1 // SPDX-License-Identifier: GPL-2.0+
4 * NXP FlexSPI(FSPI) controller driver.
8 * FlexSPI is a flexsible SPI host controller which supports two SPI
9 * channels and up to 4 external devices. Each channel supports
10 * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
13 * FlexSPI controller is driven by the LUT(Look-up Table) registers
14 * LUT registers are a look-up-table for sequences of instructions.
15 * A valid sequence consists of four LUT registers.
16 * Maximum 32 LUT sequences can be programmed simultaneously.
18 * LUTs are being created at run-time based on the commands passed
19 * from the spi-mem framework, thus using single LUT index.
21 * Software triggered Flash read/write access by IP Bus.
23 * Memory mapped read access by AHB Bus.
25 * Based on SPI MEM interface and spi-fsl-qspi.c driver.
28 * Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
29 * Boris Brezillon <bbrezillon@kernel.org>
30 * Frieder Schrempf <frieder.schrempf@kontron.de>
33 #include <linux/bitops.h>
34 #include <linux/clk.h>
35 #include <linux/completion.h>
36 #include <linux/delay.h>
37 #include <linux/err.h>
38 #include <linux/errno.h>
39 #include <linux/interrupt.h>
41 #include <linux/iopoll.h>
42 #include <linux/jiffies.h>
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/mutex.h>
47 #include <linux/of_device.h>
48 #include <linux/platform_device.h>
49 #include <linux/pm_qos.h>
50 #include <linux/sizes.h>
52 #include <linux/spi/spi.h>
53 #include <linux/spi/spi-mem.h>
56 * The driver only uses one single LUT entry, that is updated on
57 * each call of exec_op(). Index 0 is preset at boot with a basic
58 * read operation, so let's use the last entry (31).
62 /* Registers used by the driver */
63 #define FSPI_MCR0 0x00
64 #define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24)
65 #define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16)
66 #define FSPI_MCR0_LEARN_EN BIT(15)
67 #define FSPI_MCR0_SCRFRUN_EN BIT(14)
68 #define FSPI_MCR0_OCTCOMB_EN BIT(13)
69 #define FSPI_MCR0_DOZE_EN BIT(12)
70 #define FSPI_MCR0_HSEN BIT(11)
71 #define FSPI_MCR0_SERCLKDIV BIT(8)
72 #define FSPI_MCR0_ATDF_EN BIT(7)
73 #define FSPI_MCR0_ARDF_EN BIT(6)
74 #define FSPI_MCR0_RXCLKSRC(x) ((x) << 4)
75 #define FSPI_MCR0_END_CFG(x) ((x) << 2)
76 #define FSPI_MCR0_MDIS BIT(1)
77 #define FSPI_MCR0_SWRST BIT(0)
79 #define FSPI_MCR1 0x04
80 #define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16)
81 #define FSPI_MCR1_AHB_TIMEOUT(x) (x)
83 #define FSPI_MCR2 0x08
84 #define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24)
85 #define FSPI_MCR2_SAMEDEVICEEN BIT(15)
86 #define FSPI_MCR2_CLRLRPHS BIT(14)
87 #define FSPI_MCR2_ABRDATSZ BIT(8)
88 #define FSPI_MCR2_ABRLEARN BIT(7)
89 #define FSPI_MCR2_ABR_READ BIT(6)
90 #define FSPI_MCR2_ABRWRITE BIT(5)
91 #define FSPI_MCR2_ABRDUMMY BIT(4)
92 #define FSPI_MCR2_ABR_MODE BIT(3)
93 #define FSPI_MCR2_ABRCADDR BIT(2)
94 #define FSPI_MCR2_ABRRADDR BIT(1)
95 #define FSPI_MCR2_ABR_CMD BIT(0)
97 #define FSPI_AHBCR 0x0c
98 #define FSPI_AHBCR_RDADDROPT BIT(6)
99 #define FSPI_AHBCR_PREF_EN BIT(5)
100 #define FSPI_AHBCR_BUFF_EN BIT(4)
101 #define FSPI_AHBCR_CACH_EN BIT(3)
102 #define FSPI_AHBCR_CLRTXBUF BIT(2)
103 #define FSPI_AHBCR_CLRRXBUF BIT(1)
104 #define FSPI_AHBCR_PAR_EN BIT(0)
106 #define FSPI_INTEN 0x10
107 #define FSPI_INTEN_SCLKSBWR BIT(9)
108 #define FSPI_INTEN_SCLKSBRD BIT(8)
109 #define FSPI_INTEN_DATALRNFL BIT(7)
110 #define FSPI_INTEN_IPTXWE BIT(6)
111 #define FSPI_INTEN_IPRXWA BIT(5)
112 #define FSPI_INTEN_AHBCMDERR BIT(4)
113 #define FSPI_INTEN_IPCMDERR BIT(3)
114 #define FSPI_INTEN_AHBCMDGE BIT(2)
115 #define FSPI_INTEN_IPCMDGE BIT(1)
116 #define FSPI_INTEN_IPCMDDONE BIT(0)
118 #define FSPI_INTR 0x14
119 #define FSPI_INTR_SCLKSBWR BIT(9)
120 #define FSPI_INTR_SCLKSBRD BIT(8)
121 #define FSPI_INTR_DATALRNFL BIT(7)
122 #define FSPI_INTR_IPTXWE BIT(6)
123 #define FSPI_INTR_IPRXWA BIT(5)
124 #define FSPI_INTR_AHBCMDERR BIT(4)
125 #define FSPI_INTR_IPCMDERR BIT(3)
126 #define FSPI_INTR_AHBCMDGE BIT(2)
127 #define FSPI_INTR_IPCMDGE BIT(1)
128 #define FSPI_INTR_IPCMDDONE BIT(0)
130 #define FSPI_LUTKEY 0x18
131 #define FSPI_LUTKEY_VALUE 0x5AF05AF0
133 #define FSPI_LCKCR 0x1C
135 #define FSPI_LCKER_LOCK 0x1
136 #define FSPI_LCKER_UNLOCK 0x2
138 #define FSPI_BUFXCR_INVALID_MSTRID 0xE
139 #define FSPI_AHBRX_BUF0CR0 0x20
140 #define FSPI_AHBRX_BUF1CR0 0x24
141 #define FSPI_AHBRX_BUF2CR0 0x28
142 #define FSPI_AHBRX_BUF3CR0 0x2C
143 #define FSPI_AHBRX_BUF4CR0 0x30
144 #define FSPI_AHBRX_BUF5CR0 0x34
145 #define FSPI_AHBRX_BUF6CR0 0x38
146 #define FSPI_AHBRX_BUF7CR0 0x3C
147 #define FSPI_AHBRXBUF0CR7_PREF BIT(31)
149 #define FSPI_AHBRX_BUF0CR1 0x40
150 #define FSPI_AHBRX_BUF1CR1 0x44
151 #define FSPI_AHBRX_BUF2CR1 0x48
152 #define FSPI_AHBRX_BUF3CR1 0x4C
153 #define FSPI_AHBRX_BUF4CR1 0x50
154 #define FSPI_AHBRX_BUF5CR1 0x54
155 #define FSPI_AHBRX_BUF6CR1 0x58
156 #define FSPI_AHBRX_BUF7CR1 0x5C
158 #define FSPI_FLSHA1CR0 0x60
159 #define FSPI_FLSHA2CR0 0x64
160 #define FSPI_FLSHB1CR0 0x68
161 #define FSPI_FLSHB2CR0 0x6C
162 #define FSPI_FLSHXCR0_SZ_KB 10
163 #define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB)
165 #define FSPI_FLSHA1CR1 0x70
166 #define FSPI_FLSHA2CR1 0x74
167 #define FSPI_FLSHB1CR1 0x78
168 #define FSPI_FLSHB2CR1 0x7C
169 #define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16)
170 #define FSPI_FLSHXCR1_CAS(x) ((x) << 11)
171 #define FSPI_FLSHXCR1_WA BIT(10)
172 #define FSPI_FLSHXCR1_TCSH(x) ((x) << 5)
173 #define FSPI_FLSHXCR1_TCSS(x) (x)
175 #define FSPI_FLSHA1CR2 0x80
176 #define FSPI_FLSHA2CR2 0x84
177 #define FSPI_FLSHB1CR2 0x88
178 #define FSPI_FLSHB2CR2 0x8C
179 #define FSPI_FLSHXCR2_CLRINSP BIT(24)
180 #define FSPI_FLSHXCR2_AWRWAIT BIT(16)
181 #define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13
182 #define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8
183 #define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5
184 #define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0
186 #define FSPI_IPCR0 0xA0
188 #define FSPI_IPCR1 0xA4
189 #define FSPI_IPCR1_IPAREN BIT(31)
190 #define FSPI_IPCR1_SEQNUM_SHIFT 24
191 #define FSPI_IPCR1_SEQID_SHIFT 16
192 #define FSPI_IPCR1_IDATSZ(x) (x)
194 #define FSPI_IPCMD 0xB0
195 #define FSPI_IPCMD_TRG BIT(0)
197 #define FSPI_DLPR 0xB4
199 #define FSPI_IPRXFCR 0xB8
200 #define FSPI_IPRXFCR_CLR BIT(0)
201 #define FSPI_IPRXFCR_DMA_EN BIT(1)
202 #define FSPI_IPRXFCR_WMRK(x) ((x) << 2)
204 #define FSPI_IPTXFCR 0xBC
205 #define FSPI_IPTXFCR_CLR BIT(0)
206 #define FSPI_IPTXFCR_DMA_EN BIT(1)
207 #define FSPI_IPTXFCR_WMRK(x) ((x) << 2)
209 #define FSPI_DLLACR 0xC0
210 #define FSPI_DLLACR_OVRDEN BIT(8)
212 #define FSPI_DLLBCR 0xC4
213 #define FSPI_DLLBCR_OVRDEN BIT(8)
215 #define FSPI_STS0 0xE0
216 #define FSPI_STS0_DLPHB(x) ((x) << 8)
217 #define FSPI_STS0_DLPHA(x) ((x) << 4)
218 #define FSPI_STS0_CMD_SRC(x) ((x) << 2)
219 #define FSPI_STS0_ARB_IDLE BIT(1)
220 #define FSPI_STS0_SEQ_IDLE BIT(0)
222 #define FSPI_STS1 0xE4
223 #define FSPI_STS1_IP_ERRCD(x) ((x) << 24)
224 #define FSPI_STS1_IP_ERRID(x) ((x) << 16)
225 #define FSPI_STS1_AHB_ERRCD(x) ((x) << 8)
226 #define FSPI_STS1_AHB_ERRID(x) (x)
228 #define FSPI_AHBSPNST 0xEC
229 #define FSPI_AHBSPNST_DATLFT(x) ((x) << 16)
230 #define FSPI_AHBSPNST_BUFID(x) ((x) << 1)
231 #define FSPI_AHBSPNST_ACTIVE BIT(0)
233 #define FSPI_IPRXFSTS 0xF0
234 #define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16)
235 #define FSPI_IPRXFSTS_FILL(x) (x)
237 #define FSPI_IPTXFSTS 0xF4
238 #define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16)
239 #define FSPI_IPTXFSTS_FILL(x) (x)
241 #define FSPI_RFDR 0x100
242 #define FSPI_TFDR 0x180
244 #define FSPI_LUT_BASE 0x200
245 #define FSPI_LUT_OFFSET (SEQID_LUT * 4 * 4)
246 #define FSPI_LUT_REG(idx) \
247 (FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
249 /* register map end */
251 /* Instruction set for the LUT register. */
252 #define LUT_STOP 0x00
254 #define LUT_ADDR 0x02
255 #define LUT_CADDR_SDR 0x03
256 #define LUT_MODE 0x04
257 #define LUT_MODE2 0x05
258 #define LUT_MODE4 0x06
259 #define LUT_MODE8 0x07
260 #define LUT_NXP_WRITE 0x08
261 #define LUT_NXP_READ 0x09
262 #define LUT_LEARN_SDR 0x0A
263 #define LUT_DATSZ_SDR 0x0B
264 #define LUT_DUMMY 0x0C
265 #define LUT_DUMMY_RWDS_SDR 0x0D
266 #define LUT_JMP_ON_CS 0x1F
267 #define LUT_CMD_DDR 0x21
268 #define LUT_ADDR_DDR 0x22
269 #define LUT_CADDR_DDR 0x23
270 #define LUT_MODE_DDR 0x24
271 #define LUT_MODE2_DDR 0x25
272 #define LUT_MODE4_DDR 0x26
273 #define LUT_MODE8_DDR 0x27
274 #define LUT_WRITE_DDR 0x28
275 #define LUT_READ_DDR 0x29
276 #define LUT_LEARN_DDR 0x2A
277 #define LUT_DATSZ_DDR 0x2B
278 #define LUT_DUMMY_DDR 0x2C
279 #define LUT_DUMMY_RWDS_DDR 0x2D
282 * Calculate number of required PAD bits for LUT register.
284 * The pad stands for the number of IO lines [0:7].
285 * For example, the octal read needs eight IO lines,
286 * so you should use LUT_PAD(8). This macro
287 * returns 3 i.e. use eight (2^3) IP lines for read.
289 #define LUT_PAD(x) (fls(x) - 1)
292 * Macro for constructing the LUT entries with the following
295 * ---------------------------------------------------
296 * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
297 * ---------------------------------------------------
300 #define INSTR_SHIFT 10
301 #define OPRND_SHIFT 16
303 /* Macros for constructing the LUT register. */
304 #define LUT_DEF(idx, ins, pad, opr) \
305 ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
306 (opr)) << (((idx) % 2) * OPRND_SHIFT))
308 #define POLL_TOUT 5000
309 #define NXP_FSPI_MAX_CHIPSELECT 4
310 #define NXP_FSPI_MIN_IOMAP SZ_4M
312 struct nxp_fspi_devtype_data
{
315 unsigned int ahb_buf_size
;
320 static const struct nxp_fspi_devtype_data lx2160a_data
= {
321 .rxfifo
= SZ_512
, /* (64 * 64 bits) */
322 .txfifo
= SZ_1K
, /* (128 * 64 bits) */
323 .ahb_buf_size
= SZ_2K
, /* (256 * 64 bits) */
325 .little_endian
= true, /* little-endian */
328 static const struct nxp_fspi_devtype_data imx8mm_data
= {
329 .rxfifo
= SZ_512
, /* (64 * 64 bits) */
330 .txfifo
= SZ_1K
, /* (128 * 64 bits) */
331 .ahb_buf_size
= SZ_2K
, /* (256 * 64 bits) */
333 .little_endian
= true, /* little-endian */
336 static const struct nxp_fspi_devtype_data imx8qxp_data
= {
337 .rxfifo
= SZ_512
, /* (64 * 64 bits) */
338 .txfifo
= SZ_1K
, /* (128 * 64 bits) */
339 .ahb_buf_size
= SZ_2K
, /* (256 * 64 bits) */
341 .little_endian
= true, /* little-endian */
345 void __iomem
*iobase
;
346 void __iomem
*ahb_addr
;
351 struct clk
*clk
, *clk_en
;
354 const struct nxp_fspi_devtype_data
*devtype_data
;
356 struct pm_qos_request pm_qos_req
;
361 * R/W functions for big- or little-endian registers:
362 * The FSPI controller's endianness is independent of
363 * the CPU core's endianness. So far, although the CPU
364 * core is little-endian the FSPI controller can use
365 * big-endian or little-endian.
367 static void fspi_writel(struct nxp_fspi
*f
, u32 val
, void __iomem
*addr
)
369 if (f
->devtype_data
->little_endian
)
370 iowrite32(val
, addr
);
372 iowrite32be(val
, addr
);
375 static u32
fspi_readl(struct nxp_fspi
*f
, void __iomem
*addr
)
377 if (f
->devtype_data
->little_endian
)
378 return ioread32(addr
);
380 return ioread32be(addr
);
383 static irqreturn_t
nxp_fspi_irq_handler(int irq
, void *dev_id
)
385 struct nxp_fspi
*f
= dev_id
;
388 /* clear interrupt */
389 reg
= fspi_readl(f
, f
->iobase
+ FSPI_INTR
);
390 fspi_writel(f
, FSPI_INTR_IPCMDDONE
, f
->iobase
+ FSPI_INTR
);
392 if (reg
& FSPI_INTR_IPCMDDONE
)
398 static int nxp_fspi_check_buswidth(struct nxp_fspi
*f
, u8 width
)
411 static bool nxp_fspi_supports_op(struct spi_mem
*mem
,
412 const struct spi_mem_op
*op
)
414 struct nxp_fspi
*f
= spi_controller_get_devdata(mem
->spi
->master
);
417 ret
= nxp_fspi_check_buswidth(f
, op
->cmd
.buswidth
);
420 ret
|= nxp_fspi_check_buswidth(f
, op
->addr
.buswidth
);
422 if (op
->dummy
.nbytes
)
423 ret
|= nxp_fspi_check_buswidth(f
, op
->dummy
.buswidth
);
426 ret
|= nxp_fspi_check_buswidth(f
, op
->data
.buswidth
);
432 * The number of address bytes should be equal to or less than 4 bytes.
434 if (op
->addr
.nbytes
> 4)
438 * If requested address value is greater than controller assigned
439 * memory mapped space, return error as it didn't fit in the range
440 * of assigned address space.
442 if (op
->addr
.val
>= f
->memmap_phy_size
)
445 /* Max 64 dummy clock cycles supported */
446 if (op
->dummy
.buswidth
&&
447 (op
->dummy
.nbytes
* 8 / op
->dummy
.buswidth
> 64))
450 /* Max data length, check controller limits and alignment */
451 if (op
->data
.dir
== SPI_MEM_DATA_IN
&&
452 (op
->data
.nbytes
> f
->devtype_data
->ahb_buf_size
||
453 (op
->data
.nbytes
> f
->devtype_data
->rxfifo
- 4 &&
454 !IS_ALIGNED(op
->data
.nbytes
, 8))))
457 if (op
->data
.dir
== SPI_MEM_DATA_OUT
&&
458 op
->data
.nbytes
> f
->devtype_data
->txfifo
)
461 return spi_mem_default_supports_op(mem
, op
);
464 /* Instead of busy looping invoke readl_poll_timeout functionality. */
465 static int fspi_readl_poll_tout(struct nxp_fspi
*f
, void __iomem
*base
,
466 u32 mask
, u32 delay_us
,
467 u32 timeout_us
, bool c
)
471 if (!f
->devtype_data
->little_endian
)
472 mask
= (u32
)cpu_to_be32(mask
);
475 return readl_poll_timeout(base
, reg
, (reg
& mask
),
476 delay_us
, timeout_us
);
478 return readl_poll_timeout(base
, reg
, !(reg
& mask
),
479 delay_us
, timeout_us
);
483 * If the slave device content being changed by Write/Erase, need to
484 * invalidate the AHB buffer. This can be achieved by doing the reset
485 * of controller after setting MCR0[SWRESET] bit.
487 static inline void nxp_fspi_invalid(struct nxp_fspi
*f
)
492 reg
= fspi_readl(f
, f
->iobase
+ FSPI_MCR0
);
493 fspi_writel(f
, reg
| FSPI_MCR0_SWRST
, f
->iobase
+ FSPI_MCR0
);
495 /* w1c register, wait unit clear */
496 ret
= fspi_readl_poll_tout(f
, f
->iobase
+ FSPI_MCR0
,
497 FSPI_MCR0_SWRST
, 0, POLL_TOUT
, false);
501 static void nxp_fspi_prepare_lut(struct nxp_fspi
*f
,
502 const struct spi_mem_op
*op
)
504 void __iomem
*base
= f
->iobase
;
509 lutval
[0] |= LUT_DEF(0, LUT_CMD
, LUT_PAD(op
->cmd
.buswidth
),
513 if (op
->addr
.nbytes
) {
514 lutval
[lutidx
/ 2] |= LUT_DEF(lutidx
, LUT_ADDR
,
515 LUT_PAD(op
->addr
.buswidth
),
516 op
->addr
.nbytes
* 8);
520 /* dummy bytes, if needed */
521 if (op
->dummy
.nbytes
) {
522 lutval
[lutidx
/ 2] |= LUT_DEF(lutidx
, LUT_DUMMY
,
524 * Due to FlexSPI controller limitation number of PAD for dummy
525 * buswidth needs to be programmed as equal to data buswidth.
527 LUT_PAD(op
->data
.buswidth
),
528 op
->dummy
.nbytes
* 8 /
533 /* read/write data bytes */
534 if (op
->data
.nbytes
) {
535 lutval
[lutidx
/ 2] |= LUT_DEF(lutidx
,
536 op
->data
.dir
== SPI_MEM_DATA_IN
?
537 LUT_NXP_READ
: LUT_NXP_WRITE
,
538 LUT_PAD(op
->data
.buswidth
),
543 /* stop condition. */
544 lutval
[lutidx
/ 2] |= LUT_DEF(lutidx
, LUT_STOP
, 0, 0);
547 fspi_writel(f
, FSPI_LUTKEY_VALUE
, f
->iobase
+ FSPI_LUTKEY
);
548 fspi_writel(f
, FSPI_LCKER_UNLOCK
, f
->iobase
+ FSPI_LCKCR
);
551 for (i
= 0; i
< ARRAY_SIZE(lutval
); i
++)
552 fspi_writel(f
, lutval
[i
], base
+ FSPI_LUT_REG(i
));
554 dev_dbg(f
->dev
, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x]\n",
555 op
->cmd
.opcode
, lutval
[0], lutval
[1], lutval
[2], lutval
[3]);
558 fspi_writel(f
, FSPI_LUTKEY_VALUE
, f
->iobase
+ FSPI_LUTKEY
);
559 fspi_writel(f
, FSPI_LCKER_LOCK
, f
->iobase
+ FSPI_LCKCR
);
562 static int nxp_fspi_clk_prep_enable(struct nxp_fspi
*f
)
566 ret
= clk_prepare_enable(f
->clk_en
);
570 ret
= clk_prepare_enable(f
->clk
);
572 clk_disable_unprepare(f
->clk_en
);
579 static void nxp_fspi_clk_disable_unprep(struct nxp_fspi
*f
)
581 clk_disable_unprepare(f
->clk
);
582 clk_disable_unprepare(f
->clk_en
);
586 * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
587 * register and start base address of the slave device.
590 * -------- <-- FLSHB2CR0
593 * B2 start address --> -------- <-- FLSHB1CR0
596 * B1 start address --> -------- <-- FLSHA2CR0
599 * A2 start address --> -------- <-- FLSHA1CR0
602 * A1 start address --> -------- (Lower address)
605 * Start base address defines the starting address range for given CS and
606 * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS.
608 * But, different targets are having different combinations of number of CS,
609 * some targets only have single CS or two CS covering controller's full
610 * memory mapped space area.
611 * Thus, implementation is being done as independent of the size and number
612 * of the connected slave device.
613 * Assign controller memory mapped space size as the size to the connected
615 * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
616 * chip-select Flash configuration register.
618 * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
619 * memory mapped size of the controller.
620 * Value for rest of the CS FLSHxxCR0 register would be zero.
623 static void nxp_fspi_select_mem(struct nxp_fspi
*f
, struct spi_device
*spi
)
625 unsigned long rate
= spi
->max_speed_hz
;
630 * Return, if previously selected slave device is same as current
631 * requested slave device.
633 if (f
->selected
== spi
->chip_select
)
636 /* Reset FLSHxxCR0 registers */
637 fspi_writel(f
, 0, f
->iobase
+ FSPI_FLSHA1CR0
);
638 fspi_writel(f
, 0, f
->iobase
+ FSPI_FLSHA2CR0
);
639 fspi_writel(f
, 0, f
->iobase
+ FSPI_FLSHB1CR0
);
640 fspi_writel(f
, 0, f
->iobase
+ FSPI_FLSHB2CR0
);
642 /* Assign controller memory mapped space as size, KBytes, of flash. */
643 size_kb
= FSPI_FLSHXCR0_SZ(f
->memmap_phy_size
);
645 fspi_writel(f
, size_kb
, f
->iobase
+ FSPI_FLSHA1CR0
+
646 4 * spi
->chip_select
);
648 dev_dbg(f
->dev
, "Slave device [CS:%x] selected\n", spi
->chip_select
);
650 nxp_fspi_clk_disable_unprep(f
);
652 ret
= clk_set_rate(f
->clk
, rate
);
656 ret
= nxp_fspi_clk_prep_enable(f
);
660 f
->selected
= spi
->chip_select
;
663 static int nxp_fspi_read_ahb(struct nxp_fspi
*f
, const struct spi_mem_op
*op
)
665 u32 start
= op
->addr
.val
;
666 u32 len
= op
->data
.nbytes
;
668 /* if necessary, ioremap before AHB read */
669 if ((!f
->ahb_addr
) || start
< f
->memmap_start
||
670 start
+ len
> f
->memmap_start
+ f
->memmap_len
) {
672 iounmap(f
->ahb_addr
);
674 f
->memmap_start
= start
;
675 f
->memmap_len
= len
> NXP_FSPI_MIN_IOMAP
?
676 len
: NXP_FSPI_MIN_IOMAP
;
678 f
->ahb_addr
= ioremap_wc(f
->memmap_phy
+ f
->memmap_start
,
682 dev_err(f
->dev
, "failed to alloc memory\n");
687 /* Read out the data directly from the AHB buffer. */
688 memcpy_fromio(op
->data
.buf
.in
,
689 f
->ahb_addr
+ start
- f
->memmap_start
, len
);
694 static void nxp_fspi_fill_txfifo(struct nxp_fspi
*f
,
695 const struct spi_mem_op
*op
)
697 void __iomem
*base
= f
->iobase
;
699 u8
*buf
= (u8
*) op
->data
.buf
.out
;
701 /* clear the TX FIFO. */
702 fspi_writel(f
, FSPI_IPTXFCR_CLR
, base
+ FSPI_IPTXFCR
);
705 * Default value of water mark level is 8 bytes, hence in single
706 * write request controller can write max 8 bytes of data.
709 for (i
= 0; i
< ALIGN_DOWN(op
->data
.nbytes
, 8); i
+= 8) {
710 /* Wait for TXFIFO empty */
711 ret
= fspi_readl_poll_tout(f
, f
->iobase
+ FSPI_INTR
,
716 fspi_writel(f
, *(u32
*) (buf
+ i
), base
+ FSPI_TFDR
);
717 fspi_writel(f
, *(u32
*) (buf
+ i
+ 4), base
+ FSPI_TFDR
+ 4);
718 fspi_writel(f
, FSPI_INTR_IPTXWE
, base
+ FSPI_INTR
);
721 if (i
< op
->data
.nbytes
) {
724 /* Wait for TXFIFO empty */
725 ret
= fspi_readl_poll_tout(f
, f
->iobase
+ FSPI_INTR
,
730 for (j
= 0; j
< ALIGN(op
->data
.nbytes
- i
, 4); j
+= 4) {
731 memcpy(&data
, buf
+ i
+ j
, 4);
732 fspi_writel(f
, data
, base
+ FSPI_TFDR
+ j
);
734 fspi_writel(f
, FSPI_INTR_IPTXWE
, base
+ FSPI_INTR
);
738 static void nxp_fspi_read_rxfifo(struct nxp_fspi
*f
,
739 const struct spi_mem_op
*op
)
741 void __iomem
*base
= f
->iobase
;
743 int len
= op
->data
.nbytes
;
744 u8
*buf
= (u8
*) op
->data
.buf
.in
;
747 * Default value of water mark level is 8 bytes, hence in single
748 * read request controller can read max 8 bytes of data.
750 for (i
= 0; i
< ALIGN_DOWN(len
, 8); i
+= 8) {
751 /* Wait for RXFIFO available */
752 ret
= fspi_readl_poll_tout(f
, f
->iobase
+ FSPI_INTR
,
757 *(u32
*)(buf
+ i
) = fspi_readl(f
, base
+ FSPI_RFDR
);
758 *(u32
*)(buf
+ i
+ 4) = fspi_readl(f
, base
+ FSPI_RFDR
+ 4);
759 /* move the FIFO pointer */
760 fspi_writel(f
, FSPI_INTR_IPRXWA
, base
+ FSPI_INTR
);
767 buf
= op
->data
.buf
.in
+ i
;
768 /* Wait for RXFIFO available */
769 ret
= fspi_readl_poll_tout(f
, f
->iobase
+ FSPI_INTR
,
774 len
= op
->data
.nbytes
- i
;
775 for (j
= 0; j
< op
->data
.nbytes
- i
; j
+= 4) {
776 tmp
= fspi_readl(f
, base
+ FSPI_RFDR
+ j
);
778 memcpy(buf
+ j
, &tmp
, size
);
783 /* invalid the RXFIFO */
784 fspi_writel(f
, FSPI_IPRXFCR_CLR
, base
+ FSPI_IPRXFCR
);
785 /* move the FIFO pointer */
786 fspi_writel(f
, FSPI_INTR_IPRXWA
, base
+ FSPI_INTR
);
789 static int nxp_fspi_do_op(struct nxp_fspi
*f
, const struct spi_mem_op
*op
)
791 void __iomem
*base
= f
->iobase
;
796 reg
= fspi_readl(f
, base
+ FSPI_IPRXFCR
);
797 /* invalid RXFIFO first */
798 reg
&= ~FSPI_IPRXFCR_DMA_EN
;
799 reg
= reg
| FSPI_IPRXFCR_CLR
;
800 fspi_writel(f
, reg
, base
+ FSPI_IPRXFCR
);
802 init_completion(&f
->c
);
804 fspi_writel(f
, op
->addr
.val
, base
+ FSPI_IPCR0
);
806 * Always start the sequence at the same index since we update
807 * the LUT at each exec_op() call. And also specify the DATA
808 * length, since it's has not been specified in the LUT.
810 fspi_writel(f
, op
->data
.nbytes
|
811 (SEQID_LUT
<< FSPI_IPCR1_SEQID_SHIFT
) |
812 (seqnum
<< FSPI_IPCR1_SEQNUM_SHIFT
),
815 /* Trigger the LUT now. */
816 fspi_writel(f
, FSPI_IPCMD_TRG
, base
+ FSPI_IPCMD
);
818 /* Wait for the interrupt. */
819 if (!wait_for_completion_timeout(&f
->c
, msecs_to_jiffies(1000)))
822 /* Invoke IP data read, if request is of data read. */
823 if (!err
&& op
->data
.nbytes
&& op
->data
.dir
== SPI_MEM_DATA_IN
)
824 nxp_fspi_read_rxfifo(f
, op
);
829 static int nxp_fspi_exec_op(struct spi_mem
*mem
, const struct spi_mem_op
*op
)
831 struct nxp_fspi
*f
= spi_controller_get_devdata(mem
->spi
->master
);
834 mutex_lock(&f
->lock
);
836 /* Wait for controller being ready. */
837 err
= fspi_readl_poll_tout(f
, f
->iobase
+ FSPI_STS0
,
838 FSPI_STS0_ARB_IDLE
, 1, POLL_TOUT
, true);
841 nxp_fspi_select_mem(f
, mem
->spi
);
843 nxp_fspi_prepare_lut(f
, op
);
845 * If we have large chunks of data, we read them through the AHB bus
846 * by accessing the mapped memory. In all other cases we use
847 * IP commands to access the flash.
849 if (op
->data
.nbytes
> (f
->devtype_data
->rxfifo
- 4) &&
850 op
->data
.dir
== SPI_MEM_DATA_IN
) {
851 err
= nxp_fspi_read_ahb(f
, op
);
853 if (op
->data
.nbytes
&& op
->data
.dir
== SPI_MEM_DATA_OUT
)
854 nxp_fspi_fill_txfifo(f
, op
);
856 err
= nxp_fspi_do_op(f
, op
);
859 /* Invalidate the data in the AHB buffer. */
862 mutex_unlock(&f
->lock
);
867 static int nxp_fspi_adjust_op_size(struct spi_mem
*mem
, struct spi_mem_op
*op
)
869 struct nxp_fspi
*f
= spi_controller_get_devdata(mem
->spi
->master
);
871 if (op
->data
.dir
== SPI_MEM_DATA_OUT
) {
872 if (op
->data
.nbytes
> f
->devtype_data
->txfifo
)
873 op
->data
.nbytes
= f
->devtype_data
->txfifo
;
875 if (op
->data
.nbytes
> f
->devtype_data
->ahb_buf_size
)
876 op
->data
.nbytes
= f
->devtype_data
->ahb_buf_size
;
877 else if (op
->data
.nbytes
> (f
->devtype_data
->rxfifo
- 4))
878 op
->data
.nbytes
= ALIGN_DOWN(op
->data
.nbytes
, 8);
884 static int nxp_fspi_default_setup(struct nxp_fspi
*f
)
886 void __iomem
*base
= f
->iobase
;
890 /* disable and unprepare clock to avoid glitch pass to controller */
891 nxp_fspi_clk_disable_unprep(f
);
893 /* the default frequency, we will change it later if necessary. */
894 ret
= clk_set_rate(f
->clk
, 20000000);
898 ret
= nxp_fspi_clk_prep_enable(f
);
902 /* Reset the module */
903 /* w1c register, wait unit clear */
904 ret
= fspi_readl_poll_tout(f
, f
->iobase
+ FSPI_MCR0
,
905 FSPI_MCR0_SWRST
, 0, POLL_TOUT
, false);
908 /* Disable the module */
909 fspi_writel(f
, FSPI_MCR0_MDIS
, base
+ FSPI_MCR0
);
911 /* Reset the DLL register to default value */
912 fspi_writel(f
, FSPI_DLLACR_OVRDEN
, base
+ FSPI_DLLACR
);
913 fspi_writel(f
, FSPI_DLLBCR_OVRDEN
, base
+ FSPI_DLLBCR
);
916 fspi_writel(f
, FSPI_MCR0_AHB_TIMEOUT(0xFF) |
917 FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32
) FSPI_MCR0_OCTCOMB_EN
,
921 * Disable same device enable bit and configure all slave devices
924 reg
= fspi_readl(f
, f
->iobase
+ FSPI_MCR2
);
925 reg
= reg
& ~(FSPI_MCR2_SAMEDEVICEEN
);
926 fspi_writel(f
, reg
, base
+ FSPI_MCR2
);
928 /* AHB configuration for access buffer 0~7. */
929 for (i
= 0; i
< 7; i
++)
930 fspi_writel(f
, 0, base
+ FSPI_AHBRX_BUF0CR0
+ 4 * i
);
933 * Set ADATSZ with the maximum AHB buffer size to improve the read
936 fspi_writel(f
, (f
->devtype_data
->ahb_buf_size
/ 8 |
937 FSPI_AHBRXBUF0CR7_PREF
), base
+ FSPI_AHBRX_BUF7CR0
);
939 /* prefetch and no start address alignment limitation */
940 fspi_writel(f
, FSPI_AHBCR_PREF_EN
| FSPI_AHBCR_RDADDROPT
,
943 /* AHB Read - Set lut sequence ID for all CS. */
944 fspi_writel(f
, SEQID_LUT
, base
+ FSPI_FLSHA1CR2
);
945 fspi_writel(f
, SEQID_LUT
, base
+ FSPI_FLSHA2CR2
);
946 fspi_writel(f
, SEQID_LUT
, base
+ FSPI_FLSHB1CR2
);
947 fspi_writel(f
, SEQID_LUT
, base
+ FSPI_FLSHB2CR2
);
951 /* enable the interrupt */
952 fspi_writel(f
, FSPI_INTEN_IPCMDDONE
, base
+ FSPI_INTEN
);
957 static const char *nxp_fspi_get_name(struct spi_mem
*mem
)
959 struct nxp_fspi
*f
= spi_controller_get_devdata(mem
->spi
->master
);
960 struct device
*dev
= &mem
->spi
->dev
;
963 // Set custom name derived from the platform_device of the controller.
964 if (of_get_available_child_count(f
->dev
->of_node
) == 1)
965 return dev_name(f
->dev
);
967 name
= devm_kasprintf(dev
, GFP_KERNEL
,
968 "%s-%d", dev_name(f
->dev
),
969 mem
->spi
->chip_select
);
972 dev_err(dev
, "failed to get memory for custom flash name\n");
973 return ERR_PTR(-ENOMEM
);
979 static const struct spi_controller_mem_ops nxp_fspi_mem_ops
= {
980 .adjust_op_size
= nxp_fspi_adjust_op_size
,
981 .supports_op
= nxp_fspi_supports_op
,
982 .exec_op
= nxp_fspi_exec_op
,
983 .get_name
= nxp_fspi_get_name
,
986 static int nxp_fspi_probe(struct platform_device
*pdev
)
988 struct spi_controller
*ctlr
;
989 struct device
*dev
= &pdev
->dev
;
990 struct device_node
*np
= dev
->of_node
;
991 struct resource
*res
;
995 ctlr
= spi_alloc_master(&pdev
->dev
, sizeof(*f
));
999 ctlr
->mode_bits
= SPI_RX_DUAL
| SPI_RX_QUAD
| SPI_RX_OCTAL
|
1000 SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_TX_OCTAL
;
1002 f
= spi_controller_get_devdata(ctlr
);
1004 f
->devtype_data
= of_device_get_match_data(dev
);
1005 if (!f
->devtype_data
) {
1010 platform_set_drvdata(pdev
, f
);
1012 /* find the resources - configuration register address space */
1013 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "fspi_base");
1014 f
->iobase
= devm_ioremap_resource(dev
, res
);
1015 if (IS_ERR(f
->iobase
)) {
1016 ret
= PTR_ERR(f
->iobase
);
1020 /* find the resources - controller memory mapped space */
1021 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "fspi_mmap");
1027 /* assign memory mapped starting address and mapped size. */
1028 f
->memmap_phy
= res
->start
;
1029 f
->memmap_phy_size
= resource_size(res
);
1031 /* find the clocks */
1032 f
->clk_en
= devm_clk_get(dev
, "fspi_en");
1033 if (IS_ERR(f
->clk_en
)) {
1034 ret
= PTR_ERR(f
->clk_en
);
1038 f
->clk
= devm_clk_get(dev
, "fspi");
1039 if (IS_ERR(f
->clk
)) {
1040 ret
= PTR_ERR(f
->clk
);
1044 ret
= nxp_fspi_clk_prep_enable(f
);
1046 dev_err(dev
, "can not enable the clock\n");
1051 ret
= platform_get_irq(pdev
, 0);
1053 goto err_disable_clk
;
1055 ret
= devm_request_irq(dev
, ret
,
1056 nxp_fspi_irq_handler
, 0, pdev
->name
, f
);
1058 dev_err(dev
, "failed to request irq: %d\n", ret
);
1059 goto err_disable_clk
;
1062 mutex_init(&f
->lock
);
1065 ctlr
->num_chipselect
= NXP_FSPI_MAX_CHIPSELECT
;
1066 ctlr
->mem_ops
= &nxp_fspi_mem_ops
;
1068 nxp_fspi_default_setup(f
);
1070 ctlr
->dev
.of_node
= np
;
1072 ret
= devm_spi_register_controller(&pdev
->dev
, ctlr
);
1074 goto err_destroy_mutex
;
1079 mutex_destroy(&f
->lock
);
1082 nxp_fspi_clk_disable_unprep(f
);
1085 spi_controller_put(ctlr
);
1087 dev_err(dev
, "NXP FSPI probe failed\n");
1091 static int nxp_fspi_remove(struct platform_device
*pdev
)
1093 struct nxp_fspi
*f
= platform_get_drvdata(pdev
);
1095 /* disable the hardware */
1096 fspi_writel(f
, FSPI_MCR0_MDIS
, f
->iobase
+ FSPI_MCR0
);
1098 nxp_fspi_clk_disable_unprep(f
);
1100 mutex_destroy(&f
->lock
);
1103 iounmap(f
->ahb_addr
);
1108 static int nxp_fspi_suspend(struct device
*dev
)
1113 static int nxp_fspi_resume(struct device
*dev
)
1115 struct nxp_fspi
*f
= dev_get_drvdata(dev
);
1117 nxp_fspi_default_setup(f
);
1122 static const struct of_device_id nxp_fspi_dt_ids
[] = {
1123 { .compatible
= "nxp,lx2160a-fspi", .data
= (void *)&lx2160a_data
, },
1124 { .compatible
= "nxp,imx8mm-fspi", .data
= (void *)&imx8mm_data
, },
1125 { .compatible
= "nxp,imx8qxp-fspi", .data
= (void *)&imx8qxp_data
, },
1128 MODULE_DEVICE_TABLE(of
, nxp_fspi_dt_ids
);
1130 static const struct dev_pm_ops nxp_fspi_pm_ops
= {
1131 .suspend
= nxp_fspi_suspend
,
1132 .resume
= nxp_fspi_resume
,
1135 static struct platform_driver nxp_fspi_driver
= {
1138 .of_match_table
= nxp_fspi_dt_ids
,
1139 .pm
= &nxp_fspi_pm_ops
,
1141 .probe
= nxp_fspi_probe
,
1142 .remove
= nxp_fspi_remove
,
1144 module_platform_driver(nxp_fspi_driver
);
1146 MODULE_DESCRIPTION("NXP FSPI Controller Driver");
1147 MODULE_AUTHOR("NXP Semiconductor");
1148 MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>");
1149 MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
1150 MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
1151 MODULE_LICENSE("GPL v2");