1 // SPDX-License-Identifier: GPL-2.0-only
3 * Driver for Cirrus Logic EP93xx SPI controller.
5 * Copyright (C) 2010-2011 Mika Westerberg
7 * Explicit FIFO handling code was inspired by amba-pl022 driver.
9 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
11 * For more information about the SPI controller see documentation on Cirrus
13 * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
17 #include <linux/clk.h>
18 #include <linux/err.h>
19 #include <linux/delay.h>
20 #include <linux/device.h>
21 #include <linux/dmaengine.h>
22 #include <linux/bitops.h>
23 #include <linux/interrupt.h>
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/sched.h>
27 #include <linux/scatterlist.h>
28 #include <linux/spi/spi.h>
30 #include <linux/platform_data/dma-ep93xx.h>
31 #include <linux/platform_data/spi-ep93xx.h>
34 #define SSPCR0_MODE_SHIFT 6
35 #define SSPCR0_SCR_SHIFT 8
38 #define SSPCR1_RIE BIT(0)
39 #define SSPCR1_TIE BIT(1)
40 #define SSPCR1_RORIE BIT(2)
41 #define SSPCR1_LBM BIT(3)
42 #define SSPCR1_SSE BIT(4)
43 #define SSPCR1_MS BIT(5)
44 #define SSPCR1_SOD BIT(6)
49 #define SSPSR_TFE BIT(0)
50 #define SSPSR_TNF BIT(1)
51 #define SSPSR_RNE BIT(2)
52 #define SSPSR_RFF BIT(3)
53 #define SSPSR_BSY BIT(4)
54 #define SSPCPSR 0x0010
57 #define SSPIIR_RIS BIT(0)
58 #define SSPIIR_TIS BIT(1)
59 #define SSPIIR_RORIS BIT(2)
62 /* timeout in milliseconds */
64 /* maximum depth of RX/TX FIFO */
65 #define SPI_FIFO_SIZE 8
68 * struct ep93xx_spi - EP93xx SPI controller structure
69 * @clk: clock for the controller
70 * @mmio: pointer to ioremap()'d registers
71 * @sspdr_phys: physical address of the SSPDR register
72 * @tx: current byte in transfer to transmit
73 * @rx: current byte in transfer to receive
74 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
75 * frame decreases this level and sending one frame increases it.
76 * @dma_rx: RX DMA channel
77 * @dma_tx: TX DMA channel
78 * @dma_rx_data: RX parameters passed to the DMA engine
79 * @dma_tx_data: TX parameters passed to the DMA engine
80 * @rx_sgt: sg table for RX transfers
81 * @tx_sgt: sg table for TX transfers
82 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
88 unsigned long sspdr_phys
;
92 struct dma_chan
*dma_rx
;
93 struct dma_chan
*dma_tx
;
94 struct ep93xx_dma_data dma_rx_data
;
95 struct ep93xx_dma_data dma_tx_data
;
96 struct sg_table rx_sgt
;
97 struct sg_table tx_sgt
;
101 /* converts bits per word to CR0.DSS value */
102 #define bits_per_word_to_dss(bpw) ((bpw) - 1)
105 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
106 * @master: SPI master
107 * @rate: desired SPI output clock rate
108 * @div_cpsr: pointer to return the cpsr (pre-scaler) divider
109 * @div_scr: pointer to return the scr divider
111 static int ep93xx_spi_calc_divisors(struct spi_master
*master
,
112 u32 rate
, u8
*div_cpsr
, u8
*div_scr
)
114 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
115 unsigned long spi_clk_rate
= clk_get_rate(espi
->clk
);
119 * Make sure that max value is between values supported by the
122 rate
= clamp(rate
, master
->min_speed_hz
, master
->max_speed_hz
);
125 * Calculate divisors so that we can get speed according the
127 * rate = spi_clock_rate / (cpsr * (1 + scr))
129 * cpsr must be even number and starts from 2, scr can be any number
132 for (cpsr
= 2; cpsr
<= 254; cpsr
+= 2) {
133 for (scr
= 0; scr
<= 255; scr
++) {
134 if ((spi_clk_rate
/ (cpsr
* (scr
+ 1))) <= rate
) {
136 *div_cpsr
= (u8
)cpsr
;
145 static int ep93xx_spi_chip_setup(struct spi_master
*master
,
146 struct spi_device
*spi
,
147 struct spi_transfer
*xfer
)
149 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
150 u8 dss
= bits_per_word_to_dss(xfer
->bits_per_word
);
156 err
= ep93xx_spi_calc_divisors(master
, xfer
->speed_hz
,
157 &div_cpsr
, &div_scr
);
161 cr0
= div_scr
<< SSPCR0_SCR_SHIFT
;
162 cr0
|= (spi
->mode
& (SPI_CPHA
| SPI_CPOL
)) << SSPCR0_MODE_SHIFT
;
165 dev_dbg(&master
->dev
, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
166 spi
->mode
, div_cpsr
, div_scr
, dss
);
167 dev_dbg(&master
->dev
, "setup: cr0 %#x\n", cr0
);
169 writel(div_cpsr
, espi
->mmio
+ SSPCPSR
);
170 writel(cr0
, espi
->mmio
+ SSPCR0
);
175 static void ep93xx_do_write(struct spi_master
*master
)
177 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
178 struct spi_transfer
*xfer
= master
->cur_msg
->state
;
181 if (xfer
->bits_per_word
> 8) {
183 val
= ((u16
*)xfer
->tx_buf
)[espi
->tx
];
187 val
= ((u8
*)xfer
->tx_buf
)[espi
->tx
];
190 writel(val
, espi
->mmio
+ SSPDR
);
193 static void ep93xx_do_read(struct spi_master
*master
)
195 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
196 struct spi_transfer
*xfer
= master
->cur_msg
->state
;
199 val
= readl(espi
->mmio
+ SSPDR
);
200 if (xfer
->bits_per_word
> 8) {
202 ((u16
*)xfer
->rx_buf
)[espi
->rx
] = val
;
206 ((u8
*)xfer
->rx_buf
)[espi
->rx
] = val
;
212 * ep93xx_spi_read_write() - perform next RX/TX transfer
213 * @espi: ep93xx SPI controller struct
215 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
216 * called several times, the whole transfer will be completed. Returns
217 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
219 * When this function is finished, RX FIFO should be empty and TX FIFO should be
222 static int ep93xx_spi_read_write(struct spi_master
*master
)
224 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
225 struct spi_transfer
*xfer
= master
->cur_msg
->state
;
227 /* read as long as RX FIFO has frames in it */
228 while ((readl(espi
->mmio
+ SSPSR
) & SSPSR_RNE
)) {
229 ep93xx_do_read(master
);
233 /* write as long as TX FIFO has room */
234 while (espi
->fifo_level
< SPI_FIFO_SIZE
&& espi
->tx
< xfer
->len
) {
235 ep93xx_do_write(master
);
239 if (espi
->rx
== xfer
->len
)
245 static enum dma_transfer_direction
246 ep93xx_dma_data_to_trans_dir(enum dma_data_direction dir
)
250 return DMA_MEM_TO_DEV
;
251 case DMA_FROM_DEVICE
:
252 return DMA_DEV_TO_MEM
;
254 return DMA_TRANS_NONE
;
259 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
260 * @master: SPI master
261 * @dir: DMA transfer direction
263 * Function configures the DMA, maps the buffer and prepares the DMA
264 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
265 * in case of failure.
267 static struct dma_async_tx_descriptor
*
268 ep93xx_spi_dma_prepare(struct spi_master
*master
,
269 enum dma_data_direction dir
)
271 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
272 struct spi_transfer
*xfer
= master
->cur_msg
->state
;
273 struct dma_async_tx_descriptor
*txd
;
274 enum dma_slave_buswidth buswidth
;
275 struct dma_slave_config conf
;
276 struct scatterlist
*sg
;
277 struct sg_table
*sgt
;
278 struct dma_chan
*chan
;
279 const void *buf
, *pbuf
;
280 size_t len
= xfer
->len
;
283 if (xfer
->bits_per_word
> 8)
284 buswidth
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
286 buswidth
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
288 memset(&conf
, 0, sizeof(conf
));
289 conf
.direction
= ep93xx_dma_data_to_trans_dir(dir
);
291 if (dir
== DMA_FROM_DEVICE
) {
296 conf
.src_addr
= espi
->sspdr_phys
;
297 conf
.src_addr_width
= buswidth
;
303 conf
.dst_addr
= espi
->sspdr_phys
;
304 conf
.dst_addr_width
= buswidth
;
307 ret
= dmaengine_slave_config(chan
, &conf
);
312 * We need to split the transfer into PAGE_SIZE'd chunks. This is
313 * because we are using @espi->zeropage to provide a zero RX buffer
314 * for the TX transfers and we have only allocated one page for that.
316 * For performance reasons we allocate a new sg_table only when
317 * needed. Otherwise we will re-use the current one. Eventually the
318 * last sg_table is released in ep93xx_spi_release_dma().
321 nents
= DIV_ROUND_UP(len
, PAGE_SIZE
);
322 if (nents
!= sgt
->nents
) {
325 ret
= sg_alloc_table(sgt
, nents
, GFP_KERNEL
);
331 for_each_sg(sgt
->sgl
, sg
, sgt
->nents
, i
) {
332 size_t bytes
= min_t(size_t, len
, PAGE_SIZE
);
335 sg_set_page(sg
, virt_to_page(pbuf
), bytes
,
336 offset_in_page(pbuf
));
338 sg_set_page(sg
, virt_to_page(espi
->zeropage
),
347 dev_warn(&master
->dev
, "len = %zu expected 0!\n", len
);
348 return ERR_PTR(-EINVAL
);
351 nents
= dma_map_sg(chan
->device
->dev
, sgt
->sgl
, sgt
->nents
, dir
);
353 return ERR_PTR(-ENOMEM
);
355 txd
= dmaengine_prep_slave_sg(chan
, sgt
->sgl
, nents
, conf
.direction
,
358 dma_unmap_sg(chan
->device
->dev
, sgt
->sgl
, sgt
->nents
, dir
);
359 return ERR_PTR(-ENOMEM
);
365 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
366 * @master: SPI master
367 * @dir: DMA transfer direction
369 * Function finishes with the DMA transfer. After this, the DMA buffer is
372 static void ep93xx_spi_dma_finish(struct spi_master
*master
,
373 enum dma_data_direction dir
)
375 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
376 struct dma_chan
*chan
;
377 struct sg_table
*sgt
;
379 if (dir
== DMA_FROM_DEVICE
) {
387 dma_unmap_sg(chan
->device
->dev
, sgt
->sgl
, sgt
->nents
, dir
);
390 static void ep93xx_spi_dma_callback(void *callback_param
)
392 struct spi_master
*master
= callback_param
;
394 ep93xx_spi_dma_finish(master
, DMA_TO_DEVICE
);
395 ep93xx_spi_dma_finish(master
, DMA_FROM_DEVICE
);
397 spi_finalize_current_transfer(master
);
400 static int ep93xx_spi_dma_transfer(struct spi_master
*master
)
402 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
403 struct dma_async_tx_descriptor
*rxd
, *txd
;
405 rxd
= ep93xx_spi_dma_prepare(master
, DMA_FROM_DEVICE
);
407 dev_err(&master
->dev
, "DMA RX failed: %ld\n", PTR_ERR(rxd
));
411 txd
= ep93xx_spi_dma_prepare(master
, DMA_TO_DEVICE
);
413 ep93xx_spi_dma_finish(master
, DMA_FROM_DEVICE
);
414 dev_err(&master
->dev
, "DMA TX failed: %ld\n", PTR_ERR(txd
));
418 /* We are ready when RX is done */
419 rxd
->callback
= ep93xx_spi_dma_callback
;
420 rxd
->callback_param
= master
;
422 /* Now submit both descriptors and start DMA */
423 dmaengine_submit(rxd
);
424 dmaengine_submit(txd
);
426 dma_async_issue_pending(espi
->dma_rx
);
427 dma_async_issue_pending(espi
->dma_tx
);
429 /* signal that we need to wait for completion */
433 static irqreturn_t
ep93xx_spi_interrupt(int irq
, void *dev_id
)
435 struct spi_master
*master
= dev_id
;
436 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
440 * If we got ROR (receive overrun) interrupt we know that something is
441 * wrong. Just abort the message.
443 if (readl(espi
->mmio
+ SSPIIR
) & SSPIIR_RORIS
) {
444 /* clear the overrun interrupt */
445 writel(0, espi
->mmio
+ SSPICR
);
446 dev_warn(&master
->dev
,
447 "receive overrun, aborting the message\n");
448 master
->cur_msg
->status
= -EIO
;
451 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
452 * simply execute next data transfer.
454 if (ep93xx_spi_read_write(master
)) {
456 * In normal case, there still is some processing left
457 * for current transfer. Let's wait for the next
465 * Current transfer is finished, either with error or with success. In
466 * any case we disable interrupts and notify the worker to handle
467 * any post-processing of the message.
469 val
= readl(espi
->mmio
+ SSPCR1
);
470 val
&= ~(SSPCR1_RORIE
| SSPCR1_TIE
| SSPCR1_RIE
);
471 writel(val
, espi
->mmio
+ SSPCR1
);
473 spi_finalize_current_transfer(master
);
478 static int ep93xx_spi_transfer_one(struct spi_master
*master
,
479 struct spi_device
*spi
,
480 struct spi_transfer
*xfer
)
482 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
486 ret
= ep93xx_spi_chip_setup(master
, spi
, xfer
);
488 dev_err(&master
->dev
, "failed to setup chip for transfer\n");
492 master
->cur_msg
->state
= xfer
;
497 * There is no point of setting up DMA for the transfers which will
498 * fit into the FIFO and can be transferred with a single interrupt.
499 * So in these cases we will be using PIO and don't bother for DMA.
501 if (espi
->dma_rx
&& xfer
->len
> SPI_FIFO_SIZE
)
502 return ep93xx_spi_dma_transfer(master
);
504 /* Using PIO so prime the TX FIFO and enable interrupts */
505 ep93xx_spi_read_write(master
);
507 val
= readl(espi
->mmio
+ SSPCR1
);
508 val
|= (SSPCR1_RORIE
| SSPCR1_TIE
| SSPCR1_RIE
);
509 writel(val
, espi
->mmio
+ SSPCR1
);
511 /* signal that we need to wait for completion */
515 static int ep93xx_spi_prepare_message(struct spi_master
*master
,
516 struct spi_message
*msg
)
518 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
519 unsigned long timeout
;
522 * Just to be sure: flush any data from RX FIFO.
524 timeout
= jiffies
+ msecs_to_jiffies(SPI_TIMEOUT
);
525 while (readl(espi
->mmio
+ SSPSR
) & SSPSR_RNE
) {
526 if (time_after(jiffies
, timeout
)) {
527 dev_warn(&master
->dev
,
528 "timeout while flushing RX FIFO\n");
531 readl(espi
->mmio
+ SSPDR
);
535 * We explicitly handle FIFO level. This way we don't have to check TX
536 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
538 espi
->fifo_level
= 0;
543 static int ep93xx_spi_prepare_hardware(struct spi_master
*master
)
545 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
549 ret
= clk_enable(espi
->clk
);
553 val
= readl(espi
->mmio
+ SSPCR1
);
555 writel(val
, espi
->mmio
+ SSPCR1
);
560 static int ep93xx_spi_unprepare_hardware(struct spi_master
*master
)
562 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
565 val
= readl(espi
->mmio
+ SSPCR1
);
567 writel(val
, espi
->mmio
+ SSPCR1
);
569 clk_disable(espi
->clk
);
574 static bool ep93xx_spi_dma_filter(struct dma_chan
*chan
, void *filter_param
)
576 if (ep93xx_dma_chan_is_m2p(chan
))
579 chan
->private = filter_param
;
583 static int ep93xx_spi_setup_dma(struct ep93xx_spi
*espi
)
588 espi
->zeropage
= (void *)get_zeroed_page(GFP_KERNEL
);
593 dma_cap_set(DMA_SLAVE
, mask
);
595 espi
->dma_rx_data
.port
= EP93XX_DMA_SSP
;
596 espi
->dma_rx_data
.direction
= DMA_DEV_TO_MEM
;
597 espi
->dma_rx_data
.name
= "ep93xx-spi-rx";
599 espi
->dma_rx
= dma_request_channel(mask
, ep93xx_spi_dma_filter
,
606 espi
->dma_tx_data
.port
= EP93XX_DMA_SSP
;
607 espi
->dma_tx_data
.direction
= DMA_MEM_TO_DEV
;
608 espi
->dma_tx_data
.name
= "ep93xx-spi-tx";
610 espi
->dma_tx
= dma_request_channel(mask
, ep93xx_spi_dma_filter
,
614 goto fail_release_rx
;
620 dma_release_channel(espi
->dma_rx
);
623 free_page((unsigned long)espi
->zeropage
);
628 static void ep93xx_spi_release_dma(struct ep93xx_spi
*espi
)
631 dma_release_channel(espi
->dma_rx
);
632 sg_free_table(&espi
->rx_sgt
);
635 dma_release_channel(espi
->dma_tx
);
636 sg_free_table(&espi
->tx_sgt
);
640 free_page((unsigned long)espi
->zeropage
);
643 static int ep93xx_spi_probe(struct platform_device
*pdev
)
645 struct spi_master
*master
;
646 struct ep93xx_spi_info
*info
;
647 struct ep93xx_spi
*espi
;
648 struct resource
*res
;
652 info
= dev_get_platdata(&pdev
->dev
);
654 dev_err(&pdev
->dev
, "missing platform data\n");
658 irq
= platform_get_irq(pdev
, 0);
662 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
664 dev_err(&pdev
->dev
, "unable to get iomem resource\n");
668 master
= spi_alloc_master(&pdev
->dev
, sizeof(*espi
));
672 master
->use_gpio_descriptors
= true;
673 master
->prepare_transfer_hardware
= ep93xx_spi_prepare_hardware
;
674 master
->unprepare_transfer_hardware
= ep93xx_spi_unprepare_hardware
;
675 master
->prepare_message
= ep93xx_spi_prepare_message
;
676 master
->transfer_one
= ep93xx_spi_transfer_one
;
677 master
->bus_num
= pdev
->id
;
678 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
;
679 master
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 16);
681 * The SPI core will count the number of GPIO descriptors to figure
682 * out the number of chip selects available on the platform.
684 master
->num_chipselect
= 0;
686 platform_set_drvdata(pdev
, master
);
688 espi
= spi_master_get_devdata(master
);
690 espi
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
691 if (IS_ERR(espi
->clk
)) {
692 dev_err(&pdev
->dev
, "unable to get spi clock\n");
693 error
= PTR_ERR(espi
->clk
);
694 goto fail_release_master
;
698 * Calculate maximum and minimum supported clock rates
699 * for the controller.
701 master
->max_speed_hz
= clk_get_rate(espi
->clk
) / 2;
702 master
->min_speed_hz
= clk_get_rate(espi
->clk
) / (254 * 256);
704 espi
->sspdr_phys
= res
->start
+ SSPDR
;
706 espi
->mmio
= devm_ioremap_resource(&pdev
->dev
, res
);
707 if (IS_ERR(espi
->mmio
)) {
708 error
= PTR_ERR(espi
->mmio
);
709 goto fail_release_master
;
712 error
= devm_request_irq(&pdev
->dev
, irq
, ep93xx_spi_interrupt
,
713 0, "ep93xx-spi", master
);
715 dev_err(&pdev
->dev
, "failed to request irq\n");
716 goto fail_release_master
;
719 if (info
->use_dma
&& ep93xx_spi_setup_dma(espi
))
720 dev_warn(&pdev
->dev
, "DMA setup failed. Falling back to PIO\n");
722 /* make sure that the hardware is disabled */
723 writel(0, espi
->mmio
+ SSPCR1
);
725 error
= devm_spi_register_master(&pdev
->dev
, master
);
727 dev_err(&pdev
->dev
, "failed to register SPI master\n");
731 dev_info(&pdev
->dev
, "EP93xx SPI Controller at 0x%08lx irq %d\n",
732 (unsigned long)res
->start
, irq
);
737 ep93xx_spi_release_dma(espi
);
739 spi_master_put(master
);
744 static int ep93xx_spi_remove(struct platform_device
*pdev
)
746 struct spi_master
*master
= platform_get_drvdata(pdev
);
747 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
749 ep93xx_spi_release_dma(espi
);
754 static struct platform_driver ep93xx_spi_driver
= {
756 .name
= "ep93xx-spi",
758 .probe
= ep93xx_spi_probe
,
759 .remove
= ep93xx_spi_remove
,
761 module_platform_driver(ep93xx_spi_driver
);
763 MODULE_DESCRIPTION("EP93xx SPI Controller driver");
764 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
765 MODULE_LICENSE("GPL");
766 MODULE_ALIAS("platform:ep93xx-spi");