NOOP, "in unknown phase" }
89 * In most cases we only wish to itterate over real phases, so
90 * exclude the last element from the count.
92 static const u_int num_phases = ARRAY_SIZE(ahd_phase_table) - 1;
94 /* Our Sequencer Program */
95 #include "aic79xx_seq.h"
97 /**************************** Function Declarations ***************************/
98 static void ahd_handle_transmission_error(struct ahd_softc *ahd);
99 static void ahd_handle_lqiphase_error(struct ahd_softc *ahd,
100 u_int lqistat1);
101 static int ahd_handle_pkt_busfree(struct ahd_softc *ahd,
102 u_int busfreetime);
103 static int ahd_handle_nonpkt_busfree(struct ahd_softc *ahd);
104 static void ahd_handle_proto_violation(struct ahd_softc *ahd);
105 static void ahd_force_renegotiation(struct ahd_softc *ahd,
106 struct ahd_devinfo *devinfo);
108 static struct ahd_tmode_tstate*
109 ahd_alloc_tstate(struct ahd_softc *ahd,
110 u_int scsi_id, char channel);
111 #ifdef AHD_TARGET_MODE
112 static void ahd_free_tstate(struct ahd_softc *ahd,
113 u_int scsi_id, char channel, int force);
114 #endif
115 static void ahd_devlimited_syncrate(struct ahd_softc *ahd,
116 struct ahd_initiator_tinfo *,
117 u_int *period,
118 u_int *ppr_options,
119 role_t role);
120 static void ahd_update_neg_table(struct ahd_softc *ahd,
121 struct ahd_devinfo *devinfo,
122 struct ahd_transinfo *tinfo);
123 static void ahd_update_pending_scbs(struct ahd_softc *ahd);
124 static void ahd_fetch_devinfo(struct ahd_softc *ahd,
125 struct ahd_devinfo *devinfo);
126 static void ahd_scb_devinfo(struct ahd_softc *ahd,
127 struct ahd_devinfo *devinfo,
128 struct scb *scb);
129 static void ahd_setup_initiator_msgout(struct ahd_softc *ahd,
130 struct ahd_devinfo *devinfo,
131 struct scb *scb);
132 static void ahd_build_transfer_msg(struct ahd_softc *ahd,
133 struct ahd_devinfo *devinfo);
134 static void ahd_construct_sdtr(struct ahd_softc *ahd,
135 struct ahd_devinfo *devinfo,
136 u_int period, u_int offset);
137 static void ahd_construct_wdtr(struct ahd_softc *ahd,
138 struct ahd_devinfo *devinfo,
139 u_int bus_width);
140 static void ahd_construct_ppr(struct ahd_softc *ahd,
141 struct ahd_devinfo *devinfo,
142 u_int period, u_int offset,
143 u_int bus_width, u_int ppr_options);
144 static void ahd_clear_msg_state(struct ahd_softc *ahd);
145 static void ahd_handle_message_phase(struct ahd_softc *ahd);
146 typedef enum {
147 AHDMSG_1B,
148 AHDMSG_2B,
149 AHDMSG_EXT
150 } ahd_msgtype;
151 static int ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type,
152 u_int msgval, int full);
153 static int ahd_parse_msg(struct ahd_softc *ahd,
154 struct ahd_devinfo *devinfo);
155 static int ahd_handle_msg_reject(struct ahd_softc *ahd,
156 struct ahd_devinfo *devinfo);
157 static void ahd_handle_ign_wide_residue(struct ahd_softc *ahd,
158 struct ahd_devinfo *devinfo);
159 static void ahd_reinitialize_dataptrs(struct ahd_softc *ahd);
160 static void ahd_handle_devreset(struct ahd_softc *ahd,
161 struct ahd_devinfo *devinfo,
162 u_int lun, cam_status status,
163 char *message, int verbose_level);
164 #ifdef AHD_TARGET_MODE
165 static void ahd_setup_target_msgin(struct ahd_softc *ahd,
166 struct ahd_devinfo *devinfo,
167 struct scb *scb);
168 #endif
170 static u_int ahd_sglist_size(struct ahd_softc *ahd);
171 static u_int ahd_sglist_allocsize(struct ahd_softc *ahd);
172 static bus_dmamap_callback_t
173 ahd_dmamap_cb;
174 static void ahd_initialize_hscbs(struct ahd_softc *ahd);
175 static int ahd_init_scbdata(struct ahd_softc *ahd);
176 static void ahd_fini_scbdata(struct ahd_softc *ahd);
177 static void ahd_setup_iocell_workaround(struct ahd_softc *ahd);
178 static void ahd_iocell_first_selection(struct ahd_softc *ahd);
179 static void ahd_add_col_list(struct ahd_softc *ahd,
180 struct scb *scb, u_int col_idx);
181 static void ahd_rem_col_list(struct ahd_softc *ahd,
182 struct scb *scb);
183 static void ahd_chip_init(struct ahd_softc *ahd);
184 static void ahd_qinfifo_requeue(struct ahd_softc *ahd,
185 struct scb *prev_scb,
186 struct scb *scb);
187 static int ahd_qinfifo_count(struct ahd_softc *ahd);
188 static int ahd_search_scb_list(struct ahd_softc *ahd, int target,
189 char channel, int lun, u_int tag,
190 role_t role, uint32_t status,
191 ahd_search_action action,
192 u_int *list_head, u_int *list_tail,
193 u_int tid);
194 static void ahd_stitch_tid_list(struct ahd_softc *ahd,
195 u_int tid_prev, u_int tid_cur,
196 u_int tid_next);
197 static void ahd_add_scb_to_free_list(struct ahd_softc *ahd,
198 u_int scbid);
199 static u_int ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid,
200 u_int prev, u_int next, u_int tid);
201 static void ahd_reset_current_bus(struct ahd_softc *ahd);
202 static void ahd_stat_timer(struct timer_list *t);
203 #ifdef AHD_DUMP_SEQ
204 static void ahd_dumpseq(struct ahd_softc *ahd);
205 #endif
206 static void ahd_loadseq(struct ahd_softc *ahd);
207 static int ahd_check_patch(struct ahd_softc *ahd,
208 const struct patch **start_patch,
209 u_int start_instr, u_int *skip_addr);
210 static u_int ahd_resolve_seqaddr(struct ahd_softc *ahd,
211 u_int address);
212 static void ahd_download_instr(struct ahd_softc *ahd,
213 u_int instrptr, uint8_t *dconsts);
214 static int ahd_probe_stack_size(struct ahd_softc *ahd);
215 static int ahd_scb_active_in_fifo(struct ahd_softc *ahd,
216 struct scb *scb);
217 static void ahd_run_data_fifo(struct ahd_softc *ahd,
218 struct scb *scb);
220 #ifdef AHD_TARGET_MODE
221 static void ahd_queue_lstate_event(struct ahd_softc *ahd,
222 struct ahd_tmode_lstate *lstate,
223 u_int initiator_id,
224 u_int event_type,
225 u_int event_arg);
226 static void ahd_update_scsiid(struct ahd_softc *ahd,
227 u_int targid_mask);
228 static int ahd_handle_target_cmd(struct ahd_softc *ahd,
229 struct target_cmd *cmd);
230 #endif
232 static int ahd_abort_scbs(struct ahd_softc *ahd, int target,
233 char channel, int lun, u_int tag,
234 role_t role, uint32_t status);
235 static void ahd_alloc_scbs(struct ahd_softc *ahd);
236 static void ahd_busy_tcl(struct ahd_softc *ahd, u_int tcl,
237 u_int scbid);
238 static void ahd_calc_residual(struct ahd_softc *ahd,
239 struct scb *scb);
240 static void ahd_clear_critical_section(struct ahd_softc *ahd);
241 static void ahd_clear_intstat(struct ahd_softc *ahd);
242 static void ahd_enable_coalescing(struct ahd_softc *ahd,
243 int enable);
244 static u_int ahd_find_busy_tcl(struct ahd_softc *ahd, u_int tcl);
245 static void ahd_freeze_devq(struct ahd_softc *ahd,
246 struct scb *scb);
247 static void ahd_handle_scb_status(struct ahd_softc *ahd,
248 struct scb *scb);
249 static const struct ahd_phase_table_entry* ahd_lookup_phase_entry(int phase);
250 static void ahd_shutdown(void *arg);
251 static void ahd_update_coalescing_values(struct ahd_softc *ahd,
252 u_int timer,
253 u_int maxcmds,
254 u_int mincmds);
255 static int ahd_verify_vpd_cksum(struct vpd_config *vpd);
256 static int ahd_wait_seeprom(struct ahd_softc *ahd);
257 static int ahd_match_scb(struct ahd_softc *ahd, struct scb *scb,
258 int target, char channel, int lun,
259 u_int tag, role_t role);
261 static void ahd_reset_cmds_pending(struct ahd_softc *ahd);
263 /*************************** Interrupt Services *******************************/
264 static void ahd_run_qoutfifo(struct ahd_softc *ahd);
265 #ifdef AHD_TARGET_MODE
266 static void ahd_run_tqinfifo(struct ahd_softc *ahd, int paused);
267 #endif
268 static void ahd_handle_hwerrint(struct ahd_softc *ahd);
269 static void ahd_handle_seqint(struct ahd_softc *ahd, u_int intstat);
270 static void ahd_handle_scsiint(struct ahd_softc *ahd,
271 u_int intstat);
273 /************************ Sequencer Execution Control *************************/
274 void
275 ahd_set_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
277 if (ahd->src_mode == src && ahd->dst_mode == dst)
278 return;
279 #ifdef AHD_DEBUG
280 if (ahd->src_mode == AHD_MODE_UNKNOWN
281 || ahd->dst_mode == AHD_MODE_UNKNOWN)
282 panic("Setting mode prior to saving it.\n");
283 if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
284 printk("%s: Setting mode 0x%x\n", ahd_name(ahd),
285 ahd_build_mode_state(ahd, src, dst));
286 #endif
287 ahd_outb(ahd, MODE_PTR, ahd_build_mode_state(ahd, src, dst));
288 ahd->src_mode = src;
289 ahd->dst_mode = dst;
292 static void
293 ahd_update_modes(struct ahd_softc *ahd)
295 ahd_mode_state mode_ptr;
296 ahd_mode src;
297 ahd_mode dst;
299 mode_ptr = ahd_inb(ahd, MODE_PTR);
300 #ifdef AHD_DEBUG
301 if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
302 printk("Reading mode 0x%x\n", mode_ptr);
303 #endif
304 ahd_extract_mode_state(ahd, mode_ptr, &src, &dst);
305 ahd_known_modes(ahd, src, dst);
308 static void
309 ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode,
310 ahd_mode dstmode, const char *file, int line)
312 #ifdef AHD_DEBUG
313 if ((srcmode & AHD_MK_MSK(ahd->src_mode)) == 0
314 || (dstmode & AHD_MK_MSK(ahd->dst_mode)) == 0) {
315 panic("%s:%s:%d: Mode assertion failed.\n",
316 ahd_name(ahd), file, line);
318 #endif
321 #define AHD_ASSERT_MODES(ahd, source, dest) \
322 ahd_assert_modes(ahd, source, dest, __FILE__, __LINE__);
324 ahd_mode_state
325 ahd_save_modes(struct ahd_softc *ahd)
327 if (ahd->src_mode == AHD_MODE_UNKNOWN
328 || ahd->dst_mode == AHD_MODE_UNKNOWN)
329 ahd_update_modes(ahd);
331 return (ahd_build_mode_state(ahd, ahd->src_mode, ahd->dst_mode));
334 void
335 ahd_restore_modes(struct ahd_softc *ahd, ahd_mode_state state)
337 ahd_mode src;
338 ahd_mode dst;
340 ahd_extract_mode_state(ahd, state, &src, &dst);
341 ahd_set_modes(ahd, src, dst);
345 * Determine whether the sequencer has halted code execution.
346 * Returns non-zero status if the sequencer is stopped.
349 ahd_is_paused(struct ahd_softc *ahd)
351 return ((ahd_inb(ahd, HCNTRL) & PAUSE) != 0);
355 * Request that the sequencer stop and wait, indefinitely, for it
356 * to stop. The sequencer will only acknowledge that it is paused
357 * once it has reached an instruction boundary and PAUSEDIS is
358 * cleared in the SEQCTL register. The sequencer may use PAUSEDIS
359 * for critical sections.
361 void
362 ahd_pause(struct ahd_softc *ahd)
364 ahd_outb(ahd, HCNTRL, ahd->pause);
367 * Since the sequencer can disable pausing in a critical section, we
368 * must loop until it actually stops.
370 while (ahd_is_paused(ahd) == 0)
375 * Allow the sequencer to continue program execution.
376 * We check here to ensure that no additional interrupt
377 * sources that would cause the sequencer to halt have been
378 * asserted. If, for example, a SCSI bus reset is detected
379 * while we are fielding a different, pausing, interrupt type,
380 * we don't want to release the sequencer before going back
381 * into our interrupt handler and dealing with this new
382 * condition.
384 void
385 ahd_unpause(struct ahd_softc *ahd)
388 * Automatically restore our modes to those saved
389 * prior to the first change of the mode.
391 if (ahd->saved_src_mode != AHD_MODE_UNKNOWN
392 && ahd->saved_dst_mode != AHD_MODE_UNKNOWN) {
393 if ((ahd->flags & AHD_UPDATE_PEND_CMDS) != 0)
394 ahd_reset_cmds_pending(ahd);
395 ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
398 if ((ahd_inb(ahd, INTSTAT) & ~CMDCMPLT) == 0)
399 ahd_outb(ahd, HCNTRL, ahd->unpause);
401 ahd_known_modes(ahd, AHD_MODE_UNKNOWN, AHD_MODE_UNKNOWN);
404 /*********************** Scatter Gather List Handling *************************/
405 void *
406 ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb,
407 void *sgptr, dma_addr_t addr, bus_size_t len, int last)
409 scb->sg_count++;
410 if (sizeof(dma_addr_t) > 4
411 && (ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
412 struct ahd_dma64_seg *sg;
414 sg = (struct ahd_dma64_seg *)sgptr;
415 sg->addr = ahd_htole64(addr);
416 sg->len = ahd_htole32(len | (last ? AHD_DMA_LAST_SEG : 0));
417 return (sg + 1);
418 } else {
419 struct ahd_dma_seg *sg;
421 sg = (struct ahd_dma_seg *)sgptr;
422 sg->addr = ahd_htole32(addr & 0xFFFFFFFF);
423 sg->len = ahd_htole32(len | ((addr >> 8) & 0x7F000000)
424 | (last ? AHD_DMA_LAST_SEG : 0));
425 return (sg + 1);
429 static void
430 ahd_setup_scb_common(struct ahd_softc *ahd, struct scb *scb)
432 /* XXX Handle target mode SCBs. */
433 scb->crc_retry_count = 0;
434 if ((scb->flags & SCB_PACKETIZED) != 0) {
435 /* XXX what about ACA?? It is type 4, but TAG_TYPE == 0x3. */
436 scb->hscb->task_attribute = scb->hscb->control & SCB_TAG_TYPE;
437 } else {
438 if (ahd_get_transfer_length(scb) & 0x01)
439 scb->hscb->task_attribute = SCB_XFERLEN_ODD;
440 else
441 scb->hscb->task_attribute = 0;
444 if (scb->hscb->cdb_len <= MAX_CDB_LEN_WITH_SENSE_ADDR
445 || (scb->hscb->cdb_len & SCB_CDB_LEN_PTR) != 0)
446 scb->hscb->shared_data.idata.cdb_plus_saddr.sense_addr =
447 ahd_htole32(scb->sense_busaddr);
450 static void
451 ahd_setup_data_scb(struct ahd_softc *ahd, struct scb *scb)
454 * Copy the first SG into the "current" data ponter area.
456 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
457 struct ahd_dma64_seg *sg;
459 sg = (struct ahd_dma64_seg *)scb->sg_list;
460 scb->hscb->dataptr = sg->addr;
461 scb->hscb->datacnt = sg->len;
462 } else {
463 struct ahd_dma_seg *sg;
464 uint32_t *dataptr_words;
466 sg = (struct ahd_dma_seg *)scb->sg_list;
467 dataptr_words = (uint32_t*)&scb->hscb->dataptr;
468 dataptr_words[0] = sg->addr;
469 dataptr_words[1] = 0;
470 if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) {
471 uint64_t high_addr;
473 high_addr = ahd_le32toh(sg->len) & 0x7F000000;
474 scb->hscb->dataptr |= ahd_htole64(high_addr << 8);
476 scb->hscb->datacnt = sg->len;
479 * Note where to find the SG entries in bus space.
480 * We also set the full residual flag which the
481 * sequencer will clear as soon as a data transfer
482 * occurs.
484 scb->hscb->sgptr = ahd_htole32(scb->sg_list_busaddr|SG_FULL_RESID);
487 static void
488 ahd_setup_noxfer_scb(struct ahd_softc *ahd, struct scb *scb)
490 scb->hscb->sgptr = ahd_htole32(SG_LIST_NULL);
491 scb->hscb->dataptr = 0;
492 scb->hscb->datacnt = 0;
495 /************************** Memory mapping routines ***************************/
496 static void *
497 ahd_sg_bus_to_virt(struct ahd_softc *ahd, struct scb *scb, uint32_t sg_busaddr)
499 dma_addr_t sg_offset;
501 /* sg_list_phys points to entry 1, not 0 */
502 sg_offset = sg_busaddr - (scb->sg_list_busaddr - ahd_sg_size(ahd));
503 return ((uint8_t *)scb->sg_list + sg_offset);
506 static uint32_t
507 ahd_sg_virt_to_bus(struct ahd_softc *ahd, struct scb *scb, void *sg)
509 dma_addr_t sg_offset;
511 /* sg_list_phys points to entry 1, not 0 */
512 sg_offset = ((uint8_t *)sg - (uint8_t *)scb->sg_list)
513 - ahd_sg_size(ahd);
515 return (scb->sg_list_busaddr + sg_offset);
518 static void
519 ahd_sync_scb(struct ahd_softc *ahd, struct scb *scb, int op)
521 ahd_dmamap_sync(ahd, ahd->scb_data.hscb_dmat,
522 scb->hscb_map->dmamap,
523 /*offset*/(uint8_t*)scb->hscb - scb->hscb_map->vaddr,
524 /*len*/sizeof(*scb->hscb), op);
527 void
528 ahd_sync_sglist(struct ahd_softc *ahd, struct scb *scb, int op)
530 if (scb->sg_count == 0)
531 return;
533 ahd_dmamap_sync(ahd, ahd->scb_data.sg_dmat,
534 scb->sg_map->dmamap,
535 /*offset*/scb->sg_list_busaddr - ahd_sg_size(ahd),
536 /*len*/ahd_sg_size(ahd) * scb->sg_count, op);
539 static void
540 ahd_sync_sense(struct ahd_softc *ahd, struct scb *scb, int op)
542 ahd_dmamap_sync(ahd, ahd->scb_data.sense_dmat,
543 scb->sense_map->dmamap,
544 /*offset*/scb->sense_busaddr,
545 /*len*/AHD_SENSE_BUFSIZE, op);
548 #ifdef AHD_TARGET_MODE
549 static uint32_t
550 ahd_targetcmd_offset(struct ahd_softc *ahd, u_int index)
552 return (((uint8_t *)&ahd->targetcmds[index])
553 - (uint8_t *)ahd->qoutfifo);
555 #endif
557 /*********************** Miscellaneous Support Functions ***********************/
559 * Return pointers to the transfer negotiation information
560 * for the specified our_id/remote_id pair.
562 struct ahd_initiator_tinfo *
563 ahd_fetch_transinfo(struct ahd_softc *ahd, char channel, u_int our_id,
564 u_int remote_id, struct ahd_tmode_tstate **tstate)
567 * Transfer data structures are stored from the perspective
568 * of the target role. Since the parameters for a connection
569 * in the initiator role to a given target are the same as
570 * when the roles are reversed, we pretend we are the target.
572 if (channel == 'B')
573 our_id += 8;
574 *tstate = ahd->enabled_targets[our_id];
575 return (&(*tstate)->transinfo[remote_id]);
578 uint16_t
579 ahd_inw(struct ahd_softc *ahd, u_int port)
582 * Read high byte first as some registers increment
583 * or have other side effects when the low byte is
584 * read.
586 uint16_t r = ahd_inb(ahd, port+1) << 8;
587 return r | ahd_inb(ahd, port);
590 void
591 ahd_outw(struct ahd_softc *ahd, u_int port, u_int value)
594 * Write low byte first to accommodate registers
595 * such as PRGMCNT where the order maters.
597 ahd_outb(ahd, port, value & 0xFF);
598 ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
601 uint32_t
602 ahd_inl(struct ahd_softc *ahd, u_int port)
604 return ((ahd_inb(ahd, port))
605 | (ahd_inb(ahd, port+1) << 8)
606 | (ahd_inb(ahd, port+2) << 16)
607 | (ahd_inb(ahd, port+3) << 24));
610 void
611 ahd_outl(struct ahd_softc *ahd, u_int port, uint32_t value)
613 ahd_outb(ahd, port, (value) & 0xFF);
614 ahd_outb(ahd, port+1, ((value) >> 8) & 0xFF);
615 ahd_outb(ahd, port+2, ((value) >> 16) & 0xFF);
616 ahd_outb(ahd, port+3, ((value) >> 24) & 0xFF);
619 uint64_t
620 ahd_inq(struct ahd_softc *ahd, u_int port)
622 return ((ahd_inb(ahd, port))
623 | (ahd_inb(ahd, port+1) << 8)
624 | (ahd_inb(ahd, port+2) << 16)
625 | (ahd_inb(ahd, port+3) << 24)
626 | (((uint64_t)ahd_inb(ahd, port+4)) << 32)
627 | (((uint64_t)ahd_inb(ahd, port+5)) << 40)
628 | (((uint64_t)ahd_inb(ahd, port+6)) << 48)
629 | (((uint64_t)ahd_inb(ahd, port+7)) << 56));
632 void
633 ahd_outq(struct ahd_softc *ahd, u_int port, uint64_t value)
635 ahd_outb(ahd, port, value & 0xFF);
636 ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
637 ahd_outb(ahd, port+2, (value >> 16) & 0xFF);
638 ahd_outb(ahd, port+3, (value >> 24) & 0xFF);
639 ahd_outb(ahd, port+4, (value >> 32) & 0xFF);
640 ahd_outb(ahd, port+5, (value >> 40) & 0xFF);
641 ahd_outb(ahd, port+6, (value >> 48) & 0xFF);
642 ahd_outb(ahd, port+7, (value >> 56) & 0xFF);
645 u_int
646 ahd_get_scbptr(struct ahd_softc *ahd)
648 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
649 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
650 return (ahd_inb(ahd, SCBPTR) | (ahd_inb(ahd, SCBPTR + 1) << 8));
653 void
654 ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr)
656 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
657 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
658 ahd_outb(ahd, SCBPTR, scbptr & 0xFF);
659 ahd_outb(ahd, SCBPTR+1, (scbptr >> 8) & 0xFF);
662 #if 0 /* unused */
663 static u_int
664 ahd_get_hnscb_qoff(struct ahd_softc *ahd)
666 return (ahd_inw_atomic(ahd, HNSCB_QOFF));
668 #endif
670 static void
671 ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value)
673 ahd_outw_atomic(ahd, HNSCB_QOFF, value);
676 #if 0 /* unused */
677 static u_int
678 ahd_get_hescb_qoff(struct ahd_softc *ahd)
680 return (ahd_inb(ahd, HESCB_QOFF));
682 #endif
684 static void
685 ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value)
687 ahd_outb(ahd, HESCB_QOFF, value);
690 static u_int
691 ahd_get_snscb_qoff(struct ahd_softc *ahd)
693 u_int oldvalue;
695 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
696 oldvalue = ahd_inw(ahd, SNSCB_QOFF);
697 ahd_outw(ahd, SNSCB_QOFF, oldvalue);
698 return (oldvalue);
701 static void
702 ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value)
704 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
705 ahd_outw(ahd, SNSCB_QOFF, value);
708 #if 0 /* unused */
709 static u_int
710 ahd_get_sescb_qoff(struct ahd_softc *ahd)
712 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
713 return (ahd_inb(ahd, SESCB_QOFF));
715 #endif
717 static void
718 ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value)
720 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
721 ahd_outb(ahd, SESCB_QOFF, value);
724 #if 0 /* unused */
725 static u_int
726 ahd_get_sdscb_qoff(struct ahd_softc *ahd)
728 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
729 return (ahd_inb(ahd, SDSCB_QOFF) | (ahd_inb(ahd, SDSCB_QOFF + 1) << 8));
731 #endif
733 static void
734 ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value)
736 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
737 ahd_outb(ahd, SDSCB_QOFF, value & 0xFF);
738 ahd_outb(ahd, SDSCB_QOFF+1, (value >> 8) & 0xFF);
741 u_int
742 ahd_inb_scbram(struct ahd_softc *ahd, u_int offset)
744 u_int value;
747 * Workaround PCI-X Rev A. hardware bug.
748 * After a host read of SCB memory, the chip
749 * may become confused into thinking prefetch
750 * was required. This starts the discard timer
751 * running and can cause an unexpected discard
752 * timer interrupt. The work around is to read
753 * a normal register prior to the exhaustion of
754 * the discard timer. The mode pointer register
755 * has no side effects and so serves well for
756 * this purpose.
758 * Razor #528
760 value = ahd_inb(ahd, offset);
761 if ((ahd->bugs & AHD_PCIX_SCBRAM_RD_BUG) != 0)
762 ahd_inb(ahd, MODE_PTR);
763 return (value);
766 u_int
767 ahd_inw_scbram(struct ahd_softc *ahd, u_int offset)
769 return (ahd_inb_scbram(ahd, offset)
770 | (ahd_inb_scbram(ahd, offset+1) << 8));
773 static uint32_t
774 ahd_inl_scbram(struct ahd_softc *ahd, u_int offset)
776 return (ahd_inw_scbram(ahd, offset)
777 | (ahd_inw_scbram(ahd, offset+2) << 16));
780 static uint64_t
781 ahd_inq_scbram(struct ahd_softc *ahd, u_int offset)
783 return (ahd_inl_scbram(ahd, offset)
784 | ((uint64_t)ahd_inl_scbram(ahd, offset+4)) << 32);
787 struct scb *
788 ahd_lookup_scb(struct ahd_softc *ahd, u_int tag)
790 struct scb* scb;
792 if (tag >= AHD_SCB_MAX)
793 return (NULL);
794 scb = ahd->scb_data.scbindex[tag];
795 if (scb != NULL)
796 ahd_sync_scb(ahd, scb,
797 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
798 return (scb);
801 static void
802 ahd_swap_with_next_hscb(struct ahd_softc *ahd, struct scb *scb)
804 struct hardware_scb *q_hscb;
805 struct map_node *q_hscb_map;
806 uint32_t saved_hscb_busaddr;
809 * Our queuing method is a bit tricky. The card
810 * knows in advance which HSCB (by address) to download,
811 * and we can't disappoint it. To achieve this, the next
812 * HSCB to download is saved off in ahd->next_queued_hscb.
813 * When we are called to queue "an arbitrary scb",
814 * we copy the contents of the incoming HSCB to the one
815 * the sequencer knows about, swap HSCB pointers and
816 * finally assign the SCB to the tag indexed location
817 * in the scb_array. This makes sure that we can still
818 * locate the correct SCB by SCB_TAG.
820 q_hscb = ahd->next_queued_hscb;
821 q_hscb_map = ahd->next_queued_hscb_map;
822 saved_hscb_busaddr = q_hscb->hscb_busaddr;
823 memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb));
824 q_hscb->hscb_busaddr = saved_hscb_busaddr;
825 q_hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
827 /* Now swap HSCB pointers. */
828 ahd->next_queued_hscb = scb->hscb;
829 ahd->next_queued_hscb_map = scb->hscb_map;
830 scb->hscb = q_hscb;
831 scb->hscb_map = q_hscb_map;
833 /* Now define the mapping from tag to SCB in the scbindex */
834 ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = scb;
838 * Tell the sequencer about a new transaction to execute.
840 void
841 ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb)
843 ahd_swap_with_next_hscb(ahd, scb);
845 if (SCBID_IS_NULL(SCB_GET_TAG(scb)))
846 panic("Attempt to queue invalid SCB tag %x\n",
847 SCB_GET_TAG(scb));
850 * Keep a history of SCBs we've downloaded in the qinfifo.
852 ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
853 ahd->qinfifonext++;
855 if (scb->sg_count != 0)
856 ahd_setup_data_scb(ahd, scb);
857 else
858 ahd_setup_noxfer_scb(ahd, scb);
859 ahd_setup_scb_common(ahd, scb);
862 * Make sure our data is consistent from the
863 * perspective of the adapter.
865 ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
867 #ifdef AHD_DEBUG
868 if ((ahd_debug & AHD_SHOW_QUEUE) != 0) {
869 uint64_t host_dataptr;
871 host_dataptr = ahd_le64toh(scb->hscb->dataptr);
872 printk("%s: Queueing SCB %d:0x%x bus addr 0x%x - 0x%x%x/0x%x\n",
873 ahd_name(ahd),
874 SCB_GET_TAG(scb), scb->hscb->scsiid,
875 ahd_le32toh(scb->hscb->hscb_busaddr),
876 (u_int)((host_dataptr >> 32) & 0xFFFFFFFF),
877 (u_int)(host_dataptr & 0xFFFFFFFF),
878 ahd_le32toh(scb->hscb->datacnt));
880 #endif
881 /* Tell the adapter about the newly queued SCB */
882 ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
885 /************************** Interrupt Processing ******************************/
886 static void
887 ahd_sync_qoutfifo(struct ahd_softc *ahd, int op)
889 ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
890 /*offset*/0,
891 /*len*/AHD_SCB_MAX * sizeof(struct ahd_completion), op);
894 static void
895 ahd_sync_tqinfifo(struct ahd_softc *ahd, int op)
897 #ifdef AHD_TARGET_MODE
898 if ((ahd->flags & AHD_TARGETROLE) != 0) {
899 ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
900 ahd->shared_data_map.dmamap,
901 ahd_targetcmd_offset(ahd, 0),
902 sizeof(struct target_cmd) * AHD_TMODE_CMDS,
903 op);
905 #endif
909 * See if the firmware has posted any completed commands
910 * into our in-core command complete fifos.
912 #define AHD_RUN_QOUTFIFO 0x1
913 #define AHD_RUN_TQINFIFO 0x2
914 static u_int
915 ahd_check_cmdcmpltqueues(struct ahd_softc *ahd)
917 u_int retval;
919 retval = 0;
920 ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
921 /*offset*/ahd->qoutfifonext * sizeof(*ahd->qoutfifo),
922 /*len*/sizeof(*ahd->qoutfifo), BUS_DMASYNC_POSTREAD);
923 if (ahd->qoutfifo[ahd->qoutfifonext].valid_tag
924 == ahd->qoutfifonext_valid_tag)
925 retval |= AHD_RUN_QOUTFIFO;
926 #ifdef AHD_TARGET_MODE
927 if ((ahd->flags & AHD_TARGETROLE) != 0
928 && (ahd->flags & AHD_TQINFIFO_BLOCKED) == 0) {
929 ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
930 ahd->shared_data_map.dmamap,
931 ahd_targetcmd_offset(ahd, ahd->tqinfifofnext),
932 /*len*/sizeof(struct target_cmd),
933 BUS_DMASYNC_POSTREAD);
934 if (ahd->targetcmds[ahd->tqinfifonext].cmd_valid != 0)
935 retval |= AHD_RUN_TQINFIFO;
937 #endif
938 return (retval);
942 * Catch an interrupt from the adapter
945 ahd_intr(struct ahd_softc *ahd)
947 u_int intstat;
949 if ((ahd->pause & INTEN) == 0) {
951 * Our interrupt is not enabled on the chip
952 * and may be disabled for re-entrancy reasons,
953 * so just return. This is likely just a shared
954 * interrupt.
956 return (0);
960 * Instead of directly reading the interrupt status register,
961 * infer the cause of the interrupt by checking our in-core
962 * completion queues. This avoids a costly PCI bus read in
963 * most cases.
965 if ((ahd->flags & AHD_ALL_INTERRUPTS) == 0
966 && (ahd_check_cmdcmpltqueues(ahd) != 0))
967 intstat = CMDCMPLT;
968 else
969 intstat = ahd_inb(ahd, INTSTAT);
971 if ((intstat & INT_PEND) == 0)
972 return (0);
974 if (intstat & CMDCMPLT) {
975 ahd_outb(ahd, CLRINT, CLRCMDINT);
978 * Ensure that the chip sees that we've cleared
979 * this interrupt before we walk the output fifo.
980 * Otherwise, we may, due to posted bus writes,
981 * clear the interrupt after we finish the scan,
982 * and after the sequencer has added new entries
983 * and asserted the interrupt again.
985 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
986 if (ahd_is_paused(ahd)) {
988 * Potentially lost SEQINT.
989 * If SEQINTCODE is non-zero,
990 * simulate the SEQINT.
992 if (ahd_inb(ahd, SEQINTCODE) != NO_SEQINT)
993 intstat |= SEQINT;
995 } else {
996 ahd_flush_device_writes(ahd);
998 ahd_run_qoutfifo(ahd);
999 ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket]++;
1000 ahd->cmdcmplt_total++;
1001 #ifdef AHD_TARGET_MODE
1002 if ((ahd->flags & AHD_TARGETROLE) != 0)
1003 ahd_run_tqinfifo(ahd, /*paused*/FALSE);
1004 #endif
1008 * Handle statuses that may invalidate our cached
1009 * copy of INTSTAT separately.
1011 if (intstat == 0xFF && (ahd->features & AHD_REMOVABLE) != 0) {
1012 /* Hot eject. Do nothing */
1013 } else if (intstat & HWERRINT) {
1014 ahd_handle_hwerrint(ahd);
1015 } else if ((intstat & (PCIINT|SPLTINT)) != 0) {
1016 ahd->bus_intr(ahd);
1017 } else {
1019 if ((intstat & SEQINT) != 0)
1020 ahd_handle_seqint(ahd, intstat);
1022 if ((intstat & SCSIINT) != 0)
1023 ahd_handle_scsiint(ahd, intstat);
1025 return (1);
1028 /******************************** Private Inlines *****************************/
1029 static inline void
1030 ahd_assert_atn(struct ahd_softc *ahd)
1032 ahd_outb(ahd, SCSISIGO, ATNO);
1036 * Determine if the current connection has a packetized
1037 * agreement. This does not necessarily mean that we
1038 * are currently in a packetized transfer. We could
1039 * just as easily be sending or receiving a message.
1041 static int
1042 ahd_currently_packetized(struct ahd_softc *ahd)
1044 ahd_mode_state saved_modes;
1045 int packetized;
1047 saved_modes = ahd_save_modes(ahd);
1048 if ((ahd->bugs & AHD_PKTIZED_STATUS_BUG) != 0) {
1050 * The packetized bit refers to the last
1051 * connection, not the current one. Check
1052 * for non-zero LQISTATE instead.
1054 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
1055 packetized = ahd_inb(ahd, LQISTATE) != 0;
1056 } else {
1057 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1058 packetized = ahd_inb(ahd, LQISTAT2) & PACKETIZED;
1060 ahd_restore_modes(ahd, saved_modes);
1061 return (packetized);
1064 static inline int
1065 ahd_set_active_fifo(struct ahd_softc *ahd)
1067 u_int active_fifo;
1069 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
1070 active_fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO;
1071 switch (active_fifo) {
1072 case 0:
1073 case 1:
1074 ahd_set_modes(ahd, active_fifo, active_fifo);
1075 return (1);
1076 default:
1077 return (0);
1081 static inline void
1082 ahd_unbusy_tcl(struct ahd_softc *ahd, u_int tcl)
1084 ahd_busy_tcl(ahd, tcl, SCB_LIST_NULL);
1088 * Determine whether the sequencer reported a residual
1089 * for this SCB/transaction.
1091 static inline void
1092 ahd_update_residual(struct ahd_softc *ahd, struct scb *scb)
1094 uint32_t sgptr;
1096 sgptr = ahd_le32toh(scb->hscb->sgptr);
1097 if ((sgptr & SG_STATUS_VALID) != 0)
1098 ahd_calc_residual(ahd, scb);
1101 static inline void
1102 ahd_complete_scb(struct ahd_softc *ahd, struct scb *scb)
1104 uint32_t sgptr;
1106 sgptr = ahd_le32toh(scb->hscb->sgptr);
1107 if ((sgptr & SG_STATUS_VALID) != 0)
1108 ahd_handle_scb_status(ahd, scb);
1109 else
1110 ahd_done(ahd, scb);
1114 /************************* Sequencer Execution Control ************************/
1116 * Restart the sequencer program from address zero
1118 static void
1119 ahd_restart(struct ahd_softc *ahd)
1122 ahd_pause(ahd);
1124 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1126 /* No more pending messages */
1127 ahd_clear_msg_state(ahd);
1128 ahd_outb(ahd, SCSISIGO, 0); /* De-assert BSY */
1129 ahd_outb(ahd, MSG_OUT, MSG_NOOP); /* No message to send */
1130 ahd_outb(ahd, SXFRCTL1, ahd_inb(ahd, SXFRCTL1) & ~BITBUCKET);
1131 ahd_outb(ahd, SEQINTCTL, 0);
1132 ahd_outb(ahd, LASTPHASE, P_BUSFREE);
1133 ahd_outb(ahd, SEQ_FLAGS, 0);
1134 ahd_outb(ahd, SAVED_SCSIID, 0xFF);
1135 ahd_outb(ahd, SAVED_LUN, 0xFF);
1138 * Ensure that the sequencer's idea of TQINPOS
1139 * matches our own. The sequencer increments TQINPOS
1140 * only after it sees a DMA complete and a reset could
1141 * occur before the increment leaving the kernel to believe
1142 * the command arrived but the sequencer to not.
1144 ahd_outb(ahd, TQINPOS, ahd->tqinfifonext);
1146 /* Always allow reselection */
1147 ahd_outb(ahd, SCSISEQ1,
1148 ahd_inb(ahd, SCSISEQ_TEMPLATE) & (ENSELI|ENRSELI|ENAUTOATNP));
1149 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
1152 * Clear any pending sequencer interrupt. It is no
1153 * longer relevant since we're resetting the Program
1154 * Counter.
1156 ahd_outb(ahd, CLRINT, CLRSEQINT);
1158 ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET);
1159 ahd_unpause(ahd);
1162 static void
1163 ahd_clear_fifo(struct ahd_softc *ahd, u_int fifo)
1165 ahd_mode_state saved_modes;
1167 #ifdef AHD_DEBUG
1168 if ((ahd_debug & AHD_SHOW_FIFOS) != 0)
1169 printk("%s: Clearing FIFO %d\n", ahd_name(ahd), fifo);
1170 #endif
1171 saved_modes = ahd_save_modes(ahd);
1172 ahd_set_modes(ahd, fifo, fifo);
1173 ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT);
1174 if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0)
1175 ahd_outb(ahd, CCSGCTL, CCSGRESET);
1176 ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
1177 ahd_outb(ahd, SG_STATE, 0);
1178 ahd_restore_modes(ahd, saved_modes);
1181 /************************* Input/Output Queues ********************************/
1183 * Flush and completed commands that are sitting in the command
1184 * complete queues down on the chip but have yet to be dma'ed back up.
1186 static void
1187 ahd_flush_qoutfifo(struct ahd_softc *ahd)
1189 struct scb *scb;
1190 ahd_mode_state saved_modes;
1191 u_int saved_scbptr;
1192 u_int ccscbctl;
1193 u_int scbid;
1194 u_int next_scbid;
1196 saved_modes = ahd_save_modes(ahd);
1199 * Flush the good status FIFO for completed packetized commands.
1201 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1202 saved_scbptr = ahd_get_scbptr(ahd);
1203 while ((ahd_inb(ahd, LQISTAT2) & LQIGSAVAIL) != 0) {
1204 u_int fifo_mode;
1205 u_int i;
1207 scbid = ahd_inw(ahd, GSFIFO);
1208 scb = ahd_lookup_scb(ahd, scbid);
1209 if (scb == NULL) {
1210 printk("%s: Warning - GSFIFO SCB %d invalid\n",
1211 ahd_name(ahd), scbid);
1212 continue;
1215 * Determine if this transaction is still active in
1216 * any FIFO. If it is, we must flush that FIFO to
1217 * the host before completing the command.
1219 fifo_mode = 0;
1220 rescan_fifos:
1221 for (i = 0; i < 2; i++) {
1222 /* Toggle to the other mode. */
1223 fifo_mode ^= 1;
1224 ahd_set_modes(ahd, fifo_mode, fifo_mode);
1226 if (ahd_scb_active_in_fifo(ahd, scb) == 0)
1227 continue;
1229 ahd_run_data_fifo(ahd, scb);
1232 * Running this FIFO may cause a CFG4DATA for
1233 * this same transaction to assert in the other
1234 * FIFO or a new snapshot SAVEPTRS interrupt
1235 * in this FIFO. Even running a FIFO may not
1236 * clear the transaction if we are still waiting
1237 * for data to drain to the host. We must loop
1238 * until the transaction is not active in either
1239 * FIFO just to be sure. Reset our loop counter
1240 * so we will visit both FIFOs again before
1241 * declaring this transaction finished. We
1242 * also delay a bit so that status has a chance
1243 * to change before we look at this FIFO again.
1245 ahd_delay(200);
1246 goto rescan_fifos;
1248 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1249 ahd_set_scbptr(ahd, scbid);
1250 if ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_LIST_NULL) == 0
1251 && ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_FULL_RESID) != 0
1252 || (ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR)
1253 & SG_LIST_NULL) != 0)) {
1254 u_int comp_head;
1257 * The transfer completed with a residual.
1258 * Place this SCB on the complete DMA list
1259 * so that we update our in-core copy of the
1260 * SCB before completing the command.
1262 ahd_outb(ahd, SCB_SCSI_STATUS, 0);
1263 ahd_outb(ahd, SCB_SGPTR,
1264 ahd_inb_scbram(ahd, SCB_SGPTR)
1265 | SG_STATUS_VALID);
1266 ahd_outw(ahd, SCB_TAG, scbid);
1267 ahd_outw(ahd, SCB_NEXT_COMPLETE, SCB_LIST_NULL);
1268 comp_head = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
1269 if (SCBID_IS_NULL(comp_head)) {
1270 ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, scbid);
1271 ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid);
1272 } else {
1273 u_int tail;
1275 tail = ahd_inw(ahd, COMPLETE_DMA_SCB_TAIL);
1276 ahd_set_scbptr(ahd, tail);
1277 ahd_outw(ahd, SCB_NEXT_COMPLETE, scbid);
1278 ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid);
1279 ahd_set_scbptr(ahd, scbid);
1281 } else
1282 ahd_complete_scb(ahd, scb);
1284 ahd_set_scbptr(ahd, saved_scbptr);
1287 * Setup for command channel portion of flush.
1289 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
1292 * Wait for any inprogress DMA to complete and clear DMA state
1293 * if this is for an SCB in the qinfifo.
1295 while (((ccscbctl = ahd_inb(ahd, CCSCBCTL)) & (CCARREN|CCSCBEN)) != 0) {
1297 if ((ccscbctl & (CCSCBDIR|CCARREN)) == (CCSCBDIR|CCARREN)) {
1298 if ((ccscbctl & ARRDONE) != 0)
1299 break;
1300 } else if ((ccscbctl & CCSCBDONE) != 0)
1301 break;
1302 ahd_delay(200);
1305 * We leave the sequencer to cleanup in the case of DMA's to
1306 * update the qoutfifo. In all other cases (DMA's to the
1307 * chip or a push of an SCB from the COMPLETE_DMA_SCB list),
1308 * we disable the DMA engine so that the sequencer will not
1309 * attempt to handle the DMA completion.
1311 if ((ccscbctl & CCSCBDIR) != 0 || (ccscbctl & ARRDONE) != 0)
1312 ahd_outb(ahd, CCSCBCTL, ccscbctl & ~(CCARREN|CCSCBEN));
1315 * Complete any SCBs that just finished
1316 * being DMA'ed into the qoutfifo.
1318 ahd_run_qoutfifo(ahd);
1320 saved_scbptr = ahd_get_scbptr(ahd);
1322 * Manually update/complete any completed SCBs that are waiting to be
1323 * DMA'ed back up to the host.
1325 scbid = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
1326 while (!SCBID_IS_NULL(scbid)) {
1327 uint8_t *hscb_ptr;
1328 u_int i;
1330 ahd_set_scbptr(ahd, scbid);
1331 next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
1332 scb = ahd_lookup_scb(ahd, scbid);
1333 if (scb == NULL) {
1334 printk("%s: Warning - DMA-up and complete "
1335 "SCB %d invalid\n", ahd_name(ahd), scbid);
1336 continue;
1338 hscb_ptr = (uint8_t *)scb->hscb;
1339 for (i = 0; i < sizeof(struct hardware_scb); i++)
1340 *hscb_ptr++ = ahd_inb_scbram(ahd, SCB_BASE + i);
1342 ahd_complete_scb(ahd, scb);
1343 scbid = next_scbid;
1345 ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL);
1346 ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL);
1348 scbid = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD);
1349 while (!SCBID_IS_NULL(scbid)) {
1351 ahd_set_scbptr(ahd, scbid);
1352 next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
1353 scb = ahd_lookup_scb(ahd, scbid);
1354 if (scb == NULL) {
1355 printk("%s: Warning - Complete Qfrz SCB %d invalid\n",
1356 ahd_name(ahd), scbid);
1357 continue;
1360 ahd_complete_scb(ahd, scb);
1361 scbid = next_scbid;
1363 ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL);
1365 scbid = ahd_inw(ahd, COMPLETE_SCB_HEAD);
1366 while (!SCBID_IS_NULL(scbid)) {
1368 ahd_set_scbptr(ahd, scbid);
1369 next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
1370 scb = ahd_lookup_scb(ahd, scbid);
1371 if (scb == NULL) {
1372 printk("%s: Warning - Complete SCB %d invalid\n",
1373 ahd_name(ahd), scbid);
1374 continue;
1377 ahd_complete_scb(ahd, scb);
1378 scbid = next_scbid;
1380 ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL);
1383 * Restore state.
1385 ahd_set_scbptr(ahd, saved_scbptr);
1386 ahd_restore_modes(ahd, saved_modes);
1387 ahd->flags |= AHD_UPDATE_PEND_CMDS;
1391 * Determine if an SCB for a packetized transaction
1392 * is active in a FIFO.
1394 static int
1395 ahd_scb_active_in_fifo(struct ahd_softc *ahd, struct scb *scb)
1399 * The FIFO is only active for our transaction if
1400 * the SCBPTR matches the SCB's ID and the firmware
1401 * has installed a handler for the FIFO or we have
1402 * a pending SAVEPTRS or CFG4DATA interrupt.
1404 if (ahd_get_scbptr(ahd) != SCB_GET_TAG(scb)
1405 || ((ahd_inb(ahd, LONGJMP_ADDR+1) & INVALID_ADDR) != 0
1406 && (ahd_inb(ahd, SEQINTSRC) & (CFG4DATA|SAVEPTRS)) == 0))
1407 return (0);
1409 return (1);
1413 * Run a data fifo to completion for a transaction we know
1414 * has completed across the SCSI bus (good status has been
1415 * received). We are already set to the correct FIFO mode
1416 * on entry to this routine.
1418 * This function attempts to operate exactly as the firmware
1419 * would when running this FIFO. Care must be taken to update
1420 * this routine any time the firmware's FIFO algorithm is
1421 * changed.
1423 static void
1424 ahd_run_data_fifo(struct ahd_softc *ahd, struct scb *scb)
1426 u_int seqintsrc;
1428 seqintsrc = ahd_inb(ahd, SEQINTSRC);
1429 if ((seqintsrc & CFG4DATA) != 0) {
1430 uint32_t datacnt;
1431 uint32_t sgptr;
1434 * Clear full residual flag.
1436 sgptr = ahd_inl_scbram(ahd, SCB_SGPTR) & ~SG_FULL_RESID;
1437 ahd_outb(ahd, SCB_SGPTR, sgptr);
1440 * Load datacnt and address.
1442 datacnt = ahd_inl_scbram(ahd, SCB_DATACNT);
1443 if ((datacnt & AHD_DMA_LAST_SEG) != 0) {
1444 sgptr |= LAST_SEG;
1445 ahd_outb(ahd, SG_STATE, 0);
1446 } else
1447 ahd_outb(ahd, SG_STATE, LOADING_NEEDED);
1448 ahd_outq(ahd, HADDR, ahd_inq_scbram(ahd, SCB_DATAPTR));
1449 ahd_outl(ahd, HCNT, datacnt & AHD_SG_LEN_MASK);
1450 ahd_outb(ahd, SG_CACHE_PRE, sgptr);
1451 ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN);
1454 * Initialize Residual Fields.
1456 ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, datacnt >> 24);
1457 ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr & SG_PTR_MASK);
1460 * Mark the SCB as having a FIFO in use.
1462 ahd_outb(ahd, SCB_FIFO_USE_COUNT,
1463 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) + 1);
1466 * Install a "fake" handler for this FIFO.
1468 ahd_outw(ahd, LONGJMP_ADDR, 0);
1471 * Notify the hardware that we have satisfied
1472 * this sequencer interrupt.
1474 ahd_outb(ahd, CLRSEQINTSRC, CLRCFG4DATA);
1475 } else if ((seqintsrc & SAVEPTRS) != 0) {
1476 uint32_t sgptr;
1477 uint32_t resid;
1479 if ((ahd_inb(ahd, LONGJMP_ADDR+1)&INVALID_ADDR) != 0) {
1481 * Snapshot Save Pointers. All that
1482 * is necessary to clear the snapshot
1483 * is a CLRCHN.
1485 goto clrchn;
1489 * Disable S/G fetch so the DMA engine
1490 * is available to future users.
1492 if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0)
1493 ahd_outb(ahd, CCSGCTL, 0);
1494 ahd_outb(ahd, SG_STATE, 0);
1497 * Flush the data FIFO. Strickly only
1498 * necessary for Rev A parts.
1500 ahd_outb(ahd, DFCNTRL, ahd_inb(ahd, DFCNTRL) | FIFOFLUSH);
1503 * Calculate residual.
1505 sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
1506 resid = ahd_inl(ahd, SHCNT);
1507 resid |= ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT+3) << 24;
1508 ahd_outl(ahd, SCB_RESIDUAL_DATACNT, resid);
1509 if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG) == 0) {
1511 * Must back up to the correct S/G element.
1512 * Typically this just means resetting our
1513 * low byte to the offset in the SG_CACHE,
1514 * but if we wrapped, we have to correct
1515 * the other bytes of the sgptr too.
1517 if ((ahd_inb(ahd, SG_CACHE_SHADOW) & 0x80) != 0
1518 && (sgptr & 0x80) == 0)
1519 sgptr -= 0x100;
1520 sgptr &= ~0xFF;
1521 sgptr |= ahd_inb(ahd, SG_CACHE_SHADOW)
1522 & SG_ADDR_MASK;
1523 ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
1524 ahd_outb(ahd, SCB_RESIDUAL_DATACNT + 3, 0);
1525 } else if ((resid & AHD_SG_LEN_MASK) == 0) {
1526 ahd_outb(ahd, SCB_RESIDUAL_SGPTR,
1527 sgptr | SG_LIST_NULL);
1530 * Save Pointers.
1532 ahd_outq(ahd, SCB_DATAPTR, ahd_inq(ahd, SHADDR));
1533 ahd_outl(ahd, SCB_DATACNT, resid);
1534 ahd_outl(ahd, SCB_SGPTR, sgptr);
1535 ahd_outb(ahd, CLRSEQINTSRC, CLRSAVEPTRS);
1536 ahd_outb(ahd, SEQIMODE,
1537 ahd_inb(ahd, SEQIMODE) | ENSAVEPTRS);
1539 * If the data is to the SCSI bus, we are
1540 * done, otherwise wait for FIFOEMP.
1542 if ((ahd_inb(ahd, DFCNTRL) & DIRECTION) != 0)
1543 goto clrchn;
1544 } else if ((ahd_inb(ahd, SG_STATE) & LOADING_NEEDED) != 0) {
1545 uint32_t sgptr;
1546 uint64_t data_addr;
1547 uint32_t data_len;
1548 u_int dfcntrl;
1551 * Disable S/G fetch so the DMA engine
1552 * is available to future users. We won't
1553 * be using the DMA engine to load segments.
1555 if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0) {
1556 ahd_outb(ahd, CCSGCTL, 0);
1557 ahd_outb(ahd, SG_STATE, LOADING_NEEDED);
1561 * Wait for the DMA engine to notice that the
1562 * host transfer is enabled and that there is
1563 * space in the S/G FIFO for new segments before
1564 * loading more segments.
1566 if ((ahd_inb(ahd, DFSTATUS) & PRELOAD_AVAIL) != 0
1567 && (ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0) {
1570 * Determine the offset of the next S/G
1571 * element to load.
1573 sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
1574 sgptr &= SG_PTR_MASK;
1575 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
1576 struct ahd_dma64_seg *sg;
1578 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
1579 data_addr = sg->addr;
1580 data_len = sg->len;
1581 sgptr += sizeof(*sg);
1582 } else {
1583 struct ahd_dma_seg *sg;
1585 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
1586 data_addr = sg->len & AHD_SG_HIGH_ADDR_MASK;
1587 data_addr <<= 8;
1588 data_addr |= sg->addr;
1589 data_len = sg->len;
1590 sgptr += sizeof(*sg);
1594 * Update residual information.
1596 ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, data_len >> 24);
1597 ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
1600 * Load the S/G.
1602 if (data_len & AHD_DMA_LAST_SEG) {
1603 sgptr |= LAST_SEG;
1604 ahd_outb(ahd, SG_STATE, 0);
1606 ahd_outq(ahd, HADDR, data_addr);
1607 ahd_outl(ahd, HCNT, data_len & AHD_SG_LEN_MASK);
1608 ahd_outb(ahd, SG_CACHE_PRE, sgptr & 0xFF);
1611 * Advertise the segment to the hardware.
1613 dfcntrl = ahd_inb(ahd, DFCNTRL)|PRELOADEN|HDMAEN;
1614 if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) {
1616 * Use SCSIENWRDIS so that SCSIEN
1617 * is never modified by this
1618 * operation.
1620 dfcntrl |= SCSIENWRDIS;
1622 ahd_outb(ahd, DFCNTRL, dfcntrl);
1624 } else if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG_DONE) != 0) {
1627 * Transfer completed to the end of SG list
1628 * and has flushed to the host.
1630 ahd_outb(ahd, SCB_SGPTR,
1631 ahd_inb_scbram(ahd, SCB_SGPTR) | SG_LIST_NULL);
1632 goto clrchn;
1633 } else if ((ahd_inb(ahd, DFSTATUS) & FIFOEMP) != 0) {
1634 clrchn:
1636 * Clear any handler for this FIFO, decrement
1637 * the FIFO use count for the SCB, and release
1638 * the FIFO.
1640 ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
1641 ahd_outb(ahd, SCB_FIFO_USE_COUNT,
1642 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) - 1);
1643 ahd_outb(ahd, DFFSXFRCTL, CLRCHN);
1648 * Look for entries in the QoutFIFO that have completed.
1649 * The valid_tag completion field indicates the validity
1650 * of the entry - the valid value toggles each time through
1651 * the queue. We use the sg_status field in the completion
1652 * entry to avoid referencing the hscb if the completion
1653 * occurred with no errors and no residual. sg_status is
1654 * a copy of the first byte (little endian) of the sgptr
1655 * hscb field.
1657 static void
1658 ahd_run_qoutfifo(struct ahd_softc *ahd)
1660 struct ahd_completion *completion;
1661 struct scb *scb;
1662 u_int scb_index;
1664 if ((ahd->flags & AHD_RUNNING_QOUTFIFO) != 0)
1665 panic("ahd_run_qoutfifo recursion");
1666 ahd->flags |= AHD_RUNNING_QOUTFIFO;
1667 ahd_sync_qoutfifo(ahd, BUS_DMASYNC_POSTREAD);
1668 for (;;) {
1669 completion = &ahd->qoutfifo[ahd->qoutfifonext];
1671 if (completion->valid_tag != ahd->qoutfifonext_valid_tag)
1672 break;
1674 scb_index = ahd_le16toh(completion->tag);
1675 scb = ahd_lookup_scb(ahd, scb_index);
1676 if (scb == NULL) {
1677 printk("%s: WARNING no command for scb %d "
1678 "(cmdcmplt)\nQOUTPOS = %d\n",
1679 ahd_name(ahd), scb_index,
1680 ahd->qoutfifonext);
1681 ahd_dump_card_state(ahd);
1682 } else if ((completion->sg_status & SG_STATUS_VALID) != 0) {
1683 ahd_handle_scb_status(ahd, scb);
1684 } else {
1685 ahd_done(ahd, scb);
1688 ahd->qoutfifonext = (ahd->qoutfifonext+1) & (AHD_QOUT_SIZE-1);
1689 if (ahd->qoutfifonext == 0)
1690 ahd->qoutfifonext_valid_tag ^= QOUTFIFO_ENTRY_VALID;
1692 ahd->flags &= ~AHD_RUNNING_QOUTFIFO;
1695 /************************* Interrupt Handling *********************************/
1696 static void
1697 ahd_handle_hwerrint(struct ahd_softc *ahd)
1700 * Some catastrophic hardware error has occurred.
1701 * Print it for the user and disable the controller.
1703 int i;
1704 int error;
1706 error = ahd_inb(ahd, ERROR);
1707 for (i = 0; i < num_errors; i++) {
1708 if ((error & ahd_hard_errors[i].errno) != 0)
1709 printk("%s: hwerrint, %s\n",
1710 ahd_name(ahd), ahd_hard_errors[i].errmesg);
1713 ahd_dump_card_state(ahd);
1714 panic("BRKADRINT");
1716 /* Tell everyone that this HBA is no longer available */
1717 ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS,
1718 CAM_LUN_WILDCARD, SCB_LIST_NULL, ROLE_UNKNOWN,
1719 CAM_NO_HBA);
1721 /* Tell the system that this controller has gone away. */
1722 ahd_free(ahd);
1725 #ifdef AHD_DEBUG
1726 static void
1727 ahd_dump_sglist(struct scb *scb)
1729 int i;
1731 if (scb->sg_count > 0) {
1732 if ((scb->ahd_softc->flags & AHD_64BIT_ADDRESSING) != 0) {
1733 struct ahd_dma64_seg *sg_list;
1735 sg_list = (struct ahd_dma64_seg*)scb->sg_list;
1736 for (i = 0; i < scb->sg_count; i++) {
1737 uint64_t addr;
1738 uint32_t len;
1740 addr = ahd_le64toh(sg_list[i].addr);
1741 len = ahd_le32toh(sg_list[i].len);
1742 printk("sg[%d] - Addr 0x%x%x : Length %d%s\n",
1744 (uint32_t)((addr >> 32) & 0xFFFFFFFF),
1745 (uint32_t)(addr & 0xFFFFFFFF),
1746 sg_list[i].len & AHD_SG_LEN_MASK,
1747 (sg_list[i].len & AHD_DMA_LAST_SEG)
1748 ? " Last" : "");
1750 } else {
1751 struct ahd_dma_seg *sg_list;
1753 sg_list = (struct ahd_dma_seg*)scb->sg_list;
1754 for (i = 0; i < scb->sg_count; i++) {
1755 uint32_t len;
1757 len = ahd_le32toh(sg_list[i].len);
1758 printk("sg[%d] - Addr 0x%x%x : Length %d%s\n",
1760 (len & AHD_SG_HIGH_ADDR_MASK) >> 24,
1761 ahd_le32toh(sg_list[i].addr),
1762 len & AHD_SG_LEN_MASK,
1763 len & AHD_DMA_LAST_SEG ? " Last" : "");
1768 #endif /* AHD_DEBUG */
1770 static void
1771 ahd_handle_seqint(struct ahd_softc *ahd, u_int intstat)
1773 u_int seqintcode;
1776 * Save the sequencer interrupt code and clear the SEQINT
1777 * bit. We will unpause the sequencer, if appropriate,
1778 * after servicing the request.
1780 seqintcode = ahd_inb(ahd, SEQINTCODE);
1781 ahd_outb(ahd, CLRINT, CLRSEQINT);
1782 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
1784 * Unpause the sequencer and let it clear
1785 * SEQINT by writing NO_SEQINT to it. This
1786 * will cause the sequencer to be paused again,
1787 * which is the expected state of this routine.
1789 ahd_unpause(ahd);
1790 while (!ahd_is_paused(ahd))
1792 ahd_outb(ahd, CLRINT, CLRSEQINT);
1794 ahd_update_modes(ahd);
1795 #ifdef AHD_DEBUG
1796 if ((ahd_debug & AHD_SHOW_MISC) != 0)
1797 printk("%s: Handle Seqint Called for code %d\n",
1798 ahd_name(ahd), seqintcode);
1799 #endif
1800 switch (seqintcode) {
1801 case ENTERING_NONPACK:
1803 struct scb *scb;
1804 u_int scbid;
1806 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
1807 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
1808 scbid = ahd_get_scbptr(ahd);
1809 scb = ahd_lookup_scb(ahd, scbid);
1810 if (scb == NULL) {
1812 * Somehow need to know if this
1813 * is from a selection or reselection.
1814 * From that, we can determine target
1815 * ID so we at least have an I_T nexus.
1817 } else {
1818 ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid);
1819 ahd_outb(ahd, SAVED_LUN, scb->hscb->lun);
1820 ahd_outb(ahd, SEQ_FLAGS, 0x0);
1822 if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0
1823 && (ahd_inb(ahd, SCSISIGO) & ATNO) != 0) {
1825 * Phase change after read stream with
1826 * CRC error with P0 asserted on last
1827 * packet.
1829 #ifdef AHD_DEBUG
1830 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1831 printk("%s: Assuming LQIPHASE_NLQ with "
1832 "P0 assertion\n", ahd_name(ahd));
1833 #endif
1835 #ifdef AHD_DEBUG
1836 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1837 printk("%s: Entering NONPACK\n", ahd_name(ahd));
1838 #endif
1839 break;
1841 case INVALID_SEQINT:
1842 printk("%s: Invalid Sequencer interrupt occurred, "
1843 "resetting channel.\n",
1844 ahd_name(ahd));
1845 #ifdef AHD_DEBUG
1846 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1847 ahd_dump_card_state(ahd);
1848 #endif
1849 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1850 break;
1851 case STATUS_OVERRUN:
1853 struct scb *scb;
1854 u_int scbid;
1856 scbid = ahd_get_scbptr(ahd);
1857 scb = ahd_lookup_scb(ahd, scbid);
1858 if (scb != NULL)
1859 ahd_print_path(ahd, scb);
1860 else
1861 printk("%s: ", ahd_name(ahd));
1862 printk("SCB %d Packetized Status Overrun", scbid);
1863 ahd_dump_card_state(ahd);
1864 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1865 break;
1867 case CFG4ISTAT_INTR:
1869 struct scb *scb;
1870 u_int scbid;
1872 scbid = ahd_get_scbptr(ahd);
1873 scb = ahd_lookup_scb(ahd, scbid);
1874 if (scb == NULL) {
1875 ahd_dump_card_state(ahd);
1876 printk("CFG4ISTAT: Free SCB %d referenced", scbid);
1877 panic("For safety");
1879 ahd_outq(ahd, HADDR, scb->sense_busaddr);
1880 ahd_outw(ahd, HCNT, AHD_SENSE_BUFSIZE);
1881 ahd_outb(ahd, HCNT + 2, 0);
1882 ahd_outb(ahd, SG_CACHE_PRE, SG_LAST_SEG);
1883 ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN);
1884 break;
1886 case ILLEGAL_PHASE:
1888 u_int bus_phase;
1890 bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
1891 printk("%s: ILLEGAL_PHASE 0x%x\n",
1892 ahd_name(ahd), bus_phase);
1894 switch (bus_phase) {
1895 case P_DATAOUT:
1896 case P_DATAIN:
1897 case P_DATAOUT_DT:
1898 case P_DATAIN_DT:
1899 case P_MESGOUT:
1900 case P_STATUS:
1901 case P_MESGIN:
1902 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1903 printk("%s: Issued Bus Reset.\n", ahd_name(ahd));
1904 break;
1905 case P_COMMAND:
1907 struct ahd_devinfo devinfo;
1908 struct scb *scb;
1909 struct ahd_initiator_tinfo *targ_info;
1910 struct ahd_tmode_tstate *tstate;
1911 struct ahd_transinfo *tinfo;
1912 u_int scbid;
1915 * If a target takes us into the command phase
1916 * assume that it has been externally reset and
1917 * has thus lost our previous packetized negotiation
1918 * agreement. Since we have not sent an identify
1919 * message and may not have fully qualified the
1920 * connection, we change our command to TUR, assert
1921 * ATN and ABORT the task when we go to message in
1922 * phase. The OSM will see the REQUEUE_REQUEST
1923 * status and retry the command.
1925 scbid = ahd_get_scbptr(ahd);
1926 scb = ahd_lookup_scb(ahd, scbid);
1927 if (scb == NULL) {
1928 printk("Invalid phase with no valid SCB. "
1929 "Resetting bus.\n");
1930 ahd_reset_channel(ahd, 'A',
1931 /*Initiate Reset*/TRUE);
1932 break;
1934 ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb),
1935 SCB_GET_TARGET(ahd, scb),
1936 SCB_GET_LUN(scb),
1937 SCB_GET_CHANNEL(ahd, scb),
1938 ROLE_INITIATOR);
1939 targ_info = ahd_fetch_transinfo(ahd,
1940 devinfo.channel,
1941 devinfo.our_scsiid,
1942 devinfo.target,
1943 &tstate);
1944 tinfo = &targ_info->curr;
1945 ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
1946 AHD_TRANS_ACTIVE, /*paused*/TRUE);
1947 ahd_set_syncrate(ahd, &devinfo, /*period*/0,
1948 /*offset*/0, /*ppr_options*/0,
1949 AHD_TRANS_ACTIVE, /*paused*/TRUE);
1950 /* Hand-craft TUR command */
1951 ahd_outb(ahd, SCB_CDB_STORE, 0);
1952 ahd_outb(ahd, SCB_CDB_STORE+1, 0);
1953 ahd_outb(ahd, SCB_CDB_STORE+2, 0);
1954 ahd_outb(ahd, SCB_CDB_STORE+3, 0);
1955 ahd_outb(ahd, SCB_CDB_STORE+4, 0);
1956 ahd_outb(ahd, SCB_CDB_STORE+5, 0);
1957 ahd_outb(ahd, SCB_CDB_LEN, 6);
1958 scb->hscb->control &= ~(TAG_ENB|SCB_TAG_TYPE);
1959 scb->hscb->control |= MK_MESSAGE;
1960 ahd_outb(ahd, SCB_CONTROL, scb->hscb->control);
1961 ahd_outb(ahd, MSG_OUT, HOST_MSG);
1962 ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid);
1964 * The lun is 0, regardless of the SCB's lun
1965 * as we have not sent an identify message.
1967 ahd_outb(ahd, SAVED_LUN, 0);
1968 ahd_outb(ahd, SEQ_FLAGS, 0);
1969 ahd_assert_atn(ahd);
1970 scb->flags &= ~SCB_PACKETIZED;
1971 scb->flags |= SCB_ABORT|SCB_EXTERNAL_RESET;
1972 ahd_freeze_devq(ahd, scb);
1973 ahd_set_transaction_status(scb, CAM_REQUEUE_REQ);
1974 ahd_freeze_scb(scb);
1976 /* Notify XPT */
1977 ahd_send_async(ahd, devinfo.channel, devinfo.target,
1978 CAM_LUN_WILDCARD, AC_SENT_BDR);
1981 * Allow the sequencer to continue with
1982 * non-pack processing.
1984 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1985 ahd_outb(ahd, CLRLQOINT1, CLRLQOPHACHGINPKT);
1986 if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) {
1987 ahd_outb(ahd, CLRLQOINT1, 0);
1989 #ifdef AHD_DEBUG
1990 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
1991 ahd_print_path(ahd, scb);
1992 printk("Unexpected command phase from "
1993 "packetized target\n");
1995 #endif
1996 break;
1999 break;
2001 case CFG4OVERRUN:
2003 struct scb *scb;
2004 u_int scb_index;
2006 #ifdef AHD_DEBUG
2007 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2008 printk("%s: CFG4OVERRUN mode = %x\n", ahd_name(ahd),
2009 ahd_inb(ahd, MODE_PTR));
2011 #endif
2012 scb_index = ahd_get_scbptr(ahd);
2013 scb = ahd_lookup_scb(ahd, scb_index);
2014 if (scb == NULL) {
2016 * Attempt to transfer to an SCB that is
2017 * not outstanding.
2019 ahd_assert_atn(ahd);
2020 ahd_outb(ahd, MSG_OUT, HOST_MSG);
2021 ahd->msgout_buf[0] = MSG_ABORT_TASK;
2022 ahd->msgout_len = 1;
2023 ahd->msgout_index = 0;
2024 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
2026 * Clear status received flag to prevent any
2027 * attempt to complete this bogus SCB.
2029 ahd_outb(ahd, SCB_CONTROL,
2030 ahd_inb_scbram(ahd, SCB_CONTROL)
2031 & ~STATUS_RCVD);
2033 break;
2035 case DUMP_CARD_STATE:
2037 ahd_dump_card_state(ahd);
2038 break;
2040 case PDATA_REINIT:
2042 #ifdef AHD_DEBUG
2043 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2044 printk("%s: PDATA_REINIT - DFCNTRL = 0x%x "
2045 "SG_CACHE_SHADOW = 0x%x\n",
2046 ahd_name(ahd), ahd_inb(ahd, DFCNTRL),
2047 ahd_inb(ahd, SG_CACHE_SHADOW));
2049 #endif
2050 ahd_reinitialize_dataptrs(ahd);
2051 break;
2053 case HOST_MSG_LOOP:
2055 struct ahd_devinfo devinfo;
2058 * The sequencer has encountered a message phase
2059 * that requires host assistance for completion.
2060 * While handling the message phase(s), we will be
2061 * notified by the sequencer after each byte is
2062 * transferred so we can track bus phase changes.
2064 * If this is the first time we've seen a HOST_MSG_LOOP
2065 * interrupt, initialize the state of the host message
2066 * loop.
2068 ahd_fetch_devinfo(ahd, &devinfo);
2069 if (ahd->msg_type == MSG_TYPE_NONE) {
2070 struct scb *scb;
2071 u_int scb_index;
2072 u_int bus_phase;
2074 bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
2075 if (bus_phase != P_MESGIN
2076 && bus_phase != P_MESGOUT) {
2077 printk("ahd_intr: HOST_MSG_LOOP bad "
2078 "phase 0x%x\n", bus_phase);
2080 * Probably transitioned to bus free before
2081 * we got here. Just punt the message.
2083 ahd_dump_card_state(ahd);
2084 ahd_clear_intstat(ahd);
2085 ahd_restart(ahd);
2086 return;
2089 scb_index = ahd_get_scbptr(ahd);
2090 scb = ahd_lookup_scb(ahd, scb_index);
2091 if (devinfo.role == ROLE_INITIATOR) {
2092 if (bus_phase == P_MESGOUT)
2093 ahd_setup_initiator_msgout(ahd,
2094 &devinfo,
2095 scb);
2096 else {
2097 ahd->msg_type =
2098 MSG_TYPE_INITIATOR_MSGIN;
2099 ahd->msgin_index = 0;
2102 #ifdef AHD_TARGET_MODE
2103 else {
2104 if (bus_phase == P_MESGOUT) {
2105 ahd->msg_type =
2106 MSG_TYPE_TARGET_MSGOUT;
2107 ahd->msgin_index = 0;
2109 else
2110 ahd_setup_target_msgin(ahd,
2111 &devinfo,
2112 scb);
2114 #endif
2117 ahd_handle_message_phase(ahd);
2118 break;
2120 case NO_MATCH:
2122 /* Ensure we don't leave the selection hardware on */
2123 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
2124 ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
2126 printk("%s:%c:%d: no active SCB for reconnecting "
2127 "target - issuing BUS DEVICE RESET\n",
2128 ahd_name(ahd), 'A', ahd_inb(ahd, SELID) >> 4);
2129 printk("SAVED_SCSIID == 0x%x, SAVED_LUN == 0x%x, "
2130 "REG0 == 0x%x ACCUM = 0x%x\n",
2131 ahd_inb(ahd, SAVED_SCSIID), ahd_inb(ahd, SAVED_LUN),
2132 ahd_inw(ahd, REG0), ahd_inb(ahd, ACCUM));
2133 printk("SEQ_FLAGS == 0x%x, SCBPTR == 0x%x, BTT == 0x%x, "
2134 "SINDEX == 0x%x\n",
2135 ahd_inb(ahd, SEQ_FLAGS), ahd_get_scbptr(ahd),
2136 ahd_find_busy_tcl(ahd,
2137 BUILD_TCL(ahd_inb(ahd, SAVED_SCSIID),
2138 ahd_inb(ahd, SAVED_LUN))),
2139 ahd_inw(ahd, SINDEX));
2140 printk("SELID == 0x%x, SCB_SCSIID == 0x%x, SCB_LUN == 0x%x, "
2141 "SCB_CONTROL == 0x%x\n",
2142 ahd_inb(ahd, SELID), ahd_inb_scbram(ahd, SCB_SCSIID),
2143 ahd_inb_scbram(ahd, SCB_LUN),
2144 ahd_inb_scbram(ahd, SCB_CONTROL));
2145 printk("SCSIBUS[0] == 0x%x, SCSISIGI == 0x%x\n",
2146 ahd_inb(ahd, SCSIBUS), ahd_inb(ahd, SCSISIGI));
2147 printk("SXFRCTL0 == 0x%x\n", ahd_inb(ahd, SXFRCTL0));
2148 printk("SEQCTL0 == 0x%x\n", ahd_inb(ahd, SEQCTL0));
2149 ahd_dump_card_state(ahd);
2150 ahd->msgout_buf[0] = MSG_BUS_DEV_RESET;
2151 ahd->msgout_len = 1;
2152 ahd->msgout_index = 0;
2153 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
2154 ahd_outb(ahd, MSG_OUT, HOST_MSG);
2155 ahd_assert_atn(ahd);
2156 break;
2158 case PROTO_VIOLATION:
2160 ahd_handle_proto_violation(ahd);
2161 break;
2163 case IGN_WIDE_RES:
2165 struct ahd_devinfo devinfo;
2167 ahd_fetch_devinfo(ahd, &devinfo);
2168 ahd_handle_ign_wide_residue(ahd, &devinfo);
2169 break;
2171 case BAD_PHASE:
2173 u_int lastphase;
2175 lastphase = ahd_inb(ahd, LASTPHASE);
2176 printk("%s:%c:%d: unknown scsi bus phase %x, "
2177 "lastphase = 0x%x. Attempting to continue\n",
2178 ahd_name(ahd), 'A',
2179 SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)),
2180 lastphase, ahd_inb(ahd, SCSISIGI));
2181 break;
2183 case MISSED_BUSFREE:
2185 u_int lastphase;
2187 lastphase = ahd_inb(ahd, LASTPHASE);
2188 printk("%s:%c:%d: Missed busfree. "
2189 "Lastphase = 0x%x, Curphase = 0x%x\n",
2190 ahd_name(ahd), 'A',
2191 SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)),
2192 lastphase, ahd_inb(ahd, SCSISIGI));
2193 ahd_restart(ahd);
2194 return;
2196 case DATA_OVERRUN:
2199 * When the sequencer detects an overrun, it
2200 * places the controller in "BITBUCKET" mode
2201 * and allows the target to complete its transfer.
2202 * Unfortunately, none of the counters get updated
2203 * when the controller is in this mode, so we have
2204 * no way of knowing how large the overrun was.
2206 struct scb *scb;
2207 u_int scbindex;
2208 #ifdef AHD_DEBUG
2209 u_int lastphase;
2210 #endif
2212 scbindex = ahd_get_scbptr(ahd);
2213 scb = ahd_lookup_scb(ahd, scbindex);
2214 #ifdef AHD_DEBUG
2215 lastphase = ahd_inb(ahd, LASTPHASE);
2216 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2217 ahd_print_path(ahd, scb);
2218 printk("data overrun detected %s. Tag == 0x%x.\n",
2219 ahd_lookup_phase_entry(lastphase)->phasemsg,
2220 SCB_GET_TAG(scb));
2221 ahd_print_path(ahd, scb);
2222 printk("%s seen Data Phase. Length = %ld. "
2223 "NumSGs = %d.\n",
2224 ahd_inb(ahd, SEQ_FLAGS) & DPHASE
2225 ? "Have" : "Haven't",
2226 ahd_get_transfer_length(scb), scb->sg_count);
2227 ahd_dump_sglist(scb);
2229 #endif
2232 * Set this and it will take effect when the
2233 * target does a command complete.
2235 ahd_freeze_devq(ahd, scb);
2236 ahd_set_transaction_status(scb, CAM_DATA_RUN_ERR);
2237 ahd_freeze_scb(scb);
2238 break;
2240 case MKMSG_FAILED:
2242 struct ahd_devinfo devinfo;
2243 struct scb *scb;
2244 u_int scbid;
2246 ahd_fetch_devinfo(ahd, &devinfo);
2247 printk("%s:%c:%d:%d: Attempt to issue message failed\n",
2248 ahd_name(ahd), devinfo.channel, devinfo.target,
2249 devinfo.lun);
2250 scbid = ahd_get_scbptr(ahd);
2251 scb = ahd_lookup_scb(ahd, scbid);
2252 if (scb != NULL
2253 && (scb->flags & SCB_RECOVERY_SCB) != 0)
2255 * Ensure that we didn't put a second instance of this
2256 * SCB into the QINFIFO.
2258 ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
2259 SCB_GET_CHANNEL(ahd, scb),
2260 SCB_GET_LUN(scb), SCB_GET_TAG(scb),
2261 ROLE_INITIATOR, /*status*/0,
2262 SEARCH_REMOVE);
2263 ahd_outb(ahd, SCB_CONTROL,
2264 ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE);
2265 break;
2267 case TASKMGMT_FUNC_COMPLETE:
2269 u_int scbid;
2270 struct scb *scb;
2272 scbid = ahd_get_scbptr(ahd);
2273 scb = ahd_lookup_scb(ahd, scbid);
2274 if (scb != NULL) {
2275 u_int lun;
2276 u_int tag;
2277 cam_status error;
2279 ahd_print_path(ahd, scb);
2280 printk("Task Management Func 0x%x Complete\n",
2281 scb->hscb->task_management);
2282 lun = CAM_LUN_WILDCARD;
2283 tag = SCB_LIST_NULL;
2285 switch (scb->hscb->task_management) {
2286 case SIU_TASKMGMT_ABORT_TASK:
2287 tag = SCB_GET_TAG(scb);
2288 /* fall through */
2289 case SIU_TASKMGMT_ABORT_TASK_SET:
2290 case SIU_TASKMGMT_CLEAR_TASK_SET:
2291 lun = scb->hscb->lun;
2292 error = CAM_REQ_ABORTED;
2293 ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
2294 'A', lun, tag, ROLE_INITIATOR,
2295 error);
2296 break;
2297 case SIU_TASKMGMT_LUN_RESET:
2298 lun = scb->hscb->lun;
2299 /* fall through */
2300 case SIU_TASKMGMT_TARGET_RESET:
2302 struct ahd_devinfo devinfo;
2304 ahd_scb_devinfo(ahd, &devinfo, scb);
2305 error = CAM_BDR_SENT;
2306 ahd_handle_devreset(ahd, &devinfo, lun,
2307 CAM_BDR_SENT,
2308 lun != CAM_LUN_WILDCARD
2309 ? "Lun Reset"
2310 : "Target Reset",
2311 /*verbose_level*/0);
2312 break;
2314 default:
2315 panic("Unexpected TaskMgmt Func\n");
2316 break;
2319 break;
2321 case TASKMGMT_CMD_CMPLT_OKAY:
2323 u_int scbid;
2324 struct scb *scb;
2327 * An ABORT TASK TMF failed to be delivered before
2328 * the targeted command completed normally.
2330 scbid = ahd_get_scbptr(ahd);
2331 scb = ahd_lookup_scb(ahd, scbid);
2332 if (scb != NULL) {
2334 * Remove the second instance of this SCB from
2335 * the QINFIFO if it is still there.
2337 ahd_print_path(ahd, scb);
2338 printk("SCB completes before TMF\n");
2340 * Handle losing the race. Wait until any
2341 * current selection completes. We will then
2342 * set the TMF back to zero in this SCB so that
2343 * the sequencer doesn't bother to issue another
2344 * sequencer interrupt for its completion.
2346 while ((ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0
2347 && (ahd_inb(ahd, SSTAT0) & SELDO) == 0
2348 && (ahd_inb(ahd, SSTAT1) & SELTO) == 0)
2350 ahd_outb(ahd, SCB_TASK_MANAGEMENT, 0);
2351 ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
2352 SCB_GET_CHANNEL(ahd, scb),
2353 SCB_GET_LUN(scb), SCB_GET_TAG(scb),
2354 ROLE_INITIATOR, /*status*/0,
2355 SEARCH_REMOVE);
2357 break;
2359 case TRACEPOINT0:
2360 case TRACEPOINT1:
2361 case TRACEPOINT2:
2362 case TRACEPOINT3:
2363 printk("%s: Tracepoint %d\n", ahd_name(ahd),
2364 seqintcode - TRACEPOINT0);
2365 break;
2366 case NO_SEQINT:
2367 break;
2368 case SAW_HWERR:
2369 ahd_handle_hwerrint(ahd);
2370 break;
2371 default:
2372 printk("%s: Unexpected SEQINTCODE %d\n", ahd_name(ahd),
2373 seqintcode);
2374 break;
2377 * The sequencer is paused immediately on
2378 * a SEQINT, so we should restart it when
2379 * we're done.
2381 ahd_unpause(ahd);
2384 static void
2385 ahd_handle_scsiint(struct ahd_softc *ahd, u_int intstat)
2387 struct scb *scb;
2388 u_int status0;
2389 u_int status3;
2390 u_int status;
2391 u_int lqistat1;
2392 u_int lqostat0;
2393 u_int scbid;
2394 u_int busfreetime;
2396 ahd_update_modes(ahd);
2397 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2399 status3 = ahd_inb(ahd, SSTAT3) & (NTRAMPERR|OSRAMPERR);
2400 status0 = ahd_inb(ahd, SSTAT0) & (IOERR|OVERRUN|SELDI|SELDO);
2401 status = ahd_inb(ahd, SSTAT1) & (SELTO|SCSIRSTI|BUSFREE|SCSIPERR);
2402 lqistat1 = ahd_inb(ahd, LQISTAT1);
2403 lqostat0 = ahd_inb(ahd, LQOSTAT0);
2404 busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME;
2407 * Ignore external resets after a bus reset.
2409 if (((status & SCSIRSTI) != 0) && (ahd->flags & AHD_BUS_RESET_ACTIVE)) {
2410 ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
2411 return;
2415 * Clear bus reset flag
2417 ahd->flags &= ~AHD_BUS_RESET_ACTIVE;
2419 if ((status0 & (SELDI|SELDO)) != 0) {
2420 u_int simode0;
2422 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
2423 simode0 = ahd_inb(ahd, SIMODE0);
2424 status0 &= simode0 & (IOERR|OVERRUN|SELDI|SELDO);
2425 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2427 scbid = ahd_get_scbptr(ahd);
2428 scb = ahd_lookup_scb(ahd, scbid);
2429 if (scb != NULL
2430 && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0)
2431 scb = NULL;
2433 if ((status0 & IOERR) != 0) {
2434 u_int now_lvd;
2436 now_lvd = ahd_inb(ahd, SBLKCTL) & ENAB40;
2437 printk("%s: Transceiver State Has Changed to %s mode\n",
2438 ahd_name(ahd), now_lvd ? "LVD" : "SE");
2439 ahd_outb(ahd, CLRSINT0, CLRIOERR);
2441 * A change in I/O mode is equivalent to a bus reset.
2443 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2444 ahd_pause(ahd);
2445 ahd_setup_iocell_workaround(ahd);
2446 ahd_unpause(ahd);
2447 } else if ((status0 & OVERRUN) != 0) {
2449 printk("%s: SCSI offset overrun detected. Resetting bus.\n",
2450 ahd_name(ahd));
2451 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2452 } else if ((status & SCSIRSTI) != 0) {
2454 printk("%s: Someone reset channel A\n", ahd_name(ahd));
2455 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/FALSE);
2456 } else if ((status & SCSIPERR) != 0) {
2458 /* Make sure the sequencer is in a safe location. */
2459 ahd_clear_critical_section(ahd);
2461 ahd_handle_transmission_error(ahd);
2462 } else if (lqostat0 != 0) {
2464 printk("%s: lqostat0 == 0x%x!\n", ahd_name(ahd), lqostat0);
2465 ahd_outb(ahd, CLRLQOINT0, lqostat0);
2466 if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0)
2467 ahd_outb(ahd, CLRLQOINT1, 0);
2468 } else if ((status & SELTO) != 0) {
2469 /* Stop the selection */
2470 ahd_outb(ahd, SCSISEQ0, 0);
2472 /* Make sure the sequencer is in a safe location. */
2473 ahd_clear_critical_section(ahd);
2475 /* No more pending messages */
2476 ahd_clear_msg_state(ahd);
2478 /* Clear interrupt state */
2479 ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRBUSFREE|CLRSCSIPERR);
2482 * Although the driver does not care about the
2483 * 'Selection in Progress' status bit, the busy
2484 * LED does. SELINGO is only cleared by a successful
2485 * selection, so we must manually clear it to insure
2486 * the LED turns off just incase no future successful
2487 * selections occur (e.g. no devices on the bus).
2489 ahd_outb(ahd, CLRSINT0, CLRSELINGO);
2491 scbid = ahd_inw(ahd, WAITING_TID_HEAD);
2492 scb = ahd_lookup_scb(ahd, scbid);
2493 if (scb == NULL) {
2494 printk("%s: ahd_intr - referenced scb not "
2495 "valid during SELTO scb(0x%x)\n",
2496 ahd_name(ahd), scbid);
2497 ahd_dump_card_state(ahd);
2498 } else {
2499 struct ahd_devinfo devinfo;
2500 #ifdef AHD_DEBUG
2501 if ((ahd_debug & AHD_SHOW_SELTO) != 0) {
2502 ahd_print_path(ahd, scb);
2503 printk("Saw Selection Timeout for SCB 0x%x\n",
2504 scbid);
2506 #endif
2507 ahd_scb_devinfo(ahd, &devinfo, scb);
2508 ahd_set_transaction_status(scb, CAM_SEL_TIMEOUT);
2509 ahd_freeze_devq(ahd, scb);
2512 * Cancel any pending transactions on the device
2513 * now that it seems to be missing. This will
2514 * also revert us to async/narrow transfers until
2515 * we can renegotiate with the device.
2517 ahd_handle_devreset(ahd, &devinfo,
2518 CAM_LUN_WILDCARD,
2519 CAM_SEL_TIMEOUT,
2520 "Selection Timeout",
2521 /*verbose_level*/1);
2523 ahd_outb(ahd, CLRINT, CLRSCSIINT);
2524 ahd_iocell_first_selection(ahd);
2525 ahd_unpause(ahd);
2526 } else if ((status0 & (SELDI|SELDO)) != 0) {
2528 ahd_iocell_first_selection(ahd);
2529 ahd_unpause(ahd);
2530 } else if (status3 != 0) {
2531 printk("%s: SCSI Cell parity error SSTAT3 == 0x%x\n",
2532 ahd_name(ahd), status3);
2533 ahd_outb(ahd, CLRSINT3, status3);
2534 } else if ((lqistat1 & (LQIPHASE_LQ|LQIPHASE_NLQ)) != 0) {
2536 /* Make sure the sequencer is in a safe location. */
2537 ahd_clear_critical_section(ahd);
2539 ahd_handle_lqiphase_error(ahd, lqistat1);
2540 } else if ((lqistat1 & LQICRCI_NLQ) != 0) {
2542 * This status can be delayed during some
2543 * streaming operations. The SCSIPHASE
2544 * handler has already dealt with this case
2545 * so just clear the error.
2547 ahd_outb(ahd, CLRLQIINT1, CLRLQICRCI_NLQ);
2548 } else if ((status & BUSFREE) != 0
2549 || (lqistat1 & LQOBUSFREE) != 0) {
2550 u_int lqostat1;
2551 int restart;
2552 int clear_fifo;
2553 int packetized;
2554 u_int mode;
2557 * Clear our selection hardware as soon as possible.
2558 * We may have an entry in the waiting Q for this target,
2559 * that is affected by this busfree and we don't want to
2560 * go about selecting the target while we handle the event.
2562 ahd_outb(ahd, SCSISEQ0, 0);
2564 /* Make sure the sequencer is in a safe location. */
2565 ahd_clear_critical_section(ahd);
2568 * Determine what we were up to at the time of
2569 * the busfree.
2571 mode = AHD_MODE_SCSI;
2572 busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME;
2573 lqostat1 = ahd_inb(ahd, LQOSTAT1);
2574 switch (busfreetime) {
2575 case BUSFREE_DFF0:
2576 case BUSFREE_DFF1:
2578 mode = busfreetime == BUSFREE_DFF0
2579 ? AHD_MODE_DFF0 : AHD_MODE_DFF1;
2580 ahd_set_modes(ahd, mode, mode);
2581 scbid = ahd_get_scbptr(ahd);
2582 scb = ahd_lookup_scb(ahd, scbid);
2583 if (scb == NULL) {
2584 printk("%s: Invalid SCB %d in DFF%d "
2585 "during unexpected busfree\n",
2586 ahd_name(ahd), scbid, mode);
2587 packetized = 0;
2588 } else
2589 packetized = (scb->flags & SCB_PACKETIZED) != 0;
2590 clear_fifo = 1;
2591 break;
2593 case BUSFREE_LQO:
2594 clear_fifo = 0;
2595 packetized = 1;
2596 break;
2597 default:
2598 clear_fifo = 0;
2599 packetized = (lqostat1 & LQOBUSFREE) != 0;
2600 if (!packetized
2601 && ahd_inb(ahd, LASTPHASE) == P_BUSFREE
2602 && (ahd_inb(ahd, SSTAT0) & SELDI) == 0
2603 && ((ahd_inb(ahd, SSTAT0) & SELDO) == 0
2604 || (ahd_inb(ahd, SCSISEQ0) & ENSELO) == 0))
2606 * Assume packetized if we are not
2607 * on the bus in a non-packetized
2608 * capacity and any pending selection
2609 * was a packetized selection.
2611 packetized = 1;
2612 break;
2615 #ifdef AHD_DEBUG
2616 if ((ahd_debug & AHD_SHOW_MISC) != 0)
2617 printk("Saw Busfree. Busfreetime = 0x%x.\n",
2618 busfreetime);
2619 #endif
2621 * Busfrees that occur in non-packetized phases are
2622 * handled by the nonpkt_busfree handler.
2624 if (packetized && ahd_inb(ahd, LASTPHASE) == P_BUSFREE) {
2625 restart = ahd_handle_pkt_busfree(ahd, busfreetime);
2626 } else {
2627 packetized = 0;
2628 restart = ahd_handle_nonpkt_busfree(ahd);
2631 * Clear the busfree interrupt status. The setting of
2632 * the interrupt is a pulse, so in a perfect world, we
2633 * would not need to muck with the ENBUSFREE logic. This
2634 * would ensure that if the bus moves on to another
2635 * connection, busfree protection is still in force. If
2636 * BUSFREEREV is broken, however, we must manually clear
2637 * the ENBUSFREE if the busfree occurred during a non-pack
2638 * connection so that we don't get false positives during
2639 * future, packetized, connections.
2641 ahd_outb(ahd, CLRSINT1, CLRBUSFREE);
2642 if (packetized == 0
2643 && (ahd->bugs & AHD_BUSFREEREV_BUG) != 0)
2644 ahd_outb(ahd, SIMODE1,
2645 ahd_inb(ahd, SIMODE1) & ~ENBUSFREE);
2647 if (clear_fifo)
2648 ahd_clear_fifo(ahd, mode);
2650 ahd_clear_msg_state(ahd);
2651 ahd_outb(ahd, CLRINT, CLRSCSIINT);
2652 if (restart) {
2653 ahd_restart(ahd);
2654 } else {
2655 ahd_unpause(ahd);
2657 } else {
2658 printk("%s: Missing case in ahd_handle_scsiint. status = %x\n",
2659 ahd_name(ahd), status);
2660 ahd_dump_card_state(ahd);
2661 ahd_clear_intstat(ahd);
2662 ahd_unpause(ahd);
2666 static void
2667 ahd_handle_transmission_error(struct ahd_softc *ahd)
2669 struct scb *scb;
2670 u_int scbid;
2671 u_int lqistat1;
2672 u_int lqistat2;
2673 u_int msg_out;
2674 u_int curphase;
2675 u_int lastphase;
2676 u_int perrdiag;
2677 u_int cur_col;
2678 int silent;
2680 scb = NULL;
2681 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2682 lqistat1 = ahd_inb(ahd, LQISTAT1) & ~(LQIPHASE_LQ|LQIPHASE_NLQ);
2683 lqistat2 = ahd_inb(ahd, LQISTAT2);
2684 if ((lqistat1 & (LQICRCI_NLQ|LQICRCI_LQ)) == 0
2685 && (ahd->bugs & AHD_NLQICRC_DELAYED_BUG) != 0) {
2686 u_int lqistate;
2688 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
2689 lqistate = ahd_inb(ahd, LQISTATE);
2690 if ((lqistate >= 0x1E && lqistate <= 0x24)
2691 || (lqistate == 0x29)) {
2692 #ifdef AHD_DEBUG
2693 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2694 printk("%s: NLQCRC found via LQISTATE\n",
2695 ahd_name(ahd));
2697 #endif
2698 lqistat1 |= LQICRCI_NLQ;
2700 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2703 ahd_outb(ahd, CLRLQIINT1, lqistat1);
2704 lastphase = ahd_inb(ahd, LASTPHASE);
2705 curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
2706 perrdiag = ahd_inb(ahd, PERRDIAG);
2707 msg_out = MSG_INITIATOR_DET_ERR;
2708 ahd_outb(ahd, CLRSINT1, CLRSCSIPERR);
2711 * Try to find the SCB associated with this error.
2713 silent = FALSE;
2714 if (lqistat1 == 0
2715 || (lqistat1 & LQICRCI_NLQ) != 0) {
2716 if ((lqistat1 & (LQICRCI_NLQ|LQIOVERI_NLQ)) != 0)
2717 ahd_set_active_fifo(ahd);
2718 scbid = ahd_get_scbptr(ahd);
2719 scb = ahd_lookup_scb(ahd, scbid);
2720 if (scb != NULL && SCB_IS_SILENT(scb))
2721 silent = TRUE;
2724 cur_col = 0;
2725 if (silent == FALSE) {
2726 printk("%s: Transmission error detected\n", ahd_name(ahd));
2727 ahd_lqistat1_print(lqistat1, &cur_col, 50);
2728 ahd_lastphase_print(lastphase, &cur_col, 50);
2729 ahd_scsisigi_print(curphase, &cur_col, 50);
2730 ahd_perrdiag_print(perrdiag, &cur_col, 50);
2731 printk("\n");
2732 ahd_dump_card_state(ahd);
2735 if ((lqistat1 & (LQIOVERI_LQ|LQIOVERI_NLQ)) != 0) {
2736 if (silent == FALSE) {
2737 printk("%s: Gross protocol error during incoming "
2738 "packet. lqistat1 == 0x%x. Resetting bus.\n",
2739 ahd_name(ahd), lqistat1);
2741 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2742 return;
2743 } else if ((lqistat1 & LQICRCI_LQ) != 0) {
2745 * A CRC error has been detected on an incoming LQ.
2746 * The bus is currently hung on the last ACK.
2747 * Hit LQIRETRY to release the last ack, and
2748 * wait for the sequencer to determine that ATNO
2749 * is asserted while in message out to take us
2750 * to our host message loop. No NONPACKREQ or
2751 * LQIPHASE type errors will occur in this
2752 * scenario. After this first LQIRETRY, the LQI
2753 * manager will be in ISELO where it will
2754 * happily sit until another packet phase begins.
2755 * Unexpected bus free detection is enabled
2756 * through any phases that occur after we release
2757 * this last ack until the LQI manager sees a
2758 * packet phase. This implies we may have to
2759 * ignore a perfectly valid "unexected busfree"
2760 * after our "initiator detected error" message is
2761 * sent. A busfree is the expected response after
2762 * we tell the target that it's L_Q was corrupted.
2763 * (SPI4R09 10.7.3.3.3)
2765 ahd_outb(ahd, LQCTL2, LQIRETRY);
2766 printk("LQIRetry for LQICRCI_LQ to release ACK\n");
2767 } else if ((lqistat1 & LQICRCI_NLQ) != 0) {
2769 * We detected a CRC error in a NON-LQ packet.
2770 * The hardware has varying behavior in this situation
2771 * depending on whether this packet was part of a
2772 * stream or not.
2774 * PKT by PKT mode:
2775 * The hardware has already acked the complete packet.
2776 * If the target honors our outstanding ATN condition,
2777 * we should be (or soon will be) in MSGOUT phase.
2778 * This will trigger the LQIPHASE_LQ status bit as the
2779 * hardware was expecting another LQ. Unexpected
2780 * busfree detection is enabled. Once LQIPHASE_LQ is
2781 * true (first entry into host message loop is much
2782 * the same), we must clear LQIPHASE_LQ and hit
2783 * LQIRETRY so the hardware is ready to handle
2784 * a future LQ. NONPACKREQ will not be asserted again
2785 * once we hit LQIRETRY until another packet is
2786 * processed. The target may either go busfree
2787 * or start another packet in response to our message.
2789 * Read Streaming P0 asserted:
2790 * If we raise ATN and the target completes the entire
2791 * stream (P0 asserted during the last packet), the
2792 * hardware will ack all data and return to the ISTART
2793 * state. When the target reponds to our ATN condition,
2794 * LQIPHASE_LQ will be asserted. We should respond to
2795 * this with an LQIRETRY to prepare for any future
2796 * packets. NONPACKREQ will not be asserted again
2797 * once we hit LQIRETRY until another packet is
2798 * processed. The target may either go busfree or
2799 * start another packet in response to our message.
2800 * Busfree detection is enabled.
2802 * Read Streaming P0 not asserted:
2803 * If we raise ATN and the target transitions to
2804 * MSGOUT in or after a packet where P0 is not
2805 * asserted, the hardware will assert LQIPHASE_NLQ.
2806 * We should respond to the LQIPHASE_NLQ with an
2807 * LQIRETRY. Should the target stay in a non-pkt
2808 * phase after we send our message, the hardware
2809 * will assert LQIPHASE_LQ. Recovery is then just as
2810 * listed above for the read streaming with P0 asserted.
2811 * Busfree detection is enabled.
2813 if (silent == FALSE)
2814 printk("LQICRC_NLQ\n");
2815 if (scb == NULL) {
2816 printk("%s: No SCB valid for LQICRC_NLQ. "
2817 "Resetting bus\n", ahd_name(ahd));
2818 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2819 return;
2821 } else if ((lqistat1 & LQIBADLQI) != 0) {
2822 printk("Need to handle BADLQI!\n");
2823 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2824 return;
2825 } else if ((perrdiag & (PARITYERR|PREVPHASE)) == PARITYERR) {
2826 if ((curphase & ~P_DATAIN_DT) != 0) {
2827 /* Ack the byte. So we can continue. */
2828 if (silent == FALSE)
2829 printk("Acking %s to clear perror\n",
2830 ahd_lookup_phase_entry(curphase)->phasemsg);
2831 ahd_inb(ahd, SCSIDAT);
2834 if (curphase == P_MESGIN)
2835 msg_out = MSG_PARITY_ERROR;
2839 * We've set the hardware to assert ATN if we
2840 * get a parity error on "in" phases, so all we
2841 * need to do is stuff the message buffer with
2842 * the appropriate message. "In" phases have set
2843 * mesg_out to something other than MSG_NOP.
2845 ahd->send_msg_perror = msg_out;
2846 if (scb != NULL && msg_out == MSG_INITIATOR_DET_ERR)
2847 scb->flags |= SCB_TRANSMISSION_ERROR;
2848 ahd_outb(ahd, MSG_OUT, HOST_MSG);
2849 ahd_outb(ahd, CLRINT, CLRSCSIINT);
2850 ahd_unpause(ahd);
2853 static void
2854 ahd_handle_lqiphase_error(struct ahd_softc *ahd, u_int lqistat1)
2857 * Clear the sources of the interrupts.
2859 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2860 ahd_outb(ahd, CLRLQIINT1, lqistat1);
2863 * If the "illegal" phase changes were in response
2864 * to our ATN to flag a CRC error, AND we ended up
2865 * on packet boundaries, clear the error, restart the
2866 * LQI manager as appropriate, and go on our merry
2867 * way toward sending the message. Otherwise, reset
2868 * the bus to clear the error.
2870 ahd_set_active_fifo(ahd);
2871 if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0
2872 && (ahd_inb(ahd, MDFFSTAT) & DLZERO) != 0) {
2873 if ((lqistat1 & LQIPHASE_LQ) != 0) {
2874 printk("LQIRETRY for LQIPHASE_LQ\n");
2875 ahd_outb(ahd, LQCTL2, LQIRETRY);
2876 } else if ((lqistat1 & LQIPHASE_NLQ) != 0) {
2877 printk("LQIRETRY for LQIPHASE_NLQ\n");
2878 ahd_outb(ahd, LQCTL2, LQIRETRY);
2879 } else
2880 panic("ahd_handle_lqiphase_error: No phase errors\n");
2881 ahd_dump_card_state(ahd);
2882 ahd_outb(ahd, CLRINT, CLRSCSIINT);
2883 ahd_unpause(ahd);
2884 } else {
2885 printk("Resetting Channel for LQI Phase error\n");
2886 ahd_dump_card_state(ahd);
2887 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2892 * Packetized unexpected or expected busfree.
2893 * Entered in mode based on busfreetime.
2895 static int
2896 ahd_handle_pkt_busfree(struct ahd_softc *ahd, u_int busfreetime)
2898 u_int lqostat1;
2900 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
2901 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
2902 lqostat1 = ahd_inb(ahd, LQOSTAT1);
2903 if ((lqostat1 & LQOBUSFREE) != 0) {
2904 struct scb *scb;
2905 u_int scbid;
2906 u_int saved_scbptr;
2907 u_int waiting_h;
2908 u_int waiting_t;
2909 u_int next;
2912 * The LQO manager detected an unexpected busfree
2913 * either:
2915 * 1) During an outgoing LQ.
2916 * 2) After an outgoing LQ but before the first
2917 * REQ of the command packet.
2918 * 3) During an outgoing command packet.
2920 * In all cases, CURRSCB is pointing to the
2921 * SCB that encountered the failure. Clean
2922 * up the queue, clear SELDO and LQOBUSFREE,
2923 * and allow the sequencer to restart the select
2924 * out at its lesure.
2926 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2927 scbid = ahd_inw(ahd, CURRSCB);
2928 scb = ahd_lookup_scb(ahd, scbid);
2929 if (scb == NULL)
2930 panic("SCB not valid during LQOBUSFREE");
2932 * Clear the status.
2934 ahd_outb(ahd, CLRLQOINT1, CLRLQOBUSFREE);
2935 if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0)
2936 ahd_outb(ahd, CLRLQOINT1, 0);
2937 ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
2938 ahd_flush_device_writes(ahd);
2939 ahd_outb(ahd, CLRSINT0, CLRSELDO);
2942 * Return the LQO manager to its idle loop. It will
2943 * not do this automatically if the busfree occurs
2944 * after the first REQ of either the LQ or command
2945 * packet or between the LQ and command packet.
2947 ahd_outb(ahd, LQCTL2, ahd_inb(ahd, LQCTL2) | LQOTOIDLE);
2950 * Update the waiting for selection queue so
2951 * we restart on the correct SCB.
2953 waiting_h = ahd_inw(ahd, WAITING_TID_HEAD);
2954 saved_scbptr = ahd_get_scbptr(ahd);
2955 if (waiting_h != scbid) {
2957 ahd_outw(ahd, WAITING_TID_HEAD, scbid);
2958 waiting_t = ahd_inw(ahd, WAITING_TID_TAIL);
2959 if (waiting_t == waiting_h) {
2960 ahd_outw(ahd, WAITING_TID_TAIL, scbid);
2961 next = SCB_LIST_NULL;
2962 } else {
2963 ahd_set_scbptr(ahd, waiting_h);
2964 next = ahd_inw_scbram(ahd, SCB_NEXT2);
2966 ahd_set_scbptr(ahd, scbid);
2967 ahd_outw(ahd, SCB_NEXT2, next);
2969 ahd_set_scbptr(ahd, saved_scbptr);
2970 if (scb->crc_retry_count < AHD_MAX_LQ_CRC_ERRORS) {
2971 if (SCB_IS_SILENT(scb) == FALSE) {
2972 ahd_print_path(ahd, scb);
2973 printk("Probable outgoing LQ CRC error. "
2974 "Retrying command\n");
2976 scb->crc_retry_count++;
2977 } else {
2978 ahd_set_transaction_status(scb, CAM_UNCOR_PARITY);
2979 ahd_freeze_scb(scb);
2980 ahd_freeze_devq(ahd, scb);
2982 /* Return unpausing the sequencer. */
2983 return (0);
2984 } else if ((ahd_inb(ahd, PERRDIAG) & PARITYERR) != 0) {
2986 * Ignore what are really parity errors that
2987 * occur on the last REQ of a free running
2988 * clock prior to going busfree. Some drives
2989 * do not properly active negate just before
2990 * going busfree resulting in a parity glitch.
2992 ahd_outb(ahd, CLRSINT1, CLRSCSIPERR|CLRBUSFREE);
2993 #ifdef AHD_DEBUG
2994 if ((ahd_debug & AHD_SHOW_MASKED_ERRORS) != 0)
2995 printk("%s: Parity on last REQ detected "
2996 "during busfree phase.\n",
2997 ahd_name(ahd));
2998 #endif
2999 /* Return unpausing the sequencer. */
3000 return (0);
3002 if (ahd->src_mode != AHD_MODE_SCSI) {
3003 u_int scbid;
3004 struct scb *scb;
3006 scbid = ahd_get_scbptr(ahd);
3007 scb = ahd_lookup_scb(ahd, scbid);
3008 ahd_print_path(ahd, scb);
3009 printk("Unexpected PKT busfree condition\n");
3010 ahd_dump_card_state(ahd);
3011 ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb), 'A',
3012 SCB_GET_LUN(scb), SCB_GET_TAG(scb),
3013 ROLE_INITIATOR, CAM_UNEXP_BUSFREE);
3015 /* Return restarting the sequencer. */
3016 return (1);
3018 printk("%s: Unexpected PKT busfree condition\n", ahd_name(ahd));
3019 ahd_dump_card_state(ahd);
3020 /* Restart the sequencer. */
3021 return (1);
3025 * Non-packetized unexpected or expected busfree.
3027 static int
3028 ahd_handle_nonpkt_busfree(struct ahd_softc *ahd)
3030 struct ahd_devinfo devinfo;
3031 struct scb *scb;
3032 u_int lastphase;
3033 u_int saved_scsiid;
3034 u_int saved_lun;
3035 u_int target;
3036 u_int initiator_role_id;
3037 u_int scbid;
3038 u_int ppr_busfree;
3039 int printerror;
3042 * Look at what phase we were last in. If its message out,
3043 * chances are pretty good that the busfree was in response
3044 * to one of our abort requests.
3046 lastphase = ahd_inb(ahd, LASTPHASE);
3047 saved_scsiid = ahd_inb(ahd, SAVED_SCSIID);
3048 saved_lun = ahd_inb(ahd, SAVED_LUN);
3049 target = SCSIID_TARGET(ahd, saved_scsiid);
3050 initiator_role_id = SCSIID_OUR_ID(saved_scsiid);
3051 ahd_compile_devinfo(&devinfo, initiator_role_id,
3052 target, saved_lun, 'A', ROLE_INITIATOR);
3053 printerror = 1;
3055 scbid = ahd_get_scbptr(ahd);
3056 scb = ahd_lookup_scb(ahd, scbid);
3057 if (scb != NULL
3058 && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0)
3059 scb = NULL;
3061 ppr_busfree = (ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0;
3062 if (lastphase == P_MESGOUT) {
3063 u_int tag;
3065 tag = SCB_LIST_NULL;
3066 if (ahd_sent_msg(ahd, AHDMSG_1B, MSG_ABORT_TAG, TRUE)
3067 || ahd_sent_msg(ahd, AHDMSG_1B, MSG_ABORT, TRUE)) {
3068 int found;
3069 int sent_msg;
3071 if (scb == NULL) {
3072 ahd_print_devinfo(ahd, &devinfo);
3073 printk("Abort for unidentified "
3074 "connection completed.\n");
3075 /* restart the sequencer. */
3076 return (1);
3078 sent_msg = ahd->msgout_buf[ahd->msgout_index - 1];
3079 ahd_print_path(ahd, scb);
3080 printk("SCB %d - Abort%s Completed.\n",
3081 SCB_GET_TAG(scb),
3082 sent_msg == MSG_ABORT_TAG ? "" : " Tag");
3084 if (sent_msg == MSG_ABORT_TAG)
3085 tag = SCB_GET_TAG(scb);
3087 if ((scb->flags & SCB_EXTERNAL_RESET) != 0) {
3089 * This abort is in response to an
3090 * unexpected switch to command phase
3091 * for a packetized connection. Since
3092 * the identify message was never sent,
3093 * "saved lun" is 0. We really want to
3094 * abort only the SCB that encountered
3095 * this error, which could have a different
3096 * lun. The SCB will be retried so the OS
3097 * will see the UA after renegotiating to
3098 * packetized.
3100 tag = SCB_GET_TAG(scb);
3101 saved_lun = scb->hscb->lun;
3103 found = ahd_abort_scbs(ahd, target, 'A', saved_lun,
3104 tag, ROLE_INITIATOR,
3105 CAM_REQ_ABORTED);
3106 printk("found == 0x%x\n", found);
3107 printerror = 0;
3108 } else if (ahd_sent_msg(ahd, AHDMSG_1B,
3109 MSG_BUS_DEV_RESET, TRUE)) {
3110 ahd_handle_devreset(ahd, &devinfo, CAM_LUN_WILDCARD,
3111 CAM_BDR_SENT, "Bus Device Reset",
3112 /*verbose_level*/0);
3113 printerror = 0;
3114 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, FALSE)
3115 && ppr_busfree == 0) {
3116 struct ahd_initiator_tinfo *tinfo;
3117 struct ahd_tmode_tstate *tstate;
3120 * PPR Rejected.
3122 * If the previous negotiation was packetized,
3123 * this could be because the device has been
3124 * reset without our knowledge. Force our
3125 * current negotiation to async and retry the
3126 * negotiation. Otherwise retry the command
3127 * with non-ppr negotiation.
3129 #ifdef AHD_DEBUG
3130 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3131 printk("PPR negotiation rejected busfree.\n");
3132 #endif
3133 tinfo = ahd_fetch_transinfo(ahd, devinfo.channel,
3134 devinfo.our_scsiid,
3135 devinfo.target, &tstate);
3136 if ((tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ)!=0) {
3137 ahd_set_width(ahd, &devinfo,
3138 MSG_EXT_WDTR_BUS_8_BIT,
3139 AHD_TRANS_CUR,
3140 /*paused*/TRUE);
3141 ahd_set_syncrate(ahd, &devinfo,
3142 /*period*/0, /*offset*/0,
3143 /*ppr_options*/0,
3144 AHD_TRANS_CUR,
3145 /*paused*/TRUE);
3147 * The expect PPR busfree handler below
3148 * will effect the retry and necessary
3149 * abort.
3151 } else {
3152 tinfo->curr.transport_version = 2;
3153 tinfo->goal.transport_version = 2;
3154 tinfo->goal.ppr_options = 0;
3155 if (scb != NULL) {
3157 * Remove any SCBs in the waiting
3158 * for selection queue that may
3159 * also be for this target so that
3160 * command ordering is preserved.
3162 ahd_freeze_devq(ahd, scb);
3163 ahd_qinfifo_requeue_tail(ahd, scb);
3165 printerror = 0;
3167 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, FALSE)
3168 && ppr_busfree == 0) {
3170 * Negotiation Rejected. Go-narrow and
3171 * retry command.
3173 #ifdef AHD_DEBUG
3174 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3175 printk("WDTR negotiation rejected busfree.\n");
3176 #endif
3177 ahd_set_width(ahd, &devinfo,
3178 MSG_EXT_WDTR_BUS_8_BIT,
3179 AHD_TRANS_CUR|AHD_TRANS_GOAL,
3180 /*paused*/TRUE);
3181 if (scb != NULL) {
3183 * Remove any SCBs in the waiting for
3184 * selection queue that may also be for
3185 * this target so that command ordering
3186 * is preserved.
3188 ahd_freeze_devq(ahd, scb);
3189 ahd_qinfifo_requeue_tail(ahd, scb);
3191 printerror = 0;
3192 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, FALSE)
3193 && ppr_busfree == 0) {
3195 * Negotiation Rejected. Go-async and
3196 * retry command.
3198 #ifdef AHD_DEBUG
3199 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3200 printk("SDTR negotiation rejected busfree.\n");
3201 #endif
3202 ahd_set_syncrate(ahd, &devinfo,
3203 /*period*/0, /*offset*/0,
3204 /*ppr_options*/0,
3205 AHD_TRANS_CUR|AHD_TRANS_GOAL,
3206 /*paused*/TRUE);
3207 if (scb != NULL) {
3209 * Remove any SCBs in the waiting for
3210 * selection queue that may also be for
3211 * this target so that command ordering
3212 * is preserved.
3214 ahd_freeze_devq(ahd, scb);
3215 ahd_qinfifo_requeue_tail(ahd, scb);
3217 printerror = 0;
3218 } else if ((ahd->msg_flags & MSG_FLAG_EXPECT_IDE_BUSFREE) != 0
3219 && ahd_sent_msg(ahd, AHDMSG_1B,
3220 MSG_INITIATOR_DET_ERR, TRUE)) {
3222 #ifdef AHD_DEBUG
3223 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3224 printk("Expected IDE Busfree\n");
3225 #endif
3226 printerror = 0;
3227 } else if ((ahd->msg_flags & MSG_FLAG_EXPECT_QASREJ_BUSFREE)
3228 && ahd_sent_msg(ahd, AHDMSG_1B,
3229 MSG_MESSAGE_REJECT, TRUE)) {
3231 #ifdef AHD_DEBUG
3232 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3233 printk("Expected QAS Reject Busfree\n");
3234 #endif
3235 printerror = 0;
3240 * The busfree required flag is honored at the end of
3241 * the message phases. We check it last in case we
3242 * had to send some other message that caused a busfree.
3244 if (scb != NULL && printerror != 0
3245 && (lastphase == P_MESGIN || lastphase == P_MESGOUT)
3246 && ((ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0)) {
3248 ahd_freeze_devq(ahd, scb);
3249 ahd_set_transaction_status(scb, CAM_REQUEUE_REQ);
3250 ahd_freeze_scb(scb);
3251 if ((ahd->msg_flags & MSG_FLAG_IU_REQ_CHANGED) != 0) {
3252 ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
3253 SCB_GET_CHANNEL(ahd, scb),
3254 SCB_GET_LUN(scb), SCB_LIST_NULL,
3255 ROLE_INITIATOR, CAM_REQ_ABORTED);
3256 } else {
3257 #ifdef AHD_DEBUG
3258 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3259 printk("PPR Negotiation Busfree.\n");
3260 #endif
3261 ahd_done(ahd, scb);
3263 printerror = 0;
3265 if (printerror != 0) {
3266 int aborted;
3268 aborted = 0;
3269 if (scb != NULL) {
3270 u_int tag;
3272 if ((scb->hscb->control & TAG_ENB) != 0)
3273 tag = SCB_GET_TAG(scb);
3274 else
3275 tag = SCB_LIST_NULL;
3276 ahd_print_path(ahd, scb);
3277 aborted = ahd_abort_scbs(ahd, target, 'A',
3278 SCB_GET_LUN(scb), tag,
3279 ROLE_INITIATOR,
3280 CAM_UNEXP_BUSFREE);
3281 } else {
3283 * We had not fully identified this connection,
3284 * so we cannot abort anything.
3286 printk("%s: ", ahd_name(ahd));
3288 printk("Unexpected busfree %s, %d SCBs aborted, "
3289 "PRGMCNT == 0x%x\n",
3290 ahd_lookup_phase_entry(lastphase)->phasemsg,
3291 aborted,
3292 ahd_inw(ahd, PRGMCNT));
3293 ahd_dump_card_state(ahd);
3294 if (lastphase != P_BUSFREE)
3295 ahd_force_renegotiation(ahd, &devinfo);
3297 /* Always restart the sequencer. */
3298 return (1);
3301 static void
3302 ahd_handle_proto_violation(struct ahd_softc *ahd)
3304 struct ahd_devinfo devinfo;
3305 struct scb *scb;
3306 u_int scbid;
3307 u_int seq_flags;
3308 u_int curphase;
3309 u_int lastphase;
3310 int found;
3312 ahd_fetch_devinfo(ahd, &devinfo);
3313 scbid = ahd_get_scbptr(ahd);
3314 scb = ahd_lookup_scb(ahd, scbid);
3315 seq_flags = ahd_inb(ahd, SEQ_FLAGS);
3316 curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
3317 lastphase = ahd_inb(ahd, LASTPHASE);
3318 if ((seq_flags & NOT_IDENTIFIED) != 0) {
3321 * The reconnecting target either did not send an
3322 * identify message, or did, but we didn't find an SCB
3323 * to match.
3325 ahd_print_devinfo(ahd, &devinfo);
3326 printk("Target did not send an IDENTIFY message. "
3327 "LASTPHASE = 0x%x.\n", lastphase);
3328 scb = NULL;
3329 } else if (scb == NULL) {
3331 * We don't seem to have an SCB active for this
3332 * transaction. Print an error and reset the bus.
3334 ahd_print_devinfo(ahd, &devinfo);
3335 printk("No SCB found during protocol violation\n");
3336 goto proto_violation_reset;
3337 } else {
3338 ahd_set_transaction_status(scb, CAM_SEQUENCE_FAIL);
3339 if ((seq_flags & NO_CDB_SENT) != 0) {
3340 ahd_print_path(ahd, scb);
3341 printk("No or incomplete CDB sent to device.\n");
3342 } else if ((ahd_inb_scbram(ahd, SCB_CONTROL)
3343 & STATUS_RCVD) == 0) {
3345 * The target never bothered to provide status to
3346 * us prior to completing the command. Since we don't
3347 * know the disposition of this command, we must attempt
3348 * to abort it. Assert ATN and prepare to send an abort
3349 * message.
3351 ahd_print_path(ahd, scb);
3352 printk("Completed command without status.\n");
3353 } else {
3354 ahd_print_path(ahd, scb);
3355 printk("Unknown protocol violation.\n");
3356 ahd_dump_card_state(ahd);
3359 if ((lastphase & ~P_DATAIN_DT) == 0
3360 || lastphase == P_COMMAND) {
3361 proto_violation_reset:
3363 * Target either went directly to data
3364 * phase or didn't respond to our ATN.
3365 * The only safe thing to do is to blow
3366 * it away with a bus reset.
3368 found = ahd_reset_channel(ahd, 'A', TRUE);
3369 printk("%s: Issued Channel %c Bus Reset. "
3370 "%d SCBs aborted\n", ahd_name(ahd), 'A', found);
3371 } else {
3373 * Leave the selection hardware off in case
3374 * this abort attempt will affect yet to
3375 * be sent commands.
3377 ahd_outb(ahd, SCSISEQ0,
3378 ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
3379 ahd_assert_atn(ahd);
3380 ahd_outb(ahd, MSG_OUT, HOST_MSG);
3381 if (scb == NULL) {
3382 ahd_print_devinfo(ahd, &devinfo);
3383 ahd->msgout_buf[0] = MSG_ABORT_TASK;
3384 ahd->msgout_len = 1;
3385 ahd->msgout_index = 0;
3386 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
3387 } else {
3388 ahd_print_path(ahd, scb);
3389 scb->flags |= SCB_ABORT;
3391 printk("Protocol violation %s. Attempting to abort.\n",
3392 ahd_lookup_phase_entry(curphase)->phasemsg);
3397 * Force renegotiation to occur the next time we initiate
3398 * a command to the current device.
3400 static void
3401 ahd_force_renegotiation(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
3403 struct ahd_initiator_tinfo *targ_info;
3404 struct ahd_tmode_tstate *tstate;
3406 #ifdef AHD_DEBUG
3407 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
3408 ahd_print_devinfo(ahd, devinfo);
3409 printk("Forcing renegotiation\n");
3411 #endif
3412 targ_info = ahd_fetch_transinfo(ahd,
3413 devinfo->channel,
3414 devinfo->our_scsiid,
3415 devinfo->target,
3416 &tstate);
3417 ahd_update_neg_request(ahd, devinfo, tstate,
3418 targ_info, AHD_NEG_IF_NON_ASYNC);
3421 #define AHD_MAX_STEPS 2000
3422 static void
3423 ahd_clear_critical_section(struct ahd_softc *ahd)
3425 ahd_mode_state saved_modes;
3426 int stepping;
3427 int steps;
3428 int first_instr;
3429 u_int simode0;
3430 u_int simode1;
3431 u_int simode3;
3432 u_int lqimode0;
3433 u_int lqimode1;
3434 u_int lqomode0;
3435 u_int lqomode1;
3437 if (ahd->num_critical_sections == 0)
3438 return;
3440 stepping = FALSE;
3441 steps = 0;
3442 first_instr = 0;
3443 simode0 = 0;
3444 simode1 = 0;
3445 simode3 = 0;
3446 lqimode0 = 0;
3447 lqimode1 = 0;
3448 lqomode0 = 0;
3449 lqomode1 = 0;
3450 saved_modes = ahd_save_modes(ahd);
3451 for (;;) {
3452 struct cs *cs;
3453 u_int seqaddr;
3454 u_int i;
3456 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3457 seqaddr = ahd_inw(ahd, CURADDR);
3459 cs = ahd->critical_sections;
3460 for (i = 0; i < ahd->num_critical_sections; i++, cs++) {
3462 if (cs->begin < seqaddr && cs->end >= seqaddr)
3463 break;
3466 if (i == ahd->num_critical_sections)
3467 break;
3469 if (steps > AHD_MAX_STEPS) {
3470 printk("%s: Infinite loop in critical section\n"
3471 "%s: First Instruction 0x%x now 0x%x\n",
3472 ahd_name(ahd), ahd_name(ahd), first_instr,
3473 seqaddr);
3474 ahd_dump_card_state(ahd);
3475 panic("critical section loop");
3478 steps++;
3479 #ifdef AHD_DEBUG
3480 if ((ahd_debug & AHD_SHOW_MISC) != 0)
3481 printk("%s: Single stepping at 0x%x\n", ahd_name(ahd),
3482 seqaddr);
3483 #endif
3484 if (stepping == FALSE) {
3486 first_instr = seqaddr;
3487 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
3488 simode0 = ahd_inb(ahd, SIMODE0);
3489 simode3 = ahd_inb(ahd, SIMODE3);
3490 lqimode0 = ahd_inb(ahd, LQIMODE0);
3491 lqimode1 = ahd_inb(ahd, LQIMODE1);
3492 lqomode0 = ahd_inb(ahd, LQOMODE0);
3493 lqomode1 = ahd_inb(ahd, LQOMODE1);
3494 ahd_outb(ahd, SIMODE0, 0);
3495 ahd_outb(ahd, SIMODE3, 0);
3496 ahd_outb(ahd, LQIMODE0, 0);
3497 ahd_outb(ahd, LQIMODE1, 0);
3498 ahd_outb(ahd, LQOMODE0, 0);
3499 ahd_outb(ahd, LQOMODE1, 0);
3500 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3501 simode1 = ahd_inb(ahd, SIMODE1);
3503 * We don't clear ENBUSFREE. Unfortunately
3504 * we cannot re-enable busfree detection within
3505 * the current connection, so we must leave it
3506 * on while single stepping.
3508 ahd_outb(ahd, SIMODE1, simode1 & ENBUSFREE);
3509 ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) | STEP);
3510 stepping = TRUE;
3512 ahd_outb(ahd, CLRSINT1, CLRBUSFREE);
3513 ahd_outb(ahd, CLRINT, CLRSCSIINT);
3514 ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
3515 ahd_outb(ahd, HCNTRL, ahd->unpause);
3516 while (!ahd_is_paused(ahd))
3517 ahd_delay(200);
3518 ahd_update_modes(ahd);
3520 if (stepping) {
3521 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
3522 ahd_outb(ahd, SIMODE0, simode0);
3523 ahd_outb(ahd, SIMODE3, simode3);
3524 ahd_outb(ahd, LQIMODE0, lqimode0);
3525 ahd_outb(ahd, LQIMODE1, lqimode1);
3526 ahd_outb(ahd, LQOMODE0, lqomode0);
3527 ahd_outb(ahd, LQOMODE1, lqomode1);
3528 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3529 ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) & ~STEP);
3530 ahd_outb(ahd, SIMODE1, simode1);
3532 * SCSIINT seems to glitch occasionally when
3533 * the interrupt masks are restored. Clear SCSIINT
3534 * one more time so that only persistent errors
3535 * are seen as a real interrupt.
3537 ahd_outb(ahd, CLRINT, CLRSCSIINT);
3539 ahd_restore_modes(ahd, saved_modes);
3543 * Clear any pending interrupt status.
3545 static void
3546 ahd_clear_intstat(struct ahd_softc *ahd)
3548 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
3549 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
3550 /* Clear any interrupt conditions this may have caused */
3551 ahd_outb(ahd, CLRLQIINT0, CLRLQIATNQAS|CLRLQICRCT1|CLRLQICRCT2
3552 |CLRLQIBADLQT|CLRLQIATNLQ|CLRLQIATNCMD);
3553 ahd_outb(ahd, CLRLQIINT1, CLRLQIPHASE_LQ|CLRLQIPHASE_NLQ|CLRLIQABORT
3554 |CLRLQICRCI_LQ|CLRLQICRCI_NLQ|CLRLQIBADLQI
3555 |CLRLQIOVERI_LQ|CLRLQIOVERI_NLQ|CLRNONPACKREQ);
3556 ahd_outb(ahd, CLRLQOINT0, CLRLQOTARGSCBPERR|CLRLQOSTOPT2|CLRLQOATNLQ
3557 |CLRLQOATNPKT|CLRLQOTCRC);
3558 ahd_outb(ahd, CLRLQOINT1, CLRLQOINITSCBPERR|CLRLQOSTOPI2|CLRLQOBADQAS
3559 |CLRLQOBUSFREE|CLRLQOPHACHGINPKT);
3560 if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) {
3561 ahd_outb(ahd, CLRLQOINT0, 0);
3562 ahd_outb(ahd, CLRLQOINT1, 0);
3564 ahd_outb(ahd, CLRSINT3, CLRNTRAMPERR|CLROSRAMPERR);
3565 ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRATNO|CLRSCSIRSTI
3566 |CLRBUSFREE|CLRSCSIPERR|CLRREQINIT);
3567 ahd_outb(ahd, CLRSINT0, CLRSELDO|CLRSELDI|CLRSELINGO
3568 |CLRIOERR|CLROVERRUN);
3569 ahd_outb(ahd, CLRINT, CLRSCSIINT);
3572 /**************************** Debugging Routines ******************************/
3573 #ifdef AHD_DEBUG
3574 uint32_t ahd_debug = AHD_DEBUG_OPTS;
3575 #endif
3577 #if 0
3578 void
3579 ahd_print_scb(struct scb *scb)
3581 struct hardware_scb *hscb;
3582 int i;
3584 hscb = scb->hscb;
3585 printk("scb:%p control:0x%x scsiid:0x%x lun:%d cdb_len:%d\n",
3586 (void *)scb,
3587 hscb->control,
3588 hscb->scsiid,
3589 hscb->lun,
3590 hscb->cdb_len);
3591 printk("Shared Data: ");
3592 for (i = 0; i < sizeof(hscb->shared_data.idata.cdb); i++)
3593 printk("%#02x", hscb->shared_data.idata.cdb[i]);
3594 printk(" dataptr:%#x%x datacnt:%#x sgptr:%#x tag:%#x\n",
3595 (uint32_t)((ahd_le64toh(hscb->dataptr) >> 32) & 0xFFFFFFFF),
3596 (uint32_t)(ahd_le64toh(hscb->dataptr) & 0xFFFFFFFF),
3597 ahd_le32toh(hscb->datacnt),
3598 ahd_le32toh(hscb->sgptr),
3599 SCB_GET_TAG(scb));
3600 ahd_dump_sglist(scb);
3602 #endif /* 0 */
3604 /************************* Transfer Negotiation *******************************/
3606 * Allocate per target mode instance (ID we respond to as a target)
3607 * transfer negotiation data structures.
3609 static struct ahd_tmode_tstate *
3610 ahd_alloc_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel)
3612 struct ahd_tmode_tstate *master_tstate;
3613 struct ahd_tmode_tstate *tstate;
3614 int i;
3616 master_tstate = ahd->enabled_targets[ahd->our_id];
3617 if (ahd->enabled_targets[scsi_id] != NULL
3618 && ahd->enabled_targets[scsi_id] != master_tstate)
3619 panic("%s: ahd_alloc_tstate - Target already allocated",
3620 ahd_name(ahd));
3621 tstate = kmalloc(sizeof(*tstate), GFP_ATOMIC);
3622 if (tstate == NULL)
3623 return (NULL);
3626 * If we have allocated a master tstate, copy user settings from
3627 * the master tstate (taken from SRAM or the EEPROM) for this
3628 * channel, but reset our current and goal settings to async/narrow
3629 * until an initiator talks to us.
3631 if (master_tstate != NULL) {
3632 memcpy(tstate, master_tstate, sizeof(*tstate));
3633 memset(tstate->enabled_luns, 0, sizeof(tstate->enabled_luns));
3634 for (i = 0; i < 16; i++) {
3635 memset(&tstate->transinfo[i].curr, 0,
3636 sizeof(tstate->transinfo[i].curr));
3637 memset(&tstate->transinfo[i].goal, 0,
3638 sizeof(tstate->transinfo[i].goal));
3640 } else
3641 memset(tstate, 0, sizeof(*tstate));
3642 ahd->enabled_targets[scsi_id] = tstate;
3643 return (tstate);
3646 #ifdef AHD_TARGET_MODE
3648 * Free per target mode instance (ID we respond to as a target)
3649 * transfer negotiation data structures.
3651 static void
3652 ahd_free_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel, int force)
3654 struct ahd_tmode_tstate *tstate;
3657 * Don't clean up our "master" tstate.
3658 * It has our default user settings.
3660 if (scsi_id == ahd->our_id
3661 && force == FALSE)
3662 return;
3664 tstate = ahd->enabled_targets[scsi_id];
3665 if (tstate != NULL)
3666 kfree(tstate);
3667 ahd->enabled_targets[scsi_id] = NULL;
3669 #endif
3672 * Called when we have an active connection to a target on the bus,
3673 * this function finds the nearest period to the input period limited
3674 * by the capabilities of the bus connectivity of and sync settings for
3675 * the target.
3677 static void
3678 ahd_devlimited_syncrate(struct ahd_softc *ahd,
3679 struct ahd_initiator_tinfo *tinfo,
3680 u_int *period, u_int *ppr_options, role_t role)
3682 struct ahd_transinfo *transinfo;
3683 u_int maxsync;
3685 if ((ahd_inb(ahd, SBLKCTL) & ENAB40) != 0
3686 && (ahd_inb(ahd, SSTAT2) & EXP_ACTIVE) == 0) {
3687 maxsync = AHD_SYNCRATE_PACED;
3688 } else {
3689 maxsync = AHD_SYNCRATE_ULTRA;
3690 /* Can't do DT related options on an SE bus */
3691 *ppr_options &= MSG_EXT_PPR_QAS_REQ;
3694 * Never allow a value higher than our current goal
3695 * period otherwise we may allow a target initiated
3696 * negotiation to go above the limit as set by the
3697 * user. In the case of an initiator initiated
3698 * sync negotiation, we limit based on the user
3699 * setting. This allows the system to still accept
3700 * incoming negotiations even if target initiated
3701 * negotiation is not performed.
3703 if (role == ROLE_TARGET)
3704 transinfo = &tinfo->user;
3705 else
3706 transinfo = &tinfo->goal;
3707 *ppr_options &= (transinfo->ppr_options|MSG_EXT_PPR_PCOMP_EN);
3708 if (transinfo->width == MSG_EXT_WDTR_BUS_8_BIT) {
3709 maxsync = max(maxsync, (u_int)AHD_SYNCRATE_ULTRA2);
3710 *ppr_options &= ~MSG_EXT_PPR_DT_REQ;
3712 if (transinfo->period == 0) {
3713 *period = 0;
3714 *ppr_options = 0;
3715 } else {
3716 *period = max(*period, (u_int)transinfo->period);
3717 ahd_find_syncrate(ahd, period, ppr_options, maxsync);
3722 * Look up the valid period to SCSIRATE conversion in our table.
3723 * Return the period and offset that should be sent to the target
3724 * if this was the beginning of an SDTR.
3726 void
3727 ahd_find_syncrate(struct ahd_softc *ahd, u_int *period,
3728 u_int *ppr_options, u_int maxsync)
3730 if (*period < maxsync)
3731 *period = maxsync;
3733 if ((*ppr_options & MSG_EXT_PPR_DT_REQ) != 0
3734 && *period > AHD_SYNCRATE_MIN_DT)
3735 *ppr_options &= ~MSG_EXT_PPR_DT_REQ;
3737 if (*period > AHD_SYNCRATE_MIN)
3738 *period = 0;
3740 /* Honor PPR option conformance rules. */
3741 if (*period > AHD_SYNCRATE_PACED)
3742 *ppr_options &= ~MSG_EXT_PPR_RTI;
3744 if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0)
3745 *ppr_options &= (MSG_EXT_PPR_DT_REQ|MSG_EXT_PPR_QAS_REQ);
3747 if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0)
3748 *ppr_options &= MSG_EXT_PPR_QAS_REQ;
3750 /* Skip all PACED only entries if IU is not available */
3751 if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0
3752 && *period < AHD_SYNCRATE_DT)
3753 *period = AHD_SYNCRATE_DT;
3755 /* Skip all DT only entries if DT is not available */
3756 if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0
3757 && *period < AHD_SYNCRATE_ULTRA2)
3758 *period = AHD_SYNCRATE_ULTRA2;
3762 * Truncate the given synchronous offset to a value the
3763 * current adapter type and syncrate are capable of.
3765 static void
3766 ahd_validate_offset(struct ahd_softc *ahd,
3767 struct ahd_initiator_tinfo *tinfo,
3768 u_int period, u_int *offset, int wide,
3769 role_t role)
3771 u_int maxoffset;
3773 /* Limit offset to what we can do */
3774 if (period == 0)
3775 maxoffset = 0;
3776 else if (period <= AHD_SYNCRATE_PACED) {
3777 if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0)
3778 maxoffset = MAX_OFFSET_PACED_BUG;
3779 else
3780 maxoffset = MAX_OFFSET_PACED;
3781 } else
3782 maxoffset = MAX_OFFSET_NON_PACED;
3783 *offset = min(*offset, maxoffset);
3784 if (tinfo != NULL) {
3785 if (role == ROLE_TARGET)
3786 *offset = min(*offset, (u_int)tinfo->user.offset);
3787 else
3788 *offset = min(*offset, (u_int)tinfo->goal.offset);
3793 * Truncate the given transfer width parameter to a value the
3794 * current adapter type is capable of.
3796 static void
3797 ahd_validate_width(struct ahd_softc *ahd, struct ahd_initiator_tinfo *tinfo,
3798 u_int *bus_width, role_t role)
3800 switch (*bus_width) {
3801 default:
3802 if (ahd->features & AHD_WIDE) {
3803 /* Respond Wide */
3804 *bus_width = MSG_EXT_WDTR_BUS_16_BIT;
3805 break;
3807 /* FALLTHROUGH */
3808 case MSG_EXT_WDTR_BUS_8_BIT:
3809 *bus_width = MSG_EXT_WDTR_BUS_8_BIT;
3810 break;
3812 if (tinfo != NULL) {
3813 if (role == ROLE_TARGET)
3814 *bus_width = min((u_int)tinfo->user.width, *bus_width);
3815 else
3816 *bus_width = min((u_int)tinfo->goal.width, *bus_width);
3821 * Update the bitmask of targets for which the controller should
3822 * negotiate with at the next convenient opportunity. This currently
3823 * means the next time we send the initial identify messages for
3824 * a new transaction.
3827 ahd_update_neg_request(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3828 struct ahd_tmode_tstate *tstate,
3829 struct ahd_initiator_tinfo *tinfo, ahd_neg_type neg_type)
3831 u_int auto_negotiate_orig;
3833 auto_negotiate_orig = tstate->auto_negotiate;
3834 if (neg_type == AHD_NEG_ALWAYS) {
3836 * Force our "current" settings to be
3837 * unknown so that unless a bus reset
3838 * occurs the need to renegotiate is
3839 * recorded persistently.
3841 if ((ahd->features & AHD_WIDE) != 0)
3842 tinfo->curr.width = AHD_WIDTH_UNKNOWN;
3843 tinfo->curr.period = AHD_PERIOD_UNKNOWN;
3844 tinfo->curr.offset = AHD_OFFSET_UNKNOWN;
3846 if (tinfo->curr.period != tinfo->goal.period
3847 || tinfo->curr.width != tinfo->goal.width
3848 || tinfo->curr.offset != tinfo->goal.offset
3849 || tinfo->curr.ppr_options != tinfo->goal.ppr_options
3850 || (neg_type == AHD_NEG_IF_NON_ASYNC
3851 && (tinfo->goal.offset != 0
3852 || tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT
3853 || tinfo->goal.ppr_options != 0)))
3854 tstate->auto_negotiate |= devinfo->target_mask;
3855 else
3856 tstate->auto_negotiate &= ~devinfo->target_mask;
3858 return (auto_negotiate_orig != tstate->auto_negotiate);
3862 * Update the user/goal/curr tables of synchronous negotiation
3863 * parameters as well as, in the case of a current or active update,
3864 * any data structures on the host controller. In the case of an
3865 * active update, the specified target is currently talking to us on
3866 * the bus, so the transfer parameter update must take effect
3867 * immediately.
3869 void
3870 ahd_set_syncrate(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3871 u_int period, u_int offset, u_int ppr_options,
3872 u_int type, int paused)
3874 struct ahd_initiator_tinfo *tinfo;
3875 struct ahd_tmode_tstate *tstate;
3876 u_int old_period;
3877 u_int old_offset;
3878 u_int old_ppr;
3879 int active;
3880 int update_needed;
3882 active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE;
3883 update_needed = 0;
3885 if (period == 0 || offset == 0) {
3886 period = 0;
3887 offset = 0;
3890 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
3891 devinfo->target, &tstate);
3893 if ((type & AHD_TRANS_USER) != 0) {
3894 tinfo->user.period = period;
3895 tinfo->user.offset = offset;
3896 tinfo->user.ppr_options = ppr_options;
3899 if ((type & AHD_TRANS_GOAL) != 0) {
3900 tinfo->goal.period = period;
3901 tinfo->goal.offset = offset;
3902 tinfo->goal.ppr_options = ppr_options;
3905 old_period = tinfo->curr.period;
3906 old_offset = tinfo->curr.offset;
3907 old_ppr = tinfo->curr.ppr_options;
3909 if ((type & AHD_TRANS_CUR) != 0
3910 && (old_period != period
3911 || old_offset != offset
3912 || old_ppr != ppr_options)) {
3914 update_needed++;
3916 tinfo->curr.period = period;
3917 tinfo->curr.offset = offset;
3918 tinfo->curr.ppr_options = ppr_options;
3920 ahd_send_async(ahd, devinfo->channel, devinfo->target,
3921 CAM_LUN_WILDCARD, AC_TRANSFER_NEG);
3922 if (bootverbose) {
3923 if (offset != 0) {
3924 int options;
3926 printk("%s: target %d synchronous with "
3927 "period = 0x%x, offset = 0x%x",
3928 ahd_name(ahd), devinfo->target,
3929 period, offset);
3930 options = 0;
3931 if ((ppr_options & MSG_EXT_PPR_RD_STRM) != 0) {
3932 printk("(RDSTRM");
3933 options++;
3935 if ((ppr_options & MSG_EXT_PPR_DT_REQ) != 0) {
3936 printk("%s", options ? "|DT" : "(DT");
3937 options++;
3939 if ((ppr_options & MSG_EXT_PPR_IU_REQ) != 0) {
3940 printk("%s", options ? "|IU" : "(IU");
3941 options++;
3943 if ((ppr_options & MSG_EXT_PPR_RTI) != 0) {
3944 printk("%s", options ? "|RTI" : "(RTI");
3945 options++;
3947 if ((ppr_options & MSG_EXT_PPR_QAS_REQ) != 0) {
3948 printk("%s", options ? "|QAS" : "(QAS");
3949 options++;
3951 if (options != 0)
3952 printk(")\n");
3953 else
3954 printk("\n");
3955 } else {
3956 printk("%s: target %d using "
3957 "asynchronous transfers%s\n",
3958 ahd_name(ahd), devinfo->target,
3959 (ppr_options & MSG_EXT_PPR_QAS_REQ) != 0
3960 ? "(QAS)" : "");
3965 * Always refresh the neg-table to handle the case of the
3966 * sequencer setting the ENATNO bit for a MK_MESSAGE request.
3967 * We will always renegotiate in that case if this is a
3968 * packetized request. Also manage the busfree expected flag
3969 * from this common routine so that we catch changes due to
3970 * WDTR or SDTR messages.
3972 if ((type & AHD_TRANS_CUR) != 0) {
3973 if (!paused)
3974 ahd_pause(ahd);
3975 ahd_update_neg_table(ahd, devinfo, &tinfo->curr);
3976 if (!paused)
3977 ahd_unpause(ahd);
3978 if (ahd->msg_type != MSG_TYPE_NONE) {
3979 if ((old_ppr & MSG_EXT_PPR_IU_REQ)
3980 != (ppr_options & MSG_EXT_PPR_IU_REQ)) {
3981 #ifdef AHD_DEBUG
3982 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
3983 ahd_print_devinfo(ahd, devinfo);
3984 printk("Expecting IU Change busfree\n");
3986 #endif
3987 ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE
3988 | MSG_FLAG_IU_REQ_CHANGED;
3990 if ((old_ppr & MSG_EXT_PPR_IU_REQ) != 0) {
3991 #ifdef AHD_DEBUG
3992 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3993 printk("PPR with IU_REQ outstanding\n");
3994 #endif
3995 ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE;
4000 update_needed += ahd_update_neg_request(ahd, devinfo, tstate,
4001 tinfo, AHD_NEG_TO_GOAL);
4003 if (update_needed && active)
4004 ahd_update_pending_scbs(ahd);
4008 * Update the user/goal/curr tables of wide negotiation
4009 * parameters as well as, in the case of a current or active update,
4010 * any data structures on the host controller. In the case of an
4011 * active update, the specified target is currently talking to us on
4012 * the bus, so the transfer parameter update must take effect
4013 * immediately.
4015 void
4016 ahd_set_width(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4017 u_int width, u_int type, int paused)
4019 struct ahd_initiator_tinfo *tinfo;
4020 struct ahd_tmode_tstate *tstate;
4021 u_int oldwidth;
4022 int active;
4023 int update_needed;
4025 active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE;
4026 update_needed = 0;
4027 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
4028 devinfo->target, &tstate);
4030 if ((type & AHD_TRANS_USER) != 0)
4031 tinfo->user.width = width;
4033 if ((type & AHD_TRANS_GOAL) != 0)
4034 tinfo->goal.width = width;
4036 oldwidth = tinfo->curr.width;
4037 if ((type & AHD_TRANS_CUR) != 0 && oldwidth != width) {
4039 update_needed++;
4041 tinfo->curr.width = width;
4042 ahd_send_async(ahd, devinfo->channel, devinfo->target,
4043 CAM_LUN_WILDCARD, AC_TRANSFER_NEG);
4044 if (bootverbose) {
4045 printk("%s: target %d using %dbit transfers\n",
4046 ahd_name(ahd), devinfo->target,
4047 8 * (0x01 << width));
4051 if ((type & AHD_TRANS_CUR) != 0) {
4052 if (!paused)
4053 ahd_pause(ahd);
4054 ahd_update_neg_table(ahd, devinfo, &tinfo->curr);
4055 if (!paused)
4056 ahd_unpause(ahd);
4059 update_needed += ahd_update_neg_request(ahd, devinfo, tstate,
4060 tinfo, AHD_NEG_TO_GOAL);
4061 if (update_needed && active)
4062 ahd_update_pending_scbs(ahd);
4067 * Update the current state of tagged queuing for a given target.
4069 static void
4070 ahd_set_tags(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
4071 struct ahd_devinfo *devinfo, ahd_queue_alg alg)
4073 struct scsi_device *sdev = cmd->device;
4075 ahd_platform_set_tags(ahd, sdev, devinfo, alg);
4076 ahd_send_async(ahd, devinfo->channel, devinfo->target,
4077 devinfo->lun, AC_TRANSFER_NEG);
4080 static void
4081 ahd_update_neg_table(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4082 struct ahd_transinfo *tinfo)
4084 ahd_mode_state saved_modes;
4085 u_int period;
4086 u_int ppr_opts;
4087 u_int con_opts;
4088 u_int offset;
4089 u_int saved_negoaddr;
4090 uint8_t iocell_opts[sizeof(ahd->iocell_opts)];
4092 saved_modes = ahd_save_modes(ahd);
4093 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4095 saved_negoaddr = ahd_inb(ahd, NEGOADDR);
4096 ahd_outb(ahd, NEGOADDR, devinfo->target);
4097 period = tinfo->period;
4098 offset = tinfo->offset;
4099 memcpy(iocell_opts, ahd->iocell_opts, sizeof(ahd->iocell_opts));
4100 ppr_opts = tinfo->ppr_options & (MSG_EXT_PPR_QAS_REQ|MSG_EXT_PPR_DT_REQ
4101 |MSG_EXT_PPR_IU_REQ|MSG_EXT_PPR_RTI);
4102 con_opts = 0;
4103 if (period == 0)
4104 period = AHD_SYNCRATE_ASYNC;
4105 if (period == AHD_SYNCRATE_160) {
4107 if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) {
4109 * When the SPI4 spec was finalized, PACE transfers
4110 * was not made a configurable option in the PPR
4111 * message. Instead it is assumed to be enabled for
4112 * any syncrate faster than 80MHz. Nevertheless,
4113 * Harpoon2A4 allows this to be configurable.
4115 * Harpoon2A4 also assumes at most 2 data bytes per
4116 * negotiated REQ/ACK offset. Paced transfers take
4117 * 4, so we must adjust our offset.
4119 ppr_opts |= PPROPT_PACE;
4120 offset *= 2;
4123 * Harpoon2A assumed that there would be a
4124 * fallback rate between 160MHz and 80MHz,
4125 * so 7 is used as the period factor rather
4126 * than 8 for 160MHz.
4128 period = AHD_SYNCRATE_REVA_160;
4130 if ((tinfo->ppr_options & MSG_EXT_PPR_PCOMP_EN) == 0)
4131 iocell_opts[AHD_PRECOMP_SLEW_INDEX] &=
4132 ~AHD_PRECOMP_MASK;
4133 } else {
4135 * Precomp should be disabled for non-paced transfers.
4137 iocell_opts[AHD_PRECOMP_SLEW_INDEX] &= ~AHD_PRECOMP_MASK;
4139 if ((ahd->features & AHD_NEW_IOCELL_OPTS) != 0
4140 && (ppr_opts & MSG_EXT_PPR_DT_REQ) != 0
4141 && (ppr_opts & MSG_EXT_PPR_IU_REQ) == 0) {
4143 * Slow down our CRC interval to be
4144 * compatible with non-packetized
4145 * U160 devices that can't handle a
4146 * CRC at full speed.
4148 con_opts |= ENSLOWCRC;
4151 if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) {
4153 * On H2A4, revert to a slower slewrate
4154 * on non-paced transfers.
4156 iocell_opts[AHD_PRECOMP_SLEW_INDEX] &=
4157 ~AHD_SLEWRATE_MASK;
4161 ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PRECOMP_SLEW);
4162 ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_PRECOMP_SLEW_INDEX]);
4163 ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_AMPLITUDE);
4164 ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_AMPLITUDE_INDEX]);
4166 ahd_outb(ahd, NEGPERIOD, period);
4167 ahd_outb(ahd, NEGPPROPTS, ppr_opts);
4168 ahd_outb(ahd, NEGOFFSET, offset);
4170 if (tinfo->width == MSG_EXT_WDTR_BUS_16_BIT)
4171 con_opts |= WIDEXFER;
4174 * Slow down our CRC interval to be
4175 * compatible with packetized U320 devices
4176 * that can't handle a CRC at full speed
4178 if (ahd->features & AHD_AIC79XXB_SLOWCRC) {
4179 con_opts |= ENSLOWCRC;
4183 * During packetized transfers, the target will
4184 * give us the opportunity to send command packets
4185 * without us asserting attention.
4187 if ((tinfo->ppr_options & MSG_EXT_PPR_IU_REQ) == 0)
4188 con_opts |= ENAUTOATNO;
4189 ahd_outb(ahd, NEGCONOPTS, con_opts);
4190 ahd_outb(ahd, NEGOADDR, saved_negoaddr);
4191 ahd_restore_modes(ahd, saved_modes);
4195 * When the transfer settings for a connection change, setup for
4196 * negotiation in pending SCBs to effect the change as quickly as
4197 * possible. We also cancel any negotiations that are scheduled
4198 * for inflight SCBs that have not been started yet.
4200 static void
4201 ahd_update_pending_scbs(struct ahd_softc *ahd)
4203 struct scb *pending_scb;
4204 int pending_scb_count;
4205 int paused;
4206 u_int saved_scbptr;
4207 ahd_mode_state saved_modes;
4210 * Traverse the pending SCB list and ensure that all of the
4211 * SCBs there have the proper settings. We can only safely
4212 * clear the negotiation required flag (setting requires the
4213 * execution queue to be modified) and this is only possible
4214 * if we are not already attempting to select out for this
4215 * SCB. For this reason, all callers only call this routine
4216 * if we are changing the negotiation settings for the currently
4217 * active transaction on the bus.
4219 pending_scb_count = 0;
4220 LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) {
4221 struct ahd_devinfo devinfo;
4222 struct ahd_initiator_tinfo *tinfo;
4223 struct ahd_tmode_tstate *tstate;
4225 ahd_scb_devinfo(ahd, &devinfo, pending_scb);
4226 tinfo = ahd_fetch_transinfo(ahd, devinfo.channel,
4227 devinfo.our_scsiid,
4228 devinfo.target, &tstate);
4229 if ((tstate->auto_negotiate & devinfo.target_mask) == 0
4230 && (pending_scb->flags & SCB_AUTO_NEGOTIATE) != 0) {
4231 pending_scb->flags &= ~SCB_AUTO_NEGOTIATE;
4232 pending_scb->hscb->control &= ~MK_MESSAGE;
4234 ahd_sync_scb(ahd, pending_scb,
4235 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
4236 pending_scb_count++;
4239 if (pending_scb_count == 0)
4240 return;
4242 if (ahd_is_paused(ahd)) {
4243 paused = 1;
4244 } else {
4245 paused = 0;
4246 ahd_pause(ahd);
4250 * Force the sequencer to reinitialize the selection for
4251 * the command at the head of the execution queue if it
4252 * has already been setup. The negotiation changes may
4253 * effect whether we select-out with ATN. It is only
4254 * safe to clear ENSELO when the bus is not free and no
4255 * selection is in progres or completed.
4257 saved_modes = ahd_save_modes(ahd);
4258 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4259 if ((ahd_inb(ahd, SCSISIGI) & BSYI) != 0
4260 && (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) == 0)
4261 ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
4262 saved_scbptr = ahd_get_scbptr(ahd);
4263 /* Ensure that the hscbs down on the card match the new information */
4264 LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) {
4265 u_int scb_tag;
4266 u_int control;
4268 scb_tag = SCB_GET_TAG(pending_scb);
4269 ahd_set_scbptr(ahd, scb_tag);
4270 control = ahd_inb_scbram(ahd, SCB_CONTROL);
4271 control &= ~MK_MESSAGE;
4272 control |= pending_scb->hscb->control & MK_MESSAGE;
4273 ahd_outb(ahd, SCB_CONTROL, control);
4275 ahd_set_scbptr(ahd, saved_scbptr);
4276 ahd_restore_modes(ahd, saved_modes);
4278 if (paused == 0)
4279 ahd_unpause(ahd);
4282 /**************************** Pathing Information *****************************/
4283 static void
4284 ahd_fetch_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4286 ahd_mode_state saved_modes;
4287 u_int saved_scsiid;
4288 role_t role;
4289 int our_id;
4291 saved_modes = ahd_save_modes(ahd);
4292 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4294 if (ahd_inb(ahd, SSTAT0) & TARGET)
4295 role = ROLE_TARGET;
4296 else
4297 role = ROLE_INITIATOR;
4299 if (role == ROLE_TARGET
4300 && (ahd_inb(ahd, SEQ_FLAGS) & CMDPHASE_PENDING) != 0) {
4301 /* We were selected, so pull our id from TARGIDIN */
4302 our_id = ahd_inb(ahd, TARGIDIN) & OID;
4303 } else if (role == ROLE_TARGET)
4304 our_id = ahd_inb(ahd, TOWNID);
4305 else
4306 our_id = ahd_inb(ahd, IOWNID);
4308 saved_scsiid = ahd_inb(ahd, SAVED_SCSIID);
4309 ahd_compile_devinfo(devinfo,
4310 our_id,
4311 SCSIID_TARGET(ahd, saved_scsiid),
4312 ahd_inb(ahd, SAVED_LUN),
4313 SCSIID_CHANNEL(ahd, saved_scsiid),
4314 role);
4315 ahd_restore_modes(ahd, saved_modes);
4318 void
4319 ahd_print_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4321 printk("%s:%c:%d:%d: ", ahd_name(ahd), 'A',
4322 devinfo->target, devinfo->lun);
4325 static const struct ahd_phase_table_entry*
4326 ahd_lookup_phase_entry(int phase)
4328 const struct ahd_phase_table_entry *entry;
4329 const struct ahd_phase_table_entry *last_entry;
4332 * num_phases doesn't include the default entry which
4333 * will be returned if the phase doesn't match.
4335 last_entry = &ahd_phase_table[num_phases];
4336 for (entry = ahd_phase_table; entry < last_entry; entry++) {
4337 if (phase == entry->phase)
4338 break;
4340 return (entry);
4343 void
4344 ahd_compile_devinfo(struct ahd_devinfo *devinfo, u_int our_id, u_int target,
4345 u_int lun, char channel, role_t role)
4347 devinfo->our_scsiid = our_id;
4348 devinfo->target = target;
4349 devinfo->lun = lun;
4350 devinfo->target_offset = target;
4351 devinfo->channel = channel;
4352 devinfo->role = role;
4353 if (channel == 'B')
4354 devinfo->target_offset += 8;
4355 devinfo->target_mask = (0x01 << devinfo->target_offset);
4358 static void
4359 ahd_scb_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4360 struct scb *scb)
4362 role_t role;
4363 int our_id;
4365 our_id = SCSIID_OUR_ID(scb->hscb->scsiid);
4366 role = ROLE_INITIATOR;
4367 if ((scb->hscb->control & TARGET_SCB) != 0)
4368 role = ROLE_TARGET;
4369 ahd_compile_devinfo(devinfo, our_id, SCB_GET_TARGET(ahd, scb),
4370 SCB_GET_LUN(scb), SCB_GET_CHANNEL(ahd, scb), role);
4374 /************************ Message Phase Processing ****************************/
4376 * When an initiator transaction with the MK_MESSAGE flag either reconnects
4377 * or enters the initial message out phase, we are interrupted. Fill our
4378 * outgoing message buffer with the appropriate message and beging handing
4379 * the message phase(s) manually.
4381 static void
4382 ahd_setup_initiator_msgout(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4383 struct scb *scb)
4386 * To facilitate adding multiple messages together,
4387 * each routine should increment the index and len
4388 * variables instead of setting them explicitly.
4390 ahd->msgout_index = 0;
4391 ahd->msgout_len = 0;
4393 if (ahd_currently_packetized(ahd))
4394 ahd->msg_flags |= MSG_FLAG_PACKETIZED;
4396 if (ahd->send_msg_perror
4397 && ahd_inb(ahd, MSG_OUT) == HOST_MSG) {
4398 ahd->msgout_buf[ahd->msgout_index++] = ahd->send_msg_perror;
4399 ahd->msgout_len++;
4400 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4401 #ifdef AHD_DEBUG
4402 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4403 printk("Setting up for Parity Error delivery\n");
4404 #endif
4405 return;
4406 } else if (scb == NULL) {
4407 printk("%s: WARNING. No pending message for "
4408 "I_T msgin. Issuing NO-OP\n", ahd_name(ahd));
4409 ahd->msgout_buf[ahd->msgout_index++] = MSG_NOOP;
4410 ahd->msgout_len++;
4411 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4412 return;
4415 if ((scb->flags & SCB_DEVICE_RESET) == 0
4416 && (scb->flags & SCB_PACKETIZED) == 0
4417 && ahd_inb(ahd, MSG_OUT) == MSG_IDENTIFYFLAG) {
4418 u_int identify_msg;
4420 identify_msg = MSG_IDENTIFYFLAG | SCB_GET_LUN(scb);
4421 if ((scb->hscb->control & DISCENB) != 0)
4422 identify_msg |= MSG_IDENTIFY_DISCFLAG;
4423 ahd->msgout_buf[ahd->msgout_index++] = identify_msg;
4424 ahd->msgout_len++;
4426 if ((scb->hscb->control & TAG_ENB) != 0) {
4427 ahd->msgout_buf[ahd->msgout_index++] =
4428 scb->hscb->control & (TAG_ENB|SCB_TAG_TYPE);
4429 ahd->msgout_buf[ahd->msgout_index++] = SCB_GET_TAG(scb);
4430 ahd->msgout_len += 2;
4434 if (scb->flags & SCB_DEVICE_RESET) {
4435 ahd->msgout_buf[ahd->msgout_index++] = MSG_BUS_DEV_RESET;
4436 ahd->msgout_len++;
4437 ahd_print_path(ahd, scb);
4438 printk("Bus Device Reset Message Sent\n");
4440 * Clear our selection hardware in advance of
4441 * the busfree. We may have an entry in the waiting
4442 * Q for this target, and we don't want to go about
4443 * selecting while we handle the busfree and blow it
4444 * away.
4446 ahd_outb(ahd, SCSISEQ0, 0);
4447 } else if ((scb->flags & SCB_ABORT) != 0) {
4449 if ((scb->hscb->control & TAG_ENB) != 0) {
4450 ahd->msgout_buf[ahd->msgout_index++] = MSG_ABORT_TAG;
4451 } else {
4452 ahd->msgout_buf[ahd->msgout_index++] = MSG_ABORT;
4454 ahd->msgout_len++;
4455 ahd_print_path(ahd, scb);
4456 printk("Abort%s Message Sent\n",
4457 (scb->hscb->control & TAG_ENB) != 0 ? " Tag" : "");
4459 * Clear our selection hardware in advance of
4460 * the busfree. We may have an entry in the waiting
4461 * Q for this target, and we don't want to go about
4462 * selecting while we handle the busfree and blow it
4463 * away.
4465 ahd_outb(ahd, SCSISEQ0, 0);
4466 } else if ((scb->flags & (SCB_AUTO_NEGOTIATE|SCB_NEGOTIATE)) != 0) {
4467 ahd_build_transfer_msg(ahd, devinfo);
4469 * Clear our selection hardware in advance of potential
4470 * PPR IU status change busfree. We may have an entry in
4471 * the waiting Q for this target, and we don't want to go
4472 * about selecting while we handle the busfree and blow
4473 * it away.
4475 ahd_outb(ahd, SCSISEQ0, 0);
4476 } else {
4477 printk("ahd_intr: AWAITING_MSG for an SCB that "
4478 "does not have a waiting message\n");
4479 printk("SCSIID = %x, target_mask = %x\n", scb->hscb->scsiid,
4480 devinfo->target_mask);
4481 panic("SCB = %d, SCB Control = %x:%x, MSG_OUT = %x "
4482 "SCB flags = %x", SCB_GET_TAG(scb), scb->hscb->control,
4483 ahd_inb_scbram(ahd, SCB_CONTROL), ahd_inb(ahd, MSG_OUT),
4484 scb->flags);
4488 * Clear the MK_MESSAGE flag from the SCB so we aren't
4489 * asked to send this message again.
4491 ahd_outb(ahd, SCB_CONTROL,
4492 ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE);
4493 scb->hscb->control &= ~MK_MESSAGE;
4494 ahd->msgout_index = 0;
4495 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4499 * Build an appropriate transfer negotiation message for the
4500 * currently active target.
4502 static void
4503 ahd_build_transfer_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4506 * We need to initiate transfer negotiations.
4507 * If our current and goal settings are identical,
4508 * we want to renegotiate due to a check condition.
4510 struct ahd_initiator_tinfo *tinfo;
4511 struct ahd_tmode_tstate *tstate;
4512 int dowide;
4513 int dosync;
4514 int doppr;
4515 u_int period;
4516 u_int ppr_options;
4517 u_int offset;
4519 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
4520 devinfo->target, &tstate);
4522 * Filter our period based on the current connection.
4523 * If we can't perform DT transfers on this segment (not in LVD
4524 * mode for instance), then our decision to issue a PPR message
4525 * may change.
4527 period = tinfo->goal.period;
4528 offset = tinfo->goal.offset;
4529 ppr_options = tinfo->goal.ppr_options;
4530 /* Target initiated PPR is not allowed in the SCSI spec */
4531 if (devinfo->role == ROLE_TARGET)
4532 ppr_options = 0;
4533 ahd_devlimited_syncrate(ahd, tinfo, &period,
4534 &ppr_options, devinfo->role);
4535 dowide = tinfo->curr.width != tinfo->goal.width;
4536 dosync = tinfo->curr.offset != offset || tinfo->curr.period != period;
4538 * Only use PPR if we have options that need it, even if the device
4539 * claims to support it. There might be an expander in the way
4540 * that doesn't.
4542 doppr = ppr_options != 0;
4544 if (!dowide && !dosync && !doppr) {
4545 dowide = tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT;
4546 dosync = tinfo->goal.offset != 0;
4549 if (!dowide && !dosync && !doppr) {
4551 * Force async with a WDTR message if we have a wide bus,
4552 * or just issue an SDTR with a 0 offset.
4554 if ((ahd->features & AHD_WIDE) != 0)
4555 dowide = 1;
4556 else
4557 dosync = 1;
4559 if (bootverbose) {
4560 ahd_print_devinfo(ahd, devinfo);
4561 printk("Ensuring async\n");
4564 /* Target initiated PPR is not allowed in the SCSI spec */
4565 if (devinfo->role == ROLE_TARGET)
4566 doppr = 0;
4569 * Both the PPR message and SDTR message require the
4570 * goal syncrate to be limited to what the target device
4571 * is capable of handling (based on whether an LVD->SE
4572 * expander is on the bus), so combine these two cases.
4573 * Regardless, guarantee that if we are using WDTR and SDTR
4574 * messages that WDTR comes first.
4576 if (doppr || (dosync && !dowide)) {
4578 offset = tinfo->goal.offset;
4579 ahd_validate_offset(ahd, tinfo, period, &offset,
4580 doppr ? tinfo->goal.width
4581 : tinfo->curr.width,
4582 devinfo->role);
4583 if (doppr) {
4584 ahd_construct_ppr(ahd, devinfo, period, offset,
4585 tinfo->goal.width, ppr_options);
4586 } else {
4587 ahd_construct_sdtr(ahd, devinfo, period, offset);
4589 } else {
4590 ahd_construct_wdtr(ahd, devinfo, tinfo->goal.width);
4595 * Build a synchronous negotiation message in our message
4596 * buffer based on the input parameters.
4598 static void
4599 ahd_construct_sdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4600 u_int period, u_int offset)
4602 if (offset == 0)
4603 period = AHD_ASYNC_XFER_PERIOD;
4604 ahd->msgout_index += spi_populate_sync_msg(
4605 ahd->msgout_buf + ahd->msgout_index, period, offset);
4606 ahd->msgout_len += 5;
4607 if (bootverbose) {
4608 printk("(%s:%c:%d:%d): Sending SDTR period %x, offset %x\n",
4609 ahd_name(ahd), devinfo->channel, devinfo->target,
4610 devinfo->lun, period, offset);
4615 * Build a wide negotiateion message in our message
4616 * buffer based on the input parameters.
4618 static void
4619 ahd_construct_wdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4620 u_int bus_width)
4622 ahd->msgout_index += spi_populate_width_msg(
4623 ahd->msgout_buf + ahd->msgout_index, bus_width);
4624 ahd->msgout_len += 4;
4625 if (bootverbose) {
4626 printk("(%s:%c:%d:%d): Sending WDTR %x\n",
4627 ahd_name(ahd), devinfo->channel, devinfo->target,
4628 devinfo->lun, bus_width);
4633 * Build a parallel protocol request message in our message
4634 * buffer based on the input parameters.
4636 static void
4637 ahd_construct_ppr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4638 u_int period, u_int offset, u_int bus_width,
4639 u_int ppr_options)
4642 * Always request precompensation from
4643 * the other target if we are running
4644 * at paced syncrates.
4646 if (period <= AHD_SYNCRATE_PACED)
4647 ppr_options |= MSG_EXT_PPR_PCOMP_EN;
4648 if (offset == 0)
4649 period = AHD_ASYNC_XFER_PERIOD;
4650 ahd->msgout_index += spi_populate_ppr_msg(
4651 ahd->msgout_buf + ahd->msgout_index, period, offset,
4652 bus_width, ppr_options);
4653 ahd->msgout_len += 8;
4654 if (bootverbose) {
4655 printk("(%s:%c:%d:%d): Sending PPR bus_width %x, period %x, "
4656 "offset %x, ppr_options %x\n", ahd_name(ahd),
4657 devinfo->channel, devinfo->target, devinfo->lun,
4658 bus_width, period, offset, ppr_options);
4663 * Clear any active message state.
4665 static void
4666 ahd_clear_msg_state(struct ahd_softc *ahd)
4668 ahd_mode_state saved_modes;
4670 saved_modes = ahd_save_modes(ahd);
4671 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4672 ahd->send_msg_perror = 0;
4673 ahd->msg_flags = MSG_FLAG_NONE;
4674 ahd->msgout_len = 0;
4675 ahd->msgin_index = 0;
4676 ahd->msg_type = MSG_TYPE_NONE;
4677 if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0) {
4679 * The target didn't care to respond to our
4680 * message request, so clear ATN.
4682 ahd_outb(ahd, CLRSINT1, CLRATNO);
4684 ahd_outb(ahd, MSG_OUT, MSG_NOOP);
4685 ahd_outb(ahd, SEQ_FLAGS2,
4686 ahd_inb(ahd, SEQ_FLAGS2) & ~TARGET_MSG_PENDING);
4687 ahd_restore_modes(ahd, saved_modes);
4691 * Manual message loop handler.
4693 static void
4694 ahd_handle_message_phase(struct ahd_softc *ahd)
4696 struct ahd_devinfo devinfo;
4697 u_int bus_phase;
4698 int end_session;
4700 ahd_fetch_devinfo(ahd, &devinfo);
4701 end_session = FALSE;
4702 bus_phase = ahd_inb(ahd, LASTPHASE);
4704 if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0) {
4705 printk("LQIRETRY for LQIPHASE_OUTPKT\n");
4706 ahd_outb(ahd, LQCTL2, LQIRETRY);
4708 reswitch:
4709 switch (ahd->msg_type) {
4710 case MSG_TYPE_INITIATOR_MSGOUT:
4712 int lastbyte;
4713 int phasemis;
4714 int msgdone;
4716 if (ahd->msgout_len == 0 && ahd->send_msg_perror == 0)
4717 panic("HOST_MSG_LOOP interrupt with no active message");
4719 #ifdef AHD_DEBUG
4720 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4721 ahd_print_devinfo(ahd, &devinfo);
4722 printk("INITIATOR_MSG_OUT");
4724 #endif
4725 phasemis = bus_phase != P_MESGOUT;
4726 if (phasemis) {
4727 #ifdef AHD_DEBUG
4728 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4729 printk(" PHASEMIS %s\n",
4730 ahd_lookup_phase_entry(bus_phase)
4731 ->phasemsg);
4733 #endif
4734 if (bus_phase == P_MESGIN) {
4736 * Change gears and see if
4737 * this messages is of interest to
4738 * us or should be passed back to
4739 * the sequencer.
4741 ahd_outb(ahd, CLRSINT1, CLRATNO);
4742 ahd->send_msg_perror = 0;
4743 ahd->msg_type = MSG_TYPE_INITIATOR_MSGIN;
4744 ahd->msgin_index = 0;
4745 goto reswitch;
4747 end_session = TRUE;
4748 break;
4751 if (ahd->send_msg_perror) {
4752 ahd_outb(ahd, CLRSINT1, CLRATNO);
4753 ahd_outb(ahd, CLRSINT1, CLRREQINIT);
4754 #ifdef AHD_DEBUG
4755 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4756 printk(" byte 0x%x\n", ahd->send_msg_perror);
4757 #endif
4759 * If we are notifying the target of a CRC error
4760 * during packetized operations, the target is
4761 * within its rights to acknowledge our message
4762 * with a busfree.
4764 if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0
4765 && ahd->send_msg_perror == MSG_INITIATOR_DET_ERR)
4766 ahd->msg_flags |= MSG_FLAG_EXPECT_IDE_BUSFREE;
4768 ahd_outb(ahd, RETURN_2, ahd->send_msg_perror);
4769 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE);
4770 break;
4773 msgdone = ahd->msgout_index == ahd->msgout_len;
4774 if (msgdone) {
4776 * The target has requested a retry.
4777 * Re-assert ATN, reset our message index to
4778 * 0, and try again.
4780 ahd->msgout_index = 0;
4781 ahd_assert_atn(ahd);
4784 lastbyte = ahd->msgout_index == (ahd->msgout_len - 1);
4785 if (lastbyte) {
4786 /* Last byte is signified by dropping ATN */
4787 ahd_outb(ahd, CLRSINT1, CLRATNO);
4791 * Clear our interrupt status and present
4792 * the next byte on the bus.
4794 ahd_outb(ahd, CLRSINT1, CLRREQINIT);
4795 #ifdef AHD_DEBUG
4796 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4797 printk(" byte 0x%x\n",
4798 ahd->msgout_buf[ahd->msgout_index]);
4799 #endif
4800 ahd_outb(ahd, RETURN_2, ahd->msgout_buf[ahd->msgout_index++]);
4801 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE);
4802 break;
4804 case MSG_TYPE_INITIATOR_MSGIN:
4806 int phasemis;
4807 int message_done;
4809 #ifdef AHD_DEBUG
4810 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4811 ahd_print_devinfo(ahd, &devinfo);
4812 printk("INITIATOR_MSG_IN");
4814 #endif
4815 phasemis = bus_phase != P_MESGIN;
4816 if (phasemis) {
4817 #ifdef AHD_DEBUG
4818 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4819 printk(" PHASEMIS %s\n",
4820 ahd_lookup_phase_entry(bus_phase)
4821 ->phasemsg);
4823 #endif
4824 ahd->msgin_index = 0;
4825 if (bus_phase == P_MESGOUT
4826 && (ahd->send_msg_perror != 0
4827 || (ahd->msgout_len != 0
4828 && ahd->msgout_index == 0))) {
4829 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4830 goto reswitch;
4832 end_session = TRUE;
4833 break;
4836 /* Pull the byte in without acking it */
4837 ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIBUS);
4838 #ifdef AHD_DEBUG
4839 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4840 printk(" byte 0x%x\n",
4841 ahd->msgin_buf[ahd->msgin_index]);
4842 #endif
4844 message_done = ahd_parse_msg(ahd, &devinfo);
4846 if (message_done) {
4848 * Clear our incoming message buffer in case there
4849 * is another message following this one.
4851 ahd->msgin_index = 0;
4854 * If this message illicited a response,
4855 * assert ATN so the target takes us to the
4856 * message out phase.
4858 if (ahd->msgout_len != 0) {
4859 #ifdef AHD_DEBUG
4860 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4861 ahd_print_devinfo(ahd, &devinfo);
4862 printk("Asserting ATN for response\n");
4864 #endif
4865 ahd_assert_atn(ahd);
4867 } else
4868 ahd->msgin_index++;
4870 if (message_done == MSGLOOP_TERMINATED) {
4871 end_session = TRUE;
4872 } else {
4873 /* Ack the byte */
4874 ahd_outb(ahd, CLRSINT1, CLRREQINIT);
4875 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_READ);
4877 break;
4879 case MSG_TYPE_TARGET_MSGIN:
4881 int msgdone;
4882 int msgout_request;
4885 * By default, the message loop will continue.
4887 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG);
4889 if (ahd->msgout_len == 0)
4890 panic("Target MSGIN with no active message");
4893 * If we interrupted a mesgout session, the initiator
4894 * will not know this until our first REQ. So, we
4895 * only honor mesgout requests after we've sent our
4896 * first byte.
4898 if ((ahd_inb(ahd, SCSISIGI) & ATNI) != 0
4899 && ahd->msgout_index > 0)
4900 msgout_request = TRUE;
4901 else
4902 msgout_request = FALSE;
4904 if (msgout_request) {
4907 * Change gears and see if
4908 * this messages is of interest to
4909 * us or should be passed back to
4910 * the sequencer.
4912 ahd->msg_type = MSG_TYPE_TARGET_MSGOUT;
4913 ahd_outb(ahd, SCSISIGO, P_MESGOUT | BSYO);
4914 ahd->msgin_index = 0;
4915 /* Dummy read to REQ for first byte */
4916 ahd_inb(ahd, SCSIDAT);
4917 ahd_outb(ahd, SXFRCTL0,
4918 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4919 break;
4922 msgdone = ahd->msgout_index == ahd->msgout_len;
4923 if (msgdone) {
4924 ahd_outb(ahd, SXFRCTL0,
4925 ahd_inb(ahd, SXFRCTL0) & ~SPIOEN);
4926 end_session = TRUE;
4927 break;
4931 * Present the next byte on the bus.
4933 ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4934 ahd_outb(ahd, SCSIDAT, ahd->msgout_buf[ahd->msgout_index++]);
4935 break;
4937 case MSG_TYPE_TARGET_MSGOUT:
4939 int lastbyte;
4940 int msgdone;
4943 * By default, the message loop will continue.
4945 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG);
4948 * The initiator signals that this is
4949 * the last byte by dropping ATN.
4951 lastbyte = (ahd_inb(ahd, SCSISIGI) & ATNI) == 0;
4954 * Read the latched byte, but turn off SPIOEN first
4955 * so that we don't inadvertently cause a REQ for the
4956 * next byte.
4958 ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) & ~SPIOEN);
4959 ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIDAT);
4960 msgdone = ahd_parse_msg(ahd, &devinfo);
4961 if (msgdone == MSGLOOP_TERMINATED) {
4963 * The message is *really* done in that it caused
4964 * us to go to bus free. The sequencer has already
4965 * been reset at this point, so pull the ejection
4966 * handle.
4968 return;
4971 ahd->msgin_index++;
4974 * XXX Read spec about initiator dropping ATN too soon
4975 * and use msgdone to detect it.
4977 if (msgdone == MSGLOOP_MSGCOMPLETE) {
4978 ahd->msgin_index = 0;
4981 * If this message illicited a response, transition
4982 * to the Message in phase and send it.
4984 if (ahd->msgout_len != 0) {
4985 ahd_outb(ahd, SCSISIGO, P_MESGIN | BSYO);
4986 ahd_outb(ahd, SXFRCTL0,
4987 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4988 ahd->msg_type = MSG_TYPE_TARGET_MSGIN;
4989 ahd->msgin_index = 0;
4990 break;
4994 if (lastbyte)
4995 end_session = TRUE;
4996 else {
4997 /* Ask for the next byte. */
4998 ahd_outb(ahd, SXFRCTL0,
4999 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
5002 break;
5004 default:
5005 panic("Unknown REQINIT message type");
5008 if (end_session) {
5009 if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0) {
5010 printk("%s: Returning to Idle Loop\n",
5011 ahd_name(ahd));
5012 ahd_clear_msg_state(ahd);
5015 * Perform the equivalent of a clear_target_state.
5017 ahd_outb(ahd, LASTPHASE, P_BUSFREE);
5018 ahd_outb(ahd, SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT);
5019 ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET);
5020 } else {
5021 ahd_clear_msg_state(ahd);
5022 ahd_outb(ahd, RETURN_1, EXIT_MSG_LOOP);
5028 * See if we sent a particular extended message to the target.
5029 * If "full" is true, return true only if the target saw the full
5030 * message. If "full" is false, return true if the target saw at
5031 * least the first byte of the message.
5033 static int
5034 ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type, u_int msgval, int full)
5036 int found;
5037 u_int index;
5039 found = FALSE;
5040 index = 0;
5042 while (index < ahd->msgout_len) {
5043 if (ahd->msgout_buf[index] == MSG_EXTENDED) {
5044 u_int end_index;
5046 end_index = index + 1 + ahd->msgout_buf[index + 1];
5047 if (ahd->msgout_buf[index+2] == msgval
5048 && type == AHDMSG_EXT) {
5050 if (full) {
5051 if (ahd->msgout_index > end_index)
5052 found = TRUE;
5053 } else if (ahd->msgout_index > index)
5054 found = TRUE;
5056 index = end_index;
5057 } else if (ahd->msgout_buf[index] >= MSG_SIMPLE_TASK
5058 && ahd->msgout_buf[index] <= MSG_IGN_WIDE_RESIDUE) {
5060 /* Skip tag type and tag id or residue param*/
5061 index += 2;
5062 } else {
5063 /* Single byte message */
5064 if (type == AHDMSG_1B
5065 && ahd->msgout_index > index
5066 && (ahd->msgout_buf[index] == msgval
5067 || ((ahd->msgout_buf[index] & MSG_IDENTIFYFLAG) != 0
5068 && msgval == MSG_IDENTIFYFLAG)))
5069 found = TRUE;
5070 index++;
5073 if (found)
5074 break;
5076 return (found);
5080 * Wait for a complete incoming message, parse it, and respond accordingly.
5082 static int
5083 ahd_parse_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
5085 struct ahd_initiator_tinfo *tinfo;
5086 struct ahd_tmode_tstate *tstate;
5087 int reject;
5088 int done;
5089 int response;
5091 done = MSGLOOP_IN_PROG;
5092 response = FALSE;
5093 reject = FALSE;
5094 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
5095 devinfo->target, &tstate);
5098 * Parse as much of the message as is available,
5099 * rejecting it if we don't support it. When
5100 * the entire message is available and has been
5101 * handled, return MSGLOOP_MSGCOMPLETE, indicating
5102 * that we have parsed an entire message.
5104 * In the case of extended messages, we accept the length
5105 * byte outright and perform more checking once we know the
5106 * extended message type.
5108 switch (ahd->msgin_buf[0]) {
5109 case MSG_DISCONNECT:
5110 case MSG_SAVEDATAPOINTER:
5111 case MSG_CMDCOMPLETE:
5112 case MSG_RESTOREPOINTERS:
5113 case MSG_IGN_WIDE_RESIDUE:
5115 * End our message loop as these are messages
5116 * the sequencer handles on its own.
5118 done = MSGLOOP_TERMINATED;
5119 break;
5120 case MSG_MESSAGE_REJECT:
5121 response = ahd_handle_msg_reject(ahd, devinfo);
5122 /* FALLTHROUGH */
5123 case MSG_NOOP:
5124 done = MSGLOOP_MSGCOMPLETE;
5125 break;
5126 case MSG_EXTENDED:
5128 /* Wait for enough of the message to begin validation */
5129 if (ahd->msgin_index < 2)
5130 break;
5131 switch (ahd->msgin_buf[2]) {
5132 case MSG_EXT_SDTR:
5134 u_int period;
5135 u_int ppr_options;
5136 u_int offset;
5137 u_int saved_offset;
5139 if (ahd->msgin_buf[1] != MSG_EXT_SDTR_LEN) {
5140 reject = TRUE;
5141 break;
5145 * Wait until we have both args before validating
5146 * and acting on this message.
5148 * Add one to MSG_EXT_SDTR_LEN to account for
5149 * the extended message preamble.
5151 if (ahd->msgin_index < (MSG_EXT_SDTR_LEN + 1))
5152 break;
5154 period = ahd->msgin_buf[3];
5155 ppr_options = 0;
5156 saved_offset = offset = ahd->msgin_buf[4];
5157 ahd_devlimited_syncrate(ahd, tinfo, &period,
5158 &ppr_options, devinfo->role);
5159 ahd_validate_offset(ahd, tinfo, period, &offset,
5160 tinfo->curr.width, devinfo->role);
5161 if (bootverbose) {
5162 printk("(%s:%c:%d:%d): Received "
5163 "SDTR period %x, offset %x\n\t"
5164 "Filtered to period %x, offset %x\n",
5165 ahd_name(ahd), devinfo->channel,
5166 devinfo->target, devinfo->lun,
5167 ahd->msgin_buf[3], saved_offset,
5168 period, offset);
5170 ahd_set_syncrate(ahd, devinfo, period,
5171 offset, ppr_options,
5172 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5173 /*paused*/TRUE);
5176 * See if we initiated Sync Negotiation
5177 * and didn't have to fall down to async
5178 * transfers.
5180 if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, TRUE)) {
5181 /* We started it */
5182 if (saved_offset != offset) {
5183 /* Went too low - force async */
5184 reject = TRUE;
5186 } else {
5188 * Send our own SDTR in reply
5190 if (bootverbose
5191 && devinfo->role == ROLE_INITIATOR) {
5192 printk("(%s:%c:%d:%d): Target "
5193 "Initiated SDTR\n",
5194 ahd_name(ahd), devinfo->channel,
5195 devinfo->target, devinfo->lun);
5197 ahd->msgout_index = 0;
5198 ahd->msgout_len = 0;
5199 ahd_construct_sdtr(ahd, devinfo,
5200 period, offset);
5201 ahd->msgout_index = 0;
5202 response = TRUE;
5204 done = MSGLOOP_MSGCOMPLETE;
5205 break;
5207 case MSG_EXT_WDTR:
5209 u_int bus_width;
5210 u_int saved_width;
5211 u_int sending_reply;
5213 sending_reply = FALSE;
5214 if (ahd->msgin_buf[1] != MSG_EXT_WDTR_LEN) {
5215 reject = TRUE;
5216 break;
5220 * Wait until we have our arg before validating
5221 * and acting on this message.
5223 * Add one to MSG_EXT_WDTR_LEN to account for
5224 * the extended message preamble.
5226 if (ahd->msgin_index < (MSG_EXT_WDTR_LEN + 1))
5227 break;
5229 bus_width = ahd->msgin_buf[3];
5230 saved_width = bus_width;
5231 ahd_validate_width(ahd, tinfo, &bus_width,
5232 devinfo->role);
5233 if (bootverbose) {
5234 printk("(%s:%c:%d:%d): Received WDTR "
5235 "%x filtered to %x\n",
5236 ahd_name(ahd), devinfo->channel,
5237 devinfo->target, devinfo->lun,
5238 saved_width, bus_width);
5241 if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, TRUE)) {
5243 * Don't send a WDTR back to the
5244 * target, since we asked first.
5245 * If the width went higher than our
5246 * request, reject it.
5248 if (saved_width > bus_width) {
5249 reject = TRUE;
5250 printk("(%s:%c:%d:%d): requested %dBit "
5251 "transfers. Rejecting...\n",
5252 ahd_name(ahd), devinfo->channel,
5253 devinfo->target, devinfo->lun,
5254 8 * (0x01 << bus_width));
5255 bus_width = 0;
5257 } else {
5259 * Send our own WDTR in reply
5261 if (bootverbose
5262 && devinfo->role == ROLE_INITIATOR) {
5263 printk("(%s:%c:%d:%d): Target "
5264 "Initiated WDTR\n",
5265 ahd_name(ahd), devinfo->channel,
5266 devinfo->target, devinfo->lun);
5268 ahd->msgout_index = 0;
5269 ahd->msgout_len = 0;
5270 ahd_construct_wdtr(ahd, devinfo, bus_width);
5271 ahd->msgout_index = 0;
5272 response = TRUE;
5273 sending_reply = TRUE;
5276 * After a wide message, we are async, but
5277 * some devices don't seem to honor this portion
5278 * of the spec. Force a renegotiation of the
5279 * sync component of our transfer agreement even
5280 * if our goal is async. By updating our width
5281 * after forcing the negotiation, we avoid
5282 * renegotiating for width.
5284 ahd_update_neg_request(ahd, devinfo, tstate,
5285 tinfo, AHD_NEG_ALWAYS);
5286 ahd_set_width(ahd, devinfo, bus_width,
5287 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5288 /*paused*/TRUE);
5289 if (sending_reply == FALSE && reject == FALSE) {
5292 * We will always have an SDTR to send.
5294 ahd->msgout_index = 0;
5295 ahd->msgout_len = 0;
5296 ahd_build_transfer_msg(ahd, devinfo);
5297 ahd->msgout_index = 0;
5298 response = TRUE;
5300 done = MSGLOOP_MSGCOMPLETE;
5301 break;
5303 case MSG_EXT_PPR:
5305 u_int period;
5306 u_int offset;
5307 u_int bus_width;
5308 u_int ppr_options;
5309 u_int saved_width;
5310 u_int saved_offset;
5311 u_int saved_ppr_options;
5313 if (ahd->msgin_buf[1] != MSG_EXT_PPR_LEN) {
5314 reject = TRUE;
5315 break;
5319 * Wait until we have all args before validating
5320 * and acting on this message.
5322 * Add one to MSG_EXT_PPR_LEN to account for
5323 * the extended message preamble.
5325 if (ahd->msgin_index < (MSG_EXT_PPR_LEN + 1))
5326 break;
5328 period = ahd->msgin_buf[3];
5329 offset = ahd->msgin_buf[5];
5330 bus_width = ahd->msgin_buf[6];
5331 saved_width = bus_width;
5332 ppr_options = ahd->msgin_buf[7];
5334 * According to the spec, a DT only
5335 * period factor with no DT option
5336 * set implies async.
5338 if ((ppr_options & MSG_EXT_PPR_DT_REQ) == 0
5339 && period <= 9)
5340 offset = 0;
5341 saved_ppr_options = ppr_options;
5342 saved_offset = offset;
5345 * Transfer options are only available if we
5346 * are negotiating wide.
5348 if (bus_width == 0)
5349 ppr_options &= MSG_EXT_PPR_QAS_REQ;
5351 ahd_validate_width(ahd, tinfo, &bus_width,
5352 devinfo->role);
5353 ahd_devlimited_syncrate(ahd, tinfo, &period,
5354 &ppr_options, devinfo->role);
5355 ahd_validate_offset(ahd, tinfo, period, &offset,
5356 bus_width, devinfo->role);
5358 if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, TRUE)) {
5360 * If we are unable to do any of the
5361 * requested options (we went too low),
5362 * then we'll have to reject the message.
5364 if (saved_width > bus_width
5365 || saved_offset != offset
5366 || saved_ppr_options != ppr_options) {
5367 reject = TRUE;
5368 period = 0;
5369 offset = 0;
5370 bus_width = 0;
5371 ppr_options = 0;
5373 } else {
5374 if (devinfo->role != ROLE_TARGET)
5375 printk("(%s:%c:%d:%d): Target "
5376 "Initiated PPR\n",
5377 ahd_name(ahd), devinfo->channel,
5378 devinfo->target, devinfo->lun);
5379 else
5380 printk("(%s:%c:%d:%d): Initiator "
5381 "Initiated PPR\n",
5382 ahd_name(ahd), devinfo->channel,
5383 devinfo->target, devinfo->lun);
5384 ahd->msgout_index = 0;
5385 ahd->msgout_len = 0;
5386 ahd_construct_ppr(ahd, devinfo, period, offset,
5387 bus_width, ppr_options);
5388 ahd->msgout_index = 0;
5389 response = TRUE;
5391 if (bootverbose) {
5392 printk("(%s:%c:%d:%d): Received PPR width %x, "
5393 "period %x, offset %x,options %x\n"
5394 "\tFiltered to width %x, period %x, "
5395 "offset %x, options %x\n",
5396 ahd_name(ahd), devinfo->channel,
5397 devinfo->target, devinfo->lun,
5398 saved_width, ahd->msgin_buf[3],
5399 saved_offset, saved_ppr_options,
5400 bus_width, period, offset, ppr_options);
5402 ahd_set_width(ahd, devinfo, bus_width,
5403 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5404 /*paused*/TRUE);
5405 ahd_set_syncrate(ahd, devinfo, period,
5406 offset, ppr_options,
5407 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5408 /*paused*/TRUE);
5410 done = MSGLOOP_MSGCOMPLETE;
5411 break;
5413 default:
5414 /* Unknown extended message. Reject it. */
5415 reject = TRUE;
5416 break;
5418 break;
5420 #ifdef AHD_TARGET_MODE
5421 case MSG_BUS_DEV_RESET:
5422 ahd_handle_devreset(ahd, devinfo, CAM_LUN_WILDCARD,
5423 CAM_BDR_SENT,
5424 "Bus Device Reset Received",
5425 /*verbose_level*/0);
5426 ahd_restart(ahd);
5427 done = MSGLOOP_TERMINATED;
5428 break;
5429 case MSG_ABORT_TAG:
5430 case MSG_ABORT:
5431 case MSG_CLEAR_QUEUE:
5433 int tag;
5435 /* Target mode messages */
5436 if (devinfo->role != ROLE_TARGET) {
5437 reject = TRUE;
5438 break;
5440 tag = SCB_LIST_NULL;
5441 if (ahd->msgin_buf[0] == MSG_ABORT_TAG)
5442 tag = ahd_inb(ahd, INITIATOR_TAG);
5443 ahd_abort_scbs(ahd, devinfo->target, devinfo->channel,
5444 devinfo->lun, tag, ROLE_TARGET,
5445 CAM_REQ_ABORTED);
5447 tstate = ahd->enabled_targets[devinfo->our_scsiid];
5448 if (tstate != NULL) {
5449 struct ahd_tmode_lstate* lstate;
5451 lstate = tstate->enabled_luns[devinfo->lun];
5452 if (lstate != NULL) {
5453 ahd_queue_lstate_event(ahd, lstate,
5454 devinfo->our_scsiid,
5455 ahd->msgin_buf[0],
5456 /*arg*/tag);
5457 ahd_send_lstate_events(ahd, lstate);
5460 ahd_restart(ahd);
5461 done = MSGLOOP_TERMINATED;
5462 break;
5464 #endif
5465 case MSG_QAS_REQUEST:
5466 #ifdef AHD_DEBUG
5467 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
5468 printk("%s: QAS request. SCSISIGI == 0x%x\n",
5469 ahd_name(ahd), ahd_inb(ahd, SCSISIGI));
5470 #endif
5471 ahd->msg_flags |= MSG_FLAG_EXPECT_QASREJ_BUSFREE;
5472 /* FALLTHROUGH */
5473 case MSG_TERM_IO_PROC:
5474 default:
5475 reject = TRUE;
5476 break;
5479 if (reject) {
5481 * Setup to reject the message.
5483 ahd->msgout_index = 0;
5484 ahd->msgout_len = 1;
5485 ahd->msgout_buf[0] = MSG_MESSAGE_REJECT;
5486 done = MSGLOOP_MSGCOMPLETE;
5487 response = TRUE;
5490 if (done != MSGLOOP_IN_PROG && !response)
5491 /* Clear the outgoing message buffer */
5492 ahd->msgout_len = 0;
5494 return (done);
5498 * Process a message reject message.
5500 static int
5501 ahd_handle_msg_reject(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
5504 * What we care about here is if we had an
5505 * outstanding SDTR or WDTR message for this
5506 * target. If we did, this is a signal that
5507 * the target is refusing negotiation.
5509 struct scb *scb;
5510 struct ahd_initiator_tinfo *tinfo;
5511 struct ahd_tmode_tstate *tstate;
5512 u_int scb_index;
5513 u_int last_msg;
5514 int response = 0;
5516 scb_index = ahd_get_scbptr(ahd);
5517 scb = ahd_lookup_scb(ahd, scb_index);
5518 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel,
5519 devinfo->our_scsiid,
5520 devinfo->target, &tstate);
5521 /* Might be necessary */
5522 last_msg = ahd_inb(ahd, LAST_MSG);
5524 if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, /*full*/FALSE)) {
5525 if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, /*full*/TRUE)
5526 && tinfo->goal.period <= AHD_SYNCRATE_PACED) {
5528 * Target may not like our SPI-4 PPR Options.
5529 * Attempt to negotiate 80MHz which will turn
5530 * off these options.
5532 if (bootverbose) {
5533 printk("(%s:%c:%d:%d): PPR Rejected. "
5534 "Trying simple U160 PPR\n",
5535 ahd_name(ahd), devinfo->channel,
5536 devinfo->target, devinfo->lun);
5538 tinfo->goal.period = AHD_SYNCRATE_DT;
5539 tinfo->goal.ppr_options &= MSG_EXT_PPR_IU_REQ
5540 | MSG_EXT_PPR_QAS_REQ
5541 | MSG_EXT_PPR_DT_REQ;
5542 } else {
5544 * Target does not support the PPR message.
5545 * Attempt to negotiate SPI-2 style.
5547 if (bootverbose) {
5548 printk("(%s:%c:%d:%d): PPR Rejected. "
5549 "Trying WDTR/SDTR\n",
5550 ahd_name(ahd), devinfo->channel,
5551 devinfo->target, devinfo->lun);
5553 tinfo->goal.ppr_options = 0;
5554 tinfo->curr.transport_version = 2;
5555 tinfo->goal.transport_version = 2;
5557 ahd->msgout_index = 0;
5558 ahd->msgout_len = 0;
5559 ahd_build_transfer_msg(ahd, devinfo);
5560 ahd->msgout_index = 0;
5561 response = 1;
5562 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, /*full*/FALSE)) {
5564 /* note 8bit xfers */
5565 printk("(%s:%c:%d:%d): refuses WIDE negotiation. Using "
5566 "8bit transfers\n", ahd_name(ahd),
5567 devinfo->channel, devinfo->target, devinfo->lun);
5568 ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
5569 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5570 /*paused*/TRUE);
5572 * No need to clear the sync rate. If the target
5573 * did not accept the command, our syncrate is
5574 * unaffected. If the target started the negotiation,
5575 * but rejected our response, we already cleared the
5576 * sync rate before sending our WDTR.
5578 if (tinfo->goal.offset != tinfo->curr.offset) {
5580 /* Start the sync negotiation */
5581 ahd->msgout_index = 0;
5582 ahd->msgout_len = 0;
5583 ahd_build_transfer_msg(ahd, devinfo);
5584 ahd->msgout_index = 0;
5585 response = 1;
5587 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, /*full*/FALSE)) {
5588 /* note asynch xfers and clear flag */
5589 ahd_set_syncrate(ahd, devinfo, /*period*/0,
5590 /*offset*/0, /*ppr_options*/0,
5591 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5592 /*paused*/TRUE);
5593 printk("(%s:%c:%d:%d): refuses synchronous negotiation. "
5594 "Using asynchronous transfers\n",
5595 ahd_name(ahd), devinfo->channel,
5596 devinfo->target, devinfo->lun);
5597 } else if ((scb->hscb->control & MSG_SIMPLE_TASK) != 0) {
5598 int tag_type;
5599 int mask;
5601 tag_type = (scb->hscb->control & MSG_SIMPLE_TASK);
5603 if (tag_type == MSG_SIMPLE_TASK) {
5604 printk("(%s:%c:%d:%d): refuses tagged commands. "
5605 "Performing non-tagged I/O\n", ahd_name(ahd),
5606 devinfo->channel, devinfo->target, devinfo->lun);
5607 ahd_set_tags(ahd, scb->io_ctx, devinfo, AHD_QUEUE_NONE);
5608 mask = ~0x23;
5609 } else {
5610 printk("(%s:%c:%d:%d): refuses %s tagged commands. "
5611 "Performing simple queue tagged I/O only\n",
5612 ahd_name(ahd), devinfo->channel, devinfo->target,
5613 devinfo->lun, tag_type == MSG_ORDERED_TASK
5614 ? "ordered" : "head of queue");
5615 ahd_set_tags(ahd, scb->io_ctx, devinfo, AHD_QUEUE_BASIC);
5616 mask = ~0x03;
5620 * Resend the identify for this CCB as the target
5621 * may believe that the selection is invalid otherwise.
5623 ahd_outb(ahd, SCB_CONTROL,
5624 ahd_inb_scbram(ahd, SCB_CONTROL) & mask);
5625 scb->hscb->control &= mask;
5626 ahd_set_transaction_tag(scb, /*enabled*/FALSE,
5627 /*type*/MSG_SIMPLE_TASK);
5628 ahd_outb(ahd, MSG_OUT, MSG_IDENTIFYFLAG);
5629 ahd_assert_atn(ahd);
5630 ahd_busy_tcl(ahd, BUILD_TCL(scb->hscb->scsiid, devinfo->lun),
5631 SCB_GET_TAG(scb));
5634 * Requeue all tagged commands for this target
5635 * currently in our possession so they can be
5636 * converted to untagged commands.
5638 ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
5639 SCB_GET_CHANNEL(ahd, scb),
5640 SCB_GET_LUN(scb), /*tag*/SCB_LIST_NULL,
5641 ROLE_INITIATOR, CAM_REQUEUE_REQ,
5642 SEARCH_COMPLETE);
5643 } else if (ahd_sent_msg(ahd, AHDMSG_1B, MSG_IDENTIFYFLAG, TRUE)) {
5645 * Most likely the device believes that we had
5646 * previously negotiated packetized.
5648 ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE
5649 | MSG_FLAG_IU_REQ_CHANGED;
5651 ahd_force_renegotiation(ahd, devinfo);
5652 ahd->msgout_index = 0;
5653 ahd->msgout_len = 0;
5654 ahd_build_transfer_msg(ahd, devinfo);
5655 ahd->msgout_index = 0;
5656 response = 1;
5657 } else {
5659 * Otherwise, we ignore it.
5661 printk("%s:%c:%d: Message reject for %x -- ignored\n",
5662 ahd_name(ahd), devinfo->channel, devinfo->target,
5663 last_msg);
5665 return (response);
5669 * Process an ingnore wide residue message.
5671 static void
5672 ahd_handle_ign_wide_residue(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
5674 u_int scb_index;
5675 struct scb *scb;
5677 scb_index = ahd_get_scbptr(ahd);
5678 scb = ahd_lookup_scb(ahd, scb_index);
5680 * XXX Actually check data direction in the sequencer?
5681 * Perhaps add datadir to some spare bits in the hscb?
5683 if ((ahd_inb(ahd, SEQ_FLAGS) & DPHASE) == 0
5684 || ahd_get_transfer_dir(scb) != CAM_DIR_IN) {
5686 * Ignore the message if we haven't
5687 * seen an appropriate data phase yet.
5689 } else {
5691 * If the residual occurred on the last
5692 * transfer and the transfer request was
5693 * expected to end on an odd count, do
5694 * nothing. Otherwise, subtract a byte
5695 * and update the residual count accordingly.
5697 uint32_t sgptr;
5699 sgptr = ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR);
5700 if ((sgptr & SG_LIST_NULL) != 0
5701 && (ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE)
5702 & SCB_XFERLEN_ODD) != 0) {
5704 * If the residual occurred on the last
5705 * transfer and the transfer request was
5706 * expected to end on an odd count, do
5707 * nothing.
5709 } else {
5710 uint32_t data_cnt;
5711 uint64_t data_addr;
5712 uint32_t sglen;
5714 /* Pull in the rest of the sgptr */
5715 sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
5716 data_cnt = ahd_inl_scbram(ahd, SCB_RESIDUAL_DATACNT);
5717 if ((sgptr & SG_LIST_NULL) != 0) {
5719 * The residual data count is not updated
5720 * for the command run to completion case.
5721 * Explicitly zero the count.
5723 data_cnt &= ~AHD_SG_LEN_MASK;
5725 data_addr = ahd_inq(ahd, SHADDR);
5726 data_cnt += 1;
5727 data_addr -= 1;
5728 sgptr &= SG_PTR_MASK;
5729 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
5730 struct ahd_dma64_seg *sg;
5732 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5735 * The residual sg ptr points to the next S/G
5736 * to load so we must go back one.
5738 sg--;
5739 sglen = ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
5740 if (sg != scb->sg_list
5741 && sglen < (data_cnt & AHD_SG_LEN_MASK)) {
5743 sg--;
5744 sglen = ahd_le32toh(sg->len);
5746 * Preserve High Address and SG_LIST
5747 * bits while setting the count to 1.
5749 data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK));
5750 data_addr = ahd_le64toh(sg->addr)
5751 + (sglen & AHD_SG_LEN_MASK)
5752 - 1;
5755 * Increment sg so it points to the
5756 * "next" sg.
5758 sg++;
5759 sgptr = ahd_sg_virt_to_bus(ahd, scb,
5760 sg);
5762 } else {
5763 struct ahd_dma_seg *sg;
5765 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5768 * The residual sg ptr points to the next S/G
5769 * to load so we must go back one.
5771 sg--;
5772 sglen = ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
5773 if (sg != scb->sg_list
5774 && sglen < (data_cnt & AHD_SG_LEN_MASK)) {
5776 sg--;
5777 sglen = ahd_le32toh(sg->len);
5779 * Preserve High Address and SG_LIST
5780 * bits while setting the count to 1.
5782 data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK));
5783 data_addr = ahd_le32toh(sg->addr)
5784 + (sglen & AHD_SG_LEN_MASK)
5785 - 1;
5788 * Increment sg so it points to the
5789 * "next" sg.
5791 sg++;
5792 sgptr = ahd_sg_virt_to_bus(ahd, scb,
5793 sg);
5797 * Toggle the "oddness" of the transfer length
5798 * to handle this mid-transfer ignore wide
5799 * residue. This ensures that the oddness is
5800 * correct for subsequent data transfers.
5802 ahd_outb(ahd, SCB_TASK_ATTRIBUTE,
5803 ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE)
5804 ^ SCB_XFERLEN_ODD);
5806 ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
5807 ahd_outl(ahd, SCB_RESIDUAL_DATACNT, data_cnt);
5809 * The FIFO's pointers will be updated if/when the
5810 * sequencer re-enters a data phase.
5818 * Reinitialize the data pointers for the active transfer
5819 * based on its current residual.
5821 static void
5822 ahd_reinitialize_dataptrs(struct ahd_softc *ahd)
5824 struct scb *scb;
5825 ahd_mode_state saved_modes;
5826 u_int scb_index;
5827 u_int wait;
5828 uint32_t sgptr;
5829 uint32_t resid;
5830 uint64_t dataptr;
5832 AHD_ASSERT_MODES(ahd, AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK,
5833 AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK);
5835 scb_index = ahd_get_scbptr(ahd);
5836 scb = ahd_lookup_scb(ahd, scb_index);
5839 * Release and reacquire the FIFO so we
5840 * have a clean slate.
5842 ahd_outb(ahd, DFFSXFRCTL, CLRCHN);
5843 wait = 1000;
5844 while (--wait && !(ahd_inb(ahd, MDFFSTAT) & FIFOFREE))
5845 ahd_delay(100);
5846 if (wait == 0) {
5847 ahd_print_path(ahd, scb);
5848 printk("ahd_reinitialize_dataptrs: Forcing FIFO free.\n");
5849 ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT);
5851 saved_modes = ahd_save_modes(ahd);
5852 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
5853 ahd_outb(ahd, DFFSTAT,
5854 ahd_inb(ahd, DFFSTAT)
5855 | (saved_modes == 0x11 ? CURRFIFO_1 : CURRFIFO_0));
5858 * Determine initial values for data_addr and data_cnt
5859 * for resuming the data phase.
5861 sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
5862 sgptr &= SG_PTR_MASK;
5864 resid = (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 2) << 16)
5865 | (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 1) << 8)
5866 | ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT);
5868 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
5869 struct ahd_dma64_seg *sg;
5871 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5873 /* The residual sg_ptr always points to the next sg */
5874 sg--;
5876 dataptr = ahd_le64toh(sg->addr)
5877 + (ahd_le32toh(sg->len) & AHD_SG_LEN_MASK)
5878 - resid;
5879 ahd_outl(ahd, HADDR + 4, dataptr >> 32);
5880 } else {
5881 struct ahd_dma_seg *sg;
5883 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5885 /* The residual sg_ptr always points to the next sg */
5886 sg--;
5888 dataptr = ahd_le32toh(sg->addr)
5889 + (ahd_le32toh(sg->len) & AHD_SG_LEN_MASK)
5890 - resid;
5891 ahd_outb(ahd, HADDR + 4,
5892 (ahd_le32toh(sg->len) & ~AHD_SG_LEN_MASK) >> 24);
5894 ahd_outl(ahd, HADDR, dataptr);
5895 ahd_outb(ahd, HCNT + 2, resid >> 16);
5896 ahd_outb(ahd, HCNT + 1, resid >> 8);
5897 ahd_outb(ahd, HCNT, resid);
5901 * Handle the effects of issuing a bus device reset message.
5903 static void
5904 ahd_handle_devreset(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
5905 u_int lun, cam_status status, char *message,
5906 int verbose_level)
5908 #ifdef AHD_TARGET_MODE
5909 struct ahd_tmode_tstate* tstate;
5910 #endif
5911 int found;
5913 found = ahd_abort_scbs(ahd, devinfo->target, devinfo->channel,
5914 lun, SCB_LIST_NULL, devinfo->role,
5915 status);
5917 #ifdef AHD_TARGET_MODE
5919 * Send an immediate notify ccb to all target mord peripheral
5920 * drivers affected by this action.
5922 tstate = ahd->enabled_targets[devinfo->our_scsiid];
5923 if (tstate != NULL) {
5924 u_int cur_lun;
5925 u_int max_lun;
5927 if (lun != CAM_LUN_WILDCARD) {
5928 cur_lun = 0;
5929 max_lun = AHD_NUM_LUNS - 1;
5930 } else {
5931 cur_lun = lun;
5932 max_lun = lun;
5934 for (;cur_lun <= max_lun; cur_lun++) {
5935 struct ahd_tmode_lstate* lstate;
5937 lstate = tstate->enabled_luns[cur_lun];
5938 if (lstate == NULL)
5939 continue;
5941 ahd_queue_lstate_event(ahd, lstate, devinfo->our_scsiid,
5942 MSG_BUS_DEV_RESET, /*arg*/0);
5943 ahd_send_lstate_events(ahd, lstate);
5946 #endif
5949 * Go back to async/narrow transfers and renegotiate.
5951 ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
5952 AHD_TRANS_CUR, /*paused*/TRUE);
5953 ahd_set_syncrate(ahd, devinfo, /*period*/0, /*offset*/0,
5954 /*ppr_options*/0, AHD_TRANS_CUR,
5955 /*paused*/TRUE);
5957 if (status != CAM_SEL_TIMEOUT)
5958 ahd_send_async(ahd, devinfo->channel, devinfo->target,
5959 CAM_LUN_WILDCARD, AC_SENT_BDR);
5961 if (message != NULL && bootverbose)
5962 printk("%s: %s on %c:%d. %d SCBs aborted\n", ahd_name(ahd),
5963 message, devinfo->channel, devinfo->target, found);
5966 #ifdef AHD_TARGET_MODE
5967 static void
5968 ahd_setup_target_msgin(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
5969 struct scb *scb)
5973 * To facilitate adding multiple messages together,
5974 * each routine should increment the index and len
5975 * variables instead of setting them explicitly.
5977 ahd->msgout_index = 0;
5978 ahd->msgout_len = 0;
5980 if (scb != NULL && (scb->flags & SCB_AUTO_NEGOTIATE) != 0)
5981 ahd_build_transfer_msg(ahd, devinfo);
5982 else
5983 panic("ahd_intr: AWAITING target message with no message");
5985 ahd->msgout_index = 0;
5986 ahd->msg_type = MSG_TYPE_TARGET_MSGIN;
5988 #endif
5989 /**************************** Initialization **********************************/
5990 static u_int
5991 ahd_sglist_size(struct ahd_softc *ahd)
5993 bus_size_t list_size;
5995 list_size = sizeof(struct ahd_dma_seg) * AHD_NSEG;
5996 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
5997 list_size = sizeof(struct ahd_dma64_seg) * AHD_NSEG;
5998 return (list_size);
6002 * Calculate the optimum S/G List allocation size. S/G elements used
6003 * for a given transaction must be physically contiguous. Assume the
6004 * OS will allocate full pages to us, so it doesn't make sense to request
6005 * less than a page.
6007 static u_int
6008 ahd_sglist_allocsize(struct ahd_softc *ahd)
6010 bus_size_t sg_list_increment;
6011 bus_size_t sg_list_size;
6012 bus_size_t max_list_size;
6013 bus_size_t best_list_size;
6015 /* Start out with the minimum required for AHD_NSEG. */
6016 sg_list_increment = ahd_sglist_size(ahd);
6017 sg_list_size = sg_list_increment;
6019 /* Get us as close as possible to a page in size. */
6020 while ((sg_list_size + sg_list_increment) <= PAGE_SIZE)
6021 sg_list_size += sg_list_increment;
6024 * Try to reduce the amount of wastage by allocating
6025 * multiple pages.
6027 best_list_size = sg_list_size;
6028 max_list_size = roundup(sg_list_increment, PAGE_SIZE);
6029 if (max_list_size < 4 * PAGE_SIZE)
6030 max_list_size = 4 * PAGE_SIZE;
6031 if (max_list_size > (AHD_SCB_MAX_ALLOC * sg_list_increment))
6032 max_list_size = (AHD_SCB_MAX_ALLOC * sg_list_increment);
6033 while ((sg_list_size + sg_list_increment) <= max_list_size
6034 && (sg_list_size % PAGE_SIZE) != 0) {
6035 bus_size_t new_mod;
6036 bus_size_t best_mod;
6038 sg_list_size += sg_list_increment;
6039 new_mod = sg_list_size % PAGE_SIZE;
6040 best_mod = best_list_size % PAGE_SIZE;
6041 if (new_mod > best_mod || new_mod == 0) {
6042 best_list_size = sg_list_size;
6045 return (best_list_size);
6049 * Allocate a controller structure for a new device
6050 * and perform initial initializion.
6052 struct ahd_softc *
6053 ahd_alloc(void *platform_arg, char *name)
6055 struct ahd_softc *ahd;
6057 ahd = kmalloc(sizeof(*ahd), GFP_ATOMIC);
6058 if (!ahd) {
6059 printk("aic7xxx: cannot malloc softc!\n");
6060 kfree(name);
6061 return NULL;
6064 memset(ahd, 0, sizeof(*ahd));
6065 ahd->seep_config = kmalloc(sizeof(*ahd->seep_config), GFP_ATOMIC);
6066 if (ahd->seep_config == NULL) {
6067 kfree(ahd);
6068 kfree(name);
6069 return (NULL);
6071 LIST_INIT(&ahd->pending_scbs);
6072 /* We don't know our unit number until the OSM sets it */
6073 ahd->name = name;
6074 ahd->unit = -1;
6075 ahd->description = NULL;
6076 ahd->bus_description = NULL;
6077 ahd->channel = 'A';
6078 ahd->chip = AHD_NONE;
6079 ahd->features = AHD_FENONE;
6080 ahd->bugs = AHD_BUGNONE;
6081 ahd->flags = AHD_SPCHK_ENB_A|AHD_RESET_BUS_A|AHD_TERM_ENB_A
6082 | AHD_EXTENDED_TRANS_A|AHD_STPWLEVEL_A;
6083 timer_setup(&ahd->stat_timer, ahd_stat_timer, 0);
6084 ahd->int_coalescing_timer = AHD_INT_COALESCING_TIMER_DEFAULT;
6085 ahd->int_coalescing_maxcmds = AHD_INT_COALESCING_MAXCMDS_DEFAULT;
6086 ahd->int_coalescing_mincmds = AHD_INT_COALESCING_MINCMDS_DEFAULT;
6087 ahd->int_coalescing_threshold = AHD_INT_COALESCING_THRESHOLD_DEFAULT;
6088 ahd->int_coalescing_stop_threshold =
6089 AHD_INT_COALESCING_STOP_THRESHOLD_DEFAULT;
6091 #ifdef AHD_DEBUG
6092 if ((ahd_debug & AHD_SHOW_MEMORY) != 0) {
6093 printk("%s: scb size = 0x%x, hscb size = 0x%x\n",
6094 ahd_name(ahd), (u_int)sizeof(struct scb),
6095 (u_int)sizeof(struct hardware_scb));
6097 #endif
6098 if (ahd_platform_alloc(ahd, platform_arg) != 0) {
6099 ahd_free(ahd);
6100 ahd = NULL;
6102 return (ahd);
6106 ahd_softc_init(struct ahd_softc *ahd)
6109 ahd->unpause = 0;
6110 ahd->pause = PAUSE;
6111 return (0);
6114 void
6115 ahd_set_unit(struct ahd_softc *ahd, int unit)
6117 ahd->unit = unit;
6120 void
6121 ahd_set_name(struct ahd_softc *ahd, char *name)
6123 if (ahd->name != NULL)
6124 kfree(ahd->name);
6125 ahd->name = name;
6128 void
6129 ahd_free(struct ahd_softc *ahd)
6131 int i;
6133 switch (ahd->init_level) {
6134 default:
6135 case 5:
6136 ahd_shutdown(ahd);
6137 /* FALLTHROUGH */
6138 case 4:
6139 ahd_dmamap_unload(ahd, ahd->shared_data_dmat,
6140 ahd->shared_data_map.dmamap);
6141 /* FALLTHROUGH */
6142 case 3:
6143 ahd_dmamem_free(ahd, ahd->shared_data_dmat, ahd->qoutfifo,
6144 ahd->shared_data_map.dmamap);
6145 ahd_dmamap_destroy(ahd, ahd->shared_data_dmat,
6146 ahd->shared_data_map.dmamap);
6147 /* FALLTHROUGH */
6148 case 2:
6149 ahd_dma_tag_destroy(ahd, ahd->shared_data_dmat);
6150 case 1:
6151 break;
6152 case 0:
6153 break;
6156 ahd_platform_free(ahd);
6157 ahd_fini_scbdata(ahd);
6158 for (i = 0; i < AHD_NUM_TARGETS; i++) {
6159 struct ahd_tmode_tstate *tstate;
6161 tstate = ahd->enabled_targets[i];
6162 if (tstate != NULL) {
6163 #ifdef AHD_TARGET_MODE
6164 int j;
6166 for (j = 0; j < AHD_NUM_LUNS; j++) {
6167 struct ahd_tmode_lstate *lstate;
6169 lstate = tstate->enabled_luns[j];
6170 if (lstate != NULL) {
6171 xpt_free_path(lstate->path);
6172 kfree(lstate);
6175 #endif
6176 kfree(tstate);
6179 #ifdef AHD_TARGET_MODE
6180 if (ahd->black_hole != NULL) {
6181 xpt_free_path(ahd->black_hole->path);
6182 kfree(ahd->black_hole);
6184 #endif
6185 if (ahd->name != NULL)
6186 kfree(ahd->name);
6187 if (ahd->seep_config != NULL)
6188 kfree(ahd->seep_config);
6189 if (ahd->saved_stack != NULL)
6190 kfree(ahd->saved_stack);
6191 kfree(ahd);
6192 return;
6195 static void
6196 ahd_shutdown(void *arg)
6198 struct ahd_softc *ahd;
6200 ahd = (struct ahd_softc *)arg;
6203 * Stop periodic timer callbacks.
6205 del_timer_sync(&ahd->stat_timer);
6207 /* This will reset most registers to 0, but not all */
6208 ahd_reset(ahd, /*reinit*/FALSE);
6212 * Reset the controller and record some information about it
6213 * that is only available just after a reset. If "reinit" is
6214 * non-zero, this reset occurred after initial configuration
6215 * and the caller requests that the chip be fully reinitialized
6216 * to a runable state. Chip interrupts are *not* enabled after
6217 * a reinitialization. The caller must enable interrupts via
6218 * ahd_intr_enable().
6221 ahd_reset(struct ahd_softc *ahd, int reinit)
6223 u_int sxfrctl1;
6224 int wait;
6225 uint32_t cmd;
6228 * Preserve the value of the SXFRCTL1 register for all channels.
6229 * It contains settings that affect termination and we don't want
6230 * to disturb the integrity of the bus.
6232 ahd_pause(ahd);
6233 ahd_update_modes(ahd);
6234 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6235 sxfrctl1 = ahd_inb(ahd, SXFRCTL1);
6237 cmd = ahd_pci_read_config(ahd->dev_softc, PCIR_COMMAND, /*bytes*/2);
6238 if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) {
6239 uint32_t mod_cmd;
6242 * A4 Razor #632
6243 * During the assertion of CHIPRST, the chip
6244 * does not disable its parity logic prior to
6245 * the start of the reset. This may cause a
6246 * parity error to be detected and thus a
6247 * spurious SERR or PERR assertion. Disable
6248 * PERR and SERR responses during the CHIPRST.
6250 mod_cmd = cmd & ~(PCIM_CMD_PERRESPEN|PCIM_CMD_SERRESPEN);
6251 ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND,
6252 mod_cmd, /*bytes*/2);
6254 ahd_outb(ahd, HCNTRL, CHIPRST | ahd->pause);
6257 * Ensure that the reset has finished. We delay 1000us
6258 * prior to reading the register to make sure the chip
6259 * has sufficiently completed its reset to handle register
6260 * accesses.
6262 wait = 1000;
6263 do {
6264 ahd_delay(1000);
6265 } while (--wait && !(ahd_inb(ahd, HCNTRL) & CHIPRSTACK));
6267 if (wait == 0) {
6268 printk("%s: WARNING - Failed chip reset! "
6269 "Trying to initialize anyway.\n", ahd_name(ahd));
6271 ahd_outb(ahd, HCNTRL, ahd->pause);
6273 if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) {
6275 * Clear any latched PCI error status and restore
6276 * previous SERR and PERR response enables.
6278 ahd_pci_write_config(ahd->dev_softc, PCIR_STATUS + 1,
6279 0xFF, /*bytes*/1);
6280 ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND,
6281 cmd, /*bytes*/2);
6285 * Mode should be SCSI after a chip reset, but lets
6286 * set it just to be safe. We touch the MODE_PTR
6287 * register directly so as to bypass the lazy update
6288 * code in ahd_set_modes().
6290 ahd_known_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6291 ahd_outb(ahd, MODE_PTR,
6292 ahd_build_mode_state(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI));
6295 * Restore SXFRCTL1.
6297 * We must always initialize STPWEN to 1 before we
6298 * restore the saved values. STPWEN is initialized
6299 * to a tri-state condition which can only be cleared
6300 * by turning it on.
6302 ahd_outb(ahd, SXFRCTL1, sxfrctl1|STPWEN);
6303 ahd_outb(ahd, SXFRCTL1, sxfrctl1);
6305 /* Determine chip configuration */
6306 ahd->features &= ~AHD_WIDE;
6307 if ((ahd_inb(ahd, SBLKCTL) & SELWIDE) != 0)
6308 ahd->features |= AHD_WIDE;
6311 * If a recovery action has forced a chip reset,
6312 * re-initialize the chip to our liking.
6314 if (reinit != 0)
6315 ahd_chip_init(ahd);
6317 return (0);
6321 * Determine the number of SCBs available on the controller
6323 static int
6324 ahd_probe_scbs(struct ahd_softc *ahd) {
6325 int i;
6327 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
6328 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
6329 for (i = 0; i < AHD_SCB_MAX; i++) {
6330 int j;
6332 ahd_set_scbptr(ahd, i);
6333 ahd_outw(ahd, SCB_BASE, i);
6334 for (j = 2; j < 64; j++)
6335 ahd_outb(ahd, SCB_BASE+j, 0);
6336 /* Start out life as unallocated (needing an abort) */
6337 ahd_outb(ahd, SCB_CONTROL, MK_MESSAGE);
6338 if (ahd_inw_scbram(ahd, SCB_BASE) != i)
6339 break;
6340 ahd_set_scbptr(ahd, 0);
6341 if (ahd_inw_scbram(ahd, SCB_BASE) != 0)
6342 break;
6344 return (i);
6347 static void
6348 ahd_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
6350 dma_addr_t *baddr;
6352 baddr = (dma_addr_t *)arg;
6353 *baddr = segs->ds_addr;
6356 static void
6357 ahd_initialize_hscbs(struct ahd_softc *ahd)
6359 int i;
6361 for (i = 0; i < ahd->scb_data.maxhscbs; i++) {
6362 ahd_set_scbptr(ahd, i);
6364 /* Clear the control byte. */
6365 ahd_outb(ahd, SCB_CONTROL, 0);
6367 /* Set the next pointer */
6368 ahd_outw(ahd, SCB_NEXT, SCB_LIST_NULL);
6372 static int
6373 ahd_init_scbdata(struct ahd_softc *ahd)
6375 struct scb_data *scb_data;
6376 int i;
6378 scb_data = &ahd->scb_data;
6379 TAILQ_INIT(&scb_data->free_scbs);
6380 for (i = 0; i < AHD_NUM_TARGETS * AHD_NUM_LUNS_NONPKT; i++)
6381 LIST_INIT(&scb_data->free_scb_lists[i]);
6382 LIST_INIT(&scb_data->any_dev_free_scb_list);
6383 SLIST_INIT(&scb_data->hscb_maps);
6384 SLIST_INIT(&scb_data->sg_maps);
6385 SLIST_INIT(&scb_data->sense_maps);
6387 /* Determine the number of hardware SCBs and initialize them */
6388 scb_data->maxhscbs = ahd_probe_scbs(ahd);
6389 if (scb_data->maxhscbs == 0) {
6390 printk("%s: No SCB space found\n", ahd_name(ahd));
6391 return (ENXIO);
6394 ahd_initialize_hscbs(ahd);
6397 * Create our DMA tags. These tags define the kinds of device
6398 * accessible memory allocations and memory mappings we will
6399 * need to perform during normal operation.
6401 * Unless we need to further restrict the allocation, we rely
6402 * on the restrictions of the parent dmat, hence the common
6403 * use of MAXADDR and MAXSIZE.
6406 /* DMA tag for our hardware scb structures */
6407 if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
6408 /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
6409 /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
6410 /*highaddr*/BUS_SPACE_MAXADDR,
6411 /*filter*/NULL, /*filterarg*/NULL,
6412 PAGE_SIZE, /*nsegments*/1,
6413 /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
6414 /*flags*/0, &scb_data->hscb_dmat) != 0) {
6415 goto error_exit;
6418 scb_data->init_level++;
6420 /* DMA tag for our S/G structures. */
6421 if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/8,
6422 /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
6423 /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
6424 /*highaddr*/BUS_SPACE_MAXADDR,
6425 /*filter*/NULL, /*filterarg*/NULL,
6426 ahd_sglist_allocsize(ahd), /*nsegments*/1,
6427 /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
6428 /*flags*/0, &scb_data->sg_dmat) != 0) {
6429 goto error_exit;
6431 #ifdef AHD_DEBUG
6432 if ((ahd_debug & AHD_SHOW_MEMORY) != 0)
6433 printk("%s: ahd_sglist_allocsize = 0x%x\n", ahd_name(ahd),
6434 ahd_sglist_allocsize(ahd));
6435 #endif
6437 scb_data->init_level++;
6439 /* DMA tag for our sense buffers. We allocate in page sized chunks */
6440 if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
6441 /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
6442 /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
6443 /*highaddr*/BUS_SPACE_MAXADDR,
6444 /*filter*/NULL, /*filterarg*/NULL,
6445 PAGE_SIZE, /*nsegments*/1,
6446 /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
6447 /*flags*/0, &scb_data->sense_dmat) != 0) {
6448 goto error_exit;
6451 scb_data->init_level++;
6453 /* Perform initial CCB allocation */
6454 ahd_alloc_scbs(ahd);
6456 if (scb_data->numscbs == 0) {
6457 printk("%s: ahd_init_scbdata - "
6458 "Unable to allocate initial scbs\n",
6459 ahd_name(ahd));
6460 goto error_exit;
6464 * Note that we were successful
6466 return (0);
6468 error_exit:
6470 return (ENOMEM);
6473 static struct scb *
6474 ahd_find_scb_by_tag(struct ahd_softc *ahd, u_int tag)
6476 struct scb *scb;
6479 * Look on the pending list.
6481 LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
6482 if (SCB_GET_TAG(scb) == tag)
6483 return (scb);
6487 * Then on all of the collision free lists.
6489 TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
6490 struct scb *list_scb;
6492 list_scb = scb;
6493 do {
6494 if (SCB_GET_TAG(list_scb) == tag)
6495 return (list_scb);
6496 list_scb = LIST_NEXT(list_scb, collision_links);
6497 } while (list_scb);
6501 * And finally on the generic free list.
6503 LIST_FOREACH(scb, &ahd->scb_data.any_dev_free_scb_list, links.le) {
6504 if (SCB_GET_TAG(scb) == tag)
6505 return (scb);
6508 return (NULL);
6511 static void
6512 ahd_fini_scbdata(struct ahd_softc *ahd)
6514 struct scb_data *scb_data;
6516 scb_data = &ahd->scb_data;
6517 if (scb_data == NULL)
6518 return;
6520 switch (scb_data->init_level) {
6521 default:
6522 case 7:
6524 struct map_node *sns_map;
6526 while ((sns_map = SLIST_FIRST(&scb_data->sense_maps)) != NULL) {
6527 SLIST_REMOVE_HEAD(&scb_data->sense_maps, links);
6528 ahd_dmamap_unload(ahd, scb_data->sense_dmat,
6529 sns_map->dmamap);
6530 ahd_dmamem_free(ahd, scb_data->sense_dmat,
6531 sns_map->vaddr, sns_map->dmamap);
6532 kfree(sns_map);
6534 ahd_dma_tag_destroy(ahd, scb_data->sense_dmat);
6536 /* fall through */
6537 case 6:
6539 struct map_node *sg_map;
6541 while ((sg_map = SLIST_FIRST(&scb_data->sg_maps)) != NULL) {
6542 SLIST_REMOVE_HEAD(&scb_data->sg_maps, links);
6543 ahd_dmamap_unload(ahd, scb_data->sg_dmat,
6544 sg_map->dmamap);
6545 ahd_dmamem_free(ahd, scb_data->sg_dmat,
6546 sg_map->vaddr, sg_map->dmamap);
6547 kfree(sg_map);
6549 ahd_dma_tag_destroy(ahd, scb_data->sg_dmat);
6551 /* fall through */
6552 case 5:
6554 struct map_node *hscb_map;
6556 while ((hscb_map = SLIST_FIRST(&scb_data->hscb_maps)) != NULL) {
6557 SLIST_REMOVE_HEAD(&scb_data->hscb_maps, links);
6558 ahd_dmamap_unload(ahd, scb_data->hscb_dmat,
6559 hscb_map->dmamap);
6560 ahd_dmamem_free(ahd, scb_data->hscb_dmat,
6561 hscb_map->vaddr, hscb_map->dmamap);
6562 kfree(hscb_map);
6564 ahd_dma_tag_destroy(ahd, scb_data->hscb_dmat);
6565 /* FALLTHROUGH */
6567 case 4:
6568 case 3:
6569 case 2:
6570 case 1:
6571 case 0:
6572 break;
6577 * DSP filter Bypass must be enabled until the first selection
6578 * after a change in bus mode (Razor #491 and #493).
6580 static void
6581 ahd_setup_iocell_workaround(struct ahd_softc *ahd)
6583 ahd_mode_state saved_modes;
6585 saved_modes = ahd_save_modes(ahd);
6586 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
6587 ahd_outb(ahd, DSPDATACTL, ahd_inb(ahd, DSPDATACTL)
6588 | BYPASSENAB | RCVROFFSTDIS | XMITOFFSTDIS);
6589 ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) | (ENSELDO|ENSELDI));
6590 #ifdef AHD_DEBUG
6591 if ((ahd_debug & AHD_SHOW_MISC) != 0)
6592 printk("%s: Setting up iocell workaround\n", ahd_name(ahd));
6593 #endif
6594 ahd_restore_modes(ahd, saved_modes);
6595 ahd->flags &= ~AHD_HAD_FIRST_SEL;
6598 static void
6599 ahd_iocell_first_selection(struct ahd_softc *ahd)
6601 ahd_mode_state saved_modes;
6602 u_int sblkctl;
6604 if ((ahd->flags & AHD_HAD_FIRST_SEL) != 0)
6605 return;
6606 saved_modes = ahd_save_modes(ahd);
6607 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6608 sblkctl = ahd_inb(ahd, SBLKCTL);
6609 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
6610 #ifdef AHD_DEBUG
6611 if ((ahd_debug & AHD_SHOW_MISC) != 0)
6612 printk("%s: iocell first selection\n", ahd_name(ahd));
6613 #endif
6614 if ((sblkctl & ENAB40) != 0) {
6615 ahd_outb(ahd, DSPDATACTL,
6616 ahd_inb(ahd, DSPDATACTL) & ~BYPASSENAB);
6617 #ifdef AHD_DEBUG
6618 if ((ahd_debug & AHD_SHOW_MISC) != 0)
6619 printk("%s: BYPASS now disabled\n", ahd_name(ahd));
6620 #endif
6622 ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) & ~(ENSELDO|ENSELDI));
6623 ahd_outb(ahd, CLRINT, CLRSCSIINT);
6624 ahd_restore_modes(ahd, saved_modes);
6625 ahd->flags |= AHD_HAD_FIRST_SEL;
6628 /*************************** SCB Management ***********************************/
6629 static void
6630 ahd_add_col_list(struct ahd_softc *ahd, struct scb *scb, u_int col_idx)
6632 struct scb_list *free_list;
6633 struct scb_tailq *free_tailq;
6634 struct scb *first_scb;
6636 scb->flags |= SCB_ON_COL_LIST;
6637 AHD_SET_SCB_COL_IDX(scb, col_idx);
6638 free_list = &ahd->scb_data.free_scb_lists[col_idx];
6639 free_tailq = &ahd->scb_data.free_scbs;
6640 first_scb = LIST_FIRST(free_list);
6641 if (first_scb != NULL) {
6642 LIST_INSERT_AFTER(first_scb, scb, collision_links);
6643 } else {
6644 LIST_INSERT_HEAD(free_list, scb, collision_links);
6645 TAILQ_INSERT_TAIL(free_tailq, scb, links.tqe);
6649 static void
6650 ahd_rem_col_list(struct ahd_softc *ahd, struct scb *scb)
6652 struct scb_list *free_list;
6653 struct scb_tailq *free_tailq;
6654 struct scb *first_scb;
6655 u_int col_idx;
6657 scb->flags &= ~SCB_ON_COL_LIST;
6658 col_idx = AHD_GET_SCB_COL_IDX(ahd, scb);
6659 free_list = &ahd->scb_data.free_scb_lists[col_idx];
6660 free_tailq = &ahd->scb_data.free_scbs;
6661 first_scb = LIST_FIRST(free_list);
6662 if (first_scb == scb) {
6663 struct scb *next_scb;
6666 * Maintain order in the collision free
6667 * lists for fairness if this device has
6668 * other colliding tags active.
6670 next_scb = LIST_NEXT(scb, collision_links);
6671 if (next_scb != NULL) {
6672 TAILQ_INSERT_AFTER(free_tailq, scb,
6673 next_scb, links.tqe);
6675 TAILQ_REMOVE(free_tailq, scb, links.tqe);
6677 LIST_REMOVE(scb, collision_links);
6681 * Get a free scb. If there are none, see if we can allocate a new SCB.
6683 struct scb *
6684 ahd_get_scb(struct ahd_softc *ahd, u_int col_idx)
6686 struct scb *scb;
6687 int tries;
6689 tries = 0;
6690 look_again:
6691 TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
6692 if (AHD_GET_SCB_COL_IDX(ahd, scb) != col_idx) {
6693 ahd_rem_col_list(ahd, scb);
6694 goto found;
6697 if ((scb = LIST_FIRST(&ahd->scb_data.any_dev_free_scb_list)) == NULL) {
6699 if (tries++ != 0)
6700 return (NULL);
6701 ahd_alloc_scbs(ahd);
6702 goto look_again;
6704 LIST_REMOVE(scb, links.le);
6705 if (col_idx != AHD_NEVER_COL_IDX
6706 && (scb->col_scb != NULL)
6707 && (scb->col_scb->flags & SCB_ACTIVE) == 0) {
6708 LIST_REMOVE(scb->col_scb, links.le);
6709 ahd_add_col_list(ahd, scb->col_scb, col_idx);
6711 found:
6712 scb->flags |= SCB_ACTIVE;
6713 return (scb);
6717 * Return an SCB resource to the free list.
6719 void
6720 ahd_free_scb(struct ahd_softc *ahd, struct scb *scb)
6722 /* Clean up for the next user */
6723 scb->flags = SCB_FLAG_NONE;
6724 scb->hscb->control = 0;
6725 ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = NULL;
6727 if (scb->col_scb == NULL) {
6730 * No collision possible. Just free normally.
6732 LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6733 scb, links.le);
6734 } else if ((scb->col_scb->flags & SCB_ON_COL_LIST) != 0) {
6737 * The SCB we might have collided with is on
6738 * a free collision list. Put both SCBs on
6739 * the generic list.
6741 ahd_rem_col_list(ahd, scb->col_scb);
6742 LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6743 scb, links.le);
6744 LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6745 scb->col_scb, links.le);
6746 } else if ((scb->col_scb->flags
6747 & (SCB_PACKETIZED|SCB_ACTIVE)) == SCB_ACTIVE
6748 && (scb->col_scb->hscb->control & TAG_ENB) != 0) {
6751 * The SCB we might collide with on the next allocation
6752 * is still active in a non-packetized, tagged, context.
6753 * Put us on the SCB collision list.
6755 ahd_add_col_list(ahd, scb,
6756 AHD_GET_SCB_COL_IDX(ahd, scb->col_scb));
6757 } else {
6759 * The SCB we might collide with on the next allocation
6760 * is either active in a packetized context, or free.
6761 * Since we can't collide, put this SCB on the generic
6762 * free list.
6764 LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6765 scb, links.le);
6768 ahd_platform_scb_free(ahd, scb);
6771 static void
6772 ahd_alloc_scbs(struct ahd_softc *ahd)
6774 struct scb_data *scb_data;
6775 struct scb *next_scb;
6776 struct hardware_scb *hscb;
6777 struct map_node *hscb_map;
6778 struct map_node *sg_map;
6779 struct map_node *sense_map;
6780 uint8_t *segs;
6781 uint8_t *sense_data;
6782 dma_addr_t hscb_busaddr;
6783 dma_addr_t sg_busaddr;
6784 dma_addr_t sense_busaddr;
6785 int newcount;
6786 int i;
6788 scb_data = &ahd->scb_data;
6789 if (scb_data->numscbs >= AHD_SCB_MAX_ALLOC)
6790 /* Can't allocate any more */
6791 return;
6793 if (scb_data->scbs_left != 0) {
6794 int offset;
6796 offset = (PAGE_SIZE / sizeof(*hscb)) - scb_data->scbs_left;
6797 hscb_map = SLIST_FIRST(&scb_data->hscb_maps);
6798 hscb = &((struct hardware_scb *)hscb_map->vaddr)[offset];
6799 hscb_busaddr = hscb_map->physaddr + (offset * sizeof(*hscb));
6800 } else {
6801 hscb_map = kmalloc(sizeof(*hscb_map), GFP_ATOMIC);
6803 if (hscb_map == NULL)
6804 return;
6806 /* Allocate the next batch of hardware SCBs */
6807 if (ahd_dmamem_alloc(ahd, scb_data->hscb_dmat,
6808 (void **)&hscb_map->vaddr,
6809 BUS_DMA_NOWAIT, &hscb_map->dmamap) != 0) {
6810 kfree(hscb_map);
6811 return;
6814 SLIST_INSERT_HEAD(&scb_data->hscb_maps, hscb_map, links);
6816 ahd_dmamap_load(ahd, scb_data->hscb_dmat, hscb_map->dmamap,
6817 hscb_map->vaddr, PAGE_SIZE, ahd_dmamap_cb,
6818 &hscb_map->physaddr, /*flags*/0);
6820 hscb = (struct hardware_scb *)hscb_map->vaddr;
6821 hscb_busaddr = hscb_map->physaddr;
6822 scb_data->scbs_left = PAGE_SIZE / sizeof(*hscb);
6825 if (scb_data->sgs_left != 0) {
6826 int offset;
6828 offset = ((ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd))
6829 - scb_data->sgs_left) * ahd_sglist_size(ahd);
6830 sg_map = SLIST_FIRST(&scb_data->sg_maps);
6831 segs = sg_map->vaddr + offset;
6832 sg_busaddr = sg_map->physaddr + offset;
6833 } else {
6834 sg_map = kmalloc(sizeof(*sg_map), GFP_ATOMIC);
6836 if (sg_map == NULL)
6837 return;
6839 /* Allocate the next batch of S/G lists */
6840 if (ahd_dmamem_alloc(ahd, scb_data->sg_dmat,
6841 (void **)&sg_map->vaddr,
6842 BUS_DMA_NOWAIT, &sg_map->dmamap) != 0) {
6843 kfree(sg_map);
6844 return;
6847 SLIST_INSERT_HEAD(&scb_data->sg_maps, sg_map, links);
6849 ahd_dmamap_load(ahd, scb_data->sg_dmat, sg_map->dmamap,
6850 sg_map->vaddr, ahd_sglist_allocsize(ahd),
6851 ahd_dmamap_cb, &sg_map->physaddr, /*flags*/0);
6853 segs = sg_map->vaddr;
6854 sg_busaddr = sg_map->physaddr;
6855 scb_data->sgs_left =
6856 ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd);
6857 #ifdef AHD_DEBUG
6858 if (ahd_debug & AHD_SHOW_MEMORY)
6859 printk("Mapped SG data\n");
6860 #endif
6863 if (scb_data->sense_left != 0) {
6864 int offset;
6866 offset = PAGE_SIZE - (AHD_SENSE_BUFSIZE * scb_data->sense_left);
6867 sense_map = SLIST_FIRST(&scb_data->sense_maps);
6868 sense_data = sense_map->vaddr + offset;
6869 sense_busaddr = sense_map->physaddr + offset;
6870 } else {
6871 sense_map = kmalloc(sizeof(*sense_map), GFP_ATOMIC);
6873 if (sense_map == NULL)
6874 return;
6876 /* Allocate the next batch of sense buffers */
6877 if (ahd_dmamem_alloc(ahd, scb_data->sense_dmat,
6878 (void **)&sense_map->vaddr,
6879 BUS_DMA_NOWAIT, &sense_map->dmamap) != 0) {
6880 kfree(sense_map);
6881 return;
6884 SLIST_INSERT_HEAD(&scb_data->sense_maps, sense_map, links);
6886 ahd_dmamap_load(ahd, scb_data->sense_dmat, sense_map->dmamap,
6887 sense_map->vaddr, PAGE_SIZE, ahd_dmamap_cb,
6888 &sense_map->physaddr, /*flags*/0);
6890 sense_data = sense_map->vaddr;
6891 sense_busaddr = sense_map->physaddr;
6892 scb_data->sense_left = PAGE_SIZE / AHD_SENSE_BUFSIZE;
6893 #ifdef AHD_DEBUG
6894 if (ahd_debug & AHD_SHOW_MEMORY)
6895 printk("Mapped sense data\n");
6896 #endif
6899 newcount = min(scb_data->sense_left, scb_data->scbs_left);
6900 newcount = min(newcount, scb_data->sgs_left);
6901 newcount = min(newcount, (AHD_SCB_MAX_ALLOC - scb_data->numscbs));
6902 for (i = 0; i < newcount; i++) {
6903 struct scb_platform_data *pdata;
6904 u_int col_tag;
6906 next_scb = kmalloc(sizeof(*next_scb), GFP_ATOMIC);
6907 if (next_scb == NULL)
6908 break;
6910 pdata = kmalloc(sizeof(*pdata), GFP_ATOMIC);
6911 if (pdata == NULL) {
6912 kfree(next_scb);
6913 break;
6915 next_scb->platform_data = pdata;
6916 next_scb->hscb_map = hscb_map;
6917 next_scb->sg_map = sg_map;
6918 next_scb->sense_map = sense_map;
6919 next_scb->sg_list = segs;
6920 next_scb->sense_data = sense_data;
6921 next_scb->sense_busaddr = sense_busaddr;
6922 memset(hscb, 0, sizeof(*hscb));
6923 next_scb->hscb = hscb;
6924 hscb->hscb_busaddr = ahd_htole32(hscb_busaddr);
6927 * The sequencer always starts with the second entry.
6928 * The first entry is embedded in the scb.
6930 next_scb->sg_list_busaddr = sg_busaddr;
6931 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
6932 next_scb->sg_list_busaddr
6933 += sizeof(struct ahd_dma64_seg);
6934 else
6935 next_scb->sg_list_busaddr += sizeof(struct ahd_dma_seg);
6936 next_scb->ahd_softc = ahd;
6937 next_scb->flags = SCB_FLAG_NONE;
6938 next_scb->hscb->tag = ahd_htole16(scb_data->numscbs);
6939 col_tag = scb_data->numscbs ^ 0x100;
6940 next_scb->col_scb = ahd_find_scb_by_tag(ahd, col_tag);
6941 if (next_scb->col_scb != NULL)
6942 next_scb->col_scb->col_scb = next_scb;
6943 ahd_free_scb(ahd, next_scb);
6944 hscb++;
6945 hscb_busaddr += sizeof(*hscb);
6946 segs += ahd_sglist_size(ahd);
6947 sg_busaddr += ahd_sglist_size(ahd);
6948 sense_data += AHD_SENSE_BUFSIZE;
6949 sense_busaddr += AHD_SENSE_BUFSIZE;
6950 scb_data->numscbs++;
6951 scb_data->sense_left--;
6952 scb_data->scbs_left--;
6953 scb_data->sgs_left--;
6957 void
6958 ahd_controller_info(struct ahd_softc *ahd, char *buf)
6960 const char *speed;
6961 const char *type;
6962 int len;
6964 len = sprintf(buf, "%s: ", ahd_chip_names[ahd->chip & AHD_CHIPID_MASK]);
6965 buf += len;
6967 speed = "Ultra320 ";
6968 if ((ahd->features & AHD_WIDE) != 0) {
6969 type = "Wide ";
6970 } else {
6971 type = "Single ";
6973 len = sprintf(buf, "%s%sChannel %c, SCSI Id=%d, ",
6974 speed, type, ahd->channel, ahd->our_id);
6975 buf += len;
6977 sprintf(buf, "%s, %d SCBs", ahd->bus_description,
6978 ahd->scb_data.maxhscbs);
6981 static const char *channel_strings[] = {
6982 "Primary Low",
6983 "Primary High",
6984 "Secondary Low",
6985 "Secondary High"
6988 static const char *termstat_strings[] = {
6989 "Terminated Correctly",
6990 "Over Terminated",
6991 "Under Terminated",
6992 "Not Configured"
6995 /***************************** Timer Facilities *******************************/
6996 static void
6997 ahd_timer_reset(struct timer_list *timer, int usec)
6999 del_timer(timer);
7000 timer->expires = jiffies + (usec * HZ)/1000000;
7001 add_timer(timer);
7005 * Start the board, ready for normal operation
7008 ahd_init(struct ahd_softc *ahd)
7010 uint8_t *next_vaddr;
7011 dma_addr_t next_baddr;
7012 size_t driver_data_size;
7013 int i;
7014 int error;
7015 u_int warn_user;
7016 uint8_t current_sensing;
7017 uint8_t fstat;
7019 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
7021 ahd->stack_size = ahd_probe_stack_size(ahd);
7022 ahd->saved_stack = kmalloc_array(ahd->stack_size, sizeof(uint16_t),
7023 GFP_ATOMIC);
7024 if (ahd->saved_stack == NULL)
7025 return (ENOMEM);
7028 * Verify that the compiler hasn't over-aggressively
7029 * padded important structures.
7031 if (sizeof(struct hardware_scb) != 64)
7032 panic("Hardware SCB size is incorrect");
7034 #ifdef AHD_DEBUG
7035 if ((ahd_debug & AHD_DEBUG_SEQUENCER) != 0)
7036 ahd->flags |= AHD_SEQUENCER_DEBUG;
7037 #endif
7040 * Default to allowing initiator operations.
7042 ahd->flags |= AHD_INITIATORROLE;
7045 * Only allow target mode features if this unit has them enabled.
7047 if ((AHD_TMODE_ENABLE & (0x1 << ahd->unit)) == 0)
7048 ahd->features &= ~AHD_TARGETMODE;
7050 ahd->init_level++;
7053 * DMA tag for our command fifos and other data in system memory
7054 * the card's sequencer must be able to access. For initiator
7055 * roles, we need to allocate space for the qoutfifo. When providing
7056 * for the target mode role, we must additionally provide space for
7057 * the incoming target command fifo.
7059 driver_data_size = AHD_SCB_MAX * sizeof(*ahd->qoutfifo)
7060 + sizeof(struct hardware_scb);
7061 if ((ahd->features & AHD_TARGETMODE) != 0)
7062 driver_data_size += AHD_TMODE_CMDS * sizeof(struct target_cmd);
7063 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0)
7064 driver_data_size += PKT_OVERRUN_BUFSIZE;
7065 if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
7066 /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
7067 /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
7068 /*highaddr*/BUS_SPACE_MAXADDR,
7069 /*filter*/NULL, /*filterarg*/NULL,
7070 driver_data_size,
7071 /*nsegments*/1,
7072 /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
7073 /*flags*/0, &ahd->shared_data_dmat) != 0) {
7074 return (ENOMEM);
7077 ahd->init_level++;
7079 /* Allocation of driver data */
7080 if (ahd_dmamem_alloc(ahd, ahd->shared_data_dmat,
7081 (void **)&ahd->shared_data_map.vaddr,
7082 BUS_DMA_NOWAIT,
7083 &ahd->shared_data_map.dmamap) != 0) {
7084 return (ENOMEM);
7087 ahd->init_level++;
7089 /* And permanently map it in */
7090 ahd_dmamap_load(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
7091 ahd->shared_data_map.vaddr, driver_data_size,
7092 ahd_dmamap_cb, &ahd->shared_data_map.physaddr,
7093 /*flags*/0);
7094 ahd->qoutfifo = (struct ahd_completion *)ahd->shared_data_map.vaddr;
7095 next_vaddr = (uint8_t *)&ahd->qoutfifo[AHD_QOUT_SIZE];
7096 next_baddr = ahd->shared_data_map.physaddr
7097 + AHD_QOUT_SIZE*sizeof(struct ahd_completion);
7098 if ((ahd->features & AHD_TARGETMODE) != 0) {
7099 ahd->targetcmds = (struct target_cmd *)next_vaddr;
7100 next_vaddr += AHD_TMODE_CMDS * sizeof(struct target_cmd);
7101 next_baddr += AHD_TMODE_CMDS * sizeof(struct target_cmd);
7104 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
7105 ahd->overrun_buf = next_vaddr;
7106 next_vaddr += PKT_OVERRUN_BUFSIZE;
7107 next_baddr += PKT_OVERRUN_BUFSIZE;
7111 * We need one SCB to serve as the "next SCB". Since the
7112 * tag identifier in this SCB will never be used, there is
7113 * no point in using a valid HSCB tag from an SCB pulled from
7114 * the standard free pool. So, we allocate this "sentinel"
7115 * specially from the DMA safe memory chunk used for the QOUTFIFO.
7117 ahd->next_queued_hscb = (struct hardware_scb *)next_vaddr;
7118 ahd->next_queued_hscb_map = &ahd->shared_data_map;
7119 ahd->next_queued_hscb->hscb_busaddr = ahd_htole32(next_baddr);
7121 ahd->init_level++;
7123 /* Allocate SCB data now that buffer_dmat is initialized */
7124 if (ahd_init_scbdata(ahd) != 0)
7125 return (ENOMEM);
7127 if ((ahd->flags & AHD_INITIATORROLE) == 0)
7128 ahd->flags &= ~AHD_RESET_BUS_A;
7131 * Before committing these settings to the chip, give
7132 * the OSM one last chance to modify our configuration.
7134 ahd_platform_init(ahd);
7136 /* Bring up the chip. */
7137 ahd_chip_init(ahd);
7139 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
7141 if ((ahd->flags & AHD_CURRENT_SENSING) == 0)
7142 goto init_done;
7145 * Verify termination based on current draw and
7146 * warn user if the bus is over/under terminated.
7148 error = ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL,
7149 CURSENSE_ENB);
7150 if (error != 0) {
7151 printk("%s: current sensing timeout 1\n", ahd_name(ahd));
7152 goto init_done;
7154 for (i = 20, fstat = FLX_FSTAT_BUSY;
7155 (fstat & FLX_FSTAT_BUSY) != 0 && i; i--) {
7156 error = ahd_read_flexport(ahd, FLXADDR_FLEXSTAT, &fstat);
7157 if (error != 0) {
7158 printk("%s: current sensing timeout 2\n",
7159 ahd_name(ahd));
7160 goto init_done;
7163 if (i == 0) {
7164 printk("%s: Timedout during current-sensing test\n",
7165 ahd_name(ahd));
7166 goto init_done;
7169 /* Latch Current Sensing status. */
7170 error = ahd_read_flexport(ahd, FLXADDR_CURRENT_STAT, &current_sensing);
7171 if (error != 0) {
7172 printk("%s: current sensing timeout 3\n", ahd_name(ahd));
7173 goto init_done;
7176 /* Diable current sensing. */
7177 ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, 0);
7179 #ifdef AHD_DEBUG
7180 if ((ahd_debug & AHD_SHOW_TERMCTL) != 0) {
7181 printk("%s: current_sensing == 0x%x\n",
7182 ahd_name(ahd), current_sensing);
7184 #endif
7185 warn_user = 0;
7186 for (i = 0; i < 4; i++, current_sensing >>= FLX_CSTAT_SHIFT) {
7187 u_int term_stat;
7189 term_stat = (current_sensing & FLX_CSTAT_MASK);
7190 switch (term_stat) {
7191 case FLX_CSTAT_OVER:
7192 case FLX_CSTAT_UNDER:
7193 warn_user++;
7194 /* fall through */
7195 case FLX_CSTAT_INVALID:
7196 case FLX_CSTAT_OKAY:
7197 if (warn_user == 0 && bootverbose == 0)
7198 break;
7199 printk("%s: %s Channel %s\n", ahd_name(ahd),
7200 channel_strings[i], termstat_strings[term_stat]);
7201 break;
7204 if (warn_user) {
7205 printk("%s: WARNING. Termination is not configured correctly.\n"
7206 "%s: WARNING. SCSI bus operations may FAIL.\n",
7207 ahd_name(ahd), ahd_name(ahd));
7209 init_done:
7210 ahd_restart(ahd);
7211 ahd_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_US);
7212 return (0);
7216 * (Re)initialize chip state after a chip reset.
7218 static void
7219 ahd_chip_init(struct ahd_softc *ahd)
7221 uint32_t busaddr;
7222 u_int sxfrctl1;
7223 u_int scsiseq_template;
7224 u_int wait;
7225 u_int i;
7226 u_int target;
7228 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7230 * Take the LED out of diagnostic mode
7232 ahd_outb(ahd, SBLKCTL, ahd_inb(ahd, SBLKCTL) & ~(DIAGLEDEN|DIAGLEDON));
7235 * Return HS_MAILBOX to its default value.
7237 ahd->hs_mailbox = 0;
7238 ahd_outb(ahd, HS_MAILBOX, 0);
7240 /* Set the SCSI Id, SXFRCTL0, SXFRCTL1, and SIMODE1. */
7241 ahd_outb(ahd, IOWNID, ahd->our_id);
7242 ahd_outb(ahd, TOWNID, ahd->our_id);
7243 sxfrctl1 = (ahd->flags & AHD_TERM_ENB_A) != 0 ? STPWEN : 0;
7244 sxfrctl1 |= (ahd->flags & AHD_SPCHK_ENB_A) != 0 ? ENSPCHK : 0;
7245 if ((ahd->bugs & AHD_LONG_SETIMO_BUG)
7246 && (ahd->seltime != STIMESEL_MIN)) {
7248 * The selection timer duration is twice as long
7249 * as it should be. Halve it by adding "1" to
7250 * the user specified setting.
7252 sxfrctl1 |= ahd->seltime + STIMESEL_BUG_ADJ;
7253 } else {
7254 sxfrctl1 |= ahd->seltime;
7257 ahd_outb(ahd, SXFRCTL0, DFON);
7258 ahd_outb(ahd, SXFRCTL1, sxfrctl1|ahd->seltime|ENSTIMER|ACTNEGEN);
7259 ahd_outb(ahd, SIMODE1, ENSELTIMO|ENSCSIRST|ENSCSIPERR);
7262 * Now that termination is set, wait for up
7263 * to 500ms for our transceivers to settle. If
7264 * the adapter does not have a cable attached,
7265 * the transceivers may never settle, so don't
7266 * complain if we fail here.
7268 for (wait = 10000;
7269 (ahd_inb(ahd, SBLKCTL) & (ENAB40|ENAB20)) == 0 && wait;
7270 wait--)
7271 ahd_delay(100);
7273 /* Clear any false bus resets due to the transceivers settling */
7274 ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
7275 ahd_outb(ahd, CLRINT, CLRSCSIINT);
7277 /* Initialize mode specific S/G state. */
7278 for (i = 0; i < 2; i++) {
7279 ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i);
7280 ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
7281 ahd_outb(ahd, SG_STATE, 0);
7282 ahd_outb(ahd, CLRSEQINTSRC, 0xFF);
7283 ahd_outb(ahd, SEQIMODE,
7284 ENSAVEPTRS|ENCFG4DATA|ENCFG4ISTAT
7285 |ENCFG4TSTAT|ENCFG4ICMD|ENCFG4TCMD);
7288 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
7289 ahd_outb(ahd, DSCOMMAND0, ahd_inb(ahd, DSCOMMAND0)|MPARCKEN|CACHETHEN);
7290 ahd_outb(ahd, DFF_THRSH, RD_DFTHRSH_75|WR_DFTHRSH_75);
7291 ahd_outb(ahd, SIMODE0, ENIOERR|ENOVERRUN);
7292 ahd_outb(ahd, SIMODE3, ENNTRAMPERR|ENOSRAMPERR);
7293 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
7294 ahd_outb(ahd, OPTIONMODE, AUTOACKEN|AUTO_MSGOUT_DE);
7295 } else {
7296 ahd_outb(ahd, OPTIONMODE, AUTOACKEN|BUSFREEREV|AUTO_MSGOUT_DE);
7298 ahd_outb(ahd, SCSCHKN, CURRFIFODEF|WIDERESEN|SHVALIDSTDIS);
7299 if ((ahd->chip & AHD_BUS_MASK) == AHD_PCIX)
7301 * Do not issue a target abort when a split completion
7302 * error occurs. Let our PCIX interrupt handler deal
7303 * with it instead. H2A4 Razor #625
7305 ahd_outb(ahd, PCIXCTL, ahd_inb(ahd, PCIXCTL) | SPLTSTADIS);
7307 if ((ahd->bugs & AHD_LQOOVERRUN_BUG) != 0)
7308 ahd_outb(ahd, LQOSCSCTL, LQONOCHKOVER);
7311 * Tweak IOCELL settings.
7313 if ((ahd->flags & AHD_HP_BOARD) != 0) {
7314 for (i = 0; i < NUMDSPS; i++) {
7315 ahd_outb(ahd, DSPSELECT, i);
7316 ahd_outb(ahd, WRTBIASCTL, WRTBIASCTL_HP_DEFAULT);
7318 #ifdef AHD_DEBUG
7319 if ((ahd_debug & AHD_SHOW_MISC) != 0)
7320 printk("%s: WRTBIASCTL now 0x%x\n", ahd_name(ahd),
7321 WRTBIASCTL_HP_DEFAULT);
7322 #endif
7324 ahd_setup_iocell_workaround(ahd);
7327 * Enable LQI Manager interrupts.
7329 ahd_outb(ahd, LQIMODE1, ENLQIPHASE_LQ|ENLQIPHASE_NLQ|ENLIQABORT
7330 | ENLQICRCI_LQ|ENLQICRCI_NLQ|ENLQIBADLQI
7331 | ENLQIOVERI_LQ|ENLQIOVERI_NLQ);
7332 ahd_outb(ahd, LQOMODE0, ENLQOATNLQ|ENLQOATNPKT|ENLQOTCRC);
7334 * We choose to have the sequencer catch LQOPHCHGINPKT errors
7335 * manually for the command phase at the start of a packetized
7336 * selection case. ENLQOBUSFREE should be made redundant by
7337 * the BUSFREE interrupt, but it seems that some LQOBUSFREE
7338 * events fail to assert the BUSFREE interrupt so we must
7339 * also enable LQOBUSFREE interrupts.
7341 ahd_outb(ahd, LQOMODE1, ENLQOBUSFREE);
7344 * Setup sequencer interrupt handlers.
7346 ahd_outw(ahd, INTVEC1_ADDR, ahd_resolve_seqaddr(ahd, LABEL_seq_isr));
7347 ahd_outw(ahd, INTVEC2_ADDR, ahd_resolve_seqaddr(ahd, LABEL_timer_isr));
7350 * Setup SCB Offset registers.
7352 if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
7353 ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb,
7354 pkt_long_lun));
7355 } else {
7356 ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb, lun));
7358 ahd_outb(ahd, CMDLENPTR, offsetof(struct hardware_scb, cdb_len));
7359 ahd_outb(ahd, ATTRPTR, offsetof(struct hardware_scb, task_attribute));
7360 ahd_outb(ahd, FLAGPTR, offsetof(struct hardware_scb, task_management));
7361 ahd_outb(ahd, CMDPTR, offsetof(struct hardware_scb,
7362 shared_data.idata.cdb));
7363 ahd_outb(ahd, QNEXTPTR,
7364 offsetof(struct hardware_scb, next_hscb_busaddr));
7365 ahd_outb(ahd, ABRTBITPTR, MK_MESSAGE_BIT_OFFSET);
7366 ahd_outb(ahd, ABRTBYTEPTR, offsetof(struct hardware_scb, control));
7367 if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
7368 ahd_outb(ahd, LUNLEN,
7369 sizeof(ahd->next_queued_hscb->pkt_long_lun) - 1);
7370 } else {
7371 ahd_outb(ahd, LUNLEN, LUNLEN_SINGLE_LEVEL_LUN);
7373 ahd_outb(ahd, CDBLIMIT, SCB_CDB_LEN_PTR - 1);
7374 ahd_outb(ahd, MAXCMD, 0xFF);
7375 ahd_outb(ahd, SCBAUTOPTR,
7376 AUSCBPTR_EN | offsetof(struct hardware_scb, tag));
7378 /* We haven't been enabled for target mode yet. */
7379 ahd_outb(ahd, MULTARGID, 0);
7380 ahd_outb(ahd, MULTARGID + 1, 0);
7382 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7383 /* Initialize the negotiation table. */
7384 if ((ahd->features & AHD_NEW_IOCELL_OPTS) == 0) {
7386 * Clear the spare bytes in the neg table to avoid
7387 * spurious parity errors.
7389 for (target = 0; target < AHD_NUM_TARGETS; target++) {
7390 ahd_outb(ahd, NEGOADDR, target);
7391 ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PER_DEV0);
7392 for (i = 0; i < AHD_NUM_PER_DEV_ANNEXCOLS; i++)
7393 ahd_outb(ahd, ANNEXDAT, 0);
7396 for (target = 0; target < AHD_NUM_TARGETS; target++) {
7397 struct ahd_devinfo devinfo;
7398 struct ahd_initiator_tinfo *tinfo;
7399 struct ahd_tmode_tstate *tstate;
7401 tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
7402 target, &tstate);
7403 ahd_compile_devinfo(&devinfo, ahd->our_id,
7404 target, CAM_LUN_WILDCARD,
7405 'A', ROLE_INITIATOR);
7406 ahd_update_neg_table(ahd, &devinfo, &tinfo->curr);
7409 ahd_outb(ahd, CLRSINT3, NTRAMPERR|OSRAMPERR);
7410 ahd_outb(ahd, CLRINT, CLRSCSIINT);
7412 #ifdef NEEDS_MORE_TESTING
7414 * Always enable abort on incoming L_Qs if this feature is
7415 * supported. We use this to catch invalid SCB references.
7417 if ((ahd->bugs & AHD_ABORT_LQI_BUG) == 0)
7418 ahd_outb(ahd, LQCTL1, ABORTPENDING);
7419 else
7420 #endif
7421 ahd_outb(ahd, LQCTL1, 0);
7423 /* All of our queues are empty */
7424 ahd->qoutfifonext = 0;
7425 ahd->qoutfifonext_valid_tag = QOUTFIFO_ENTRY_VALID;
7426 ahd_outb(ahd, QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID);
7427 for (i = 0; i < AHD_QOUT_SIZE; i++)
7428 ahd->qoutfifo[i].valid_tag = 0;
7429 ahd_sync_qoutfifo(ahd, BUS_DMASYNC_PREREAD);
7431 ahd->qinfifonext = 0;
7432 for (i = 0; i < AHD_QIN_SIZE; i++)
7433 ahd->qinfifo[i] = SCB_LIST_NULL;
7435 if ((ahd->features & AHD_TARGETMODE) != 0) {
7436 /* All target command blocks start out invalid. */
7437 for (i = 0; i < AHD_TMODE_CMDS; i++)
7438 ahd->targetcmds[i].cmd_valid = 0;
7439 ahd_sync_tqinfifo(ahd, BUS_DMASYNC_PREREAD);
7440 ahd->tqinfifonext = 1;
7441 ahd_outb(ahd, KERNEL_TQINPOS, ahd->tqinfifonext - 1);
7442 ahd_outb(ahd, TQINPOS, ahd->tqinfifonext);
7445 /* Initialize Scratch Ram. */
7446 ahd_outb(ahd, SEQ_FLAGS, 0);
7447 ahd_outb(ahd, SEQ_FLAGS2, 0);
7449 /* We don't have any waiting selections */
7450 ahd_outw(ahd, WAITING_TID_HEAD, SCB_LIST_NULL);
7451 ahd_outw(ahd, WAITING_TID_TAIL, SCB_LIST_NULL);
7452 ahd_outw(ahd, MK_MESSAGE_SCB, SCB_LIST_NULL);
7453 ahd_outw(ahd, MK_MESSAGE_SCSIID, 0xFF);
7454 for (i = 0; i < AHD_NUM_TARGETS; i++)
7455 ahd_outw(ahd, WAITING_SCB_TAILS + (2 * i), SCB_LIST_NULL);
7458 * Nobody is waiting to be DMAed into the QOUTFIFO.
7460 ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL);
7461 ahd_outw(ahd, COMPLETE_SCB_DMAINPROG_HEAD, SCB_LIST_NULL);
7462 ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL);
7463 ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL);
7464 ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL);
7467 * The Freeze Count is 0.
7469 ahd->qfreeze_cnt = 0;
7470 ahd_outw(ahd, QFREEZE_COUNT, 0);
7471 ahd_outw(ahd, KERNEL_QFREEZE_COUNT, 0);
7474 * Tell the sequencer where it can find our arrays in memory.
7476 busaddr = ahd->shared_data_map.physaddr;
7477 ahd_outl(ahd, SHARED_DATA_ADDR, busaddr);
7478 ahd_outl(ahd, QOUTFIFO_NEXT_ADDR, busaddr);
7481 * Setup the allowed SCSI Sequences based on operational mode.
7482 * If we are a target, we'll enable select in operations once
7483 * we've had a lun enabled.
7485 scsiseq_template = ENAUTOATNP;
7486 if ((ahd->flags & AHD_INITIATORROLE) != 0)
7487 scsiseq_template |= ENRSELI;
7488 ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq_template);
7490 /* There are no busy SCBs yet. */
7491 for (target = 0; target < AHD_NUM_TARGETS; target++) {
7492 int lun;
7494 for (lun = 0; lun < AHD_NUM_LUNS_NONPKT; lun++)
7495 ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(target, 'A', lun));
7499 * Initialize the group code to command length table.
7500 * Vendor Unique codes are set to 0 so we only capture
7501 * the first byte of the cdb. These can be overridden
7502 * when target mode is enabled.
7504 ahd_outb(ahd, CMDSIZE_TABLE, 5);
7505 ahd_outb(ahd, CMDSIZE_TABLE + 1, 9);
7506 ahd_outb(ahd, CMDSIZE_TABLE + 2, 9);
7507 ahd_outb(ahd, CMDSIZE_TABLE + 3, 0);
7508 ahd_outb(ahd, CMDSIZE_TABLE + 4, 15);
7509 ahd_outb(ahd, CMDSIZE_TABLE + 5, 11);
7510 ahd_outb(ahd, CMDSIZE_TABLE + 6, 0);
7511 ahd_outb(ahd, CMDSIZE_TABLE + 7, 0);
7513 /* Tell the sequencer of our initial queue positions */
7514 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
7515 ahd_outb(ahd, QOFF_CTLSTA, SCB_QSIZE_512);
7516 ahd->qinfifonext = 0;
7517 ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
7518 ahd_set_hescb_qoff(ahd, 0);
7519 ahd_set_snscb_qoff(ahd, 0);
7520 ahd_set_sescb_qoff(ahd, 0);
7521 ahd_set_sdscb_qoff(ahd, 0);
7524 * Tell the sequencer which SCB will be the next one it receives.
7526 busaddr = ahd_le32toh(ahd->next_queued_hscb->hscb_busaddr);
7527 ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
7530 * Default to coalescing disabled.
7532 ahd_outw(ahd, INT_COALESCING_CMDCOUNT, 0);
7533 ahd_outw(ahd, CMDS_PENDING, 0);
7534 ahd_update_coalescing_values(ahd, ahd->int_coalescing_timer,
7535 ahd->int_coalescing_maxcmds,
7536 ahd->int_coalescing_mincmds);
7537 ahd_enable_coalescing(ahd, FALSE);
7539 ahd_loadseq(ahd);
7540 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7542 if (ahd->features & AHD_AIC79XXB_SLOWCRC) {
7543 u_int negodat3 = ahd_inb(ahd, NEGCONOPTS);
7545 negodat3 |= ENSLOWCRC;
7546 ahd_outb(ahd, NEGCONOPTS, negodat3);
7547 negodat3 = ahd_inb(ahd, NEGCONOPTS);
7548 if (!(negodat3 & ENSLOWCRC))
7549 printk("aic79xx: failed to set the SLOWCRC bit\n");
7550 else
7551 printk("aic79xx: SLOWCRC bit set\n");
7556 * Setup default device and controller settings.
7557 * This should only be called if our probe has
7558 * determined that no configuration data is available.
7561 ahd_default_config(struct ahd_softc *ahd)
7563 int targ;
7565 ahd->our_id = 7;
7568 * Allocate a tstate to house information for our
7569 * initiator presence on the bus as well as the user
7570 * data for any target mode initiator.
7572 if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) {
7573 printk("%s: unable to allocate ahd_tmode_tstate. "
7574 "Failing attach\n", ahd_name(ahd));
7575 return (ENOMEM);
7578 for (targ = 0; targ < AHD_NUM_TARGETS; targ++) {
7579 struct ahd_devinfo devinfo;
7580 struct ahd_initiator_tinfo *tinfo;
7581 struct ahd_tmode_tstate *tstate;
7582 uint16_t target_mask;
7584 tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
7585 targ, &tstate);
7587 * We support SPC2 and SPI4.
7589 tinfo->user.protocol_version = 4;
7590 tinfo->user.transport_version = 4;
7592 target_mask = 0x01 << targ;
7593 ahd->user_discenable |= target_mask;
7594 tstate->discenable |= target_mask;
7595 ahd->user_tagenable |= target_mask;
7596 #ifdef AHD_FORCE_160
7597 tinfo->user.period = AHD_SYNCRATE_DT;
7598 #else
7599 tinfo->user.period = AHD_SYNCRATE_160;
7600 #endif
7601 tinfo->user.offset = MAX_OFFSET;
7602 tinfo->user.ppr_options = MSG_EXT_PPR_RD_STRM
7603 | MSG_EXT_PPR_WR_FLOW
7604 | MSG_EXT_PPR_HOLD_MCS
7605 | MSG_EXT_PPR_IU_REQ
7606 | MSG_EXT_PPR_QAS_REQ
7607 | MSG_EXT_PPR_DT_REQ;
7608 if ((ahd->features & AHD_RTI) != 0)
7609 tinfo->user.ppr_options |= MSG_EXT_PPR_RTI;
7611 tinfo->user.width = MSG_EXT_WDTR_BUS_16_BIT;
7614 * Start out Async/Narrow/Untagged and with
7615 * conservative protocol support.
7617 tinfo->goal.protocol_version = 2;
7618 tinfo->goal.transport_version = 2;
7619 tinfo->curr.protocol_version = 2;
7620 tinfo->curr.transport_version = 2;
7621 ahd_compile_devinfo(&devinfo, ahd->our_id,
7622 targ, CAM_LUN_WILDCARD,
7623 'A', ROLE_INITIATOR);
7624 tstate->tagenable &= ~target_mask;
7625 ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
7626 AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE);
7627 ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0,
7628 /*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL,
7629 /*paused*/TRUE);
7631 return (0);
7635 * Parse device configuration information.
7638 ahd_parse_cfgdata(struct ahd_softc *ahd, struct seeprom_config *sc)
7640 int targ;
7641 int max_targ;
7643 max_targ = sc->max_targets & CFMAXTARG;
7644 ahd->our_id = sc->brtime_id & CFSCSIID;
7647 * Allocate a tstate to house information for our
7648 * initiator presence on the bus as well as the user
7649 * data for any target mode initiator.
7651 if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) {
7652 printk("%s: unable to allocate ahd_tmode_tstate. "
7653 "Failing attach\n", ahd_name(ahd));
7654 return (ENOMEM);
7657 for (targ = 0; targ < max_targ; targ++) {
7658 struct ahd_devinfo devinfo;
7659 struct ahd_initiator_tinfo *tinfo;
7660 struct ahd_transinfo *user_tinfo;
7661 struct ahd_tmode_tstate *tstate;
7662 uint16_t target_mask;
7664 tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
7665 targ, &tstate);
7666 user_tinfo = &tinfo->user;
7669 * We support SPC2 and SPI4.
7671 tinfo->user.protocol_version = 4;
7672 tinfo->user.transport_version = 4;
7674 target_mask = 0x01 << targ;
7675 ahd->user_discenable &= ~target_mask;
7676 tstate->discenable &= ~target_mask;
7677 ahd->user_tagenable &= ~target_mask;
7678 if (sc->device_flags[targ] & CFDISC) {
7679 tstate->discenable |= target_mask;
7680 ahd->user_discenable |= target_mask;
7681 ahd->user_tagenable |= target_mask;
7682 } else {
7684 * Cannot be packetized without disconnection.
7686 sc->device_flags[targ] &= ~CFPACKETIZED;
7689 user_tinfo->ppr_options = 0;
7690 user_tinfo->period = (sc->device_flags[targ] & CFXFER);
7691 if (user_tinfo->period < CFXFER_ASYNC) {
7692 if (user_tinfo->period <= AHD_PERIOD_10MHz)
7693 user_tinfo->ppr_options |= MSG_EXT_PPR_DT_REQ;
7694 user_tinfo->offset = MAX_OFFSET;
7695 } else {
7696 user_tinfo->offset = 0;
7697 user_tinfo->period = AHD_ASYNC_XFER_PERIOD;
7699 #ifdef AHD_FORCE_160
7700 if (user_tinfo->period <= AHD_SYNCRATE_160)
7701 user_tinfo->period = AHD_SYNCRATE_DT;
7702 #endif
7704 if ((sc->device_flags[targ] & CFPACKETIZED) != 0) {
7705 user_tinfo->ppr_options |= MSG_EXT_PPR_RD_STRM
7706 | MSG_EXT_PPR_WR_FLOW
7707 | MSG_EXT_PPR_HOLD_MCS
7708 | MSG_EXT_PPR_IU_REQ;
7709 if ((ahd->features & AHD_RTI) != 0)
7710 user_tinfo->ppr_options |= MSG_EXT_PPR_RTI;
7713 if ((sc->device_flags[targ] & CFQAS) != 0)
7714 user_tinfo->ppr_options |= MSG_EXT_PPR_QAS_REQ;
7716 if ((sc->device_flags[targ] & CFWIDEB) != 0)
7717 user_tinfo->width = MSG_EXT_WDTR_BUS_16_BIT;
7718 else
7719 user_tinfo->width = MSG_EXT_WDTR_BUS_8_BIT;
7720 #ifdef AHD_DEBUG
7721 if ((ahd_debug & AHD_SHOW_MISC) != 0)
7722 printk("(%d): %x:%x:%x:%x\n", targ, user_tinfo->width,
7723 user_tinfo->period, user_tinfo->offset,
7724 user_tinfo->ppr_options);
7725 #endif
7727 * Start out Async/Narrow/Untagged and with
7728 * conservative protocol support.
7730 tstate->tagenable &= ~target_mask;
7731 tinfo->goal.protocol_version = 2;
7732 tinfo->goal.transport_version = 2;
7733 tinfo->curr.protocol_version = 2;
7734 tinfo->curr.transport_version = 2;
7735 ahd_compile_devinfo(&devinfo, ahd->our_id,
7736 targ, CAM_LUN_WILDCARD,
7737 'A', ROLE_INITIATOR);
7738 ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
7739 AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE);
7740 ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0,
7741 /*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL,
7742 /*paused*/TRUE);
7745 ahd->flags &= ~AHD_SPCHK_ENB_A;
7746 if (sc->bios_control & CFSPARITY)
7747 ahd->flags |= AHD_SPCHK_ENB_A;
7749 ahd->flags &= ~AHD_RESET_BUS_A;
7750 if (sc->bios_control & CFRESETB)
7751 ahd->flags |= AHD_RESET_BUS_A;
7753 ahd->flags &= ~AHD_EXTENDED_TRANS_A;
7754 if (sc->bios_control & CFEXTEND)
7755 ahd->flags |= AHD_EXTENDED_TRANS_A;
7757 ahd->flags &= ~AHD_BIOS_ENABLED;
7758 if ((sc->bios_control & CFBIOSSTATE) == CFBS_ENABLED)
7759 ahd->flags |= AHD_BIOS_ENABLED;
7761 ahd->flags &= ~AHD_STPWLEVEL_A;
7762 if ((sc->adapter_control & CFSTPWLEVEL) != 0)
7763 ahd->flags |= AHD_STPWLEVEL_A;
7765 return (0);
7769 * Parse device configuration information.
7772 ahd_parse_vpddata(struct ahd_softc *ahd, struct vpd_config *vpd)
7774 int error;
7776 error = ahd_verify_vpd_cksum(vpd);
7777 if (error == 0)
7778 return (EINVAL);
7779 if ((vpd->bios_flags & VPDBOOTHOST) != 0)
7780 ahd->flags |= AHD_BOOT_CHANNEL;
7781 return (0);
7784 void
7785 ahd_intr_enable(struct ahd_softc *ahd, int enable)
7787 u_int hcntrl;
7789 hcntrl = ahd_inb(ahd, HCNTRL);
7790 hcntrl &= ~INTEN;
7791 ahd->pause &= ~INTEN;
7792 ahd->unpause &= ~INTEN;
7793 if (enable) {
7794 hcntrl |= INTEN;
7795 ahd->pause |= INTEN;
7796 ahd->unpause |= INTEN;
7798 ahd_outb(ahd, HCNTRL, hcntrl);
7801 static void
7802 ahd_update_coalescing_values(struct ahd_softc *ahd, u_int timer, u_int maxcmds,
7803 u_int mincmds)
7805 if (timer > AHD_TIMER_MAX_US)
7806 timer = AHD_TIMER_MAX_US;
7807 ahd->int_coalescing_timer = timer;
7809 if (maxcmds > AHD_INT_COALESCING_MAXCMDS_MAX)
7810 maxcmds = AHD_INT_COALESCING_MAXCMDS_MAX;
7811 if (mincmds > AHD_INT_COALESCING_MINCMDS_MAX)
7812 mincmds = AHD_INT_COALESCING_MINCMDS_MAX;
7813 ahd->int_coalescing_maxcmds = maxcmds;
7814 ahd_outw(ahd, INT_COALESCING_TIMER, timer / AHD_TIMER_US_PER_TICK);
7815 ahd_outb(ahd, INT_COALESCING_MAXCMDS, -maxcmds);
7816 ahd_outb(ahd, INT_COALESCING_MINCMDS, -mincmds);
7819 static void
7820 ahd_enable_coalescing(struct ahd_softc *ahd, int enable)
7823 ahd->hs_mailbox &= ~ENINT_COALESCE;
7824 if (enable)
7825 ahd->hs_mailbox |= ENINT_COALESCE;
7826 ahd_outb(ahd, HS_MAILBOX, ahd->hs_mailbox);
7827 ahd_flush_device_writes(ahd);
7828 ahd_run_qoutfifo(ahd);
7832 * Ensure that the card is paused in a location
7833 * outside of all critical sections and that all
7834 * pending work is completed prior to returning.
7835 * This routine should only be called from outside
7836 * an interrupt context.
7838 void
7839 ahd_pause_and_flushwork(struct ahd_softc *ahd)
7841 u_int intstat;
7842 u_int maxloops;
7844 maxloops = 1000;
7845 ahd->flags |= AHD_ALL_INTERRUPTS;
7846 ahd_pause(ahd);
7848 * Freeze the outgoing selections. We do this only
7849 * until we are safely paused without further selections
7850 * pending.
7852 ahd->qfreeze_cnt--;
7853 ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
7854 ahd_outb(ahd, SEQ_FLAGS2, ahd_inb(ahd, SEQ_FLAGS2) | SELECTOUT_QFROZEN);
7855 do {
7857 ahd_unpause(ahd);
7859 * Give the sequencer some time to service
7860 * any active selections.
7862 ahd_delay(500);
7864 ahd_intr(ahd);
7865 ahd_pause(ahd);
7866 intstat = ahd_inb(ahd, INTSTAT);
7867 if ((intstat & INT_PEND) == 0) {
7868 ahd_clear_critical_section(ahd);
7869 intstat = ahd_inb(ahd, INTSTAT);
7871 } while (--maxloops
7872 && (intstat != 0xFF || (ahd->features & AHD_REMOVABLE) == 0)
7873 && ((intstat & INT_PEND) != 0
7874 || (ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0
7875 || (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) != 0));
7877 if (maxloops == 0) {
7878 printk("Infinite interrupt loop, INTSTAT = %x",
7879 ahd_inb(ahd, INTSTAT));
7881 ahd->qfreeze_cnt++;
7882 ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
7884 ahd_flush_qoutfifo(ahd);
7886 ahd->flags &= ~AHD_ALL_INTERRUPTS;
7889 #ifdef CONFIG_PM
7891 ahd_suspend(struct ahd_softc *ahd)
7894 ahd_pause_and_flushwork(ahd);
7896 if (LIST_FIRST(&ahd->pending_scbs) != NULL) {
7897 ahd_unpause(ahd);
7898 return (EBUSY);
7900 ahd_shutdown(ahd);
7901 return (0);
7904 void
7905 ahd_resume(struct ahd_softc *ahd)
7908 ahd_reset(ahd, /*reinit*/TRUE);
7909 ahd_intr_enable(ahd, TRUE);
7910 ahd_restart(ahd);
7912 #endif
7914 /************************** Busy Target Table *********************************/
7916 * Set SCBPTR to the SCB that contains the busy
7917 * table entry for TCL. Return the offset into
7918 * the SCB that contains the entry for TCL.
7919 * saved_scbid is dereferenced and set to the
7920 * scbid that should be restored once manipualtion
7921 * of the TCL entry is complete.
7923 static inline u_int
7924 ahd_index_busy_tcl(struct ahd_softc *ahd, u_int *saved_scbid, u_int tcl)
7927 * Index to the SCB that contains the busy entry.
7929 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
7930 *saved_scbid = ahd_get_scbptr(ahd);
7931 ahd_set_scbptr(ahd, TCL_LUN(tcl)
7932 | ((TCL_TARGET_OFFSET(tcl) & 0xC) << 4));
7935 * And now calculate the SCB offset to the entry.
7936 * Each entry is 2 bytes wide, hence the
7937 * multiplication by 2.
7939 return (((TCL_TARGET_OFFSET(tcl) & 0x3) << 1) + SCB_DISCONNECTED_LISTS);
7943 * Return the untagged transaction id for a given target/channel lun.
7945 static u_int
7946 ahd_find_busy_tcl(struct ahd_softc *ahd, u_int tcl)
7948 u_int scbid;
7949 u_int scb_offset;
7950 u_int saved_scbptr;
7952 scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl);
7953 scbid = ahd_inw_scbram(ahd, scb_offset);
7954 ahd_set_scbptr(ahd, saved_scbptr);
7955 return (scbid);
7958 static void
7959 ahd_busy_tcl(struct ahd_softc *ahd, u_int tcl, u_int scbid)
7961 u_int scb_offset;
7962 u_int saved_scbptr;
7964 scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl);
7965 ahd_outw(ahd, scb_offset, scbid);
7966 ahd_set_scbptr(ahd, saved_scbptr);
7969 /************************** SCB and SCB queue management **********************/
7970 static int
7971 ahd_match_scb(struct ahd_softc *ahd, struct scb *scb, int target,
7972 char channel, int lun, u_int tag, role_t role)
7974 int targ = SCB_GET_TARGET(ahd, scb);
7975 char chan = SCB_GET_CHANNEL(ahd, scb);
7976 int slun = SCB_GET_LUN(scb);
7977 int match;
7979 match = ((chan == channel) || (channel == ALL_CHANNELS));
7980 if (match != 0)
7981 match = ((targ == target) || (target == CAM_TARGET_WILDCARD));
7982 if (match != 0)
7983 match = ((lun == slun) || (lun == CAM_LUN_WILDCARD));
7984 if (match != 0) {
7985 #ifdef AHD_TARGET_MODE
7986 int group;
7988 group = XPT_FC_GROUP(scb->io_ctx->ccb_h.func_code);
7989 if (role == ROLE_INITIATOR) {
7990 match = (group != XPT_FC_GROUP_TMODE)
7991 && ((tag == SCB_GET_TAG(scb))
7992 || (tag == SCB_LIST_NULL));
7993 } else if (role == ROLE_TARGET) {
7994 match = (group == XPT_FC_GROUP_TMODE)
7995 && ((tag == scb->io_ctx->csio.tag_id)
7996 || (tag == SCB_LIST_NULL));
7998 #else /* !AHD_TARGET_MODE */
7999 match = ((tag == SCB_GET_TAG(scb)) || (tag == SCB_LIST_NULL));
8000 #endif /* AHD_TARGET_MODE */
8003 return match;
8006 static void
8007 ahd_freeze_devq(struct ahd_softc *ahd, struct scb *scb)
8009 int target;
8010 char channel;
8011 int lun;
8013 target = SCB_GET_TARGET(ahd, scb);
8014 lun = SCB_GET_LUN(scb);
8015 channel = SCB_GET_CHANNEL(ahd, scb);
8017 ahd_search_qinfifo(ahd, target, channel, lun,
8018 /*tag*/SCB_LIST_NULL, ROLE_UNKNOWN,
8019 CAM_REQUEUE_REQ, SEARCH_COMPLETE);
8021 ahd_platform_freeze_devq(ahd, scb);
8024 void
8025 ahd_qinfifo_requeue_tail(struct ahd_softc *ahd, struct scb *scb)
8027 struct scb *prev_scb;
8028 ahd_mode_state saved_modes;
8030 saved_modes = ahd_save_modes(ahd);
8031 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
8032 prev_scb = NULL;
8033 if (ahd_qinfifo_count(ahd) != 0) {
8034 u_int prev_tag;
8035 u_int prev_pos;
8037 prev_pos = AHD_QIN_WRAP(ahd->qinfifonext - 1);
8038 prev_tag = ahd->qinfifo[prev_pos];
8039 prev_scb = ahd_lookup_scb(ahd, prev_tag);
8041 ahd_qinfifo_requeue(ahd, prev_scb, scb);
8042 ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
8043 ahd_restore_modes(ahd, saved_modes);
8046 static void
8047 ahd_qinfifo_requeue(struct ahd_softc *ahd, struct scb *prev_scb,
8048 struct scb *scb)
8050 if (prev_scb == NULL) {
8051 uint32_t busaddr;
8053 busaddr = ahd_le32toh(scb->hscb->hscb_busaddr);
8054 ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
8055 } else {
8056 prev_scb->hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
8057 ahd_sync_scb(ahd, prev_scb,
8058 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
8060 ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
8061 ahd->qinfifonext++;
8062 scb->hscb->next_hscb_busaddr = ahd->next_queued_hscb->hscb_busaddr;
8063 ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
8066 static int
8067 ahd_qinfifo_count(struct ahd_softc *ahd)
8069 u_int qinpos;
8070 u_int wrap_qinpos;
8071 u_int wrap_qinfifonext;
8073 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
8074 qinpos = ahd_get_snscb_qoff(ahd);
8075 wrap_qinpos = AHD_QIN_WRAP(qinpos);
8076 wrap_qinfifonext = AHD_QIN_WRAP(ahd->qinfifonext);
8077 if (wrap_qinfifonext >= wrap_qinpos)
8078 return (wrap_qinfifonext - wrap_qinpos);
8079 else
8080 return (wrap_qinfifonext
8081 + ARRAY_SIZE(ahd->qinfifo) - wrap_qinpos);
8084 static void
8085 ahd_reset_cmds_pending(struct ahd_softc *ahd)
8087 struct scb *scb;
8088 ahd_mode_state saved_modes;
8089 u_int pending_cmds;
8091 saved_modes = ahd_save_modes(ahd);
8092 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
8095 * Don't count any commands as outstanding that the
8096 * sequencer has already marked for completion.
8098 ahd_flush_qoutfifo(ahd);
8100 pending_cmds = 0;
8101 LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
8102 pending_cmds++;
8104 ahd_outw(ahd, CMDS_PENDING, pending_cmds - ahd_qinfifo_count(ahd));
8105 ahd_restore_modes(ahd, saved_modes);
8106 ahd->flags &= ~AHD_UPDATE_PEND_CMDS;
8109 static void
8110 ahd_done_with_status(struct ahd_softc *ahd, struct scb *scb, uint32_t status)
8112 cam_status ostat;
8113 cam_status cstat;
8115 ostat = ahd_get_transaction_status(scb);
8116 if (ostat == CAM_REQ_INPROG)
8117 ahd_set_transaction_status(scb, status);
8118 cstat = ahd_get_transaction_status(scb);
8119 if (cstat != CAM_REQ_CMP)
8120 ahd_freeze_scb(scb);
8121 ahd_done(ahd, scb);
8125 ahd_search_qinfifo(struct ahd_softc *ahd, int target, char channel,
8126 int lun, u_int tag, role_t role, uint32_t status,
8127 ahd_search_action action)
8129 struct scb *scb;
8130 struct scb *mk_msg_scb;
8131 struct scb *prev_scb;
8132 ahd_mode_state saved_modes;
8133 u_int qinstart;
8134 u_int qinpos;
8135 u_int qintail;
8136 u_int tid_next;
8137 u_int tid_prev;
8138 u_int scbid;
8139 u_int seq_flags2;
8140 u_int savedscbptr;
8141 uint32_t busaddr;
8142 int found;
8143 int targets;
8145 /* Must be in CCHAN mode */
8146 saved_modes = ahd_save_modes(ahd);
8147 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
8150 * Halt any pending SCB DMA. The sequencer will reinitiate
8151 * this dma if the qinfifo is not empty once we unpause.
8153 if ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN|CCSCBDIR))
8154 == (CCARREN|CCSCBEN|CCSCBDIR)) {
8155 ahd_outb(ahd, CCSCBCTL,
8156 ahd_inb(ahd, CCSCBCTL) & ~(CCARREN|CCSCBEN));
8157 while ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN)) != 0)
8160 /* Determine sequencer's position in the qinfifo. */
8161 qintail = AHD_QIN_WRAP(ahd->qinfifonext);
8162 qinstart = ahd_get_snscb_qoff(ahd);
8163 qinpos = AHD_QIN_WRAP(qinstart);
8164 found = 0;
8165 prev_scb = NULL;
8167 if (action == SEARCH_PRINT) {
8168 printk("qinstart = %d qinfifonext = %d\nQINFIFO:",
8169 qinstart, ahd->qinfifonext);
8173 * Start with an empty queue. Entries that are not chosen
8174 * for removal will be re-added to the queue as we go.
8176 ahd->qinfifonext = qinstart;
8177 busaddr = ahd_le32toh(ahd->next_queued_hscb->hscb_busaddr);
8178 ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
8180 while (qinpos != qintail) {
8181 scb = ahd_lookup_scb(ahd, ahd->qinfifo[qinpos]);
8182 if (scb == NULL) {
8183 printk("qinpos = %d, SCB index = %d\n",
8184 qinpos, ahd->qinfifo[qinpos]);
8185 panic("Loop 1\n");
8188 if (ahd_match_scb(ahd, scb, target, channel, lun, tag, role)) {
8190 * We found an scb that needs to be acted on.
8192 found++;
8193 switch (action) {
8194 case SEARCH_COMPLETE:
8195 if ((scb->flags & SCB_ACTIVE) == 0)
8196 printk("Inactive SCB in qinfifo\n");
8197 ahd_done_with_status(ahd, scb, status);
8198 /* FALLTHROUGH */
8199 case SEARCH_REMOVE:
8200 break;
8201 case SEARCH_PRINT:
8202 printk(" 0x%x", ahd->qinfifo[qinpos]);
8203 /* FALLTHROUGH */
8204 case SEARCH_COUNT:
8205 ahd_qinfifo_requeue(ahd, prev_scb, scb);
8206 prev_scb = scb;
8207 break;
8209 } else {
8210 ahd_qinfifo_requeue(ahd, prev_scb, scb);
8211 prev_scb = scb;
8213 qinpos = AHD_QIN_WRAP(qinpos+1);
8216 ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
8218 if (action == SEARCH_PRINT)
8219 printk("\nWAITING_TID_QUEUES:\n");
8222 * Search waiting for selection lists. We traverse the
8223 * list of "their ids" waiting for selection and, if
8224 * appropriate, traverse the SCBs of each "their id"
8225 * looking for matches.
8227 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8228 seq_flags2 = ahd_inb(ahd, SEQ_FLAGS2);
8229 if ((seq_flags2 & PENDING_MK_MESSAGE) != 0) {
8230 scbid = ahd_inw(ahd, MK_MESSAGE_SCB);
8231 mk_msg_scb = ahd_lookup_scb(ahd, scbid);
8232 } else
8233 mk_msg_scb = NULL;
8234 savedscbptr = ahd_get_scbptr(ahd);
8235 tid_next = ahd_inw(ahd, WAITING_TID_HEAD);
8236 tid_prev = SCB_LIST_NULL;
8237 targets = 0;
8238 for (scbid = tid_next; !SCBID_IS_NULL(scbid); scbid = tid_next) {
8239 u_int tid_head;
8240 u_int tid_tail;
8242 targets++;
8243 if (targets > AHD_NUM_TARGETS)
8244 panic("TID LIST LOOP");
8246 if (scbid >= ahd->scb_data.numscbs) {
8247 printk("%s: Waiting TID List inconsistency. "
8248 "SCB index == 0x%x, yet numscbs == 0x%x.",
8249 ahd_name(ahd), scbid, ahd->scb_data.numscbs);
8250 ahd_dump_card_state(ahd);
8251 panic("for safety");
8253 scb = ahd_lookup_scb(ahd, scbid);
8254 if (scb == NULL) {
8255 printk("%s: SCB = 0x%x Not Active!\n",
8256 ahd_name(ahd), scbid);
8257 panic("Waiting TID List traversal\n");
8259 ahd_set_scbptr(ahd, scbid);
8260 tid_next = ahd_inw_scbram(ahd, SCB_NEXT2);
8261 if (ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD,
8262 SCB_LIST_NULL, ROLE_UNKNOWN) == 0) {
8263 tid_prev = scbid;
8264 continue;
8268 * We found a list of scbs that needs to be searched.
8270 if (action == SEARCH_PRINT)
8271 printk(" %d ( ", SCB_GET_TARGET(ahd, scb));
8272 tid_head = scbid;
8273 found += ahd_search_scb_list(ahd, target, channel,
8274 lun, tag, role, status,
8275 action, &tid_head, &tid_tail,
8276 SCB_GET_TARGET(ahd, scb));
8278 * Check any MK_MESSAGE SCB that is still waiting to
8279 * enter this target's waiting for selection queue.
8281 if (mk_msg_scb != NULL
8282 && ahd_match_scb(ahd, mk_msg_scb, target, channel,
8283 lun, tag, role)) {
8286 * We found an scb that needs to be acted on.
8288 found++;
8289 switch (action) {
8290 case SEARCH_COMPLETE:
8291 if ((mk_msg_scb->flags & SCB_ACTIVE) == 0)
8292 printk("Inactive SCB pending MK_MSG\n");
8293 ahd_done_with_status(ahd, mk_msg_scb, status);
8294 /* FALLTHROUGH */
8295 case SEARCH_REMOVE:
8297 u_int tail_offset;
8299 printk("Removing MK_MSG scb\n");
8302 * Reset our tail to the tail of the
8303 * main per-target list.
8305 tail_offset = WAITING_SCB_TAILS
8306 + (2 * SCB_GET_TARGET(ahd, mk_msg_scb));
8307 ahd_outw(ahd, tail_offset, tid_tail);
8309 seq_flags2 &= ~PENDING_MK_MESSAGE;
8310 ahd_outb(ahd, SEQ_FLAGS2, seq_flags2);
8311 ahd_outw(ahd, CMDS_PENDING,
8312 ahd_inw(ahd, CMDS_PENDING)-1);
8313 mk_msg_scb = NULL;
8314 break;
8316 case SEARCH_PRINT:
8317 printk(" 0x%x", SCB_GET_TAG(scb));
8318 /* FALLTHROUGH */
8319 case SEARCH_COUNT:
8320 break;
8324 if (mk_msg_scb != NULL
8325 && SCBID_IS_NULL(tid_head)
8326 && ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD,
8327 SCB_LIST_NULL, ROLE_UNKNOWN)) {
8330 * When removing the last SCB for a target
8331 * queue with a pending MK_MESSAGE scb, we
8332 * must queue the MK_MESSAGE scb.
8334 printk("Queueing mk_msg_scb\n");
8335 tid_head = ahd_inw(ahd, MK_MESSAGE_SCB);
8336 seq_flags2 &= ~PENDING_MK_MESSAGE;
8337 ahd_outb(ahd, SEQ_FLAGS2, seq_flags2);
8338 mk_msg_scb = NULL;
8340 if (tid_head != scbid)
8341 ahd_stitch_tid_list(ahd, tid_prev, tid_head, tid_next);
8342 if (!SCBID_IS_NULL(tid_head))
8343 tid_prev = tid_head;
8344 if (action == SEARCH_PRINT)
8345 printk(")\n");
8348 /* Restore saved state. */
8349 ahd_set_scbptr(ahd, savedscbptr);
8350 ahd_restore_modes(ahd, saved_modes);
8351 return (found);
8354 static int
8355 ahd_search_scb_list(struct ahd_softc *ahd, int target, char channel,
8356 int lun, u_int tag, role_t role, uint32_t status,
8357 ahd_search_action action, u_int *list_head,
8358 u_int *list_tail, u_int tid)
8360 struct scb *scb;
8361 u_int scbid;
8362 u_int next;
8363 u_int prev;
8364 int found;
8366 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8367 found = 0;
8368 prev = SCB_LIST_NULL;
8369 next = *list_head;
8370 *list_tail = SCB_LIST_NULL;
8371 for (scbid = next; !SCBID_IS_NULL(scbid); scbid = next) {
8372 if (scbid >= ahd->scb_data.numscbs) {
8373 printk("%s:SCB List inconsistency. "
8374 "SCB == 0x%x, yet numscbs == 0x%x.",
8375 ahd_name(ahd), scbid, ahd->scb_data.numscbs);
8376 ahd_dump_card_state(ahd);
8377 panic("for safety");
8379 scb = ahd_lookup_scb(ahd, scbid);
8380 if (scb == NULL) {
8381 printk("%s: SCB = %d Not Active!\n",
8382 ahd_name(ahd), scbid);
8383 panic("Waiting List traversal\n");
8385 ahd_set_scbptr(ahd, scbid);
8386 *list_tail = scbid;
8387 next = ahd_inw_scbram(ahd, SCB_NEXT);
8388 if (ahd_match_scb(ahd, scb, target, channel,
8389 lun, SCB_LIST_NULL, role) == 0) {
8390 prev = scbid;
8391 continue;
8393 found++;
8394 switch (action) {
8395 case SEARCH_COMPLETE:
8396 if ((scb->flags & SCB_ACTIVE) == 0)
8397 printk("Inactive SCB in Waiting List\n");
8398 ahd_done_with_status(ahd, scb, status);
8399 /* fall through */
8400 case SEARCH_REMOVE:
8401 ahd_rem_wscb(ahd, scbid, prev, next, tid);
8402 *list_tail = prev;
8403 if (SCBID_IS_NULL(prev))
8404 *list_head = next;
8405 break;
8406 case SEARCH_PRINT:
8407 printk("0x%x ", scbid);
8408 /* fall through */
8409 case SEARCH_COUNT:
8410 prev = scbid;
8411 break;
8413 if (found > AHD_SCB_MAX)
8414 panic("SCB LIST LOOP");
8416 if (action == SEARCH_COMPLETE
8417 || action == SEARCH_REMOVE)
8418 ahd_outw(ahd, CMDS_PENDING, ahd_inw(ahd, CMDS_PENDING) - found);
8419 return (found);
8422 static void
8423 ahd_stitch_tid_list(struct ahd_softc *ahd, u_int tid_prev,
8424 u_int tid_cur, u_int tid_next)
8426 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8428 if (SCBID_IS_NULL(tid_cur)) {
8430 /* Bypass current TID list */
8431 if (SCBID_IS_NULL(tid_prev)) {
8432 ahd_outw(ahd, WAITING_TID_HEAD, tid_next);
8433 } else {
8434 ahd_set_scbptr(ahd, tid_prev);
8435 ahd_outw(ahd, SCB_NEXT2, tid_next);
8437 if (SCBID_IS_NULL(tid_next))
8438 ahd_outw(ahd, WAITING_TID_TAIL, tid_prev);
8439 } else {
8441 /* Stitch through tid_cur */
8442 if (SCBID_IS_NULL(tid_prev)) {
8443 ahd_outw(ahd, WAITING_TID_HEAD, tid_cur);
8444 } else {
8445 ahd_set_scbptr(ahd, tid_prev);
8446 ahd_outw(ahd, SCB_NEXT2, tid_cur);
8448 ahd_set_scbptr(ahd, tid_cur);
8449 ahd_outw(ahd, SCB_NEXT2, tid_next);
8451 if (SCBID_IS_NULL(tid_next))
8452 ahd_outw(ahd, WAITING_TID_TAIL, tid_cur);
8457 * Manipulate the waiting for selection list and return the
8458 * scb that follows the one that we remove.
8460 static u_int
8461 ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid,
8462 u_int prev, u_int next, u_int tid)
8464 u_int tail_offset;
8466 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8467 if (!SCBID_IS_NULL(prev)) {
8468 ahd_set_scbptr(ahd, prev);
8469 ahd_outw(ahd, SCB_NEXT, next);
8473 * SCBs that have MK_MESSAGE set in them may
8474 * cause the tail pointer to be updated without
8475 * setting the next pointer of the previous tail.
8476 * Only clear the tail if the removed SCB was
8477 * the tail.
8479 tail_offset = WAITING_SCB_TAILS + (2 * tid);
8480 if (SCBID_IS_NULL(next)
8481 && ahd_inw(ahd, tail_offset) == scbid)
8482 ahd_outw(ahd, tail_offset, prev);
8484 ahd_add_scb_to_free_list(ahd, scbid);
8485 return (next);
8489 * Add the SCB as selected by SCBPTR onto the on chip list of
8490 * free hardware SCBs. This list is empty/unused if we are not
8491 * performing SCB paging.
8493 static void
8494 ahd_add_scb_to_free_list(struct ahd_softc *ahd, u_int scbid)
8496 /* XXX Need some other mechanism to designate "free". */
8498 * Invalidate the tag so that our abort
8499 * routines don't think it's active.
8500 ahd_outb(ahd, SCB_TAG, SCB_LIST_NULL);
8504 /******************************** Error Handling ******************************/
8506 * Abort all SCBs that match the given description (target/channel/lun/tag),
8507 * setting their status to the passed in status if the status has not already
8508 * been modified from CAM_REQ_INPROG. This routine assumes that the sequencer
8509 * is paused before it is called.
8511 static int
8512 ahd_abort_scbs(struct ahd_softc *ahd, int target, char channel,
8513 int lun, u_int tag, role_t role, uint32_t status)
8515 struct scb *scbp;
8516 struct scb *scbp_next;
8517 u_int i, j;
8518 u_int maxtarget;
8519 u_int minlun;
8520 u_int maxlun;
8521 int found;
8522 ahd_mode_state saved_modes;
8524 /* restore this when we're done */
8525 saved_modes = ahd_save_modes(ahd);
8526 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8528 found = ahd_search_qinfifo(ahd, target, channel, lun, SCB_LIST_NULL,
8529 role, CAM_REQUEUE_REQ, SEARCH_COMPLETE);
8532 * Clean out the busy target table for any untagged commands.
8534 i = 0;
8535 maxtarget = 16;
8536 if (target != CAM_TARGET_WILDCARD) {
8537 i = target;
8538 if (channel == 'B')
8539 i += 8;
8540 maxtarget = i + 1;
8543 if (lun == CAM_LUN_WILDCARD) {
8544 minlun = 0;
8545 maxlun = AHD_NUM_LUNS_NONPKT;
8546 } else if (lun >= AHD_NUM_LUNS_NONPKT) {
8547 minlun = maxlun = 0;
8548 } else {
8549 minlun = lun;
8550 maxlun = lun + 1;
8553 if (role != ROLE_TARGET) {
8554 for (;i < maxtarget; i++) {
8555 for (j = minlun;j < maxlun; j++) {
8556 u_int scbid;
8557 u_int tcl;
8559 tcl = BUILD_TCL_RAW(i, 'A', j);
8560 scbid = ahd_find_busy_tcl(ahd, tcl);
8561 scbp = ahd_lookup_scb(ahd, scbid);
8562 if (scbp == NULL
8563 || ahd_match_scb(ahd, scbp, target, channel,
8564 lun, tag, role) == 0)
8565 continue;
8566 ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(i, 'A', j));
8572 * Don't abort commands that have already completed,
8573 * but haven't quite made it up to the host yet.
8575 ahd_flush_qoutfifo(ahd);
8578 * Go through the pending CCB list and look for
8579 * commands for this target that are still active.
8580 * These are other tagged commands that were
8581 * disconnected when the reset occurred.
8583 scbp_next = LIST_FIRST(&ahd->pending_scbs);
8584 while (scbp_next != NULL) {
8585 scbp = scbp_next;
8586 scbp_next = LIST_NEXT(scbp, pending_links);
8587 if (ahd_match_scb(ahd, scbp, target, channel, lun, tag, role)) {
8588 cam_status ostat;
8590 ostat = ahd_get_transaction_status(scbp);
8591 if (ostat == CAM_REQ_INPROG)
8592 ahd_set_transaction_status(scbp, status);
8593 if (ahd_get_transaction_status(scbp) != CAM_REQ_CMP)
8594 ahd_freeze_scb(scbp);
8595 if ((scbp->flags & SCB_ACTIVE) == 0)
8596 printk("Inactive SCB on pending list\n");
8597 ahd_done(ahd, scbp);
8598 found++;
8601 ahd_restore_modes(ahd, saved_modes);
8602 ahd_platform_abort_scbs(ahd, target, channel, lun, tag, role, status);
8603 ahd->flags |= AHD_UPDATE_PEND_CMDS;
8604 return found;
8607 static void
8608 ahd_reset_current_bus(struct ahd_softc *ahd)
8610 uint8_t scsiseq;
8612 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8613 ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) & ~ENSCSIRST);
8614 scsiseq = ahd_inb(ahd, SCSISEQ0) & ~(ENSELO|ENARBO|SCSIRSTO);
8615 ahd_outb(ahd, SCSISEQ0, scsiseq | SCSIRSTO);
8616 ahd_flush_device_writes(ahd);
8617 ahd_delay(AHD_BUSRESET_DELAY);
8618 /* Turn off the bus reset */
8619 ahd_outb(ahd, SCSISEQ0, scsiseq);
8620 ahd_flush_device_writes(ahd);
8621 ahd_delay(AHD_BUSRESET_DELAY);
8622 if ((ahd->bugs & AHD_SCSIRST_BUG) != 0) {
8624 * 2A Razor #474
8625 * Certain chip state is not cleared for
8626 * SCSI bus resets that we initiate, so
8627 * we must reset the chip.
8629 ahd_reset(ahd, /*reinit*/TRUE);
8630 ahd_intr_enable(ahd, /*enable*/TRUE);
8631 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8634 ahd_clear_intstat(ahd);
8638 ahd_reset_channel(struct ahd_softc *ahd, char channel, int initiate_reset)
8640 struct ahd_devinfo caminfo;
8641 u_int initiator;
8642 u_int target;
8643 u_int max_scsiid;
8644 int found;
8645 u_int fifo;
8646 u_int next_fifo;
8647 uint8_t scsiseq;
8650 * Check if the last bus reset is cleared
8652 if (ahd->flags & AHD_BUS_RESET_ACTIVE) {
8653 printk("%s: bus reset still active\n",
8654 ahd_name(ahd));
8655 return 0;
8657 ahd->flags |= AHD_BUS_RESET_ACTIVE;
8659 ahd->pending_device = NULL;
8661 ahd_compile_devinfo(&caminfo,
8662 CAM_TARGET_WILDCARD,
8663 CAM_TARGET_WILDCARD,
8664 CAM_LUN_WILDCARD,
8665 channel, ROLE_UNKNOWN);
8666 ahd_pause(ahd);
8668 /* Make sure the sequencer is in a safe location. */
8669 ahd_clear_critical_section(ahd);
8672 * Run our command complete fifos to ensure that we perform
8673 * completion processing on any commands that 'completed'
8674 * before the reset occurred.
8676 ahd_run_qoutfifo(ahd);
8677 #ifdef AHD_TARGET_MODE
8678 if ((ahd->flags & AHD_TARGETROLE) != 0) {
8679 ahd_run_tqinfifo(ahd, /*paused*/TRUE);
8681 #endif
8682 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8685 * Disable selections so no automatic hardware
8686 * functions will modify chip state.
8688 ahd_outb(ahd, SCSISEQ0, 0);
8689 ahd_outb(ahd, SCSISEQ1, 0);
8692 * Safely shut down our DMA engines. Always start with
8693 * the FIFO that is not currently active (if any are
8694 * actively connected).
8696 next_fifo = fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO;
8697 if (next_fifo > CURRFIFO_1)
8698 /* If disconneced, arbitrarily start with FIFO1. */
8699 next_fifo = fifo = 0;
8700 do {
8701 next_fifo ^= CURRFIFO_1;
8702 ahd_set_modes(ahd, next_fifo, next_fifo);
8703 ahd_outb(ahd, DFCNTRL,
8704 ahd_inb(ahd, DFCNTRL) & ~(SCSIEN|HDMAEN));
8705 while ((ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0)
8706 ahd_delay(10);
8708 * Set CURRFIFO to the now inactive channel.
8710 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8711 ahd_outb(ahd, DFFSTAT, next_fifo);
8712 } while (next_fifo != fifo);
8715 * Reset the bus if we are initiating this reset
8717 ahd_clear_msg_state(ahd);
8718 ahd_outb(ahd, SIMODE1,
8719 ahd_inb(ahd, SIMODE1) & ~(ENBUSFREE|ENSCSIRST));
8721 if (initiate_reset)
8722 ahd_reset_current_bus(ahd);
8724 ahd_clear_intstat(ahd);
8727 * Clean up all the state information for the
8728 * pending transactions on this bus.
8730 found = ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, channel,
8731 CAM_LUN_WILDCARD, SCB_LIST_NULL,
8732 ROLE_UNKNOWN, CAM_SCSI_BUS_RESET);
8735 * Cleanup anything left in the FIFOs.
8737 ahd_clear_fifo(ahd, 0);
8738 ahd_clear_fifo(ahd, 1);
8741 * Clear SCSI interrupt status
8743 ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
8746 * Reenable selections
8748 ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) | ENSCSIRST);
8749 scsiseq = ahd_inb(ahd, SCSISEQ_TEMPLATE);
8750 ahd_outb(ahd, SCSISEQ1, scsiseq & (ENSELI|ENRSELI|ENAUTOATNP));
8752 max_scsiid = (ahd->features & AHD_WIDE) ? 15 : 7;
8753 #ifdef AHD_TARGET_MODE
8755 * Send an immediate notify ccb to all target more peripheral
8756 * drivers affected by this action.
8758 for (target = 0; target <= max_scsiid; target++) {
8759 struct ahd_tmode_tstate* tstate;
8760 u_int lun;
8762 tstate = ahd->enabled_targets[target];
8763 if (tstate == NULL)
8764 continue;
8765 for (lun = 0; lun < AHD_NUM_LUNS; lun++) {
8766 struct ahd_tmode_lstate* lstate;
8768 lstate = tstate->enabled_luns[lun];
8769 if (lstate == NULL)
8770 continue;
8772 ahd_queue_lstate_event(ahd, lstate, CAM_TARGET_WILDCARD,
8773 EVENT_TYPE_BUS_RESET, /*arg*/0);
8774 ahd_send_lstate_events(ahd, lstate);
8777 #endif
8779 * Revert to async/narrow transfers until we renegotiate.
8781 for (target = 0; target <= max_scsiid; target++) {
8783 if (ahd->enabled_targets[target] == NULL)
8784 continue;
8785 for (initiator = 0; initiator <= max_scsiid; initiator++) {
8786 struct ahd_devinfo devinfo;
8788 ahd_compile_devinfo(&devinfo, target, initiator,
8789 CAM_LUN_WILDCARD,
8790 'A', ROLE_UNKNOWN);
8791 ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
8792 AHD_TRANS_CUR, /*paused*/TRUE);
8793 ahd_set_syncrate(ahd, &devinfo, /*period*/0,
8794 /*offset*/0, /*ppr_options*/0,
8795 AHD_TRANS_CUR, /*paused*/TRUE);
8799 /* Notify the XPT that a bus reset occurred */
8800 ahd_send_async(ahd, caminfo.channel, CAM_TARGET_WILDCARD,
8801 CAM_LUN_WILDCARD, AC_BUS_RESET);
8803 ahd_restart(ahd);
8805 return (found);
8808 /**************************** Statistics Processing ***************************/
8809 static void
8810 ahd_stat_timer(struct timer_list *t)
8812 struct ahd_softc *ahd = from_timer(ahd, t, stat_timer);
8813 u_long s;
8814 int enint_coal;
8816 ahd_lock(ahd, &s);
8818 enint_coal = ahd->hs_mailbox & ENINT_COALESCE;
8819 if (ahd->cmdcmplt_total > ahd->int_coalescing_threshold)
8820 enint_coal |= ENINT_COALESCE;
8821 else if (ahd->cmdcmplt_total < ahd->int_coalescing_stop_threshold)
8822 enint_coal &= ~ENINT_COALESCE;
8824 if (enint_coal != (ahd->hs_mailbox & ENINT_COALESCE)) {
8825 ahd_enable_coalescing(ahd, enint_coal);
8826 #ifdef AHD_DEBUG
8827 if ((ahd_debug & AHD_SHOW_INT_COALESCING) != 0)
8828 printk("%s: Interrupt coalescing "
8829 "now %sabled. Cmds %d\n",
8830 ahd_name(ahd),
8831 (enint_coal & ENINT_COALESCE) ? "en" : "dis",
8832 ahd->cmdcmplt_total);
8833 #endif
8836 ahd->cmdcmplt_bucket = (ahd->cmdcmplt_bucket+1) & (AHD_STAT_BUCKETS-1);
8837 ahd->cmdcmplt_total -= ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket];
8838 ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket] = 0;
8839 ahd_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_US);
8840 ahd_unlock(ahd, &s);
8843 /****************************** Status Processing *****************************/
8845 static void
8846 ahd_handle_scsi_status(struct ahd_softc *ahd, struct scb *scb)
8848 struct hardware_scb *hscb;
8849 int paused;
8852 * The sequencer freezes its select-out queue
8853 * anytime a SCSI status error occurs. We must
8854 * handle the error and increment our qfreeze count
8855 * to allow the sequencer to continue. We don't
8856 * bother clearing critical sections here since all
8857 * operations are on data structures that the sequencer
8858 * is not touching once the queue is frozen.
8860 hscb = scb->hscb;
8862 if (ahd_is_paused(ahd)) {
8863 paused = 1;
8864 } else {
8865 paused = 0;
8866 ahd_pause(ahd);
8869 /* Freeze the queue until the client sees the error. */
8870 ahd_freeze_devq(ahd, scb);
8871 ahd_freeze_scb(scb);
8872 ahd->qfreeze_cnt++;
8873 ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
8875 if (paused == 0)
8876 ahd_unpause(ahd);
8878 /* Don't want to clobber the original sense code */
8879 if ((scb->flags & SCB_SENSE) != 0) {
8881 * Clear the SCB_SENSE Flag and perform
8882 * a normal command completion.
8884 scb->flags &= ~SCB_SENSE;
8885 ahd_set_transaction_status(scb, CAM_AUTOSENSE_FAIL);
8886 ahd_done(ahd, scb);
8887 return;
8889 ahd_set_transaction_status(scb, CAM_SCSI_STATUS_ERROR);
8890 ahd_set_scsi_status(scb, hscb->shared_data.istatus.scsi_status);
8891 switch (hscb->shared_data.istatus.scsi_status) {
8892 case STATUS_PKT_SENSE:
8894 struct scsi_status_iu_header *siu;
8896 ahd_sync_sense(ahd, scb, BUS_DMASYNC_POSTREAD);
8897 siu = (struct scsi_status_iu_header *)scb->sense_data;
8898 ahd_set_scsi_status(scb, siu->status);
8899 #ifdef AHD_DEBUG
8900 if ((ahd_debug & AHD_SHOW_SENSE) != 0) {
8901 ahd_print_path(ahd, scb);
8902 printk("SCB 0x%x Received PKT Status of 0x%x\n",
8903 SCB_GET_TAG(scb), siu->status);
8904 printk("\tflags = 0x%x, sense len = 0x%x, "
8905 "pktfail = 0x%x\n",
8906 siu->flags, scsi_4btoul(siu->sense_length),
8907 scsi_4btoul(siu->pkt_failures_length));
8909 #endif
8910 if ((siu->flags & SIU_RSPVALID) != 0) {
8911 ahd_print_path(ahd, scb);
8912 if (scsi_4btoul(siu->pkt_failures_length) < 4) {
8913 printk("Unable to parse pkt_failures\n");
8914 } else {
8916 switch (SIU_PKTFAIL_CODE(siu)) {
8917 case SIU_PFC_NONE:
8918 printk("No packet failure found\n");
8919 break;
8920 case SIU_PFC_CIU_FIELDS_INVALID:
8921 printk("Invalid Command IU Field\n");
8922 break;
8923 case SIU_PFC_TMF_NOT_SUPPORTED:
8924 printk("TMF not supported\n");
8925 break;
8926 case SIU_PFC_TMF_FAILED:
8927 printk("TMF failed\n");
8928 break;
8929 case SIU_PFC_INVALID_TYPE_CODE:
8930 printk("Invalid L_Q Type code\n");
8931 break;
8932 case SIU_PFC_ILLEGAL_REQUEST:
8933 printk("Illegal request\n");
8934 default:
8935 break;
8938 if (siu->status == SCSI_STATUS_OK)
8939 ahd_set_transaction_status(scb,
8940 CAM_REQ_CMP_ERR);
8942 if ((siu->flags & SIU_SNSVALID) != 0) {
8943 scb->flags |= SCB_PKT_SENSE;
8944 #ifdef AHD_DEBUG
8945 if ((ahd_debug & AHD_SHOW_SENSE) != 0)
8946 printk("Sense data available\n");
8947 #endif
8949 ahd_done(ahd, scb);
8950 break;
8952 case SCSI_STATUS_CMD_TERMINATED:
8953 case SCSI_STATUS_CHECK_COND:
8955 struct ahd_devinfo devinfo;
8956 struct ahd_dma_seg *sg;
8957 struct scsi_sense *sc;
8958 struct ahd_initiator_tinfo *targ_info;
8959 struct ahd_tmode_tstate *tstate;
8960 struct ahd_transinfo *tinfo;
8961 #ifdef AHD_DEBUG
8962 if (ahd_debug & AHD_SHOW_SENSE) {
8963 ahd_print_path(ahd, scb);
8964 printk("SCB %d: requests Check Status\n",
8965 SCB_GET_TAG(scb));
8967 #endif
8969 if (ahd_perform_autosense(scb) == 0)
8970 break;
8972 ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb),
8973 SCB_GET_TARGET(ahd, scb),
8974 SCB_GET_LUN(scb),
8975 SCB_GET_CHANNEL(ahd, scb),
8976 ROLE_INITIATOR);
8977 targ_info = ahd_fetch_transinfo(ahd,
8978 devinfo.channel,
8979 devinfo.our_scsiid,
8980 devinfo.target,
8981 &tstate);
8982 tinfo = &targ_info->curr;
8983 sg = scb->sg_list;
8984 sc = (struct scsi_sense *)hscb->shared_data.idata.cdb;
8986 * Save off the residual if there is one.
8988 ahd_update_residual(ahd, scb);
8989 #ifdef AHD_DEBUG
8990 if (ahd_debug & AHD_SHOW_SENSE) {
8991 ahd_print_path(ahd, scb);
8992 printk("Sending Sense\n");
8994 #endif
8995 scb->sg_count = 0;
8996 sg = ahd_sg_setup(ahd, scb, sg, ahd_get_sense_bufaddr(ahd, scb),
8997 ahd_get_sense_bufsize(ahd, scb),
8998 /*last*/TRUE);
8999 sc->opcode = REQUEST_SENSE;
9000 sc->byte2 = 0;
9001 if (tinfo->protocol_version <= SCSI_REV_2
9002 && SCB_GET_LUN(scb) < 8)
9003 sc->byte2 = SCB_GET_LUN(scb) << 5;
9004 sc->unused[0] = 0;
9005 sc->unused[1] = 0;
9006 sc->length = ahd_get_sense_bufsize(ahd, scb);
9007 sc->control = 0;
9010 * We can't allow the target to disconnect.
9011 * This will be an untagged transaction and
9012 * having the target disconnect will make this
9013 * transaction indestinguishable from outstanding
9014 * tagged transactions.
9016 hscb->control = 0;
9019 * This request sense could be because the
9020 * the device lost power or in some other
9021 * way has lost our transfer negotiations.
9022 * Renegotiate if appropriate. Unit attention
9023 * errors will be reported before any data
9024 * phases occur.
9026 if (ahd_get_residual(scb) == ahd_get_transfer_length(scb)) {
9027 ahd_update_neg_request(ahd, &devinfo,
9028 tstate, targ_info,
9029 AHD_NEG_IF_NON_ASYNC);
9031 if (tstate->auto_negotiate & devinfo.target_mask) {
9032 hscb->control |= MK_MESSAGE;
9033 scb->flags &=
9034 ~(SCB_NEGOTIATE|SCB_ABORT|SCB_DEVICE_RESET);
9035 scb->flags |= SCB_AUTO_NEGOTIATE;
9037 hscb->cdb_len = sizeof(*sc);
9038 ahd_setup_data_scb(ahd, scb);
9039 scb->flags |= SCB_SENSE;
9040 ahd_queue_scb(ahd, scb);
9041 break;
9043 case SCSI_STATUS_OK:
9044 printk("%s: Interrupted for status of 0???\n",
9045 ahd_name(ahd));
9046 /* FALLTHROUGH */
9047 default:
9048 ahd_done(ahd, scb);
9049 break;
9053 static void
9054 ahd_handle_scb_status(struct ahd_softc *ahd, struct scb *scb)
9056 if (scb->hscb->shared_data.istatus.scsi_status != 0) {
9057 ahd_handle_scsi_status(ahd, scb);
9058 } else {
9059 ahd_calc_residual(ahd, scb);
9060 ahd_done(ahd, scb);
9065 * Calculate the residual for a just completed SCB.
9067 static void
9068 ahd_calc_residual(struct ahd_softc *ahd, struct scb *scb)
9070 struct hardware_scb *hscb;
9071 struct initiator_status *spkt;
9072 uint32_t sgptr;
9073 uint32_t resid_sgptr;
9074 uint32_t resid;
9077 * 5 cases.
9078 * 1) No residual.
9079 * SG_STATUS_VALID clear in sgptr.
9080 * 2) Transferless command
9081 * 3) Never performed any transfers.
9082 * sgptr has SG_FULL_RESID set.
9083 * 4) No residual but target did not
9084 * save data pointers after the
9085 * last transfer, so sgptr was
9086 * never updated.
9087 * 5) We have a partial residual.
9088 * Use residual_sgptr to determine
9089 * where we are.
9092 hscb = scb->hscb;
9093 sgptr = ahd_le32toh(hscb->sgptr);
9094 if ((sgptr & SG_STATUS_VALID) == 0)
9095 /* Case 1 */
9096 return;
9097 sgptr &= ~SG_STATUS_VALID;
9099 if ((sgptr & SG_LIST_NULL) != 0)
9100 /* Case 2 */
9101 return;
9104 * Residual fields are the same in both
9105 * target and initiator status packets,
9106 * so we can always use the initiator fields
9107 * regardless of the role for this SCB.
9109 spkt = &hscb->shared_data.istatus;
9110 resid_sgptr = ahd_le32toh(spkt->residual_sgptr);
9111 if ((sgptr & SG_FULL_RESID) != 0) {
9112 /* Case 3 */
9113 resid = ahd_get_transfer_length(scb);
9114 } else if ((resid_sgptr & SG_LIST_NULL) != 0) {
9115 /* Case 4 */
9116 return;
9117 } else if ((resid_sgptr & SG_OVERRUN_RESID) != 0) {
9118 ahd_print_path(ahd, scb);
9119 printk("data overrun detected Tag == 0x%x.\n",
9120 SCB_GET_TAG(scb));
9121 ahd_freeze_devq(ahd, scb);
9122 ahd_set_transaction_status(scb, CAM_DATA_RUN_ERR);
9123 ahd_freeze_scb(scb);
9124 return;
9125 } else if ((resid_sgptr & ~SG_PTR_MASK) != 0) {
9126 panic("Bogus resid sgptr value 0x%x\n", resid_sgptr);
9127 /* NOTREACHED */
9128 } else {
9129 struct ahd_dma_seg *sg;
9132 * Remainder of the SG where the transfer
9133 * stopped.
9135 resid = ahd_le32toh(spkt->residual_datacnt) & AHD_SG_LEN_MASK;
9136 sg = ahd_sg_bus_to_virt(ahd, scb, resid_sgptr & SG_PTR_MASK);
9138 /* The residual sg_ptr always points to the next sg */
9139 sg--;
9142 * Add up the contents of all residual
9143 * SG segments that are after the SG where
9144 * the transfer stopped.
9146 while ((ahd_le32toh(sg->len) & AHD_DMA_LAST_SEG) == 0) {
9147 sg++;
9148 resid += ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
9151 if ((scb->flags & SCB_SENSE) == 0)
9152 ahd_set_residual(scb, resid);
9153 else
9154 ahd_set_sense_residual(scb, resid);
9156 #ifdef AHD_DEBUG
9157 if ((ahd_debug & AHD_SHOW_MISC) != 0) {
9158 ahd_print_path(ahd, scb);
9159 printk("Handled %sResidual of %d bytes\n",
9160 (scb->flags & SCB_SENSE) ? "Sense " : "", resid);
9162 #endif
9165 /******************************* Target Mode **********************************/
9166 #ifdef AHD_TARGET_MODE
9168 * Add a target mode event to this lun's queue
9170 static void
9171 ahd_queue_lstate_event(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate,
9172 u_int initiator_id, u_int event_type, u_int event_arg)
9174 struct ahd_tmode_event *event;
9175 int pending;
9177 xpt_freeze_devq(lstate->path, /*count*/1);
9178 if (lstate->event_w_idx >= lstate->event_r_idx)
9179 pending = lstate->event_w_idx - lstate->event_r_idx;
9180 else
9181 pending = AHD_TMODE_EVENT_BUFFER_SIZE + 1
9182 - (lstate->event_r_idx - lstate->event_w_idx);
9184 if (event_type == EVENT_TYPE_BUS_RESET
9185 || event_type == MSG_BUS_DEV_RESET) {
9187 * Any earlier events are irrelevant, so reset our buffer.
9188 * This has the effect of allowing us to deal with reset
9189 * floods (an external device holding down the reset line)
9190 * without losing the event that is really interesting.
9192 lstate->event_r_idx = 0;
9193 lstate->event_w_idx = 0;
9194 xpt_release_devq(lstate->path, pending, /*runqueue*/FALSE);
9197 if (pending == AHD_TMODE_EVENT_BUFFER_SIZE) {
9198 xpt_print_path(lstate->path);
9199 printk("immediate event %x:%x lost\n",
9200 lstate->event_buffer[lstate->event_r_idx].event_type,
9201 lstate->event_buffer[lstate->event_r_idx].event_arg);
9202 lstate->event_r_idx++;
9203 if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
9204 lstate->event_r_idx = 0;
9205 xpt_release_devq(lstate->path, /*count*/1, /*runqueue*/FALSE);
9208 event = &lstate->event_buffer[lstate->event_w_idx];
9209 event->initiator_id = initiator_id;
9210 event->event_type = event_type;
9211 event->event_arg = event_arg;
9212 lstate->event_w_idx++;
9213 if (lstate->event_w_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
9214 lstate->event_w_idx = 0;
9218 * Send any target mode events queued up waiting
9219 * for immediate notify resources.
9221 void
9222 ahd_send_lstate_events(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate)
9224 struct ccb_hdr *ccbh;
9225 struct ccb_immed_notify *inot;
9227 while (lstate->event_r_idx != lstate->event_w_idx
9228 && (ccbh = SLIST_FIRST(&lstate->immed_notifies)) != NULL) {
9229 struct ahd_tmode_event *event;
9231 event = &lstate->event_buffer[lstate->event_r_idx];
9232 SLIST_REMOVE_HEAD(&lstate->immed_notifies, sim_links.sle);
9233 inot = (struct ccb_immed_notify *)ccbh;
9234 switch (event->event_type) {
9235 case EVENT_TYPE_BUS_RESET:
9236 ccbh->status = CAM_SCSI_BUS_RESET|CAM_DEV_QFRZN;
9237 break;
9238 default:
9239 ccbh->status = CAM_MESSAGE_RECV|CAM_DEV_QFRZN;
9240 inot->message_args[0] = event->event_type;
9241 inot->message_args[1] = event->event_arg;
9242 break;
9244 inot->initiator_id = event->initiator_id;
9245 inot->sense_len = 0;
9246 xpt_done((union ccb *)inot);
9247 lstate->event_r_idx++;
9248 if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
9249 lstate->event_r_idx = 0;
9252 #endif
9254 /******************** Sequencer Program Patching/Download *********************/
9256 #ifdef AHD_DUMP_SEQ
9257 void
9258 ahd_dumpseq(struct ahd_softc* ahd)
9260 int i;
9261 int max_prog;
9263 max_prog = 2048;
9265 ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
9266 ahd_outw(ahd, PRGMCNT, 0);
9267 for (i = 0; i < max_prog; i++) {
9268 uint8_t ins_bytes[4];
9270 ahd_insb(ahd, SEQRAM, ins_bytes, 4);
9271 printk("0x%08x\n", ins_bytes[0] << 24
9272 | ins_bytes[1] << 16
9273 | ins_bytes[2] << 8
9274 | ins_bytes[3]);
9277 #endif
9279 static void
9280 ahd_loadseq(struct ahd_softc *ahd)
9282 struct cs cs_table[NUM_CRITICAL_SECTIONS];
9283 u_int begin_set[NUM_CRITICAL_SECTIONS];
9284 u_int end_set[NUM_CRITICAL_SECTIONS];
9285 const struct patch *cur_patch;
9286 u_int cs_count;
9287 u_int cur_cs;
9288 u_int i;
9289 int downloaded;
9290 u_int skip_addr;
9291 u_int sg_prefetch_cnt;
9292 u_int sg_prefetch_cnt_limit;
9293 u_int sg_prefetch_align;
9294 u_int sg_size;
9295 u_int cacheline_mask;
9296 uint8_t download_consts[DOWNLOAD_CONST_COUNT];
9298 if (bootverbose)
9299 printk("%s: Downloading Sequencer Program...",
9300 ahd_name(ahd));
9302 #if DOWNLOAD_CONST_COUNT != 8
9303 #error "Download Const Mismatch"
9304 #endif
9306 * Start out with 0 critical sections
9307 * that apply to this firmware load.
9309 cs_count = 0;
9310 cur_cs = 0;
9311 memset(begin_set, 0, sizeof(begin_set));
9312 memset(end_set, 0, sizeof(end_set));
9315 * Setup downloadable constant table.
9317 * The computation for the S/G prefetch variables is
9318 * a bit complicated. We would like to always fetch
9319 * in terms of cachelined sized increments. However,
9320 * if the cacheline is not an even multiple of the
9321 * SG element size or is larger than our SG RAM, using
9322 * just the cache size might leave us with only a portion
9323 * of an SG element at the tail of a prefetch. If the
9324 * cacheline is larger than our S/G prefetch buffer less
9325 * the size of an SG element, we may round down to a cacheline
9326 * that doesn't contain any or all of the S/G of interest
9327 * within the bounds of our S/G ram. Provide variables to
9328 * the sequencer that will allow it to handle these edge
9329 * cases.
9331 /* Start by aligning to the nearest cacheline. */
9332 sg_prefetch_align = ahd->pci_cachesize;
9333 if (sg_prefetch_align == 0)
9334 sg_prefetch_align = 8;
9335 /* Round down to the nearest power of 2. */
9336 while (powerof2(sg_prefetch_align) == 0)
9337 sg_prefetch_align--;
9339 cacheline_mask = sg_prefetch_align - 1;
9342 * If the cacheline boundary is greater than half our prefetch RAM
9343 * we risk not being able to fetch even a single complete S/G
9344 * segment if we align to that boundary.
9346 if (sg_prefetch_align > CCSGADDR_MAX/2)
9347 sg_prefetch_align = CCSGADDR_MAX/2;
9348 /* Start by fetching a single cacheline. */
9349 sg_prefetch_cnt = sg_prefetch_align;
9351 * Increment the prefetch count by cachelines until
9352 * at least one S/G element will fit.
9354 sg_size = sizeof(struct ahd_dma_seg);
9355 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
9356 sg_size = sizeof(struct ahd_dma64_seg);
9357 while (sg_prefetch_cnt < sg_size)
9358 sg_prefetch_cnt += sg_prefetch_align;
9360 * If the cacheline is not an even multiple of
9361 * the S/G size, we may only get a partial S/G when
9362 * we align. Add a cacheline if this is the case.
9364 if ((sg_prefetch_align % sg_size) != 0
9365 && (sg_prefetch_cnt < CCSGADDR_MAX))
9366 sg_prefetch_cnt += sg_prefetch_align;
9368 * Lastly, compute a value that the sequencer can use
9369 * to determine if the remainder of the CCSGRAM buffer
9370 * has a full S/G element in it.
9372 sg_prefetch_cnt_limit = -(sg_prefetch_cnt - sg_size + 1);
9373 download_consts[SG_PREFETCH_CNT] = sg_prefetch_cnt;
9374 download_consts[SG_PREFETCH_CNT_LIMIT] = sg_prefetch_cnt_limit;
9375 download_consts[SG_PREFETCH_ALIGN_MASK] = ~(sg_prefetch_align - 1);
9376 download_consts[SG_PREFETCH_ADDR_MASK] = (sg_prefetch_align - 1);
9377 download_consts[SG_SIZEOF] = sg_size;
9378 download_consts[PKT_OVERRUN_BUFOFFSET] =
9379 (ahd->overrun_buf - (uint8_t *)ahd->qoutfifo) / 256;
9380 download_consts[SCB_TRANSFER_SIZE] = SCB_TRANSFER_SIZE_1BYTE_LUN;
9381 download_consts[CACHELINE_MASK] = cacheline_mask;
9382 cur_patch = patches;
9383 downloaded = 0;
9384 skip_addr = 0;
9385 ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
9386 ahd_outw(ahd, PRGMCNT, 0);
9388 for (i = 0; i < sizeof(seqprog)/4; i++) {
9389 if (ahd_check_patch(ahd, &cur_patch, i, &skip_addr) == 0) {
9391 * Don't download this instruction as it
9392 * is in a patch that was removed.
9394 continue;
9397 * Move through the CS table until we find a CS
9398 * that might apply to this instruction.
9400 for (; cur_cs < NUM_CRITICAL_SECTIONS; cur_cs++) {
9401 if (critical_sections[cur_cs].end <= i) {
9402 if (begin_set[cs_count] == TRUE
9403 && end_set[cs_count] == FALSE) {
9404 cs_table[cs_count].end = downloaded;
9405 end_set[cs_count] = TRUE;
9406 cs_count++;
9408 continue;
9410 if (critical_sections[cur_cs].begin <= i
9411 && begin_set[cs_count] == FALSE) {
9412 cs_table[cs_count].begin = downloaded;
9413 begin_set[cs_count] = TRUE;
9415 break;
9417 ahd_download_instr(ahd, i, download_consts);
9418 downloaded++;
9421 ahd->num_critical_sections = cs_count;
9422 if (cs_count != 0) {
9424 cs_count *= sizeof(struct cs);
9425 ahd->critical_sections = kmalloc(cs_count, GFP_ATOMIC);
9426 if (ahd->critical_sections == NULL)
9427 panic("ahd_loadseq: Could not malloc");
9428 memcpy(ahd->critical_sections, cs_table, cs_count);
9430 ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE);
9432 if (bootverbose) {
9433 printk(" %d instructions downloaded\n", downloaded);
9434 printk("%s: Features 0x%x, Bugs 0x%x, Flags 0x%x\n",
9435 ahd_name(ahd), ahd->features, ahd->bugs, ahd->flags);
9439 static int
9440 ahd_check_patch(struct ahd_softc *ahd, const struct patch **start_patch,
9441 u_int start_instr, u_int *skip_addr)
9443 const struct patch *cur_patch;
9444 const struct patch *last_patch;
9445 u_int num_patches;
9447 num_patches = ARRAY_SIZE(patches);
9448 last_patch = &patches[num_patches];
9449 cur_patch = *start_patch;
9451 while (cur_patch < last_patch && start_instr == cur_patch->begin) {
9453 if (cur_patch->patch_func(ahd) == 0) {
9455 /* Start rejecting code */
9456 *skip_addr = start_instr + cur_patch->skip_instr;
9457 cur_patch += cur_patch->skip_patch;
9458 } else {
9459 /* Accepted this patch. Advance to the next
9460 * one and wait for our intruction pointer to
9461 * hit this point.
9463 cur_patch++;
9467 *start_patch = cur_patch;
9468 if (start_instr < *skip_addr)
9469 /* Still skipping */
9470 return (0);
9472 return (1);
9475 static u_int
9476 ahd_resolve_seqaddr(struct ahd_softc *ahd, u_int address)
9478 const struct patch *cur_patch;
9479 int address_offset;
9480 u_int skip_addr;
9481 u_int i;
9483 address_offset = 0;
9484 cur_patch = patches;
9485 skip_addr = 0;
9487 for (i = 0; i < address;) {
9489 ahd_check_patch(ahd, &cur_patch, i, &skip_addr);
9491 if (skip_addr > i) {
9492 int end_addr;
9494 end_addr = min(address, skip_addr);
9495 address_offset += end_addr - i;
9496 i = skip_addr;
9497 } else {
9498 i++;
9501 return (address - address_offset);
9504 static void
9505 ahd_download_instr(struct ahd_softc *ahd, u_int instrptr, uint8_t *dconsts)
9507 union ins_formats instr;
9508 struct ins_format1 *fmt1_ins;
9509 struct ins_format3 *fmt3_ins;
9510 u_int opcode;
9513 * The firmware is always compiled into a little endian format.
9515 instr.integer = ahd_le32toh(*(uint32_t*)&seqprog[instrptr * 4]);
9517 fmt1_ins = &instr.format1;
9518 fmt3_ins = NULL;
9520 /* Pull the opcode */
9521 opcode = instr.format1.opcode;
9522 switch (opcode) {
9523 case AIC_OP_JMP:
9524 case AIC_OP_JC:
9525 case AIC_OP_JNC:
9526 case AIC_OP_CALL:
9527 case AIC_OP_JNE:
9528 case AIC_OP_JNZ:
9529 case AIC_OP_JE:
9530 case AIC_OP_JZ:
9532 fmt3_ins = &instr.format3;
9533 fmt3_ins->address = ahd_resolve_seqaddr(ahd, fmt3_ins->address);
9535 /* fall through */
9536 case AIC_OP_OR:
9537 case AIC_OP_AND:
9538 case AIC_OP_XOR:
9539 case AIC_OP_ADD:
9540 case AIC_OP_ADC:
9541 case AIC_OP_BMOV:
9542 if (fmt1_ins->parity != 0) {
9543 fmt1_ins->immediate = dconsts[fmt1_ins->immediate];
9545 fmt1_ins->parity = 0;
9546 /* fall through */
9547 case AIC_OP_ROL:
9549 int i, count;
9551 /* Calculate odd parity for the instruction */
9552 for (i = 0, count = 0; i < 31; i++) {
9553 uint32_t mask;
9555 mask = 0x01 << i;
9556 if ((instr.integer & mask) != 0)
9557 count++;
9559 if ((count & 0x01) == 0)
9560 instr.format1.parity = 1;
9562 /* The sequencer is a little endian cpu */
9563 instr.integer = ahd_htole32(instr.integer);
9564 ahd_outsb(ahd, SEQRAM, instr.bytes, 4);
9565 break;
9567 default:
9568 panic("Unknown opcode encountered in seq program");
9569 break;
9573 static int
9574 ahd_probe_stack_size(struct ahd_softc *ahd)
9576 int last_probe;
9578 last_probe = 0;
9579 while (1) {
9580 int i;
9583 * We avoid using 0 as a pattern to avoid
9584 * confusion if the stack implementation
9585 * "back-fills" with zeros when "poping'
9586 * entries.
9588 for (i = 1; i <= last_probe+1; i++) {
9589 ahd_outb(ahd, STACK, i & 0xFF);
9590 ahd_outb(ahd, STACK, (i >> 8) & 0xFF);
9593 /* Verify */
9594 for (i = last_probe+1; i > 0; i--) {
9595 u_int stack_entry;
9597 stack_entry = ahd_inb(ahd, STACK)
9598 |(ahd_inb(ahd, STACK) << 8);
9599 if (stack_entry != i)
9600 goto sized;
9602 last_probe++;
9604 sized:
9605 return (last_probe);
9609 ahd_print_register(const ahd_reg_parse_entry_t *table, u_int num_entries,
9610 const char *name, u_int address, u_int value,
9611 u_int *cur_column, u_int wrap_point)
9613 int printed;
9614 u_int printed_mask;
9616 if (cur_column != NULL && *cur_column >= wrap_point) {
9617 printk("\n");
9618 *cur_column = 0;
9620 printed = printk("%s[0x%x]", name, value);
9621 if (table == NULL) {
9622 printed += printk(" ");
9623 *cur_column += printed;
9624 return (printed);
9626 printed_mask = 0;
9627 while (printed_mask != 0xFF) {
9628 int entry;
9630 for (entry = 0; entry < num_entries; entry++) {
9631 if (((value & table[entry].mask)
9632 != table[entry].value)
9633 || ((printed_mask & table[entry].mask)
9634 == table[entry].mask))
9635 continue;
9637 printed += printk("%s%s",
9638 printed_mask == 0 ? ":(" : "|",
9639 table[entry].name);
9640 printed_mask |= table[entry].mask;
9642 break;
9644 if (entry >= num_entries)
9645 break;
9647 if (printed_mask != 0)
9648 printed += printk(") ");
9649 else
9650 printed += printk(" ");
9651 if (cur_column != NULL)
9652 *cur_column += printed;
9653 return (printed);
9656 void
9657 ahd_dump_card_state(struct ahd_softc *ahd)
9659 struct scb *scb;
9660 ahd_mode_state saved_modes;
9661 u_int dffstat;
9662 int paused;
9663 u_int scb_index;
9664 u_int saved_scb_index;
9665 u_int cur_col;
9666 int i;
9668 if (ahd_is_paused(ahd)) {
9669 paused = 1;
9670 } else {
9671 paused = 0;
9672 ahd_pause(ahd);
9674 saved_modes = ahd_save_modes(ahd);
9675 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
9676 printk(">>>>>>>>>>>>>>>>>> Dump Card State Begins <<<<<<<<<<<<<<<<<\n"
9677 "%s: Dumping Card State at program address 0x%x Mode 0x%x\n",
9678 ahd_name(ahd),
9679 ahd_inw(ahd, CURADDR),
9680 ahd_build_mode_state(ahd, ahd->saved_src_mode,
9681 ahd->saved_dst_mode));
9682 if (paused)
9683 printk("Card was paused\n");
9685 if (ahd_check_cmdcmpltqueues(ahd))
9686 printk("Completions are pending\n");
9689 * Mode independent registers.
9691 cur_col = 0;
9692 ahd_intstat_print(ahd_inb(ahd, INTSTAT), &cur_col, 50);
9693 ahd_seloid_print(ahd_inb(ahd, SELOID), &cur_col, 50);
9694 ahd_selid_print(ahd_inb(ahd, SELID), &cur_col, 50);
9695 ahd_hs_mailbox_print(ahd_inb(ahd, LOCAL_HS_MAILBOX), &cur_col, 50);
9696 ahd_intctl_print(ahd_inb(ahd, INTCTL), &cur_col, 50);
9697 ahd_seqintstat_print(ahd_inb(ahd, SEQINTSTAT), &cur_col, 50);
9698 ahd_saved_mode_print(ahd_inb(ahd, SAVED_MODE), &cur_col, 50);
9699 ahd_dffstat_print(ahd_inb(ahd, DFFSTAT), &cur_col, 50);
9700 ahd_scsisigi_print(ahd_inb(ahd, SCSISIGI), &cur_col, 50);
9701 ahd_scsiphase_print(ahd_inb(ahd, SCSIPHASE), &cur_col, 50);
9702 ahd_scsibus_print(ahd_inb(ahd, SCSIBUS), &cur_col, 50);
9703 ahd_lastphase_print(ahd_inb(ahd, LASTPHASE), &cur_col, 50);
9704 ahd_scsiseq0_print(ahd_inb(ahd, SCSISEQ0), &cur_col, 50);
9705 ahd_scsiseq1_print(ahd_inb(ahd, SCSISEQ1), &cur_col, 50);
9706 ahd_seqctl0_print(ahd_inb(ahd, SEQCTL0), &cur_col, 50);
9707 ahd_seqintctl_print(ahd_inb(ahd, SEQINTCTL), &cur_col, 50);
9708 ahd_seq_flags_print(ahd_inb(ahd, SEQ_FLAGS), &cur_col, 50);
9709 ahd_seq_flags2_print(ahd_inb(ahd, SEQ_FLAGS2), &cur_col, 50);
9710 ahd_qfreeze_count_print(ahd_inw(ahd, QFREEZE_COUNT), &cur_col, 50);
9711 ahd_kernel_qfreeze_count_print(ahd_inw(ahd, KERNEL_QFREEZE_COUNT),
9712 &cur_col, 50);
9713 ahd_mk_message_scb_print(ahd_inw(ahd, MK_MESSAGE_SCB), &cur_col, 50);
9714 ahd_mk_message_scsiid_print(ahd_inb(ahd, MK_MESSAGE_SCSIID),
9715 &cur_col, 50);
9716 ahd_sstat0_print(ahd_inb(ahd, SSTAT0), &cur_col, 50);
9717 ahd_sstat1_print(ahd_inb(ahd, SSTAT1), &cur_col, 50);
9718 ahd_sstat2_print(ahd_inb(ahd, SSTAT2), &cur_col, 50);
9719 ahd_sstat3_print(ahd_inb(ahd, SSTAT3), &cur_col, 50);
9720 ahd_perrdiag_print(ahd_inb(ahd, PERRDIAG), &cur_col, 50);
9721 ahd_simode1_print(ahd_inb(ahd, SIMODE1), &cur_col, 50);
9722 ahd_lqistat0_print(ahd_inb(ahd, LQISTAT0), &cur_col, 50);
9723 ahd_lqistat1_print(ahd_inb(ahd, LQISTAT1), &cur_col, 50);
9724 ahd_lqistat2_print(ahd_inb(ahd, LQISTAT2), &cur_col, 50);
9725 ahd_lqostat0_print(ahd_inb(ahd, LQOSTAT0), &cur_col, 50);
9726 ahd_lqostat1_print(ahd_inb(ahd, LQOSTAT1), &cur_col, 50);
9727 ahd_lqostat2_print(ahd_inb(ahd, LQOSTAT2), &cur_col, 50);
9728 printk("\n");
9729 printk("\nSCB Count = %d CMDS_PENDING = %d LASTSCB 0x%x "
9730 "CURRSCB 0x%x NEXTSCB 0x%x\n",
9731 ahd->scb_data.numscbs, ahd_inw(ahd, CMDS_PENDING),
9732 ahd_inw(ahd, LASTSCB), ahd_inw(ahd, CURRSCB),
9733 ahd_inw(ahd, NEXTSCB));
9734 cur_col = 0;
9735 /* QINFIFO */
9736 ahd_search_qinfifo(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS,
9737 CAM_LUN_WILDCARD, SCB_LIST_NULL,
9738 ROLE_UNKNOWN, /*status*/0, SEARCH_PRINT);
9739 saved_scb_index = ahd_get_scbptr(ahd);
9740 printk("Pending list:");
9741 i = 0;
9742 LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
9743 if (i++ > AHD_SCB_MAX)
9744 break;
9745 cur_col = printk("\n%3d FIFO_USE[0x%x] ", SCB_GET_TAG(scb),
9746 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT));
9747 ahd_set_scbptr(ahd, SCB_GET_TAG(scb));
9748 ahd_scb_control_print(ahd_inb_scbram(ahd, SCB_CONTROL),
9749 &cur_col, 60);
9750 ahd_scb_scsiid_print(ahd_inb_scbram(ahd, SCB_SCSIID),
9751 &cur_col, 60);
9753 printk("\nTotal %d\n", i);
9755 printk("Kernel Free SCB list: ");
9756 i = 0;
9757 TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
9758 struct scb *list_scb;
9760 list_scb = scb;
9761 do {
9762 printk("%d ", SCB_GET_TAG(list_scb));
9763 list_scb = LIST_NEXT(list_scb, collision_links);
9764 } while (list_scb && i++ < AHD_SCB_MAX);
9767 LIST_FOREACH(scb, &ahd->scb_data.any_dev_free_scb_list, links.le) {
9768 if (i++ > AHD_SCB_MAX)
9769 break;
9770 printk("%d ", SCB_GET_TAG(scb));
9772 printk("\n");
9774 printk("Sequencer Complete DMA-inprog list: ");
9775 scb_index = ahd_inw(ahd, COMPLETE_SCB_DMAINPROG_HEAD);
9776 i = 0;
9777 while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9778 ahd_set_scbptr(ahd, scb_index);
9779 printk("%d ", scb_index);
9780 scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9782 printk("\n");
9784 printk("Sequencer Complete list: ");
9785 scb_index = ahd_inw(ahd, COMPLETE_SCB_HEAD);
9786 i = 0;
9787 while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9788 ahd_set_scbptr(ahd, scb_index);
9789 printk("%d ", scb_index);
9790 scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9792 printk("\n");
9795 printk("Sequencer DMA-Up and Complete list: ");
9796 scb_index = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
9797 i = 0;
9798 while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9799 ahd_set_scbptr(ahd, scb_index);
9800 printk("%d ", scb_index);
9801 scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9803 printk("\n");
9804 printk("Sequencer On QFreeze and Complete list: ");
9805 scb_index = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD);
9806 i = 0;
9807 while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9808 ahd_set_scbptr(ahd, scb_index);
9809 printk("%d ", scb_index);
9810 scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9812 printk("\n");
9813 ahd_set_scbptr(ahd, saved_scb_index);
9814 dffstat = ahd_inb(ahd, DFFSTAT);
9815 for (i = 0; i < 2; i++) {
9816 #ifdef AHD_DEBUG
9817 struct scb *fifo_scb;
9818 #endif
9819 u_int fifo_scbptr;
9821 ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i);
9822 fifo_scbptr = ahd_get_scbptr(ahd);
9823 printk("\n\n%s: FIFO%d %s, LONGJMP == 0x%x, SCB 0x%x\n",
9824 ahd_name(ahd), i,
9825 (dffstat & (FIFO0FREE << i)) ? "Free" : "Active",
9826 ahd_inw(ahd, LONGJMP_ADDR), fifo_scbptr);
9827 cur_col = 0;
9828 ahd_seqimode_print(ahd_inb(ahd, SEQIMODE), &cur_col, 50);
9829 ahd_seqintsrc_print(ahd_inb(ahd, SEQINTSRC), &cur_col, 50);
9830 ahd_dfcntrl_print(ahd_inb(ahd, DFCNTRL), &cur_col, 50);
9831 ahd_dfstatus_print(ahd_inb(ahd, DFSTATUS), &cur_col, 50);
9832 ahd_sg_cache_shadow_print(ahd_inb(ahd, SG_CACHE_SHADOW),
9833 &cur_col, 50);
9834 ahd_sg_state_print(ahd_inb(ahd, SG_STATE), &cur_col, 50);
9835 ahd_dffsxfrctl_print(ahd_inb(ahd, DFFSXFRCTL), &cur_col, 50);
9836 ahd_soffcnt_print(ahd_inb(ahd, SOFFCNT), &cur_col, 50);
9837 ahd_mdffstat_print(ahd_inb(ahd, MDFFSTAT), &cur_col, 50);
9838 if (cur_col > 50) {
9839 printk("\n");
9840 cur_col = 0;
9842 cur_col += printk("SHADDR = 0x%x%x, SHCNT = 0x%x ",
9843 ahd_inl(ahd, SHADDR+4),
9844 ahd_inl(ahd, SHADDR),
9845 (ahd_inb(ahd, SHCNT)
9846 | (ahd_inb(ahd, SHCNT + 1) << 8)
9847 | (ahd_inb(ahd, SHCNT + 2) << 16)));
9848 if (cur_col > 50) {
9849 printk("\n");
9850 cur_col = 0;
9852 cur_col += printk("HADDR = 0x%x%x, HCNT = 0x%x ",
9853 ahd_inl(ahd, HADDR+4),
9854 ahd_inl(ahd, HADDR),
9855 (ahd_inb(ahd, HCNT)
9856 | (ahd_inb(ahd, HCNT + 1) << 8)
9857 | (ahd_inb(ahd, HCNT + 2) << 16)));
9858 ahd_ccsgctl_print(ahd_inb(ahd, CCSGCTL), &cur_col, 50);
9859 #ifdef AHD_DEBUG
9860 if ((ahd_debug & AHD_SHOW_SG) != 0) {
9861 fifo_scb = ahd_lookup_scb(ahd, fifo_scbptr);
9862 if (fifo_scb != NULL)
9863 ahd_dump_sglist(fifo_scb);
9865 #endif
9867 printk("\nLQIN: ");
9868 for (i = 0; i < 20; i++)
9869 printk("0x%x ", ahd_inb(ahd, LQIN + i));
9870 printk("\n");
9871 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
9872 printk("%s: LQISTATE = 0x%x, LQOSTATE = 0x%x, OPTIONMODE = 0x%x\n",
9873 ahd_name(ahd), ahd_inb(ahd, LQISTATE), ahd_inb(ahd, LQOSTATE),
9874 ahd_inb(ahd, OPTIONMODE));
9875 printk("%s: OS_SPACE_CNT = 0x%x MAXCMDCNT = 0x%x\n",
9876 ahd_name(ahd), ahd_inb(ahd, OS_SPACE_CNT),
9877 ahd_inb(ahd, MAXCMDCNT));
9878 printk("%s: SAVED_SCSIID = 0x%x SAVED_LUN = 0x%x\n",
9879 ahd_name(ahd), ahd_inb(ahd, SAVED_SCSIID),
9880 ahd_inb(ahd, SAVED_LUN));
9881 ahd_simode0_print(ahd_inb(ahd, SIMODE0), &cur_col, 50);
9882 printk("\n");
9883 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
9884 cur_col = 0;
9885 ahd_ccscbctl_print(ahd_inb(ahd, CCSCBCTL), &cur_col, 50);
9886 printk("\n");
9887 ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
9888 printk("%s: REG0 == 0x%x, SINDEX = 0x%x, DINDEX = 0x%x\n",
9889 ahd_name(ahd), ahd_inw(ahd, REG0), ahd_inw(ahd, SINDEX),
9890 ahd_inw(ahd, DINDEX));
9891 printk("%s: SCBPTR == 0x%x, SCB_NEXT == 0x%x, SCB_NEXT2 == 0x%x\n",
9892 ahd_name(ahd), ahd_get_scbptr(ahd),
9893 ahd_inw_scbram(ahd, SCB_NEXT),
9894 ahd_inw_scbram(ahd, SCB_NEXT2));
9895 printk("CDB %x %x %x %x %x %x\n",
9896 ahd_inb_scbram(ahd, SCB_CDB_STORE),
9897 ahd_inb_scbram(ahd, SCB_CDB_STORE+1),
9898 ahd_inb_scbram(ahd, SCB_CDB_STORE+2),
9899 ahd_inb_scbram(ahd, SCB_CDB_STORE+3),
9900 ahd_inb_scbram(ahd, SCB_CDB_STORE+4),
9901 ahd_inb_scbram(ahd, SCB_CDB_STORE+5));
9902 printk("STACK:");
9903 for (i = 0; i < ahd->stack_size; i++) {
9904 ahd->saved_stack[i] =
9905 ahd_inb(ahd, STACK)|(ahd_inb(ahd, STACK) << 8);
9906 printk(" 0x%x", ahd->saved_stack[i]);
9908 for (i = ahd->stack_size-1; i >= 0; i--) {
9909 ahd_outb(ahd, STACK, ahd->saved_stack[i] & 0xFF);
9910 ahd_outb(ahd, STACK, (ahd->saved_stack[i] >> 8) & 0xFF);
9912 printk("\n<<<<<<<<<<<<<<<<< Dump Card State Ends >>>>>>>>>>>>>>>>>>\n");
9913 ahd_restore_modes(ahd, saved_modes);
9914 if (paused == 0)
9915 ahd_unpause(ahd);
9918 #if 0
9919 void
9920 ahd_dump_scbs(struct ahd_softc *ahd)
9922 ahd_mode_state saved_modes;
9923 u_int saved_scb_index;
9924 int i;
9926 saved_modes = ahd_save_modes(ahd);
9927 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
9928 saved_scb_index = ahd_get_scbptr(ahd);
9929 for (i = 0; i < AHD_SCB_MAX; i++) {
9930 ahd_set_scbptr(ahd, i);
9931 printk("%3d", i);
9932 printk("(CTRL 0x%x ID 0x%x N 0x%x N2 0x%x SG 0x%x, RSG 0x%x)\n",
9933 ahd_inb_scbram(ahd, SCB_CONTROL),
9934 ahd_inb_scbram(ahd, SCB_SCSIID),
9935 ahd_inw_scbram(ahd, SCB_NEXT),
9936 ahd_inw_scbram(ahd, SCB_NEXT2),
9937 ahd_inl_scbram(ahd, SCB_SGPTR),
9938 ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR));
9940 printk("\n");
9941 ahd_set_scbptr(ahd, saved_scb_index);
9942 ahd_restore_modes(ahd, saved_modes);
9944 #endif /* 0 */
9946 /**************************** Flexport Logic **********************************/
9948 * Read count 16bit words from 16bit word address start_addr from the
9949 * SEEPROM attached to the controller, into buf, using the controller's
9950 * SEEPROM reading state machine. Optionally treat the data as a byte
9951 * stream in terms of byte order.
9954 ahd_read_seeprom(struct ahd_softc *ahd, uint16_t *buf,
9955 u_int start_addr, u_int count, int bytestream)
9957 u_int cur_addr;
9958 u_int end_addr;
9959 int error;
9962 * If we never make it through the loop even once,
9963 * we were passed invalid arguments.
9965 error = EINVAL;
9966 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
9967 end_addr = start_addr + count;
9968 for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) {
9970 ahd_outb(ahd, SEEADR, cur_addr);
9971 ahd_outb(ahd, SEECTL, SEEOP_READ | SEESTART);
9973 error = ahd_wait_seeprom(ahd);
9974 if (error)
9975 break;
9976 if (bytestream != 0) {
9977 uint8_t *bytestream_ptr;
9979 bytestream_ptr = (uint8_t *)buf;
9980 *bytestream_ptr++ = ahd_inb(ahd, SEEDAT);
9981 *bytestream_ptr = ahd_inb(ahd, SEEDAT+1);
9982 } else {
9984 * ahd_inw() already handles machine byte order.
9986 *buf = ahd_inw(ahd, SEEDAT);
9988 buf++;
9990 return (error);
9994 * Write count 16bit words from buf, into SEEPROM attache to the
9995 * controller starting at 16bit word address start_addr, using the
9996 * controller's SEEPROM writing state machine.
9999 ahd_write_seeprom(struct ahd_softc *ahd, uint16_t *buf,
10000 u_int start_addr, u_int count)
10002 u_int cur_addr;
10003 u_int end_addr;
10004 int error;
10005 int retval;
10007 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10008 error = ENOENT;
10010 /* Place the chip into write-enable mode */
10011 ahd_outb(ahd, SEEADR, SEEOP_EWEN_ADDR);
10012 ahd_outb(ahd, SEECTL, SEEOP_EWEN | SEESTART);
10013 error = ahd_wait_seeprom(ahd);
10014 if (error)
10015 return (error);
10018 * Write the data. If we don't get through the loop at
10019 * least once, the arguments were invalid.
10021 retval = EINVAL;
10022 end_addr = start_addr + count;
10023 for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) {
10024 ahd_outw(ahd, SEEDAT, *buf++);
10025 ahd_outb(ahd, SEEADR, cur_addr);
10026 ahd_outb(ahd, SEECTL, SEEOP_WRITE | SEESTART);
10028 retval = ahd_wait_seeprom(ahd);
10029 if (retval)
10030 break;
10034 * Disable writes.
10036 ahd_outb(ahd, SEEADR, SEEOP_EWDS_ADDR);
10037 ahd_outb(ahd, SEECTL, SEEOP_EWDS | SEESTART);
10038 error = ahd_wait_seeprom(ahd);
10039 if (error)
10040 return (error);
10041 return (retval);
10045 * Wait ~100us for the serial eeprom to satisfy our request.
10047 static int
10048 ahd_wait_seeprom(struct ahd_softc *ahd)
10050 int cnt;
10052 cnt = 5000;
10053 while ((ahd_inb(ahd, SEESTAT) & (SEEARBACK|SEEBUSY)) != 0 && --cnt)
10054 ahd_delay(5);
10056 if (cnt == 0)
10057 return (ETIMEDOUT);
10058 return (0);
10062 * Validate the two checksums in the per_channel
10063 * vital product data struct.
10065 static int
10066 ahd_verify_vpd_cksum(struct vpd_config *vpd)
10068 int i;
10069 int maxaddr;
10070 uint32_t checksum;
10071 uint8_t *vpdarray;
10073 vpdarray = (uint8_t *)vpd;
10074 maxaddr = offsetof(struct vpd_config, vpd_checksum);
10075 checksum = 0;
10076 for (i = offsetof(struct vpd_config, resource_type); i < maxaddr; i++)
10077 checksum = checksum + vpdarray[i];
10078 if (checksum == 0
10079 || (-checksum & 0xFF) != vpd->vpd_checksum)
10080 return (0);
10082 checksum = 0;
10083 maxaddr = offsetof(struct vpd_config, checksum);
10084 for (i = offsetof(struct vpd_config, default_target_flags);
10085 i < maxaddr; i++)
10086 checksum = checksum + vpdarray[i];
10087 if (checksum == 0
10088 || (-checksum & 0xFF) != vpd->checksum)
10089 return (0);
10090 return (1);
10094 ahd_verify_cksum(struct seeprom_config *sc)
10096 int i;
10097 int maxaddr;
10098 uint32_t checksum;
10099 uint16_t *scarray;
10101 maxaddr = (sizeof(*sc)/2) - 1;
10102 checksum = 0;
10103 scarray = (uint16_t *)sc;
10105 for (i = 0; i < maxaddr; i++)
10106 checksum = checksum + scarray[i];
10107 if (checksum == 0
10108 || (checksum & 0xFFFF) != sc->checksum) {
10109 return (0);
10110 } else {
10111 return (1);
10116 ahd_acquire_seeprom(struct ahd_softc *ahd)
10119 * We should be able to determine the SEEPROM type
10120 * from the flexport logic, but unfortunately not
10121 * all implementations have this logic and there is
10122 * no programatic method for determining if the logic
10123 * is present.
10125 return (1);
10126 #if 0
10127 uint8_t seetype;
10128 int error;
10130 error = ahd_read_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, &seetype);
10131 if (error != 0
10132 || ((seetype & FLX_ROMSTAT_SEECFG) == FLX_ROMSTAT_SEE_NONE))
10133 return (0);
10134 return (1);
10135 #endif
10138 void
10139 ahd_release_seeprom(struct ahd_softc *ahd)
10141 /* Currently a no-op */
10145 * Wait at most 2 seconds for flexport arbitration to succeed.
10147 static int
10148 ahd_wait_flexport(struct ahd_softc *ahd)
10150 int cnt;
10152 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10153 cnt = 1000000 * 2 / 5;
10154 while ((ahd_inb(ahd, BRDCTL) & FLXARBACK) == 0 && --cnt)
10155 ahd_delay(5);
10157 if (cnt == 0)
10158 return (ETIMEDOUT);
10159 return (0);
10163 ahd_write_flexport(struct ahd_softc *ahd, u_int addr, u_int value)
10165 int error;
10167 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10168 if (addr > 7)
10169 panic("ahd_write_flexport: address out of range");
10170 ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3));
10171 error = ahd_wait_flexport(ahd);
10172 if (error != 0)
10173 return (error);
10174 ahd_outb(ahd, BRDDAT, value);
10175 ahd_flush_device_writes(ahd);
10176 ahd_outb(ahd, BRDCTL, BRDSTB|BRDEN|(addr << 3));
10177 ahd_flush_device_writes(ahd);
10178 ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3));
10179 ahd_flush_device_writes(ahd);
10180 ahd_outb(ahd, BRDCTL, 0);
10181 ahd_flush_device_writes(ahd);
10182 return (0);
10186 ahd_read_flexport(struct ahd_softc *ahd, u_int addr, uint8_t *value)
10188 int error;
10190 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10191 if (addr > 7)
10192 panic("ahd_read_flexport: address out of range");
10193 ahd_outb(ahd, BRDCTL, BRDRW|BRDEN|(addr << 3));
10194 error = ahd_wait_flexport(ahd);
10195 if (error != 0)
10196 return (error);
10197 *value = ahd_inb(ahd, BRDDAT);
10198 ahd_outb(ahd, BRDCTL, 0);
10199 ahd_flush_device_writes(ahd);
10200 return (0);
10203 /************************* Target Mode ****************************************/
10204 #ifdef AHD_TARGET_MODE
10205 cam_status
10206 ahd_find_tmode_devs(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb,
10207 struct ahd_tmode_tstate **tstate,
10208 struct ahd_tmode_lstate **lstate,
10209 int notfound_failure)
10212 if ((ahd->features & AHD_TARGETMODE) == 0)
10213 return (CAM_REQ_INVALID);
10216 * Handle the 'black hole' device that sucks up
10217 * requests to unattached luns on enabled targets.
10219 if (ccb->ccb_h.target_id == CAM_TARGET_WILDCARD
10220 && ccb->ccb_h.target_lun == CAM_LUN_WILDCARD) {
10221 *tstate = NULL;
10222 *lstate = ahd->black_hole;
10223 } else {
10224 u_int max_id;
10226 max_id = (ahd->features & AHD_WIDE) ? 16 : 8;
10227 if (ccb->ccb_h.target_id >= max_id)
10228 return (CAM_TID_INVALID);
10230 if (ccb->ccb_h.target_lun >= AHD_NUM_LUNS)
10231 return (CAM_LUN_INVALID);
10233 *tstate = ahd->enabled_targets[ccb->ccb_h.target_id];
10234 *lstate = NULL;
10235 if (*tstate != NULL)
10236 *lstate =
10237 (*tstate)->enabled_luns[ccb->ccb_h.target_lun];
10240 if (notfound_failure != 0 && *lstate == NULL)
10241 return (CAM_PATH_INVALID);
10243 return (CAM_REQ_CMP);
10246 void
10247 ahd_handle_en_lun(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb)
10249 #if NOT_YET
10250 struct ahd_tmode_tstate *tstate;
10251 struct ahd_tmode_lstate *lstate;
10252 struct ccb_en_lun *cel;
10253 cam_status status;
10254 u_int target;
10255 u_int lun;
10256 u_int target_mask;
10257 u_long s;
10258 char channel;
10260 status = ahd_find_tmode_devs(ahd, sim, ccb, &tstate, &lstate,
10261 /*notfound_failure*/FALSE);
10263 if (status != CAM_REQ_CMP) {
10264 ccb->ccb_h.status = status;
10265 return;
10268 if ((ahd->features & AHD_MULTIROLE) != 0) {
10269 u_int our_id;
10271 our_id = ahd->our_id;
10272 if (ccb->ccb_h.target_id != our_id) {
10273 if ((ahd->features & AHD_MULTI_TID) != 0
10274 && (ahd->flags & AHD_INITIATORROLE) != 0) {
10276 * Only allow additional targets if
10277 * the initiator role is disabled.
10278 * The hardware cannot handle a re-select-in
10279 * on the initiator id during a re-select-out
10280 * on a different target id.
10282 status = CAM_TID_INVALID;
10283 } else if ((ahd->flags & AHD_INITIATORROLE) != 0
10284 || ahd->enabled_luns > 0) {
10286 * Only allow our target id to change
10287 * if the initiator role is not configured
10288 * and there are no enabled luns which
10289 * are attached to the currently registered
10290 * scsi id.
10292 status = CAM_TID_INVALID;
10297 if (status != CAM_REQ_CMP) {
10298 ccb->ccb_h.status = status;
10299 return;
10303 * We now have an id that is valid.
10304 * If we aren't in target mode, switch modes.
10306 if ((ahd->flags & AHD_TARGETROLE) == 0
10307 && ccb->ccb_h.target_id != CAM_TARGET_WILDCARD) {
10308 u_long s;
10310 printk("Configuring Target Mode\n");
10311 ahd_lock(ahd, &s);
10312 if (LIST_FIRST(&ahd->pending_scbs) != NULL) {
10313 ccb->ccb_h.status = CAM_BUSY;
10314 ahd_unlock(ahd, &s);
10315 return;
10317 ahd->flags |= AHD_TARGETROLE;
10318 if ((ahd->features & AHD_MULTIROLE) == 0)
10319 ahd->flags &= ~AHD_INITIATORROLE;
10320 ahd_pause(ahd);
10321 ahd_loadseq(ahd);
10322 ahd_restart(ahd);
10323 ahd_unlock(ahd, &s);
10325 cel = &ccb->cel;
10326 target = ccb->ccb_h.target_id;
10327 lun = ccb->ccb_h.target_lun;
10328 channel = SIM_CHANNEL(ahd, sim);
10329 target_mask = 0x01 << target;
10330 if (channel == 'B')
10331 target_mask <<= 8;
10333 if (cel->enable != 0) {
10334 u_int scsiseq1;
10336 /* Are we already enabled?? */
10337 if (lstate != NULL) {
10338 xpt_print_path(ccb->ccb_h.path);
10339 printk("Lun already enabled\n");
10340 ccb->ccb_h.status = CAM_LUN_ALRDY_ENA;
10341 return;
10344 if (cel->grp6_len != 0
10345 || cel->grp7_len != 0) {
10347 * Don't (yet?) support vendor
10348 * specific commands.
10350 ccb->ccb_h.status = CAM_REQ_INVALID;
10351 printk("Non-zero Group Codes\n");
10352 return;
10356 * Seems to be okay.
10357 * Setup our data structures.
10359 if (target != CAM_TARGET_WILDCARD && tstate == NULL) {
10360 tstate = ahd_alloc_tstate(ahd, target, channel);
10361 if (tstate == NULL) {
10362 xpt_print_path(ccb->ccb_h.path);
10363 printk("Couldn't allocate tstate\n");
10364 ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
10365 return;
10368 lstate = kzalloc(sizeof(*lstate), GFP_ATOMIC);
10369 if (lstate == NULL) {
10370 xpt_print_path(ccb->ccb_h.path);
10371 printk("Couldn't allocate lstate\n");
10372 ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
10373 return;
10375 status = xpt_create_path(&lstate->path, /*periph*/NULL,
10376 xpt_path_path_id(ccb->ccb_h.path),
10377 xpt_path_target_id(ccb->ccb_h.path),
10378 xpt_path_lun_id(ccb->ccb_h.path));
10379 if (status != CAM_REQ_CMP) {
10380 kfree(lstate);
10381 xpt_print_path(ccb->ccb_h.path);
10382 printk("Couldn't allocate path\n");
10383 ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
10384 return;
10386 SLIST_INIT(&lstate->accept_tios);
10387 SLIST_INIT(&lstate->immed_notifies);
10388 ahd_lock(ahd, &s);
10389 ahd_pause(ahd);
10390 if (target != CAM_TARGET_WILDCARD) {
10391 tstate->enabled_luns[lun] = lstate;
10392 ahd->enabled_luns++;
10394 if ((ahd->features & AHD_MULTI_TID) != 0) {
10395 u_int targid_mask;
10397 targid_mask = ahd_inw(ahd, TARGID);
10398 targid_mask |= target_mask;
10399 ahd_outw(ahd, TARGID, targid_mask);
10400 ahd_update_scsiid(ahd, targid_mask);
10401 } else {
10402 u_int our_id;
10403 char channel;
10405 channel = SIM_CHANNEL(ahd, sim);
10406 our_id = SIM_SCSI_ID(ahd, sim);
10409 * This can only happen if selections
10410 * are not enabled
10412 if (target != our_id) {
10413 u_int sblkctl;
10414 char cur_channel;
10415 int swap;
10417 sblkctl = ahd_inb(ahd, SBLKCTL);
10418 cur_channel = (sblkctl & SELBUSB)
10419 ? 'B' : 'A';
10420 if ((ahd->features & AHD_TWIN) == 0)
10421 cur_channel = 'A';
10422 swap = cur_channel != channel;
10423 ahd->our_id = target;
10425 if (swap)
10426 ahd_outb(ahd, SBLKCTL,
10427 sblkctl ^ SELBUSB);
10429 ahd_outb(ahd, SCSIID, target);
10431 if (swap)
10432 ahd_outb(ahd, SBLKCTL, sblkctl);
10435 } else
10436 ahd->black_hole = lstate;
10437 /* Allow select-in operations */
10438 if (ahd->black_hole != NULL && ahd->enabled_luns > 0) {
10439 scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE);
10440 scsiseq1 |= ENSELI;
10441 ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1);
10442 scsiseq1 = ahd_inb(ahd, SCSISEQ1);
10443 scsiseq1 |= ENSELI;
10444 ahd_outb(ahd, SCSISEQ1, scsiseq1);
10446 ahd_unpause(ahd);
10447 ahd_unlock(ahd, &s);
10448 ccb->ccb_h.status = CAM_REQ_CMP;
10449 xpt_print_path(ccb->ccb_h.path);
10450 printk("Lun now enabled for target mode\n");
10451 } else {
10452 struct scb *scb;
10453 int i, empty;
10455 if (lstate == NULL) {
10456 ccb->ccb_h.status = CAM_LUN_INVALID;
10457 return;
10460 ahd_lock(ahd, &s);
10462 ccb->ccb_h.status = CAM_REQ_CMP;
10463 LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
10464 struct ccb_hdr *ccbh;
10466 ccbh = &scb->io_ctx->ccb_h;
10467 if (ccbh->func_code == XPT_CONT_TARGET_IO
10468 && !xpt_path_comp(ccbh->path, ccb->ccb_h.path)){
10469 printk("CTIO pending\n");
10470 ccb->ccb_h.status = CAM_REQ_INVALID;
10471 ahd_unlock(ahd, &s);
10472 return;
10476 if (SLIST_FIRST(&lstate->accept_tios) != NULL) {
10477 printk("ATIOs pending\n");
10478 ccb->ccb_h.status = CAM_REQ_INVALID;
10481 if (SLIST_FIRST(&lstate->immed_notifies) != NULL) {
10482 printk("INOTs pending\n");
10483 ccb->ccb_h.status = CAM_REQ_INVALID;
10486 if (ccb->ccb_h.status != CAM_REQ_CMP) {
10487 ahd_unlock(ahd, &s);
10488 return;
10491 xpt_print_path(ccb->ccb_h.path);
10492 printk("Target mode disabled\n");
10493 xpt_free_path(lstate->path);
10494 kfree(lstate);
10496 ahd_pause(ahd);
10497 /* Can we clean up the target too? */
10498 if (target != CAM_TARGET_WILDCARD) {
10499 tstate->enabled_luns[lun] = NULL;
10500 ahd->enabled_luns--;
10501 for (empty = 1, i = 0; i < 8; i++)
10502 if (tstate->enabled_luns[i] != NULL) {
10503 empty = 0;
10504 break;
10507 if (empty) {
10508 ahd_free_tstate(ahd, target, channel,
10509 /*force*/FALSE);
10510 if (ahd->features & AHD_MULTI_TID) {
10511 u_int targid_mask;
10513 targid_mask = ahd_inw(ahd, TARGID);
10514 targid_mask &= ~target_mask;
10515 ahd_outw(ahd, TARGID, targid_mask);
10516 ahd_update_scsiid(ahd, targid_mask);
10519 } else {
10521 ahd->black_hole = NULL;
10524 * We can't allow selections without
10525 * our black hole device.
10527 empty = TRUE;
10529 if (ahd->enabled_luns == 0) {
10530 /* Disallow select-in */
10531 u_int scsiseq1;
10533 scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE);
10534 scsiseq1 &= ~ENSELI;
10535 ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1);
10536 scsiseq1 = ahd_inb(ahd, SCSISEQ1);
10537 scsiseq1 &= ~ENSELI;
10538 ahd_outb(ahd, SCSISEQ1, scsiseq1);
10540 if ((ahd->features & AHD_MULTIROLE) == 0) {
10541 printk("Configuring Initiator Mode\n");
10542 ahd->flags &= ~AHD_TARGETROLE;
10543 ahd->flags |= AHD_INITIATORROLE;
10544 ahd_pause(ahd);
10545 ahd_loadseq(ahd);
10546 ahd_restart(ahd);
10548 * Unpaused. The extra unpause
10549 * that follows is harmless.
10553 ahd_unpause(ahd);
10554 ahd_unlock(ahd, &s);
10556 #endif
10559 static void
10560 ahd_update_scsiid(struct ahd_softc *ahd, u_int targid_mask)
10562 #if NOT_YET
10563 u_int scsiid_mask;
10564 u_int scsiid;
10566 if ((ahd->features & AHD_MULTI_TID) == 0)
10567 panic("ahd_update_scsiid called on non-multitid unit\n");
10570 * Since we will rely on the TARGID mask
10571 * for selection enables, ensure that OID
10572 * in SCSIID is not set to some other ID
10573 * that we don't want to allow selections on.
10575 if ((ahd->features & AHD_ULTRA2) != 0)
10576 scsiid = ahd_inb(ahd, SCSIID_ULTRA2);
10577 else
10578 scsiid = ahd_inb(ahd, SCSIID);
10579 scsiid_mask = 0x1 << (scsiid & OID);
10580 if ((targid_mask & scsiid_mask) == 0) {
10581 u_int our_id;
10583 /* ffs counts from 1 */
10584 our_id = ffs(targid_mask);
10585 if (our_id == 0)
10586 our_id = ahd->our_id;
10587 else
10588 our_id--;
10589 scsiid &= TID;
10590 scsiid |= our_id;
10592 if ((ahd->features & AHD_ULTRA2) != 0)
10593 ahd_outb(ahd, SCSIID_ULTRA2, scsiid);
10594 else
10595 ahd_outb(ahd, SCSIID, scsiid);
10596 #endif
10599 static void
10600 ahd_run_tqinfifo(struct ahd_softc *ahd, int paused)
10602 struct target_cmd *cmd;
10604 ahd_sync_tqinfifo(ahd, BUS_DMASYNC_POSTREAD);
10605 while ((cmd = &ahd->targetcmds[ahd->tqinfifonext])->cmd_valid != 0) {
10608 * Only advance through the queue if we
10609 * have the resources to process the command.
10611 if (ahd_handle_target_cmd(ahd, cmd) != 0)
10612 break;
10614 cmd->cmd_valid = 0;
10615 ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
10616 ahd->shared_data_map.dmamap,
10617 ahd_targetcmd_offset(ahd, ahd->tqinfifonext),
10618 sizeof(struct target_cmd),
10619 BUS_DMASYNC_PREREAD);
10620 ahd->tqinfifonext++;
10623 * Lazily update our position in the target mode incoming
10624 * command queue as seen by the sequencer.
10626 if ((ahd->tqinfifonext & (HOST_TQINPOS - 1)) == 1) {
10627 u_int hs_mailbox;
10629 hs_mailbox = ahd_inb(ahd, HS_MAILBOX);
10630 hs_mailbox &= ~HOST_TQINPOS;
10631 hs_mailbox |= ahd->tqinfifonext & HOST_TQINPOS;
10632 ahd_outb(ahd, HS_MAILBOX, hs_mailbox);
10637 static int
10638 ahd_handle_target_cmd(struct ahd_softc *ahd, struct target_cmd *cmd)
10640 struct ahd_tmode_tstate *tstate;
10641 struct ahd_tmode_lstate *lstate;
10642 struct ccb_accept_tio *atio;
10643 uint8_t *byte;
10644 int initiator;
10645 int target;
10646 int lun;
10648 initiator = SCSIID_TARGET(ahd, cmd->scsiid);
10649 target = SCSIID_OUR_ID(cmd->scsiid);
10650 lun = (cmd->identify & MSG_IDENTIFY_LUNMASK);
10652 byte = cmd->bytes;
10653 tstate = ahd->enabled_targets[target];
10654 lstate = NULL;
10655 if (tstate != NULL)
10656 lstate = tstate->enabled_luns[lun];
10659 * Commands for disabled luns go to the black hole driver.
10661 if (lstate == NULL)
10662 lstate = ahd->black_hole;
10664 atio = (struct ccb_accept_tio*)SLIST_FIRST(&lstate->accept_tios);
10665 if (atio == NULL) {
10666 ahd->flags |= AHD_TQINFIFO_BLOCKED;
10668 * Wait for more ATIOs from the peripheral driver for this lun.
10670 return (1);
10671 } else
10672 ahd->flags &= ~AHD_TQINFIFO_BLOCKED;
10673 #ifdef AHD_DEBUG
10674 if ((ahd_debug & AHD_SHOW_TQIN) != 0)
10675 printk("Incoming command from %d for %d:%d%s\n",
10676 initiator, target, lun,
10677 lstate == ahd->black_hole ? "(Black Holed)" : "");
10678 #endif
10679 SLIST_REMOVE_HEAD(&lstate->accept_tios, sim_links.sle);
10681 if (lstate == ahd->black_hole) {
10682 /* Fill in the wildcards */
10683 atio->ccb_h.target_id = target;
10684 atio->ccb_h.target_lun = lun;
10688 * Package it up and send it off to
10689 * whomever has this lun enabled.
10691 atio->sense_len = 0;
10692 atio->init_id = initiator;
10693 if (byte[0] != 0xFF) {
10694 /* Tag was included */
10695 atio->tag_action = *byte++;
10696 atio->tag_id = *byte++;
10697 atio->ccb_h.flags = CAM_TAG_ACTION_VALID;
10698 } else {
10699 atio->ccb_h.flags = 0;
10701 byte++;
10703 /* Okay. Now determine the cdb size based on the command code */
10704 switch (*byte >> CMD_GROUP_CODE_SHIFT) {
10705 case 0:
10706 atio->cdb_len = 6;
10707 break;
10708 case 1:
10709 case 2:
10710 atio->cdb_len = 10;
10711 break;
10712 case 4:
10713 atio->cdb_len = 16;
10714 break;
10715 case 5:
10716 atio->cdb_len = 12;
10717 break;
10718 case 3:
10719 default:
10720 /* Only copy the opcode. */
10721 atio->cdb_len = 1;
10722 printk("Reserved or VU command code type encountered\n");
10723 break;
10726 memcpy(atio->cdb_io.cdb_bytes, byte, atio->cdb_len);
10728 atio->ccb_h.status |= CAM_CDB_RECVD;
10730 if ((cmd->identify & MSG_IDENTIFY_DISCFLAG) == 0) {
10732 * We weren't allowed to disconnect.
10733 * We're hanging on the bus until a
10734 * continue target I/O comes in response
10735 * to this accept tio.
10737 #ifdef AHD_DEBUG
10738 if ((ahd_debug & AHD_SHOW_TQIN) != 0)
10739 printk("Received Immediate Command %d:%d:%d - %p\n",
10740 initiator, target, lun, ahd->pending_device);
10741 #endif
10742 ahd->pending_device = lstate;
10743 ahd_freeze_ccb((union ccb *)atio);
10744 atio->ccb_h.flags |= CAM_DIS_DISCONNECT;
10746 xpt_done((union ccb*)atio);
10747 return (0);
10750 #endif