gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / spi / spi-mem.c
blobadaa0c49f966da97cebd5547449018d491bc9a59
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2018 Exceet Electronics GmbH
4 * Copyright (C) 2018 Bootlin
6 * Author: Boris Brezillon <boris.brezillon@bootlin.com>
7 */
8 #include <linux/dmaengine.h>
9 #include <linux/pm_runtime.h>
10 #include <linux/spi/spi.h>
11 #include <linux/spi/spi-mem.h>
13 #include "internals.h"
15 #define SPI_MEM_MAX_BUSWIDTH 8
17 /**
18 * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
19 * memory operation
20 * @ctlr: the SPI controller requesting this dma_map()
21 * @op: the memory operation containing the buffer to map
22 * @sgt: a pointer to a non-initialized sg_table that will be filled by this
23 * function
25 * Some controllers might want to do DMA on the data buffer embedded in @op.
26 * This helper prepares everything for you and provides a ready-to-use
27 * sg_table. This function is not intended to be called from spi drivers.
28 * Only SPI controller drivers should use it.
29 * Note that the caller must ensure the memory region pointed by
30 * op->data.buf.{in,out} is DMA-able before calling this function.
32 * Return: 0 in case of success, a negative error code otherwise.
34 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
35 const struct spi_mem_op *op,
36 struct sg_table *sgt)
38 struct device *dmadev;
40 if (!op->data.nbytes)
41 return -EINVAL;
43 if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
44 dmadev = ctlr->dma_tx->device->dev;
45 else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
46 dmadev = ctlr->dma_rx->device->dev;
47 else
48 dmadev = ctlr->dev.parent;
50 if (!dmadev)
51 return -EINVAL;
53 return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
54 op->data.dir == SPI_MEM_DATA_IN ?
55 DMA_FROM_DEVICE : DMA_TO_DEVICE);
57 EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
59 /**
60 * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
61 * memory operation
62 * @ctlr: the SPI controller requesting this dma_unmap()
63 * @op: the memory operation containing the buffer to unmap
64 * @sgt: a pointer to an sg_table previously initialized by
65 * spi_controller_dma_map_mem_op_data()
67 * Some controllers might want to do DMA on the data buffer embedded in @op.
68 * This helper prepares things so that the CPU can access the
69 * op->data.buf.{in,out} buffer again.
71 * This function is not intended to be called from SPI drivers. Only SPI
72 * controller drivers should use it.
74 * This function should be called after the DMA operation has finished and is
75 * only valid if the previous spi_controller_dma_map_mem_op_data() call
76 * returned 0.
78 * Return: 0 in case of success, a negative error code otherwise.
80 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
81 const struct spi_mem_op *op,
82 struct sg_table *sgt)
84 struct device *dmadev;
86 if (!op->data.nbytes)
87 return;
89 if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
90 dmadev = ctlr->dma_tx->device->dev;
91 else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
92 dmadev = ctlr->dma_rx->device->dev;
93 else
94 dmadev = ctlr->dev.parent;
96 spi_unmap_buf(ctlr, dmadev, sgt,
97 op->data.dir == SPI_MEM_DATA_IN ?
98 DMA_FROM_DEVICE : DMA_TO_DEVICE);
100 EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
102 static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx)
104 u32 mode = mem->spi->mode;
106 switch (buswidth) {
107 case 1:
108 return 0;
110 case 2:
111 if ((tx && (mode & (SPI_TX_DUAL | SPI_TX_QUAD))) ||
112 (!tx && (mode & (SPI_RX_DUAL | SPI_RX_QUAD))))
113 return 0;
115 break;
117 case 4:
118 if ((tx && (mode & SPI_TX_QUAD)) ||
119 (!tx && (mode & SPI_RX_QUAD)))
120 return 0;
122 break;
124 case 8:
125 if ((tx && (mode & SPI_TX_OCTAL)) ||
126 (!tx && (mode & SPI_RX_OCTAL)))
127 return 0;
129 break;
131 default:
132 break;
135 return -ENOTSUPP;
138 bool spi_mem_default_supports_op(struct spi_mem *mem,
139 const struct spi_mem_op *op)
141 if (spi_check_buswidth_req(mem, op->cmd.buswidth, true))
142 return false;
144 if (op->addr.nbytes &&
145 spi_check_buswidth_req(mem, op->addr.buswidth, true))
146 return false;
148 if (op->dummy.nbytes &&
149 spi_check_buswidth_req(mem, op->dummy.buswidth, true))
150 return false;
152 if (op->data.dir != SPI_MEM_NO_DATA &&
153 spi_check_buswidth_req(mem, op->data.buswidth,
154 op->data.dir == SPI_MEM_DATA_OUT))
155 return false;
157 return true;
159 EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
161 static bool spi_mem_buswidth_is_valid(u8 buswidth)
163 if (hweight8(buswidth) > 1 || buswidth > SPI_MEM_MAX_BUSWIDTH)
164 return false;
166 return true;
169 static int spi_mem_check_op(const struct spi_mem_op *op)
171 if (!op->cmd.buswidth)
172 return -EINVAL;
174 if ((op->addr.nbytes && !op->addr.buswidth) ||
175 (op->dummy.nbytes && !op->dummy.buswidth) ||
176 (op->data.nbytes && !op->data.buswidth))
177 return -EINVAL;
179 if (!spi_mem_buswidth_is_valid(op->cmd.buswidth) ||
180 !spi_mem_buswidth_is_valid(op->addr.buswidth) ||
181 !spi_mem_buswidth_is_valid(op->dummy.buswidth) ||
182 !spi_mem_buswidth_is_valid(op->data.buswidth))
183 return -EINVAL;
185 return 0;
188 static bool spi_mem_internal_supports_op(struct spi_mem *mem,
189 const struct spi_mem_op *op)
191 struct spi_controller *ctlr = mem->spi->controller;
193 if (ctlr->mem_ops && ctlr->mem_ops->supports_op)
194 return ctlr->mem_ops->supports_op(mem, op);
196 return spi_mem_default_supports_op(mem, op);
200 * spi_mem_supports_op() - Check if a memory device and the controller it is
201 * connected to support a specific memory operation
202 * @mem: the SPI memory
203 * @op: the memory operation to check
205 * Some controllers are only supporting Single or Dual IOs, others might only
206 * support specific opcodes, or it can even be that the controller and device
207 * both support Quad IOs but the hardware prevents you from using it because
208 * only 2 IO lines are connected.
210 * This function checks whether a specific operation is supported.
212 * Return: true if @op is supported, false otherwise.
214 bool spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
216 if (spi_mem_check_op(op))
217 return false;
219 return spi_mem_internal_supports_op(mem, op);
221 EXPORT_SYMBOL_GPL(spi_mem_supports_op);
223 static int spi_mem_access_start(struct spi_mem *mem)
225 struct spi_controller *ctlr = mem->spi->controller;
228 * Flush the message queue before executing our SPI memory
229 * operation to prevent preemption of regular SPI transfers.
231 spi_flush_queue(ctlr);
233 if (ctlr->auto_runtime_pm) {
234 int ret;
236 ret = pm_runtime_get_sync(ctlr->dev.parent);
237 if (ret < 0) {
238 dev_err(&ctlr->dev, "Failed to power device: %d\n",
239 ret);
240 return ret;
244 mutex_lock(&ctlr->bus_lock_mutex);
245 mutex_lock(&ctlr->io_mutex);
247 return 0;
250 static void spi_mem_access_end(struct spi_mem *mem)
252 struct spi_controller *ctlr = mem->spi->controller;
254 mutex_unlock(&ctlr->io_mutex);
255 mutex_unlock(&ctlr->bus_lock_mutex);
257 if (ctlr->auto_runtime_pm)
258 pm_runtime_put(ctlr->dev.parent);
262 * spi_mem_exec_op() - Execute a memory operation
263 * @mem: the SPI memory
264 * @op: the memory operation to execute
266 * Executes a memory operation.
268 * This function first checks that @op is supported and then tries to execute
269 * it.
271 * Return: 0 in case of success, a negative error code otherwise.
273 int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
275 unsigned int tmpbufsize, xferpos = 0, totalxferlen = 0;
276 struct spi_controller *ctlr = mem->spi->controller;
277 struct spi_transfer xfers[4] = { };
278 struct spi_message msg;
279 u8 *tmpbuf;
280 int ret;
282 ret = spi_mem_check_op(op);
283 if (ret)
284 return ret;
286 if (!spi_mem_internal_supports_op(mem, op))
287 return -ENOTSUPP;
289 if (ctlr->mem_ops && !mem->spi->cs_gpiod) {
290 ret = spi_mem_access_start(mem);
291 if (ret)
292 return ret;
294 ret = ctlr->mem_ops->exec_op(mem, op);
296 spi_mem_access_end(mem);
299 * Some controllers only optimize specific paths (typically the
300 * read path) and expect the core to use the regular SPI
301 * interface in other cases.
303 if (!ret || ret != -ENOTSUPP)
304 return ret;
307 tmpbufsize = sizeof(op->cmd.opcode) + op->addr.nbytes +
308 op->dummy.nbytes;
311 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
312 * we're guaranteed that this buffer is DMA-able, as required by the
313 * SPI layer.
315 tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
316 if (!tmpbuf)
317 return -ENOMEM;
319 spi_message_init(&msg);
321 tmpbuf[0] = op->cmd.opcode;
322 xfers[xferpos].tx_buf = tmpbuf;
323 xfers[xferpos].len = sizeof(op->cmd.opcode);
324 xfers[xferpos].tx_nbits = op->cmd.buswidth;
325 spi_message_add_tail(&xfers[xferpos], &msg);
326 xferpos++;
327 totalxferlen++;
329 if (op->addr.nbytes) {
330 int i;
332 for (i = 0; i < op->addr.nbytes; i++)
333 tmpbuf[i + 1] = op->addr.val >>
334 (8 * (op->addr.nbytes - i - 1));
336 xfers[xferpos].tx_buf = tmpbuf + 1;
337 xfers[xferpos].len = op->addr.nbytes;
338 xfers[xferpos].tx_nbits = op->addr.buswidth;
339 spi_message_add_tail(&xfers[xferpos], &msg);
340 xferpos++;
341 totalxferlen += op->addr.nbytes;
344 if (op->dummy.nbytes) {
345 memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
346 xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
347 xfers[xferpos].len = op->dummy.nbytes;
348 xfers[xferpos].tx_nbits = op->dummy.buswidth;
349 spi_message_add_tail(&xfers[xferpos], &msg);
350 xferpos++;
351 totalxferlen += op->dummy.nbytes;
354 if (op->data.nbytes) {
355 if (op->data.dir == SPI_MEM_DATA_IN) {
356 xfers[xferpos].rx_buf = op->data.buf.in;
357 xfers[xferpos].rx_nbits = op->data.buswidth;
358 } else {
359 xfers[xferpos].tx_buf = op->data.buf.out;
360 xfers[xferpos].tx_nbits = op->data.buswidth;
363 xfers[xferpos].len = op->data.nbytes;
364 spi_message_add_tail(&xfers[xferpos], &msg);
365 xferpos++;
366 totalxferlen += op->data.nbytes;
369 ret = spi_sync(mem->spi, &msg);
371 kfree(tmpbuf);
373 if (ret)
374 return ret;
376 if (msg.actual_length != totalxferlen)
377 return -EIO;
379 return 0;
381 EXPORT_SYMBOL_GPL(spi_mem_exec_op);
384 * spi_mem_get_name() - Return the SPI mem device name to be used by the
385 * upper layer if necessary
386 * @mem: the SPI memory
388 * This function allows SPI mem users to retrieve the SPI mem device name.
389 * It is useful if the upper layer needs to expose a custom name for
390 * compatibility reasons.
392 * Return: a string containing the name of the memory device to be used
393 * by the SPI mem user
395 const char *spi_mem_get_name(struct spi_mem *mem)
397 return mem->name;
399 EXPORT_SYMBOL_GPL(spi_mem_get_name);
402 * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
403 * match controller limitations
404 * @mem: the SPI memory
405 * @op: the operation to adjust
407 * Some controllers have FIFO limitations and must split a data transfer
408 * operation into multiple ones, others require a specific alignment for
409 * optimized accesses. This function allows SPI mem drivers to split a single
410 * operation into multiple sub-operations when required.
412 * Return: a negative error code if the controller can't properly adjust @op,
413 * 0 otherwise. Note that @op->data.nbytes will be updated if @op
414 * can't be handled in a single step.
416 int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
418 struct spi_controller *ctlr = mem->spi->controller;
419 size_t len;
421 if (ctlr->mem_ops && ctlr->mem_ops->adjust_op_size)
422 return ctlr->mem_ops->adjust_op_size(mem, op);
424 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
425 len = sizeof(op->cmd.opcode) + op->addr.nbytes +
426 op->dummy.nbytes;
428 if (len > spi_max_transfer_size(mem->spi))
429 return -EINVAL;
431 op->data.nbytes = min3((size_t)op->data.nbytes,
432 spi_max_transfer_size(mem->spi),
433 spi_max_message_size(mem->spi) -
434 len);
435 if (!op->data.nbytes)
436 return -EINVAL;
439 return 0;
441 EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
443 static ssize_t spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc *desc,
444 u64 offs, size_t len, void *buf)
446 struct spi_mem_op op = desc->info.op_tmpl;
447 int ret;
449 op.addr.val = desc->info.offset + offs;
450 op.data.buf.in = buf;
451 op.data.nbytes = len;
452 ret = spi_mem_adjust_op_size(desc->mem, &op);
453 if (ret)
454 return ret;
456 ret = spi_mem_exec_op(desc->mem, &op);
457 if (ret)
458 return ret;
460 return op.data.nbytes;
463 static ssize_t spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc *desc,
464 u64 offs, size_t len, const void *buf)
466 struct spi_mem_op op = desc->info.op_tmpl;
467 int ret;
469 op.addr.val = desc->info.offset + offs;
470 op.data.buf.out = buf;
471 op.data.nbytes = len;
472 ret = spi_mem_adjust_op_size(desc->mem, &op);
473 if (ret)
474 return ret;
476 ret = spi_mem_exec_op(desc->mem, &op);
477 if (ret)
478 return ret;
480 return op.data.nbytes;
484 * spi_mem_dirmap_create() - Create a direct mapping descriptor
485 * @mem: SPI mem device this direct mapping should be created for
486 * @info: direct mapping information
488 * This function is creating a direct mapping descriptor which can then be used
489 * to access the memory using spi_mem_dirmap_read() or spi_mem_dirmap_write().
490 * If the SPI controller driver does not support direct mapping, this function
491 * falls back to an implementation using spi_mem_exec_op(), so that the caller
492 * doesn't have to bother implementing a fallback on his own.
494 * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
496 struct spi_mem_dirmap_desc *
497 spi_mem_dirmap_create(struct spi_mem *mem,
498 const struct spi_mem_dirmap_info *info)
500 struct spi_controller *ctlr = mem->spi->controller;
501 struct spi_mem_dirmap_desc *desc;
502 int ret = -ENOTSUPP;
504 /* Make sure the number of address cycles is between 1 and 8 bytes. */
505 if (!info->op_tmpl.addr.nbytes || info->op_tmpl.addr.nbytes > 8)
506 return ERR_PTR(-EINVAL);
508 /* data.dir should either be SPI_MEM_DATA_IN or SPI_MEM_DATA_OUT. */
509 if (info->op_tmpl.data.dir == SPI_MEM_NO_DATA)
510 return ERR_PTR(-EINVAL);
512 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
513 if (!desc)
514 return ERR_PTR(-ENOMEM);
516 desc->mem = mem;
517 desc->info = *info;
518 if (ctlr->mem_ops && ctlr->mem_ops->dirmap_create)
519 ret = ctlr->mem_ops->dirmap_create(desc);
521 if (ret) {
522 desc->nodirmap = true;
523 if (!spi_mem_supports_op(desc->mem, &desc->info.op_tmpl))
524 ret = -ENOTSUPP;
525 else
526 ret = 0;
529 if (ret) {
530 kfree(desc);
531 return ERR_PTR(ret);
534 return desc;
536 EXPORT_SYMBOL_GPL(spi_mem_dirmap_create);
539 * spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor
540 * @desc: the direct mapping descriptor to destroy
542 * This function destroys a direct mapping descriptor previously created by
543 * spi_mem_dirmap_create().
545 void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc)
547 struct spi_controller *ctlr = desc->mem->spi->controller;
549 if (!desc->nodirmap && ctlr->mem_ops && ctlr->mem_ops->dirmap_destroy)
550 ctlr->mem_ops->dirmap_destroy(desc);
552 kfree(desc);
554 EXPORT_SYMBOL_GPL(spi_mem_dirmap_destroy);
556 static void devm_spi_mem_dirmap_release(struct device *dev, void *res)
558 struct spi_mem_dirmap_desc *desc = *(struct spi_mem_dirmap_desc **)res;
560 spi_mem_dirmap_destroy(desc);
564 * devm_spi_mem_dirmap_create() - Create a direct mapping descriptor and attach
565 * it to a device
566 * @dev: device the dirmap desc will be attached to
567 * @mem: SPI mem device this direct mapping should be created for
568 * @info: direct mapping information
570 * devm_ variant of the spi_mem_dirmap_create() function. See
571 * spi_mem_dirmap_create() for more details.
573 * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
575 struct spi_mem_dirmap_desc *
576 devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem,
577 const struct spi_mem_dirmap_info *info)
579 struct spi_mem_dirmap_desc **ptr, *desc;
581 ptr = devres_alloc(devm_spi_mem_dirmap_release, sizeof(*ptr),
582 GFP_KERNEL);
583 if (!ptr)
584 return ERR_PTR(-ENOMEM);
586 desc = spi_mem_dirmap_create(mem, info);
587 if (IS_ERR(desc)) {
588 devres_free(ptr);
589 } else {
590 *ptr = desc;
591 devres_add(dev, ptr);
594 return desc;
596 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_create);
598 static int devm_spi_mem_dirmap_match(struct device *dev, void *res, void *data)
600 struct spi_mem_dirmap_desc **ptr = res;
602 if (WARN_ON(!ptr || !*ptr))
603 return 0;
605 return *ptr == data;
609 * devm_spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor attached
610 * to a device
611 * @dev: device the dirmap desc is attached to
612 * @desc: the direct mapping descriptor to destroy
614 * devm_ variant of the spi_mem_dirmap_destroy() function. See
615 * spi_mem_dirmap_destroy() for more details.
617 void devm_spi_mem_dirmap_destroy(struct device *dev,
618 struct spi_mem_dirmap_desc *desc)
620 devres_release(dev, devm_spi_mem_dirmap_release,
621 devm_spi_mem_dirmap_match, desc);
623 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_destroy);
626 * spi_mem_dirmap_read() - Read data through a direct mapping
627 * @desc: direct mapping descriptor
628 * @offs: offset to start reading from. Note that this is not an absolute
629 * offset, but the offset within the direct mapping which already has
630 * its own offset
631 * @len: length in bytes
632 * @buf: destination buffer. This buffer must be DMA-able
634 * This function reads data from a memory device using a direct mapping
635 * previously instantiated with spi_mem_dirmap_create().
637 * Return: the amount of data read from the memory device or a negative error
638 * code. Note that the returned size might be smaller than @len, and the caller
639 * is responsible for calling spi_mem_dirmap_read() again when that happens.
641 ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
642 u64 offs, size_t len, void *buf)
644 struct spi_controller *ctlr = desc->mem->spi->controller;
645 ssize_t ret;
647 if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN)
648 return -EINVAL;
650 if (!len)
651 return 0;
653 if (desc->nodirmap) {
654 ret = spi_mem_no_dirmap_read(desc, offs, len, buf);
655 } else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_read) {
656 ret = spi_mem_access_start(desc->mem);
657 if (ret)
658 return ret;
660 ret = ctlr->mem_ops->dirmap_read(desc, offs, len, buf);
662 spi_mem_access_end(desc->mem);
663 } else {
664 ret = -ENOTSUPP;
667 return ret;
669 EXPORT_SYMBOL_GPL(spi_mem_dirmap_read);
672 * spi_mem_dirmap_write() - Write data through a direct mapping
673 * @desc: direct mapping descriptor
674 * @offs: offset to start writing from. Note that this is not an absolute
675 * offset, but the offset within the direct mapping which already has
676 * its own offset
677 * @len: length in bytes
678 * @buf: source buffer. This buffer must be DMA-able
680 * This function writes data to a memory device using a direct mapping
681 * previously instantiated with spi_mem_dirmap_create().
683 * Return: the amount of data written to the memory device or a negative error
684 * code. Note that the returned size might be smaller than @len, and the caller
685 * is responsible for calling spi_mem_dirmap_write() again when that happens.
687 ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
688 u64 offs, size_t len, const void *buf)
690 struct spi_controller *ctlr = desc->mem->spi->controller;
691 ssize_t ret;
693 if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_OUT)
694 return -EINVAL;
696 if (!len)
697 return 0;
699 if (desc->nodirmap) {
700 ret = spi_mem_no_dirmap_write(desc, offs, len, buf);
701 } else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_write) {
702 ret = spi_mem_access_start(desc->mem);
703 if (ret)
704 return ret;
706 ret = ctlr->mem_ops->dirmap_write(desc, offs, len, buf);
708 spi_mem_access_end(desc->mem);
709 } else {
710 ret = -ENOTSUPP;
713 return ret;
715 EXPORT_SYMBOL_GPL(spi_mem_dirmap_write);
717 static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
719 return container_of(drv, struct spi_mem_driver, spidrv.driver);
722 static int spi_mem_probe(struct spi_device *spi)
724 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
725 struct spi_controller *ctlr = spi->controller;
726 struct spi_mem *mem;
728 mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
729 if (!mem)
730 return -ENOMEM;
732 mem->spi = spi;
734 if (ctlr->mem_ops && ctlr->mem_ops->get_name)
735 mem->name = ctlr->mem_ops->get_name(mem);
736 else
737 mem->name = dev_name(&spi->dev);
739 if (IS_ERR_OR_NULL(mem->name))
740 return PTR_ERR(mem->name);
742 spi_set_drvdata(spi, mem);
744 return memdrv->probe(mem);
747 static int spi_mem_remove(struct spi_device *spi)
749 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
750 struct spi_mem *mem = spi_get_drvdata(spi);
752 if (memdrv->remove)
753 return memdrv->remove(mem);
755 return 0;
758 static void spi_mem_shutdown(struct spi_device *spi)
760 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
761 struct spi_mem *mem = spi_get_drvdata(spi);
763 if (memdrv->shutdown)
764 memdrv->shutdown(mem);
768 * spi_mem_driver_register_with_owner() - Register a SPI memory driver
769 * @memdrv: the SPI memory driver to register
770 * @owner: the owner of this driver
772 * Registers a SPI memory driver.
774 * Return: 0 in case of success, a negative error core otherwise.
777 int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
778 struct module *owner)
780 memdrv->spidrv.probe = spi_mem_probe;
781 memdrv->spidrv.remove = spi_mem_remove;
782 memdrv->spidrv.shutdown = spi_mem_shutdown;
784 return __spi_register_driver(owner, &memdrv->spidrv);
786 EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
789 * spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver
790 * @memdrv: the SPI memory driver to unregister
792 * Unregisters a SPI memory driver.
794 void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
796 spi_unregister_driver(&memdrv->spidrv);
798 EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);