1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * polling/bitbanging SPI master controller driver utilities
6 #include <linux/spinlock.h>
7 #include <linux/workqueue.h>
8 #include <linux/interrupt.h>
9 #include <linux/module.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/platform_device.h>
13 #include <linux/slab.h>
15 #include <linux/spi/spi.h>
16 #include <linux/spi/spi_bitbang.h>
18 #define SPI_BITBANG_CS_DELAY 100
21 /*----------------------------------------------------------------------*/
24 * FIRST PART (OPTIONAL): word-at-a-time spi_transfer support.
25 * Use this for GPIO or shift-register level hardware APIs.
27 * spi_bitbang_cs is in spi_device->controller_state, which is unavailable
28 * to glue code. These bitbang setup() and cleanup() routines are always
29 * used, though maybe they're called from controller-aware code.
31 * chipselect() and friends may use spi_device->controller_data and
32 * controller registers as appropriate.
35 * NOTE: SPI controller pins can often be used as GPIO pins instead,
36 * which means you could use a bitbang driver either to get hardware
37 * working quickly, or testing for differences that aren't speed related.
40 struct spi_bitbang_cs
{
41 unsigned nsecs
; /* (clock cycle time)/2 */
42 u32 (*txrx_word
)(struct spi_device
*spi
, unsigned nsecs
,
43 u32 word
, u8 bits
, unsigned flags
);
44 unsigned (*txrx_bufs
)(struct spi_device
*,
46 struct spi_device
*spi
,
50 unsigned, struct spi_transfer
*,
54 static unsigned bitbang_txrx_8(
55 struct spi_device
*spi
,
56 u32 (*txrx_word
)(struct spi_device
*spi
,
61 struct spi_transfer
*t
,
64 unsigned bits
= t
->bits_per_word
;
65 unsigned count
= t
->len
;
66 const u8
*tx
= t
->tx_buf
;
69 while (likely(count
> 0)) {
74 word
= txrx_word(spi
, ns
, word
, bits
, flags
);
79 return t
->len
- count
;
82 static unsigned bitbang_txrx_16(
83 struct spi_device
*spi
,
84 u32 (*txrx_word
)(struct spi_device
*spi
,
89 struct spi_transfer
*t
,
92 unsigned bits
= t
->bits_per_word
;
93 unsigned count
= t
->len
;
94 const u16
*tx
= t
->tx_buf
;
97 while (likely(count
> 1)) {
102 word
= txrx_word(spi
, ns
, word
, bits
, flags
);
107 return t
->len
- count
;
110 static unsigned bitbang_txrx_32(
111 struct spi_device
*spi
,
112 u32 (*txrx_word
)(struct spi_device
*spi
,
117 struct spi_transfer
*t
,
120 unsigned bits
= t
->bits_per_word
;
121 unsigned count
= t
->len
;
122 const u32
*tx
= t
->tx_buf
;
125 while (likely(count
> 3)) {
130 word
= txrx_word(spi
, ns
, word
, bits
, flags
);
135 return t
->len
- count
;
138 int spi_bitbang_setup_transfer(struct spi_device
*spi
, struct spi_transfer
*t
)
140 struct spi_bitbang_cs
*cs
= spi
->controller_state
;
145 bits_per_word
= t
->bits_per_word
;
152 /* spi_transfer level calls that work per-word */
154 bits_per_word
= spi
->bits_per_word
;
155 if (bits_per_word
<= 8)
156 cs
->txrx_bufs
= bitbang_txrx_8
;
157 else if (bits_per_word
<= 16)
158 cs
->txrx_bufs
= bitbang_txrx_16
;
159 else if (bits_per_word
<= 32)
160 cs
->txrx_bufs
= bitbang_txrx_32
;
164 /* nsecs = (clock period)/2 */
166 hz
= spi
->max_speed_hz
;
168 cs
->nsecs
= (1000000000/2) / hz
;
169 if (cs
->nsecs
> (MAX_UDELAY_MS
* 1000 * 1000))
175 EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer
);
178 * spi_bitbang_setup - default setup for per-word I/O loops
180 int spi_bitbang_setup(struct spi_device
*spi
)
182 struct spi_bitbang_cs
*cs
= spi
->controller_state
;
183 struct spi_bitbang
*bitbang
;
185 bitbang
= spi_master_get_devdata(spi
->master
);
188 cs
= kzalloc(sizeof(*cs
), GFP_KERNEL
);
191 spi
->controller_state
= cs
;
194 /* per-word shift register access, in hardware or bitbanging */
195 cs
->txrx_word
= bitbang
->txrx_word
[spi
->mode
& (SPI_CPOL
|SPI_CPHA
)];
199 if (bitbang
->setup_transfer
) {
200 int retval
= bitbang
->setup_transfer(spi
, NULL
);
205 dev_dbg(&spi
->dev
, "%s, %u nsec/bit\n", __func__
, 2 * cs
->nsecs
);
209 EXPORT_SYMBOL_GPL(spi_bitbang_setup
);
212 * spi_bitbang_cleanup - default cleanup for per-word I/O loops
214 void spi_bitbang_cleanup(struct spi_device
*spi
)
216 kfree(spi
->controller_state
);
218 EXPORT_SYMBOL_GPL(spi_bitbang_cleanup
);
220 static int spi_bitbang_bufs(struct spi_device
*spi
, struct spi_transfer
*t
)
222 struct spi_bitbang_cs
*cs
= spi
->controller_state
;
223 unsigned nsecs
= cs
->nsecs
;
224 struct spi_bitbang
*bitbang
;
226 bitbang
= spi_master_get_devdata(spi
->master
);
227 if (bitbang
->set_line_direction
) {
230 err
= bitbang
->set_line_direction(spi
, !!(t
->tx_buf
));
235 if (spi
->mode
& SPI_3WIRE
) {
238 flags
= t
->tx_buf
? SPI_MASTER_NO_RX
: SPI_MASTER_NO_TX
;
239 return cs
->txrx_bufs(spi
, cs
->txrx_word
, nsecs
, t
, flags
);
241 return cs
->txrx_bufs(spi
, cs
->txrx_word
, nsecs
, t
, 0);
244 /*----------------------------------------------------------------------*/
247 * SECOND PART ... simple transfer queue runner.
249 * This costs a task context per controller, running the queue by
250 * performing each transfer in sequence. Smarter hardware can queue
251 * several DMA transfers at once, and process several controller queues
252 * in parallel; this driver doesn't match such hardware very well.
254 * Drivers can provide word-at-a-time i/o primitives, or provide
255 * transfer-at-a-time ones to leverage dma or fifo hardware.
258 static int spi_bitbang_prepare_hardware(struct spi_master
*spi
)
260 struct spi_bitbang
*bitbang
;
262 bitbang
= spi_master_get_devdata(spi
);
264 mutex_lock(&bitbang
->lock
);
266 mutex_unlock(&bitbang
->lock
);
271 static int spi_bitbang_transfer_one(struct spi_master
*master
,
272 struct spi_device
*spi
,
273 struct spi_transfer
*transfer
)
275 struct spi_bitbang
*bitbang
= spi_master_get_devdata(master
);
278 if (bitbang
->setup_transfer
) {
279 status
= bitbang
->setup_transfer(spi
, transfer
);
285 status
= bitbang
->txrx_bufs(spi
, transfer
);
287 if (status
== transfer
->len
)
289 else if (status
>= 0)
293 spi_finalize_current_transfer(master
);
298 static int spi_bitbang_unprepare_hardware(struct spi_master
*spi
)
300 struct spi_bitbang
*bitbang
;
302 bitbang
= spi_master_get_devdata(spi
);
304 mutex_lock(&bitbang
->lock
);
306 mutex_unlock(&bitbang
->lock
);
311 static void spi_bitbang_set_cs(struct spi_device
*spi
, bool enable
)
313 struct spi_bitbang
*bitbang
= spi_master_get_devdata(spi
->master
);
315 /* SPI core provides CS high / low, but bitbang driver
317 * spi device driver takes care of handling SPI_CS_HIGH
319 enable
= (!!(spi
->mode
& SPI_CS_HIGH
) == enable
);
321 ndelay(SPI_BITBANG_CS_DELAY
);
322 bitbang
->chipselect(spi
, enable
? BITBANG_CS_ACTIVE
:
323 BITBANG_CS_INACTIVE
);
324 ndelay(SPI_BITBANG_CS_DELAY
);
327 /*----------------------------------------------------------------------*/
329 int spi_bitbang_init(struct spi_bitbang
*bitbang
)
331 struct spi_master
*master
= bitbang
->master
;
337 * We only need the chipselect callback if we are actually using it.
338 * If we just use GPIO descriptors, it is surplus. If the
339 * SPI_MASTER_GPIO_SS flag is set, we always need to call the
340 * driver-specific chipselect routine.
342 custom_cs
= (!master
->use_gpio_descriptors
||
343 (master
->flags
& SPI_MASTER_GPIO_SS
));
345 if (custom_cs
&& !bitbang
->chipselect
)
348 mutex_init(&bitbang
->lock
);
350 if (!master
->mode_bits
)
351 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| bitbang
->flags
;
353 if (master
->transfer
|| master
->transfer_one_message
)
356 master
->prepare_transfer_hardware
= spi_bitbang_prepare_hardware
;
357 master
->unprepare_transfer_hardware
= spi_bitbang_unprepare_hardware
;
358 master
->transfer_one
= spi_bitbang_transfer_one
;
360 * When using GPIO descriptors, the ->set_cs() callback doesn't even
361 * get called unless SPI_MASTER_GPIO_SS is set.
364 master
->set_cs
= spi_bitbang_set_cs
;
366 if (!bitbang
->txrx_bufs
) {
367 bitbang
->use_dma
= 0;
368 bitbang
->txrx_bufs
= spi_bitbang_bufs
;
369 if (!master
->setup
) {
370 if (!bitbang
->setup_transfer
)
371 bitbang
->setup_transfer
=
372 spi_bitbang_setup_transfer
;
373 master
->setup
= spi_bitbang_setup
;
374 master
->cleanup
= spi_bitbang_cleanup
;
380 EXPORT_SYMBOL_GPL(spi_bitbang_init
);
383 * spi_bitbang_start - start up a polled/bitbanging SPI master driver
384 * @bitbang: driver handle
386 * Caller should have zero-initialized all parts of the structure, and then
387 * provided callbacks for chip selection and I/O loops. If the master has
388 * a transfer method, its final step should call spi_bitbang_transfer; or,
389 * that's the default if the transfer routine is not initialized. It should
390 * also set up the bus number and number of chipselects.
392 * For i/o loops, provide callbacks either per-word (for bitbanging, or for
393 * hardware that basically exposes a shift register) or per-spi_transfer
394 * (which takes better advantage of hardware like fifos or DMA engines).
396 * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup,
397 * spi_bitbang_cleanup and spi_bitbang_setup_transfer to handle those spi
398 * master methods. Those methods are the defaults if the bitbang->txrx_bufs
399 * routine isn't initialized.
401 * This routine registers the spi_master, which will process requests in a
402 * dedicated task, keeping IRQs unblocked most of the time. To stop
403 * processing those requests, call spi_bitbang_stop().
405 * On success, this routine will take a reference to master. The caller is
406 * responsible for calling spi_bitbang_stop() to decrement the reference and
407 * spi_master_put() as counterpart of spi_alloc_master() to prevent a memory
410 int spi_bitbang_start(struct spi_bitbang
*bitbang
)
412 struct spi_master
*master
= bitbang
->master
;
415 ret
= spi_bitbang_init(bitbang
);
419 /* driver may get busy before register() returns, especially
420 * if someone registered boardinfo for devices
422 ret
= spi_register_master(spi_master_get(master
));
424 spi_master_put(master
);
428 EXPORT_SYMBOL_GPL(spi_bitbang_start
);
431 * spi_bitbang_stop - stops the task providing spi communication
433 void spi_bitbang_stop(struct spi_bitbang
*bitbang
)
435 spi_unregister_master(bitbang
->master
);
437 EXPORT_SYMBOL_GPL(spi_bitbang_stop
);
439 MODULE_LICENSE("GPL");