gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / scsi / esas2r / esas2r_ioctl.c
blob442c5e70a7b484f0e9ade6dbd990e153ce9218b0
1 /*
2 * linux/drivers/scsi/esas2r/esas2r_ioctl.c
3 * For use with ATTO ExpressSAS R6xx SAS/SATA RAID controllers
5 * Copyright (c) 2001-2013 ATTO Technology, Inc.
6 * (mailto:linuxdrivers@attotech.com)
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version 2
11 * of the License, or (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * NO WARRANTY
19 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
20 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
21 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
22 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
23 * solely responsible for determining the appropriateness of using and
24 * distributing the Program and assumes all risks associated with its
25 * exercise of rights under this Agreement, including but not limited to
26 * the risks and costs of program errors, damage to or loss of data,
27 * programs or equipment, and unavailability or interruption of operations.
29 * DISCLAIMER OF LIABILITY
30 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
31 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
33 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
34 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
35 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
36 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
38 * You should have received a copy of the GNU General Public License
39 * along with this program; if not, write to the Free Software
40 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
41 * USA.
44 #include "esas2r.h"
47 * Buffered ioctl handlers. A buffered ioctl is one which requires that we
48 * allocate a DMA-able memory area to communicate with the firmware. In
49 * order to prevent continually allocating and freeing consistent memory,
50 * we will allocate a global buffer the first time we need it and re-use
51 * it for subsequent ioctl calls that require it.
54 u8 *esas2r_buffered_ioctl;
55 dma_addr_t esas2r_buffered_ioctl_addr;
56 u32 esas2r_buffered_ioctl_size;
57 struct pci_dev *esas2r_buffered_ioctl_pcid;
59 static DEFINE_SEMAPHORE(buffered_ioctl_semaphore);
60 typedef int (*BUFFERED_IOCTL_CALLBACK)(struct esas2r_adapter *,
61 struct esas2r_request *,
62 struct esas2r_sg_context *,
63 void *);
64 typedef void (*BUFFERED_IOCTL_DONE_CALLBACK)(struct esas2r_adapter *,
65 struct esas2r_request *, void *);
67 struct esas2r_buffered_ioctl {
68 struct esas2r_adapter *a;
69 void *ioctl;
70 u32 length;
71 u32 control_code;
72 u32 offset;
73 BUFFERED_IOCTL_CALLBACK
74 callback;
75 void *context;
76 BUFFERED_IOCTL_DONE_CALLBACK
77 done_callback;
78 void *done_context;
82 static void complete_fm_api_req(struct esas2r_adapter *a,
83 struct esas2r_request *rq)
85 a->fm_api_command_done = 1;
86 wake_up_interruptible(&a->fm_api_waiter);
89 /* Callbacks for building scatter/gather lists for FM API requests */
90 static u32 get_physaddr_fm_api(struct esas2r_sg_context *sgc, u64 *addr)
92 struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
93 int offset = sgc->cur_offset - a->save_offset;
95 (*addr) = a->firmware.phys + offset;
96 return a->firmware.orig_len - offset;
99 static u32 get_physaddr_fm_api_header(struct esas2r_sg_context *sgc, u64 *addr)
101 struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
102 int offset = sgc->cur_offset - a->save_offset;
104 (*addr) = a->firmware.header_buff_phys + offset;
105 return sizeof(struct esas2r_flash_img) - offset;
108 /* Handle EXPRESS_IOCTL_RW_FIRMWARE ioctl with img_type = FW_IMG_FM_API. */
109 static void do_fm_api(struct esas2r_adapter *a, struct esas2r_flash_img *fi)
111 struct esas2r_request *rq;
113 if (mutex_lock_interruptible(&a->fm_api_mutex)) {
114 fi->status = FI_STAT_BUSY;
115 return;
118 rq = esas2r_alloc_request(a);
119 if (rq == NULL) {
120 fi->status = FI_STAT_BUSY;
121 goto free_sem;
124 if (fi == &a->firmware.header) {
125 a->firmware.header_buff = dma_alloc_coherent(&a->pcid->dev,
126 (size_t)sizeof(
127 struct
128 esas2r_flash_img),
129 (dma_addr_t *)&a->
130 firmware.
131 header_buff_phys,
132 GFP_KERNEL);
134 if (a->firmware.header_buff == NULL) {
135 esas2r_debug("failed to allocate header buffer!");
136 fi->status = FI_STAT_BUSY;
137 goto free_req;
140 memcpy(a->firmware.header_buff, fi,
141 sizeof(struct esas2r_flash_img));
142 a->save_offset = a->firmware.header_buff;
143 a->fm_api_sgc.get_phys_addr =
144 (PGETPHYSADDR)get_physaddr_fm_api_header;
145 } else {
146 a->save_offset = (u8 *)fi;
147 a->fm_api_sgc.get_phys_addr =
148 (PGETPHYSADDR)get_physaddr_fm_api;
151 rq->comp_cb = complete_fm_api_req;
152 a->fm_api_command_done = 0;
153 a->fm_api_sgc.cur_offset = a->save_offset;
155 if (!esas2r_fm_api(a, (struct esas2r_flash_img *)a->save_offset, rq,
156 &a->fm_api_sgc))
157 goto all_done;
159 /* Now wait around for it to complete. */
160 while (!a->fm_api_command_done)
161 wait_event_interruptible(a->fm_api_waiter,
162 a->fm_api_command_done);
163 all_done:
164 if (fi == &a->firmware.header) {
165 memcpy(fi, a->firmware.header_buff,
166 sizeof(struct esas2r_flash_img));
168 dma_free_coherent(&a->pcid->dev,
169 (size_t)sizeof(struct esas2r_flash_img),
170 a->firmware.header_buff,
171 (dma_addr_t)a->firmware.header_buff_phys);
173 free_req:
174 esas2r_free_request(a, (struct esas2r_request *)rq);
175 free_sem:
176 mutex_unlock(&a->fm_api_mutex);
177 return;
181 static void complete_nvr_req(struct esas2r_adapter *a,
182 struct esas2r_request *rq)
184 a->nvram_command_done = 1;
185 wake_up_interruptible(&a->nvram_waiter);
188 /* Callback for building scatter/gather lists for buffered ioctls */
189 static u32 get_physaddr_buffered_ioctl(struct esas2r_sg_context *sgc,
190 u64 *addr)
192 int offset = (u8 *)sgc->cur_offset - esas2r_buffered_ioctl;
194 (*addr) = esas2r_buffered_ioctl_addr + offset;
195 return esas2r_buffered_ioctl_size - offset;
198 static void complete_buffered_ioctl_req(struct esas2r_adapter *a,
199 struct esas2r_request *rq)
201 a->buffered_ioctl_done = 1;
202 wake_up_interruptible(&a->buffered_ioctl_waiter);
205 static u8 handle_buffered_ioctl(struct esas2r_buffered_ioctl *bi)
207 struct esas2r_adapter *a = bi->a;
208 struct esas2r_request *rq;
209 struct esas2r_sg_context sgc;
210 u8 result = IOCTL_SUCCESS;
212 if (down_interruptible(&buffered_ioctl_semaphore))
213 return IOCTL_OUT_OF_RESOURCES;
215 /* allocate a buffer or use the existing buffer. */
216 if (esas2r_buffered_ioctl) {
217 if (esas2r_buffered_ioctl_size < bi->length) {
218 /* free the too-small buffer and get a new one */
219 dma_free_coherent(&a->pcid->dev,
220 (size_t)esas2r_buffered_ioctl_size,
221 esas2r_buffered_ioctl,
222 esas2r_buffered_ioctl_addr);
224 goto allocate_buffer;
226 } else {
227 allocate_buffer:
228 esas2r_buffered_ioctl_size = bi->length;
229 esas2r_buffered_ioctl_pcid = a->pcid;
230 esas2r_buffered_ioctl = dma_alloc_coherent(&a->pcid->dev,
231 (size_t)
232 esas2r_buffered_ioctl_size,
234 esas2r_buffered_ioctl_addr,
235 GFP_KERNEL);
238 if (!esas2r_buffered_ioctl) {
239 esas2r_log(ESAS2R_LOG_CRIT,
240 "could not allocate %d bytes of consistent memory "
241 "for a buffered ioctl!",
242 bi->length);
244 esas2r_debug("buffered ioctl alloc failure");
245 result = IOCTL_OUT_OF_RESOURCES;
246 goto exit_cleanly;
249 memcpy(esas2r_buffered_ioctl, bi->ioctl, bi->length);
251 rq = esas2r_alloc_request(a);
252 if (rq == NULL) {
253 esas2r_log(ESAS2R_LOG_CRIT,
254 "could not allocate an internal request");
256 result = IOCTL_OUT_OF_RESOURCES;
257 esas2r_debug("buffered ioctl - no requests");
258 goto exit_cleanly;
261 a->buffered_ioctl_done = 0;
262 rq->comp_cb = complete_buffered_ioctl_req;
263 sgc.cur_offset = esas2r_buffered_ioctl + bi->offset;
264 sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_buffered_ioctl;
265 sgc.length = esas2r_buffered_ioctl_size;
267 if (!(*bi->callback)(a, rq, &sgc, bi->context)) {
268 /* completed immediately, no need to wait */
269 a->buffered_ioctl_done = 0;
270 goto free_andexit_cleanly;
273 /* now wait around for it to complete. */
274 while (!a->buffered_ioctl_done)
275 wait_event_interruptible(a->buffered_ioctl_waiter,
276 a->buffered_ioctl_done);
278 free_andexit_cleanly:
279 if (result == IOCTL_SUCCESS && bi->done_callback)
280 (*bi->done_callback)(a, rq, bi->done_context);
282 esas2r_free_request(a, rq);
284 exit_cleanly:
285 if (result == IOCTL_SUCCESS)
286 memcpy(bi->ioctl, esas2r_buffered_ioctl, bi->length);
288 up(&buffered_ioctl_semaphore);
289 return result;
292 /* SMP ioctl support */
293 static int smp_ioctl_callback(struct esas2r_adapter *a,
294 struct esas2r_request *rq,
295 struct esas2r_sg_context *sgc, void *context)
297 struct atto_ioctl_smp *si =
298 (struct atto_ioctl_smp *)esas2r_buffered_ioctl;
300 esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
301 esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_SMP);
303 if (!esas2r_build_sg_list(a, rq, sgc)) {
304 si->status = ATTO_STS_OUT_OF_RSRC;
305 return false;
308 esas2r_start_request(a, rq);
309 return true;
312 static u8 handle_smp_ioctl(struct esas2r_adapter *a, struct atto_ioctl_smp *si)
314 struct esas2r_buffered_ioctl bi;
316 memset(&bi, 0, sizeof(bi));
318 bi.a = a;
319 bi.ioctl = si;
320 bi.length = sizeof(struct atto_ioctl_smp)
321 + le32_to_cpu(si->req_length)
322 + le32_to_cpu(si->rsp_length);
323 bi.offset = 0;
324 bi.callback = smp_ioctl_callback;
325 return handle_buffered_ioctl(&bi);
329 /* CSMI ioctl support */
330 static void esas2r_csmi_ioctl_tunnel_comp_cb(struct esas2r_adapter *a,
331 struct esas2r_request *rq)
333 rq->target_id = le16_to_cpu(rq->func_rsp.ioctl_rsp.csmi.target_id);
334 rq->vrq->scsi.flags |= cpu_to_le32(rq->func_rsp.ioctl_rsp.csmi.lun);
336 /* Now call the original completion callback. */
337 (*rq->aux_req_cb)(a, rq);
340 /* Tunnel a CSMI IOCTL to the back end driver for processing. */
341 static bool csmi_ioctl_tunnel(struct esas2r_adapter *a,
342 union atto_ioctl_csmi *ci,
343 struct esas2r_request *rq,
344 struct esas2r_sg_context *sgc,
345 u32 ctrl_code,
346 u16 target_id)
348 struct atto_vda_ioctl_req *ioctl = &rq->vrq->ioctl;
350 if (test_bit(AF_DEGRADED_MODE, &a->flags))
351 return false;
353 esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
354 esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_CSMI);
355 ioctl->csmi.ctrl_code = cpu_to_le32(ctrl_code);
356 ioctl->csmi.target_id = cpu_to_le16(target_id);
357 ioctl->csmi.lun = (u8)le32_to_cpu(rq->vrq->scsi.flags);
360 * Always usurp the completion callback since the interrupt callback
361 * mechanism may be used.
363 rq->aux_req_cx = ci;
364 rq->aux_req_cb = rq->comp_cb;
365 rq->comp_cb = esas2r_csmi_ioctl_tunnel_comp_cb;
367 if (!esas2r_build_sg_list(a, rq, sgc))
368 return false;
370 esas2r_start_request(a, rq);
371 return true;
374 static bool check_lun(struct scsi_lun lun)
376 bool result;
378 result = ((lun.scsi_lun[7] == 0) &&
379 (lun.scsi_lun[6] == 0) &&
380 (lun.scsi_lun[5] == 0) &&
381 (lun.scsi_lun[4] == 0) &&
382 (lun.scsi_lun[3] == 0) &&
383 (lun.scsi_lun[2] == 0) &&
384 /* Byte 1 is intentionally skipped */
385 (lun.scsi_lun[0] == 0));
387 return result;
390 static int csmi_ioctl_callback(struct esas2r_adapter *a,
391 struct esas2r_request *rq,
392 struct esas2r_sg_context *sgc, void *context)
394 struct atto_csmi *ci = (struct atto_csmi *)context;
395 union atto_ioctl_csmi *ioctl_csmi =
396 (union atto_ioctl_csmi *)esas2r_buffered_ioctl;
397 u8 path = 0;
398 u8 tid = 0;
399 u8 lun = 0;
400 u32 sts = CSMI_STS_SUCCESS;
401 struct esas2r_target *t;
402 unsigned long flags;
404 if (ci->control_code == CSMI_CC_GET_DEV_ADDR) {
405 struct atto_csmi_get_dev_addr *gda = &ci->data.dev_addr;
407 path = gda->path_id;
408 tid = gda->target_id;
409 lun = gda->lun;
410 } else if (ci->control_code == CSMI_CC_TASK_MGT) {
411 struct atto_csmi_task_mgmt *tm = &ci->data.tsk_mgt;
413 path = tm->path_id;
414 tid = tm->target_id;
415 lun = tm->lun;
418 if (path > 0) {
419 rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32(
420 CSMI_STS_INV_PARAM);
421 return false;
424 rq->target_id = tid;
425 rq->vrq->scsi.flags |= cpu_to_le32(lun);
427 switch (ci->control_code) {
428 case CSMI_CC_GET_DRVR_INFO:
430 struct atto_csmi_get_driver_info *gdi = &ioctl_csmi->drvr_info;
432 strcpy(gdi->description, esas2r_get_model_name(a));
433 gdi->csmi_major_rev = CSMI_MAJOR_REV;
434 gdi->csmi_minor_rev = CSMI_MINOR_REV;
435 break;
438 case CSMI_CC_GET_CNTLR_CFG:
440 struct atto_csmi_get_cntlr_cfg *gcc = &ioctl_csmi->cntlr_cfg;
442 gcc->base_io_addr = 0;
443 pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_2,
444 &gcc->base_memaddr_lo);
445 pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_3,
446 &gcc->base_memaddr_hi);
447 gcc->board_id = MAKEDWORD(a->pcid->subsystem_device,
448 a->pcid->subsystem_vendor);
449 gcc->slot_num = CSMI_SLOT_NUM_UNKNOWN;
450 gcc->cntlr_class = CSMI_CNTLR_CLASS_HBA;
451 gcc->io_bus_type = CSMI_BUS_TYPE_PCI;
452 gcc->pci_addr.bus_num = a->pcid->bus->number;
453 gcc->pci_addr.device_num = PCI_SLOT(a->pcid->devfn);
454 gcc->pci_addr.function_num = PCI_FUNC(a->pcid->devfn);
456 memset(gcc->serial_num, 0, sizeof(gcc->serial_num));
458 gcc->major_rev = LOBYTE(LOWORD(a->fw_version));
459 gcc->minor_rev = HIBYTE(LOWORD(a->fw_version));
460 gcc->build_rev = LOBYTE(HIWORD(a->fw_version));
461 gcc->release_rev = HIBYTE(HIWORD(a->fw_version));
462 gcc->bios_major_rev = HIBYTE(HIWORD(a->flash_ver));
463 gcc->bios_minor_rev = LOBYTE(HIWORD(a->flash_ver));
464 gcc->bios_build_rev = LOWORD(a->flash_ver);
466 if (test_bit(AF2_THUNDERLINK, &a->flags2))
467 gcc->cntlr_flags = CSMI_CNTLRF_SAS_HBA
468 | CSMI_CNTLRF_SATA_HBA;
469 else
470 gcc->cntlr_flags = CSMI_CNTLRF_SAS_RAID
471 | CSMI_CNTLRF_SATA_RAID;
473 gcc->rrom_major_rev = 0;
474 gcc->rrom_minor_rev = 0;
475 gcc->rrom_build_rev = 0;
476 gcc->rrom_release_rev = 0;
477 gcc->rrom_biosmajor_rev = 0;
478 gcc->rrom_biosminor_rev = 0;
479 gcc->rrom_biosbuild_rev = 0;
480 gcc->rrom_biosrelease_rev = 0;
481 break;
484 case CSMI_CC_GET_CNTLR_STS:
486 struct atto_csmi_get_cntlr_sts *gcs = &ioctl_csmi->cntlr_sts;
488 if (test_bit(AF_DEGRADED_MODE, &a->flags))
489 gcs->status = CSMI_CNTLR_STS_FAILED;
490 else
491 gcs->status = CSMI_CNTLR_STS_GOOD;
493 gcs->offline_reason = CSMI_OFFLINE_NO_REASON;
494 break;
497 case CSMI_CC_FW_DOWNLOAD:
498 case CSMI_CC_GET_RAID_INFO:
499 case CSMI_CC_GET_RAID_CFG:
501 sts = CSMI_STS_BAD_CTRL_CODE;
502 break;
504 case CSMI_CC_SMP_PASSTHRU:
505 case CSMI_CC_SSP_PASSTHRU:
506 case CSMI_CC_STP_PASSTHRU:
507 case CSMI_CC_GET_PHY_INFO:
508 case CSMI_CC_SET_PHY_INFO:
509 case CSMI_CC_GET_LINK_ERRORS:
510 case CSMI_CC_GET_SATA_SIG:
511 case CSMI_CC_GET_CONN_INFO:
512 case CSMI_CC_PHY_CTRL:
514 if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc,
515 ci->control_code,
516 ESAS2R_TARG_ID_INV)) {
517 sts = CSMI_STS_FAILED;
518 break;
521 return true;
523 case CSMI_CC_GET_SCSI_ADDR:
525 struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr;
527 struct scsi_lun lun;
529 memcpy(&lun, gsa->sas_lun, sizeof(struct scsi_lun));
531 if (!check_lun(lun)) {
532 sts = CSMI_STS_NO_SCSI_ADDR;
533 break;
536 /* make sure the device is present */
537 spin_lock_irqsave(&a->mem_lock, flags);
538 t = esas2r_targ_db_find_by_sas_addr(a, (u64 *)gsa->sas_addr);
539 spin_unlock_irqrestore(&a->mem_lock, flags);
541 if (t == NULL) {
542 sts = CSMI_STS_NO_SCSI_ADDR;
543 break;
546 gsa->host_index = 0xFF;
547 gsa->lun = gsa->sas_lun[1];
548 rq->target_id = esas2r_targ_get_id(t, a);
549 break;
552 case CSMI_CC_GET_DEV_ADDR:
554 struct atto_csmi_get_dev_addr *gda = &ioctl_csmi->dev_addr;
556 /* make sure the target is present */
557 t = a->targetdb + rq->target_id;
559 if (t >= a->targetdb_end
560 || t->target_state != TS_PRESENT
561 || t->sas_addr == 0) {
562 sts = CSMI_STS_NO_DEV_ADDR;
563 break;
566 /* fill in the result */
567 *(u64 *)gda->sas_addr = t->sas_addr;
568 memset(gda->sas_lun, 0, sizeof(gda->sas_lun));
569 gda->sas_lun[1] = (u8)le32_to_cpu(rq->vrq->scsi.flags);
570 break;
573 case CSMI_CC_TASK_MGT:
575 /* make sure the target is present */
576 t = a->targetdb + rq->target_id;
578 if (t >= a->targetdb_end
579 || t->target_state != TS_PRESENT
580 || !(t->flags & TF_PASS_THRU)) {
581 sts = CSMI_STS_NO_DEV_ADDR;
582 break;
585 if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc,
586 ci->control_code,
587 t->phys_targ_id)) {
588 sts = CSMI_STS_FAILED;
589 break;
592 return true;
594 default:
596 sts = CSMI_STS_BAD_CTRL_CODE;
597 break;
600 rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32(sts);
602 return false;
606 static void csmi_ioctl_done_callback(struct esas2r_adapter *a,
607 struct esas2r_request *rq, void *context)
609 struct atto_csmi *ci = (struct atto_csmi *)context;
610 union atto_ioctl_csmi *ioctl_csmi =
611 (union atto_ioctl_csmi *)esas2r_buffered_ioctl;
613 switch (ci->control_code) {
614 case CSMI_CC_GET_DRVR_INFO:
616 struct atto_csmi_get_driver_info *gdi =
617 &ioctl_csmi->drvr_info;
619 strcpy(gdi->name, ESAS2R_VERSION_STR);
621 gdi->major_rev = ESAS2R_MAJOR_REV;
622 gdi->minor_rev = ESAS2R_MINOR_REV;
623 gdi->build_rev = 0;
624 gdi->release_rev = 0;
625 break;
628 case CSMI_CC_GET_SCSI_ADDR:
630 struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr;
632 if (le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status) ==
633 CSMI_STS_SUCCESS) {
634 gsa->target_id = rq->target_id;
635 gsa->path_id = 0;
638 break;
642 ci->status = le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status);
646 static u8 handle_csmi_ioctl(struct esas2r_adapter *a, struct atto_csmi *ci)
648 struct esas2r_buffered_ioctl bi;
650 memset(&bi, 0, sizeof(bi));
652 bi.a = a;
653 bi.ioctl = &ci->data;
654 bi.length = sizeof(union atto_ioctl_csmi);
655 bi.offset = 0;
656 bi.callback = csmi_ioctl_callback;
657 bi.context = ci;
658 bi.done_callback = csmi_ioctl_done_callback;
659 bi.done_context = ci;
661 return handle_buffered_ioctl(&bi);
664 /* ATTO HBA ioctl support */
666 /* Tunnel an ATTO HBA IOCTL to the back end driver for processing. */
667 static bool hba_ioctl_tunnel(struct esas2r_adapter *a,
668 struct atto_ioctl *hi,
669 struct esas2r_request *rq,
670 struct esas2r_sg_context *sgc)
672 esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
674 esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_HBA);
676 if (!esas2r_build_sg_list(a, rq, sgc)) {
677 hi->status = ATTO_STS_OUT_OF_RSRC;
679 return false;
682 esas2r_start_request(a, rq);
684 return true;
687 static void scsi_passthru_comp_cb(struct esas2r_adapter *a,
688 struct esas2r_request *rq)
690 struct atto_ioctl *hi = (struct atto_ioctl *)rq->aux_req_cx;
691 struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru;
692 u8 sts = ATTO_SPT_RS_FAILED;
694 spt->scsi_status = rq->func_rsp.scsi_rsp.scsi_stat;
695 spt->sense_length = rq->sense_len;
696 spt->residual_length =
697 le32_to_cpu(rq->func_rsp.scsi_rsp.residual_length);
699 switch (rq->req_stat) {
700 case RS_SUCCESS:
701 case RS_SCSI_ERROR:
702 sts = ATTO_SPT_RS_SUCCESS;
703 break;
704 case RS_UNDERRUN:
705 sts = ATTO_SPT_RS_UNDERRUN;
706 break;
707 case RS_OVERRUN:
708 sts = ATTO_SPT_RS_OVERRUN;
709 break;
710 case RS_SEL:
711 case RS_SEL2:
712 sts = ATTO_SPT_RS_NO_DEVICE;
713 break;
714 case RS_NO_LUN:
715 sts = ATTO_SPT_RS_NO_LUN;
716 break;
717 case RS_TIMEOUT:
718 sts = ATTO_SPT_RS_TIMEOUT;
719 break;
720 case RS_DEGRADED:
721 sts = ATTO_SPT_RS_DEGRADED;
722 break;
723 case RS_BUSY:
724 sts = ATTO_SPT_RS_BUSY;
725 break;
726 case RS_ABORTED:
727 sts = ATTO_SPT_RS_ABORTED;
728 break;
729 case RS_RESET:
730 sts = ATTO_SPT_RS_BUS_RESET;
731 break;
734 spt->req_status = sts;
736 /* Update the target ID to the next one present. */
737 spt->target_id =
738 esas2r_targ_db_find_next_present(a, (u16)spt->target_id);
740 /* Done, call the completion callback. */
741 (*rq->aux_req_cb)(a, rq);
744 static int hba_ioctl_callback(struct esas2r_adapter *a,
745 struct esas2r_request *rq,
746 struct esas2r_sg_context *sgc,
747 void *context)
749 struct atto_ioctl *hi = (struct atto_ioctl *)esas2r_buffered_ioctl;
751 hi->status = ATTO_STS_SUCCESS;
753 switch (hi->function) {
754 case ATTO_FUNC_GET_ADAP_INFO:
756 u8 *class_code = (u8 *)&a->pcid->class;
758 struct atto_hba_get_adapter_info *gai =
759 &hi->data.get_adap_info;
761 if (hi->flags & HBAF_TUNNEL) {
762 hi->status = ATTO_STS_UNSUPPORTED;
763 break;
766 if (hi->version > ATTO_VER_GET_ADAP_INFO0) {
767 hi->status = ATTO_STS_INV_VERSION;
768 hi->version = ATTO_VER_GET_ADAP_INFO0;
769 break;
772 memset(gai, 0, sizeof(*gai));
774 gai->pci.vendor_id = a->pcid->vendor;
775 gai->pci.device_id = a->pcid->device;
776 gai->pci.ss_vendor_id = a->pcid->subsystem_vendor;
777 gai->pci.ss_device_id = a->pcid->subsystem_device;
778 gai->pci.class_code[0] = class_code[0];
779 gai->pci.class_code[1] = class_code[1];
780 gai->pci.class_code[2] = class_code[2];
781 gai->pci.rev_id = a->pcid->revision;
782 gai->pci.bus_num = a->pcid->bus->number;
783 gai->pci.dev_num = PCI_SLOT(a->pcid->devfn);
784 gai->pci.func_num = PCI_FUNC(a->pcid->devfn);
786 if (pci_is_pcie(a->pcid)) {
787 u16 stat;
788 u32 caps;
790 pcie_capability_read_word(a->pcid, PCI_EXP_LNKSTA,
791 &stat);
792 pcie_capability_read_dword(a->pcid, PCI_EXP_LNKCAP,
793 &caps);
795 gai->pci.link_speed_curr =
796 (u8)(stat & PCI_EXP_LNKSTA_CLS);
797 gai->pci.link_speed_max =
798 (u8)(caps & PCI_EXP_LNKCAP_SLS);
799 gai->pci.link_width_curr =
800 (u8)((stat & PCI_EXP_LNKSTA_NLW)
801 >> PCI_EXP_LNKSTA_NLW_SHIFT);
802 gai->pci.link_width_max =
803 (u8)((caps & PCI_EXP_LNKCAP_MLW)
804 >> 4);
807 gai->pci.msi_vector_cnt = 1;
809 if (a->pcid->msix_enabled)
810 gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSIX;
811 else if (a->pcid->msi_enabled)
812 gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSI;
813 else
814 gai->pci.interrupt_mode = ATTO_GAI_PCIIM_LEGACY;
816 gai->adap_type = ATTO_GAI_AT_ESASRAID2;
818 if (test_bit(AF2_THUNDERLINK, &a->flags2))
819 gai->adap_type = ATTO_GAI_AT_TLSASHBA;
821 if (test_bit(AF_DEGRADED_MODE, &a->flags))
822 gai->adap_flags |= ATTO_GAI_AF_DEGRADED;
824 gai->adap_flags |= ATTO_GAI_AF_SPT_SUPP |
825 ATTO_GAI_AF_DEVADDR_SUPP;
827 if (a->pcid->subsystem_device == ATTO_ESAS_R60F
828 || a->pcid->subsystem_device == ATTO_ESAS_R608
829 || a->pcid->subsystem_device == ATTO_ESAS_R644
830 || a->pcid->subsystem_device == ATTO_TSSC_3808E)
831 gai->adap_flags |= ATTO_GAI_AF_VIRT_SES;
833 gai->num_ports = ESAS2R_NUM_PHYS;
834 gai->num_phys = ESAS2R_NUM_PHYS;
836 strcpy(gai->firmware_rev, a->fw_rev);
837 strcpy(gai->flash_rev, a->flash_rev);
838 strcpy(gai->model_name_short, esas2r_get_model_name_short(a));
839 strcpy(gai->model_name, esas2r_get_model_name(a));
841 gai->num_targets = ESAS2R_MAX_TARGETS;
843 gai->num_busses = 1;
844 gai->num_targsper_bus = gai->num_targets;
845 gai->num_lunsper_targ = 256;
847 if (a->pcid->subsystem_device == ATTO_ESAS_R6F0
848 || a->pcid->subsystem_device == ATTO_ESAS_R60F)
849 gai->num_connectors = 4;
850 else
851 gai->num_connectors = 2;
853 gai->adap_flags2 |= ATTO_GAI_AF2_ADAP_CTRL_SUPP;
855 gai->num_targets_backend = a->num_targets_backend;
857 gai->tunnel_flags = a->ioctl_tunnel
858 & (ATTO_GAI_TF_MEM_RW
859 | ATTO_GAI_TF_TRACE
860 | ATTO_GAI_TF_SCSI_PASS_THRU
861 | ATTO_GAI_TF_GET_DEV_ADDR
862 | ATTO_GAI_TF_PHY_CTRL
863 | ATTO_GAI_TF_CONN_CTRL
864 | ATTO_GAI_TF_GET_DEV_INFO);
865 break;
868 case ATTO_FUNC_GET_ADAP_ADDR:
870 struct atto_hba_get_adapter_address *gaa =
871 &hi->data.get_adap_addr;
873 if (hi->flags & HBAF_TUNNEL) {
874 hi->status = ATTO_STS_UNSUPPORTED;
875 break;
878 if (hi->version > ATTO_VER_GET_ADAP_ADDR0) {
879 hi->status = ATTO_STS_INV_VERSION;
880 hi->version = ATTO_VER_GET_ADAP_ADDR0;
881 } else if (gaa->addr_type == ATTO_GAA_AT_PORT
882 || gaa->addr_type == ATTO_GAA_AT_NODE) {
883 if (gaa->addr_type == ATTO_GAA_AT_PORT
884 && gaa->port_id >= ESAS2R_NUM_PHYS) {
885 hi->status = ATTO_STS_NOT_APPL;
886 } else {
887 memcpy((u64 *)gaa->address,
888 &a->nvram->sas_addr[0], sizeof(u64));
889 gaa->addr_len = sizeof(u64);
891 } else {
892 hi->status = ATTO_STS_INV_PARAM;
895 break;
898 case ATTO_FUNC_MEM_RW:
900 if (hi->flags & HBAF_TUNNEL) {
901 if (hba_ioctl_tunnel(a, hi, rq, sgc))
902 return true;
904 break;
907 hi->status = ATTO_STS_UNSUPPORTED;
909 break;
912 case ATTO_FUNC_TRACE:
914 struct atto_hba_trace *trc = &hi->data.trace;
916 if (hi->flags & HBAF_TUNNEL) {
917 if (hba_ioctl_tunnel(a, hi, rq, sgc))
918 return true;
920 break;
923 if (hi->version > ATTO_VER_TRACE1) {
924 hi->status = ATTO_STS_INV_VERSION;
925 hi->version = ATTO_VER_TRACE1;
926 break;
929 if (trc->trace_type == ATTO_TRC_TT_FWCOREDUMP
930 && hi->version >= ATTO_VER_TRACE1) {
931 if (trc->trace_func == ATTO_TRC_TF_UPLOAD) {
932 u32 len = hi->data_length;
933 u32 offset = trc->current_offset;
934 u32 total_len = ESAS2R_FWCOREDUMP_SZ;
936 /* Size is zero if a core dump isn't present */
937 if (!test_bit(AF2_COREDUMP_SAVED, &a->flags2))
938 total_len = 0;
940 if (len > total_len)
941 len = total_len;
943 if (offset >= total_len
944 || offset + len > total_len
945 || len == 0) {
946 hi->status = ATTO_STS_INV_PARAM;
947 break;
950 memcpy(trc + 1,
951 a->fw_coredump_buff + offset,
952 len);
954 hi->data_length = len;
955 } else if (trc->trace_func == ATTO_TRC_TF_RESET) {
956 memset(a->fw_coredump_buff, 0,
957 ESAS2R_FWCOREDUMP_SZ);
959 clear_bit(AF2_COREDUMP_SAVED, &a->flags2);
960 } else if (trc->trace_func != ATTO_TRC_TF_GET_INFO) {
961 hi->status = ATTO_STS_UNSUPPORTED;
962 break;
965 /* Always return all the info we can. */
966 trc->trace_mask = 0;
967 trc->current_offset = 0;
968 trc->total_length = ESAS2R_FWCOREDUMP_SZ;
970 /* Return zero length buffer if core dump not present */
971 if (!test_bit(AF2_COREDUMP_SAVED, &a->flags2))
972 trc->total_length = 0;
973 } else {
974 hi->status = ATTO_STS_UNSUPPORTED;
977 break;
980 case ATTO_FUNC_SCSI_PASS_THRU:
982 struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru;
983 struct scsi_lun lun;
985 memcpy(&lun, spt->lun, sizeof(struct scsi_lun));
987 if (hi->flags & HBAF_TUNNEL) {
988 if (hba_ioctl_tunnel(a, hi, rq, sgc))
989 return true;
991 break;
994 if (hi->version > ATTO_VER_SCSI_PASS_THRU0) {
995 hi->status = ATTO_STS_INV_VERSION;
996 hi->version = ATTO_VER_SCSI_PASS_THRU0;
997 break;
1000 if (spt->target_id >= ESAS2R_MAX_TARGETS || !check_lun(lun)) {
1001 hi->status = ATTO_STS_INV_PARAM;
1002 break;
1005 esas2r_sgc_init(sgc, a, rq, NULL);
1007 sgc->length = hi->data_length;
1008 sgc->cur_offset += offsetof(struct atto_ioctl, data.byte)
1009 + sizeof(struct atto_hba_scsi_pass_thru);
1011 /* Finish request initialization */
1012 rq->target_id = (u16)spt->target_id;
1013 rq->vrq->scsi.flags |= cpu_to_le32(spt->lun[1]);
1014 memcpy(rq->vrq->scsi.cdb, spt->cdb, 16);
1015 rq->vrq->scsi.length = cpu_to_le32(hi->data_length);
1016 rq->sense_len = spt->sense_length;
1017 rq->sense_buf = (u8 *)spt->sense_data;
1018 /* NOTE: we ignore spt->timeout */
1021 * always usurp the completion callback since the interrupt
1022 * callback mechanism may be used.
1025 rq->aux_req_cx = hi;
1026 rq->aux_req_cb = rq->comp_cb;
1027 rq->comp_cb = scsi_passthru_comp_cb;
1029 if (spt->flags & ATTO_SPTF_DATA_IN) {
1030 rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_RDD);
1031 } else if (spt->flags & ATTO_SPTF_DATA_OUT) {
1032 rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_WRD);
1033 } else {
1034 if (sgc->length) {
1035 hi->status = ATTO_STS_INV_PARAM;
1036 break;
1040 if (spt->flags & ATTO_SPTF_ORDERED_Q)
1041 rq->vrq->scsi.flags |=
1042 cpu_to_le32(FCP_CMND_TA_ORDRD_Q);
1043 else if (spt->flags & ATTO_SPTF_HEAD_OF_Q)
1044 rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_TA_HEAD_Q);
1047 if (!esas2r_build_sg_list(a, rq, sgc)) {
1048 hi->status = ATTO_STS_OUT_OF_RSRC;
1049 break;
1052 esas2r_start_request(a, rq);
1054 return true;
1057 case ATTO_FUNC_GET_DEV_ADDR:
1059 struct atto_hba_get_device_address *gda =
1060 &hi->data.get_dev_addr;
1061 struct esas2r_target *t;
1063 if (hi->flags & HBAF_TUNNEL) {
1064 if (hba_ioctl_tunnel(a, hi, rq, sgc))
1065 return true;
1067 break;
1070 if (hi->version > ATTO_VER_GET_DEV_ADDR0) {
1071 hi->status = ATTO_STS_INV_VERSION;
1072 hi->version = ATTO_VER_GET_DEV_ADDR0;
1073 break;
1076 if (gda->target_id >= ESAS2R_MAX_TARGETS) {
1077 hi->status = ATTO_STS_INV_PARAM;
1078 break;
1081 t = a->targetdb + (u16)gda->target_id;
1083 if (t->target_state != TS_PRESENT) {
1084 hi->status = ATTO_STS_FAILED;
1085 } else if (gda->addr_type == ATTO_GDA_AT_PORT) {
1086 if (t->sas_addr == 0) {
1087 hi->status = ATTO_STS_UNSUPPORTED;
1088 } else {
1089 *(u64 *)gda->address = t->sas_addr;
1091 gda->addr_len = sizeof(u64);
1093 } else if (gda->addr_type == ATTO_GDA_AT_NODE) {
1094 hi->status = ATTO_STS_NOT_APPL;
1095 } else {
1096 hi->status = ATTO_STS_INV_PARAM;
1099 /* update the target ID to the next one present. */
1101 gda->target_id =
1102 esas2r_targ_db_find_next_present(a,
1103 (u16)gda->target_id);
1104 break;
1107 case ATTO_FUNC_PHY_CTRL:
1108 case ATTO_FUNC_CONN_CTRL:
1110 if (hba_ioctl_tunnel(a, hi, rq, sgc))
1111 return true;
1113 break;
1116 case ATTO_FUNC_ADAP_CTRL:
1118 struct atto_hba_adap_ctrl *ac = &hi->data.adap_ctrl;
1120 if (hi->flags & HBAF_TUNNEL) {
1121 hi->status = ATTO_STS_UNSUPPORTED;
1122 break;
1125 if (hi->version > ATTO_VER_ADAP_CTRL0) {
1126 hi->status = ATTO_STS_INV_VERSION;
1127 hi->version = ATTO_VER_ADAP_CTRL0;
1128 break;
1131 if (ac->adap_func == ATTO_AC_AF_HARD_RST) {
1132 esas2r_reset_adapter(a);
1133 } else if (ac->adap_func != ATTO_AC_AF_GET_STATE) {
1134 hi->status = ATTO_STS_UNSUPPORTED;
1135 break;
1138 if (test_bit(AF_CHPRST_NEEDED, &a->flags))
1139 ac->adap_state = ATTO_AC_AS_RST_SCHED;
1140 else if (test_bit(AF_CHPRST_PENDING, &a->flags))
1141 ac->adap_state = ATTO_AC_AS_RST_IN_PROG;
1142 else if (test_bit(AF_DISC_PENDING, &a->flags))
1143 ac->adap_state = ATTO_AC_AS_RST_DISC;
1144 else if (test_bit(AF_DISABLED, &a->flags))
1145 ac->adap_state = ATTO_AC_AS_DISABLED;
1146 else if (test_bit(AF_DEGRADED_MODE, &a->flags))
1147 ac->adap_state = ATTO_AC_AS_DEGRADED;
1148 else
1149 ac->adap_state = ATTO_AC_AS_OK;
1151 break;
1154 case ATTO_FUNC_GET_DEV_INFO:
1156 struct atto_hba_get_device_info *gdi = &hi->data.get_dev_info;
1157 struct esas2r_target *t;
1159 if (hi->flags & HBAF_TUNNEL) {
1160 if (hba_ioctl_tunnel(a, hi, rq, sgc))
1161 return true;
1163 break;
1166 if (hi->version > ATTO_VER_GET_DEV_INFO0) {
1167 hi->status = ATTO_STS_INV_VERSION;
1168 hi->version = ATTO_VER_GET_DEV_INFO0;
1169 break;
1172 if (gdi->target_id >= ESAS2R_MAX_TARGETS) {
1173 hi->status = ATTO_STS_INV_PARAM;
1174 break;
1177 t = a->targetdb + (u16)gdi->target_id;
1179 /* update the target ID to the next one present. */
1181 gdi->target_id =
1182 esas2r_targ_db_find_next_present(a,
1183 (u16)gdi->target_id);
1185 if (t->target_state != TS_PRESENT) {
1186 hi->status = ATTO_STS_FAILED;
1187 break;
1190 hi->status = ATTO_STS_UNSUPPORTED;
1191 break;
1194 default:
1196 hi->status = ATTO_STS_INV_FUNC;
1197 break;
1200 return false;
1203 static void hba_ioctl_done_callback(struct esas2r_adapter *a,
1204 struct esas2r_request *rq, void *context)
1206 struct atto_ioctl *ioctl_hba =
1207 (struct atto_ioctl *)esas2r_buffered_ioctl;
1209 esas2r_debug("hba_ioctl_done_callback %d", a->index);
1211 if (ioctl_hba->function == ATTO_FUNC_GET_ADAP_INFO) {
1212 struct atto_hba_get_adapter_info *gai =
1213 &ioctl_hba->data.get_adap_info;
1215 esas2r_debug("ATTO_FUNC_GET_ADAP_INFO");
1217 gai->drvr_rev_major = ESAS2R_MAJOR_REV;
1218 gai->drvr_rev_minor = ESAS2R_MINOR_REV;
1220 strcpy(gai->drvr_rev_ascii, ESAS2R_VERSION_STR);
1221 strcpy(gai->drvr_name, ESAS2R_DRVR_NAME);
1223 gai->num_busses = 1;
1224 gai->num_targsper_bus = ESAS2R_MAX_ID + 1;
1225 gai->num_lunsper_targ = 1;
1229 u8 handle_hba_ioctl(struct esas2r_adapter *a,
1230 struct atto_ioctl *ioctl_hba)
1232 struct esas2r_buffered_ioctl bi;
1234 memset(&bi, 0, sizeof(bi));
1236 bi.a = a;
1237 bi.ioctl = ioctl_hba;
1238 bi.length = sizeof(struct atto_ioctl) + ioctl_hba->data_length;
1239 bi.callback = hba_ioctl_callback;
1240 bi.context = NULL;
1241 bi.done_callback = hba_ioctl_done_callback;
1242 bi.done_context = NULL;
1243 bi.offset = 0;
1245 return handle_buffered_ioctl(&bi);
1249 int esas2r_write_params(struct esas2r_adapter *a, struct esas2r_request *rq,
1250 struct esas2r_sas_nvram *data)
1252 int result = 0;
1254 a->nvram_command_done = 0;
1255 rq->comp_cb = complete_nvr_req;
1257 if (esas2r_nvram_write(a, rq, data)) {
1258 /* now wait around for it to complete. */
1259 while (!a->nvram_command_done)
1260 wait_event_interruptible(a->nvram_waiter,
1261 a->nvram_command_done);
1264 /* done, check the status. */
1265 if (rq->req_stat == RS_SUCCESS)
1266 result = 1;
1268 return result;
1272 /* This function only cares about ATTO-specific ioctls (atto_express_ioctl) */
1273 int esas2r_ioctl_handler(void *hostdata, unsigned int cmd, void __user *arg)
1275 struct atto_express_ioctl *ioctl = NULL;
1276 struct esas2r_adapter *a;
1277 struct esas2r_request *rq;
1278 u16 code;
1279 int err;
1281 esas2r_log(ESAS2R_LOG_DEBG, "ioctl (%p, %x, %p)", hostdata, cmd, arg);
1283 if ((arg == NULL)
1284 || (cmd < EXPRESS_IOCTL_MIN)
1285 || (cmd > EXPRESS_IOCTL_MAX))
1286 return -ENOTSUPP;
1288 ioctl = memdup_user(arg, sizeof(struct atto_express_ioctl));
1289 if (IS_ERR(ioctl)) {
1290 esas2r_log(ESAS2R_LOG_WARN,
1291 "ioctl_handler access_ok failed for cmd %u, address %p",
1292 cmd, arg);
1293 return PTR_ERR(ioctl);
1296 /* verify the signature */
1298 if (memcmp(ioctl->header.signature,
1299 EXPRESS_IOCTL_SIGNATURE,
1300 EXPRESS_IOCTL_SIGNATURE_SIZE) != 0) {
1301 esas2r_log(ESAS2R_LOG_WARN, "invalid signature");
1302 kfree(ioctl);
1304 return -ENOTSUPP;
1307 /* assume success */
1309 ioctl->header.return_code = IOCTL_SUCCESS;
1310 err = 0;
1313 * handle EXPRESS_IOCTL_GET_CHANNELS
1314 * without paying attention to channel
1317 if (cmd == EXPRESS_IOCTL_GET_CHANNELS) {
1318 int i = 0, k = 0;
1320 ioctl->data.chanlist.num_channels = 0;
1322 while (i < MAX_ADAPTERS) {
1323 if (esas2r_adapters[i]) {
1324 ioctl->data.chanlist.num_channels++;
1325 ioctl->data.chanlist.channel[k] = i;
1326 k++;
1328 i++;
1331 goto ioctl_done;
1334 /* get the channel */
1336 if (ioctl->header.channel == 0xFF) {
1337 a = (struct esas2r_adapter *)hostdata;
1338 } else {
1339 if (ioctl->header.channel >= MAX_ADAPTERS ||
1340 esas2r_adapters[ioctl->header.channel] == NULL) {
1341 ioctl->header.return_code = IOCTL_BAD_CHANNEL;
1342 esas2r_log(ESAS2R_LOG_WARN, "bad channel value");
1343 kfree(ioctl);
1345 return -ENOTSUPP;
1347 a = esas2r_adapters[ioctl->header.channel];
1350 switch (cmd) {
1351 case EXPRESS_IOCTL_RW_FIRMWARE:
1353 if (ioctl->data.fwrw.img_type == FW_IMG_FM_API) {
1354 err = esas2r_write_fw(a,
1355 (char *)ioctl->data.fwrw.image,
1357 sizeof(struct
1358 atto_express_ioctl));
1360 if (err >= 0) {
1361 err = esas2r_read_fw(a,
1362 (char *)ioctl->data.fwrw.
1363 image,
1365 sizeof(struct
1366 atto_express_ioctl));
1368 } else if (ioctl->data.fwrw.img_type == FW_IMG_FS_API) {
1369 err = esas2r_write_fs(a,
1370 (char *)ioctl->data.fwrw.image,
1372 sizeof(struct
1373 atto_express_ioctl));
1375 if (err >= 0) {
1376 err = esas2r_read_fs(a,
1377 (char *)ioctl->data.fwrw.
1378 image,
1380 sizeof(struct
1381 atto_express_ioctl));
1383 } else {
1384 ioctl->header.return_code = IOCTL_BAD_FLASH_IMGTYPE;
1387 break;
1389 case EXPRESS_IOCTL_READ_PARAMS:
1391 memcpy(ioctl->data.prw.data_buffer, a->nvram,
1392 sizeof(struct esas2r_sas_nvram));
1393 ioctl->data.prw.code = 1;
1394 break;
1396 case EXPRESS_IOCTL_WRITE_PARAMS:
1398 rq = esas2r_alloc_request(a);
1399 if (rq == NULL) {
1400 kfree(ioctl);
1401 esas2r_log(ESAS2R_LOG_WARN,
1402 "could not allocate an internal request");
1403 return -ENOMEM;
1406 code = esas2r_write_params(a, rq,
1407 (struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer);
1408 ioctl->data.prw.code = code;
1410 esas2r_free_request(a, rq);
1412 break;
1414 case EXPRESS_IOCTL_DEFAULT_PARAMS:
1416 esas2r_nvram_get_defaults(a,
1417 (struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer);
1418 ioctl->data.prw.code = 1;
1419 break;
1421 case EXPRESS_IOCTL_CHAN_INFO:
1423 ioctl->data.chaninfo.major_rev = ESAS2R_MAJOR_REV;
1424 ioctl->data.chaninfo.minor_rev = ESAS2R_MINOR_REV;
1425 ioctl->data.chaninfo.IRQ = a->pcid->irq;
1426 ioctl->data.chaninfo.device_id = a->pcid->device;
1427 ioctl->data.chaninfo.vendor_id = a->pcid->vendor;
1428 ioctl->data.chaninfo.ven_dev_id = a->pcid->subsystem_device;
1429 ioctl->data.chaninfo.revision_id = a->pcid->revision;
1430 ioctl->data.chaninfo.pci_bus = a->pcid->bus->number;
1431 ioctl->data.chaninfo.pci_dev_func = a->pcid->devfn;
1432 ioctl->data.chaninfo.core_rev = 0;
1433 ioctl->data.chaninfo.host_no = a->host->host_no;
1434 ioctl->data.chaninfo.hbaapi_rev = 0;
1435 break;
1437 case EXPRESS_IOCTL_SMP:
1438 ioctl->header.return_code = handle_smp_ioctl(a,
1439 &ioctl->data.
1440 ioctl_smp);
1441 break;
1443 case EXPRESS_CSMI:
1444 ioctl->header.return_code =
1445 handle_csmi_ioctl(a, &ioctl->data.csmi);
1446 break;
1448 case EXPRESS_IOCTL_HBA:
1449 ioctl->header.return_code = handle_hba_ioctl(a,
1450 &ioctl->data.
1451 ioctl_hba);
1452 break;
1454 case EXPRESS_IOCTL_VDA:
1455 err = esas2r_write_vda(a,
1456 (char *)&ioctl->data.ioctl_vda,
1458 sizeof(struct atto_ioctl_vda) +
1459 ioctl->data.ioctl_vda.data_length);
1461 if (err >= 0) {
1462 err = esas2r_read_vda(a,
1463 (char *)&ioctl->data.ioctl_vda,
1465 sizeof(struct atto_ioctl_vda) +
1466 ioctl->data.ioctl_vda.data_length);
1472 break;
1474 case EXPRESS_IOCTL_GET_MOD_INFO:
1476 ioctl->data.modinfo.adapter = a;
1477 ioctl->data.modinfo.pci_dev = a->pcid;
1478 ioctl->data.modinfo.scsi_host = a->host;
1479 ioctl->data.modinfo.host_no = a->host->host_no;
1481 break;
1483 default:
1484 esas2r_debug("esas2r_ioctl invalid cmd %p!", cmd);
1485 ioctl->header.return_code = IOCTL_ERR_INVCMD;
1488 ioctl_done:
1490 if (err < 0) {
1491 esas2r_log(ESAS2R_LOG_WARN, "err %d on ioctl cmd %u", err,
1492 cmd);
1494 switch (err) {
1495 case -ENOMEM:
1496 case -EBUSY:
1497 ioctl->header.return_code = IOCTL_OUT_OF_RESOURCES;
1498 break;
1500 case -ENOSYS:
1501 case -EINVAL:
1502 ioctl->header.return_code = IOCTL_INVALID_PARAM;
1503 break;
1505 default:
1506 ioctl->header.return_code = IOCTL_GENERAL_ERROR;
1507 break;
1512 /* Always copy the buffer back, if only to pick up the status */
1513 err = __copy_to_user(arg, ioctl, sizeof(struct atto_express_ioctl));
1514 if (err != 0) {
1515 esas2r_log(ESAS2R_LOG_WARN,
1516 "ioctl_handler copy_to_user didn't copy everything (err %d, cmd %u)",
1517 err, cmd);
1518 kfree(ioctl);
1520 return -EFAULT;
1523 kfree(ioctl);
1525 return 0;
1528 int esas2r_ioctl(struct scsi_device *sd, unsigned int cmd, void __user *arg)
1530 return esas2r_ioctl_handler(sd->host->hostdata, cmd, arg);
1533 static void free_fw_buffers(struct esas2r_adapter *a)
1535 if (a->firmware.data) {
1536 dma_free_coherent(&a->pcid->dev,
1537 (size_t)a->firmware.orig_len,
1538 a->firmware.data,
1539 (dma_addr_t)a->firmware.phys);
1541 a->firmware.data = NULL;
1545 static int allocate_fw_buffers(struct esas2r_adapter *a, u32 length)
1547 free_fw_buffers(a);
1549 a->firmware.orig_len = length;
1551 a->firmware.data = (u8 *)dma_alloc_coherent(&a->pcid->dev,
1552 (size_t)length,
1553 (dma_addr_t *)&a->firmware.
1554 phys,
1555 GFP_KERNEL);
1557 if (!a->firmware.data) {
1558 esas2r_debug("buffer alloc failed!");
1559 return 0;
1562 return 1;
1565 /* Handle a call to read firmware. */
1566 int esas2r_read_fw(struct esas2r_adapter *a, char *buf, long off, int count)
1568 esas2r_trace_enter();
1569 /* if the cached header is a status, simply copy it over and return. */
1570 if (a->firmware.state == FW_STATUS_ST) {
1571 int size = min_t(int, count, sizeof(a->firmware.header));
1572 esas2r_trace_exit();
1573 memcpy(buf, &a->firmware.header, size);
1574 esas2r_debug("esas2r_read_fw: STATUS size %d", size);
1575 return size;
1579 * if the cached header is a command, do it if at
1580 * offset 0, otherwise copy the pieces.
1583 if (a->firmware.state == FW_COMMAND_ST) {
1584 u32 length = a->firmware.header.length;
1585 esas2r_trace_exit();
1587 esas2r_debug("esas2r_read_fw: COMMAND length %d off %d",
1588 length,
1589 off);
1591 if (off == 0) {
1592 if (a->firmware.header.action == FI_ACT_UP) {
1593 if (!allocate_fw_buffers(a, length))
1594 return -ENOMEM;
1597 /* copy header over */
1599 memcpy(a->firmware.data,
1600 &a->firmware.header,
1601 sizeof(a->firmware.header));
1603 do_fm_api(a,
1604 (struct esas2r_flash_img *)a->firmware.data);
1605 } else if (a->firmware.header.action == FI_ACT_UPSZ) {
1606 int size =
1607 min((int)count,
1608 (int)sizeof(a->firmware.header));
1609 do_fm_api(a, &a->firmware.header);
1610 memcpy(buf, &a->firmware.header, size);
1611 esas2r_debug("FI_ACT_UPSZ size %d", size);
1612 return size;
1613 } else {
1614 esas2r_debug("invalid action %d",
1615 a->firmware.header.action);
1616 return -ENOSYS;
1620 if (count + off > length)
1621 count = length - off;
1623 if (count < 0)
1624 return 0;
1626 if (!a->firmware.data) {
1627 esas2r_debug(
1628 "read: nonzero offset but no buffer available!");
1629 return -ENOMEM;
1632 esas2r_debug("esas2r_read_fw: off %d count %d length %d ", off,
1633 count,
1634 length);
1636 memcpy(buf, &a->firmware.data[off], count);
1638 /* when done, release the buffer */
1640 if (length <= off + count) {
1641 esas2r_debug("esas2r_read_fw: freeing buffer!");
1643 free_fw_buffers(a);
1646 return count;
1649 esas2r_trace_exit();
1650 esas2r_debug("esas2r_read_fw: invalid firmware state %d",
1651 a->firmware.state);
1653 return -EINVAL;
1656 /* Handle a call to write firmware. */
1657 int esas2r_write_fw(struct esas2r_adapter *a, const char *buf, long off,
1658 int count)
1660 u32 length;
1662 if (off == 0) {
1663 struct esas2r_flash_img *header =
1664 (struct esas2r_flash_img *)buf;
1666 /* assume version 0 flash image */
1668 int min_size = sizeof(struct esas2r_flash_img_v0);
1670 a->firmware.state = FW_INVALID_ST;
1672 /* validate the version field first */
1674 if (count < 4
1675 || header->fi_version > FI_VERSION_1) {
1676 esas2r_debug(
1677 "esas2r_write_fw: short header or invalid version");
1678 return -EINVAL;
1681 /* See if its a version 1 flash image */
1683 if (header->fi_version == FI_VERSION_1)
1684 min_size = sizeof(struct esas2r_flash_img);
1686 /* If this is the start, the header must be full and valid. */
1687 if (count < min_size) {
1688 esas2r_debug("esas2r_write_fw: short header, aborting");
1689 return -EINVAL;
1692 /* Make sure the size is reasonable. */
1693 length = header->length;
1695 if (length > 1024 * 1024) {
1696 esas2r_debug(
1697 "esas2r_write_fw: hosed, length %d fi_version %d",
1698 length, header->fi_version);
1699 return -EINVAL;
1703 * If this is a write command, allocate memory because
1704 * we have to cache everything. otherwise, just cache
1705 * the header, because the read op will do the command.
1708 if (header->action == FI_ACT_DOWN) {
1709 if (!allocate_fw_buffers(a, length))
1710 return -ENOMEM;
1713 * Store the command, so there is context on subsequent
1714 * calls.
1716 memcpy(&a->firmware.header,
1717 buf,
1718 sizeof(*header));
1719 } else if (header->action == FI_ACT_UP
1720 || header->action == FI_ACT_UPSZ) {
1721 /* Save the command, result will be picked up on read */
1722 memcpy(&a->firmware.header,
1723 buf,
1724 sizeof(*header));
1726 a->firmware.state = FW_COMMAND_ST;
1728 esas2r_debug(
1729 "esas2r_write_fw: COMMAND, count %d, action %d ",
1730 count, header->action);
1733 * Pretend we took the whole buffer,
1734 * so we don't get bothered again.
1737 return count;
1738 } else {
1739 esas2r_debug("esas2r_write_fw: invalid action %d ",
1740 a->firmware.header.action);
1741 return -ENOSYS;
1743 } else {
1744 length = a->firmware.header.length;
1748 * We only get here on a download command, regardless of offset.
1749 * the chunks written by the system need to be cached, and when
1750 * the final one arrives, issue the fmapi command.
1753 if (off + count > length)
1754 count = length - off;
1756 if (count > 0) {
1757 esas2r_debug("esas2r_write_fw: off %d count %d length %d", off,
1758 count,
1759 length);
1762 * On a full upload, the system tries sending the whole buffer.
1763 * there's nothing to do with it, so just drop it here, before
1764 * trying to copy over into unallocated memory!
1766 if (a->firmware.header.action == FI_ACT_UP)
1767 return count;
1769 if (!a->firmware.data) {
1770 esas2r_debug(
1771 "write: nonzero offset but no buffer available!");
1772 return -ENOMEM;
1775 memcpy(&a->firmware.data[off], buf, count);
1777 if (length == off + count) {
1778 do_fm_api(a,
1779 (struct esas2r_flash_img *)a->firmware.data);
1782 * Now copy the header result to be picked up by the
1783 * next read
1785 memcpy(&a->firmware.header,
1786 a->firmware.data,
1787 sizeof(a->firmware.header));
1789 a->firmware.state = FW_STATUS_ST;
1791 esas2r_debug("write completed");
1794 * Since the system has the data buffered, the only way
1795 * this can leak is if a root user writes a program
1796 * that writes a shorter buffer than it claims, and the
1797 * copyin fails.
1799 free_fw_buffers(a);
1803 return count;
1806 /* Callback for the completion of a VDA request. */
1807 static void vda_complete_req(struct esas2r_adapter *a,
1808 struct esas2r_request *rq)
1810 a->vda_command_done = 1;
1811 wake_up_interruptible(&a->vda_waiter);
1814 /* Scatter/gather callback for VDA requests */
1815 static u32 get_physaddr_vda(struct esas2r_sg_context *sgc, u64 *addr)
1817 struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
1818 int offset = (u8 *)sgc->cur_offset - (u8 *)a->vda_buffer;
1820 (*addr) = a->ppvda_buffer + offset;
1821 return VDA_MAX_BUFFER_SIZE - offset;
1824 /* Handle a call to read a VDA command. */
1825 int esas2r_read_vda(struct esas2r_adapter *a, char *buf, long off, int count)
1827 if (!a->vda_buffer)
1828 return -ENOMEM;
1830 if (off == 0) {
1831 struct esas2r_request *rq;
1832 struct atto_ioctl_vda *vi =
1833 (struct atto_ioctl_vda *)a->vda_buffer;
1834 struct esas2r_sg_context sgc;
1835 bool wait_for_completion;
1838 * Presumeably, someone has already written to the vda_buffer,
1839 * and now they are reading the node the response, so now we
1840 * will actually issue the request to the chip and reply.
1843 /* allocate a request */
1844 rq = esas2r_alloc_request(a);
1845 if (rq == NULL) {
1846 esas2r_debug("esas2r_read_vda: out of requests");
1847 return -EBUSY;
1850 rq->comp_cb = vda_complete_req;
1852 sgc.first_req = rq;
1853 sgc.adapter = a;
1854 sgc.cur_offset = a->vda_buffer + VDA_BUFFER_HEADER_SZ;
1855 sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_vda;
1857 a->vda_command_done = 0;
1859 wait_for_completion =
1860 esas2r_process_vda_ioctl(a, vi, rq, &sgc);
1862 if (wait_for_completion) {
1863 /* now wait around for it to complete. */
1865 while (!a->vda_command_done)
1866 wait_event_interruptible(a->vda_waiter,
1867 a->vda_command_done);
1870 esas2r_free_request(a, (struct esas2r_request *)rq);
1873 if (off > VDA_MAX_BUFFER_SIZE)
1874 return 0;
1876 if (count + off > VDA_MAX_BUFFER_SIZE)
1877 count = VDA_MAX_BUFFER_SIZE - off;
1879 if (count < 0)
1880 return 0;
1882 memcpy(buf, a->vda_buffer + off, count);
1884 return count;
1887 /* Handle a call to write a VDA command. */
1888 int esas2r_write_vda(struct esas2r_adapter *a, const char *buf, long off,
1889 int count)
1892 * allocate memory for it, if not already done. once allocated,
1893 * we will keep it around until the driver is unloaded.
1896 if (!a->vda_buffer) {
1897 dma_addr_t dma_addr;
1898 a->vda_buffer = (u8 *)dma_alloc_coherent(&a->pcid->dev,
1899 (size_t)
1900 VDA_MAX_BUFFER_SIZE,
1901 &dma_addr,
1902 GFP_KERNEL);
1904 a->ppvda_buffer = dma_addr;
1907 if (!a->vda_buffer)
1908 return -ENOMEM;
1910 if (off > VDA_MAX_BUFFER_SIZE)
1911 return 0;
1913 if (count + off > VDA_MAX_BUFFER_SIZE)
1914 count = VDA_MAX_BUFFER_SIZE - off;
1916 if (count < 1)
1917 return 0;
1919 memcpy(a->vda_buffer + off, buf, count);
1921 return count;
1924 /* Callback for the completion of an FS_API request.*/
1925 static void fs_api_complete_req(struct esas2r_adapter *a,
1926 struct esas2r_request *rq)
1928 a->fs_api_command_done = 1;
1930 wake_up_interruptible(&a->fs_api_waiter);
1933 /* Scatter/gather callback for VDA requests */
1934 static u32 get_physaddr_fs_api(struct esas2r_sg_context *sgc, u64 *addr)
1936 struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
1937 struct esas2r_ioctl_fs *fs =
1938 (struct esas2r_ioctl_fs *)a->fs_api_buffer;
1939 u32 offset = (u8 *)sgc->cur_offset - (u8 *)fs;
1941 (*addr) = a->ppfs_api_buffer + offset;
1943 return a->fs_api_buffer_size - offset;
1946 /* Handle a call to read firmware via FS_API. */
1947 int esas2r_read_fs(struct esas2r_adapter *a, char *buf, long off, int count)
1949 if (!a->fs_api_buffer)
1950 return -ENOMEM;
1952 if (off == 0) {
1953 struct esas2r_request *rq;
1954 struct esas2r_sg_context sgc;
1955 struct esas2r_ioctl_fs *fs =
1956 (struct esas2r_ioctl_fs *)a->fs_api_buffer;
1958 /* If another flash request is already in progress, return. */
1959 if (mutex_lock_interruptible(&a->fs_api_mutex)) {
1960 busy:
1961 fs->status = ATTO_STS_OUT_OF_RSRC;
1962 return -EBUSY;
1966 * Presumeably, someone has already written to the
1967 * fs_api_buffer, and now they are reading the node the
1968 * response, so now we will actually issue the request to the
1969 * chip and reply. Allocate a request
1972 rq = esas2r_alloc_request(a);
1973 if (rq == NULL) {
1974 esas2r_debug("esas2r_read_fs: out of requests");
1975 mutex_unlock(&a->fs_api_mutex);
1976 goto busy;
1979 rq->comp_cb = fs_api_complete_req;
1981 /* Set up the SGCONTEXT for to build the s/g table */
1983 sgc.cur_offset = fs->data;
1984 sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_fs_api;
1986 a->fs_api_command_done = 0;
1988 if (!esas2r_process_fs_ioctl(a, fs, rq, &sgc)) {
1989 if (fs->status == ATTO_STS_OUT_OF_RSRC)
1990 count = -EBUSY;
1992 goto dont_wait;
1995 /* Now wait around for it to complete. */
1997 while (!a->fs_api_command_done)
1998 wait_event_interruptible(a->fs_api_waiter,
1999 a->fs_api_command_done);
2001 dont_wait:
2002 /* Free the request and keep going */
2003 mutex_unlock(&a->fs_api_mutex);
2004 esas2r_free_request(a, (struct esas2r_request *)rq);
2006 /* Pick up possible error code from above */
2007 if (count < 0)
2008 return count;
2011 if (off > a->fs_api_buffer_size)
2012 return 0;
2014 if (count + off > a->fs_api_buffer_size)
2015 count = a->fs_api_buffer_size - off;
2017 if (count < 0)
2018 return 0;
2020 memcpy(buf, a->fs_api_buffer + off, count);
2022 return count;
2025 /* Handle a call to write firmware via FS_API. */
2026 int esas2r_write_fs(struct esas2r_adapter *a, const char *buf, long off,
2027 int count)
2029 if (off == 0) {
2030 struct esas2r_ioctl_fs *fs = (struct esas2r_ioctl_fs *)buf;
2031 u32 length = fs->command.length + offsetof(
2032 struct esas2r_ioctl_fs,
2033 data);
2036 * Special case, for BEGIN commands, the length field
2037 * is lying to us, so just get enough for the header.
2040 if (fs->command.command == ESAS2R_FS_CMD_BEGINW)
2041 length = offsetof(struct esas2r_ioctl_fs, data);
2044 * Beginning a command. We assume we'll get at least
2045 * enough in the first write so we can look at the
2046 * header and see how much we need to alloc.
2049 if (count < offsetof(struct esas2r_ioctl_fs, data))
2050 return -EINVAL;
2052 /* Allocate a buffer or use the existing buffer. */
2053 if (a->fs_api_buffer) {
2054 if (a->fs_api_buffer_size < length) {
2055 /* Free too-small buffer and get a new one */
2056 dma_free_coherent(&a->pcid->dev,
2057 (size_t)a->fs_api_buffer_size,
2058 a->fs_api_buffer,
2059 (dma_addr_t)a->ppfs_api_buffer);
2061 goto re_allocate_buffer;
2063 } else {
2064 re_allocate_buffer:
2065 a->fs_api_buffer_size = length;
2067 a->fs_api_buffer = (u8 *)dma_alloc_coherent(
2068 &a->pcid->dev,
2069 (size_t)a->fs_api_buffer_size,
2070 (dma_addr_t *)&a->ppfs_api_buffer,
2071 GFP_KERNEL);
2075 if (!a->fs_api_buffer)
2076 return -ENOMEM;
2078 if (off > a->fs_api_buffer_size)
2079 return 0;
2081 if (count + off > a->fs_api_buffer_size)
2082 count = a->fs_api_buffer_size - off;
2084 if (count < 1)
2085 return 0;
2087 memcpy(a->fs_api_buffer + off, buf, count);
2089 return count;