gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / soc / fsl / qbman / qman.c
blob1e164e03410af13182530db69890f9a2e023fdfb
1 /* Copyright 2008 - 2016 Freescale Semiconductor, Inc.
3 * Redistribution and use in source and binary forms, with or without
4 * modification, are permitted provided that the following conditions are met:
5 * * Redistributions of source code must retain the above copyright
6 * notice, this list of conditions and the following disclaimer.
7 * * Redistributions in binary form must reproduce the above copyright
8 * notice, this list of conditions and the following disclaimer in the
9 * documentation and/or other materials provided with the distribution.
10 * * Neither the name of Freescale Semiconductor nor the
11 * names of its contributors may be used to endorse or promote products
12 * derived from this software without specific prior written permission.
14 * ALTERNATIVELY, this software may be distributed under the terms of the
15 * GNU General Public License ("GPL") as published by the Free Software
16 * Foundation, either version 2 of that License or (at your option) any
17 * later version.
19 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
23 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 #include "qman_priv.h"
33 #define DQRR_MAXFILL 15
34 #define EQCR_ITHRESH 4 /* if EQCR congests, interrupt threshold */
35 #define IRQNAME "QMan portal %d"
36 #define MAX_IRQNAME 16 /* big enough for "QMan portal %d" */
37 #define QMAN_POLL_LIMIT 32
38 #define QMAN_PIRQ_DQRR_ITHRESH 12
39 #define QMAN_DQRR_IT_MAX 15
40 #define QMAN_ITP_MAX 0xFFF
41 #define QMAN_PIRQ_MR_ITHRESH 4
42 #define QMAN_PIRQ_IPERIOD 100
44 /* Portal register assists */
46 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
47 /* Cache-inhibited register offsets */
48 #define QM_REG_EQCR_PI_CINH 0x3000
49 #define QM_REG_EQCR_CI_CINH 0x3040
50 #define QM_REG_EQCR_ITR 0x3080
51 #define QM_REG_DQRR_PI_CINH 0x3100
52 #define QM_REG_DQRR_CI_CINH 0x3140
53 #define QM_REG_DQRR_ITR 0x3180
54 #define QM_REG_DQRR_DCAP 0x31C0
55 #define QM_REG_DQRR_SDQCR 0x3200
56 #define QM_REG_DQRR_VDQCR 0x3240
57 #define QM_REG_DQRR_PDQCR 0x3280
58 #define QM_REG_MR_PI_CINH 0x3300
59 #define QM_REG_MR_CI_CINH 0x3340
60 #define QM_REG_MR_ITR 0x3380
61 #define QM_REG_CFG 0x3500
62 #define QM_REG_ISR 0x3600
63 #define QM_REG_IER 0x3640
64 #define QM_REG_ISDR 0x3680
65 #define QM_REG_IIR 0x36C0
66 #define QM_REG_ITPR 0x3740
68 /* Cache-enabled register offsets */
69 #define QM_CL_EQCR 0x0000
70 #define QM_CL_DQRR 0x1000
71 #define QM_CL_MR 0x2000
72 #define QM_CL_EQCR_PI_CENA 0x3000
73 #define QM_CL_EQCR_CI_CENA 0x3040
74 #define QM_CL_DQRR_PI_CENA 0x3100
75 #define QM_CL_DQRR_CI_CENA 0x3140
76 #define QM_CL_MR_PI_CENA 0x3300
77 #define QM_CL_MR_CI_CENA 0x3340
78 #define QM_CL_CR 0x3800
79 #define QM_CL_RR0 0x3900
80 #define QM_CL_RR1 0x3940
82 #else
83 /* Cache-inhibited register offsets */
84 #define QM_REG_EQCR_PI_CINH 0x0000
85 #define QM_REG_EQCR_CI_CINH 0x0004
86 #define QM_REG_EQCR_ITR 0x0008
87 #define QM_REG_DQRR_PI_CINH 0x0040
88 #define QM_REG_DQRR_CI_CINH 0x0044
89 #define QM_REG_DQRR_ITR 0x0048
90 #define QM_REG_DQRR_DCAP 0x0050
91 #define QM_REG_DQRR_SDQCR 0x0054
92 #define QM_REG_DQRR_VDQCR 0x0058
93 #define QM_REG_DQRR_PDQCR 0x005c
94 #define QM_REG_MR_PI_CINH 0x0080
95 #define QM_REG_MR_CI_CINH 0x0084
96 #define QM_REG_MR_ITR 0x0088
97 #define QM_REG_CFG 0x0100
98 #define QM_REG_ISR 0x0e00
99 #define QM_REG_IER 0x0e04
100 #define QM_REG_ISDR 0x0e08
101 #define QM_REG_IIR 0x0e0c
102 #define QM_REG_ITPR 0x0e14
104 /* Cache-enabled register offsets */
105 #define QM_CL_EQCR 0x0000
106 #define QM_CL_DQRR 0x1000
107 #define QM_CL_MR 0x2000
108 #define QM_CL_EQCR_PI_CENA 0x3000
109 #define QM_CL_EQCR_CI_CENA 0x3100
110 #define QM_CL_DQRR_PI_CENA 0x3200
111 #define QM_CL_DQRR_CI_CENA 0x3300
112 #define QM_CL_MR_PI_CENA 0x3400
113 #define QM_CL_MR_CI_CENA 0x3500
114 #define QM_CL_CR 0x3800
115 #define QM_CL_RR0 0x3900
116 #define QM_CL_RR1 0x3940
117 #endif
120 * BTW, the drivers (and h/w programming model) already obtain the required
121 * synchronisation for portal accesses and data-dependencies. Use of barrier()s
122 * or other order-preserving primitives simply degrade performance. Hence the
123 * use of the __raw_*() interfaces, which simply ensure that the compiler treats
124 * the portal registers as volatile
127 /* Cache-enabled ring access */
128 #define qm_cl(base, idx) ((void *)base + ((idx) << 6))
131 * Portal modes.
132 * Enum types;
133 * pmode == production mode
134 * cmode == consumption mode,
135 * dmode == h/w dequeue mode.
136 * Enum values use 3 letter codes. First letter matches the portal mode,
137 * remaining two letters indicate;
138 * ci == cache-inhibited portal register
139 * ce == cache-enabled portal register
140 * vb == in-band valid-bit (cache-enabled)
141 * dc == DCA (Discrete Consumption Acknowledgment), DQRR-only
142 * As for "enum qm_dqrr_dmode", it should be self-explanatory.
144 enum qm_eqcr_pmode { /* matches QCSP_CFG::EPM */
145 qm_eqcr_pci = 0, /* PI index, cache-inhibited */
146 qm_eqcr_pce = 1, /* PI index, cache-enabled */
147 qm_eqcr_pvb = 2 /* valid-bit */
149 enum qm_dqrr_dmode { /* matches QCSP_CFG::DP */
150 qm_dqrr_dpush = 0, /* SDQCR + VDQCR */
151 qm_dqrr_dpull = 1 /* PDQCR */
153 enum qm_dqrr_pmode { /* s/w-only */
154 qm_dqrr_pci, /* reads DQRR_PI_CINH */
155 qm_dqrr_pce, /* reads DQRR_PI_CENA */
156 qm_dqrr_pvb /* reads valid-bit */
158 enum qm_dqrr_cmode { /* matches QCSP_CFG::DCM */
159 qm_dqrr_cci = 0, /* CI index, cache-inhibited */
160 qm_dqrr_cce = 1, /* CI index, cache-enabled */
161 qm_dqrr_cdc = 2 /* Discrete Consumption Acknowledgment */
163 enum qm_mr_pmode { /* s/w-only */
164 qm_mr_pci, /* reads MR_PI_CINH */
165 qm_mr_pce, /* reads MR_PI_CENA */
166 qm_mr_pvb /* reads valid-bit */
168 enum qm_mr_cmode { /* matches QCSP_CFG::MM */
169 qm_mr_cci = 0, /* CI index, cache-inhibited */
170 qm_mr_cce = 1 /* CI index, cache-enabled */
173 /* --- Portal structures --- */
175 #define QM_EQCR_SIZE 8
176 #define QM_DQRR_SIZE 16
177 #define QM_MR_SIZE 8
179 /* "Enqueue Command" */
180 struct qm_eqcr_entry {
181 u8 _ncw_verb; /* writes to this are non-coherent */
182 u8 dca;
183 __be16 seqnum;
184 u8 __reserved[4];
185 __be32 fqid; /* 24-bit */
186 __be32 tag;
187 struct qm_fd fd;
188 u8 __reserved3[32];
189 } __packed;
190 #define QM_EQCR_VERB_VBIT 0x80
191 #define QM_EQCR_VERB_CMD_MASK 0x61 /* but only one value; */
192 #define QM_EQCR_VERB_CMD_ENQUEUE 0x01
193 #define QM_EQCR_SEQNUM_NESN 0x8000 /* Advance NESN */
194 #define QM_EQCR_SEQNUM_NLIS 0x4000 /* More fragments to come */
195 #define QM_EQCR_SEQNUM_SEQMASK 0x3fff /* sequence number goes here */
197 struct qm_eqcr {
198 struct qm_eqcr_entry *ring, *cursor;
199 u8 ci, available, ithresh, vbit;
200 #ifdef CONFIG_FSL_DPAA_CHECKING
201 u32 busy;
202 enum qm_eqcr_pmode pmode;
203 #endif
206 struct qm_dqrr {
207 const struct qm_dqrr_entry *ring, *cursor;
208 u8 pi, ci, fill, ithresh, vbit;
209 #ifdef CONFIG_FSL_DPAA_CHECKING
210 enum qm_dqrr_dmode dmode;
211 enum qm_dqrr_pmode pmode;
212 enum qm_dqrr_cmode cmode;
213 #endif
216 struct qm_mr {
217 union qm_mr_entry *ring, *cursor;
218 u8 pi, ci, fill, ithresh, vbit;
219 #ifdef CONFIG_FSL_DPAA_CHECKING
220 enum qm_mr_pmode pmode;
221 enum qm_mr_cmode cmode;
222 #endif
225 /* MC (Management Command) command */
226 /* "FQ" command layout */
227 struct qm_mcc_fq {
228 u8 _ncw_verb;
229 u8 __reserved1[3];
230 __be32 fqid; /* 24-bit */
231 u8 __reserved2[56];
232 } __packed;
234 /* "CGR" command layout */
235 struct qm_mcc_cgr {
236 u8 _ncw_verb;
237 u8 __reserved1[30];
238 u8 cgid;
239 u8 __reserved2[32];
242 #define QM_MCC_VERB_VBIT 0x80
243 #define QM_MCC_VERB_MASK 0x7f /* where the verb contains; */
244 #define QM_MCC_VERB_INITFQ_PARKED 0x40
245 #define QM_MCC_VERB_INITFQ_SCHED 0x41
246 #define QM_MCC_VERB_QUERYFQ 0x44
247 #define QM_MCC_VERB_QUERYFQ_NP 0x45 /* "non-programmable" fields */
248 #define QM_MCC_VERB_QUERYWQ 0x46
249 #define QM_MCC_VERB_QUERYWQ_DEDICATED 0x47
250 #define QM_MCC_VERB_ALTER_SCHED 0x48 /* Schedule FQ */
251 #define QM_MCC_VERB_ALTER_FE 0x49 /* Force Eligible FQ */
252 #define QM_MCC_VERB_ALTER_RETIRE 0x4a /* Retire FQ */
253 #define QM_MCC_VERB_ALTER_OOS 0x4b /* Take FQ out of service */
254 #define QM_MCC_VERB_ALTER_FQXON 0x4d /* FQ XON */
255 #define QM_MCC_VERB_ALTER_FQXOFF 0x4e /* FQ XOFF */
256 #define QM_MCC_VERB_INITCGR 0x50
257 #define QM_MCC_VERB_MODIFYCGR 0x51
258 #define QM_MCC_VERB_CGRTESTWRITE 0x52
259 #define QM_MCC_VERB_QUERYCGR 0x58
260 #define QM_MCC_VERB_QUERYCONGESTION 0x59
261 union qm_mc_command {
262 struct {
263 u8 _ncw_verb; /* writes to this are non-coherent */
264 u8 __reserved[63];
266 struct qm_mcc_initfq initfq;
267 struct qm_mcc_initcgr initcgr;
268 struct qm_mcc_fq fq;
269 struct qm_mcc_cgr cgr;
272 /* MC (Management Command) result */
273 /* "Query FQ" */
274 struct qm_mcr_queryfq {
275 u8 verb;
276 u8 result;
277 u8 __reserved1[8];
278 struct qm_fqd fqd; /* the FQD fields are here */
279 u8 __reserved2[30];
280 } __packed;
282 /* "Alter FQ State Commands" */
283 struct qm_mcr_alterfq {
284 u8 verb;
285 u8 result;
286 u8 fqs; /* Frame Queue Status */
287 u8 __reserved1[61];
289 #define QM_MCR_VERB_RRID 0x80
290 #define QM_MCR_VERB_MASK QM_MCC_VERB_MASK
291 #define QM_MCR_VERB_INITFQ_PARKED QM_MCC_VERB_INITFQ_PARKED
292 #define QM_MCR_VERB_INITFQ_SCHED QM_MCC_VERB_INITFQ_SCHED
293 #define QM_MCR_VERB_QUERYFQ QM_MCC_VERB_QUERYFQ
294 #define QM_MCR_VERB_QUERYFQ_NP QM_MCC_VERB_QUERYFQ_NP
295 #define QM_MCR_VERB_QUERYWQ QM_MCC_VERB_QUERYWQ
296 #define QM_MCR_VERB_QUERYWQ_DEDICATED QM_MCC_VERB_QUERYWQ_DEDICATED
297 #define QM_MCR_VERB_ALTER_SCHED QM_MCC_VERB_ALTER_SCHED
298 #define QM_MCR_VERB_ALTER_FE QM_MCC_VERB_ALTER_FE
299 #define QM_MCR_VERB_ALTER_RETIRE QM_MCC_VERB_ALTER_RETIRE
300 #define QM_MCR_VERB_ALTER_OOS QM_MCC_VERB_ALTER_OOS
301 #define QM_MCR_RESULT_NULL 0x00
302 #define QM_MCR_RESULT_OK 0xf0
303 #define QM_MCR_RESULT_ERR_FQID 0xf1
304 #define QM_MCR_RESULT_ERR_FQSTATE 0xf2
305 #define QM_MCR_RESULT_ERR_NOTEMPTY 0xf3 /* OOS fails if FQ is !empty */
306 #define QM_MCR_RESULT_ERR_BADCHANNEL 0xf4
307 #define QM_MCR_RESULT_PENDING 0xf8
308 #define QM_MCR_RESULT_ERR_BADCOMMAND 0xff
309 #define QM_MCR_FQS_ORLPRESENT 0x02 /* ORL fragments to come */
310 #define QM_MCR_FQS_NOTEMPTY 0x01 /* FQ has enqueued frames */
311 #define QM_MCR_TIMEOUT 10000 /* us */
312 union qm_mc_result {
313 struct {
314 u8 verb;
315 u8 result;
316 u8 __reserved1[62];
318 struct qm_mcr_queryfq queryfq;
319 struct qm_mcr_alterfq alterfq;
320 struct qm_mcr_querycgr querycgr;
321 struct qm_mcr_querycongestion querycongestion;
322 struct qm_mcr_querywq querywq;
323 struct qm_mcr_queryfq_np queryfq_np;
326 struct qm_mc {
327 union qm_mc_command *cr;
328 union qm_mc_result *rr;
329 u8 rridx, vbit;
330 #ifdef CONFIG_FSL_DPAA_CHECKING
331 enum {
332 /* Can be _mc_start()ed */
333 qman_mc_idle,
334 /* Can be _mc_commit()ed or _mc_abort()ed */
335 qman_mc_user,
336 /* Can only be _mc_retry()ed */
337 qman_mc_hw
338 } state;
339 #endif
342 struct qm_addr {
343 void *ce; /* cache-enabled */
344 __be32 *ce_be; /* same value as above but for direct access */
345 void __iomem *ci; /* cache-inhibited */
348 struct qm_portal {
350 * In the non-CONFIG_FSL_DPAA_CHECKING case, the following stuff up to
351 * and including 'mc' fits within a cacheline (yay!). The 'config' part
352 * is setup-only, so isn't a cause for a concern. In other words, don't
353 * rearrange this structure on a whim, there be dragons ...
355 struct qm_addr addr;
356 struct qm_eqcr eqcr;
357 struct qm_dqrr dqrr;
358 struct qm_mr mr;
359 struct qm_mc mc;
360 } ____cacheline_aligned;
362 /* Cache-inhibited register access. */
363 static inline u32 qm_in(struct qm_portal *p, u32 offset)
365 return ioread32be(p->addr.ci + offset);
368 static inline void qm_out(struct qm_portal *p, u32 offset, u32 val)
370 iowrite32be(val, p->addr.ci + offset);
373 /* Cache Enabled Portal Access */
374 static inline void qm_cl_invalidate(struct qm_portal *p, u32 offset)
376 dpaa_invalidate(p->addr.ce + offset);
379 static inline void qm_cl_touch_ro(struct qm_portal *p, u32 offset)
381 dpaa_touch_ro(p->addr.ce + offset);
384 static inline u32 qm_ce_in(struct qm_portal *p, u32 offset)
386 return be32_to_cpu(*(p->addr.ce_be + (offset/4)));
389 /* --- EQCR API --- */
391 #define EQCR_SHIFT ilog2(sizeof(struct qm_eqcr_entry))
392 #define EQCR_CARRY (uintptr_t)(QM_EQCR_SIZE << EQCR_SHIFT)
394 /* Bit-wise logic to wrap a ring pointer by clearing the "carry bit" */
395 static struct qm_eqcr_entry *eqcr_carryclear(struct qm_eqcr_entry *p)
397 uintptr_t addr = (uintptr_t)p;
399 addr &= ~EQCR_CARRY;
401 return (struct qm_eqcr_entry *)addr;
404 /* Bit-wise logic to convert a ring pointer to a ring index */
405 static int eqcr_ptr2idx(struct qm_eqcr_entry *e)
407 return ((uintptr_t)e >> EQCR_SHIFT) & (QM_EQCR_SIZE - 1);
410 /* Increment the 'cursor' ring pointer, taking 'vbit' into account */
411 static inline void eqcr_inc(struct qm_eqcr *eqcr)
413 /* increment to the next EQCR pointer and handle overflow and 'vbit' */
414 struct qm_eqcr_entry *partial = eqcr->cursor + 1;
416 eqcr->cursor = eqcr_carryclear(partial);
417 if (partial != eqcr->cursor)
418 eqcr->vbit ^= QM_EQCR_VERB_VBIT;
421 static inline int qm_eqcr_init(struct qm_portal *portal,
422 enum qm_eqcr_pmode pmode,
423 unsigned int eq_stash_thresh,
424 int eq_stash_prio)
426 struct qm_eqcr *eqcr = &portal->eqcr;
427 u32 cfg;
428 u8 pi;
430 eqcr->ring = portal->addr.ce + QM_CL_EQCR;
431 eqcr->ci = qm_in(portal, QM_REG_EQCR_CI_CINH) & (QM_EQCR_SIZE - 1);
432 qm_cl_invalidate(portal, QM_CL_EQCR_CI_CENA);
433 pi = qm_in(portal, QM_REG_EQCR_PI_CINH) & (QM_EQCR_SIZE - 1);
434 eqcr->cursor = eqcr->ring + pi;
435 eqcr->vbit = (qm_in(portal, QM_REG_EQCR_PI_CINH) & QM_EQCR_SIZE) ?
436 QM_EQCR_VERB_VBIT : 0;
437 eqcr->available = QM_EQCR_SIZE - 1 -
438 dpaa_cyc_diff(QM_EQCR_SIZE, eqcr->ci, pi);
439 eqcr->ithresh = qm_in(portal, QM_REG_EQCR_ITR);
440 #ifdef CONFIG_FSL_DPAA_CHECKING
441 eqcr->busy = 0;
442 eqcr->pmode = pmode;
443 #endif
444 cfg = (qm_in(portal, QM_REG_CFG) & 0x00ffffff) |
445 (eq_stash_thresh << 28) | /* QCSP_CFG: EST */
446 (eq_stash_prio << 26) | /* QCSP_CFG: EP */
447 ((pmode & 0x3) << 24); /* QCSP_CFG::EPM */
448 qm_out(portal, QM_REG_CFG, cfg);
449 return 0;
452 static inline unsigned int qm_eqcr_get_ci_stashing(struct qm_portal *portal)
454 return (qm_in(portal, QM_REG_CFG) >> 28) & 0x7;
457 static inline void qm_eqcr_finish(struct qm_portal *portal)
459 struct qm_eqcr *eqcr = &portal->eqcr;
460 u8 pi = qm_in(portal, QM_REG_EQCR_PI_CINH) & (QM_EQCR_SIZE - 1);
461 u8 ci = qm_in(portal, QM_REG_EQCR_CI_CINH) & (QM_EQCR_SIZE - 1);
463 DPAA_ASSERT(!eqcr->busy);
464 if (pi != eqcr_ptr2idx(eqcr->cursor))
465 pr_crit("losing uncommitted EQCR entries\n");
466 if (ci != eqcr->ci)
467 pr_crit("missing existing EQCR completions\n");
468 if (eqcr->ci != eqcr_ptr2idx(eqcr->cursor))
469 pr_crit("EQCR destroyed unquiesced\n");
472 static inline struct qm_eqcr_entry *qm_eqcr_start_no_stash(struct qm_portal
473 *portal)
475 struct qm_eqcr *eqcr = &portal->eqcr;
477 DPAA_ASSERT(!eqcr->busy);
478 if (!eqcr->available)
479 return NULL;
481 #ifdef CONFIG_FSL_DPAA_CHECKING
482 eqcr->busy = 1;
483 #endif
484 dpaa_zero(eqcr->cursor);
485 return eqcr->cursor;
488 static inline struct qm_eqcr_entry *qm_eqcr_start_stash(struct qm_portal
489 *portal)
491 struct qm_eqcr *eqcr = &portal->eqcr;
492 u8 diff, old_ci;
494 DPAA_ASSERT(!eqcr->busy);
495 if (!eqcr->available) {
496 old_ci = eqcr->ci;
497 eqcr->ci = qm_ce_in(portal, QM_CL_EQCR_CI_CENA) &
498 (QM_EQCR_SIZE - 1);
499 diff = dpaa_cyc_diff(QM_EQCR_SIZE, old_ci, eqcr->ci);
500 eqcr->available += diff;
501 if (!diff)
502 return NULL;
504 #ifdef CONFIG_FSL_DPAA_CHECKING
505 eqcr->busy = 1;
506 #endif
507 dpaa_zero(eqcr->cursor);
508 return eqcr->cursor;
511 static inline void eqcr_commit_checks(struct qm_eqcr *eqcr)
513 DPAA_ASSERT(eqcr->busy);
514 DPAA_ASSERT(!(be32_to_cpu(eqcr->cursor->fqid) & ~QM_FQID_MASK));
515 DPAA_ASSERT(eqcr->available >= 1);
518 static inline void qm_eqcr_pvb_commit(struct qm_portal *portal, u8 myverb)
520 struct qm_eqcr *eqcr = &portal->eqcr;
521 struct qm_eqcr_entry *eqcursor;
523 eqcr_commit_checks(eqcr);
524 DPAA_ASSERT(eqcr->pmode == qm_eqcr_pvb);
525 dma_wmb();
526 eqcursor = eqcr->cursor;
527 eqcursor->_ncw_verb = myverb | eqcr->vbit;
528 dpaa_flush(eqcursor);
529 eqcr_inc(eqcr);
530 eqcr->available--;
531 #ifdef CONFIG_FSL_DPAA_CHECKING
532 eqcr->busy = 0;
533 #endif
536 static inline void qm_eqcr_cce_prefetch(struct qm_portal *portal)
538 qm_cl_touch_ro(portal, QM_CL_EQCR_CI_CENA);
541 static inline u8 qm_eqcr_cce_update(struct qm_portal *portal)
543 struct qm_eqcr *eqcr = &portal->eqcr;
544 u8 diff, old_ci = eqcr->ci;
546 eqcr->ci = qm_ce_in(portal, QM_CL_EQCR_CI_CENA) & (QM_EQCR_SIZE - 1);
547 qm_cl_invalidate(portal, QM_CL_EQCR_CI_CENA);
548 diff = dpaa_cyc_diff(QM_EQCR_SIZE, old_ci, eqcr->ci);
549 eqcr->available += diff;
550 return diff;
553 static inline void qm_eqcr_set_ithresh(struct qm_portal *portal, u8 ithresh)
555 struct qm_eqcr *eqcr = &portal->eqcr;
557 eqcr->ithresh = ithresh;
558 qm_out(portal, QM_REG_EQCR_ITR, ithresh);
561 static inline u8 qm_eqcr_get_avail(struct qm_portal *portal)
563 struct qm_eqcr *eqcr = &portal->eqcr;
565 return eqcr->available;
568 static inline u8 qm_eqcr_get_fill(struct qm_portal *portal)
570 struct qm_eqcr *eqcr = &portal->eqcr;
572 return QM_EQCR_SIZE - 1 - eqcr->available;
575 /* --- DQRR API --- */
577 #define DQRR_SHIFT ilog2(sizeof(struct qm_dqrr_entry))
578 #define DQRR_CARRY (uintptr_t)(QM_DQRR_SIZE << DQRR_SHIFT)
580 static const struct qm_dqrr_entry *dqrr_carryclear(
581 const struct qm_dqrr_entry *p)
583 uintptr_t addr = (uintptr_t)p;
585 addr &= ~DQRR_CARRY;
587 return (const struct qm_dqrr_entry *)addr;
590 static inline int dqrr_ptr2idx(const struct qm_dqrr_entry *e)
592 return ((uintptr_t)e >> DQRR_SHIFT) & (QM_DQRR_SIZE - 1);
595 static const struct qm_dqrr_entry *dqrr_inc(const struct qm_dqrr_entry *e)
597 return dqrr_carryclear(e + 1);
600 static inline void qm_dqrr_set_maxfill(struct qm_portal *portal, u8 mf)
602 qm_out(portal, QM_REG_CFG, (qm_in(portal, QM_REG_CFG) & 0xff0fffff) |
603 ((mf & (QM_DQRR_SIZE - 1)) << 20));
606 static inline int qm_dqrr_init(struct qm_portal *portal,
607 const struct qm_portal_config *config,
608 enum qm_dqrr_dmode dmode,
609 enum qm_dqrr_pmode pmode,
610 enum qm_dqrr_cmode cmode, u8 max_fill)
612 struct qm_dqrr *dqrr = &portal->dqrr;
613 u32 cfg;
615 /* Make sure the DQRR will be idle when we enable */
616 qm_out(portal, QM_REG_DQRR_SDQCR, 0);
617 qm_out(portal, QM_REG_DQRR_VDQCR, 0);
618 qm_out(portal, QM_REG_DQRR_PDQCR, 0);
619 dqrr->ring = portal->addr.ce + QM_CL_DQRR;
620 dqrr->pi = qm_in(portal, QM_REG_DQRR_PI_CINH) & (QM_DQRR_SIZE - 1);
621 dqrr->ci = qm_in(portal, QM_REG_DQRR_CI_CINH) & (QM_DQRR_SIZE - 1);
622 dqrr->cursor = dqrr->ring + dqrr->ci;
623 dqrr->fill = dpaa_cyc_diff(QM_DQRR_SIZE, dqrr->ci, dqrr->pi);
624 dqrr->vbit = (qm_in(portal, QM_REG_DQRR_PI_CINH) & QM_DQRR_SIZE) ?
625 QM_DQRR_VERB_VBIT : 0;
626 dqrr->ithresh = qm_in(portal, QM_REG_DQRR_ITR);
627 #ifdef CONFIG_FSL_DPAA_CHECKING
628 dqrr->dmode = dmode;
629 dqrr->pmode = pmode;
630 dqrr->cmode = cmode;
631 #endif
632 /* Invalidate every ring entry before beginning */
633 for (cfg = 0; cfg < QM_DQRR_SIZE; cfg++)
634 dpaa_invalidate(qm_cl(dqrr->ring, cfg));
635 cfg = (qm_in(portal, QM_REG_CFG) & 0xff000f00) |
636 ((max_fill & (QM_DQRR_SIZE - 1)) << 20) | /* DQRR_MF */
637 ((dmode & 1) << 18) | /* DP */
638 ((cmode & 3) << 16) | /* DCM */
639 0xa0 | /* RE+SE */
640 (0 ? 0x40 : 0) | /* Ignore RP */
641 (0 ? 0x10 : 0); /* Ignore SP */
642 qm_out(portal, QM_REG_CFG, cfg);
643 qm_dqrr_set_maxfill(portal, max_fill);
644 return 0;
647 static inline void qm_dqrr_finish(struct qm_portal *portal)
649 #ifdef CONFIG_FSL_DPAA_CHECKING
650 struct qm_dqrr *dqrr = &portal->dqrr;
652 if (dqrr->cmode != qm_dqrr_cdc &&
653 dqrr->ci != dqrr_ptr2idx(dqrr->cursor))
654 pr_crit("Ignoring completed DQRR entries\n");
655 #endif
658 static inline const struct qm_dqrr_entry *qm_dqrr_current(
659 struct qm_portal *portal)
661 struct qm_dqrr *dqrr = &portal->dqrr;
663 if (!dqrr->fill)
664 return NULL;
665 return dqrr->cursor;
668 static inline u8 qm_dqrr_next(struct qm_portal *portal)
670 struct qm_dqrr *dqrr = &portal->dqrr;
672 DPAA_ASSERT(dqrr->fill);
673 dqrr->cursor = dqrr_inc(dqrr->cursor);
674 return --dqrr->fill;
677 static inline void qm_dqrr_pvb_update(struct qm_portal *portal)
679 struct qm_dqrr *dqrr = &portal->dqrr;
680 struct qm_dqrr_entry *res = qm_cl(dqrr->ring, dqrr->pi);
682 DPAA_ASSERT(dqrr->pmode == qm_dqrr_pvb);
683 #ifndef CONFIG_FSL_PAMU
685 * If PAMU is not available we need to invalidate the cache.
686 * When PAMU is available the cache is updated by stash
688 dpaa_invalidate_touch_ro(res);
689 #endif
690 if ((res->verb & QM_DQRR_VERB_VBIT) == dqrr->vbit) {
691 dqrr->pi = (dqrr->pi + 1) & (QM_DQRR_SIZE - 1);
692 if (!dqrr->pi)
693 dqrr->vbit ^= QM_DQRR_VERB_VBIT;
694 dqrr->fill++;
698 static inline void qm_dqrr_cdc_consume_1ptr(struct qm_portal *portal,
699 const struct qm_dqrr_entry *dq,
700 int park)
702 __maybe_unused struct qm_dqrr *dqrr = &portal->dqrr;
703 int idx = dqrr_ptr2idx(dq);
705 DPAA_ASSERT(dqrr->cmode == qm_dqrr_cdc);
706 DPAA_ASSERT((dqrr->ring + idx) == dq);
707 DPAA_ASSERT(idx < QM_DQRR_SIZE);
708 qm_out(portal, QM_REG_DQRR_DCAP, (0 << 8) | /* DQRR_DCAP::S */
709 ((park ? 1 : 0) << 6) | /* DQRR_DCAP::PK */
710 idx); /* DQRR_DCAP::DCAP_CI */
713 static inline void qm_dqrr_cdc_consume_n(struct qm_portal *portal, u32 bitmask)
715 __maybe_unused struct qm_dqrr *dqrr = &portal->dqrr;
717 DPAA_ASSERT(dqrr->cmode == qm_dqrr_cdc);
718 qm_out(portal, QM_REG_DQRR_DCAP, (1 << 8) | /* DQRR_DCAP::S */
719 (bitmask << 16)); /* DQRR_DCAP::DCAP_CI */
722 static inline void qm_dqrr_sdqcr_set(struct qm_portal *portal, u32 sdqcr)
724 qm_out(portal, QM_REG_DQRR_SDQCR, sdqcr);
727 static inline void qm_dqrr_vdqcr_set(struct qm_portal *portal, u32 vdqcr)
729 qm_out(portal, QM_REG_DQRR_VDQCR, vdqcr);
732 static inline int qm_dqrr_set_ithresh(struct qm_portal *portal, u8 ithresh)
735 if (ithresh > QMAN_DQRR_IT_MAX)
736 return -EINVAL;
738 qm_out(portal, QM_REG_DQRR_ITR, ithresh);
740 return 0;
743 /* --- MR API --- */
745 #define MR_SHIFT ilog2(sizeof(union qm_mr_entry))
746 #define MR_CARRY (uintptr_t)(QM_MR_SIZE << MR_SHIFT)
748 static union qm_mr_entry *mr_carryclear(union qm_mr_entry *p)
750 uintptr_t addr = (uintptr_t)p;
752 addr &= ~MR_CARRY;
754 return (union qm_mr_entry *)addr;
757 static inline int mr_ptr2idx(const union qm_mr_entry *e)
759 return ((uintptr_t)e >> MR_SHIFT) & (QM_MR_SIZE - 1);
762 static inline union qm_mr_entry *mr_inc(union qm_mr_entry *e)
764 return mr_carryclear(e + 1);
767 static inline int qm_mr_init(struct qm_portal *portal, enum qm_mr_pmode pmode,
768 enum qm_mr_cmode cmode)
770 struct qm_mr *mr = &portal->mr;
771 u32 cfg;
773 mr->ring = portal->addr.ce + QM_CL_MR;
774 mr->pi = qm_in(portal, QM_REG_MR_PI_CINH) & (QM_MR_SIZE - 1);
775 mr->ci = qm_in(portal, QM_REG_MR_CI_CINH) & (QM_MR_SIZE - 1);
776 mr->cursor = mr->ring + mr->ci;
777 mr->fill = dpaa_cyc_diff(QM_MR_SIZE, mr->ci, mr->pi);
778 mr->vbit = (qm_in(portal, QM_REG_MR_PI_CINH) & QM_MR_SIZE)
779 ? QM_MR_VERB_VBIT : 0;
780 mr->ithresh = qm_in(portal, QM_REG_MR_ITR);
781 #ifdef CONFIG_FSL_DPAA_CHECKING
782 mr->pmode = pmode;
783 mr->cmode = cmode;
784 #endif
785 cfg = (qm_in(portal, QM_REG_CFG) & 0xfffff0ff) |
786 ((cmode & 1) << 8); /* QCSP_CFG:MM */
787 qm_out(portal, QM_REG_CFG, cfg);
788 return 0;
791 static inline void qm_mr_finish(struct qm_portal *portal)
793 struct qm_mr *mr = &portal->mr;
795 if (mr->ci != mr_ptr2idx(mr->cursor))
796 pr_crit("Ignoring completed MR entries\n");
799 static inline const union qm_mr_entry *qm_mr_current(struct qm_portal *portal)
801 struct qm_mr *mr = &portal->mr;
803 if (!mr->fill)
804 return NULL;
805 return mr->cursor;
808 static inline int qm_mr_next(struct qm_portal *portal)
810 struct qm_mr *mr = &portal->mr;
812 DPAA_ASSERT(mr->fill);
813 mr->cursor = mr_inc(mr->cursor);
814 return --mr->fill;
817 static inline void qm_mr_pvb_update(struct qm_portal *portal)
819 struct qm_mr *mr = &portal->mr;
820 union qm_mr_entry *res = qm_cl(mr->ring, mr->pi);
822 DPAA_ASSERT(mr->pmode == qm_mr_pvb);
824 if ((res->verb & QM_MR_VERB_VBIT) == mr->vbit) {
825 mr->pi = (mr->pi + 1) & (QM_MR_SIZE - 1);
826 if (!mr->pi)
827 mr->vbit ^= QM_MR_VERB_VBIT;
828 mr->fill++;
829 res = mr_inc(res);
831 dpaa_invalidate_touch_ro(res);
834 static inline void qm_mr_cci_consume(struct qm_portal *portal, u8 num)
836 struct qm_mr *mr = &portal->mr;
838 DPAA_ASSERT(mr->cmode == qm_mr_cci);
839 mr->ci = (mr->ci + num) & (QM_MR_SIZE - 1);
840 qm_out(portal, QM_REG_MR_CI_CINH, mr->ci);
843 static inline void qm_mr_cci_consume_to_current(struct qm_portal *portal)
845 struct qm_mr *mr = &portal->mr;
847 DPAA_ASSERT(mr->cmode == qm_mr_cci);
848 mr->ci = mr_ptr2idx(mr->cursor);
849 qm_out(portal, QM_REG_MR_CI_CINH, mr->ci);
852 static inline void qm_mr_set_ithresh(struct qm_portal *portal, u8 ithresh)
854 qm_out(portal, QM_REG_MR_ITR, ithresh);
857 /* --- Management command API --- */
859 static inline int qm_mc_init(struct qm_portal *portal)
861 u8 rr0, rr1;
862 struct qm_mc *mc = &portal->mc;
864 mc->cr = portal->addr.ce + QM_CL_CR;
865 mc->rr = portal->addr.ce + QM_CL_RR0;
867 * The expected valid bit polarity for the next CR command is 0
868 * if RR1 contains a valid response, and is 1 if RR0 contains a
869 * valid response. If both RR contain all 0, this indicates either
870 * that no command has been executed since reset (in which case the
871 * expected valid bit polarity is 1)
873 rr0 = mc->rr->verb;
874 rr1 = (mc->rr+1)->verb;
875 if ((rr0 == 0 && rr1 == 0) || rr0 != 0)
876 mc->rridx = 1;
877 else
878 mc->rridx = 0;
879 mc->vbit = mc->rridx ? QM_MCC_VERB_VBIT : 0;
880 #ifdef CONFIG_FSL_DPAA_CHECKING
881 mc->state = qman_mc_idle;
882 #endif
883 return 0;
886 static inline void qm_mc_finish(struct qm_portal *portal)
888 #ifdef CONFIG_FSL_DPAA_CHECKING
889 struct qm_mc *mc = &portal->mc;
891 DPAA_ASSERT(mc->state == qman_mc_idle);
892 if (mc->state != qman_mc_idle)
893 pr_crit("Losing incomplete MC command\n");
894 #endif
897 static inline union qm_mc_command *qm_mc_start(struct qm_portal *portal)
899 struct qm_mc *mc = &portal->mc;
901 DPAA_ASSERT(mc->state == qman_mc_idle);
902 #ifdef CONFIG_FSL_DPAA_CHECKING
903 mc->state = qman_mc_user;
904 #endif
905 dpaa_zero(mc->cr);
906 return mc->cr;
909 static inline void qm_mc_commit(struct qm_portal *portal, u8 myverb)
911 struct qm_mc *mc = &portal->mc;
912 union qm_mc_result *rr = mc->rr + mc->rridx;
914 DPAA_ASSERT(mc->state == qman_mc_user);
915 dma_wmb();
916 mc->cr->_ncw_verb = myverb | mc->vbit;
917 dpaa_flush(mc->cr);
918 dpaa_invalidate_touch_ro(rr);
919 #ifdef CONFIG_FSL_DPAA_CHECKING
920 mc->state = qman_mc_hw;
921 #endif
924 static inline union qm_mc_result *qm_mc_result(struct qm_portal *portal)
926 struct qm_mc *mc = &portal->mc;
927 union qm_mc_result *rr = mc->rr + mc->rridx;
929 DPAA_ASSERT(mc->state == qman_mc_hw);
931 * The inactive response register's verb byte always returns zero until
932 * its command is submitted and completed. This includes the valid-bit,
933 * in case you were wondering...
935 if (!rr->verb) {
936 dpaa_invalidate_touch_ro(rr);
937 return NULL;
939 mc->rridx ^= 1;
940 mc->vbit ^= QM_MCC_VERB_VBIT;
941 #ifdef CONFIG_FSL_DPAA_CHECKING
942 mc->state = qman_mc_idle;
943 #endif
944 return rr;
947 static inline int qm_mc_result_timeout(struct qm_portal *portal,
948 union qm_mc_result **mcr)
950 int timeout = QM_MCR_TIMEOUT;
952 do {
953 *mcr = qm_mc_result(portal);
954 if (*mcr)
955 break;
956 udelay(1);
957 } while (--timeout);
959 return timeout;
962 static inline void fq_set(struct qman_fq *fq, u32 mask)
964 fq->flags |= mask;
967 static inline void fq_clear(struct qman_fq *fq, u32 mask)
969 fq->flags &= ~mask;
972 static inline int fq_isset(struct qman_fq *fq, u32 mask)
974 return fq->flags & mask;
977 static inline int fq_isclear(struct qman_fq *fq, u32 mask)
979 return !(fq->flags & mask);
982 struct qman_portal {
983 struct qm_portal p;
984 /* PORTAL_BITS_*** - dynamic, strictly internal */
985 unsigned long bits;
986 /* interrupt sources processed by portal_isr(), configurable */
987 unsigned long irq_sources;
988 u32 use_eqcr_ci_stashing;
989 /* only 1 volatile dequeue at a time */
990 struct qman_fq *vdqcr_owned;
991 u32 sdqcr;
992 /* probing time config params for cpu-affine portals */
993 const struct qm_portal_config *config;
994 /* 2-element array. cgrs[0] is mask, cgrs[1] is snapshot. */
995 struct qman_cgrs *cgrs;
996 /* linked-list of CSCN handlers. */
997 struct list_head cgr_cbs;
998 /* list lock */
999 spinlock_t cgr_lock;
1000 struct work_struct congestion_work;
1001 struct work_struct mr_work;
1002 char irqname[MAX_IRQNAME];
1005 static cpumask_t affine_mask;
1006 static DEFINE_SPINLOCK(affine_mask_lock);
1007 static u16 affine_channels[NR_CPUS];
1008 static DEFINE_PER_CPU(struct qman_portal, qman_affine_portal);
1009 struct qman_portal *affine_portals[NR_CPUS];
1011 static inline struct qman_portal *get_affine_portal(void)
1013 return &get_cpu_var(qman_affine_portal);
1016 static inline void put_affine_portal(void)
1018 put_cpu_var(qman_affine_portal);
1022 static inline struct qman_portal *get_portal_for_channel(u16 channel)
1024 int i;
1026 for (i = 0; i < num_possible_cpus(); i++) {
1027 if (affine_portals[i] &&
1028 affine_portals[i]->config->channel == channel)
1029 return affine_portals[i];
1032 return NULL;
1035 static struct workqueue_struct *qm_portal_wq;
1037 int qman_dqrr_set_ithresh(struct qman_portal *portal, u8 ithresh)
1039 int res;
1041 if (!portal)
1042 return -EINVAL;
1044 res = qm_dqrr_set_ithresh(&portal->p, ithresh);
1045 if (res)
1046 return res;
1048 portal->p.dqrr.ithresh = ithresh;
1050 return 0;
1052 EXPORT_SYMBOL(qman_dqrr_set_ithresh);
1054 void qman_dqrr_get_ithresh(struct qman_portal *portal, u8 *ithresh)
1056 if (portal && ithresh)
1057 *ithresh = qm_in(&portal->p, QM_REG_DQRR_ITR);
1059 EXPORT_SYMBOL(qman_dqrr_get_ithresh);
1061 void qman_portal_get_iperiod(struct qman_portal *portal, u32 *iperiod)
1063 if (portal && iperiod)
1064 *iperiod = qm_in(&portal->p, QM_REG_ITPR);
1066 EXPORT_SYMBOL(qman_portal_get_iperiod);
1068 int qman_portal_set_iperiod(struct qman_portal *portal, u32 iperiod)
1070 if (!portal || iperiod > QMAN_ITP_MAX)
1071 return -EINVAL;
1073 qm_out(&portal->p, QM_REG_ITPR, iperiod);
1075 return 0;
1077 EXPORT_SYMBOL(qman_portal_set_iperiod);
1079 int qman_wq_alloc(void)
1081 qm_portal_wq = alloc_workqueue("qman_portal_wq", 0, 1);
1082 if (!qm_portal_wq)
1083 return -ENOMEM;
1084 return 0;
1088 void qman_enable_irqs(void)
1090 int i;
1092 for (i = 0; i < num_possible_cpus(); i++) {
1093 if (affine_portals[i]) {
1094 qm_out(&affine_portals[i]->p, QM_REG_ISR, 0xffffffff);
1095 qm_out(&affine_portals[i]->p, QM_REG_IIR, 0);
1102 * This is what everything can wait on, even if it migrates to a different cpu
1103 * to the one whose affine portal it is waiting on.
1105 static DECLARE_WAIT_QUEUE_HEAD(affine_queue);
1107 static struct qman_fq **fq_table;
1108 static u32 num_fqids;
1110 int qman_alloc_fq_table(u32 _num_fqids)
1112 num_fqids = _num_fqids;
1114 fq_table = vzalloc(array3_size(sizeof(struct qman_fq *),
1115 num_fqids, 2));
1116 if (!fq_table)
1117 return -ENOMEM;
1119 pr_debug("Allocated fq lookup table at %p, entry count %u\n",
1120 fq_table, num_fqids * 2);
1121 return 0;
1124 static struct qman_fq *idx_to_fq(u32 idx)
1126 struct qman_fq *fq;
1128 #ifdef CONFIG_FSL_DPAA_CHECKING
1129 if (WARN_ON(idx >= num_fqids * 2))
1130 return NULL;
1131 #endif
1132 fq = fq_table[idx];
1133 DPAA_ASSERT(!fq || idx == fq->idx);
1135 return fq;
1139 * Only returns full-service fq objects, not enqueue-only
1140 * references (QMAN_FQ_FLAG_NO_MODIFY).
1142 static struct qman_fq *fqid_to_fq(u32 fqid)
1144 return idx_to_fq(fqid * 2);
1147 static struct qman_fq *tag_to_fq(u32 tag)
1149 #if BITS_PER_LONG == 64
1150 return idx_to_fq(tag);
1151 #else
1152 return (struct qman_fq *)tag;
1153 #endif
1156 static u32 fq_to_tag(struct qman_fq *fq)
1158 #if BITS_PER_LONG == 64
1159 return fq->idx;
1160 #else
1161 return (u32)fq;
1162 #endif
1165 static u32 __poll_portal_slow(struct qman_portal *p, u32 is);
1166 static inline unsigned int __poll_portal_fast(struct qman_portal *p,
1167 unsigned int poll_limit);
1168 static void qm_congestion_task(struct work_struct *work);
1169 static void qm_mr_process_task(struct work_struct *work);
1171 static irqreturn_t portal_isr(int irq, void *ptr)
1173 struct qman_portal *p = ptr;
1174 u32 is = qm_in(&p->p, QM_REG_ISR) & p->irq_sources;
1175 u32 clear = 0;
1177 if (unlikely(!is))
1178 return IRQ_NONE;
1180 /* DQRR-handling if it's interrupt-driven */
1181 if (is & QM_PIRQ_DQRI) {
1182 __poll_portal_fast(p, QMAN_POLL_LIMIT);
1183 clear = QM_DQAVAIL_MASK | QM_PIRQ_DQRI;
1185 /* Handling of anything else that's interrupt-driven */
1186 clear |= __poll_portal_slow(p, is) & QM_PIRQ_SLOW;
1187 qm_out(&p->p, QM_REG_ISR, clear);
1188 return IRQ_HANDLED;
1191 static int drain_mr_fqrni(struct qm_portal *p)
1193 const union qm_mr_entry *msg;
1194 loop:
1195 qm_mr_pvb_update(p);
1196 msg = qm_mr_current(p);
1197 if (!msg) {
1199 * if MR was full and h/w had other FQRNI entries to produce, we
1200 * need to allow it time to produce those entries once the
1201 * existing entries are consumed. A worst-case situation
1202 * (fully-loaded system) means h/w sequencers may have to do 3-4
1203 * other things before servicing the portal's MR pump, each of
1204 * which (if slow) may take ~50 qman cycles (which is ~200
1205 * processor cycles). So rounding up and then multiplying this
1206 * worst-case estimate by a factor of 10, just to be
1207 * ultra-paranoid, goes as high as 10,000 cycles. NB, we consume
1208 * one entry at a time, so h/w has an opportunity to produce new
1209 * entries well before the ring has been fully consumed, so
1210 * we're being *really* paranoid here.
1212 mdelay(1);
1213 qm_mr_pvb_update(p);
1214 msg = qm_mr_current(p);
1215 if (!msg)
1216 return 0;
1218 if ((msg->verb & QM_MR_VERB_TYPE_MASK) != QM_MR_VERB_FQRNI) {
1219 /* We aren't draining anything but FQRNIs */
1220 pr_err("Found verb 0x%x in MR\n", msg->verb);
1221 return -1;
1223 qm_mr_next(p);
1224 qm_mr_cci_consume(p, 1);
1225 goto loop;
1228 static int qman_create_portal(struct qman_portal *portal,
1229 const struct qm_portal_config *c,
1230 const struct qman_cgrs *cgrs)
1232 struct qm_portal *p;
1233 int ret;
1234 u32 isdr;
1236 p = &portal->p;
1238 #ifdef CONFIG_FSL_PAMU
1239 /* PAMU is required for stashing */
1240 portal->use_eqcr_ci_stashing = ((qman_ip_rev >= QMAN_REV30) ? 1 : 0);
1241 #else
1242 portal->use_eqcr_ci_stashing = 0;
1243 #endif
1245 * prep the low-level portal struct with the mapped addresses from the
1246 * config, everything that follows depends on it and "config" is more
1247 * for (de)reference
1249 p->addr.ce = c->addr_virt_ce;
1250 p->addr.ce_be = c->addr_virt_ce;
1251 p->addr.ci = c->addr_virt_ci;
1253 * If CI-stashing is used, the current defaults use a threshold of 3,
1254 * and stash with high-than-DQRR priority.
1256 if (qm_eqcr_init(p, qm_eqcr_pvb,
1257 portal->use_eqcr_ci_stashing ? 3 : 0, 1)) {
1258 dev_err(c->dev, "EQCR initialisation failed\n");
1259 goto fail_eqcr;
1261 if (qm_dqrr_init(p, c, qm_dqrr_dpush, qm_dqrr_pvb,
1262 qm_dqrr_cdc, DQRR_MAXFILL)) {
1263 dev_err(c->dev, "DQRR initialisation failed\n");
1264 goto fail_dqrr;
1266 if (qm_mr_init(p, qm_mr_pvb, qm_mr_cci)) {
1267 dev_err(c->dev, "MR initialisation failed\n");
1268 goto fail_mr;
1270 if (qm_mc_init(p)) {
1271 dev_err(c->dev, "MC initialisation failed\n");
1272 goto fail_mc;
1274 /* static interrupt-gating controls */
1275 qm_dqrr_set_ithresh(p, QMAN_PIRQ_DQRR_ITHRESH);
1276 qm_mr_set_ithresh(p, QMAN_PIRQ_MR_ITHRESH);
1277 qm_out(p, QM_REG_ITPR, QMAN_PIRQ_IPERIOD);
1278 portal->cgrs = kmalloc_array(2, sizeof(*cgrs), GFP_KERNEL);
1279 if (!portal->cgrs)
1280 goto fail_cgrs;
1281 /* initial snapshot is no-depletion */
1282 qman_cgrs_init(&portal->cgrs[1]);
1283 if (cgrs)
1284 portal->cgrs[0] = *cgrs;
1285 else
1286 /* if the given mask is NULL, assume all CGRs can be seen */
1287 qman_cgrs_fill(&portal->cgrs[0]);
1288 INIT_LIST_HEAD(&portal->cgr_cbs);
1289 spin_lock_init(&portal->cgr_lock);
1290 INIT_WORK(&portal->congestion_work, qm_congestion_task);
1291 INIT_WORK(&portal->mr_work, qm_mr_process_task);
1292 portal->bits = 0;
1293 portal->sdqcr = QM_SDQCR_SOURCE_CHANNELS | QM_SDQCR_COUNT_UPTO3 |
1294 QM_SDQCR_DEDICATED_PRECEDENCE | QM_SDQCR_TYPE_PRIO_QOS |
1295 QM_SDQCR_TOKEN_SET(0xab) | QM_SDQCR_CHANNELS_DEDICATED;
1296 isdr = 0xffffffff;
1297 qm_out(p, QM_REG_ISDR, isdr);
1298 portal->irq_sources = 0;
1299 qm_out(p, QM_REG_IER, 0);
1300 snprintf(portal->irqname, MAX_IRQNAME, IRQNAME, c->cpu);
1301 qm_out(p, QM_REG_IIR, 1);
1302 if (request_irq(c->irq, portal_isr, 0, portal->irqname, portal)) {
1303 dev_err(c->dev, "request_irq() failed\n");
1304 goto fail_irq;
1307 if (dpaa_set_portal_irq_affinity(c->dev, c->irq, c->cpu))
1308 goto fail_affinity;
1310 /* Need EQCR to be empty before continuing */
1311 isdr &= ~QM_PIRQ_EQCI;
1312 qm_out(p, QM_REG_ISDR, isdr);
1313 ret = qm_eqcr_get_fill(p);
1314 if (ret) {
1315 dev_err(c->dev, "EQCR unclean\n");
1316 goto fail_eqcr_empty;
1318 isdr &= ~(QM_PIRQ_DQRI | QM_PIRQ_MRI);
1319 qm_out(p, QM_REG_ISDR, isdr);
1320 if (qm_dqrr_current(p)) {
1321 dev_dbg(c->dev, "DQRR unclean\n");
1322 qm_dqrr_cdc_consume_n(p, 0xffff);
1324 if (qm_mr_current(p) && drain_mr_fqrni(p)) {
1325 /* special handling, drain just in case it's a few FQRNIs */
1326 const union qm_mr_entry *e = qm_mr_current(p);
1328 dev_err(c->dev, "MR dirty, VB 0x%x, rc 0x%x, addr 0x%llx\n",
1329 e->verb, e->ern.rc, qm_fd_addr_get64(&e->ern.fd));
1330 goto fail_dqrr_mr_empty;
1332 /* Success */
1333 portal->config = c;
1334 qm_out(p, QM_REG_ISR, 0xffffffff);
1335 qm_out(p, QM_REG_ISDR, 0);
1336 if (!qman_requires_cleanup())
1337 qm_out(p, QM_REG_IIR, 0);
1338 /* Write a sane SDQCR */
1339 qm_dqrr_sdqcr_set(p, portal->sdqcr);
1340 return 0;
1342 fail_dqrr_mr_empty:
1343 fail_eqcr_empty:
1344 fail_affinity:
1345 free_irq(c->irq, portal);
1346 fail_irq:
1347 kfree(portal->cgrs);
1348 fail_cgrs:
1349 qm_mc_finish(p);
1350 fail_mc:
1351 qm_mr_finish(p);
1352 fail_mr:
1353 qm_dqrr_finish(p);
1354 fail_dqrr:
1355 qm_eqcr_finish(p);
1356 fail_eqcr:
1357 return -EIO;
1360 struct qman_portal *qman_create_affine_portal(const struct qm_portal_config *c,
1361 const struct qman_cgrs *cgrs)
1363 struct qman_portal *portal;
1364 int err;
1366 portal = &per_cpu(qman_affine_portal, c->cpu);
1367 err = qman_create_portal(portal, c, cgrs);
1368 if (err)
1369 return NULL;
1371 spin_lock(&affine_mask_lock);
1372 cpumask_set_cpu(c->cpu, &affine_mask);
1373 affine_channels[c->cpu] = c->channel;
1374 affine_portals[c->cpu] = portal;
1375 spin_unlock(&affine_mask_lock);
1377 return portal;
1380 static void qman_destroy_portal(struct qman_portal *qm)
1382 const struct qm_portal_config *pcfg;
1384 /* Stop dequeues on the portal */
1385 qm_dqrr_sdqcr_set(&qm->p, 0);
1388 * NB we do this to "quiesce" EQCR. If we add enqueue-completions or
1389 * something related to QM_PIRQ_EQCI, this may need fixing.
1390 * Also, due to the prefetching model used for CI updates in the enqueue
1391 * path, this update will only invalidate the CI cacheline *after*
1392 * working on it, so we need to call this twice to ensure a full update
1393 * irrespective of where the enqueue processing was at when the teardown
1394 * began.
1396 qm_eqcr_cce_update(&qm->p);
1397 qm_eqcr_cce_update(&qm->p);
1398 pcfg = qm->config;
1400 free_irq(pcfg->irq, qm);
1402 kfree(qm->cgrs);
1403 qm_mc_finish(&qm->p);
1404 qm_mr_finish(&qm->p);
1405 qm_dqrr_finish(&qm->p);
1406 qm_eqcr_finish(&qm->p);
1408 qm->config = NULL;
1411 const struct qm_portal_config *qman_destroy_affine_portal(void)
1413 struct qman_portal *qm = get_affine_portal();
1414 const struct qm_portal_config *pcfg;
1415 int cpu;
1417 pcfg = qm->config;
1418 cpu = pcfg->cpu;
1420 qman_destroy_portal(qm);
1422 spin_lock(&affine_mask_lock);
1423 cpumask_clear_cpu(cpu, &affine_mask);
1424 spin_unlock(&affine_mask_lock);
1425 put_affine_portal();
1426 return pcfg;
1429 /* Inline helper to reduce nesting in __poll_portal_slow() */
1430 static inline void fq_state_change(struct qman_portal *p, struct qman_fq *fq,
1431 const union qm_mr_entry *msg, u8 verb)
1433 switch (verb) {
1434 case QM_MR_VERB_FQRL:
1435 DPAA_ASSERT(fq_isset(fq, QMAN_FQ_STATE_ORL));
1436 fq_clear(fq, QMAN_FQ_STATE_ORL);
1437 break;
1438 case QM_MR_VERB_FQRN:
1439 DPAA_ASSERT(fq->state == qman_fq_state_parked ||
1440 fq->state == qman_fq_state_sched);
1441 DPAA_ASSERT(fq_isset(fq, QMAN_FQ_STATE_CHANGING));
1442 fq_clear(fq, QMAN_FQ_STATE_CHANGING);
1443 if (msg->fq.fqs & QM_MR_FQS_NOTEMPTY)
1444 fq_set(fq, QMAN_FQ_STATE_NE);
1445 if (msg->fq.fqs & QM_MR_FQS_ORLPRESENT)
1446 fq_set(fq, QMAN_FQ_STATE_ORL);
1447 fq->state = qman_fq_state_retired;
1448 break;
1449 case QM_MR_VERB_FQPN:
1450 DPAA_ASSERT(fq->state == qman_fq_state_sched);
1451 DPAA_ASSERT(fq_isclear(fq, QMAN_FQ_STATE_CHANGING));
1452 fq->state = qman_fq_state_parked;
1456 static void qm_congestion_task(struct work_struct *work)
1458 struct qman_portal *p = container_of(work, struct qman_portal,
1459 congestion_work);
1460 struct qman_cgrs rr, c;
1461 union qm_mc_result *mcr;
1462 struct qman_cgr *cgr;
1464 spin_lock(&p->cgr_lock);
1465 qm_mc_start(&p->p);
1466 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYCONGESTION);
1467 if (!qm_mc_result_timeout(&p->p, &mcr)) {
1468 spin_unlock(&p->cgr_lock);
1469 dev_crit(p->config->dev, "QUERYCONGESTION timeout\n");
1470 qman_p_irqsource_add(p, QM_PIRQ_CSCI);
1471 return;
1473 /* mask out the ones I'm not interested in */
1474 qman_cgrs_and(&rr, (struct qman_cgrs *)&mcr->querycongestion.state,
1475 &p->cgrs[0]);
1476 /* check previous snapshot for delta, enter/exit congestion */
1477 qman_cgrs_xor(&c, &rr, &p->cgrs[1]);
1478 /* update snapshot */
1479 qman_cgrs_cp(&p->cgrs[1], &rr);
1480 /* Invoke callback */
1481 list_for_each_entry(cgr, &p->cgr_cbs, node)
1482 if (cgr->cb && qman_cgrs_get(&c, cgr->cgrid))
1483 cgr->cb(p, cgr, qman_cgrs_get(&rr, cgr->cgrid));
1484 spin_unlock(&p->cgr_lock);
1485 qman_p_irqsource_add(p, QM_PIRQ_CSCI);
1488 static void qm_mr_process_task(struct work_struct *work)
1490 struct qman_portal *p = container_of(work, struct qman_portal,
1491 mr_work);
1492 const union qm_mr_entry *msg;
1493 struct qman_fq *fq;
1494 u8 verb, num = 0;
1496 preempt_disable();
1498 while (1) {
1499 qm_mr_pvb_update(&p->p);
1500 msg = qm_mr_current(&p->p);
1501 if (!msg)
1502 break;
1504 verb = msg->verb & QM_MR_VERB_TYPE_MASK;
1505 /* The message is a software ERN iff the 0x20 bit is clear */
1506 if (verb & 0x20) {
1507 switch (verb) {
1508 case QM_MR_VERB_FQRNI:
1509 /* nada, we drop FQRNIs on the floor */
1510 break;
1511 case QM_MR_VERB_FQRN:
1512 case QM_MR_VERB_FQRL:
1513 /* Lookup in the retirement table */
1514 fq = fqid_to_fq(qm_fqid_get(&msg->fq));
1515 if (WARN_ON(!fq))
1516 break;
1517 fq_state_change(p, fq, msg, verb);
1518 if (fq->cb.fqs)
1519 fq->cb.fqs(p, fq, msg);
1520 break;
1521 case QM_MR_VERB_FQPN:
1522 /* Parked */
1523 fq = tag_to_fq(be32_to_cpu(msg->fq.context_b));
1524 fq_state_change(p, fq, msg, verb);
1525 if (fq->cb.fqs)
1526 fq->cb.fqs(p, fq, msg);
1527 break;
1528 case QM_MR_VERB_DC_ERN:
1529 /* DCP ERN */
1530 pr_crit_once("Leaking DCP ERNs!\n");
1531 break;
1532 default:
1533 pr_crit("Invalid MR verb 0x%02x\n", verb);
1535 } else {
1536 /* Its a software ERN */
1537 fq = tag_to_fq(be32_to_cpu(msg->ern.tag));
1538 fq->cb.ern(p, fq, msg);
1540 num++;
1541 qm_mr_next(&p->p);
1544 qm_mr_cci_consume(&p->p, num);
1545 qman_p_irqsource_add(p, QM_PIRQ_MRI);
1546 preempt_enable();
1549 static u32 __poll_portal_slow(struct qman_portal *p, u32 is)
1551 if (is & QM_PIRQ_CSCI) {
1552 qman_p_irqsource_remove(p, QM_PIRQ_CSCI);
1553 queue_work_on(smp_processor_id(), qm_portal_wq,
1554 &p->congestion_work);
1557 if (is & QM_PIRQ_EQRI) {
1558 qm_eqcr_cce_update(&p->p);
1559 qm_eqcr_set_ithresh(&p->p, 0);
1560 wake_up(&affine_queue);
1563 if (is & QM_PIRQ_MRI) {
1564 qman_p_irqsource_remove(p, QM_PIRQ_MRI);
1565 queue_work_on(smp_processor_id(), qm_portal_wq,
1566 &p->mr_work);
1569 return is;
1573 * remove some slowish-path stuff from the "fast path" and make sure it isn't
1574 * inlined.
1576 static noinline void clear_vdqcr(struct qman_portal *p, struct qman_fq *fq)
1578 p->vdqcr_owned = NULL;
1579 fq_clear(fq, QMAN_FQ_STATE_VDQCR);
1580 wake_up(&affine_queue);
1584 * The only states that would conflict with other things if they ran at the
1585 * same time on the same cpu are:
1587 * (i) setting/clearing vdqcr_owned, and
1588 * (ii) clearing the NE (Not Empty) flag.
1590 * Both are safe. Because;
1592 * (i) this clearing can only occur after qman_volatile_dequeue() has set the
1593 * vdqcr_owned field (which it does before setting VDQCR), and
1594 * qman_volatile_dequeue() blocks interrupts and preemption while this is
1595 * done so that we can't interfere.
1596 * (ii) the NE flag is only cleared after qman_retire_fq() has set it, and as
1597 * with (i) that API prevents us from interfering until it's safe.
1599 * The good thing is that qman_volatile_dequeue() and qman_retire_fq() run far
1600 * less frequently (ie. per-FQ) than __poll_portal_fast() does, so the nett
1601 * advantage comes from this function not having to "lock" anything at all.
1603 * Note also that the callbacks are invoked at points which are safe against the
1604 * above potential conflicts, but that this function itself is not re-entrant
1605 * (this is because the function tracks one end of each FIFO in the portal and
1606 * we do *not* want to lock that). So the consequence is that it is safe for
1607 * user callbacks to call into any QMan API.
1609 static inline unsigned int __poll_portal_fast(struct qman_portal *p,
1610 unsigned int poll_limit)
1612 const struct qm_dqrr_entry *dq;
1613 struct qman_fq *fq;
1614 enum qman_cb_dqrr_result res;
1615 unsigned int limit = 0;
1617 do {
1618 qm_dqrr_pvb_update(&p->p);
1619 dq = qm_dqrr_current(&p->p);
1620 if (!dq)
1621 break;
1623 if (dq->stat & QM_DQRR_STAT_UNSCHEDULED) {
1625 * VDQCR: don't trust context_b as the FQ may have
1626 * been configured for h/w consumption and we're
1627 * draining it post-retirement.
1629 fq = p->vdqcr_owned;
1631 * We only set QMAN_FQ_STATE_NE when retiring, so we
1632 * only need to check for clearing it when doing
1633 * volatile dequeues. It's one less thing to check
1634 * in the critical path (SDQCR).
1636 if (dq->stat & QM_DQRR_STAT_FQ_EMPTY)
1637 fq_clear(fq, QMAN_FQ_STATE_NE);
1639 * This is duplicated from the SDQCR code, but we
1640 * have stuff to do before *and* after this callback,
1641 * and we don't want multiple if()s in the critical
1642 * path (SDQCR).
1644 res = fq->cb.dqrr(p, fq, dq);
1645 if (res == qman_cb_dqrr_stop)
1646 break;
1647 /* Check for VDQCR completion */
1648 if (dq->stat & QM_DQRR_STAT_DQCR_EXPIRED)
1649 clear_vdqcr(p, fq);
1650 } else {
1651 /* SDQCR: context_b points to the FQ */
1652 fq = tag_to_fq(be32_to_cpu(dq->context_b));
1653 /* Now let the callback do its stuff */
1654 res = fq->cb.dqrr(p, fq, dq);
1656 * The callback can request that we exit without
1657 * consuming this entry nor advancing;
1659 if (res == qman_cb_dqrr_stop)
1660 break;
1662 /* Interpret 'dq' from a driver perspective. */
1664 * Parking isn't possible unless HELDACTIVE was set. NB,
1665 * FORCEELIGIBLE implies HELDACTIVE, so we only need to
1666 * check for HELDACTIVE to cover both.
1668 DPAA_ASSERT((dq->stat & QM_DQRR_STAT_FQ_HELDACTIVE) ||
1669 (res != qman_cb_dqrr_park));
1670 /* just means "skip it, I'll consume it myself later on" */
1671 if (res != qman_cb_dqrr_defer)
1672 qm_dqrr_cdc_consume_1ptr(&p->p, dq,
1673 res == qman_cb_dqrr_park);
1674 /* Move forward */
1675 qm_dqrr_next(&p->p);
1677 * Entry processed and consumed, increment our counter. The
1678 * callback can request that we exit after consuming the
1679 * entry, and we also exit if we reach our processing limit,
1680 * so loop back only if neither of these conditions is met.
1682 } while (++limit < poll_limit && res != qman_cb_dqrr_consume_stop);
1684 return limit;
1687 void qman_p_irqsource_add(struct qman_portal *p, u32 bits)
1689 unsigned long irqflags;
1691 local_irq_save(irqflags);
1692 p->irq_sources |= bits & QM_PIRQ_VISIBLE;
1693 qm_out(&p->p, QM_REG_IER, p->irq_sources);
1694 local_irq_restore(irqflags);
1696 EXPORT_SYMBOL(qman_p_irqsource_add);
1698 void qman_p_irqsource_remove(struct qman_portal *p, u32 bits)
1700 unsigned long irqflags;
1701 u32 ier;
1704 * Our interrupt handler only processes+clears status register bits that
1705 * are in p->irq_sources. As we're trimming that mask, if one of them
1706 * were to assert in the status register just before we remove it from
1707 * the enable register, there would be an interrupt-storm when we
1708 * release the IRQ lock. So we wait for the enable register update to
1709 * take effect in h/w (by reading it back) and then clear all other bits
1710 * in the status register. Ie. we clear them from ISR once it's certain
1711 * IER won't allow them to reassert.
1713 local_irq_save(irqflags);
1714 bits &= QM_PIRQ_VISIBLE;
1715 p->irq_sources &= ~bits;
1716 qm_out(&p->p, QM_REG_IER, p->irq_sources);
1717 ier = qm_in(&p->p, QM_REG_IER);
1719 * Using "~ier" (rather than "bits" or "~p->irq_sources") creates a
1720 * data-dependency, ie. to protect against re-ordering.
1722 qm_out(&p->p, QM_REG_ISR, ~ier);
1723 local_irq_restore(irqflags);
1725 EXPORT_SYMBOL(qman_p_irqsource_remove);
1727 const cpumask_t *qman_affine_cpus(void)
1729 return &affine_mask;
1731 EXPORT_SYMBOL(qman_affine_cpus);
1733 u16 qman_affine_channel(int cpu)
1735 if (cpu < 0) {
1736 struct qman_portal *portal = get_affine_portal();
1738 cpu = portal->config->cpu;
1739 put_affine_portal();
1741 WARN_ON(!cpumask_test_cpu(cpu, &affine_mask));
1742 return affine_channels[cpu];
1744 EXPORT_SYMBOL(qman_affine_channel);
1746 struct qman_portal *qman_get_affine_portal(int cpu)
1748 return affine_portals[cpu];
1750 EXPORT_SYMBOL(qman_get_affine_portal);
1752 int qman_start_using_portal(struct qman_portal *p, struct device *dev)
1754 return (!device_link_add(dev, p->config->dev,
1755 DL_FLAG_AUTOREMOVE_CONSUMER)) ? -EINVAL : 0;
1757 EXPORT_SYMBOL(qman_start_using_portal);
1759 int qman_p_poll_dqrr(struct qman_portal *p, unsigned int limit)
1761 return __poll_portal_fast(p, limit);
1763 EXPORT_SYMBOL(qman_p_poll_dqrr);
1765 void qman_p_static_dequeue_add(struct qman_portal *p, u32 pools)
1767 unsigned long irqflags;
1769 local_irq_save(irqflags);
1770 pools &= p->config->pools;
1771 p->sdqcr |= pools;
1772 qm_dqrr_sdqcr_set(&p->p, p->sdqcr);
1773 local_irq_restore(irqflags);
1775 EXPORT_SYMBOL(qman_p_static_dequeue_add);
1777 /* Frame queue API */
1779 static const char *mcr_result_str(u8 result)
1781 switch (result) {
1782 case QM_MCR_RESULT_NULL:
1783 return "QM_MCR_RESULT_NULL";
1784 case QM_MCR_RESULT_OK:
1785 return "QM_MCR_RESULT_OK";
1786 case QM_MCR_RESULT_ERR_FQID:
1787 return "QM_MCR_RESULT_ERR_FQID";
1788 case QM_MCR_RESULT_ERR_FQSTATE:
1789 return "QM_MCR_RESULT_ERR_FQSTATE";
1790 case QM_MCR_RESULT_ERR_NOTEMPTY:
1791 return "QM_MCR_RESULT_ERR_NOTEMPTY";
1792 case QM_MCR_RESULT_PENDING:
1793 return "QM_MCR_RESULT_PENDING";
1794 case QM_MCR_RESULT_ERR_BADCOMMAND:
1795 return "QM_MCR_RESULT_ERR_BADCOMMAND";
1797 return "<unknown MCR result>";
1800 int qman_create_fq(u32 fqid, u32 flags, struct qman_fq *fq)
1802 if (flags & QMAN_FQ_FLAG_DYNAMIC_FQID) {
1803 int ret = qman_alloc_fqid(&fqid);
1805 if (ret)
1806 return ret;
1808 fq->fqid = fqid;
1809 fq->flags = flags;
1810 fq->state = qman_fq_state_oos;
1811 fq->cgr_groupid = 0;
1813 /* A context_b of 0 is allegedly special, so don't use that fqid */
1814 if (fqid == 0 || fqid >= num_fqids) {
1815 WARN(1, "bad fqid %d\n", fqid);
1816 return -EINVAL;
1819 fq->idx = fqid * 2;
1820 if (flags & QMAN_FQ_FLAG_NO_MODIFY)
1821 fq->idx++;
1823 WARN_ON(fq_table[fq->idx]);
1824 fq_table[fq->idx] = fq;
1826 return 0;
1828 EXPORT_SYMBOL(qman_create_fq);
1830 void qman_destroy_fq(struct qman_fq *fq)
1833 * We don't need to lock the FQ as it is a pre-condition that the FQ be
1834 * quiesced. Instead, run some checks.
1836 switch (fq->state) {
1837 case qman_fq_state_parked:
1838 case qman_fq_state_oos:
1839 if (fq_isset(fq, QMAN_FQ_FLAG_DYNAMIC_FQID))
1840 qman_release_fqid(fq->fqid);
1842 DPAA_ASSERT(fq_table[fq->idx]);
1843 fq_table[fq->idx] = NULL;
1844 return;
1845 default:
1846 break;
1848 DPAA_ASSERT(NULL == "qman_free_fq() on unquiesced FQ!");
1850 EXPORT_SYMBOL(qman_destroy_fq);
1852 u32 qman_fq_fqid(struct qman_fq *fq)
1854 return fq->fqid;
1856 EXPORT_SYMBOL(qman_fq_fqid);
1858 int qman_init_fq(struct qman_fq *fq, u32 flags, struct qm_mcc_initfq *opts)
1860 union qm_mc_command *mcc;
1861 union qm_mc_result *mcr;
1862 struct qman_portal *p;
1863 u8 res, myverb;
1864 int ret = 0;
1866 myverb = (flags & QMAN_INITFQ_FLAG_SCHED)
1867 ? QM_MCC_VERB_INITFQ_SCHED : QM_MCC_VERB_INITFQ_PARKED;
1869 if (fq->state != qman_fq_state_oos &&
1870 fq->state != qman_fq_state_parked)
1871 return -EINVAL;
1872 #ifdef CONFIG_FSL_DPAA_CHECKING
1873 if (fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY))
1874 return -EINVAL;
1875 #endif
1876 if (opts && (be16_to_cpu(opts->we_mask) & QM_INITFQ_WE_OAC)) {
1877 /* And can't be set at the same time as TDTHRESH */
1878 if (be16_to_cpu(opts->we_mask) & QM_INITFQ_WE_TDTHRESH)
1879 return -EINVAL;
1881 /* Issue an INITFQ_[PARKED|SCHED] management command */
1882 p = get_affine_portal();
1883 if (fq_isset(fq, QMAN_FQ_STATE_CHANGING) ||
1884 (fq->state != qman_fq_state_oos &&
1885 fq->state != qman_fq_state_parked)) {
1886 ret = -EBUSY;
1887 goto out;
1889 mcc = qm_mc_start(&p->p);
1890 if (opts)
1891 mcc->initfq = *opts;
1892 qm_fqid_set(&mcc->fq, fq->fqid);
1893 mcc->initfq.count = 0;
1895 * If the FQ does *not* have the TO_DCPORTAL flag, context_b is set as a
1896 * demux pointer. Otherwise, the caller-provided value is allowed to
1897 * stand, don't overwrite it.
1899 if (fq_isclear(fq, QMAN_FQ_FLAG_TO_DCPORTAL)) {
1900 dma_addr_t phys_fq;
1902 mcc->initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTB);
1903 mcc->initfq.fqd.context_b = cpu_to_be32(fq_to_tag(fq));
1905 * and the physical address - NB, if the user wasn't trying to
1906 * set CONTEXTA, clear the stashing settings.
1908 if (!(be16_to_cpu(mcc->initfq.we_mask) &
1909 QM_INITFQ_WE_CONTEXTA)) {
1910 mcc->initfq.we_mask |=
1911 cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1912 memset(&mcc->initfq.fqd.context_a, 0,
1913 sizeof(mcc->initfq.fqd.context_a));
1914 } else {
1915 struct qman_portal *p = qman_dma_portal;
1917 phys_fq = dma_map_single(p->config->dev, fq,
1918 sizeof(*fq), DMA_TO_DEVICE);
1919 if (dma_mapping_error(p->config->dev, phys_fq)) {
1920 dev_err(p->config->dev, "dma_mapping failed\n");
1921 ret = -EIO;
1922 goto out;
1925 qm_fqd_stashing_set64(&mcc->initfq.fqd, phys_fq);
1928 if (flags & QMAN_INITFQ_FLAG_LOCAL) {
1929 int wq = 0;
1931 if (!(be16_to_cpu(mcc->initfq.we_mask) &
1932 QM_INITFQ_WE_DESTWQ)) {
1933 mcc->initfq.we_mask |=
1934 cpu_to_be16(QM_INITFQ_WE_DESTWQ);
1935 wq = 4;
1937 qm_fqd_set_destwq(&mcc->initfq.fqd, p->config->channel, wq);
1939 qm_mc_commit(&p->p, myverb);
1940 if (!qm_mc_result_timeout(&p->p, &mcr)) {
1941 dev_err(p->config->dev, "MCR timeout\n");
1942 ret = -ETIMEDOUT;
1943 goto out;
1946 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == myverb);
1947 res = mcr->result;
1948 if (res != QM_MCR_RESULT_OK) {
1949 ret = -EIO;
1950 goto out;
1952 if (opts) {
1953 if (be16_to_cpu(opts->we_mask) & QM_INITFQ_WE_FQCTRL) {
1954 if (be16_to_cpu(opts->fqd.fq_ctrl) & QM_FQCTRL_CGE)
1955 fq_set(fq, QMAN_FQ_STATE_CGR_EN);
1956 else
1957 fq_clear(fq, QMAN_FQ_STATE_CGR_EN);
1959 if (be16_to_cpu(opts->we_mask) & QM_INITFQ_WE_CGID)
1960 fq->cgr_groupid = opts->fqd.cgid;
1962 fq->state = (flags & QMAN_INITFQ_FLAG_SCHED) ?
1963 qman_fq_state_sched : qman_fq_state_parked;
1965 out:
1966 put_affine_portal();
1967 return ret;
1969 EXPORT_SYMBOL(qman_init_fq);
1971 int qman_schedule_fq(struct qman_fq *fq)
1973 union qm_mc_command *mcc;
1974 union qm_mc_result *mcr;
1975 struct qman_portal *p;
1976 int ret = 0;
1978 if (fq->state != qman_fq_state_parked)
1979 return -EINVAL;
1980 #ifdef CONFIG_FSL_DPAA_CHECKING
1981 if (fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY))
1982 return -EINVAL;
1983 #endif
1984 /* Issue a ALTERFQ_SCHED management command */
1985 p = get_affine_portal();
1986 if (fq_isset(fq, QMAN_FQ_STATE_CHANGING) ||
1987 fq->state != qman_fq_state_parked) {
1988 ret = -EBUSY;
1989 goto out;
1991 mcc = qm_mc_start(&p->p);
1992 qm_fqid_set(&mcc->fq, fq->fqid);
1993 qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_SCHED);
1994 if (!qm_mc_result_timeout(&p->p, &mcr)) {
1995 dev_err(p->config->dev, "ALTER_SCHED timeout\n");
1996 ret = -ETIMEDOUT;
1997 goto out;
2000 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_ALTER_SCHED);
2001 if (mcr->result != QM_MCR_RESULT_OK) {
2002 ret = -EIO;
2003 goto out;
2005 fq->state = qman_fq_state_sched;
2006 out:
2007 put_affine_portal();
2008 return ret;
2010 EXPORT_SYMBOL(qman_schedule_fq);
2012 int qman_retire_fq(struct qman_fq *fq, u32 *flags)
2014 union qm_mc_command *mcc;
2015 union qm_mc_result *mcr;
2016 struct qman_portal *p;
2017 int ret;
2018 u8 res;
2020 if (fq->state != qman_fq_state_parked &&
2021 fq->state != qman_fq_state_sched)
2022 return -EINVAL;
2023 #ifdef CONFIG_FSL_DPAA_CHECKING
2024 if (fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY))
2025 return -EINVAL;
2026 #endif
2027 p = get_affine_portal();
2028 if (fq_isset(fq, QMAN_FQ_STATE_CHANGING) ||
2029 fq->state == qman_fq_state_retired ||
2030 fq->state == qman_fq_state_oos) {
2031 ret = -EBUSY;
2032 goto out;
2034 mcc = qm_mc_start(&p->p);
2035 qm_fqid_set(&mcc->fq, fq->fqid);
2036 qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_RETIRE);
2037 if (!qm_mc_result_timeout(&p->p, &mcr)) {
2038 dev_crit(p->config->dev, "ALTER_RETIRE timeout\n");
2039 ret = -ETIMEDOUT;
2040 goto out;
2043 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_ALTER_RETIRE);
2044 res = mcr->result;
2046 * "Elegant" would be to treat OK/PENDING the same way; set CHANGING,
2047 * and defer the flags until FQRNI or FQRN (respectively) show up. But
2048 * "Friendly" is to process OK immediately, and not set CHANGING. We do
2049 * friendly, otherwise the caller doesn't necessarily have a fully
2050 * "retired" FQ on return even if the retirement was immediate. However
2051 * this does mean some code duplication between here and
2052 * fq_state_change().
2054 if (res == QM_MCR_RESULT_OK) {
2055 ret = 0;
2056 /* Process 'fq' right away, we'll ignore FQRNI */
2057 if (mcr->alterfq.fqs & QM_MCR_FQS_NOTEMPTY)
2058 fq_set(fq, QMAN_FQ_STATE_NE);
2059 if (mcr->alterfq.fqs & QM_MCR_FQS_ORLPRESENT)
2060 fq_set(fq, QMAN_FQ_STATE_ORL);
2061 if (flags)
2062 *flags = fq->flags;
2063 fq->state = qman_fq_state_retired;
2064 if (fq->cb.fqs) {
2066 * Another issue with supporting "immediate" retirement
2067 * is that we're forced to drop FQRNIs, because by the
2068 * time they're seen it may already be "too late" (the
2069 * fq may have been OOS'd and free()'d already). But if
2070 * the upper layer wants a callback whether it's
2071 * immediate or not, we have to fake a "MR" entry to
2072 * look like an FQRNI...
2074 union qm_mr_entry msg;
2076 msg.verb = QM_MR_VERB_FQRNI;
2077 msg.fq.fqs = mcr->alterfq.fqs;
2078 qm_fqid_set(&msg.fq, fq->fqid);
2079 msg.fq.context_b = cpu_to_be32(fq_to_tag(fq));
2080 fq->cb.fqs(p, fq, &msg);
2082 } else if (res == QM_MCR_RESULT_PENDING) {
2083 ret = 1;
2084 fq_set(fq, QMAN_FQ_STATE_CHANGING);
2085 } else {
2086 ret = -EIO;
2088 out:
2089 put_affine_portal();
2090 return ret;
2092 EXPORT_SYMBOL(qman_retire_fq);
2094 int qman_oos_fq(struct qman_fq *fq)
2096 union qm_mc_command *mcc;
2097 union qm_mc_result *mcr;
2098 struct qman_portal *p;
2099 int ret = 0;
2101 if (fq->state != qman_fq_state_retired)
2102 return -EINVAL;
2103 #ifdef CONFIG_FSL_DPAA_CHECKING
2104 if (fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY))
2105 return -EINVAL;
2106 #endif
2107 p = get_affine_portal();
2108 if (fq_isset(fq, QMAN_FQ_STATE_BLOCKOOS) ||
2109 fq->state != qman_fq_state_retired) {
2110 ret = -EBUSY;
2111 goto out;
2113 mcc = qm_mc_start(&p->p);
2114 qm_fqid_set(&mcc->fq, fq->fqid);
2115 qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_OOS);
2116 if (!qm_mc_result_timeout(&p->p, &mcr)) {
2117 ret = -ETIMEDOUT;
2118 goto out;
2120 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_ALTER_OOS);
2121 if (mcr->result != QM_MCR_RESULT_OK) {
2122 ret = -EIO;
2123 goto out;
2125 fq->state = qman_fq_state_oos;
2126 out:
2127 put_affine_portal();
2128 return ret;
2130 EXPORT_SYMBOL(qman_oos_fq);
2132 int qman_query_fq(struct qman_fq *fq, struct qm_fqd *fqd)
2134 union qm_mc_command *mcc;
2135 union qm_mc_result *mcr;
2136 struct qman_portal *p = get_affine_portal();
2137 int ret = 0;
2139 mcc = qm_mc_start(&p->p);
2140 qm_fqid_set(&mcc->fq, fq->fqid);
2141 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ);
2142 if (!qm_mc_result_timeout(&p->p, &mcr)) {
2143 ret = -ETIMEDOUT;
2144 goto out;
2147 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ);
2148 if (mcr->result == QM_MCR_RESULT_OK)
2149 *fqd = mcr->queryfq.fqd;
2150 else
2151 ret = -EIO;
2152 out:
2153 put_affine_portal();
2154 return ret;
2157 int qman_query_fq_np(struct qman_fq *fq, struct qm_mcr_queryfq_np *np)
2159 union qm_mc_command *mcc;
2160 union qm_mc_result *mcr;
2161 struct qman_portal *p = get_affine_portal();
2162 int ret = 0;
2164 mcc = qm_mc_start(&p->p);
2165 qm_fqid_set(&mcc->fq, fq->fqid);
2166 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ_NP);
2167 if (!qm_mc_result_timeout(&p->p, &mcr)) {
2168 ret = -ETIMEDOUT;
2169 goto out;
2172 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ_NP);
2173 if (mcr->result == QM_MCR_RESULT_OK)
2174 *np = mcr->queryfq_np;
2175 else if (mcr->result == QM_MCR_RESULT_ERR_FQID)
2176 ret = -ERANGE;
2177 else
2178 ret = -EIO;
2179 out:
2180 put_affine_portal();
2181 return ret;
2183 EXPORT_SYMBOL(qman_query_fq_np);
2185 static int qman_query_cgr(struct qman_cgr *cgr,
2186 struct qm_mcr_querycgr *cgrd)
2188 union qm_mc_command *mcc;
2189 union qm_mc_result *mcr;
2190 struct qman_portal *p = get_affine_portal();
2191 int ret = 0;
2193 mcc = qm_mc_start(&p->p);
2194 mcc->cgr.cgid = cgr->cgrid;
2195 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYCGR);
2196 if (!qm_mc_result_timeout(&p->p, &mcr)) {
2197 ret = -ETIMEDOUT;
2198 goto out;
2200 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCC_VERB_QUERYCGR);
2201 if (mcr->result == QM_MCR_RESULT_OK)
2202 *cgrd = mcr->querycgr;
2203 else {
2204 dev_err(p->config->dev, "QUERY_CGR failed: %s\n",
2205 mcr_result_str(mcr->result));
2206 ret = -EIO;
2208 out:
2209 put_affine_portal();
2210 return ret;
2213 int qman_query_cgr_congested(struct qman_cgr *cgr, bool *result)
2215 struct qm_mcr_querycgr query_cgr;
2216 int err;
2218 err = qman_query_cgr(cgr, &query_cgr);
2219 if (err)
2220 return err;
2222 *result = !!query_cgr.cgr.cs;
2223 return 0;
2225 EXPORT_SYMBOL(qman_query_cgr_congested);
2227 /* internal function used as a wait_event() expression */
2228 static int set_p_vdqcr(struct qman_portal *p, struct qman_fq *fq, u32 vdqcr)
2230 unsigned long irqflags;
2231 int ret = -EBUSY;
2233 local_irq_save(irqflags);
2234 if (p->vdqcr_owned)
2235 goto out;
2236 if (fq_isset(fq, QMAN_FQ_STATE_VDQCR))
2237 goto out;
2239 fq_set(fq, QMAN_FQ_STATE_VDQCR);
2240 p->vdqcr_owned = fq;
2241 qm_dqrr_vdqcr_set(&p->p, vdqcr);
2242 ret = 0;
2243 out:
2244 local_irq_restore(irqflags);
2245 return ret;
2248 static int set_vdqcr(struct qman_portal **p, struct qman_fq *fq, u32 vdqcr)
2250 int ret;
2252 *p = get_affine_portal();
2253 ret = set_p_vdqcr(*p, fq, vdqcr);
2254 put_affine_portal();
2255 return ret;
2258 static int wait_vdqcr_start(struct qman_portal **p, struct qman_fq *fq,
2259 u32 vdqcr, u32 flags)
2261 int ret = 0;
2263 if (flags & QMAN_VOLATILE_FLAG_WAIT_INT)
2264 ret = wait_event_interruptible(affine_queue,
2265 !set_vdqcr(p, fq, vdqcr));
2266 else
2267 wait_event(affine_queue, !set_vdqcr(p, fq, vdqcr));
2268 return ret;
2271 int qman_volatile_dequeue(struct qman_fq *fq, u32 flags, u32 vdqcr)
2273 struct qman_portal *p;
2274 int ret;
2276 if (fq->state != qman_fq_state_parked &&
2277 fq->state != qman_fq_state_retired)
2278 return -EINVAL;
2279 if (vdqcr & QM_VDQCR_FQID_MASK)
2280 return -EINVAL;
2281 if (fq_isset(fq, QMAN_FQ_STATE_VDQCR))
2282 return -EBUSY;
2283 vdqcr = (vdqcr & ~QM_VDQCR_FQID_MASK) | fq->fqid;
2284 if (flags & QMAN_VOLATILE_FLAG_WAIT)
2285 ret = wait_vdqcr_start(&p, fq, vdqcr, flags);
2286 else
2287 ret = set_vdqcr(&p, fq, vdqcr);
2288 if (ret)
2289 return ret;
2290 /* VDQCR is set */
2291 if (flags & QMAN_VOLATILE_FLAG_FINISH) {
2292 if (flags & QMAN_VOLATILE_FLAG_WAIT_INT)
2294 * NB: don't propagate any error - the caller wouldn't
2295 * know whether the VDQCR was issued or not. A signal
2296 * could arrive after returning anyway, so the caller
2297 * can check signal_pending() if that's an issue.
2299 wait_event_interruptible(affine_queue,
2300 !fq_isset(fq, QMAN_FQ_STATE_VDQCR));
2301 else
2302 wait_event(affine_queue,
2303 !fq_isset(fq, QMAN_FQ_STATE_VDQCR));
2305 return 0;
2307 EXPORT_SYMBOL(qman_volatile_dequeue);
2309 static void update_eqcr_ci(struct qman_portal *p, u8 avail)
2311 if (avail)
2312 qm_eqcr_cce_prefetch(&p->p);
2313 else
2314 qm_eqcr_cce_update(&p->p);
2317 int qman_enqueue(struct qman_fq *fq, const struct qm_fd *fd)
2319 struct qman_portal *p;
2320 struct qm_eqcr_entry *eq;
2321 unsigned long irqflags;
2322 u8 avail;
2324 p = get_affine_portal();
2325 local_irq_save(irqflags);
2327 if (p->use_eqcr_ci_stashing) {
2329 * The stashing case is easy, only update if we need to in
2330 * order to try and liberate ring entries.
2332 eq = qm_eqcr_start_stash(&p->p);
2333 } else {
2335 * The non-stashing case is harder, need to prefetch ahead of
2336 * time.
2338 avail = qm_eqcr_get_avail(&p->p);
2339 if (avail < 2)
2340 update_eqcr_ci(p, avail);
2341 eq = qm_eqcr_start_no_stash(&p->p);
2344 if (unlikely(!eq))
2345 goto out;
2347 qm_fqid_set(eq, fq->fqid);
2348 eq->tag = cpu_to_be32(fq_to_tag(fq));
2349 eq->fd = *fd;
2351 qm_eqcr_pvb_commit(&p->p, QM_EQCR_VERB_CMD_ENQUEUE);
2352 out:
2353 local_irq_restore(irqflags);
2354 put_affine_portal();
2355 return 0;
2357 EXPORT_SYMBOL(qman_enqueue);
2359 static int qm_modify_cgr(struct qman_cgr *cgr, u32 flags,
2360 struct qm_mcc_initcgr *opts)
2362 union qm_mc_command *mcc;
2363 union qm_mc_result *mcr;
2364 struct qman_portal *p = get_affine_portal();
2365 u8 verb = QM_MCC_VERB_MODIFYCGR;
2366 int ret = 0;
2368 mcc = qm_mc_start(&p->p);
2369 if (opts)
2370 mcc->initcgr = *opts;
2371 mcc->initcgr.cgid = cgr->cgrid;
2372 if (flags & QMAN_CGR_FLAG_USE_INIT)
2373 verb = QM_MCC_VERB_INITCGR;
2374 qm_mc_commit(&p->p, verb);
2375 if (!qm_mc_result_timeout(&p->p, &mcr)) {
2376 ret = -ETIMEDOUT;
2377 goto out;
2380 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == verb);
2381 if (mcr->result != QM_MCR_RESULT_OK)
2382 ret = -EIO;
2384 out:
2385 put_affine_portal();
2386 return ret;
2389 #define PORTAL_IDX(n) (n->config->channel - QM_CHANNEL_SWPORTAL0)
2391 /* congestion state change notification target update control */
2392 static void qm_cgr_cscn_targ_set(struct __qm_mc_cgr *cgr, int pi, u32 val)
2394 if (qman_ip_rev >= QMAN_REV30)
2395 cgr->cscn_targ_upd_ctrl = cpu_to_be16(pi |
2396 QM_CGR_TARG_UDP_CTRL_WRITE_BIT);
2397 else
2398 cgr->cscn_targ = cpu_to_be32(val | QM_CGR_TARG_PORTAL(pi));
2401 static void qm_cgr_cscn_targ_clear(struct __qm_mc_cgr *cgr, int pi, u32 val)
2403 if (qman_ip_rev >= QMAN_REV30)
2404 cgr->cscn_targ_upd_ctrl = cpu_to_be16(pi);
2405 else
2406 cgr->cscn_targ = cpu_to_be32(val & ~QM_CGR_TARG_PORTAL(pi));
2409 static u8 qman_cgr_cpus[CGR_NUM];
2411 void qman_init_cgr_all(void)
2413 struct qman_cgr cgr;
2414 int err_cnt = 0;
2416 for (cgr.cgrid = 0; cgr.cgrid < CGR_NUM; cgr.cgrid++) {
2417 if (qm_modify_cgr(&cgr, QMAN_CGR_FLAG_USE_INIT, NULL))
2418 err_cnt++;
2421 if (err_cnt)
2422 pr_err("Warning: %d error%s while initialising CGR h/w\n",
2423 err_cnt, (err_cnt > 1) ? "s" : "");
2426 int qman_create_cgr(struct qman_cgr *cgr, u32 flags,
2427 struct qm_mcc_initcgr *opts)
2429 struct qm_mcr_querycgr cgr_state;
2430 int ret;
2431 struct qman_portal *p;
2434 * We have to check that the provided CGRID is within the limits of the
2435 * data-structures, for obvious reasons. However we'll let h/w take
2436 * care of determining whether it's within the limits of what exists on
2437 * the SoC.
2439 if (cgr->cgrid >= CGR_NUM)
2440 return -EINVAL;
2442 preempt_disable();
2443 p = get_affine_portal();
2444 qman_cgr_cpus[cgr->cgrid] = smp_processor_id();
2445 preempt_enable();
2447 cgr->chan = p->config->channel;
2448 spin_lock(&p->cgr_lock);
2450 if (opts) {
2451 struct qm_mcc_initcgr local_opts = *opts;
2453 ret = qman_query_cgr(cgr, &cgr_state);
2454 if (ret)
2455 goto out;
2457 qm_cgr_cscn_targ_set(&local_opts.cgr, PORTAL_IDX(p),
2458 be32_to_cpu(cgr_state.cgr.cscn_targ));
2459 local_opts.we_mask |= cpu_to_be16(QM_CGR_WE_CSCN_TARG);
2461 /* send init if flags indicate so */
2462 if (flags & QMAN_CGR_FLAG_USE_INIT)
2463 ret = qm_modify_cgr(cgr, QMAN_CGR_FLAG_USE_INIT,
2464 &local_opts);
2465 else
2466 ret = qm_modify_cgr(cgr, 0, &local_opts);
2467 if (ret)
2468 goto out;
2471 list_add(&cgr->node, &p->cgr_cbs);
2473 /* Determine if newly added object requires its callback to be called */
2474 ret = qman_query_cgr(cgr, &cgr_state);
2475 if (ret) {
2476 /* we can't go back, so proceed and return success */
2477 dev_err(p->config->dev, "CGR HW state partially modified\n");
2478 ret = 0;
2479 goto out;
2481 if (cgr->cb && cgr_state.cgr.cscn_en &&
2482 qman_cgrs_get(&p->cgrs[1], cgr->cgrid))
2483 cgr->cb(p, cgr, 1);
2484 out:
2485 spin_unlock(&p->cgr_lock);
2486 put_affine_portal();
2487 return ret;
2489 EXPORT_SYMBOL(qman_create_cgr);
2491 int qman_delete_cgr(struct qman_cgr *cgr)
2493 unsigned long irqflags;
2494 struct qm_mcr_querycgr cgr_state;
2495 struct qm_mcc_initcgr local_opts;
2496 int ret = 0;
2497 struct qman_cgr *i;
2498 struct qman_portal *p = get_affine_portal();
2500 if (cgr->chan != p->config->channel) {
2501 /* attempt to delete from other portal than creator */
2502 dev_err(p->config->dev, "CGR not owned by current portal");
2503 dev_dbg(p->config->dev, " create 0x%x, delete 0x%x\n",
2504 cgr->chan, p->config->channel);
2506 ret = -EINVAL;
2507 goto put_portal;
2509 memset(&local_opts, 0, sizeof(struct qm_mcc_initcgr));
2510 spin_lock_irqsave(&p->cgr_lock, irqflags);
2511 list_del(&cgr->node);
2513 * If there are no other CGR objects for this CGRID in the list,
2514 * update CSCN_TARG accordingly
2516 list_for_each_entry(i, &p->cgr_cbs, node)
2517 if (i->cgrid == cgr->cgrid && i->cb)
2518 goto release_lock;
2519 ret = qman_query_cgr(cgr, &cgr_state);
2520 if (ret) {
2521 /* add back to the list */
2522 list_add(&cgr->node, &p->cgr_cbs);
2523 goto release_lock;
2526 local_opts.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_TARG);
2527 qm_cgr_cscn_targ_clear(&local_opts.cgr, PORTAL_IDX(p),
2528 be32_to_cpu(cgr_state.cgr.cscn_targ));
2530 ret = qm_modify_cgr(cgr, 0, &local_opts);
2531 if (ret)
2532 /* add back to the list */
2533 list_add(&cgr->node, &p->cgr_cbs);
2534 release_lock:
2535 spin_unlock_irqrestore(&p->cgr_lock, irqflags);
2536 put_portal:
2537 put_affine_portal();
2538 return ret;
2540 EXPORT_SYMBOL(qman_delete_cgr);
2542 struct cgr_comp {
2543 struct qman_cgr *cgr;
2544 struct completion completion;
2547 static void qman_delete_cgr_smp_call(void *p)
2549 qman_delete_cgr((struct qman_cgr *)p);
2552 void qman_delete_cgr_safe(struct qman_cgr *cgr)
2554 preempt_disable();
2555 if (qman_cgr_cpus[cgr->cgrid] != smp_processor_id()) {
2556 smp_call_function_single(qman_cgr_cpus[cgr->cgrid],
2557 qman_delete_cgr_smp_call, cgr, true);
2558 preempt_enable();
2559 return;
2562 qman_delete_cgr(cgr);
2563 preempt_enable();
2565 EXPORT_SYMBOL(qman_delete_cgr_safe);
2567 /* Cleanup FQs */
2569 static int _qm_mr_consume_and_match_verb(struct qm_portal *p, int v)
2571 const union qm_mr_entry *msg;
2572 int found = 0;
2574 qm_mr_pvb_update(p);
2575 msg = qm_mr_current(p);
2576 while (msg) {
2577 if ((msg->verb & QM_MR_VERB_TYPE_MASK) == v)
2578 found = 1;
2579 qm_mr_next(p);
2580 qm_mr_cci_consume_to_current(p);
2581 qm_mr_pvb_update(p);
2582 msg = qm_mr_current(p);
2584 return found;
2587 static int _qm_dqrr_consume_and_match(struct qm_portal *p, u32 fqid, int s,
2588 bool wait)
2590 const struct qm_dqrr_entry *dqrr;
2591 int found = 0;
2593 do {
2594 qm_dqrr_pvb_update(p);
2595 dqrr = qm_dqrr_current(p);
2596 if (!dqrr)
2597 cpu_relax();
2598 } while (wait && !dqrr);
2600 while (dqrr) {
2601 if (qm_fqid_get(dqrr) == fqid && (dqrr->stat & s))
2602 found = 1;
2603 qm_dqrr_cdc_consume_1ptr(p, dqrr, 0);
2604 qm_dqrr_pvb_update(p);
2605 qm_dqrr_next(p);
2606 dqrr = qm_dqrr_current(p);
2608 return found;
2611 #define qm_mr_drain(p, V) \
2612 _qm_mr_consume_and_match_verb(p, QM_MR_VERB_##V)
2614 #define qm_dqrr_drain(p, f, S) \
2615 _qm_dqrr_consume_and_match(p, f, QM_DQRR_STAT_##S, false)
2617 #define qm_dqrr_drain_wait(p, f, S) \
2618 _qm_dqrr_consume_and_match(p, f, QM_DQRR_STAT_##S, true)
2620 #define qm_dqrr_drain_nomatch(p) \
2621 _qm_dqrr_consume_and_match(p, 0, 0, false)
2623 int qman_shutdown_fq(u32 fqid)
2625 struct qman_portal *p, *channel_portal;
2626 struct device *dev;
2627 union qm_mc_command *mcc;
2628 union qm_mc_result *mcr;
2629 int orl_empty, drain = 0, ret = 0;
2630 u32 channel, wq, res;
2631 u8 state;
2633 p = get_affine_portal();
2634 dev = p->config->dev;
2635 /* Determine the state of the FQID */
2636 mcc = qm_mc_start(&p->p);
2637 qm_fqid_set(&mcc->fq, fqid);
2638 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ_NP);
2639 if (!qm_mc_result_timeout(&p->p, &mcr)) {
2640 dev_err(dev, "QUERYFQ_NP timeout\n");
2641 ret = -ETIMEDOUT;
2642 goto out;
2645 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ_NP);
2646 state = mcr->queryfq_np.state & QM_MCR_NP_STATE_MASK;
2647 if (state == QM_MCR_NP_STATE_OOS)
2648 goto out; /* Already OOS, no need to do anymore checks */
2650 /* Query which channel the FQ is using */
2651 mcc = qm_mc_start(&p->p);
2652 qm_fqid_set(&mcc->fq, fqid);
2653 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ);
2654 if (!qm_mc_result_timeout(&p->p, &mcr)) {
2655 dev_err(dev, "QUERYFQ timeout\n");
2656 ret = -ETIMEDOUT;
2657 goto out;
2660 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ);
2661 /* Need to store these since the MCR gets reused */
2662 channel = qm_fqd_get_chan(&mcr->queryfq.fqd);
2663 wq = qm_fqd_get_wq(&mcr->queryfq.fqd);
2665 if (channel < qm_channel_pool1) {
2666 channel_portal = get_portal_for_channel(channel);
2667 if (channel_portal == NULL) {
2668 dev_err(dev, "Can't find portal for dedicated channel 0x%x\n",
2669 channel);
2670 ret = -EIO;
2671 goto out;
2673 } else
2674 channel_portal = p;
2676 switch (state) {
2677 case QM_MCR_NP_STATE_TEN_SCHED:
2678 case QM_MCR_NP_STATE_TRU_SCHED:
2679 case QM_MCR_NP_STATE_ACTIVE:
2680 case QM_MCR_NP_STATE_PARKED:
2681 orl_empty = 0;
2682 mcc = qm_mc_start(&channel_portal->p);
2683 qm_fqid_set(&mcc->fq, fqid);
2684 qm_mc_commit(&channel_portal->p, QM_MCC_VERB_ALTER_RETIRE);
2685 if (!qm_mc_result_timeout(&channel_portal->p, &mcr)) {
2686 dev_err(dev, "ALTER_RETIRE timeout\n");
2687 ret = -ETIMEDOUT;
2688 goto out;
2690 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) ==
2691 QM_MCR_VERB_ALTER_RETIRE);
2692 res = mcr->result; /* Make a copy as we reuse MCR below */
2694 if (res == QM_MCR_RESULT_OK)
2695 drain_mr_fqrni(&channel_portal->p);
2697 if (res == QM_MCR_RESULT_PENDING) {
2699 * Need to wait for the FQRN in the message ring, which
2700 * will only occur once the FQ has been drained. In
2701 * order for the FQ to drain the portal needs to be set
2702 * to dequeue from the channel the FQ is scheduled on
2704 int found_fqrn = 0;
2705 u16 dequeue_wq = 0;
2707 /* Flag that we need to drain FQ */
2708 drain = 1;
2710 if (channel >= qm_channel_pool1 &&
2711 channel < qm_channel_pool1 + 15) {
2712 /* Pool channel, enable the bit in the portal */
2713 dequeue_wq = (channel -
2714 qm_channel_pool1 + 1)<<4 | wq;
2715 } else if (channel < qm_channel_pool1) {
2716 /* Dedicated channel */
2717 dequeue_wq = wq;
2718 } else {
2719 dev_err(dev, "Can't recover FQ 0x%x, ch: 0x%x",
2720 fqid, channel);
2721 ret = -EBUSY;
2722 goto out;
2724 /* Set the sdqcr to drain this channel */
2725 if (channel < qm_channel_pool1)
2726 qm_dqrr_sdqcr_set(&channel_portal->p,
2727 QM_SDQCR_TYPE_ACTIVE |
2728 QM_SDQCR_CHANNELS_DEDICATED);
2729 else
2730 qm_dqrr_sdqcr_set(&channel_portal->p,
2731 QM_SDQCR_TYPE_ACTIVE |
2732 QM_SDQCR_CHANNELS_POOL_CONV
2733 (channel));
2734 do {
2735 /* Keep draining DQRR while checking the MR*/
2736 qm_dqrr_drain_nomatch(&channel_portal->p);
2737 /* Process message ring too */
2738 found_fqrn = qm_mr_drain(&channel_portal->p,
2739 FQRN);
2740 cpu_relax();
2741 } while (!found_fqrn);
2742 /* Restore SDQCR */
2743 qm_dqrr_sdqcr_set(&channel_portal->p,
2744 channel_portal->sdqcr);
2747 if (res != QM_MCR_RESULT_OK &&
2748 res != QM_MCR_RESULT_PENDING) {
2749 dev_err(dev, "retire_fq failed: FQ 0x%x, res=0x%x\n",
2750 fqid, res);
2751 ret = -EIO;
2752 goto out;
2754 if (!(mcr->alterfq.fqs & QM_MCR_FQS_ORLPRESENT)) {
2756 * ORL had no entries, no need to wait until the
2757 * ERNs come in
2759 orl_empty = 1;
2762 * Retirement succeeded, check to see if FQ needs
2763 * to be drained
2765 if (drain || mcr->alterfq.fqs & QM_MCR_FQS_NOTEMPTY) {
2766 /* FQ is Not Empty, drain using volatile DQ commands */
2767 do {
2768 u32 vdqcr = fqid | QM_VDQCR_NUMFRAMES_SET(3);
2770 qm_dqrr_vdqcr_set(&p->p, vdqcr);
2772 * Wait for a dequeue and process the dequeues,
2773 * making sure to empty the ring completely
2775 } while (!qm_dqrr_drain_wait(&p->p, fqid, FQ_EMPTY));
2778 while (!orl_empty) {
2779 /* Wait for the ORL to have been completely drained */
2780 orl_empty = qm_mr_drain(&p->p, FQRL);
2781 cpu_relax();
2783 mcc = qm_mc_start(&p->p);
2784 qm_fqid_set(&mcc->fq, fqid);
2785 qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_OOS);
2786 if (!qm_mc_result_timeout(&p->p, &mcr)) {
2787 ret = -ETIMEDOUT;
2788 goto out;
2791 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) ==
2792 QM_MCR_VERB_ALTER_OOS);
2793 if (mcr->result != QM_MCR_RESULT_OK) {
2794 dev_err(dev, "OOS after drain fail: FQ 0x%x (0x%x)\n",
2795 fqid, mcr->result);
2796 ret = -EIO;
2797 goto out;
2799 break;
2801 case QM_MCR_NP_STATE_RETIRED:
2802 /* Send OOS Command */
2803 mcc = qm_mc_start(&p->p);
2804 qm_fqid_set(&mcc->fq, fqid);
2805 qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_OOS);
2806 if (!qm_mc_result_timeout(&p->p, &mcr)) {
2807 ret = -ETIMEDOUT;
2808 goto out;
2811 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) ==
2812 QM_MCR_VERB_ALTER_OOS);
2813 if (mcr->result != QM_MCR_RESULT_OK) {
2814 dev_err(dev, "OOS fail: FQ 0x%x (0x%x)\n",
2815 fqid, mcr->result);
2816 ret = -EIO;
2817 goto out;
2819 break;
2821 case QM_MCR_NP_STATE_OOS:
2822 /* Done */
2823 break;
2825 default:
2826 ret = -EIO;
2829 out:
2830 put_affine_portal();
2831 return ret;
2834 const struct qm_portal_config *qman_get_qm_portal_config(
2835 struct qman_portal *portal)
2837 return portal->config;
2839 EXPORT_SYMBOL(qman_get_qm_portal_config);
2841 struct gen_pool *qm_fqalloc; /* FQID allocator */
2842 struct gen_pool *qm_qpalloc; /* pool-channel allocator */
2843 struct gen_pool *qm_cgralloc; /* CGR ID allocator */
2845 static int qman_alloc_range(struct gen_pool *p, u32 *result, u32 cnt)
2847 unsigned long addr;
2849 if (!p)
2850 return -ENODEV;
2852 addr = gen_pool_alloc(p, cnt);
2853 if (!addr)
2854 return -ENOMEM;
2856 *result = addr & ~DPAA_GENALLOC_OFF;
2858 return 0;
2861 int qman_alloc_fqid_range(u32 *result, u32 count)
2863 return qman_alloc_range(qm_fqalloc, result, count);
2865 EXPORT_SYMBOL(qman_alloc_fqid_range);
2867 int qman_alloc_pool_range(u32 *result, u32 count)
2869 return qman_alloc_range(qm_qpalloc, result, count);
2871 EXPORT_SYMBOL(qman_alloc_pool_range);
2873 int qman_alloc_cgrid_range(u32 *result, u32 count)
2875 return qman_alloc_range(qm_cgralloc, result, count);
2877 EXPORT_SYMBOL(qman_alloc_cgrid_range);
2879 int qman_release_fqid(u32 fqid)
2881 int ret = qman_shutdown_fq(fqid);
2883 if (ret) {
2884 pr_debug("FQID %d leaked\n", fqid);
2885 return ret;
2888 gen_pool_free(qm_fqalloc, fqid | DPAA_GENALLOC_OFF, 1);
2889 return 0;
2891 EXPORT_SYMBOL(qman_release_fqid);
2893 static int qpool_cleanup(u32 qp)
2896 * We query all FQDs starting from
2897 * FQID 1 until we get an "invalid FQID" error, looking for non-OOS FQDs
2898 * whose destination channel is the pool-channel being released.
2899 * When a non-OOS FQD is found we attempt to clean it up
2901 struct qman_fq fq = {
2902 .fqid = QM_FQID_RANGE_START
2904 int err;
2906 do {
2907 struct qm_mcr_queryfq_np np;
2909 err = qman_query_fq_np(&fq, &np);
2910 if (err == -ERANGE)
2911 /* FQID range exceeded, found no problems */
2912 return 0;
2913 else if (WARN_ON(err))
2914 return err;
2916 if ((np.state & QM_MCR_NP_STATE_MASK) != QM_MCR_NP_STATE_OOS) {
2917 struct qm_fqd fqd;
2919 err = qman_query_fq(&fq, &fqd);
2920 if (WARN_ON(err))
2921 return err;
2922 if (qm_fqd_get_chan(&fqd) == qp) {
2923 /* The channel is the FQ's target, clean it */
2924 err = qman_shutdown_fq(fq.fqid);
2925 if (err)
2927 * Couldn't shut down the FQ
2928 * so the pool must be leaked
2930 return err;
2933 /* Move to the next FQID */
2934 fq.fqid++;
2935 } while (1);
2938 int qman_release_pool(u32 qp)
2940 int ret;
2942 ret = qpool_cleanup(qp);
2943 if (ret) {
2944 pr_debug("CHID %d leaked\n", qp);
2945 return ret;
2948 gen_pool_free(qm_qpalloc, qp | DPAA_GENALLOC_OFF, 1);
2949 return 0;
2951 EXPORT_SYMBOL(qman_release_pool);
2953 static int cgr_cleanup(u32 cgrid)
2956 * query all FQDs starting from FQID 1 until we get an "invalid FQID"
2957 * error, looking for non-OOS FQDs whose CGR is the CGR being released
2959 struct qman_fq fq = {
2960 .fqid = QM_FQID_RANGE_START
2962 int err;
2964 do {
2965 struct qm_mcr_queryfq_np np;
2967 err = qman_query_fq_np(&fq, &np);
2968 if (err == -ERANGE)
2969 /* FQID range exceeded, found no problems */
2970 return 0;
2971 else if (WARN_ON(err))
2972 return err;
2974 if ((np.state & QM_MCR_NP_STATE_MASK) != QM_MCR_NP_STATE_OOS) {
2975 struct qm_fqd fqd;
2977 err = qman_query_fq(&fq, &fqd);
2978 if (WARN_ON(err))
2979 return err;
2980 if (be16_to_cpu(fqd.fq_ctrl) & QM_FQCTRL_CGE &&
2981 fqd.cgid == cgrid) {
2982 pr_err("CRGID 0x%x is being used by FQID 0x%x, CGR will be leaked\n",
2983 cgrid, fq.fqid);
2984 return -EIO;
2987 /* Move to the next FQID */
2988 fq.fqid++;
2989 } while (1);
2992 int qman_release_cgrid(u32 cgrid)
2994 int ret;
2996 ret = cgr_cleanup(cgrid);
2997 if (ret) {
2998 pr_debug("CGRID %d leaked\n", cgrid);
2999 return ret;
3002 gen_pool_free(qm_cgralloc, cgrid | DPAA_GENALLOC_OFF, 1);
3003 return 0;
3005 EXPORT_SYMBOL(qman_release_cgrid);