gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / scsi / storvsc_drv.c
blobfb41636519ee80a6dd92723311783b84346e7c63
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2009, Microsoft Corporation.
5 * Authors:
6 * Haiyang Zhang <haiyangz@microsoft.com>
7 * Hank Janssen <hjanssen@microsoft.com>
8 * K. Y. Srinivasan <kys@microsoft.com>
9 */
11 #include <linux/kernel.h>
12 #include <linux/wait.h>
13 #include <linux/sched.h>
14 #include <linux/completion.h>
15 #include <linux/string.h>
16 #include <linux/mm.h>
17 #include <linux/delay.h>
18 #include <linux/init.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/hyperv.h>
23 #include <linux/blkdev.h>
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_host.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_tcq.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_devinfo.h>
31 #include <scsi/scsi_dbg.h>
32 #include <scsi/scsi_transport_fc.h>
33 #include <scsi/scsi_transport.h>
36 * All wire protocol details (storage protocol between the guest and the host)
37 * are consolidated here.
39 * Begin protocol definitions.
43 * Version history:
44 * V1 Beta: 0.1
45 * V1 RC < 2008/1/31: 1.0
46 * V1 RC > 2008/1/31: 2.0
47 * Win7: 4.2
48 * Win8: 5.1
49 * Win8.1: 6.0
50 * Win10: 6.2
53 #define VMSTOR_PROTO_VERSION(MAJOR_, MINOR_) ((((MAJOR_) & 0xff) << 8) | \
54 (((MINOR_) & 0xff)))
56 #define VMSTOR_PROTO_VERSION_WIN6 VMSTOR_PROTO_VERSION(2, 0)
57 #define VMSTOR_PROTO_VERSION_WIN7 VMSTOR_PROTO_VERSION(4, 2)
58 #define VMSTOR_PROTO_VERSION_WIN8 VMSTOR_PROTO_VERSION(5, 1)
59 #define VMSTOR_PROTO_VERSION_WIN8_1 VMSTOR_PROTO_VERSION(6, 0)
60 #define VMSTOR_PROTO_VERSION_WIN10 VMSTOR_PROTO_VERSION(6, 2)
62 /* Packet structure describing virtual storage requests. */
63 enum vstor_packet_operation {
64 VSTOR_OPERATION_COMPLETE_IO = 1,
65 VSTOR_OPERATION_REMOVE_DEVICE = 2,
66 VSTOR_OPERATION_EXECUTE_SRB = 3,
67 VSTOR_OPERATION_RESET_LUN = 4,
68 VSTOR_OPERATION_RESET_ADAPTER = 5,
69 VSTOR_OPERATION_RESET_BUS = 6,
70 VSTOR_OPERATION_BEGIN_INITIALIZATION = 7,
71 VSTOR_OPERATION_END_INITIALIZATION = 8,
72 VSTOR_OPERATION_QUERY_PROTOCOL_VERSION = 9,
73 VSTOR_OPERATION_QUERY_PROPERTIES = 10,
74 VSTOR_OPERATION_ENUMERATE_BUS = 11,
75 VSTOR_OPERATION_FCHBA_DATA = 12,
76 VSTOR_OPERATION_CREATE_SUB_CHANNELS = 13,
77 VSTOR_OPERATION_MAXIMUM = 13
81 * WWN packet for Fibre Channel HBA
84 struct hv_fc_wwn_packet {
85 u8 primary_active;
86 u8 reserved1[3];
87 u8 primary_port_wwn[8];
88 u8 primary_node_wwn[8];
89 u8 secondary_port_wwn[8];
90 u8 secondary_node_wwn[8];
96 * SRB Flag Bits
99 #define SRB_FLAGS_QUEUE_ACTION_ENABLE 0x00000002
100 #define SRB_FLAGS_DISABLE_DISCONNECT 0x00000004
101 #define SRB_FLAGS_DISABLE_SYNCH_TRANSFER 0x00000008
102 #define SRB_FLAGS_BYPASS_FROZEN_QUEUE 0x00000010
103 #define SRB_FLAGS_DISABLE_AUTOSENSE 0x00000020
104 #define SRB_FLAGS_DATA_IN 0x00000040
105 #define SRB_FLAGS_DATA_OUT 0x00000080
106 #define SRB_FLAGS_NO_DATA_TRANSFER 0x00000000
107 #define SRB_FLAGS_UNSPECIFIED_DIRECTION (SRB_FLAGS_DATA_IN | SRB_FLAGS_DATA_OUT)
108 #define SRB_FLAGS_NO_QUEUE_FREEZE 0x00000100
109 #define SRB_FLAGS_ADAPTER_CACHE_ENABLE 0x00000200
110 #define SRB_FLAGS_FREE_SENSE_BUFFER 0x00000400
113 * This flag indicates the request is part of the workflow for processing a D3.
115 #define SRB_FLAGS_D3_PROCESSING 0x00000800
116 #define SRB_FLAGS_IS_ACTIVE 0x00010000
117 #define SRB_FLAGS_ALLOCATED_FROM_ZONE 0x00020000
118 #define SRB_FLAGS_SGLIST_FROM_POOL 0x00040000
119 #define SRB_FLAGS_BYPASS_LOCKED_QUEUE 0x00080000
120 #define SRB_FLAGS_NO_KEEP_AWAKE 0x00100000
121 #define SRB_FLAGS_PORT_DRIVER_ALLOCSENSE 0x00200000
122 #define SRB_FLAGS_PORT_DRIVER_SENSEHASPORT 0x00400000
123 #define SRB_FLAGS_DONT_START_NEXT_PACKET 0x00800000
124 #define SRB_FLAGS_PORT_DRIVER_RESERVED 0x0F000000
125 #define SRB_FLAGS_CLASS_DRIVER_RESERVED 0xF0000000
127 #define SP_UNTAGGED ((unsigned char) ~0)
128 #define SRB_SIMPLE_TAG_REQUEST 0x20
131 * Platform neutral description of a scsi request -
132 * this remains the same across the write regardless of 32/64 bit
133 * note: it's patterned off the SCSI_PASS_THROUGH structure
135 #define STORVSC_MAX_CMD_LEN 0x10
137 #define POST_WIN7_STORVSC_SENSE_BUFFER_SIZE 0x14
138 #define PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE 0x12
140 #define STORVSC_SENSE_BUFFER_SIZE 0x14
141 #define STORVSC_MAX_BUF_LEN_WITH_PADDING 0x14
144 * Sense buffer size changed in win8; have a run-time
145 * variable to track the size we should use. This value will
146 * likely change during protocol negotiation but it is valid
147 * to start by assuming pre-Win8.
149 static int sense_buffer_size = PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE;
152 * The storage protocol version is determined during the
153 * initial exchange with the host. It will indicate which
154 * storage functionality is available in the host.
156 static int vmstor_proto_version;
158 #define STORVSC_LOGGING_NONE 0
159 #define STORVSC_LOGGING_ERROR 1
160 #define STORVSC_LOGGING_WARN 2
162 static int logging_level = STORVSC_LOGGING_ERROR;
163 module_param(logging_level, int, S_IRUGO|S_IWUSR);
164 MODULE_PARM_DESC(logging_level,
165 "Logging level, 0 - None, 1 - Error (default), 2 - Warning.");
167 static inline bool do_logging(int level)
169 return logging_level >= level;
172 #define storvsc_log(dev, level, fmt, ...) \
173 do { \
174 if (do_logging(level)) \
175 dev_warn(&(dev)->device, fmt, ##__VA_ARGS__); \
176 } while (0)
178 struct vmscsi_win8_extension {
180 * The following were added in Windows 8
182 u16 reserve;
183 u8 queue_tag;
184 u8 queue_action;
185 u32 srb_flags;
186 u32 time_out_value;
187 u32 queue_sort_ey;
188 } __packed;
190 struct vmscsi_request {
191 u16 length;
192 u8 srb_status;
193 u8 scsi_status;
195 u8 port_number;
196 u8 path_id;
197 u8 target_id;
198 u8 lun;
200 u8 cdb_length;
201 u8 sense_info_length;
202 u8 data_in;
203 u8 reserved;
205 u32 data_transfer_length;
207 union {
208 u8 cdb[STORVSC_MAX_CMD_LEN];
209 u8 sense_data[STORVSC_SENSE_BUFFER_SIZE];
210 u8 reserved_array[STORVSC_MAX_BUF_LEN_WITH_PADDING];
213 * The following was added in win8.
215 struct vmscsi_win8_extension win8_extension;
217 } __attribute((packed));
221 * The size of the vmscsi_request has changed in win8. The
222 * additional size is because of new elements added to the
223 * structure. These elements are valid only when we are talking
224 * to a win8 host.
225 * Track the correction to size we need to apply. This value
226 * will likely change during protocol negotiation but it is
227 * valid to start by assuming pre-Win8.
229 static int vmscsi_size_delta = sizeof(struct vmscsi_win8_extension);
232 * The list of storage protocols in order of preference.
234 struct vmstor_protocol {
235 int protocol_version;
236 int sense_buffer_size;
237 int vmscsi_size_delta;
241 static const struct vmstor_protocol vmstor_protocols[] = {
243 VMSTOR_PROTO_VERSION_WIN10,
244 POST_WIN7_STORVSC_SENSE_BUFFER_SIZE,
248 VMSTOR_PROTO_VERSION_WIN8_1,
249 POST_WIN7_STORVSC_SENSE_BUFFER_SIZE,
253 VMSTOR_PROTO_VERSION_WIN8,
254 POST_WIN7_STORVSC_SENSE_BUFFER_SIZE,
258 VMSTOR_PROTO_VERSION_WIN7,
259 PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE,
260 sizeof(struct vmscsi_win8_extension),
263 VMSTOR_PROTO_VERSION_WIN6,
264 PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE,
265 sizeof(struct vmscsi_win8_extension),
271 * This structure is sent during the initialization phase to get the different
272 * properties of the channel.
275 #define STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL 0x1
277 struct vmstorage_channel_properties {
278 u32 reserved;
279 u16 max_channel_cnt;
280 u16 reserved1;
282 u32 flags;
283 u32 max_transfer_bytes;
285 u64 reserved2;
286 } __packed;
288 /* This structure is sent during the storage protocol negotiations. */
289 struct vmstorage_protocol_version {
290 /* Major (MSW) and minor (LSW) version numbers. */
291 u16 major_minor;
294 * Revision number is auto-incremented whenever this file is changed
295 * (See FILL_VMSTOR_REVISION macro above). Mismatch does not
296 * definitely indicate incompatibility--but it does indicate mismatched
297 * builds.
298 * This is only used on the windows side. Just set it to 0.
300 u16 revision;
301 } __packed;
303 /* Channel Property Flags */
304 #define STORAGE_CHANNEL_REMOVABLE_FLAG 0x1
305 #define STORAGE_CHANNEL_EMULATED_IDE_FLAG 0x2
307 struct vstor_packet {
308 /* Requested operation type */
309 enum vstor_packet_operation operation;
311 /* Flags - see below for values */
312 u32 flags;
314 /* Status of the request returned from the server side. */
315 u32 status;
317 /* Data payload area */
318 union {
320 * Structure used to forward SCSI commands from the
321 * client to the server.
323 struct vmscsi_request vm_srb;
325 /* Structure used to query channel properties. */
326 struct vmstorage_channel_properties storage_channel_properties;
328 /* Used during version negotiations. */
329 struct vmstorage_protocol_version version;
331 /* Fibre channel address packet */
332 struct hv_fc_wwn_packet wwn_packet;
334 /* Number of sub-channels to create */
335 u16 sub_channel_count;
337 /* This will be the maximum of the union members */
338 u8 buffer[0x34];
340 } __packed;
343 * Packet Flags:
345 * This flag indicates that the server should send back a completion for this
346 * packet.
349 #define REQUEST_COMPLETION_FLAG 0x1
351 /* Matches Windows-end */
352 enum storvsc_request_type {
353 WRITE_TYPE = 0,
354 READ_TYPE,
355 UNKNOWN_TYPE,
359 * SRB status codes and masks; a subset of the codes used here.
362 #define SRB_STATUS_AUTOSENSE_VALID 0x80
363 #define SRB_STATUS_QUEUE_FROZEN 0x40
364 #define SRB_STATUS_INVALID_LUN 0x20
365 #define SRB_STATUS_SUCCESS 0x01
366 #define SRB_STATUS_ABORTED 0x02
367 #define SRB_STATUS_ERROR 0x04
368 #define SRB_STATUS_DATA_OVERRUN 0x12
370 #define SRB_STATUS(status) \
371 (status & ~(SRB_STATUS_AUTOSENSE_VALID | SRB_STATUS_QUEUE_FROZEN))
373 * This is the end of Protocol specific defines.
376 static int storvsc_ringbuffer_size = (128 * 1024);
377 static u32 max_outstanding_req_per_channel;
378 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth);
380 static int storvsc_vcpus_per_sub_channel = 4;
382 module_param(storvsc_ringbuffer_size, int, S_IRUGO);
383 MODULE_PARM_DESC(storvsc_ringbuffer_size, "Ring buffer size (bytes)");
385 module_param(storvsc_vcpus_per_sub_channel, int, S_IRUGO);
386 MODULE_PARM_DESC(storvsc_vcpus_per_sub_channel, "Ratio of VCPUs to subchannels");
388 static int ring_avail_percent_lowater = 10;
389 module_param(ring_avail_percent_lowater, int, S_IRUGO);
390 MODULE_PARM_DESC(ring_avail_percent_lowater,
391 "Select a channel if available ring size > this in percent");
394 * Timeout in seconds for all devices managed by this driver.
396 static int storvsc_timeout = 180;
398 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
399 static struct scsi_transport_template *fc_transport_template;
400 #endif
402 static void storvsc_on_channel_callback(void *context);
404 #define STORVSC_MAX_LUNS_PER_TARGET 255
405 #define STORVSC_MAX_TARGETS 2
406 #define STORVSC_MAX_CHANNELS 8
408 #define STORVSC_FC_MAX_LUNS_PER_TARGET 255
409 #define STORVSC_FC_MAX_TARGETS 128
410 #define STORVSC_FC_MAX_CHANNELS 8
412 #define STORVSC_IDE_MAX_LUNS_PER_TARGET 64
413 #define STORVSC_IDE_MAX_TARGETS 1
414 #define STORVSC_IDE_MAX_CHANNELS 1
416 struct storvsc_cmd_request {
417 struct scsi_cmnd *cmd;
419 struct hv_device *device;
421 /* Synchronize the request/response if needed */
422 struct completion wait_event;
424 struct vmbus_channel_packet_multipage_buffer mpb;
425 struct vmbus_packet_mpb_array *payload;
426 u32 payload_sz;
428 struct vstor_packet vstor_packet;
432 /* A storvsc device is a device object that contains a vmbus channel */
433 struct storvsc_device {
434 struct hv_device *device;
436 bool destroy;
437 bool drain_notify;
438 atomic_t num_outstanding_req;
439 struct Scsi_Host *host;
441 wait_queue_head_t waiting_to_drain;
444 * Each unique Port/Path/Target represents 1 channel ie scsi
445 * controller. In reality, the pathid, targetid is always 0
446 * and the port is set by us
448 unsigned int port_number;
449 unsigned char path_id;
450 unsigned char target_id;
453 * Max I/O, the device can support.
455 u32 max_transfer_bytes;
457 * Number of sub-channels we will open.
459 u16 num_sc;
460 struct vmbus_channel **stor_chns;
462 * Mask of CPUs bound to subchannels.
464 struct cpumask alloced_cpus;
465 /* Used for vsc/vsp channel reset process */
466 struct storvsc_cmd_request init_request;
467 struct storvsc_cmd_request reset_request;
469 * Currently active port and node names for FC devices.
471 u64 node_name;
472 u64 port_name;
473 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
474 struct fc_rport *rport;
475 #endif
478 struct hv_host_device {
479 struct hv_device *dev;
480 unsigned int port;
481 unsigned char path;
482 unsigned char target;
483 struct workqueue_struct *handle_error_wq;
484 struct work_struct host_scan_work;
485 struct Scsi_Host *host;
488 struct storvsc_scan_work {
489 struct work_struct work;
490 struct Scsi_Host *host;
491 u8 lun;
492 u8 tgt_id;
495 static void storvsc_device_scan(struct work_struct *work)
497 struct storvsc_scan_work *wrk;
498 struct scsi_device *sdev;
500 wrk = container_of(work, struct storvsc_scan_work, work);
502 sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun);
503 if (!sdev)
504 goto done;
505 scsi_rescan_device(&sdev->sdev_gendev);
506 scsi_device_put(sdev);
508 done:
509 kfree(wrk);
512 static void storvsc_host_scan(struct work_struct *work)
514 struct Scsi_Host *host;
515 struct scsi_device *sdev;
516 struct hv_host_device *host_device =
517 container_of(work, struct hv_host_device, host_scan_work);
519 host = host_device->host;
521 * Before scanning the host, first check to see if any of the
522 * currrently known devices have been hot removed. We issue a
523 * "unit ready" command against all currently known devices.
524 * This I/O will result in an error for devices that have been
525 * removed. As part of handling the I/O error, we remove the device.
527 * When a LUN is added or removed, the host sends us a signal to
528 * scan the host. Thus we are forced to discover the LUNs that
529 * may have been removed this way.
531 mutex_lock(&host->scan_mutex);
532 shost_for_each_device(sdev, host)
533 scsi_test_unit_ready(sdev, 1, 1, NULL);
534 mutex_unlock(&host->scan_mutex);
536 * Now scan the host to discover LUNs that may have been added.
538 scsi_scan_host(host);
541 static void storvsc_remove_lun(struct work_struct *work)
543 struct storvsc_scan_work *wrk;
544 struct scsi_device *sdev;
546 wrk = container_of(work, struct storvsc_scan_work, work);
547 if (!scsi_host_get(wrk->host))
548 goto done;
550 sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun);
552 if (sdev) {
553 scsi_remove_device(sdev);
554 scsi_device_put(sdev);
556 scsi_host_put(wrk->host);
558 done:
559 kfree(wrk);
564 * We can get incoming messages from the host that are not in response to
565 * messages that we have sent out. An example of this would be messages
566 * received by the guest to notify dynamic addition/removal of LUNs. To
567 * deal with potential race conditions where the driver may be in the
568 * midst of being unloaded when we might receive an unsolicited message
569 * from the host, we have implemented a mechanism to gurantee sequential
570 * consistency:
572 * 1) Once the device is marked as being destroyed, we will fail all
573 * outgoing messages.
574 * 2) We permit incoming messages when the device is being destroyed,
575 * only to properly account for messages already sent out.
578 static inline struct storvsc_device *get_out_stor_device(
579 struct hv_device *device)
581 struct storvsc_device *stor_device;
583 stor_device = hv_get_drvdata(device);
585 if (stor_device && stor_device->destroy)
586 stor_device = NULL;
588 return stor_device;
592 static inline void storvsc_wait_to_drain(struct storvsc_device *dev)
594 dev->drain_notify = true;
595 wait_event(dev->waiting_to_drain,
596 atomic_read(&dev->num_outstanding_req) == 0);
597 dev->drain_notify = false;
600 static inline struct storvsc_device *get_in_stor_device(
601 struct hv_device *device)
603 struct storvsc_device *stor_device;
605 stor_device = hv_get_drvdata(device);
607 if (!stor_device)
608 goto get_in_err;
611 * If the device is being destroyed; allow incoming
612 * traffic only to cleanup outstanding requests.
615 if (stor_device->destroy &&
616 (atomic_read(&stor_device->num_outstanding_req) == 0))
617 stor_device = NULL;
619 get_in_err:
620 return stor_device;
624 static void handle_sc_creation(struct vmbus_channel *new_sc)
626 struct hv_device *device = new_sc->primary_channel->device_obj;
627 struct device *dev = &device->device;
628 struct storvsc_device *stor_device;
629 struct vmstorage_channel_properties props;
630 int ret;
632 stor_device = get_out_stor_device(device);
633 if (!stor_device)
634 return;
636 memset(&props, 0, sizeof(struct vmstorage_channel_properties));
638 ret = vmbus_open(new_sc,
639 storvsc_ringbuffer_size,
640 storvsc_ringbuffer_size,
641 (void *)&props,
642 sizeof(struct vmstorage_channel_properties),
643 storvsc_on_channel_callback, new_sc);
645 /* In case vmbus_open() fails, we don't use the sub-channel. */
646 if (ret != 0) {
647 dev_err(dev, "Failed to open sub-channel: err=%d\n", ret);
648 return;
651 /* Add the sub-channel to the array of available channels. */
652 stor_device->stor_chns[new_sc->target_cpu] = new_sc;
653 cpumask_set_cpu(new_sc->target_cpu, &stor_device->alloced_cpus);
656 static void handle_multichannel_storage(struct hv_device *device, int max_chns)
658 struct device *dev = &device->device;
659 struct storvsc_device *stor_device;
660 int num_sc;
661 struct storvsc_cmd_request *request;
662 struct vstor_packet *vstor_packet;
663 int ret, t;
666 * If the number of CPUs is artificially restricted, such as
667 * with maxcpus=1 on the kernel boot line, Hyper-V could offer
668 * sub-channels >= the number of CPUs. These sub-channels
669 * should not be created. The primary channel is already created
670 * and assigned to one CPU, so check against # CPUs - 1.
672 num_sc = min((int)(num_online_cpus() - 1), max_chns);
673 if (!num_sc)
674 return;
676 stor_device = get_out_stor_device(device);
677 if (!stor_device)
678 return;
680 stor_device->num_sc = num_sc;
681 request = &stor_device->init_request;
682 vstor_packet = &request->vstor_packet;
685 * Establish a handler for dealing with subchannels.
687 vmbus_set_sc_create_callback(device->channel, handle_sc_creation);
690 * Request the host to create sub-channels.
692 memset(request, 0, sizeof(struct storvsc_cmd_request));
693 init_completion(&request->wait_event);
694 vstor_packet->operation = VSTOR_OPERATION_CREATE_SUB_CHANNELS;
695 vstor_packet->flags = REQUEST_COMPLETION_FLAG;
696 vstor_packet->sub_channel_count = num_sc;
698 ret = vmbus_sendpacket(device->channel, vstor_packet,
699 (sizeof(struct vstor_packet) -
700 vmscsi_size_delta),
701 (unsigned long)request,
702 VM_PKT_DATA_INBAND,
703 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
705 if (ret != 0) {
706 dev_err(dev, "Failed to create sub-channel: err=%d\n", ret);
707 return;
710 t = wait_for_completion_timeout(&request->wait_event, 10*HZ);
711 if (t == 0) {
712 dev_err(dev, "Failed to create sub-channel: timed out\n");
713 return;
716 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO ||
717 vstor_packet->status != 0) {
718 dev_err(dev, "Failed to create sub-channel: op=%d, sts=%d\n",
719 vstor_packet->operation, vstor_packet->status);
720 return;
724 * We need to do nothing here, because vmbus_process_offer()
725 * invokes channel->sc_creation_callback, which will open and use
726 * the sub-channel(s).
730 static void cache_wwn(struct storvsc_device *stor_device,
731 struct vstor_packet *vstor_packet)
734 * Cache the currently active port and node ww names.
736 if (vstor_packet->wwn_packet.primary_active) {
737 stor_device->node_name =
738 wwn_to_u64(vstor_packet->wwn_packet.primary_node_wwn);
739 stor_device->port_name =
740 wwn_to_u64(vstor_packet->wwn_packet.primary_port_wwn);
741 } else {
742 stor_device->node_name =
743 wwn_to_u64(vstor_packet->wwn_packet.secondary_node_wwn);
744 stor_device->port_name =
745 wwn_to_u64(vstor_packet->wwn_packet.secondary_port_wwn);
750 static int storvsc_execute_vstor_op(struct hv_device *device,
751 struct storvsc_cmd_request *request,
752 bool status_check)
754 struct vstor_packet *vstor_packet;
755 int ret, t;
757 vstor_packet = &request->vstor_packet;
759 init_completion(&request->wait_event);
760 vstor_packet->flags = REQUEST_COMPLETION_FLAG;
762 ret = vmbus_sendpacket(device->channel, vstor_packet,
763 (sizeof(struct vstor_packet) -
764 vmscsi_size_delta),
765 (unsigned long)request,
766 VM_PKT_DATA_INBAND,
767 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
768 if (ret != 0)
769 return ret;
771 t = wait_for_completion_timeout(&request->wait_event, 5*HZ);
772 if (t == 0)
773 return -ETIMEDOUT;
775 if (!status_check)
776 return ret;
778 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO ||
779 vstor_packet->status != 0)
780 return -EINVAL;
782 return ret;
785 static int storvsc_channel_init(struct hv_device *device, bool is_fc)
787 struct storvsc_device *stor_device;
788 struct storvsc_cmd_request *request;
789 struct vstor_packet *vstor_packet;
790 int ret, i;
791 int max_chns;
792 bool process_sub_channels = false;
794 stor_device = get_out_stor_device(device);
795 if (!stor_device)
796 return -ENODEV;
798 request = &stor_device->init_request;
799 vstor_packet = &request->vstor_packet;
802 * Now, initiate the vsc/vsp initialization protocol on the open
803 * channel
805 memset(request, 0, sizeof(struct storvsc_cmd_request));
806 vstor_packet->operation = VSTOR_OPERATION_BEGIN_INITIALIZATION;
807 ret = storvsc_execute_vstor_op(device, request, true);
808 if (ret)
809 return ret;
811 * Query host supported protocol version.
814 for (i = 0; i < ARRAY_SIZE(vmstor_protocols); i++) {
815 /* reuse the packet for version range supported */
816 memset(vstor_packet, 0, sizeof(struct vstor_packet));
817 vstor_packet->operation =
818 VSTOR_OPERATION_QUERY_PROTOCOL_VERSION;
820 vstor_packet->version.major_minor =
821 vmstor_protocols[i].protocol_version;
824 * The revision number is only used in Windows; set it to 0.
826 vstor_packet->version.revision = 0;
827 ret = storvsc_execute_vstor_op(device, request, false);
828 if (ret != 0)
829 return ret;
831 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO)
832 return -EINVAL;
834 if (vstor_packet->status == 0) {
835 vmstor_proto_version =
836 vmstor_protocols[i].protocol_version;
838 sense_buffer_size =
839 vmstor_protocols[i].sense_buffer_size;
841 vmscsi_size_delta =
842 vmstor_protocols[i].vmscsi_size_delta;
844 break;
848 if (vstor_packet->status != 0)
849 return -EINVAL;
852 memset(vstor_packet, 0, sizeof(struct vstor_packet));
853 vstor_packet->operation = VSTOR_OPERATION_QUERY_PROPERTIES;
854 ret = storvsc_execute_vstor_op(device, request, true);
855 if (ret != 0)
856 return ret;
859 * Check to see if multi-channel support is there.
860 * Hosts that implement protocol version of 5.1 and above
861 * support multi-channel.
863 max_chns = vstor_packet->storage_channel_properties.max_channel_cnt;
866 * Allocate state to manage the sub-channels.
867 * We allocate an array based on the numbers of possible CPUs
868 * (Hyper-V does not support cpu online/offline).
869 * This Array will be sparseley populated with unique
870 * channels - primary + sub-channels.
871 * We will however populate all the slots to evenly distribute
872 * the load.
874 stor_device->stor_chns = kcalloc(num_possible_cpus(), sizeof(void *),
875 GFP_KERNEL);
876 if (stor_device->stor_chns == NULL)
877 return -ENOMEM;
879 stor_device->stor_chns[device->channel->target_cpu] = device->channel;
880 cpumask_set_cpu(device->channel->target_cpu,
881 &stor_device->alloced_cpus);
883 if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN8) {
884 if (vstor_packet->storage_channel_properties.flags &
885 STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL)
886 process_sub_channels = true;
888 stor_device->max_transfer_bytes =
889 vstor_packet->storage_channel_properties.max_transfer_bytes;
891 if (!is_fc)
892 goto done;
895 * For FC devices retrieve FC HBA data.
897 memset(vstor_packet, 0, sizeof(struct vstor_packet));
898 vstor_packet->operation = VSTOR_OPERATION_FCHBA_DATA;
899 ret = storvsc_execute_vstor_op(device, request, true);
900 if (ret != 0)
901 return ret;
904 * Cache the currently active port and node ww names.
906 cache_wwn(stor_device, vstor_packet);
908 done:
910 memset(vstor_packet, 0, sizeof(struct vstor_packet));
911 vstor_packet->operation = VSTOR_OPERATION_END_INITIALIZATION;
912 ret = storvsc_execute_vstor_op(device, request, true);
913 if (ret != 0)
914 return ret;
916 if (process_sub_channels)
917 handle_multichannel_storage(device, max_chns);
919 return ret;
922 static void storvsc_handle_error(struct vmscsi_request *vm_srb,
923 struct scsi_cmnd *scmnd,
924 struct Scsi_Host *host,
925 u8 asc, u8 ascq)
927 struct storvsc_scan_work *wrk;
928 void (*process_err_fn)(struct work_struct *work);
929 struct hv_host_device *host_dev = shost_priv(host);
930 bool do_work = false;
932 switch (SRB_STATUS(vm_srb->srb_status)) {
933 case SRB_STATUS_ERROR:
935 * Let upper layer deal with error when
936 * sense message is present.
939 if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID)
940 break;
942 * If there is an error; offline the device since all
943 * error recovery strategies would have already been
944 * deployed on the host side. However, if the command
945 * were a pass-through command deal with it appropriately.
947 switch (scmnd->cmnd[0]) {
948 case ATA_16:
949 case ATA_12:
950 set_host_byte(scmnd, DID_PASSTHROUGH);
951 break;
953 * On Some Windows hosts TEST_UNIT_READY command can return
954 * SRB_STATUS_ERROR, let the upper level code deal with it
955 * based on the sense information.
957 case TEST_UNIT_READY:
958 break;
959 default:
960 set_host_byte(scmnd, DID_ERROR);
962 break;
963 case SRB_STATUS_INVALID_LUN:
964 set_host_byte(scmnd, DID_NO_CONNECT);
965 do_work = true;
966 process_err_fn = storvsc_remove_lun;
967 break;
968 case SRB_STATUS_ABORTED:
969 if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID &&
970 (asc == 0x2a) && (ascq == 0x9)) {
971 do_work = true;
972 process_err_fn = storvsc_device_scan;
974 * Retry the I/O that trigerred this.
976 set_host_byte(scmnd, DID_REQUEUE);
978 break;
981 if (!do_work)
982 return;
985 * We need to schedule work to process this error; schedule it.
987 wrk = kmalloc(sizeof(struct storvsc_scan_work), GFP_ATOMIC);
988 if (!wrk) {
989 set_host_byte(scmnd, DID_TARGET_FAILURE);
990 return;
993 wrk->host = host;
994 wrk->lun = vm_srb->lun;
995 wrk->tgt_id = vm_srb->target_id;
996 INIT_WORK(&wrk->work, process_err_fn);
997 queue_work(host_dev->handle_error_wq, &wrk->work);
1001 static void storvsc_command_completion(struct storvsc_cmd_request *cmd_request,
1002 struct storvsc_device *stor_dev)
1004 struct scsi_cmnd *scmnd = cmd_request->cmd;
1005 struct scsi_sense_hdr sense_hdr;
1006 struct vmscsi_request *vm_srb;
1007 u32 data_transfer_length;
1008 struct Scsi_Host *host;
1009 u32 payload_sz = cmd_request->payload_sz;
1010 void *payload = cmd_request->payload;
1012 host = stor_dev->host;
1014 vm_srb = &cmd_request->vstor_packet.vm_srb;
1015 data_transfer_length = vm_srb->data_transfer_length;
1017 scmnd->result = vm_srb->scsi_status;
1019 if (scmnd->result) {
1020 if (scsi_normalize_sense(scmnd->sense_buffer,
1021 SCSI_SENSE_BUFFERSIZE, &sense_hdr) &&
1022 !(sense_hdr.sense_key == NOT_READY &&
1023 sense_hdr.asc == 0x03A) &&
1024 do_logging(STORVSC_LOGGING_ERROR))
1025 scsi_print_sense_hdr(scmnd->device, "storvsc",
1026 &sense_hdr);
1029 if (vm_srb->srb_status != SRB_STATUS_SUCCESS) {
1030 storvsc_handle_error(vm_srb, scmnd, host, sense_hdr.asc,
1031 sense_hdr.ascq);
1033 * The Windows driver set data_transfer_length on
1034 * SRB_STATUS_DATA_OVERRUN. On other errors, this value
1035 * is untouched. In these cases we set it to 0.
1037 if (vm_srb->srb_status != SRB_STATUS_DATA_OVERRUN)
1038 data_transfer_length = 0;
1041 scsi_set_resid(scmnd,
1042 cmd_request->payload->range.len - data_transfer_length);
1044 scmnd->scsi_done(scmnd);
1046 if (payload_sz >
1047 sizeof(struct vmbus_channel_packet_multipage_buffer))
1048 kfree(payload);
1051 static void storvsc_on_io_completion(struct storvsc_device *stor_device,
1052 struct vstor_packet *vstor_packet,
1053 struct storvsc_cmd_request *request)
1055 struct vstor_packet *stor_pkt;
1056 struct hv_device *device = stor_device->device;
1058 stor_pkt = &request->vstor_packet;
1061 * The current SCSI handling on the host side does
1062 * not correctly handle:
1063 * INQUIRY command with page code parameter set to 0x80
1064 * MODE_SENSE command with cmd[2] == 0x1c
1066 * Setup srb and scsi status so this won't be fatal.
1067 * We do this so we can distinguish truly fatal failues
1068 * (srb status == 0x4) and off-line the device in that case.
1071 if ((stor_pkt->vm_srb.cdb[0] == INQUIRY) ||
1072 (stor_pkt->vm_srb.cdb[0] == MODE_SENSE)) {
1073 vstor_packet->vm_srb.scsi_status = 0;
1074 vstor_packet->vm_srb.srb_status = SRB_STATUS_SUCCESS;
1078 /* Copy over the status...etc */
1079 stor_pkt->vm_srb.scsi_status = vstor_packet->vm_srb.scsi_status;
1080 stor_pkt->vm_srb.srb_status = vstor_packet->vm_srb.srb_status;
1081 stor_pkt->vm_srb.sense_info_length =
1082 vstor_packet->vm_srb.sense_info_length;
1084 if (vstor_packet->vm_srb.scsi_status != 0 ||
1085 vstor_packet->vm_srb.srb_status != SRB_STATUS_SUCCESS)
1086 storvsc_log(device, STORVSC_LOGGING_WARN,
1087 "cmd 0x%x scsi status 0x%x srb status 0x%x\n",
1088 stor_pkt->vm_srb.cdb[0],
1089 vstor_packet->vm_srb.scsi_status,
1090 vstor_packet->vm_srb.srb_status);
1092 if ((vstor_packet->vm_srb.scsi_status & 0xFF) == 0x02) {
1093 /* CHECK_CONDITION */
1094 if (vstor_packet->vm_srb.srb_status &
1095 SRB_STATUS_AUTOSENSE_VALID) {
1096 /* autosense data available */
1098 storvsc_log(device, STORVSC_LOGGING_WARN,
1099 "stor pkt %p autosense data valid - len %d\n",
1100 request, vstor_packet->vm_srb.sense_info_length);
1102 memcpy(request->cmd->sense_buffer,
1103 vstor_packet->vm_srb.sense_data,
1104 vstor_packet->vm_srb.sense_info_length);
1109 stor_pkt->vm_srb.data_transfer_length =
1110 vstor_packet->vm_srb.data_transfer_length;
1112 storvsc_command_completion(request, stor_device);
1114 if (atomic_dec_and_test(&stor_device->num_outstanding_req) &&
1115 stor_device->drain_notify)
1116 wake_up(&stor_device->waiting_to_drain);
1121 static void storvsc_on_receive(struct storvsc_device *stor_device,
1122 struct vstor_packet *vstor_packet,
1123 struct storvsc_cmd_request *request)
1125 struct hv_host_device *host_dev;
1126 switch (vstor_packet->operation) {
1127 case VSTOR_OPERATION_COMPLETE_IO:
1128 storvsc_on_io_completion(stor_device, vstor_packet, request);
1129 break;
1131 case VSTOR_OPERATION_REMOVE_DEVICE:
1132 case VSTOR_OPERATION_ENUMERATE_BUS:
1133 host_dev = shost_priv(stor_device->host);
1134 queue_work(
1135 host_dev->handle_error_wq, &host_dev->host_scan_work);
1136 break;
1138 case VSTOR_OPERATION_FCHBA_DATA:
1139 cache_wwn(stor_device, vstor_packet);
1140 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1141 fc_host_node_name(stor_device->host) = stor_device->node_name;
1142 fc_host_port_name(stor_device->host) = stor_device->port_name;
1143 #endif
1144 break;
1145 default:
1146 break;
1150 static void storvsc_on_channel_callback(void *context)
1152 struct vmbus_channel *channel = (struct vmbus_channel *)context;
1153 const struct vmpacket_descriptor *desc;
1154 struct hv_device *device;
1155 struct storvsc_device *stor_device;
1157 if (channel->primary_channel != NULL)
1158 device = channel->primary_channel->device_obj;
1159 else
1160 device = channel->device_obj;
1162 stor_device = get_in_stor_device(device);
1163 if (!stor_device)
1164 return;
1166 foreach_vmbus_pkt(desc, channel) {
1167 void *packet = hv_pkt_data(desc);
1168 struct storvsc_cmd_request *request;
1170 request = (struct storvsc_cmd_request *)
1171 ((unsigned long)desc->trans_id);
1173 if (request == &stor_device->init_request ||
1174 request == &stor_device->reset_request) {
1175 memcpy(&request->vstor_packet, packet,
1176 (sizeof(struct vstor_packet) - vmscsi_size_delta));
1177 complete(&request->wait_event);
1178 } else {
1179 storvsc_on_receive(stor_device, packet, request);
1184 static int storvsc_connect_to_vsp(struct hv_device *device, u32 ring_size,
1185 bool is_fc)
1187 struct vmstorage_channel_properties props;
1188 int ret;
1190 memset(&props, 0, sizeof(struct vmstorage_channel_properties));
1192 ret = vmbus_open(device->channel,
1193 ring_size,
1194 ring_size,
1195 (void *)&props,
1196 sizeof(struct vmstorage_channel_properties),
1197 storvsc_on_channel_callback, device->channel);
1199 if (ret != 0)
1200 return ret;
1202 ret = storvsc_channel_init(device, is_fc);
1204 return ret;
1207 static int storvsc_dev_remove(struct hv_device *device)
1209 struct storvsc_device *stor_device;
1211 stor_device = hv_get_drvdata(device);
1213 stor_device->destroy = true;
1215 /* Make sure flag is set before waiting */
1216 wmb();
1219 * At this point, all outbound traffic should be disable. We
1220 * only allow inbound traffic (responses) to proceed so that
1221 * outstanding requests can be completed.
1224 storvsc_wait_to_drain(stor_device);
1227 * Since we have already drained, we don't need to busy wait
1228 * as was done in final_release_stor_device()
1229 * Note that we cannot set the ext pointer to NULL until
1230 * we have drained - to drain the outgoing packets, we need to
1231 * allow incoming packets.
1233 hv_set_drvdata(device, NULL);
1235 /* Close the channel */
1236 vmbus_close(device->channel);
1238 kfree(stor_device->stor_chns);
1239 kfree(stor_device);
1240 return 0;
1243 static struct vmbus_channel *get_og_chn(struct storvsc_device *stor_device,
1244 u16 q_num)
1246 u16 slot = 0;
1247 u16 hash_qnum;
1248 const struct cpumask *node_mask;
1249 int num_channels, tgt_cpu;
1251 if (stor_device->num_sc == 0)
1252 return stor_device->device->channel;
1255 * Our channel array is sparsley populated and we
1256 * initiated I/O on a processor/hw-q that does not
1257 * currently have a designated channel. Fix this.
1258 * The strategy is simple:
1259 * I. Ensure NUMA locality
1260 * II. Distribute evenly (best effort)
1261 * III. Mapping is persistent.
1264 node_mask = cpumask_of_node(cpu_to_node(q_num));
1266 num_channels = 0;
1267 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1268 if (cpumask_test_cpu(tgt_cpu, node_mask))
1269 num_channels++;
1271 if (num_channels == 0)
1272 return stor_device->device->channel;
1274 hash_qnum = q_num;
1275 while (hash_qnum >= num_channels)
1276 hash_qnum -= num_channels;
1278 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1279 if (!cpumask_test_cpu(tgt_cpu, node_mask))
1280 continue;
1281 if (slot == hash_qnum)
1282 break;
1283 slot++;
1286 stor_device->stor_chns[q_num] = stor_device->stor_chns[tgt_cpu];
1288 return stor_device->stor_chns[q_num];
1292 static int storvsc_do_io(struct hv_device *device,
1293 struct storvsc_cmd_request *request, u16 q_num)
1295 struct storvsc_device *stor_device;
1296 struct vstor_packet *vstor_packet;
1297 struct vmbus_channel *outgoing_channel, *channel;
1298 int ret = 0;
1299 const struct cpumask *node_mask;
1300 int tgt_cpu;
1302 vstor_packet = &request->vstor_packet;
1303 stor_device = get_out_stor_device(device);
1305 if (!stor_device)
1306 return -ENODEV;
1309 request->device = device;
1311 * Select an an appropriate channel to send the request out.
1313 if (stor_device->stor_chns[q_num] != NULL) {
1314 outgoing_channel = stor_device->stor_chns[q_num];
1315 if (outgoing_channel->target_cpu == q_num) {
1317 * Ideally, we want to pick a different channel if
1318 * available on the same NUMA node.
1320 node_mask = cpumask_of_node(cpu_to_node(q_num));
1321 for_each_cpu_wrap(tgt_cpu,
1322 &stor_device->alloced_cpus, q_num + 1) {
1323 if (!cpumask_test_cpu(tgt_cpu, node_mask))
1324 continue;
1325 if (tgt_cpu == q_num)
1326 continue;
1327 channel = stor_device->stor_chns[tgt_cpu];
1328 if (hv_get_avail_to_write_percent(
1329 &channel->outbound)
1330 > ring_avail_percent_lowater) {
1331 outgoing_channel = channel;
1332 goto found_channel;
1337 * All the other channels on the same NUMA node are
1338 * busy. Try to use the channel on the current CPU
1340 if (hv_get_avail_to_write_percent(
1341 &outgoing_channel->outbound)
1342 > ring_avail_percent_lowater)
1343 goto found_channel;
1346 * If we reach here, all the channels on the current
1347 * NUMA node are busy. Try to find a channel in
1348 * other NUMA nodes
1350 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1351 if (cpumask_test_cpu(tgt_cpu, node_mask))
1352 continue;
1353 channel = stor_device->stor_chns[tgt_cpu];
1354 if (hv_get_avail_to_write_percent(
1355 &channel->outbound)
1356 > ring_avail_percent_lowater) {
1357 outgoing_channel = channel;
1358 goto found_channel;
1362 } else {
1363 outgoing_channel = get_og_chn(stor_device, q_num);
1366 found_channel:
1367 vstor_packet->flags |= REQUEST_COMPLETION_FLAG;
1369 vstor_packet->vm_srb.length = (sizeof(struct vmscsi_request) -
1370 vmscsi_size_delta);
1373 vstor_packet->vm_srb.sense_info_length = sense_buffer_size;
1376 vstor_packet->vm_srb.data_transfer_length =
1377 request->payload->range.len;
1379 vstor_packet->operation = VSTOR_OPERATION_EXECUTE_SRB;
1381 if (request->payload->range.len) {
1383 ret = vmbus_sendpacket_mpb_desc(outgoing_channel,
1384 request->payload, request->payload_sz,
1385 vstor_packet,
1386 (sizeof(struct vstor_packet) -
1387 vmscsi_size_delta),
1388 (unsigned long)request);
1389 } else {
1390 ret = vmbus_sendpacket(outgoing_channel, vstor_packet,
1391 (sizeof(struct vstor_packet) -
1392 vmscsi_size_delta),
1393 (unsigned long)request,
1394 VM_PKT_DATA_INBAND,
1395 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1398 if (ret != 0)
1399 return ret;
1401 atomic_inc(&stor_device->num_outstanding_req);
1403 return ret;
1406 static int storvsc_device_alloc(struct scsi_device *sdevice)
1409 * Set blist flag to permit the reading of the VPD pages even when
1410 * the target may claim SPC-2 compliance. MSFT targets currently
1411 * claim SPC-2 compliance while they implement post SPC-2 features.
1412 * With this flag we can correctly handle WRITE_SAME_16 issues.
1414 * Hypervisor reports SCSI_UNKNOWN type for DVD ROM device but
1415 * still supports REPORT LUN.
1417 sdevice->sdev_bflags = BLIST_REPORTLUN2 | BLIST_TRY_VPD_PAGES;
1419 return 0;
1422 static int storvsc_device_configure(struct scsi_device *sdevice)
1424 blk_queue_rq_timeout(sdevice->request_queue, (storvsc_timeout * HZ));
1426 sdevice->no_write_same = 1;
1429 * If the host is WIN8 or WIN8 R2, claim conformance to SPC-3
1430 * if the device is a MSFT virtual device. If the host is
1431 * WIN10 or newer, allow write_same.
1433 if (!strncmp(sdevice->vendor, "Msft", 4)) {
1434 switch (vmstor_proto_version) {
1435 case VMSTOR_PROTO_VERSION_WIN8:
1436 case VMSTOR_PROTO_VERSION_WIN8_1:
1437 sdevice->scsi_level = SCSI_SPC_3;
1438 break;
1441 if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN10)
1442 sdevice->no_write_same = 0;
1445 return 0;
1448 static int storvsc_get_chs(struct scsi_device *sdev, struct block_device * bdev,
1449 sector_t capacity, int *info)
1451 sector_t nsect = capacity;
1452 sector_t cylinders = nsect;
1453 int heads, sectors_pt;
1456 * We are making up these values; let us keep it simple.
1458 heads = 0xff;
1459 sectors_pt = 0x3f; /* Sectors per track */
1460 sector_div(cylinders, heads * sectors_pt);
1461 if ((sector_t)(cylinders + 1) * heads * sectors_pt < nsect)
1462 cylinders = 0xffff;
1464 info[0] = heads;
1465 info[1] = sectors_pt;
1466 info[2] = (int)cylinders;
1468 return 0;
1471 static int storvsc_host_reset_handler(struct scsi_cmnd *scmnd)
1473 struct hv_host_device *host_dev = shost_priv(scmnd->device->host);
1474 struct hv_device *device = host_dev->dev;
1476 struct storvsc_device *stor_device;
1477 struct storvsc_cmd_request *request;
1478 struct vstor_packet *vstor_packet;
1479 int ret, t;
1482 stor_device = get_out_stor_device(device);
1483 if (!stor_device)
1484 return FAILED;
1486 request = &stor_device->reset_request;
1487 vstor_packet = &request->vstor_packet;
1489 init_completion(&request->wait_event);
1491 vstor_packet->operation = VSTOR_OPERATION_RESET_BUS;
1492 vstor_packet->flags = REQUEST_COMPLETION_FLAG;
1493 vstor_packet->vm_srb.path_id = stor_device->path_id;
1495 ret = vmbus_sendpacket(device->channel, vstor_packet,
1496 (sizeof(struct vstor_packet) -
1497 vmscsi_size_delta),
1498 (unsigned long)&stor_device->reset_request,
1499 VM_PKT_DATA_INBAND,
1500 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1501 if (ret != 0)
1502 return FAILED;
1504 t = wait_for_completion_timeout(&request->wait_event, 5*HZ);
1505 if (t == 0)
1506 return TIMEOUT_ERROR;
1510 * At this point, all outstanding requests in the adapter
1511 * should have been flushed out and return to us
1512 * There is a potential race here where the host may be in
1513 * the process of responding when we return from here.
1514 * Just wait for all in-transit packets to be accounted for
1515 * before we return from here.
1517 storvsc_wait_to_drain(stor_device);
1519 return SUCCESS;
1523 * The host guarantees to respond to each command, although I/O latencies might
1524 * be unbounded on Azure. Reset the timer unconditionally to give the host a
1525 * chance to perform EH.
1527 static enum blk_eh_timer_return storvsc_eh_timed_out(struct scsi_cmnd *scmnd)
1529 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1530 if (scmnd->device->host->transportt == fc_transport_template)
1531 return fc_eh_timed_out(scmnd);
1532 #endif
1533 return BLK_EH_RESET_TIMER;
1536 static bool storvsc_scsi_cmd_ok(struct scsi_cmnd *scmnd)
1538 bool allowed = true;
1539 u8 scsi_op = scmnd->cmnd[0];
1541 switch (scsi_op) {
1542 /* the host does not handle WRITE_SAME, log accident usage */
1543 case WRITE_SAME:
1545 * smartd sends this command and the host does not handle
1546 * this. So, don't send it.
1548 case SET_WINDOW:
1549 scmnd->result = ILLEGAL_REQUEST << 16;
1550 allowed = false;
1551 break;
1552 default:
1553 break;
1555 return allowed;
1558 static int storvsc_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scmnd)
1560 int ret;
1561 struct hv_host_device *host_dev = shost_priv(host);
1562 struct hv_device *dev = host_dev->dev;
1563 struct storvsc_cmd_request *cmd_request = scsi_cmd_priv(scmnd);
1564 int i;
1565 struct scatterlist *sgl;
1566 unsigned int sg_count = 0;
1567 struct vmscsi_request *vm_srb;
1568 struct scatterlist *cur_sgl;
1569 struct vmbus_packet_mpb_array *payload;
1570 u32 payload_sz;
1571 u32 length;
1573 if (vmstor_proto_version <= VMSTOR_PROTO_VERSION_WIN8) {
1575 * On legacy hosts filter unimplemented commands.
1576 * Future hosts are expected to correctly handle
1577 * unsupported commands. Furthermore, it is
1578 * possible that some of the currently
1579 * unsupported commands maybe supported in
1580 * future versions of the host.
1582 if (!storvsc_scsi_cmd_ok(scmnd)) {
1583 scmnd->scsi_done(scmnd);
1584 return 0;
1588 /* Setup the cmd request */
1589 cmd_request->cmd = scmnd;
1591 vm_srb = &cmd_request->vstor_packet.vm_srb;
1592 vm_srb->win8_extension.time_out_value = 60;
1594 vm_srb->win8_extension.srb_flags |=
1595 SRB_FLAGS_DISABLE_SYNCH_TRANSFER;
1597 if (scmnd->device->tagged_supported) {
1598 vm_srb->win8_extension.srb_flags |=
1599 (SRB_FLAGS_QUEUE_ACTION_ENABLE | SRB_FLAGS_NO_QUEUE_FREEZE);
1600 vm_srb->win8_extension.queue_tag = SP_UNTAGGED;
1601 vm_srb->win8_extension.queue_action = SRB_SIMPLE_TAG_REQUEST;
1604 /* Build the SRB */
1605 switch (scmnd->sc_data_direction) {
1606 case DMA_TO_DEVICE:
1607 vm_srb->data_in = WRITE_TYPE;
1608 vm_srb->win8_extension.srb_flags |= SRB_FLAGS_DATA_OUT;
1609 break;
1610 case DMA_FROM_DEVICE:
1611 vm_srb->data_in = READ_TYPE;
1612 vm_srb->win8_extension.srb_flags |= SRB_FLAGS_DATA_IN;
1613 break;
1614 case DMA_NONE:
1615 vm_srb->data_in = UNKNOWN_TYPE;
1616 vm_srb->win8_extension.srb_flags |= SRB_FLAGS_NO_DATA_TRANSFER;
1617 break;
1618 default:
1620 * This is DMA_BIDIRECTIONAL or something else we are never
1621 * supposed to see here.
1623 WARN(1, "Unexpected data direction: %d\n",
1624 scmnd->sc_data_direction);
1625 return -EINVAL;
1629 vm_srb->port_number = host_dev->port;
1630 vm_srb->path_id = scmnd->device->channel;
1631 vm_srb->target_id = scmnd->device->id;
1632 vm_srb->lun = scmnd->device->lun;
1634 vm_srb->cdb_length = scmnd->cmd_len;
1636 memcpy(vm_srb->cdb, scmnd->cmnd, vm_srb->cdb_length);
1638 sgl = (struct scatterlist *)scsi_sglist(scmnd);
1639 sg_count = scsi_sg_count(scmnd);
1641 length = scsi_bufflen(scmnd);
1642 payload = (struct vmbus_packet_mpb_array *)&cmd_request->mpb;
1643 payload_sz = sizeof(cmd_request->mpb);
1645 if (sg_count) {
1646 if (sg_count > MAX_PAGE_BUFFER_COUNT) {
1648 payload_sz = (sg_count * sizeof(u64) +
1649 sizeof(struct vmbus_packet_mpb_array));
1650 payload = kzalloc(payload_sz, GFP_ATOMIC);
1651 if (!payload)
1652 return SCSI_MLQUEUE_DEVICE_BUSY;
1655 payload->range.len = length;
1656 payload->range.offset = sgl[0].offset;
1658 cur_sgl = sgl;
1659 for (i = 0; i < sg_count; i++) {
1660 payload->range.pfn_array[i] =
1661 page_to_pfn(sg_page((cur_sgl)));
1662 cur_sgl = sg_next(cur_sgl);
1666 cmd_request->payload = payload;
1667 cmd_request->payload_sz = payload_sz;
1669 /* Invokes the vsc to start an IO */
1670 ret = storvsc_do_io(dev, cmd_request, get_cpu());
1671 put_cpu();
1673 if (ret == -EAGAIN) {
1674 if (payload_sz > sizeof(cmd_request->mpb))
1675 kfree(payload);
1676 /* no more space */
1677 return SCSI_MLQUEUE_DEVICE_BUSY;
1680 return 0;
1683 static struct scsi_host_template scsi_driver = {
1684 .module = THIS_MODULE,
1685 .name = "storvsc_host_t",
1686 .cmd_size = sizeof(struct storvsc_cmd_request),
1687 .bios_param = storvsc_get_chs,
1688 .queuecommand = storvsc_queuecommand,
1689 .eh_host_reset_handler = storvsc_host_reset_handler,
1690 .proc_name = "storvsc_host",
1691 .eh_timed_out = storvsc_eh_timed_out,
1692 .slave_alloc = storvsc_device_alloc,
1693 .slave_configure = storvsc_device_configure,
1694 .cmd_per_lun = 2048,
1695 .this_id = -1,
1696 /* Make sure we dont get a sg segment crosses a page boundary */
1697 .dma_boundary = PAGE_SIZE-1,
1698 /* Ensure there are no gaps in presented sgls */
1699 .virt_boundary_mask = PAGE_SIZE-1,
1700 .no_write_same = 1,
1701 .track_queue_depth = 1,
1702 .change_queue_depth = storvsc_change_queue_depth,
1705 enum {
1706 SCSI_GUID,
1707 IDE_GUID,
1708 SFC_GUID,
1711 static const struct hv_vmbus_device_id id_table[] = {
1712 /* SCSI guid */
1713 { HV_SCSI_GUID,
1714 .driver_data = SCSI_GUID
1716 /* IDE guid */
1717 { HV_IDE_GUID,
1718 .driver_data = IDE_GUID
1720 /* Fibre Channel GUID */
1722 HV_SYNTHFC_GUID,
1723 .driver_data = SFC_GUID
1725 { },
1728 MODULE_DEVICE_TABLE(vmbus, id_table);
1730 static const struct { guid_t guid; } fc_guid = { HV_SYNTHFC_GUID };
1732 static bool hv_dev_is_fc(struct hv_device *hv_dev)
1734 return guid_equal(&fc_guid.guid, &hv_dev->dev_type);
1737 static int storvsc_probe(struct hv_device *device,
1738 const struct hv_vmbus_device_id *dev_id)
1740 int ret;
1741 int num_cpus = num_online_cpus();
1742 struct Scsi_Host *host;
1743 struct hv_host_device *host_dev;
1744 bool dev_is_ide = ((dev_id->driver_data == IDE_GUID) ? true : false);
1745 bool is_fc = ((dev_id->driver_data == SFC_GUID) ? true : false);
1746 int target = 0;
1747 struct storvsc_device *stor_device;
1748 int max_luns_per_target;
1749 int max_targets;
1750 int max_channels;
1751 int max_sub_channels = 0;
1754 * Based on the windows host we are running on,
1755 * set state to properly communicate with the host.
1758 if (vmbus_proto_version < VERSION_WIN8) {
1759 max_luns_per_target = STORVSC_IDE_MAX_LUNS_PER_TARGET;
1760 max_targets = STORVSC_IDE_MAX_TARGETS;
1761 max_channels = STORVSC_IDE_MAX_CHANNELS;
1762 } else {
1763 max_luns_per_target = STORVSC_MAX_LUNS_PER_TARGET;
1764 max_targets = STORVSC_MAX_TARGETS;
1765 max_channels = STORVSC_MAX_CHANNELS;
1767 * On Windows8 and above, we support sub-channels for storage
1768 * on SCSI and FC controllers.
1769 * The number of sub-channels offerred is based on the number of
1770 * VCPUs in the guest.
1772 if (!dev_is_ide)
1773 max_sub_channels =
1774 (num_cpus - 1) / storvsc_vcpus_per_sub_channel;
1777 scsi_driver.can_queue = max_outstanding_req_per_channel *
1778 (max_sub_channels + 1) *
1779 (100 - ring_avail_percent_lowater) / 100;
1781 host = scsi_host_alloc(&scsi_driver,
1782 sizeof(struct hv_host_device));
1783 if (!host)
1784 return -ENOMEM;
1786 host_dev = shost_priv(host);
1787 memset(host_dev, 0, sizeof(struct hv_host_device));
1789 host_dev->port = host->host_no;
1790 host_dev->dev = device;
1791 host_dev->host = host;
1794 stor_device = kzalloc(sizeof(struct storvsc_device), GFP_KERNEL);
1795 if (!stor_device) {
1796 ret = -ENOMEM;
1797 goto err_out0;
1800 stor_device->destroy = false;
1801 init_waitqueue_head(&stor_device->waiting_to_drain);
1802 stor_device->device = device;
1803 stor_device->host = host;
1804 hv_set_drvdata(device, stor_device);
1806 stor_device->port_number = host->host_no;
1807 ret = storvsc_connect_to_vsp(device, storvsc_ringbuffer_size, is_fc);
1808 if (ret)
1809 goto err_out1;
1811 host_dev->path = stor_device->path_id;
1812 host_dev->target = stor_device->target_id;
1814 switch (dev_id->driver_data) {
1815 case SFC_GUID:
1816 host->max_lun = STORVSC_FC_MAX_LUNS_PER_TARGET;
1817 host->max_id = STORVSC_FC_MAX_TARGETS;
1818 host->max_channel = STORVSC_FC_MAX_CHANNELS - 1;
1819 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1820 host->transportt = fc_transport_template;
1821 #endif
1822 break;
1824 case SCSI_GUID:
1825 host->max_lun = max_luns_per_target;
1826 host->max_id = max_targets;
1827 host->max_channel = max_channels - 1;
1828 break;
1830 default:
1831 host->max_lun = STORVSC_IDE_MAX_LUNS_PER_TARGET;
1832 host->max_id = STORVSC_IDE_MAX_TARGETS;
1833 host->max_channel = STORVSC_IDE_MAX_CHANNELS - 1;
1834 break;
1836 /* max cmd length */
1837 host->max_cmd_len = STORVSC_MAX_CMD_LEN;
1840 * set the table size based on the info we got
1841 * from the host.
1843 host->sg_tablesize = (stor_device->max_transfer_bytes >> PAGE_SHIFT);
1845 * For non-IDE disks, the host supports multiple channels.
1846 * Set the number of HW queues we are supporting.
1848 if (!dev_is_ide)
1849 host->nr_hw_queues = num_present_cpus();
1852 * Set the error handler work queue.
1854 host_dev->handle_error_wq =
1855 alloc_ordered_workqueue("storvsc_error_wq_%d",
1856 WQ_MEM_RECLAIM,
1857 host->host_no);
1858 if (!host_dev->handle_error_wq)
1859 goto err_out2;
1860 INIT_WORK(&host_dev->host_scan_work, storvsc_host_scan);
1861 /* Register the HBA and start the scsi bus scan */
1862 ret = scsi_add_host(host, &device->device);
1863 if (ret != 0)
1864 goto err_out3;
1866 if (!dev_is_ide) {
1867 scsi_scan_host(host);
1868 } else {
1869 target = (device->dev_instance.b[5] << 8 |
1870 device->dev_instance.b[4]);
1871 ret = scsi_add_device(host, 0, target, 0);
1872 if (ret)
1873 goto err_out4;
1875 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1876 if (host->transportt == fc_transport_template) {
1877 struct fc_rport_identifiers ids = {
1878 .roles = FC_PORT_ROLE_FCP_DUMMY_INITIATOR,
1881 fc_host_node_name(host) = stor_device->node_name;
1882 fc_host_port_name(host) = stor_device->port_name;
1883 stor_device->rport = fc_remote_port_add(host, 0, &ids);
1884 if (!stor_device->rport) {
1885 ret = -ENOMEM;
1886 goto err_out4;
1889 #endif
1890 return 0;
1892 err_out4:
1893 scsi_remove_host(host);
1895 err_out3:
1896 destroy_workqueue(host_dev->handle_error_wq);
1898 err_out2:
1900 * Once we have connected with the host, we would need to
1901 * to invoke storvsc_dev_remove() to rollback this state and
1902 * this call also frees up the stor_device; hence the jump around
1903 * err_out1 label.
1905 storvsc_dev_remove(device);
1906 goto err_out0;
1908 err_out1:
1909 kfree(stor_device->stor_chns);
1910 kfree(stor_device);
1912 err_out0:
1913 scsi_host_put(host);
1914 return ret;
1917 /* Change a scsi target's queue depth */
1918 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth)
1920 if (queue_depth > scsi_driver.can_queue)
1921 queue_depth = scsi_driver.can_queue;
1923 return scsi_change_queue_depth(sdev, queue_depth);
1926 static int storvsc_remove(struct hv_device *dev)
1928 struct storvsc_device *stor_device = hv_get_drvdata(dev);
1929 struct Scsi_Host *host = stor_device->host;
1930 struct hv_host_device *host_dev = shost_priv(host);
1932 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1933 if (host->transportt == fc_transport_template) {
1934 fc_remote_port_delete(stor_device->rport);
1935 fc_remove_host(host);
1937 #endif
1938 destroy_workqueue(host_dev->handle_error_wq);
1939 scsi_remove_host(host);
1940 storvsc_dev_remove(dev);
1941 scsi_host_put(host);
1943 return 0;
1946 static int storvsc_suspend(struct hv_device *hv_dev)
1948 struct storvsc_device *stor_device = hv_get_drvdata(hv_dev);
1949 struct Scsi_Host *host = stor_device->host;
1950 struct hv_host_device *host_dev = shost_priv(host);
1952 storvsc_wait_to_drain(stor_device);
1954 drain_workqueue(host_dev->handle_error_wq);
1956 vmbus_close(hv_dev->channel);
1958 memset(stor_device->stor_chns, 0,
1959 num_possible_cpus() * sizeof(void *));
1961 kfree(stor_device->stor_chns);
1962 stor_device->stor_chns = NULL;
1964 cpumask_clear(&stor_device->alloced_cpus);
1966 return 0;
1969 static int storvsc_resume(struct hv_device *hv_dev)
1971 int ret;
1973 ret = storvsc_connect_to_vsp(hv_dev, storvsc_ringbuffer_size,
1974 hv_dev_is_fc(hv_dev));
1975 return ret;
1978 static struct hv_driver storvsc_drv = {
1979 .name = KBUILD_MODNAME,
1980 .id_table = id_table,
1981 .probe = storvsc_probe,
1982 .remove = storvsc_remove,
1983 .suspend = storvsc_suspend,
1984 .resume = storvsc_resume,
1985 .driver = {
1986 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
1990 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1991 static struct fc_function_template fc_transport_functions = {
1992 .show_host_node_name = 1,
1993 .show_host_port_name = 1,
1995 #endif
1997 static int __init storvsc_drv_init(void)
1999 int ret;
2002 * Divide the ring buffer data size (which is 1 page less
2003 * than the ring buffer size since that page is reserved for
2004 * the ring buffer indices) by the max request size (which is
2005 * vmbus_channel_packet_multipage_buffer + struct vstor_packet + u64)
2007 max_outstanding_req_per_channel =
2008 ((storvsc_ringbuffer_size - PAGE_SIZE) /
2009 ALIGN(MAX_MULTIPAGE_BUFFER_PACKET +
2010 sizeof(struct vstor_packet) + sizeof(u64) -
2011 vmscsi_size_delta,
2012 sizeof(u64)));
2014 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2015 fc_transport_template = fc_attach_transport(&fc_transport_functions);
2016 if (!fc_transport_template)
2017 return -ENODEV;
2018 #endif
2020 ret = vmbus_driver_register(&storvsc_drv);
2022 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2023 if (ret)
2024 fc_release_transport(fc_transport_template);
2025 #endif
2027 return ret;
2030 static void __exit storvsc_drv_exit(void)
2032 vmbus_driver_unregister(&storvsc_drv);
2033 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2034 fc_release_transport(fc_transport_template);
2035 #endif
2038 MODULE_LICENSE("GPL");
2039 MODULE_DESCRIPTION("Microsoft Hyper-V virtual storage driver");
2040 module_init(storvsc_drv_init);
2041 module_exit(storvsc_drv_exit);