1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Driver for Broadcom BCM2835 SPI Controllers
5 * Copyright (C) 2012 Chris Boot
6 * Copyright (C) 2013 Stephen Warren
7 * Copyright (C) 2015 Martin Sperl
9 * This driver is inspired by:
10 * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org>
11 * spi-atmel.c, Copyright (C) 2006 Atmel Corporation
14 #include <linux/clk.h>
15 #include <linux/completion.h>
16 #include <linux/debugfs.h>
17 #include <linux/delay.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/dmaengine.h>
20 #include <linux/err.h>
21 #include <linux/interrupt.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
26 #include <linux/of_address.h>
27 #include <linux/of_device.h>
28 #include <linux/gpio/consumer.h>
29 #include <linux/gpio/machine.h> /* FIXME: using chip internals */
30 #include <linux/gpio/driver.h> /* FIXME: using chip internals */
31 #include <linux/of_irq.h>
32 #include <linux/spi/spi.h>
34 /* SPI register offsets */
35 #define BCM2835_SPI_CS 0x00
36 #define BCM2835_SPI_FIFO 0x04
37 #define BCM2835_SPI_CLK 0x08
38 #define BCM2835_SPI_DLEN 0x0c
39 #define BCM2835_SPI_LTOH 0x10
40 #define BCM2835_SPI_DC 0x14
43 #define BCM2835_SPI_CS_LEN_LONG 0x02000000
44 #define BCM2835_SPI_CS_DMA_LEN 0x01000000
45 #define BCM2835_SPI_CS_CSPOL2 0x00800000
46 #define BCM2835_SPI_CS_CSPOL1 0x00400000
47 #define BCM2835_SPI_CS_CSPOL0 0x00200000
48 #define BCM2835_SPI_CS_RXF 0x00100000
49 #define BCM2835_SPI_CS_RXR 0x00080000
50 #define BCM2835_SPI_CS_TXD 0x00040000
51 #define BCM2835_SPI_CS_RXD 0x00020000
52 #define BCM2835_SPI_CS_DONE 0x00010000
53 #define BCM2835_SPI_CS_LEN 0x00002000
54 #define BCM2835_SPI_CS_REN 0x00001000
55 #define BCM2835_SPI_CS_ADCS 0x00000800
56 #define BCM2835_SPI_CS_INTR 0x00000400
57 #define BCM2835_SPI_CS_INTD 0x00000200
58 #define BCM2835_SPI_CS_DMAEN 0x00000100
59 #define BCM2835_SPI_CS_TA 0x00000080
60 #define BCM2835_SPI_CS_CSPOL 0x00000040
61 #define BCM2835_SPI_CS_CLEAR_RX 0x00000020
62 #define BCM2835_SPI_CS_CLEAR_TX 0x00000010
63 #define BCM2835_SPI_CS_CPOL 0x00000008
64 #define BCM2835_SPI_CS_CPHA 0x00000004
65 #define BCM2835_SPI_CS_CS_10 0x00000002
66 #define BCM2835_SPI_CS_CS_01 0x00000001
68 #define BCM2835_SPI_FIFO_SIZE 64
69 #define BCM2835_SPI_FIFO_SIZE_3_4 48
70 #define BCM2835_SPI_DMA_MIN_LENGTH 96
71 #define BCM2835_SPI_NUM_CS 4 /* raise as necessary */
72 #define BCM2835_SPI_MODE_BITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
73 | SPI_NO_CS | SPI_3WIRE)
75 #define DRV_NAME "spi-bcm2835"
77 /* define polling limits */
78 unsigned int polling_limit_us
= 30;
79 module_param(polling_limit_us
, uint
, 0664);
80 MODULE_PARM_DESC(polling_limit_us
,
81 "time in us to run a transfer in polling mode\n");
84 * struct bcm2835_spi - BCM2835 SPI controller
85 * @regs: base address of register map
86 * @clk: core clock, divided to calculate serial clock
87 * @irq: interrupt, signals TX FIFO empty or RX FIFO ¾ full
88 * @tfr: SPI transfer currently processed
89 * @tx_buf: pointer whence next transmitted byte is read
90 * @rx_buf: pointer where next received byte is written
91 * @tx_len: remaining bytes to transmit
92 * @rx_len: remaining bytes to receive
93 * @tx_prologue: bytes transmitted without DMA if first TX sglist entry's
94 * length is not a multiple of 4 (to overcome hardware limitation)
95 * @rx_prologue: bytes received without DMA if first RX sglist entry's
96 * length is not a multiple of 4 (to overcome hardware limitation)
97 * @tx_spillover: whether @tx_prologue spills over to second TX sglist entry
98 * @prepare_cs: precalculated CS register value for ->prepare_message()
99 * (uses slave-specific clock polarity and phase settings)
100 * @debugfs_dir: the debugfs directory - neede to remove debugfs when
101 * unloading the module
102 * @count_transfer_polling: count of how often polling mode is used
103 * @count_transfer_irq: count of how often interrupt mode is used
104 * @count_transfer_irq_after_polling: count of how often we fall back to
105 * interrupt mode after starting in polling mode.
106 * These are counted as well in @count_transfer_polling and
107 * @count_transfer_irq
108 * @count_transfer_dma: count how often dma mode is used
109 * @chip_select: SPI slave currently selected
110 * (used by bcm2835_spi_dma_tx_done() to write @clear_rx_cs)
111 * @tx_dma_active: whether a TX DMA descriptor is in progress
112 * @rx_dma_active: whether a RX DMA descriptor is in progress
113 * (used by bcm2835_spi_dma_tx_done() to handle a race)
114 * @fill_tx_desc: preallocated TX DMA descriptor used for RX-only transfers
115 * (cyclically copies from zero page to TX FIFO)
116 * @fill_tx_addr: bus address of zero page
117 * @clear_rx_desc: preallocated RX DMA descriptor used for TX-only transfers
118 * (cyclically clears RX FIFO by writing @clear_rx_cs to CS register)
119 * @clear_rx_addr: bus address of @clear_rx_cs
120 * @clear_rx_cs: precalculated CS register value to clear RX FIFO
121 * (uses slave-specific clock polarity and phase settings)
127 struct spi_transfer
*tfr
;
134 unsigned int tx_spillover
;
135 u32 prepare_cs
[BCM2835_SPI_NUM_CS
];
137 struct dentry
*debugfs_dir
;
138 u64 count_transfer_polling
;
139 u64 count_transfer_irq
;
140 u64 count_transfer_irq_after_polling
;
141 u64 count_transfer_dma
;
144 unsigned int tx_dma_active
;
145 unsigned int rx_dma_active
;
146 struct dma_async_tx_descriptor
*fill_tx_desc
;
147 dma_addr_t fill_tx_addr
;
148 struct dma_async_tx_descriptor
*clear_rx_desc
[BCM2835_SPI_NUM_CS
];
149 dma_addr_t clear_rx_addr
;
150 u32 clear_rx_cs
[BCM2835_SPI_NUM_CS
] ____cacheline_aligned
;
153 #if defined(CONFIG_DEBUG_FS)
154 static void bcm2835_debugfs_create(struct bcm2835_spi
*bs
,
161 snprintf(name
, sizeof(name
), "spi-bcm2835-%s", dname
);
163 /* the base directory */
164 dir
= debugfs_create_dir(name
, NULL
);
165 bs
->debugfs_dir
= dir
;
168 debugfs_create_u64("count_transfer_polling", 0444, dir
,
169 &bs
->count_transfer_polling
);
170 debugfs_create_u64("count_transfer_irq", 0444, dir
,
171 &bs
->count_transfer_irq
);
172 debugfs_create_u64("count_transfer_irq_after_polling", 0444, dir
,
173 &bs
->count_transfer_irq_after_polling
);
174 debugfs_create_u64("count_transfer_dma", 0444, dir
,
175 &bs
->count_transfer_dma
);
178 static void bcm2835_debugfs_remove(struct bcm2835_spi
*bs
)
180 debugfs_remove_recursive(bs
->debugfs_dir
);
181 bs
->debugfs_dir
= NULL
;
184 static void bcm2835_debugfs_create(struct bcm2835_spi
*bs
,
189 static void bcm2835_debugfs_remove(struct bcm2835_spi
*bs
)
192 #endif /* CONFIG_DEBUG_FS */
194 static inline u32
bcm2835_rd(struct bcm2835_spi
*bs
, unsigned reg
)
196 return readl(bs
->regs
+ reg
);
199 static inline void bcm2835_wr(struct bcm2835_spi
*bs
, unsigned reg
, u32 val
)
201 writel(val
, bs
->regs
+ reg
);
204 static inline void bcm2835_rd_fifo(struct bcm2835_spi
*bs
)
208 while ((bs
->rx_len
) &&
209 (bcm2835_rd(bs
, BCM2835_SPI_CS
) & BCM2835_SPI_CS_RXD
)) {
210 byte
= bcm2835_rd(bs
, BCM2835_SPI_FIFO
);
212 *bs
->rx_buf
++ = byte
;
217 static inline void bcm2835_wr_fifo(struct bcm2835_spi
*bs
)
221 while ((bs
->tx_len
) &&
222 (bcm2835_rd(bs
, BCM2835_SPI_CS
) & BCM2835_SPI_CS_TXD
)) {
223 byte
= bs
->tx_buf
? *bs
->tx_buf
++ : 0;
224 bcm2835_wr(bs
, BCM2835_SPI_FIFO
, byte
);
230 * bcm2835_rd_fifo_count() - blindly read exactly @count bytes from RX FIFO
231 * @bs: BCM2835 SPI controller
232 * @count: bytes to read from RX FIFO
234 * The caller must ensure that @bs->rx_len is greater than or equal to @count,
235 * that the RX FIFO contains at least @count bytes and that the DMA Enable flag
236 * in the CS register is set (such that a read from the FIFO register receives
237 * 32-bit instead of just 8-bit). Moreover @bs->rx_buf must not be %NULL.
239 static inline void bcm2835_rd_fifo_count(struct bcm2835_spi
*bs
, int count
)
247 val
= bcm2835_rd(bs
, BCM2835_SPI_FIFO
);
249 memcpy(bs
->rx_buf
, &val
, len
);
256 * bcm2835_wr_fifo_count() - blindly write exactly @count bytes to TX FIFO
257 * @bs: BCM2835 SPI controller
258 * @count: bytes to write to TX FIFO
260 * The caller must ensure that @bs->tx_len is greater than or equal to @count,
261 * that the TX FIFO can accommodate @count bytes and that the DMA Enable flag
262 * in the CS register is set (such that a write to the FIFO register transmits
263 * 32-bit instead of just 8-bit).
265 static inline void bcm2835_wr_fifo_count(struct bcm2835_spi
*bs
, int count
)
275 memcpy(&val
, bs
->tx_buf
, len
);
280 bcm2835_wr(bs
, BCM2835_SPI_FIFO
, val
);
286 * bcm2835_wait_tx_fifo_empty() - busy-wait for TX FIFO to empty
287 * @bs: BCM2835 SPI controller
289 * The caller must ensure that the RX FIFO can accommodate as many bytes
290 * as have been written to the TX FIFO: Transmission is halted once the
291 * RX FIFO is full, causing this function to spin forever.
293 static inline void bcm2835_wait_tx_fifo_empty(struct bcm2835_spi
*bs
)
295 while (!(bcm2835_rd(bs
, BCM2835_SPI_CS
) & BCM2835_SPI_CS_DONE
))
300 * bcm2835_rd_fifo_blind() - blindly read up to @count bytes from RX FIFO
301 * @bs: BCM2835 SPI controller
302 * @count: bytes available for reading in RX FIFO
304 static inline void bcm2835_rd_fifo_blind(struct bcm2835_spi
*bs
, int count
)
308 count
= min(count
, bs
->rx_len
);
312 val
= bcm2835_rd(bs
, BCM2835_SPI_FIFO
);
320 * bcm2835_wr_fifo_blind() - blindly write up to @count bytes to TX FIFO
321 * @bs: BCM2835 SPI controller
322 * @count: bytes available for writing in TX FIFO
324 static inline void bcm2835_wr_fifo_blind(struct bcm2835_spi
*bs
, int count
)
328 count
= min(count
, bs
->tx_len
);
332 val
= bs
->tx_buf
? *bs
->tx_buf
++ : 0;
333 bcm2835_wr(bs
, BCM2835_SPI_FIFO
, val
);
338 static void bcm2835_spi_reset_hw(struct spi_controller
*ctlr
)
340 struct bcm2835_spi
*bs
= spi_controller_get_devdata(ctlr
);
341 u32 cs
= bcm2835_rd(bs
, BCM2835_SPI_CS
);
343 /* Disable SPI interrupts and transfer */
344 cs
&= ~(BCM2835_SPI_CS_INTR
|
345 BCM2835_SPI_CS_INTD
|
346 BCM2835_SPI_CS_DMAEN
|
349 * Transmission sometimes breaks unless the DONE bit is written at the
350 * end of every transfer. The spec says it's a RO bit. Either the
351 * spec is wrong and the bit is actually of type RW1C, or it's a
354 cs
|= BCM2835_SPI_CS_DONE
;
355 /* and reset RX/TX FIFOS */
356 cs
|= BCM2835_SPI_CS_CLEAR_RX
| BCM2835_SPI_CS_CLEAR_TX
;
358 /* and reset the SPI_HW */
359 bcm2835_wr(bs
, BCM2835_SPI_CS
, cs
);
360 /* as well as DLEN */
361 bcm2835_wr(bs
, BCM2835_SPI_DLEN
, 0);
364 static irqreturn_t
bcm2835_spi_interrupt(int irq
, void *dev_id
)
366 struct spi_controller
*ctlr
= dev_id
;
367 struct bcm2835_spi
*bs
= spi_controller_get_devdata(ctlr
);
368 u32 cs
= bcm2835_rd(bs
, BCM2835_SPI_CS
);
371 * An interrupt is signaled either if DONE is set (TX FIFO empty)
372 * or if RXR is set (RX FIFO >= ¾ full).
374 if (cs
& BCM2835_SPI_CS_RXF
)
375 bcm2835_rd_fifo_blind(bs
, BCM2835_SPI_FIFO_SIZE
);
376 else if (cs
& BCM2835_SPI_CS_RXR
)
377 bcm2835_rd_fifo_blind(bs
, BCM2835_SPI_FIFO_SIZE_3_4
);
379 if (bs
->tx_len
&& cs
& BCM2835_SPI_CS_DONE
)
380 bcm2835_wr_fifo_blind(bs
, BCM2835_SPI_FIFO_SIZE
);
382 /* Read as many bytes as possible from FIFO */
384 /* Write as many bytes as possible to FIFO */
388 /* Transfer complete - reset SPI HW */
389 bcm2835_spi_reset_hw(ctlr
);
390 /* wake up the framework */
391 complete(&ctlr
->xfer_completion
);
397 static int bcm2835_spi_transfer_one_irq(struct spi_controller
*ctlr
,
398 struct spi_device
*spi
,
399 struct spi_transfer
*tfr
,
400 u32 cs
, bool fifo_empty
)
402 struct bcm2835_spi
*bs
= spi_controller_get_devdata(ctlr
);
404 /* update usage statistics */
405 bs
->count_transfer_irq
++;
408 * Enable HW block, but with interrupts still disabled.
409 * Otherwise the empty TX FIFO would immediately trigger an interrupt.
411 bcm2835_wr(bs
, BCM2835_SPI_CS
, cs
| BCM2835_SPI_CS_TA
);
413 /* fill TX FIFO as much as possible */
415 bcm2835_wr_fifo_blind(bs
, BCM2835_SPI_FIFO_SIZE
);
418 /* enable interrupts */
419 cs
|= BCM2835_SPI_CS_INTR
| BCM2835_SPI_CS_INTD
| BCM2835_SPI_CS_TA
;
420 bcm2835_wr(bs
, BCM2835_SPI_CS
, cs
);
422 /* signal that we need to wait for completion */
427 * bcm2835_spi_transfer_prologue() - transfer first few bytes without DMA
428 * @ctlr: SPI master controller
430 * @bs: BCM2835 SPI controller
433 * A limitation in DMA mode is that the FIFO must be accessed in 4 byte chunks.
434 * Only the final write access is permitted to transmit less than 4 bytes, the
435 * SPI controller deduces its intended size from the DLEN register.
437 * If a TX or RX sglist contains multiple entries, one per page, and the first
438 * entry starts in the middle of a page, that first entry's length may not be
439 * a multiple of 4. Subsequent entries are fine because they span an entire
440 * page, hence do have a length that's a multiple of 4.
442 * This cannot happen with kmalloc'ed buffers (which is what most clients use)
443 * because they are contiguous in physical memory and therefore not split on
444 * page boundaries by spi_map_buf(). But it *can* happen with vmalloc'ed
447 * The DMA engine is incapable of combining sglist entries into a continuous
448 * stream of 4 byte chunks, it treats every entry separately: A TX entry is
449 * rounded up a to a multiple of 4 bytes by transmitting surplus bytes, an RX
450 * entry is rounded up by throwing away received bytes.
452 * Overcome this limitation by transferring the first few bytes without DMA:
453 * E.g. if the first TX sglist entry's length is 23 and the first RX's is 42,
454 * write 3 bytes to the TX FIFO but read only 2 bytes from the RX FIFO.
455 * The residue of 1 byte in the RX FIFO is picked up by DMA. Together with
456 * the rest of the first RX sglist entry it makes up a multiple of 4 bytes.
458 * Should the RX prologue be larger, say, 3 vis-à-vis a TX prologue of 1,
459 * write 1 + 4 = 5 bytes to the TX FIFO and read 3 bytes from the RX FIFO.
460 * Caution, the additional 4 bytes spill over to the second TX sglist entry
461 * if the length of the first is *exactly* 1.
463 * At most 6 bytes are written and at most 3 bytes read. Do we know the
464 * transfer has this many bytes? Yes, see BCM2835_SPI_DMA_MIN_LENGTH.
466 * The FIFO is normally accessed with 8-bit width by the CPU and 32-bit width
467 * by the DMA engine. Toggling the DMA Enable flag in the CS register switches
468 * the width but also garbles the FIFO's contents. The prologue must therefore
469 * be transmitted in 32-bit width to ensure that the following DMA transfer can
470 * pick up the residue in the RX FIFO in ungarbled form.
472 static void bcm2835_spi_transfer_prologue(struct spi_controller
*ctlr
,
473 struct spi_transfer
*tfr
,
474 struct bcm2835_spi
*bs
,
482 bs
->tx_spillover
= false;
484 if (bs
->tx_buf
&& !sg_is_last(&tfr
->tx_sg
.sgl
[0]))
485 bs
->tx_prologue
= sg_dma_len(&tfr
->tx_sg
.sgl
[0]) & 3;
487 if (bs
->rx_buf
&& !sg_is_last(&tfr
->rx_sg
.sgl
[0])) {
488 bs
->rx_prologue
= sg_dma_len(&tfr
->rx_sg
.sgl
[0]) & 3;
490 if (bs
->rx_prologue
> bs
->tx_prologue
) {
491 if (!bs
->tx_buf
|| sg_is_last(&tfr
->tx_sg
.sgl
[0])) {
492 bs
->tx_prologue
= bs
->rx_prologue
;
494 bs
->tx_prologue
+= 4;
496 !(sg_dma_len(&tfr
->tx_sg
.sgl
[0]) & ~3);
501 /* rx_prologue > 0 implies tx_prologue > 0, so check only the latter */
502 if (!bs
->tx_prologue
)
505 /* Write and read RX prologue. Adjust first entry in RX sglist. */
506 if (bs
->rx_prologue
) {
507 bcm2835_wr(bs
, BCM2835_SPI_DLEN
, bs
->rx_prologue
);
508 bcm2835_wr(bs
, BCM2835_SPI_CS
, cs
| BCM2835_SPI_CS_TA
509 | BCM2835_SPI_CS_DMAEN
);
510 bcm2835_wr_fifo_count(bs
, bs
->rx_prologue
);
511 bcm2835_wait_tx_fifo_empty(bs
);
512 bcm2835_rd_fifo_count(bs
, bs
->rx_prologue
);
513 bcm2835_wr(bs
, BCM2835_SPI_CS
, cs
| BCM2835_SPI_CS_CLEAR_RX
514 | BCM2835_SPI_CS_CLEAR_TX
515 | BCM2835_SPI_CS_DONE
);
517 dma_sync_single_for_device(ctlr
->dma_rx
->device
->dev
,
518 sg_dma_address(&tfr
->rx_sg
.sgl
[0]),
519 bs
->rx_prologue
, DMA_FROM_DEVICE
);
521 sg_dma_address(&tfr
->rx_sg
.sgl
[0]) += bs
->rx_prologue
;
522 sg_dma_len(&tfr
->rx_sg
.sgl
[0]) -= bs
->rx_prologue
;
529 * Write remaining TX prologue. Adjust first entry in TX sglist.
530 * Also adjust second entry if prologue spills over to it.
532 tx_remaining
= bs
->tx_prologue
- bs
->rx_prologue
;
534 bcm2835_wr(bs
, BCM2835_SPI_DLEN
, tx_remaining
);
535 bcm2835_wr(bs
, BCM2835_SPI_CS
, cs
| BCM2835_SPI_CS_TA
536 | BCM2835_SPI_CS_DMAEN
);
537 bcm2835_wr_fifo_count(bs
, tx_remaining
);
538 bcm2835_wait_tx_fifo_empty(bs
);
539 bcm2835_wr(bs
, BCM2835_SPI_CS
, cs
| BCM2835_SPI_CS_CLEAR_TX
540 | BCM2835_SPI_CS_DONE
);
543 if (likely(!bs
->tx_spillover
)) {
544 sg_dma_address(&tfr
->tx_sg
.sgl
[0]) += bs
->tx_prologue
;
545 sg_dma_len(&tfr
->tx_sg
.sgl
[0]) -= bs
->tx_prologue
;
547 sg_dma_len(&tfr
->tx_sg
.sgl
[0]) = 0;
548 sg_dma_address(&tfr
->tx_sg
.sgl
[1]) += 4;
549 sg_dma_len(&tfr
->tx_sg
.sgl
[1]) -= 4;
554 * bcm2835_spi_undo_prologue() - reconstruct original sglist state
555 * @bs: BCM2835 SPI controller
557 * Undo changes which were made to an SPI transfer's sglist when transmitting
558 * the prologue. This is necessary to ensure the same memory ranges are
559 * unmapped that were originally mapped.
561 static void bcm2835_spi_undo_prologue(struct bcm2835_spi
*bs
)
563 struct spi_transfer
*tfr
= bs
->tfr
;
565 if (!bs
->tx_prologue
)
568 if (bs
->rx_prologue
) {
569 sg_dma_address(&tfr
->rx_sg
.sgl
[0]) -= bs
->rx_prologue
;
570 sg_dma_len(&tfr
->rx_sg
.sgl
[0]) += bs
->rx_prologue
;
576 if (likely(!bs
->tx_spillover
)) {
577 sg_dma_address(&tfr
->tx_sg
.sgl
[0]) -= bs
->tx_prologue
;
578 sg_dma_len(&tfr
->tx_sg
.sgl
[0]) += bs
->tx_prologue
;
580 sg_dma_len(&tfr
->tx_sg
.sgl
[0]) = bs
->tx_prologue
- 4;
581 sg_dma_address(&tfr
->tx_sg
.sgl
[1]) -= 4;
582 sg_dma_len(&tfr
->tx_sg
.sgl
[1]) += 4;
589 * bcm2835_spi_dma_rx_done() - callback for DMA RX channel
590 * @data: SPI master controller
592 * Used for bidirectional and RX-only transfers.
594 static void bcm2835_spi_dma_rx_done(void *data
)
596 struct spi_controller
*ctlr
= data
;
597 struct bcm2835_spi
*bs
= spi_controller_get_devdata(ctlr
);
599 /* terminate tx-dma as we do not have an irq for it
600 * because when the rx dma will terminate and this callback
601 * is called the tx-dma must have finished - can't get to this
602 * situation otherwise...
604 dmaengine_terminate_async(ctlr
->dma_tx
);
605 bs
->tx_dma_active
= false;
606 bs
->rx_dma_active
= false;
607 bcm2835_spi_undo_prologue(bs
);
609 /* reset fifo and HW */
610 bcm2835_spi_reset_hw(ctlr
);
612 /* and mark as completed */;
613 complete(&ctlr
->xfer_completion
);
617 * bcm2835_spi_dma_tx_done() - callback for DMA TX channel
618 * @data: SPI master controller
620 * Used for TX-only transfers.
622 static void bcm2835_spi_dma_tx_done(void *data
)
624 struct spi_controller
*ctlr
= data
;
625 struct bcm2835_spi
*bs
= spi_controller_get_devdata(ctlr
);
627 /* busy-wait for TX FIFO to empty */
628 while (!(bcm2835_rd(bs
, BCM2835_SPI_CS
) & BCM2835_SPI_CS_DONE
))
629 bcm2835_wr(bs
, BCM2835_SPI_CS
,
630 bs
->clear_rx_cs
[bs
->chip_select
]);
632 bs
->tx_dma_active
= false;
636 * In case of a very short transfer, RX DMA may not have been
637 * issued yet. The onus is then on bcm2835_spi_transfer_one_dma()
638 * to terminate it immediately after issuing.
640 if (cmpxchg(&bs
->rx_dma_active
, true, false))
641 dmaengine_terminate_async(ctlr
->dma_rx
);
643 bcm2835_spi_undo_prologue(bs
);
644 bcm2835_spi_reset_hw(ctlr
);
645 complete(&ctlr
->xfer_completion
);
649 * bcm2835_spi_prepare_sg() - prepare and submit DMA descriptor for sglist
650 * @ctlr: SPI master controller
653 * @bs: BCM2835 SPI controller
654 * @is_tx: whether to submit DMA descriptor for TX or RX sglist
656 * Prepare and submit a DMA descriptor for the TX or RX sglist of @tfr.
657 * Return 0 on success or a negative error number.
659 static int bcm2835_spi_prepare_sg(struct spi_controller
*ctlr
,
660 struct spi_device
*spi
,
661 struct spi_transfer
*tfr
,
662 struct bcm2835_spi
*bs
,
665 struct dma_chan
*chan
;
666 struct scatterlist
*sgl
;
668 enum dma_transfer_direction dir
;
671 struct dma_async_tx_descriptor
*desc
;
675 dir
= DMA_MEM_TO_DEV
;
677 nents
= tfr
->tx_sg
.nents
;
678 sgl
= tfr
->tx_sg
.sgl
;
679 flags
= tfr
->rx_buf
? 0 : DMA_PREP_INTERRUPT
;
681 dir
= DMA_DEV_TO_MEM
;
683 nents
= tfr
->rx_sg
.nents
;
684 sgl
= tfr
->rx_sg
.sgl
;
685 flags
= DMA_PREP_INTERRUPT
;
687 /* prepare the channel */
688 desc
= dmaengine_prep_slave_sg(chan
, sgl
, nents
, dir
, flags
);
693 * Completion is signaled by the RX channel for bidirectional and
694 * RX-only transfers; else by the TX channel for TX-only transfers.
697 desc
->callback
= bcm2835_spi_dma_rx_done
;
698 desc
->callback_param
= ctlr
;
699 } else if (!tfr
->rx_buf
) {
700 desc
->callback
= bcm2835_spi_dma_tx_done
;
701 desc
->callback_param
= ctlr
;
702 bs
->chip_select
= spi
->chip_select
;
705 /* submit it to DMA-engine */
706 cookie
= dmaengine_submit(desc
);
708 return dma_submit_error(cookie
);
712 * bcm2835_spi_transfer_one_dma() - perform SPI transfer using DMA engine
713 * @ctlr: SPI master controller
718 * For *bidirectional* transfers (both tx_buf and rx_buf are non-%NULL), set up
719 * the TX and RX DMA channel to copy between memory and FIFO register.
721 * For *TX-only* transfers (rx_buf is %NULL), copying the RX FIFO's contents to
722 * memory is pointless. However not reading the RX FIFO isn't an option either
723 * because transmission is halted once it's full. As a workaround, cyclically
724 * clear the RX FIFO by setting the CLEAR_RX bit in the CS register.
726 * The CS register value is precalculated in bcm2835_spi_setup(). Normally
727 * this is called only once, on slave registration. A DMA descriptor to write
728 * this value is preallocated in bcm2835_dma_init(). All that's left to do
729 * when performing a TX-only transfer is to submit this descriptor to the RX
730 * DMA channel. Latency is thereby minimized. The descriptor does not
731 * generate any interrupts while running. It must be terminated once the
732 * TX DMA channel is done.
734 * Clearing the RX FIFO is paced by the DREQ signal. The signal is asserted
735 * when the RX FIFO becomes half full, i.e. 32 bytes. (Tuneable with the DC
736 * register.) Reading 32 bytes from the RX FIFO would normally require 8 bus
737 * accesses, whereas clearing it requires only 1 bus access. So an 8-fold
738 * reduction in bus traffic and thus energy consumption is achieved.
740 * For *RX-only* transfers (tx_buf is %NULL), fill the TX FIFO by cyclically
741 * copying from the zero page. The DMA descriptor to do this is preallocated
742 * in bcm2835_dma_init(). It must be terminated once the RX DMA channel is
743 * done and can then be reused.
745 * The BCM2835 DMA driver autodetects when a transaction copies from the zero
746 * page and utilizes the DMA controller's ability to synthesize zeroes instead
747 * of copying them from memory. This reduces traffic on the memory bus. The
748 * feature is not available on so-called "lite" channels, but normally TX DMA
749 * is backed by a full-featured channel.
751 * Zero-filling the TX FIFO is paced by the DREQ signal. Unfortunately the
752 * BCM2835 SPI controller continues to assert DREQ even after the DLEN register
753 * has been counted down to zero (hardware erratum). Thus, when the transfer
754 * has finished, the DMA engine zero-fills the TX FIFO until it is half full.
755 * (Tuneable with the DC register.) So up to 9 gratuitous bus accesses are
756 * performed at the end of an RX-only transfer.
758 static int bcm2835_spi_transfer_one_dma(struct spi_controller
*ctlr
,
759 struct spi_device
*spi
,
760 struct spi_transfer
*tfr
,
763 struct bcm2835_spi
*bs
= spi_controller_get_devdata(ctlr
);
767 /* update usage statistics */
768 bs
->count_transfer_dma
++;
771 * Transfer first few bytes without DMA if length of first TX or RX
772 * sglist entry is not a multiple of 4 bytes (hardware limitation).
774 bcm2835_spi_transfer_prologue(ctlr
, tfr
, bs
, cs
);
778 ret
= bcm2835_spi_prepare_sg(ctlr
, spi
, tfr
, bs
, true);
780 cookie
= dmaengine_submit(bs
->fill_tx_desc
);
781 ret
= dma_submit_error(cookie
);
786 /* set the DMA length */
787 bcm2835_wr(bs
, BCM2835_SPI_DLEN
, bs
->tx_len
);
790 bcm2835_wr(bs
, BCM2835_SPI_CS
,
791 cs
| BCM2835_SPI_CS_TA
| BCM2835_SPI_CS_DMAEN
);
793 bs
->tx_dma_active
= true;
797 dma_async_issue_pending(ctlr
->dma_tx
);
799 /* setup rx-DMA late - to run transfers while
800 * mapping of the rx buffers still takes place
801 * this saves 10us or more.
804 ret
= bcm2835_spi_prepare_sg(ctlr
, spi
, tfr
, bs
, false);
806 cookie
= dmaengine_submit(bs
->clear_rx_desc
[spi
->chip_select
]);
807 ret
= dma_submit_error(cookie
);
810 /* need to reset on errors */
811 dmaengine_terminate_sync(ctlr
->dma_tx
);
812 bs
->tx_dma_active
= false;
816 /* start rx dma late */
817 dma_async_issue_pending(ctlr
->dma_rx
);
818 bs
->rx_dma_active
= true;
822 * In case of a very short TX-only transfer, bcm2835_spi_dma_tx_done()
823 * may run before RX DMA is issued. Terminate RX DMA if so.
825 if (!bs
->rx_buf
&& !bs
->tx_dma_active
&&
826 cmpxchg(&bs
->rx_dma_active
, true, false)) {
827 dmaengine_terminate_async(ctlr
->dma_rx
);
828 bcm2835_spi_reset_hw(ctlr
);
831 /* wait for wakeup in framework */
835 bcm2835_spi_reset_hw(ctlr
);
836 bcm2835_spi_undo_prologue(bs
);
840 static bool bcm2835_spi_can_dma(struct spi_controller
*ctlr
,
841 struct spi_device
*spi
,
842 struct spi_transfer
*tfr
)
844 /* we start DMA efforts only on bigger transfers */
845 if (tfr
->len
< BCM2835_SPI_DMA_MIN_LENGTH
)
852 static void bcm2835_dma_release(struct spi_controller
*ctlr
,
853 struct bcm2835_spi
*bs
)
858 dmaengine_terminate_sync(ctlr
->dma_tx
);
860 if (bs
->fill_tx_desc
)
861 dmaengine_desc_free(bs
->fill_tx_desc
);
863 if (bs
->fill_tx_addr
)
864 dma_unmap_page_attrs(ctlr
->dma_tx
->device
->dev
,
865 bs
->fill_tx_addr
, sizeof(u32
),
867 DMA_ATTR_SKIP_CPU_SYNC
);
869 dma_release_channel(ctlr
->dma_tx
);
874 dmaengine_terminate_sync(ctlr
->dma_rx
);
876 for (i
= 0; i
< BCM2835_SPI_NUM_CS
; i
++)
877 if (bs
->clear_rx_desc
[i
])
878 dmaengine_desc_free(bs
->clear_rx_desc
[i
]);
880 if (bs
->clear_rx_addr
)
881 dma_unmap_single(ctlr
->dma_rx
->device
->dev
,
883 sizeof(bs
->clear_rx_cs
),
886 dma_release_channel(ctlr
->dma_rx
);
891 static int bcm2835_dma_init(struct spi_controller
*ctlr
, struct device
*dev
,
892 struct bcm2835_spi
*bs
)
894 struct dma_slave_config slave_config
;
896 dma_addr_t dma_reg_base
;
899 /* base address in dma-space */
900 addr
= of_get_address(ctlr
->dev
.of_node
, 0, NULL
, NULL
);
902 dev_err(dev
, "could not get DMA-register address - not using dma mode\n");
903 /* Fall back to interrupt mode */
906 dma_reg_base
= be32_to_cpup(addr
);
909 ctlr
->dma_tx
= dma_request_chan(dev
, "tx");
910 if (IS_ERR(ctlr
->dma_tx
)) {
911 dev_err(dev
, "no tx-dma configuration found - not using dma mode\n");
912 ret
= PTR_ERR(ctlr
->dma_tx
);
916 ctlr
->dma_rx
= dma_request_chan(dev
, "rx");
917 if (IS_ERR(ctlr
->dma_rx
)) {
918 dev_err(dev
, "no rx-dma configuration found - not using dma mode\n");
919 ret
= PTR_ERR(ctlr
->dma_rx
);
925 * The TX DMA channel either copies a transfer's TX buffer to the FIFO
926 * or, in case of an RX-only transfer, cyclically copies from the zero
927 * page to the FIFO using a preallocated, reusable descriptor.
929 slave_config
.dst_addr
= (u32
)(dma_reg_base
+ BCM2835_SPI_FIFO
);
930 slave_config
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
932 ret
= dmaengine_slave_config(ctlr
->dma_tx
, &slave_config
);
936 bs
->fill_tx_addr
= dma_map_page_attrs(ctlr
->dma_tx
->device
->dev
,
937 ZERO_PAGE(0), 0, sizeof(u32
),
939 DMA_ATTR_SKIP_CPU_SYNC
);
940 if (dma_mapping_error(ctlr
->dma_tx
->device
->dev
, bs
->fill_tx_addr
)) {
941 dev_err(dev
, "cannot map zero page - not using DMA mode\n");
942 bs
->fill_tx_addr
= 0;
946 bs
->fill_tx_desc
= dmaengine_prep_dma_cyclic(ctlr
->dma_tx
,
950 if (!bs
->fill_tx_desc
) {
951 dev_err(dev
, "cannot prepare fill_tx_desc - not using DMA mode\n");
955 ret
= dmaengine_desc_set_reuse(bs
->fill_tx_desc
);
957 dev_err(dev
, "cannot reuse fill_tx_desc - not using DMA mode\n");
962 * The RX DMA channel is used bidirectionally: It either reads the
963 * RX FIFO or, in case of a TX-only transfer, cyclically writes a
964 * precalculated value to the CS register to clear the RX FIFO.
966 slave_config
.src_addr
= (u32
)(dma_reg_base
+ BCM2835_SPI_FIFO
);
967 slave_config
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
968 slave_config
.dst_addr
= (u32
)(dma_reg_base
+ BCM2835_SPI_CS
);
969 slave_config
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
971 ret
= dmaengine_slave_config(ctlr
->dma_rx
, &slave_config
);
975 bs
->clear_rx_addr
= dma_map_single(ctlr
->dma_rx
->device
->dev
,
977 sizeof(bs
->clear_rx_cs
),
979 if (dma_mapping_error(ctlr
->dma_rx
->device
->dev
, bs
->clear_rx_addr
)) {
980 dev_err(dev
, "cannot map clear_rx_cs - not using DMA mode\n");
981 bs
->clear_rx_addr
= 0;
985 for (i
= 0; i
< BCM2835_SPI_NUM_CS
; i
++) {
986 bs
->clear_rx_desc
[i
] = dmaengine_prep_dma_cyclic(ctlr
->dma_rx
,
987 bs
->clear_rx_addr
+ i
* sizeof(u32
),
990 if (!bs
->clear_rx_desc
[i
]) {
991 dev_err(dev
, "cannot prepare clear_rx_desc - not using DMA mode\n");
995 ret
= dmaengine_desc_set_reuse(bs
->clear_rx_desc
[i
]);
997 dev_err(dev
, "cannot reuse clear_rx_desc - not using DMA mode\n");
1002 /* all went well, so set can_dma */
1003 ctlr
->can_dma
= bcm2835_spi_can_dma
;
1008 dev_err(dev
, "issue configuring dma: %d - not using DMA mode\n",
1011 bcm2835_dma_release(ctlr
, bs
);
1014 * Only report error for deferred probing, otherwise fall back to
1017 if (ret
!= -EPROBE_DEFER
)
1023 static int bcm2835_spi_transfer_one_poll(struct spi_controller
*ctlr
,
1024 struct spi_device
*spi
,
1025 struct spi_transfer
*tfr
,
1028 struct bcm2835_spi
*bs
= spi_controller_get_devdata(ctlr
);
1029 unsigned long timeout
;
1031 /* update usage statistics */
1032 bs
->count_transfer_polling
++;
1034 /* enable HW block without interrupts */
1035 bcm2835_wr(bs
, BCM2835_SPI_CS
, cs
| BCM2835_SPI_CS_TA
);
1037 /* fill in the fifo before timeout calculations
1038 * if we are interrupted here, then the data is
1039 * getting transferred by the HW while we are interrupted
1041 bcm2835_wr_fifo_blind(bs
, BCM2835_SPI_FIFO_SIZE
);
1043 /* set the timeout to at least 2 jiffies */
1044 timeout
= jiffies
+ 2 + HZ
* polling_limit_us
/ 1000000;
1046 /* loop until finished the transfer */
1047 while (bs
->rx_len
) {
1048 /* fill in tx fifo with remaining data */
1049 bcm2835_wr_fifo(bs
);
1051 /* read from fifo as much as possible */
1052 bcm2835_rd_fifo(bs
);
1054 /* if there is still data pending to read
1055 * then check the timeout
1057 if (bs
->rx_len
&& time_after(jiffies
, timeout
)) {
1058 dev_dbg_ratelimited(&spi
->dev
,
1059 "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
1061 bs
->tx_len
, bs
->rx_len
);
1062 /* fall back to interrupt mode */
1064 /* update usage statistics */
1065 bs
->count_transfer_irq_after_polling
++;
1067 return bcm2835_spi_transfer_one_irq(ctlr
, spi
,
1072 /* Transfer complete - reset SPI HW */
1073 bcm2835_spi_reset_hw(ctlr
);
1074 /* and return without waiting for completion */
1078 static int bcm2835_spi_transfer_one(struct spi_controller
*ctlr
,
1079 struct spi_device
*spi
,
1080 struct spi_transfer
*tfr
)
1082 struct bcm2835_spi
*bs
= spi_controller_get_devdata(ctlr
);
1083 unsigned long spi_hz
, clk_hz
, cdiv
, spi_used_hz
;
1084 unsigned long hz_per_byte
, byte_limit
;
1085 u32 cs
= bs
->prepare_cs
[spi
->chip_select
];
1088 spi_hz
= tfr
->speed_hz
;
1089 clk_hz
= clk_get_rate(bs
->clk
);
1091 if (spi_hz
>= clk_hz
/ 2) {
1092 cdiv
= 2; /* clk_hz/2 is the fastest we can go */
1093 } else if (spi_hz
) {
1094 /* CDIV must be a multiple of two */
1095 cdiv
= DIV_ROUND_UP(clk_hz
, spi_hz
);
1099 cdiv
= 0; /* 0 is the slowest we can go */
1101 cdiv
= 0; /* 0 is the slowest we can go */
1103 spi_used_hz
= cdiv
? (clk_hz
/ cdiv
) : (clk_hz
/ 65536);
1104 bcm2835_wr(bs
, BCM2835_SPI_CLK
, cdiv
);
1106 /* handle all the 3-wire mode */
1107 if (spi
->mode
& SPI_3WIRE
&& tfr
->rx_buf
)
1108 cs
|= BCM2835_SPI_CS_REN
;
1110 /* set transmit buffers and length */
1111 bs
->tx_buf
= tfr
->tx_buf
;
1112 bs
->rx_buf
= tfr
->rx_buf
;
1113 bs
->tx_len
= tfr
->len
;
1114 bs
->rx_len
= tfr
->len
;
1116 /* Calculate the estimated time in us the transfer runs. Note that
1117 * there is 1 idle clocks cycles after each byte getting transferred
1118 * so we have 9 cycles/byte. This is used to find the number of Hz
1119 * per byte per polling limit. E.g., we can transfer 1 byte in 30 us
1120 * per 300,000 Hz of bus clock.
1122 hz_per_byte
= polling_limit_us
? (9 * 1000000) / polling_limit_us
: 0;
1123 byte_limit
= hz_per_byte
? spi_used_hz
/ hz_per_byte
: 1;
1125 /* run in polling mode for short transfers */
1126 if (tfr
->len
< byte_limit
)
1127 return bcm2835_spi_transfer_one_poll(ctlr
, spi
, tfr
, cs
);
1129 /* run in dma mode if conditions are right
1130 * Note that unlike poll or interrupt mode DMA mode does not have
1131 * this 1 idle clock cycle pattern but runs the spi clock without gaps
1133 if (ctlr
->can_dma
&& bcm2835_spi_can_dma(ctlr
, spi
, tfr
))
1134 return bcm2835_spi_transfer_one_dma(ctlr
, spi
, tfr
, cs
);
1136 /* run in interrupt-mode */
1137 return bcm2835_spi_transfer_one_irq(ctlr
, spi
, tfr
, cs
, true);
1140 static int bcm2835_spi_prepare_message(struct spi_controller
*ctlr
,
1141 struct spi_message
*msg
)
1143 struct spi_device
*spi
= msg
->spi
;
1144 struct bcm2835_spi
*bs
= spi_controller_get_devdata(ctlr
);
1147 if (ctlr
->can_dma
) {
1149 * DMA transfers are limited to 16 bit (0 to 65535 bytes) by
1150 * the SPI HW due to DLEN. Split up transfers (32-bit FIFO
1151 * aligned) if the limit is exceeded.
1153 ret
= spi_split_transfers_maxsize(ctlr
, msg
, 65532,
1154 GFP_KERNEL
| GFP_DMA
);
1160 * Set up clock polarity before spi_transfer_one_message() asserts
1161 * chip select to avoid a gratuitous clock signal edge.
1163 bcm2835_wr(bs
, BCM2835_SPI_CS
, bs
->prepare_cs
[spi
->chip_select
]);
1168 static void bcm2835_spi_handle_err(struct spi_controller
*ctlr
,
1169 struct spi_message
*msg
)
1171 struct bcm2835_spi
*bs
= spi_controller_get_devdata(ctlr
);
1173 /* if an error occurred and we have an active dma, then terminate */
1174 dmaengine_terminate_sync(ctlr
->dma_tx
);
1175 bs
->tx_dma_active
= false;
1176 dmaengine_terminate_sync(ctlr
->dma_rx
);
1177 bs
->rx_dma_active
= false;
1178 bcm2835_spi_undo_prologue(bs
);
1181 bcm2835_spi_reset_hw(ctlr
);
1184 static int chip_match_name(struct gpio_chip
*chip
, void *data
)
1186 return !strcmp(chip
->label
, data
);
1189 static int bcm2835_spi_setup(struct spi_device
*spi
)
1191 struct spi_controller
*ctlr
= spi
->controller
;
1192 struct bcm2835_spi
*bs
= spi_controller_get_devdata(ctlr
);
1193 struct gpio_chip
*chip
;
1194 enum gpio_lookup_flags lflags
;
1198 * Precalculate SPI slave's CS register value for ->prepare_message():
1199 * The driver always uses software-controlled GPIO chip select, hence
1200 * set the hardware-controlled native chip select to an invalid value
1201 * to prevent it from interfering.
1203 cs
= BCM2835_SPI_CS_CS_10
| BCM2835_SPI_CS_CS_01
;
1204 if (spi
->mode
& SPI_CPOL
)
1205 cs
|= BCM2835_SPI_CS_CPOL
;
1206 if (spi
->mode
& SPI_CPHA
)
1207 cs
|= BCM2835_SPI_CS_CPHA
;
1208 bs
->prepare_cs
[spi
->chip_select
] = cs
;
1211 * Precalculate SPI slave's CS register value to clear RX FIFO
1212 * in case of a TX-only DMA transfer.
1215 bs
->clear_rx_cs
[spi
->chip_select
] = cs
|
1217 BCM2835_SPI_CS_DMAEN
|
1218 BCM2835_SPI_CS_CLEAR_RX
;
1219 dma_sync_single_for_device(ctlr
->dma_rx
->device
->dev
,
1221 sizeof(bs
->clear_rx_cs
),
1226 * sanity checking the native-chipselects
1228 if (spi
->mode
& SPI_NO_CS
)
1231 * The SPI core has successfully requested the CS GPIO line from the
1232 * device tree, so we are done.
1236 if (spi
->chip_select
> 1) {
1237 /* error in the case of native CS requested with CS > 1
1238 * officially there is a CS2, but it is not documented
1239 * which GPIO is connected with that...
1242 "setup: only two native chip-selects are supported\n");
1247 * Translate native CS to GPIO
1249 * FIXME: poking around in the gpiolib internals like this is
1250 * not very good practice. Find a way to locate the real problem
1251 * and fix it. Why is the GPIO descriptor in spi->cs_gpiod
1252 * sometimes not assigned correctly? Erroneous device trees?
1255 /* get the gpio chip for the base */
1256 chip
= gpiochip_find("pinctrl-bcm2835", chip_match_name
);
1261 * Retrieve the corresponding GPIO line used for CS.
1262 * The inversion semantics will be handled by the GPIO core
1263 * code, so we pass GPIOD_OUT_LOW for "unasserted" and
1264 * the correct flag for inversion semantics. The SPI_CS_HIGH
1265 * on spi->mode cannot be checked for polarity in this case
1266 * as the flag use_gpio_descriptors enforces SPI_CS_HIGH.
1268 if (of_property_read_bool(spi
->dev
.of_node
, "spi-cs-high"))
1269 lflags
= GPIO_ACTIVE_HIGH
;
1271 lflags
= GPIO_ACTIVE_LOW
;
1272 spi
->cs_gpiod
= gpiochip_request_own_desc(chip
, 8 - spi
->chip_select
,
1276 if (IS_ERR(spi
->cs_gpiod
))
1277 return PTR_ERR(spi
->cs_gpiod
);
1279 /* and set up the "mode" and level */
1280 dev_info(&spi
->dev
, "setting up native-CS%i to use GPIO\n",
1286 static int bcm2835_spi_probe(struct platform_device
*pdev
)
1288 struct spi_controller
*ctlr
;
1289 struct bcm2835_spi
*bs
;
1292 ctlr
= spi_alloc_master(&pdev
->dev
, ALIGN(sizeof(*bs
),
1293 dma_get_cache_alignment()));
1297 platform_set_drvdata(pdev
, ctlr
);
1299 ctlr
->use_gpio_descriptors
= true;
1300 ctlr
->mode_bits
= BCM2835_SPI_MODE_BITS
;
1301 ctlr
->bits_per_word_mask
= SPI_BPW_MASK(8);
1302 ctlr
->num_chipselect
= BCM2835_SPI_NUM_CS
;
1303 ctlr
->setup
= bcm2835_spi_setup
;
1304 ctlr
->transfer_one
= bcm2835_spi_transfer_one
;
1305 ctlr
->handle_err
= bcm2835_spi_handle_err
;
1306 ctlr
->prepare_message
= bcm2835_spi_prepare_message
;
1307 ctlr
->dev
.of_node
= pdev
->dev
.of_node
;
1309 bs
= spi_controller_get_devdata(ctlr
);
1311 bs
->regs
= devm_platform_ioremap_resource(pdev
, 0);
1312 if (IS_ERR(bs
->regs
)) {
1313 err
= PTR_ERR(bs
->regs
);
1314 goto out_controller_put
;
1317 bs
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
1318 if (IS_ERR(bs
->clk
)) {
1319 err
= PTR_ERR(bs
->clk
);
1320 if (err
== -EPROBE_DEFER
)
1321 dev_dbg(&pdev
->dev
, "could not get clk: %d\n", err
);
1323 dev_err(&pdev
->dev
, "could not get clk: %d\n", err
);
1324 goto out_controller_put
;
1327 bs
->irq
= platform_get_irq(pdev
, 0);
1329 err
= bs
->irq
? bs
->irq
: -ENODEV
;
1330 goto out_controller_put
;
1333 clk_prepare_enable(bs
->clk
);
1335 err
= bcm2835_dma_init(ctlr
, &pdev
->dev
, bs
);
1337 goto out_clk_disable
;
1339 /* initialise the hardware with the default polarities */
1340 bcm2835_wr(bs
, BCM2835_SPI_CS
,
1341 BCM2835_SPI_CS_CLEAR_RX
| BCM2835_SPI_CS_CLEAR_TX
);
1343 err
= devm_request_irq(&pdev
->dev
, bs
->irq
, bcm2835_spi_interrupt
, 0,
1344 dev_name(&pdev
->dev
), ctlr
);
1346 dev_err(&pdev
->dev
, "could not request IRQ: %d\n", err
);
1347 goto out_dma_release
;
1350 err
= devm_spi_register_controller(&pdev
->dev
, ctlr
);
1352 dev_err(&pdev
->dev
, "could not register SPI controller: %d\n",
1354 goto out_dma_release
;
1357 bcm2835_debugfs_create(bs
, dev_name(&pdev
->dev
));
1362 bcm2835_dma_release(ctlr
, bs
);
1364 clk_disable_unprepare(bs
->clk
);
1366 spi_controller_put(ctlr
);
1370 static int bcm2835_spi_remove(struct platform_device
*pdev
)
1372 struct spi_controller
*ctlr
= platform_get_drvdata(pdev
);
1373 struct bcm2835_spi
*bs
= spi_controller_get_devdata(ctlr
);
1375 bcm2835_debugfs_remove(bs
);
1377 /* Clear FIFOs, and disable the HW block */
1378 bcm2835_wr(bs
, BCM2835_SPI_CS
,
1379 BCM2835_SPI_CS_CLEAR_RX
| BCM2835_SPI_CS_CLEAR_TX
);
1381 clk_disable_unprepare(bs
->clk
);
1383 bcm2835_dma_release(ctlr
, bs
);
1388 static const struct of_device_id bcm2835_spi_match
[] = {
1389 { .compatible
= "brcm,bcm2835-spi", },
1392 MODULE_DEVICE_TABLE(of
, bcm2835_spi_match
);
1394 static struct platform_driver bcm2835_spi_driver
= {
1397 .of_match_table
= bcm2835_spi_match
,
1399 .probe
= bcm2835_spi_probe
,
1400 .remove
= bcm2835_spi_remove
,
1402 module_platform_driver(bcm2835_spi_driver
);
1404 MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835");
1405 MODULE_AUTHOR("Chris Boot <bootc@bootc.net>");
1406 MODULE_LICENSE("GPL");