1 // SPDX-License-Identifier: GPL-2.0+
3 * Copyright (C) 2018 Exceet Electronics GmbH
4 * Copyright (C) 2018 Bootlin
6 * Author: Boris Brezillon <boris.brezillon@bootlin.com>
8 #include <linux/dmaengine.h>
9 #include <linux/pm_runtime.h>
10 #include <linux/spi/spi.h>
11 #include <linux/spi/spi-mem.h>
13 #include "internals.h"
15 #define SPI_MEM_MAX_BUSWIDTH 8
18 * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
20 * @ctlr: the SPI controller requesting this dma_map()
21 * @op: the memory operation containing the buffer to map
22 * @sgt: a pointer to a non-initialized sg_table that will be filled by this
25 * Some controllers might want to do DMA on the data buffer embedded in @op.
26 * This helper prepares everything for you and provides a ready-to-use
27 * sg_table. This function is not intended to be called from spi drivers.
28 * Only SPI controller drivers should use it.
29 * Note that the caller must ensure the memory region pointed by
30 * op->data.buf.{in,out} is DMA-able before calling this function.
32 * Return: 0 in case of success, a negative error code otherwise.
34 int spi_controller_dma_map_mem_op_data(struct spi_controller
*ctlr
,
35 const struct spi_mem_op
*op
,
38 struct device
*dmadev
;
43 if (op
->data
.dir
== SPI_MEM_DATA_OUT
&& ctlr
->dma_tx
)
44 dmadev
= ctlr
->dma_tx
->device
->dev
;
45 else if (op
->data
.dir
== SPI_MEM_DATA_IN
&& ctlr
->dma_rx
)
46 dmadev
= ctlr
->dma_rx
->device
->dev
;
48 dmadev
= ctlr
->dev
.parent
;
53 return spi_map_buf(ctlr
, dmadev
, sgt
, op
->data
.buf
.in
, op
->data
.nbytes
,
54 op
->data
.dir
== SPI_MEM_DATA_IN
?
55 DMA_FROM_DEVICE
: DMA_TO_DEVICE
);
57 EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data
);
60 * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
62 * @ctlr: the SPI controller requesting this dma_unmap()
63 * @op: the memory operation containing the buffer to unmap
64 * @sgt: a pointer to an sg_table previously initialized by
65 * spi_controller_dma_map_mem_op_data()
67 * Some controllers might want to do DMA on the data buffer embedded in @op.
68 * This helper prepares things so that the CPU can access the
69 * op->data.buf.{in,out} buffer again.
71 * This function is not intended to be called from SPI drivers. Only SPI
72 * controller drivers should use it.
74 * This function should be called after the DMA operation has finished and is
75 * only valid if the previous spi_controller_dma_map_mem_op_data() call
78 * Return: 0 in case of success, a negative error code otherwise.
80 void spi_controller_dma_unmap_mem_op_data(struct spi_controller
*ctlr
,
81 const struct spi_mem_op
*op
,
84 struct device
*dmadev
;
89 if (op
->data
.dir
== SPI_MEM_DATA_OUT
&& ctlr
->dma_tx
)
90 dmadev
= ctlr
->dma_tx
->device
->dev
;
91 else if (op
->data
.dir
== SPI_MEM_DATA_IN
&& ctlr
->dma_rx
)
92 dmadev
= ctlr
->dma_rx
->device
->dev
;
94 dmadev
= ctlr
->dev
.parent
;
96 spi_unmap_buf(ctlr
, dmadev
, sgt
,
97 op
->data
.dir
== SPI_MEM_DATA_IN
?
98 DMA_FROM_DEVICE
: DMA_TO_DEVICE
);
100 EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data
);
102 static int spi_check_buswidth_req(struct spi_mem
*mem
, u8 buswidth
, bool tx
)
104 u32 mode
= mem
->spi
->mode
;
111 if ((tx
&& (mode
& (SPI_TX_DUAL
| SPI_TX_QUAD
))) ||
112 (!tx
&& (mode
& (SPI_RX_DUAL
| SPI_RX_QUAD
))))
118 if ((tx
&& (mode
& SPI_TX_QUAD
)) ||
119 (!tx
&& (mode
& SPI_RX_QUAD
)))
125 if ((tx
&& (mode
& SPI_TX_OCTAL
)) ||
126 (!tx
&& (mode
& SPI_RX_OCTAL
)))
138 bool spi_mem_default_supports_op(struct spi_mem
*mem
,
139 const struct spi_mem_op
*op
)
141 if (spi_check_buswidth_req(mem
, op
->cmd
.buswidth
, true))
144 if (op
->addr
.nbytes
&&
145 spi_check_buswidth_req(mem
, op
->addr
.buswidth
, true))
148 if (op
->dummy
.nbytes
&&
149 spi_check_buswidth_req(mem
, op
->dummy
.buswidth
, true))
152 if (op
->data
.dir
!= SPI_MEM_NO_DATA
&&
153 spi_check_buswidth_req(mem
, op
->data
.buswidth
,
154 op
->data
.dir
== SPI_MEM_DATA_OUT
))
159 EXPORT_SYMBOL_GPL(spi_mem_default_supports_op
);
161 static bool spi_mem_buswidth_is_valid(u8 buswidth
)
163 if (hweight8(buswidth
) > 1 || buswidth
> SPI_MEM_MAX_BUSWIDTH
)
169 static int spi_mem_check_op(const struct spi_mem_op
*op
)
171 if (!op
->cmd
.buswidth
)
174 if ((op
->addr
.nbytes
&& !op
->addr
.buswidth
) ||
175 (op
->dummy
.nbytes
&& !op
->dummy
.buswidth
) ||
176 (op
->data
.nbytes
&& !op
->data
.buswidth
))
179 if (!spi_mem_buswidth_is_valid(op
->cmd
.buswidth
) ||
180 !spi_mem_buswidth_is_valid(op
->addr
.buswidth
) ||
181 !spi_mem_buswidth_is_valid(op
->dummy
.buswidth
) ||
182 !spi_mem_buswidth_is_valid(op
->data
.buswidth
))
188 static bool spi_mem_internal_supports_op(struct spi_mem
*mem
,
189 const struct spi_mem_op
*op
)
191 struct spi_controller
*ctlr
= mem
->spi
->controller
;
193 if (ctlr
->mem_ops
&& ctlr
->mem_ops
->supports_op
)
194 return ctlr
->mem_ops
->supports_op(mem
, op
);
196 return spi_mem_default_supports_op(mem
, op
);
200 * spi_mem_supports_op() - Check if a memory device and the controller it is
201 * connected to support a specific memory operation
202 * @mem: the SPI memory
203 * @op: the memory operation to check
205 * Some controllers are only supporting Single or Dual IOs, others might only
206 * support specific opcodes, or it can even be that the controller and device
207 * both support Quad IOs but the hardware prevents you from using it because
208 * only 2 IO lines are connected.
210 * This function checks whether a specific operation is supported.
212 * Return: true if @op is supported, false otherwise.
214 bool spi_mem_supports_op(struct spi_mem
*mem
, const struct spi_mem_op
*op
)
216 if (spi_mem_check_op(op
))
219 return spi_mem_internal_supports_op(mem
, op
);
221 EXPORT_SYMBOL_GPL(spi_mem_supports_op
);
223 static int spi_mem_access_start(struct spi_mem
*mem
)
225 struct spi_controller
*ctlr
= mem
->spi
->controller
;
228 * Flush the message queue before executing our SPI memory
229 * operation to prevent preemption of regular SPI transfers.
231 spi_flush_queue(ctlr
);
233 if (ctlr
->auto_runtime_pm
) {
236 ret
= pm_runtime_get_sync(ctlr
->dev
.parent
);
238 dev_err(&ctlr
->dev
, "Failed to power device: %d\n",
244 mutex_lock(&ctlr
->bus_lock_mutex
);
245 mutex_lock(&ctlr
->io_mutex
);
250 static void spi_mem_access_end(struct spi_mem
*mem
)
252 struct spi_controller
*ctlr
= mem
->spi
->controller
;
254 mutex_unlock(&ctlr
->io_mutex
);
255 mutex_unlock(&ctlr
->bus_lock_mutex
);
257 if (ctlr
->auto_runtime_pm
)
258 pm_runtime_put(ctlr
->dev
.parent
);
262 * spi_mem_exec_op() - Execute a memory operation
263 * @mem: the SPI memory
264 * @op: the memory operation to execute
266 * Executes a memory operation.
268 * This function first checks that @op is supported and then tries to execute
271 * Return: 0 in case of success, a negative error code otherwise.
273 int spi_mem_exec_op(struct spi_mem
*mem
, const struct spi_mem_op
*op
)
275 unsigned int tmpbufsize
, xferpos
= 0, totalxferlen
= 0;
276 struct spi_controller
*ctlr
= mem
->spi
->controller
;
277 struct spi_transfer xfers
[4] = { };
278 struct spi_message msg
;
282 ret
= spi_mem_check_op(op
);
286 if (!spi_mem_internal_supports_op(mem
, op
))
289 if (ctlr
->mem_ops
&& !mem
->spi
->cs_gpiod
) {
290 ret
= spi_mem_access_start(mem
);
294 ret
= ctlr
->mem_ops
->exec_op(mem
, op
);
296 spi_mem_access_end(mem
);
299 * Some controllers only optimize specific paths (typically the
300 * read path) and expect the core to use the regular SPI
301 * interface in other cases.
303 if (!ret
|| ret
!= -ENOTSUPP
)
307 tmpbufsize
= sizeof(op
->cmd
.opcode
) + op
->addr
.nbytes
+
311 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
312 * we're guaranteed that this buffer is DMA-able, as required by the
315 tmpbuf
= kzalloc(tmpbufsize
, GFP_KERNEL
| GFP_DMA
);
319 spi_message_init(&msg
);
321 tmpbuf
[0] = op
->cmd
.opcode
;
322 xfers
[xferpos
].tx_buf
= tmpbuf
;
323 xfers
[xferpos
].len
= sizeof(op
->cmd
.opcode
);
324 xfers
[xferpos
].tx_nbits
= op
->cmd
.buswidth
;
325 spi_message_add_tail(&xfers
[xferpos
], &msg
);
329 if (op
->addr
.nbytes
) {
332 for (i
= 0; i
< op
->addr
.nbytes
; i
++)
333 tmpbuf
[i
+ 1] = op
->addr
.val
>>
334 (8 * (op
->addr
.nbytes
- i
- 1));
336 xfers
[xferpos
].tx_buf
= tmpbuf
+ 1;
337 xfers
[xferpos
].len
= op
->addr
.nbytes
;
338 xfers
[xferpos
].tx_nbits
= op
->addr
.buswidth
;
339 spi_message_add_tail(&xfers
[xferpos
], &msg
);
341 totalxferlen
+= op
->addr
.nbytes
;
344 if (op
->dummy
.nbytes
) {
345 memset(tmpbuf
+ op
->addr
.nbytes
+ 1, 0xff, op
->dummy
.nbytes
);
346 xfers
[xferpos
].tx_buf
= tmpbuf
+ op
->addr
.nbytes
+ 1;
347 xfers
[xferpos
].len
= op
->dummy
.nbytes
;
348 xfers
[xferpos
].tx_nbits
= op
->dummy
.buswidth
;
349 spi_message_add_tail(&xfers
[xferpos
], &msg
);
351 totalxferlen
+= op
->dummy
.nbytes
;
354 if (op
->data
.nbytes
) {
355 if (op
->data
.dir
== SPI_MEM_DATA_IN
) {
356 xfers
[xferpos
].rx_buf
= op
->data
.buf
.in
;
357 xfers
[xferpos
].rx_nbits
= op
->data
.buswidth
;
359 xfers
[xferpos
].tx_buf
= op
->data
.buf
.out
;
360 xfers
[xferpos
].tx_nbits
= op
->data
.buswidth
;
363 xfers
[xferpos
].len
= op
->data
.nbytes
;
364 spi_message_add_tail(&xfers
[xferpos
], &msg
);
366 totalxferlen
+= op
->data
.nbytes
;
369 ret
= spi_sync(mem
->spi
, &msg
);
376 if (msg
.actual_length
!= totalxferlen
)
381 EXPORT_SYMBOL_GPL(spi_mem_exec_op
);
384 * spi_mem_get_name() - Return the SPI mem device name to be used by the
385 * upper layer if necessary
386 * @mem: the SPI memory
388 * This function allows SPI mem users to retrieve the SPI mem device name.
389 * It is useful if the upper layer needs to expose a custom name for
390 * compatibility reasons.
392 * Return: a string containing the name of the memory device to be used
393 * by the SPI mem user
395 const char *spi_mem_get_name(struct spi_mem
*mem
)
399 EXPORT_SYMBOL_GPL(spi_mem_get_name
);
402 * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
403 * match controller limitations
404 * @mem: the SPI memory
405 * @op: the operation to adjust
407 * Some controllers have FIFO limitations and must split a data transfer
408 * operation into multiple ones, others require a specific alignment for
409 * optimized accesses. This function allows SPI mem drivers to split a single
410 * operation into multiple sub-operations when required.
412 * Return: a negative error code if the controller can't properly adjust @op,
413 * 0 otherwise. Note that @op->data.nbytes will be updated if @op
414 * can't be handled in a single step.
416 int spi_mem_adjust_op_size(struct spi_mem
*mem
, struct spi_mem_op
*op
)
418 struct spi_controller
*ctlr
= mem
->spi
->controller
;
421 if (ctlr
->mem_ops
&& ctlr
->mem_ops
->adjust_op_size
)
422 return ctlr
->mem_ops
->adjust_op_size(mem
, op
);
424 if (!ctlr
->mem_ops
|| !ctlr
->mem_ops
->exec_op
) {
425 len
= sizeof(op
->cmd
.opcode
) + op
->addr
.nbytes
+
428 if (len
> spi_max_transfer_size(mem
->spi
))
431 op
->data
.nbytes
= min3((size_t)op
->data
.nbytes
,
432 spi_max_transfer_size(mem
->spi
),
433 spi_max_message_size(mem
->spi
) -
435 if (!op
->data
.nbytes
)
441 EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size
);
443 static ssize_t
spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc
*desc
,
444 u64 offs
, size_t len
, void *buf
)
446 struct spi_mem_op op
= desc
->info
.op_tmpl
;
449 op
.addr
.val
= desc
->info
.offset
+ offs
;
450 op
.data
.buf
.in
= buf
;
451 op
.data
.nbytes
= len
;
452 ret
= spi_mem_adjust_op_size(desc
->mem
, &op
);
456 ret
= spi_mem_exec_op(desc
->mem
, &op
);
460 return op
.data
.nbytes
;
463 static ssize_t
spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc
*desc
,
464 u64 offs
, size_t len
, const void *buf
)
466 struct spi_mem_op op
= desc
->info
.op_tmpl
;
469 op
.addr
.val
= desc
->info
.offset
+ offs
;
470 op
.data
.buf
.out
= buf
;
471 op
.data
.nbytes
= len
;
472 ret
= spi_mem_adjust_op_size(desc
->mem
, &op
);
476 ret
= spi_mem_exec_op(desc
->mem
, &op
);
480 return op
.data
.nbytes
;
484 * spi_mem_dirmap_create() - Create a direct mapping descriptor
485 * @mem: SPI mem device this direct mapping should be created for
486 * @info: direct mapping information
488 * This function is creating a direct mapping descriptor which can then be used
489 * to access the memory using spi_mem_dirmap_read() or spi_mem_dirmap_write().
490 * If the SPI controller driver does not support direct mapping, this function
491 * falls back to an implementation using spi_mem_exec_op(), so that the caller
492 * doesn't have to bother implementing a fallback on his own.
494 * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
496 struct spi_mem_dirmap_desc
*
497 spi_mem_dirmap_create(struct spi_mem
*mem
,
498 const struct spi_mem_dirmap_info
*info
)
500 struct spi_controller
*ctlr
= mem
->spi
->controller
;
501 struct spi_mem_dirmap_desc
*desc
;
504 /* Make sure the number of address cycles is between 1 and 8 bytes. */
505 if (!info
->op_tmpl
.addr
.nbytes
|| info
->op_tmpl
.addr
.nbytes
> 8)
506 return ERR_PTR(-EINVAL
);
508 /* data.dir should either be SPI_MEM_DATA_IN or SPI_MEM_DATA_OUT. */
509 if (info
->op_tmpl
.data
.dir
== SPI_MEM_NO_DATA
)
510 return ERR_PTR(-EINVAL
);
512 desc
= kzalloc(sizeof(*desc
), GFP_KERNEL
);
514 return ERR_PTR(-ENOMEM
);
518 if (ctlr
->mem_ops
&& ctlr
->mem_ops
->dirmap_create
)
519 ret
= ctlr
->mem_ops
->dirmap_create(desc
);
522 desc
->nodirmap
= true;
523 if (!spi_mem_supports_op(desc
->mem
, &desc
->info
.op_tmpl
))
536 EXPORT_SYMBOL_GPL(spi_mem_dirmap_create
);
539 * spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor
540 * @desc: the direct mapping descriptor to destroy
542 * This function destroys a direct mapping descriptor previously created by
543 * spi_mem_dirmap_create().
545 void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc
*desc
)
547 struct spi_controller
*ctlr
= desc
->mem
->spi
->controller
;
549 if (!desc
->nodirmap
&& ctlr
->mem_ops
&& ctlr
->mem_ops
->dirmap_destroy
)
550 ctlr
->mem_ops
->dirmap_destroy(desc
);
554 EXPORT_SYMBOL_GPL(spi_mem_dirmap_destroy
);
556 static void devm_spi_mem_dirmap_release(struct device
*dev
, void *res
)
558 struct spi_mem_dirmap_desc
*desc
= *(struct spi_mem_dirmap_desc
**)res
;
560 spi_mem_dirmap_destroy(desc
);
564 * devm_spi_mem_dirmap_create() - Create a direct mapping descriptor and attach
566 * @dev: device the dirmap desc will be attached to
567 * @mem: SPI mem device this direct mapping should be created for
568 * @info: direct mapping information
570 * devm_ variant of the spi_mem_dirmap_create() function. See
571 * spi_mem_dirmap_create() for more details.
573 * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
575 struct spi_mem_dirmap_desc
*
576 devm_spi_mem_dirmap_create(struct device
*dev
, struct spi_mem
*mem
,
577 const struct spi_mem_dirmap_info
*info
)
579 struct spi_mem_dirmap_desc
**ptr
, *desc
;
581 ptr
= devres_alloc(devm_spi_mem_dirmap_release
, sizeof(*ptr
),
584 return ERR_PTR(-ENOMEM
);
586 desc
= spi_mem_dirmap_create(mem
, info
);
591 devres_add(dev
, ptr
);
596 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_create
);
598 static int devm_spi_mem_dirmap_match(struct device
*dev
, void *res
, void *data
)
600 struct spi_mem_dirmap_desc
**ptr
= res
;
602 if (WARN_ON(!ptr
|| !*ptr
))
609 * devm_spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor attached
611 * @dev: device the dirmap desc is attached to
612 * @desc: the direct mapping descriptor to destroy
614 * devm_ variant of the spi_mem_dirmap_destroy() function. See
615 * spi_mem_dirmap_destroy() for more details.
617 void devm_spi_mem_dirmap_destroy(struct device
*dev
,
618 struct spi_mem_dirmap_desc
*desc
)
620 devres_release(dev
, devm_spi_mem_dirmap_release
,
621 devm_spi_mem_dirmap_match
, desc
);
623 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_destroy
);
626 * spi_mem_dirmap_read() - Read data through a direct mapping
627 * @desc: direct mapping descriptor
628 * @offs: offset to start reading from. Note that this is not an absolute
629 * offset, but the offset within the direct mapping which already has
631 * @len: length in bytes
632 * @buf: destination buffer. This buffer must be DMA-able
634 * This function reads data from a memory device using a direct mapping
635 * previously instantiated with spi_mem_dirmap_create().
637 * Return: the amount of data read from the memory device or a negative error
638 * code. Note that the returned size might be smaller than @len, and the caller
639 * is responsible for calling spi_mem_dirmap_read() again when that happens.
641 ssize_t
spi_mem_dirmap_read(struct spi_mem_dirmap_desc
*desc
,
642 u64 offs
, size_t len
, void *buf
)
644 struct spi_controller
*ctlr
= desc
->mem
->spi
->controller
;
647 if (desc
->info
.op_tmpl
.data
.dir
!= SPI_MEM_DATA_IN
)
653 if (desc
->nodirmap
) {
654 ret
= spi_mem_no_dirmap_read(desc
, offs
, len
, buf
);
655 } else if (ctlr
->mem_ops
&& ctlr
->mem_ops
->dirmap_read
) {
656 ret
= spi_mem_access_start(desc
->mem
);
660 ret
= ctlr
->mem_ops
->dirmap_read(desc
, offs
, len
, buf
);
662 spi_mem_access_end(desc
->mem
);
669 EXPORT_SYMBOL_GPL(spi_mem_dirmap_read
);
672 * spi_mem_dirmap_write() - Write data through a direct mapping
673 * @desc: direct mapping descriptor
674 * @offs: offset to start writing from. Note that this is not an absolute
675 * offset, but the offset within the direct mapping which already has
677 * @len: length in bytes
678 * @buf: source buffer. This buffer must be DMA-able
680 * This function writes data to a memory device using a direct mapping
681 * previously instantiated with spi_mem_dirmap_create().
683 * Return: the amount of data written to the memory device or a negative error
684 * code. Note that the returned size might be smaller than @len, and the caller
685 * is responsible for calling spi_mem_dirmap_write() again when that happens.
687 ssize_t
spi_mem_dirmap_write(struct spi_mem_dirmap_desc
*desc
,
688 u64 offs
, size_t len
, const void *buf
)
690 struct spi_controller
*ctlr
= desc
->mem
->spi
->controller
;
693 if (desc
->info
.op_tmpl
.data
.dir
!= SPI_MEM_DATA_OUT
)
699 if (desc
->nodirmap
) {
700 ret
= spi_mem_no_dirmap_write(desc
, offs
, len
, buf
);
701 } else if (ctlr
->mem_ops
&& ctlr
->mem_ops
->dirmap_write
) {
702 ret
= spi_mem_access_start(desc
->mem
);
706 ret
= ctlr
->mem_ops
->dirmap_write(desc
, offs
, len
, buf
);
708 spi_mem_access_end(desc
->mem
);
715 EXPORT_SYMBOL_GPL(spi_mem_dirmap_write
);
717 static inline struct spi_mem_driver
*to_spi_mem_drv(struct device_driver
*drv
)
719 return container_of(drv
, struct spi_mem_driver
, spidrv
.driver
);
722 static int spi_mem_probe(struct spi_device
*spi
)
724 struct spi_mem_driver
*memdrv
= to_spi_mem_drv(spi
->dev
.driver
);
725 struct spi_controller
*ctlr
= spi
->controller
;
728 mem
= devm_kzalloc(&spi
->dev
, sizeof(*mem
), GFP_KERNEL
);
734 if (ctlr
->mem_ops
&& ctlr
->mem_ops
->get_name
)
735 mem
->name
= ctlr
->mem_ops
->get_name(mem
);
737 mem
->name
= dev_name(&spi
->dev
);
739 if (IS_ERR_OR_NULL(mem
->name
))
740 return PTR_ERR(mem
->name
);
742 spi_set_drvdata(spi
, mem
);
744 return memdrv
->probe(mem
);
747 static int spi_mem_remove(struct spi_device
*spi
)
749 struct spi_mem_driver
*memdrv
= to_spi_mem_drv(spi
->dev
.driver
);
750 struct spi_mem
*mem
= spi_get_drvdata(spi
);
753 return memdrv
->remove(mem
);
758 static void spi_mem_shutdown(struct spi_device
*spi
)
760 struct spi_mem_driver
*memdrv
= to_spi_mem_drv(spi
->dev
.driver
);
761 struct spi_mem
*mem
= spi_get_drvdata(spi
);
763 if (memdrv
->shutdown
)
764 memdrv
->shutdown(mem
);
768 * spi_mem_driver_register_with_owner() - Register a SPI memory driver
769 * @memdrv: the SPI memory driver to register
770 * @owner: the owner of this driver
772 * Registers a SPI memory driver.
774 * Return: 0 in case of success, a negative error core otherwise.
777 int spi_mem_driver_register_with_owner(struct spi_mem_driver
*memdrv
,
778 struct module
*owner
)
780 memdrv
->spidrv
.probe
= spi_mem_probe
;
781 memdrv
->spidrv
.remove
= spi_mem_remove
;
782 memdrv
->spidrv
.shutdown
= spi_mem_shutdown
;
784 return __spi_register_driver(owner
, &memdrv
->spidrv
);
786 EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner
);
789 * spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver
790 * @memdrv: the SPI memory driver to unregister
792 * Unregisters a SPI memory driver.
794 void spi_mem_driver_unregister(struct spi_mem_driver
*memdrv
)
796 spi_unregister_driver(&memdrv
->spidrv
);
798 EXPORT_SYMBOL_GPL(spi_mem_driver_unregister
);