1 // SPDX-License-Identifier: GPL-2.0
3 * Serial Attached SCSI (SAS) Expander discovery and configuration
5 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
6 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
8 * This file is licensed under GPLv2.
11 #include <linux/scatterlist.h>
12 #include <linux/blkdev.h>
13 #include <linux/slab.h>
14 #include <asm/unaligned.h>
16 #include "sas_internal.h"
18 #include <scsi/sas_ata.h>
19 #include <scsi/scsi_transport.h>
20 #include <scsi/scsi_transport_sas.h>
21 #include "../scsi_sas_internal.h"
23 static int sas_discover_expander(struct domain_device
*dev
);
24 static int sas_configure_routing(struct domain_device
*dev
, u8
*sas_addr
);
25 static int sas_configure_phy(struct domain_device
*dev
, int phy_id
,
26 u8
*sas_addr
, int include
);
27 static int sas_disable_routing(struct domain_device
*dev
, u8
*sas_addr
);
29 /* ---------- SMP task management ---------- */
31 static void smp_task_timedout(struct timer_list
*t
)
33 struct sas_task_slow
*slow
= from_timer(slow
, t
, timer
);
34 struct sas_task
*task
= slow
->task
;
37 spin_lock_irqsave(&task
->task_state_lock
, flags
);
38 if (!(task
->task_state_flags
& SAS_TASK_STATE_DONE
)) {
39 task
->task_state_flags
|= SAS_TASK_STATE_ABORTED
;
40 complete(&task
->slow_task
->completion
);
42 spin_unlock_irqrestore(&task
->task_state_lock
, flags
);
45 static void smp_task_done(struct sas_task
*task
)
47 del_timer(&task
->slow_task
->timer
);
48 complete(&task
->slow_task
->completion
);
51 /* Give it some long enough timeout. In seconds. */
52 #define SMP_TIMEOUT 10
54 static int smp_execute_task_sg(struct domain_device
*dev
,
55 struct scatterlist
*req
, struct scatterlist
*resp
)
58 struct sas_task
*task
= NULL
;
59 struct sas_internal
*i
=
60 to_sas_internal(dev
->port
->ha
->core
.shost
->transportt
);
62 mutex_lock(&dev
->ex_dev
.cmd_mutex
);
63 for (retry
= 0; retry
< 3; retry
++) {
64 if (test_bit(SAS_DEV_GONE
, &dev
->state
)) {
69 task
= sas_alloc_slow_task(GFP_KERNEL
);
75 task
->task_proto
= dev
->tproto
;
76 task
->smp_task
.smp_req
= *req
;
77 task
->smp_task
.smp_resp
= *resp
;
79 task
->task_done
= smp_task_done
;
81 task
->slow_task
->timer
.function
= smp_task_timedout
;
82 task
->slow_task
->timer
.expires
= jiffies
+ SMP_TIMEOUT
*HZ
;
83 add_timer(&task
->slow_task
->timer
);
85 res
= i
->dft
->lldd_execute_task(task
, GFP_KERNEL
);
88 del_timer(&task
->slow_task
->timer
);
89 pr_notice("executing SMP task failed:%d\n", res
);
93 wait_for_completion(&task
->slow_task
->completion
);
95 if ((task
->task_state_flags
& SAS_TASK_STATE_ABORTED
)) {
96 pr_notice("smp task timed out or aborted\n");
97 i
->dft
->lldd_abort_task(task
);
98 if (!(task
->task_state_flags
& SAS_TASK_STATE_DONE
)) {
99 pr_notice("SMP task aborted and not done\n");
103 if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
104 task
->task_status
.stat
== SAM_STAT_GOOD
) {
108 if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
109 task
->task_status
.stat
== SAS_DATA_UNDERRUN
) {
110 /* no error, but return the number of bytes of
112 res
= task
->task_status
.residual
;
115 if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
116 task
->task_status
.stat
== SAS_DATA_OVERRUN
) {
120 if (task
->task_status
.resp
== SAS_TASK_UNDELIVERED
&&
121 task
->task_status
.stat
== SAS_DEVICE_UNKNOWN
)
124 pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
126 SAS_ADDR(dev
->sas_addr
),
127 task
->task_status
.resp
,
128 task
->task_status
.stat
);
133 mutex_unlock(&dev
->ex_dev
.cmd_mutex
);
135 BUG_ON(retry
== 3 && task
!= NULL
);
140 static int smp_execute_task(struct domain_device
*dev
, void *req
, int req_size
,
141 void *resp
, int resp_size
)
143 struct scatterlist req_sg
;
144 struct scatterlist resp_sg
;
146 sg_init_one(&req_sg
, req
, req_size
);
147 sg_init_one(&resp_sg
, resp
, resp_size
);
148 return smp_execute_task_sg(dev
, &req_sg
, &resp_sg
);
151 /* ---------- Allocations ---------- */
153 static inline void *alloc_smp_req(int size
)
155 u8
*p
= kzalloc(size
, GFP_KERNEL
);
161 static inline void *alloc_smp_resp(int size
)
163 return kzalloc(size
, GFP_KERNEL
);
166 static char sas_route_char(struct domain_device
*dev
, struct ex_phy
*phy
)
168 switch (phy
->routing_attr
) {
170 if (dev
->ex_dev
.t2t_supp
)
176 case SUBTRACTIVE_ROUTING
:
183 static enum sas_device_type
to_dev_type(struct discover_resp
*dr
)
185 /* This is detecting a failure to transmit initial dev to host
186 * FIS as described in section J.5 of sas-2 r16
188 if (dr
->attached_dev_type
== SAS_PHY_UNUSED
&& dr
->attached_sata_dev
&&
189 dr
->linkrate
>= SAS_LINK_RATE_1_5_GBPS
)
190 return SAS_SATA_PENDING
;
192 return dr
->attached_dev_type
;
195 static void sas_set_ex_phy(struct domain_device
*dev
, int phy_id
, void *rsp
)
197 enum sas_device_type dev_type
;
198 enum sas_linkrate linkrate
;
199 u8 sas_addr
[SAS_ADDR_SIZE
];
200 struct smp_resp
*resp
= rsp
;
201 struct discover_resp
*dr
= &resp
->disc
;
202 struct sas_ha_struct
*ha
= dev
->port
->ha
;
203 struct expander_device
*ex
= &dev
->ex_dev
;
204 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
205 struct sas_rphy
*rphy
= dev
->rphy
;
206 bool new_phy
= !phy
->phy
;
210 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE
, &ha
->state
)))
212 phy
->phy
= sas_phy_alloc(&rphy
->dev
, phy_id
);
214 /* FIXME: error_handling */
218 switch (resp
->result
) {
219 case SMP_RESP_PHY_VACANT
:
220 phy
->phy_state
= PHY_VACANT
;
223 phy
->phy_state
= PHY_NOT_PRESENT
;
225 case SMP_RESP_FUNC_ACC
:
226 phy
->phy_state
= PHY_EMPTY
; /* do not know yet */
230 /* check if anything important changed to squelch debug */
231 dev_type
= phy
->attached_dev_type
;
232 linkrate
= phy
->linkrate
;
233 memcpy(sas_addr
, phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
235 /* Handle vacant phy - rest of dr data is not valid so skip it */
236 if (phy
->phy_state
== PHY_VACANT
) {
237 memset(phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
238 phy
->attached_dev_type
= SAS_PHY_UNUSED
;
239 if (!test_bit(SAS_HA_ATA_EH_ACTIVE
, &ha
->state
)) {
240 phy
->phy_id
= phy_id
;
246 phy
->attached_dev_type
= to_dev_type(dr
);
247 if (test_bit(SAS_HA_ATA_EH_ACTIVE
, &ha
->state
))
249 phy
->phy_id
= phy_id
;
250 phy
->linkrate
= dr
->linkrate
;
251 phy
->attached_sata_host
= dr
->attached_sata_host
;
252 phy
->attached_sata_dev
= dr
->attached_sata_dev
;
253 phy
->attached_sata_ps
= dr
->attached_sata_ps
;
254 phy
->attached_iproto
= dr
->iproto
<< 1;
255 phy
->attached_tproto
= dr
->tproto
<< 1;
256 /* help some expanders that fail to zero sas_address in the 'no
259 if (phy
->attached_dev_type
== SAS_PHY_UNUSED
||
260 phy
->linkrate
< SAS_LINK_RATE_1_5_GBPS
)
261 memset(phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
263 memcpy(phy
->attached_sas_addr
, dr
->attached_sas_addr
, SAS_ADDR_SIZE
);
264 phy
->attached_phy_id
= dr
->attached_phy_id
;
265 phy
->phy_change_count
= dr
->change_count
;
266 phy
->routing_attr
= dr
->routing_attr
;
267 phy
->virtual = dr
->virtual;
268 phy
->last_da_index
= -1;
270 phy
->phy
->identify
.sas_address
= SAS_ADDR(phy
->attached_sas_addr
);
271 phy
->phy
->identify
.device_type
= dr
->attached_dev_type
;
272 phy
->phy
->identify
.initiator_port_protocols
= phy
->attached_iproto
;
273 phy
->phy
->identify
.target_port_protocols
= phy
->attached_tproto
;
274 if (!phy
->attached_tproto
&& dr
->attached_sata_dev
)
275 phy
->phy
->identify
.target_port_protocols
= SAS_PROTOCOL_SATA
;
276 phy
->phy
->identify
.phy_identifier
= phy_id
;
277 phy
->phy
->minimum_linkrate_hw
= dr
->hmin_linkrate
;
278 phy
->phy
->maximum_linkrate_hw
= dr
->hmax_linkrate
;
279 phy
->phy
->minimum_linkrate
= dr
->pmin_linkrate
;
280 phy
->phy
->maximum_linkrate
= dr
->pmax_linkrate
;
281 phy
->phy
->negotiated_linkrate
= phy
->linkrate
;
282 phy
->phy
->enabled
= (phy
->linkrate
!= SAS_PHY_DISABLED
);
286 if (sas_phy_add(phy
->phy
)) {
287 sas_phy_free(phy
->phy
);
292 switch (phy
->attached_dev_type
) {
293 case SAS_SATA_PENDING
:
294 type
= "stp pending";
300 if (phy
->attached_iproto
) {
301 if (phy
->attached_tproto
)
302 type
= "host+target";
306 if (dr
->attached_sata_dev
)
312 case SAS_EDGE_EXPANDER_DEVICE
:
313 case SAS_FANOUT_EXPANDER_DEVICE
:
320 /* this routine is polled by libata error recovery so filter
321 * unimportant messages
323 if (new_phy
|| phy
->attached_dev_type
!= dev_type
||
324 phy
->linkrate
!= linkrate
||
325 SAS_ADDR(phy
->attached_sas_addr
) != SAS_ADDR(sas_addr
))
330 /* if the attached device type changed and ata_eh is active,
331 * make sure we run revalidation when eh completes (see:
332 * sas_enable_revalidation)
334 if (test_bit(SAS_HA_ATA_EH_ACTIVE
, &ha
->state
))
335 set_bit(DISCE_REVALIDATE_DOMAIN
, &dev
->port
->disc
.pending
);
337 pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
338 test_bit(SAS_HA_ATA_EH_ACTIVE
, &ha
->state
) ? "ata: " : "",
339 SAS_ADDR(dev
->sas_addr
), phy
->phy_id
,
340 sas_route_char(dev
, phy
), phy
->linkrate
,
341 SAS_ADDR(phy
->attached_sas_addr
), type
);
344 /* check if we have an existing attached ata device on this expander phy */
345 struct domain_device
*sas_ex_to_ata(struct domain_device
*ex_dev
, int phy_id
)
347 struct ex_phy
*ex_phy
= &ex_dev
->ex_dev
.ex_phy
[phy_id
];
348 struct domain_device
*dev
;
349 struct sas_rphy
*rphy
;
354 rphy
= ex_phy
->port
->rphy
;
358 dev
= sas_find_dev_by_rphy(rphy
);
360 if (dev
&& dev_is_sata(dev
))
366 #define DISCOVER_REQ_SIZE 16
367 #define DISCOVER_RESP_SIZE 56
369 static int sas_ex_phy_discover_helper(struct domain_device
*dev
, u8
*disc_req
,
370 u8
*disc_resp
, int single
)
372 struct discover_resp
*dr
;
375 disc_req
[9] = single
;
377 res
= smp_execute_task(dev
, disc_req
, DISCOVER_REQ_SIZE
,
378 disc_resp
, DISCOVER_RESP_SIZE
);
381 dr
= &((struct smp_resp
*)disc_resp
)->disc
;
382 if (memcmp(dev
->sas_addr
, dr
->attached_sas_addr
, SAS_ADDR_SIZE
) == 0) {
383 pr_notice("Found loopback topology, just ignore it!\n");
386 sas_set_ex_phy(dev
, single
, disc_resp
);
390 int sas_ex_phy_discover(struct domain_device
*dev
, int single
)
392 struct expander_device
*ex
= &dev
->ex_dev
;
397 disc_req
= alloc_smp_req(DISCOVER_REQ_SIZE
);
401 disc_resp
= alloc_smp_resp(DISCOVER_RESP_SIZE
);
407 disc_req
[1] = SMP_DISCOVER
;
409 if (0 <= single
&& single
< ex
->num_phys
) {
410 res
= sas_ex_phy_discover_helper(dev
, disc_req
, disc_resp
, single
);
414 for (i
= 0; i
< ex
->num_phys
; i
++) {
415 res
= sas_ex_phy_discover_helper(dev
, disc_req
,
427 static int sas_expander_discover(struct domain_device
*dev
)
429 struct expander_device
*ex
= &dev
->ex_dev
;
432 ex
->ex_phy
= kcalloc(ex
->num_phys
, sizeof(*ex
->ex_phy
), GFP_KERNEL
);
436 res
= sas_ex_phy_discover(dev
, -1);
447 #define MAX_EXPANDER_PHYS 128
449 static void ex_assign_report_general(struct domain_device
*dev
,
450 struct smp_resp
*resp
)
452 struct report_general_resp
*rg
= &resp
->rg
;
454 dev
->ex_dev
.ex_change_count
= be16_to_cpu(rg
->change_count
);
455 dev
->ex_dev
.max_route_indexes
= be16_to_cpu(rg
->route_indexes
);
456 dev
->ex_dev
.num_phys
= min(rg
->num_phys
, (u8
)MAX_EXPANDER_PHYS
);
457 dev
->ex_dev
.t2t_supp
= rg
->t2t_supp
;
458 dev
->ex_dev
.conf_route_table
= rg
->conf_route_table
;
459 dev
->ex_dev
.configuring
= rg
->configuring
;
460 memcpy(dev
->ex_dev
.enclosure_logical_id
, rg
->enclosure_logical_id
, 8);
463 #define RG_REQ_SIZE 8
464 #define RG_RESP_SIZE 32
466 static int sas_ex_general(struct domain_device
*dev
)
469 struct smp_resp
*rg_resp
;
473 rg_req
= alloc_smp_req(RG_REQ_SIZE
);
477 rg_resp
= alloc_smp_resp(RG_RESP_SIZE
);
483 rg_req
[1] = SMP_REPORT_GENERAL
;
485 for (i
= 0; i
< 5; i
++) {
486 res
= smp_execute_task(dev
, rg_req
, RG_REQ_SIZE
, rg_resp
,
490 pr_notice("RG to ex %016llx failed:0x%x\n",
491 SAS_ADDR(dev
->sas_addr
), res
);
493 } else if (rg_resp
->result
!= SMP_RESP_FUNC_ACC
) {
494 pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
495 SAS_ADDR(dev
->sas_addr
), rg_resp
->result
);
496 res
= rg_resp
->result
;
500 ex_assign_report_general(dev
, rg_resp
);
502 if (dev
->ex_dev
.configuring
) {
503 pr_debug("RG: ex %016llx self-configuring...\n",
504 SAS_ADDR(dev
->sas_addr
));
505 schedule_timeout_interruptible(5*HZ
);
515 static void ex_assign_manuf_info(struct domain_device
*dev
, void
518 u8
*mi_resp
= _mi_resp
;
519 struct sas_rphy
*rphy
= dev
->rphy
;
520 struct sas_expander_device
*edev
= rphy_to_expander_device(rphy
);
522 memcpy(edev
->vendor_id
, mi_resp
+ 12, SAS_EXPANDER_VENDOR_ID_LEN
);
523 memcpy(edev
->product_id
, mi_resp
+ 20, SAS_EXPANDER_PRODUCT_ID_LEN
);
524 memcpy(edev
->product_rev
, mi_resp
+ 36,
525 SAS_EXPANDER_PRODUCT_REV_LEN
);
527 if (mi_resp
[8] & 1) {
528 memcpy(edev
->component_vendor_id
, mi_resp
+ 40,
529 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN
);
530 edev
->component_id
= mi_resp
[48] << 8 | mi_resp
[49];
531 edev
->component_revision_id
= mi_resp
[50];
535 #define MI_REQ_SIZE 8
536 #define MI_RESP_SIZE 64
538 static int sas_ex_manuf_info(struct domain_device
*dev
)
544 mi_req
= alloc_smp_req(MI_REQ_SIZE
);
548 mi_resp
= alloc_smp_resp(MI_RESP_SIZE
);
554 mi_req
[1] = SMP_REPORT_MANUF_INFO
;
556 res
= smp_execute_task(dev
, mi_req
, MI_REQ_SIZE
, mi_resp
,MI_RESP_SIZE
);
558 pr_notice("MI: ex %016llx failed:0x%x\n",
559 SAS_ADDR(dev
->sas_addr
), res
);
561 } else if (mi_resp
[2] != SMP_RESP_FUNC_ACC
) {
562 pr_debug("MI ex %016llx returned SMP result:0x%x\n",
563 SAS_ADDR(dev
->sas_addr
), mi_resp
[2]);
567 ex_assign_manuf_info(dev
, mi_resp
);
574 #define PC_REQ_SIZE 44
575 #define PC_RESP_SIZE 8
577 int sas_smp_phy_control(struct domain_device
*dev
, int phy_id
,
578 enum phy_func phy_func
,
579 struct sas_phy_linkrates
*rates
)
585 pc_req
= alloc_smp_req(PC_REQ_SIZE
);
589 pc_resp
= alloc_smp_resp(PC_RESP_SIZE
);
595 pc_req
[1] = SMP_PHY_CONTROL
;
597 pc_req
[10]= phy_func
;
599 pc_req
[32] = rates
->minimum_linkrate
<< 4;
600 pc_req
[33] = rates
->maximum_linkrate
<< 4;
603 res
= smp_execute_task(dev
, pc_req
, PC_REQ_SIZE
, pc_resp
,PC_RESP_SIZE
);
605 pr_err("ex %016llx phy%02d PHY control failed: %d\n",
606 SAS_ADDR(dev
->sas_addr
), phy_id
, res
);
607 } else if (pc_resp
[2] != SMP_RESP_FUNC_ACC
) {
608 pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
609 SAS_ADDR(dev
->sas_addr
), phy_id
, pc_resp
[2]);
617 static void sas_ex_disable_phy(struct domain_device
*dev
, int phy_id
)
619 struct expander_device
*ex
= &dev
->ex_dev
;
620 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
622 sas_smp_phy_control(dev
, phy_id
, PHY_FUNC_DISABLE
, NULL
);
623 phy
->linkrate
= SAS_PHY_DISABLED
;
626 static void sas_ex_disable_port(struct domain_device
*dev
, u8
*sas_addr
)
628 struct expander_device
*ex
= &dev
->ex_dev
;
631 for (i
= 0; i
< ex
->num_phys
; i
++) {
632 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
634 if (phy
->phy_state
== PHY_VACANT
||
635 phy
->phy_state
== PHY_NOT_PRESENT
)
638 if (SAS_ADDR(phy
->attached_sas_addr
) == SAS_ADDR(sas_addr
))
639 sas_ex_disable_phy(dev
, i
);
643 static int sas_dev_present_in_domain(struct asd_sas_port
*port
,
646 struct domain_device
*dev
;
648 if (SAS_ADDR(port
->sas_addr
) == SAS_ADDR(sas_addr
))
650 list_for_each_entry(dev
, &port
->dev_list
, dev_list_node
) {
651 if (SAS_ADDR(dev
->sas_addr
) == SAS_ADDR(sas_addr
))
657 #define RPEL_REQ_SIZE 16
658 #define RPEL_RESP_SIZE 32
659 int sas_smp_get_phy_events(struct sas_phy
*phy
)
664 struct sas_rphy
*rphy
= dev_to_rphy(phy
->dev
.parent
);
665 struct domain_device
*dev
= sas_find_dev_by_rphy(rphy
);
667 req
= alloc_smp_req(RPEL_REQ_SIZE
);
671 resp
= alloc_smp_resp(RPEL_RESP_SIZE
);
677 req
[1] = SMP_REPORT_PHY_ERR_LOG
;
678 req
[9] = phy
->number
;
680 res
= smp_execute_task(dev
, req
, RPEL_REQ_SIZE
,
681 resp
, RPEL_RESP_SIZE
);
686 phy
->invalid_dword_count
= get_unaligned_be32(&resp
[12]);
687 phy
->running_disparity_error_count
= get_unaligned_be32(&resp
[16]);
688 phy
->loss_of_dword_sync_count
= get_unaligned_be32(&resp
[20]);
689 phy
->phy_reset_problem_count
= get_unaligned_be32(&resp
[24]);
698 #ifdef CONFIG_SCSI_SAS_ATA
700 #define RPS_REQ_SIZE 16
701 #define RPS_RESP_SIZE 60
703 int sas_get_report_phy_sata(struct domain_device
*dev
, int phy_id
,
704 struct smp_resp
*rps_resp
)
707 u8
*rps_req
= alloc_smp_req(RPS_REQ_SIZE
);
708 u8
*resp
= (u8
*)rps_resp
;
713 rps_req
[1] = SMP_REPORT_PHY_SATA
;
716 res
= smp_execute_task(dev
, rps_req
, RPS_REQ_SIZE
,
717 rps_resp
, RPS_RESP_SIZE
);
719 /* 0x34 is the FIS type for the D2H fis. There's a potential
720 * standards cockup here. sas-2 explicitly specifies the FIS
721 * should be encoded so that FIS type is in resp[24].
722 * However, some expanders endian reverse this. Undo the
724 if (!res
&& resp
[27] == 0x34 && resp
[24] != 0x34) {
727 for (i
= 0; i
< 5; i
++) {
732 resp
[j
+ 0] = resp
[j
+ 3];
733 resp
[j
+ 1] = resp
[j
+ 2];
744 static void sas_ex_get_linkrate(struct domain_device
*parent
,
745 struct domain_device
*child
,
746 struct ex_phy
*parent_phy
)
748 struct expander_device
*parent_ex
= &parent
->ex_dev
;
749 struct sas_port
*port
;
754 port
= parent_phy
->port
;
756 for (i
= 0; i
< parent_ex
->num_phys
; i
++) {
757 struct ex_phy
*phy
= &parent_ex
->ex_phy
[i
];
759 if (phy
->phy_state
== PHY_VACANT
||
760 phy
->phy_state
== PHY_NOT_PRESENT
)
763 if (SAS_ADDR(phy
->attached_sas_addr
) ==
764 SAS_ADDR(child
->sas_addr
)) {
766 child
->min_linkrate
= min(parent
->min_linkrate
,
768 child
->max_linkrate
= max(parent
->max_linkrate
,
771 sas_port_add_phy(port
, phy
->phy
);
774 child
->linkrate
= min(parent_phy
->linkrate
, child
->max_linkrate
);
775 child
->pathways
= min(child
->pathways
, parent
->pathways
);
778 static struct domain_device
*sas_ex_discover_end_dev(
779 struct domain_device
*parent
, int phy_id
)
781 struct expander_device
*parent_ex
= &parent
->ex_dev
;
782 struct ex_phy
*phy
= &parent_ex
->ex_phy
[phy_id
];
783 struct domain_device
*child
= NULL
;
784 struct sas_rphy
*rphy
;
787 if (phy
->attached_sata_host
|| phy
->attached_sata_ps
)
790 child
= sas_alloc_device();
794 kref_get(&parent
->kref
);
795 child
->parent
= parent
;
796 child
->port
= parent
->port
;
797 child
->iproto
= phy
->attached_iproto
;
798 memcpy(child
->sas_addr
, phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
799 sas_hash_addr(child
->hashed_sas_addr
, child
->sas_addr
);
801 phy
->port
= sas_port_alloc(&parent
->rphy
->dev
, phy_id
);
802 if (unlikely(!phy
->port
))
804 if (unlikely(sas_port_add(phy
->port
) != 0)) {
805 sas_port_free(phy
->port
);
809 sas_ex_get_linkrate(parent
, child
, phy
);
810 sas_device_set_phy(child
, phy
->port
);
812 #ifdef CONFIG_SCSI_SAS_ATA
813 if ((phy
->attached_tproto
& SAS_PROTOCOL_STP
) || phy
->attached_sata_dev
) {
814 if (child
->linkrate
> parent
->min_linkrate
) {
815 struct sas_phy
*cphy
= child
->phy
;
816 enum sas_linkrate min_prate
= cphy
->minimum_linkrate
,
817 parent_min_lrate
= parent
->min_linkrate
,
818 min_linkrate
= (min_prate
> parent_min_lrate
) ?
819 parent_min_lrate
: 0;
820 struct sas_phy_linkrates rates
= {
821 .maximum_linkrate
= parent
->min_linkrate
,
822 .minimum_linkrate
= min_linkrate
,
826 pr_notice("ex %016llx phy%02d SATA device linkrate > min pathway connection rate, attempting to lower device linkrate\n",
827 SAS_ADDR(child
->sas_addr
), phy_id
);
828 ret
= sas_smp_phy_control(parent
, phy_id
,
829 PHY_FUNC_LINK_RESET
, &rates
);
831 pr_err("ex %016llx phy%02d SATA device could not set linkrate (%d)\n",
832 SAS_ADDR(child
->sas_addr
), phy_id
, ret
);
835 pr_notice("ex %016llx phy%02d SATA device set linkrate successfully\n",
836 SAS_ADDR(child
->sas_addr
), phy_id
);
837 child
->linkrate
= child
->min_linkrate
;
839 res
= sas_get_ata_info(child
, phy
);
844 res
= sas_ata_init(child
);
847 rphy
= sas_end_device_alloc(phy
->port
);
850 rphy
->identify
.phy_identifier
= phy_id
;
853 get_device(&rphy
->dev
);
855 list_add_tail(&child
->disco_list_node
, &parent
->port
->disco_list
);
857 res
= sas_discover_sata(child
);
859 pr_notice("sas_discover_sata() for device %16llx at %016llx:%02d returned 0x%x\n",
860 SAS_ADDR(child
->sas_addr
),
861 SAS_ADDR(parent
->sas_addr
), phy_id
, res
);
866 if (phy
->attached_tproto
& SAS_PROTOCOL_SSP
) {
867 child
->dev_type
= SAS_END_DEVICE
;
868 rphy
= sas_end_device_alloc(phy
->port
);
869 /* FIXME: error handling */
872 child
->tproto
= phy
->attached_tproto
;
876 get_device(&rphy
->dev
);
877 rphy
->identify
.phy_identifier
= phy_id
;
878 sas_fill_in_rphy(child
, rphy
);
880 list_add_tail(&child
->disco_list_node
, &parent
->port
->disco_list
);
882 res
= sas_discover_end_dev(child
);
884 pr_notice("sas_discover_end_dev() for device %016llx at %016llx:%02d returned 0x%x\n",
885 SAS_ADDR(child
->sas_addr
),
886 SAS_ADDR(parent
->sas_addr
), phy_id
, res
);
890 pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
891 phy
->attached_tproto
, SAS_ADDR(parent
->sas_addr
),
896 list_add_tail(&child
->siblings
, &parent_ex
->children
);
900 sas_rphy_free(child
->rphy
);
901 list_del(&child
->disco_list_node
);
902 spin_lock_irq(&parent
->port
->dev_list_lock
);
903 list_del(&child
->dev_list_node
);
904 spin_unlock_irq(&parent
->port
->dev_list_lock
);
906 sas_port_delete(phy
->port
);
909 sas_put_device(child
);
913 /* See if this phy is part of a wide port */
914 static bool sas_ex_join_wide_port(struct domain_device
*parent
, int phy_id
)
916 struct ex_phy
*phy
= &parent
->ex_dev
.ex_phy
[phy_id
];
919 for (i
= 0; i
< parent
->ex_dev
.num_phys
; i
++) {
920 struct ex_phy
*ephy
= &parent
->ex_dev
.ex_phy
[i
];
925 if (!memcmp(phy
->attached_sas_addr
, ephy
->attached_sas_addr
,
926 SAS_ADDR_SIZE
) && ephy
->port
) {
927 sas_port_add_phy(ephy
->port
, phy
->phy
);
928 phy
->port
= ephy
->port
;
929 phy
->phy_state
= PHY_DEVICE_DISCOVERED
;
937 static struct domain_device
*sas_ex_discover_expander(
938 struct domain_device
*parent
, int phy_id
)
940 struct sas_expander_device
*parent_ex
= rphy_to_expander_device(parent
->rphy
);
941 struct ex_phy
*phy
= &parent
->ex_dev
.ex_phy
[phy_id
];
942 struct domain_device
*child
= NULL
;
943 struct sas_rphy
*rphy
;
944 struct sas_expander_device
*edev
;
945 struct asd_sas_port
*port
;
948 if (phy
->routing_attr
== DIRECT_ROUTING
) {
949 pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
950 SAS_ADDR(parent
->sas_addr
), phy_id
,
951 SAS_ADDR(phy
->attached_sas_addr
),
952 phy
->attached_phy_id
);
955 child
= sas_alloc_device();
959 phy
->port
= sas_port_alloc(&parent
->rphy
->dev
, phy_id
);
960 /* FIXME: better error handling */
961 BUG_ON(sas_port_add(phy
->port
) != 0);
964 switch (phy
->attached_dev_type
) {
965 case SAS_EDGE_EXPANDER_DEVICE
:
966 rphy
= sas_expander_alloc(phy
->port
,
967 SAS_EDGE_EXPANDER_DEVICE
);
969 case SAS_FANOUT_EXPANDER_DEVICE
:
970 rphy
= sas_expander_alloc(phy
->port
,
971 SAS_FANOUT_EXPANDER_DEVICE
);
974 rphy
= NULL
; /* shut gcc up */
979 get_device(&rphy
->dev
);
980 edev
= rphy_to_expander_device(rphy
);
981 child
->dev_type
= phy
->attached_dev_type
;
982 kref_get(&parent
->kref
);
983 child
->parent
= parent
;
985 child
->iproto
= phy
->attached_iproto
;
986 child
->tproto
= phy
->attached_tproto
;
987 memcpy(child
->sas_addr
, phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
988 sas_hash_addr(child
->hashed_sas_addr
, child
->sas_addr
);
989 sas_ex_get_linkrate(parent
, child
, phy
);
990 edev
->level
= parent_ex
->level
+ 1;
991 parent
->port
->disc
.max_level
= max(parent
->port
->disc
.max_level
,
994 sas_fill_in_rphy(child
, rphy
);
997 spin_lock_irq(&parent
->port
->dev_list_lock
);
998 list_add_tail(&child
->dev_list_node
, &parent
->port
->dev_list
);
999 spin_unlock_irq(&parent
->port
->dev_list_lock
);
1001 res
= sas_discover_expander(child
);
1003 sas_rphy_delete(rphy
);
1004 spin_lock_irq(&parent
->port
->dev_list_lock
);
1005 list_del(&child
->dev_list_node
);
1006 spin_unlock_irq(&parent
->port
->dev_list_lock
);
1007 sas_put_device(child
);
1008 sas_port_delete(phy
->port
);
1012 list_add_tail(&child
->siblings
, &parent
->ex_dev
.children
);
1016 static int sas_ex_discover_dev(struct domain_device
*dev
, int phy_id
)
1018 struct expander_device
*ex
= &dev
->ex_dev
;
1019 struct ex_phy
*ex_phy
= &ex
->ex_phy
[phy_id
];
1020 struct domain_device
*child
= NULL
;
1024 if (ex_phy
->linkrate
== SAS_SATA_SPINUP_HOLD
) {
1025 if (!sas_smp_phy_control(dev
, phy_id
, PHY_FUNC_LINK_RESET
, NULL
))
1026 res
= sas_ex_phy_discover(dev
, phy_id
);
1031 /* Parent and domain coherency */
1032 if (!dev
->parent
&& (SAS_ADDR(ex_phy
->attached_sas_addr
) ==
1033 SAS_ADDR(dev
->port
->sas_addr
))) {
1034 sas_add_parent_port(dev
, phy_id
);
1037 if (dev
->parent
&& (SAS_ADDR(ex_phy
->attached_sas_addr
) ==
1038 SAS_ADDR(dev
->parent
->sas_addr
))) {
1039 sas_add_parent_port(dev
, phy_id
);
1040 if (ex_phy
->routing_attr
== TABLE_ROUTING
)
1041 sas_configure_phy(dev
, phy_id
, dev
->port
->sas_addr
, 1);
1045 if (sas_dev_present_in_domain(dev
->port
, ex_phy
->attached_sas_addr
))
1046 sas_ex_disable_port(dev
, ex_phy
->attached_sas_addr
);
1048 if (ex_phy
->attached_dev_type
== SAS_PHY_UNUSED
) {
1049 if (ex_phy
->routing_attr
== DIRECT_ROUTING
) {
1050 memset(ex_phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
1051 sas_configure_routing(dev
, ex_phy
->attached_sas_addr
);
1054 } else if (ex_phy
->linkrate
== SAS_LINK_RATE_UNKNOWN
)
1057 if (ex_phy
->attached_dev_type
!= SAS_END_DEVICE
&&
1058 ex_phy
->attached_dev_type
!= SAS_FANOUT_EXPANDER_DEVICE
&&
1059 ex_phy
->attached_dev_type
!= SAS_EDGE_EXPANDER_DEVICE
&&
1060 ex_phy
->attached_dev_type
!= SAS_SATA_PENDING
) {
1061 pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
1062 ex_phy
->attached_dev_type
,
1063 SAS_ADDR(dev
->sas_addr
),
1068 res
= sas_configure_routing(dev
, ex_phy
->attached_sas_addr
);
1070 pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1071 SAS_ADDR(ex_phy
->attached_sas_addr
), res
);
1072 sas_disable_routing(dev
, ex_phy
->attached_sas_addr
);
1076 if (sas_ex_join_wide_port(dev
, phy_id
)) {
1077 pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1078 phy_id
, SAS_ADDR(ex_phy
->attached_sas_addr
));
1082 switch (ex_phy
->attached_dev_type
) {
1083 case SAS_END_DEVICE
:
1084 case SAS_SATA_PENDING
:
1085 child
= sas_ex_discover_end_dev(dev
, phy_id
);
1087 case SAS_FANOUT_EXPANDER_DEVICE
:
1088 if (SAS_ADDR(dev
->port
->disc
.fanout_sas_addr
)) {
1089 pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1090 SAS_ADDR(ex_phy
->attached_sas_addr
),
1091 ex_phy
->attached_phy_id
,
1092 SAS_ADDR(dev
->sas_addr
),
1094 sas_ex_disable_phy(dev
, phy_id
);
1097 memcpy(dev
->port
->disc
.fanout_sas_addr
,
1098 ex_phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
1100 case SAS_EDGE_EXPANDER_DEVICE
:
1101 child
= sas_ex_discover_expander(dev
, phy_id
);
1108 pr_notice("ex %016llx phy%02d failed to discover\n",
1109 SAS_ADDR(dev
->sas_addr
), phy_id
);
1113 static int sas_find_sub_addr(struct domain_device
*dev
, u8
*sub_addr
)
1115 struct expander_device
*ex
= &dev
->ex_dev
;
1118 for (i
= 0; i
< ex
->num_phys
; i
++) {
1119 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
1121 if (phy
->phy_state
== PHY_VACANT
||
1122 phy
->phy_state
== PHY_NOT_PRESENT
)
1125 if (dev_is_expander(phy
->attached_dev_type
) &&
1126 phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1128 memcpy(sub_addr
, phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
1136 static int sas_check_level_subtractive_boundary(struct domain_device
*dev
)
1138 struct expander_device
*ex
= &dev
->ex_dev
;
1139 struct domain_device
*child
;
1140 u8 sub_addr
[SAS_ADDR_SIZE
] = {0, };
1142 list_for_each_entry(child
, &ex
->children
, siblings
) {
1143 if (!dev_is_expander(child
->dev_type
))
1145 if (sub_addr
[0] == 0) {
1146 sas_find_sub_addr(child
, sub_addr
);
1149 u8 s2
[SAS_ADDR_SIZE
];
1151 if (sas_find_sub_addr(child
, s2
) &&
1152 (SAS_ADDR(sub_addr
) != SAS_ADDR(s2
))) {
1154 pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1155 SAS_ADDR(dev
->sas_addr
),
1156 SAS_ADDR(child
->sas_addr
),
1158 SAS_ADDR(sub_addr
));
1160 sas_ex_disable_port(child
, s2
);
1167 * sas_ex_discover_devices - discover devices attached to this expander
1168 * @dev: pointer to the expander domain device
1169 * @single: if you want to do a single phy, else set to -1;
1171 * Configure this expander for use with its devices and register the
1172 * devices of this expander.
1174 static int sas_ex_discover_devices(struct domain_device
*dev
, int single
)
1176 struct expander_device
*ex
= &dev
->ex_dev
;
1177 int i
= 0, end
= ex
->num_phys
;
1180 if (0 <= single
&& single
< end
) {
1185 for ( ; i
< end
; i
++) {
1186 struct ex_phy
*ex_phy
= &ex
->ex_phy
[i
];
1188 if (ex_phy
->phy_state
== PHY_VACANT
||
1189 ex_phy
->phy_state
== PHY_NOT_PRESENT
||
1190 ex_phy
->phy_state
== PHY_DEVICE_DISCOVERED
)
1193 switch (ex_phy
->linkrate
) {
1194 case SAS_PHY_DISABLED
:
1195 case SAS_PHY_RESET_PROBLEM
:
1196 case SAS_SATA_PORT_SELECTOR
:
1199 res
= sas_ex_discover_dev(dev
, i
);
1207 sas_check_level_subtractive_boundary(dev
);
1212 static int sas_check_ex_subtractive_boundary(struct domain_device
*dev
)
1214 struct expander_device
*ex
= &dev
->ex_dev
;
1216 u8
*sub_sas_addr
= NULL
;
1218 if (dev
->dev_type
!= SAS_EDGE_EXPANDER_DEVICE
)
1221 for (i
= 0; i
< ex
->num_phys
; i
++) {
1222 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
1224 if (phy
->phy_state
== PHY_VACANT
||
1225 phy
->phy_state
== PHY_NOT_PRESENT
)
1228 if (dev_is_expander(phy
->attached_dev_type
) &&
1229 phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1232 sub_sas_addr
= &phy
->attached_sas_addr
[0];
1233 else if (SAS_ADDR(sub_sas_addr
) !=
1234 SAS_ADDR(phy
->attached_sas_addr
)) {
1236 pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1237 SAS_ADDR(dev
->sas_addr
), i
,
1238 SAS_ADDR(phy
->attached_sas_addr
),
1239 SAS_ADDR(sub_sas_addr
));
1240 sas_ex_disable_phy(dev
, i
);
1247 static void sas_print_parent_topology_bug(struct domain_device
*child
,
1248 struct ex_phy
*parent_phy
,
1249 struct ex_phy
*child_phy
)
1251 static const char *ex_type
[] = {
1252 [SAS_EDGE_EXPANDER_DEVICE
] = "edge",
1253 [SAS_FANOUT_EXPANDER_DEVICE
] = "fanout",
1255 struct domain_device
*parent
= child
->parent
;
1257 pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1258 ex_type
[parent
->dev_type
],
1259 SAS_ADDR(parent
->sas_addr
),
1262 ex_type
[child
->dev_type
],
1263 SAS_ADDR(child
->sas_addr
),
1266 sas_route_char(parent
, parent_phy
),
1267 sas_route_char(child
, child_phy
));
1270 static int sas_check_eeds(struct domain_device
*child
,
1271 struct ex_phy
*parent_phy
,
1272 struct ex_phy
*child_phy
)
1275 struct domain_device
*parent
= child
->parent
;
1277 if (SAS_ADDR(parent
->port
->disc
.fanout_sas_addr
) != 0) {
1279 pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1280 SAS_ADDR(parent
->sas_addr
),
1282 SAS_ADDR(child
->sas_addr
),
1284 SAS_ADDR(parent
->port
->disc
.fanout_sas_addr
));
1285 } else if (SAS_ADDR(parent
->port
->disc
.eeds_a
) == 0) {
1286 memcpy(parent
->port
->disc
.eeds_a
, parent
->sas_addr
,
1288 memcpy(parent
->port
->disc
.eeds_b
, child
->sas_addr
,
1290 } else if (((SAS_ADDR(parent
->port
->disc
.eeds_a
) ==
1291 SAS_ADDR(parent
->sas_addr
)) ||
1292 (SAS_ADDR(parent
->port
->disc
.eeds_a
) ==
1293 SAS_ADDR(child
->sas_addr
)))
1295 ((SAS_ADDR(parent
->port
->disc
.eeds_b
) ==
1296 SAS_ADDR(parent
->sas_addr
)) ||
1297 (SAS_ADDR(parent
->port
->disc
.eeds_b
) ==
1298 SAS_ADDR(child
->sas_addr
))))
1302 pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1303 SAS_ADDR(parent
->sas_addr
),
1305 SAS_ADDR(child
->sas_addr
),
1312 /* Here we spill over 80 columns. It is intentional.
1314 static int sas_check_parent_topology(struct domain_device
*child
)
1316 struct expander_device
*child_ex
= &child
->ex_dev
;
1317 struct expander_device
*parent_ex
;
1324 if (!dev_is_expander(child
->parent
->dev_type
))
1327 parent_ex
= &child
->parent
->ex_dev
;
1329 for (i
= 0; i
< parent_ex
->num_phys
; i
++) {
1330 struct ex_phy
*parent_phy
= &parent_ex
->ex_phy
[i
];
1331 struct ex_phy
*child_phy
;
1333 if (parent_phy
->phy_state
== PHY_VACANT
||
1334 parent_phy
->phy_state
== PHY_NOT_PRESENT
)
1337 if (SAS_ADDR(parent_phy
->attached_sas_addr
) != SAS_ADDR(child
->sas_addr
))
1340 child_phy
= &child_ex
->ex_phy
[parent_phy
->attached_phy_id
];
1342 switch (child
->parent
->dev_type
) {
1343 case SAS_EDGE_EXPANDER_DEVICE
:
1344 if (child
->dev_type
== SAS_FANOUT_EXPANDER_DEVICE
) {
1345 if (parent_phy
->routing_attr
!= SUBTRACTIVE_ROUTING
||
1346 child_phy
->routing_attr
!= TABLE_ROUTING
) {
1347 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1350 } else if (parent_phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1351 if (child_phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1352 res
= sas_check_eeds(child
, parent_phy
, child_phy
);
1353 } else if (child_phy
->routing_attr
!= TABLE_ROUTING
) {
1354 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1357 } else if (parent_phy
->routing_attr
== TABLE_ROUTING
) {
1358 if (child_phy
->routing_attr
== SUBTRACTIVE_ROUTING
||
1359 (child_phy
->routing_attr
== TABLE_ROUTING
&&
1360 child_ex
->t2t_supp
&& parent_ex
->t2t_supp
)) {
1363 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1368 case SAS_FANOUT_EXPANDER_DEVICE
:
1369 if (parent_phy
->routing_attr
!= TABLE_ROUTING
||
1370 child_phy
->routing_attr
!= SUBTRACTIVE_ROUTING
) {
1371 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1383 #define RRI_REQ_SIZE 16
1384 #define RRI_RESP_SIZE 44
1386 static int sas_configure_present(struct domain_device
*dev
, int phy_id
,
1387 u8
*sas_addr
, int *index
, int *present
)
1390 struct expander_device
*ex
= &dev
->ex_dev
;
1391 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
1398 rri_req
= alloc_smp_req(RRI_REQ_SIZE
);
1402 rri_resp
= alloc_smp_resp(RRI_RESP_SIZE
);
1408 rri_req
[1] = SMP_REPORT_ROUTE_INFO
;
1409 rri_req
[9] = phy_id
;
1411 for (i
= 0; i
< ex
->max_route_indexes
; i
++) {
1412 *(__be16
*)(rri_req
+6) = cpu_to_be16(i
);
1413 res
= smp_execute_task(dev
, rri_req
, RRI_REQ_SIZE
, rri_resp
,
1418 if (res
== SMP_RESP_NO_INDEX
) {
1419 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1420 SAS_ADDR(dev
->sas_addr
), phy_id
, i
);
1422 } else if (res
!= SMP_RESP_FUNC_ACC
) {
1423 pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1424 __func__
, SAS_ADDR(dev
->sas_addr
), phy_id
,
1428 if (SAS_ADDR(sas_addr
) != 0) {
1429 if (SAS_ADDR(rri_resp
+16) == SAS_ADDR(sas_addr
)) {
1431 if ((rri_resp
[12] & 0x80) == 0x80)
1436 } else if (SAS_ADDR(rri_resp
+16) == 0) {
1441 } else if (SAS_ADDR(rri_resp
+16) == 0 &&
1442 phy
->last_da_index
< i
) {
1443 phy
->last_da_index
= i
;
1456 #define CRI_REQ_SIZE 44
1457 #define CRI_RESP_SIZE 8
1459 static int sas_configure_set(struct domain_device
*dev
, int phy_id
,
1460 u8
*sas_addr
, int index
, int include
)
1466 cri_req
= alloc_smp_req(CRI_REQ_SIZE
);
1470 cri_resp
= alloc_smp_resp(CRI_RESP_SIZE
);
1476 cri_req
[1] = SMP_CONF_ROUTE_INFO
;
1477 *(__be16
*)(cri_req
+6) = cpu_to_be16(index
);
1478 cri_req
[9] = phy_id
;
1479 if (SAS_ADDR(sas_addr
) == 0 || !include
)
1480 cri_req
[12] |= 0x80;
1481 memcpy(cri_req
+16, sas_addr
, SAS_ADDR_SIZE
);
1483 res
= smp_execute_task(dev
, cri_req
, CRI_REQ_SIZE
, cri_resp
,
1488 if (res
== SMP_RESP_NO_INDEX
) {
1489 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1490 SAS_ADDR(dev
->sas_addr
), phy_id
, index
);
1498 static int sas_configure_phy(struct domain_device
*dev
, int phy_id
,
1499 u8
*sas_addr
, int include
)
1505 res
= sas_configure_present(dev
, phy_id
, sas_addr
, &index
, &present
);
1508 if (include
^ present
)
1509 return sas_configure_set(dev
, phy_id
, sas_addr
, index
,include
);
1515 * sas_configure_parent - configure routing table of parent
1516 * @parent: parent expander
1517 * @child: child expander
1518 * @sas_addr: SAS port identifier of device directly attached to child
1519 * @include: whether or not to include @child in the expander routing table
1521 static int sas_configure_parent(struct domain_device
*parent
,
1522 struct domain_device
*child
,
1523 u8
*sas_addr
, int include
)
1525 struct expander_device
*ex_parent
= &parent
->ex_dev
;
1529 if (parent
->parent
) {
1530 res
= sas_configure_parent(parent
->parent
, parent
, sas_addr
,
1536 if (ex_parent
->conf_route_table
== 0) {
1537 pr_debug("ex %016llx has self-configuring routing table\n",
1538 SAS_ADDR(parent
->sas_addr
));
1542 for (i
= 0; i
< ex_parent
->num_phys
; i
++) {
1543 struct ex_phy
*phy
= &ex_parent
->ex_phy
[i
];
1545 if ((phy
->routing_attr
== TABLE_ROUTING
) &&
1546 (SAS_ADDR(phy
->attached_sas_addr
) ==
1547 SAS_ADDR(child
->sas_addr
))) {
1548 res
= sas_configure_phy(parent
, i
, sas_addr
, include
);
1558 * sas_configure_routing - configure routing
1559 * @dev: expander device
1560 * @sas_addr: port identifier of device directly attached to the expander device
1562 static int sas_configure_routing(struct domain_device
*dev
, u8
*sas_addr
)
1565 return sas_configure_parent(dev
->parent
, dev
, sas_addr
, 1);
1569 static int sas_disable_routing(struct domain_device
*dev
, u8
*sas_addr
)
1572 return sas_configure_parent(dev
->parent
, dev
, sas_addr
, 0);
1577 * sas_discover_expander - expander discovery
1578 * @dev: pointer to expander domain device
1580 * See comment in sas_discover_sata().
1582 static int sas_discover_expander(struct domain_device
*dev
)
1586 res
= sas_notify_lldd_dev_found(dev
);
1590 res
= sas_ex_general(dev
);
1593 res
= sas_ex_manuf_info(dev
);
1597 res
= sas_expander_discover(dev
);
1599 pr_warn("expander %016llx discovery failed(0x%x)\n",
1600 SAS_ADDR(dev
->sas_addr
), res
);
1604 sas_check_ex_subtractive_boundary(dev
);
1605 res
= sas_check_parent_topology(dev
);
1610 sas_notify_lldd_dev_gone(dev
);
1614 static int sas_ex_level_discovery(struct asd_sas_port
*port
, const int level
)
1617 struct domain_device
*dev
;
1619 list_for_each_entry(dev
, &port
->dev_list
, dev_list_node
) {
1620 if (dev_is_expander(dev
->dev_type
)) {
1621 struct sas_expander_device
*ex
=
1622 rphy_to_expander_device(dev
->rphy
);
1624 if (level
== ex
->level
)
1625 res
= sas_ex_discover_devices(dev
, -1);
1627 res
= sas_ex_discover_devices(port
->port_dev
, -1);
1635 static int sas_ex_bfs_disc(struct asd_sas_port
*port
)
1641 level
= port
->disc
.max_level
;
1642 res
= sas_ex_level_discovery(port
, level
);
1644 } while (level
< port
->disc
.max_level
);
1649 int sas_discover_root_expander(struct domain_device
*dev
)
1652 struct sas_expander_device
*ex
= rphy_to_expander_device(dev
->rphy
);
1654 res
= sas_rphy_add(dev
->rphy
);
1658 ex
->level
= dev
->port
->disc
.max_level
; /* 0 */
1659 res
= sas_discover_expander(dev
);
1663 sas_ex_bfs_disc(dev
->port
);
1668 sas_rphy_remove(dev
->rphy
);
1673 /* ---------- Domain revalidation ---------- */
1675 static int sas_get_phy_discover(struct domain_device
*dev
,
1676 int phy_id
, struct smp_resp
*disc_resp
)
1681 disc_req
= alloc_smp_req(DISCOVER_REQ_SIZE
);
1685 disc_req
[1] = SMP_DISCOVER
;
1686 disc_req
[9] = phy_id
;
1688 res
= smp_execute_task(dev
, disc_req
, DISCOVER_REQ_SIZE
,
1689 disc_resp
, DISCOVER_RESP_SIZE
);
1692 else if (disc_resp
->result
!= SMP_RESP_FUNC_ACC
) {
1693 res
= disc_resp
->result
;
1701 static int sas_get_phy_change_count(struct domain_device
*dev
,
1702 int phy_id
, int *pcc
)
1705 struct smp_resp
*disc_resp
;
1707 disc_resp
= alloc_smp_resp(DISCOVER_RESP_SIZE
);
1711 res
= sas_get_phy_discover(dev
, phy_id
, disc_resp
);
1713 *pcc
= disc_resp
->disc
.change_count
;
1719 static int sas_get_phy_attached_dev(struct domain_device
*dev
, int phy_id
,
1720 u8
*sas_addr
, enum sas_device_type
*type
)
1723 struct smp_resp
*disc_resp
;
1724 struct discover_resp
*dr
;
1726 disc_resp
= alloc_smp_resp(DISCOVER_RESP_SIZE
);
1729 dr
= &disc_resp
->disc
;
1731 res
= sas_get_phy_discover(dev
, phy_id
, disc_resp
);
1733 memcpy(sas_addr
, disc_resp
->disc
.attached_sas_addr
,
1735 *type
= to_dev_type(dr
);
1737 memset(sas_addr
, 0, SAS_ADDR_SIZE
);
1743 static int sas_find_bcast_phy(struct domain_device
*dev
, int *phy_id
,
1744 int from_phy
, bool update
)
1746 struct expander_device
*ex
= &dev
->ex_dev
;
1750 for (i
= from_phy
; i
< ex
->num_phys
; i
++) {
1751 int phy_change_count
= 0;
1753 res
= sas_get_phy_change_count(dev
, i
, &phy_change_count
);
1755 case SMP_RESP_PHY_VACANT
:
1756 case SMP_RESP_NO_PHY
:
1758 case SMP_RESP_FUNC_ACC
:
1764 if (phy_change_count
!= ex
->ex_phy
[i
].phy_change_count
) {
1766 ex
->ex_phy
[i
].phy_change_count
=
1775 static int sas_get_ex_change_count(struct domain_device
*dev
, int *ecc
)
1779 struct smp_resp
*rg_resp
;
1781 rg_req
= alloc_smp_req(RG_REQ_SIZE
);
1785 rg_resp
= alloc_smp_resp(RG_RESP_SIZE
);
1791 rg_req
[1] = SMP_REPORT_GENERAL
;
1793 res
= smp_execute_task(dev
, rg_req
, RG_REQ_SIZE
, rg_resp
,
1797 if (rg_resp
->result
!= SMP_RESP_FUNC_ACC
) {
1798 res
= rg_resp
->result
;
1802 *ecc
= be16_to_cpu(rg_resp
->rg
.change_count
);
1809 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1810 * @dev:domain device to be detect.
1811 * @src_dev: the device which originated BROADCAST(CHANGE).
1813 * Add self-configuration expander support. Suppose two expander cascading,
1814 * when the first level expander is self-configuring, hotplug the disks in
1815 * second level expander, BROADCAST(CHANGE) will not only be originated
1816 * in the second level expander, but also be originated in the first level
1817 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1818 * expander changed count in two level expanders will all increment at least
1819 * once, but the phy which chang count has changed is the source device which
1823 static int sas_find_bcast_dev(struct domain_device
*dev
,
1824 struct domain_device
**src_dev
)
1826 struct expander_device
*ex
= &dev
->ex_dev
;
1827 int ex_change_count
= -1;
1830 struct domain_device
*ch
;
1832 res
= sas_get_ex_change_count(dev
, &ex_change_count
);
1835 if (ex_change_count
!= -1 && ex_change_count
!= ex
->ex_change_count
) {
1836 /* Just detect if this expander phys phy change count changed,
1837 * in order to determine if this expander originate BROADCAST,
1838 * and do not update phy change count field in our structure.
1840 res
= sas_find_bcast_phy(dev
, &phy_id
, 0, false);
1843 ex
->ex_change_count
= ex_change_count
;
1844 pr_info("ex %016llx phy%02d change count has changed\n",
1845 SAS_ADDR(dev
->sas_addr
), phy_id
);
1848 pr_info("ex %016llx phys DID NOT change\n",
1849 SAS_ADDR(dev
->sas_addr
));
1851 list_for_each_entry(ch
, &ex
->children
, siblings
) {
1852 if (dev_is_expander(ch
->dev_type
)) {
1853 res
= sas_find_bcast_dev(ch
, src_dev
);
1862 static void sas_unregister_ex_tree(struct asd_sas_port
*port
, struct domain_device
*dev
)
1864 struct expander_device
*ex
= &dev
->ex_dev
;
1865 struct domain_device
*child
, *n
;
1867 list_for_each_entry_safe(child
, n
, &ex
->children
, siblings
) {
1868 set_bit(SAS_DEV_GONE
, &child
->state
);
1869 if (dev_is_expander(child
->dev_type
))
1870 sas_unregister_ex_tree(port
, child
);
1872 sas_unregister_dev(port
, child
);
1874 sas_unregister_dev(port
, dev
);
1877 static void sas_unregister_devs_sas_addr(struct domain_device
*parent
,
1878 int phy_id
, bool last
)
1880 struct expander_device
*ex_dev
= &parent
->ex_dev
;
1881 struct ex_phy
*phy
= &ex_dev
->ex_phy
[phy_id
];
1882 struct domain_device
*child
, *n
, *found
= NULL
;
1884 list_for_each_entry_safe(child
, n
,
1885 &ex_dev
->children
, siblings
) {
1886 if (SAS_ADDR(child
->sas_addr
) ==
1887 SAS_ADDR(phy
->attached_sas_addr
)) {
1888 set_bit(SAS_DEV_GONE
, &child
->state
);
1889 if (dev_is_expander(child
->dev_type
))
1890 sas_unregister_ex_tree(parent
->port
, child
);
1892 sas_unregister_dev(parent
->port
, child
);
1897 sas_disable_routing(parent
, phy
->attached_sas_addr
);
1899 memset(phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
1901 sas_port_delete_phy(phy
->port
, phy
->phy
);
1902 sas_device_set_phy(found
, phy
->port
);
1903 if (phy
->port
->num_phys
== 0)
1904 list_add_tail(&phy
->port
->del_list
,
1905 &parent
->port
->sas_port_del_list
);
1910 static int sas_discover_bfs_by_root_level(struct domain_device
*root
,
1913 struct expander_device
*ex_root
= &root
->ex_dev
;
1914 struct domain_device
*child
;
1917 list_for_each_entry(child
, &ex_root
->children
, siblings
) {
1918 if (dev_is_expander(child
->dev_type
)) {
1919 struct sas_expander_device
*ex
=
1920 rphy_to_expander_device(child
->rphy
);
1922 if (level
> ex
->level
)
1923 res
= sas_discover_bfs_by_root_level(child
,
1925 else if (level
== ex
->level
)
1926 res
= sas_ex_discover_devices(child
, -1);
1932 static int sas_discover_bfs_by_root(struct domain_device
*dev
)
1935 struct sas_expander_device
*ex
= rphy_to_expander_device(dev
->rphy
);
1936 int level
= ex
->level
+1;
1938 res
= sas_ex_discover_devices(dev
, -1);
1942 res
= sas_discover_bfs_by_root_level(dev
, level
);
1945 } while (level
<= dev
->port
->disc
.max_level
);
1950 static int sas_discover_new(struct domain_device
*dev
, int phy_id
)
1952 struct ex_phy
*ex_phy
= &dev
->ex_dev
.ex_phy
[phy_id
];
1953 struct domain_device
*child
;
1956 pr_debug("ex %016llx phy%02d new device attached\n",
1957 SAS_ADDR(dev
->sas_addr
), phy_id
);
1958 res
= sas_ex_phy_discover(dev
, phy_id
);
1962 if (sas_ex_join_wide_port(dev
, phy_id
))
1965 res
= sas_ex_discover_devices(dev
, phy_id
);
1968 list_for_each_entry(child
, &dev
->ex_dev
.children
, siblings
) {
1969 if (SAS_ADDR(child
->sas_addr
) ==
1970 SAS_ADDR(ex_phy
->attached_sas_addr
)) {
1971 if (dev_is_expander(child
->dev_type
))
1972 res
= sas_discover_bfs_by_root(child
);
1979 static bool dev_type_flutter(enum sas_device_type
new, enum sas_device_type old
)
1984 /* treat device directed resets as flutter, if we went
1985 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1987 if ((old
== SAS_SATA_PENDING
&& new == SAS_END_DEVICE
) ||
1988 (old
== SAS_END_DEVICE
&& new == SAS_SATA_PENDING
))
1994 static int sas_rediscover_dev(struct domain_device
*dev
, int phy_id
,
1995 bool last
, int sibling
)
1997 struct expander_device
*ex
= &dev
->ex_dev
;
1998 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
1999 enum sas_device_type type
= SAS_PHY_UNUSED
;
2000 u8 sas_addr
[SAS_ADDR_SIZE
];
2005 sprintf(msg
, ", part of a wide port with phy%02d", sibling
);
2007 pr_debug("ex %016llx rediscovering phy%02d%s\n",
2008 SAS_ADDR(dev
->sas_addr
), phy_id
, msg
);
2010 memset(sas_addr
, 0, SAS_ADDR_SIZE
);
2011 res
= sas_get_phy_attached_dev(dev
, phy_id
, sas_addr
, &type
);
2013 case SMP_RESP_NO_PHY
:
2014 phy
->phy_state
= PHY_NOT_PRESENT
;
2015 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
2017 case SMP_RESP_PHY_VACANT
:
2018 phy
->phy_state
= PHY_VACANT
;
2019 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
2021 case SMP_RESP_FUNC_ACC
:
2029 if ((SAS_ADDR(sas_addr
) == 0) || (res
== -ECOMM
)) {
2030 phy
->phy_state
= PHY_EMPTY
;
2031 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
2033 * Even though the PHY is empty, for convenience we discover
2034 * the PHY to update the PHY info, like negotiated linkrate.
2036 sas_ex_phy_discover(dev
, phy_id
);
2038 } else if (SAS_ADDR(sas_addr
) == SAS_ADDR(phy
->attached_sas_addr
) &&
2039 dev_type_flutter(type
, phy
->attached_dev_type
)) {
2040 struct domain_device
*ata_dev
= sas_ex_to_ata(dev
, phy_id
);
2043 sas_ex_phy_discover(dev
, phy_id
);
2045 if (ata_dev
&& phy
->attached_dev_type
== SAS_SATA_PENDING
)
2046 action
= ", needs recovery";
2047 pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
2048 SAS_ADDR(dev
->sas_addr
), phy_id
, action
);
2052 /* we always have to delete the old device when we went here */
2053 pr_info("ex %016llx phy%02d replace %016llx\n",
2054 SAS_ADDR(dev
->sas_addr
), phy_id
,
2055 SAS_ADDR(phy
->attached_sas_addr
));
2056 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
2058 return sas_discover_new(dev
, phy_id
);
2062 * sas_rediscover - revalidate the domain.
2063 * @dev:domain device to be detect.
2064 * @phy_id: the phy id will be detected.
2066 * NOTE: this process _must_ quit (return) as soon as any connection
2067 * errors are encountered. Connection recovery is done elsewhere.
2068 * Discover process only interrogates devices in order to discover the
2069 * domain.For plugging out, we un-register the device only when it is
2070 * the last phy in the port, for other phys in this port, we just delete it
2071 * from the port.For inserting, we do discovery when it is the
2072 * first phy,for other phys in this port, we add it to the port to
2073 * forming the wide-port.
2075 static int sas_rediscover(struct domain_device
*dev
, const int phy_id
)
2077 struct expander_device
*ex
= &dev
->ex_dev
;
2078 struct ex_phy
*changed_phy
= &ex
->ex_phy
[phy_id
];
2081 bool last
= true; /* is this the last phy of the port */
2083 pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
2084 SAS_ADDR(dev
->sas_addr
), phy_id
);
2086 if (SAS_ADDR(changed_phy
->attached_sas_addr
) != 0) {
2087 for (i
= 0; i
< ex
->num_phys
; i
++) {
2088 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
2092 if (SAS_ADDR(phy
->attached_sas_addr
) ==
2093 SAS_ADDR(changed_phy
->attached_sas_addr
)) {
2098 res
= sas_rediscover_dev(dev
, phy_id
, last
, i
);
2100 res
= sas_discover_new(dev
, phy_id
);
2105 * sas_ex_revalidate_domain - revalidate the domain
2106 * @port_dev: port domain device.
2108 * NOTE: this process _must_ quit (return) as soon as any connection
2109 * errors are encountered. Connection recovery is done elsewhere.
2110 * Discover process only interrogates devices in order to discover the
2113 int sas_ex_revalidate_domain(struct domain_device
*port_dev
)
2116 struct domain_device
*dev
= NULL
;
2118 res
= sas_find_bcast_dev(port_dev
, &dev
);
2119 if (res
== 0 && dev
) {
2120 struct expander_device
*ex
= &dev
->ex_dev
;
2125 res
= sas_find_bcast_phy(dev
, &phy_id
, i
, true);
2128 res
= sas_rediscover(dev
, phy_id
);
2130 } while (i
< ex
->num_phys
);
2135 void sas_smp_handler(struct bsg_job
*job
, struct Scsi_Host
*shost
,
2136 struct sas_rphy
*rphy
)
2138 struct domain_device
*dev
;
2139 unsigned int rcvlen
= 0;
2142 /* no rphy means no smp target support (ie aic94xx host) */
2144 return sas_smp_host_handler(job
, shost
);
2146 switch (rphy
->identify
.device_type
) {
2147 case SAS_EDGE_EXPANDER_DEVICE
:
2148 case SAS_FANOUT_EXPANDER_DEVICE
:
2151 pr_err("%s: can we send a smp request to a device?\n",
2156 dev
= sas_find_dev_by_rphy(rphy
);
2158 pr_err("%s: fail to find a domain_device?\n", __func__
);
2162 /* do we need to support multiple segments? */
2163 if (job
->request_payload
.sg_cnt
> 1 ||
2164 job
->reply_payload
.sg_cnt
> 1) {
2165 pr_info("%s: multiple segments req %u, rsp %u\n",
2166 __func__
, job
->request_payload
.payload_len
,
2167 job
->reply_payload
.payload_len
);
2171 ret
= smp_execute_task_sg(dev
, job
->request_payload
.sg_list
,
2172 job
->reply_payload
.sg_list
);
2174 /* bsg_job_done() requires the length received */
2175 rcvlen
= job
->reply_payload
.payload_len
- ret
;
2180 bsg_job_done(job
, ret
, rcvlen
);