gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / spi / spi-rspi.c
blob06192c9ea81329112f4aba97d0f1b0a28064c195
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SH RSPI driver
5 * Copyright (C) 2012, 2013 Renesas Solutions Corp.
6 * Copyright (C) 2014 Glider bvba
8 * Based on spi-sh.c:
9 * Copyright (C) 2011 Renesas Solutions Corp.
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/errno.h>
16 #include <linux/interrupt.h>
17 #include <linux/platform_device.h>
18 #include <linux/io.h>
19 #include <linux/clk.h>
20 #include <linux/dmaengine.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/of_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/sh_dma.h>
25 #include <linux/spi/spi.h>
26 #include <linux/spi/rspi.h>
27 #include <linux/spinlock.h>
29 #define RSPI_SPCR 0x00 /* Control Register */
30 #define RSPI_SSLP 0x01 /* Slave Select Polarity Register */
31 #define RSPI_SPPCR 0x02 /* Pin Control Register */
32 #define RSPI_SPSR 0x03 /* Status Register */
33 #define RSPI_SPDR 0x04 /* Data Register */
34 #define RSPI_SPSCR 0x08 /* Sequence Control Register */
35 #define RSPI_SPSSR 0x09 /* Sequence Status Register */
36 #define RSPI_SPBR 0x0a /* Bit Rate Register */
37 #define RSPI_SPDCR 0x0b /* Data Control Register */
38 #define RSPI_SPCKD 0x0c /* Clock Delay Register */
39 #define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */
40 #define RSPI_SPND 0x0e /* Next-Access Delay Register */
41 #define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */
42 #define RSPI_SPCMD0 0x10 /* Command Register 0 */
43 #define RSPI_SPCMD1 0x12 /* Command Register 1 */
44 #define RSPI_SPCMD2 0x14 /* Command Register 2 */
45 #define RSPI_SPCMD3 0x16 /* Command Register 3 */
46 #define RSPI_SPCMD4 0x18 /* Command Register 4 */
47 #define RSPI_SPCMD5 0x1a /* Command Register 5 */
48 #define RSPI_SPCMD6 0x1c /* Command Register 6 */
49 #define RSPI_SPCMD7 0x1e /* Command Register 7 */
50 #define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2)
51 #define RSPI_NUM_SPCMD 8
52 #define RSPI_RZ_NUM_SPCMD 4
53 #define QSPI_NUM_SPCMD 4
55 /* RSPI on RZ only */
56 #define RSPI_SPBFCR 0x20 /* Buffer Control Register */
57 #define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */
59 /* QSPI only */
60 #define QSPI_SPBFCR 0x18 /* Buffer Control Register */
61 #define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */
62 #define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */
63 #define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */
64 #define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */
65 #define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */
66 #define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4)
68 /* SPCR - Control Register */
69 #define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */
70 #define SPCR_SPE 0x40 /* Function Enable */
71 #define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */
72 #define SPCR_SPEIE 0x10 /* Error Interrupt Enable */
73 #define SPCR_MSTR 0x08 /* Master/Slave Mode Select */
74 #define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */
75 /* RSPI on SH only */
76 #define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */
77 #define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */
78 /* QSPI on R-Car Gen2 only */
79 #define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */
80 #define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */
82 /* SSLP - Slave Select Polarity Register */
83 #define SSLP_SSLP(i) BIT(i) /* SSLi Signal Polarity Setting */
85 /* SPPCR - Pin Control Register */
86 #define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */
87 #define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */
88 #define SPPCR_SPOM 0x04
89 #define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */
90 #define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */
92 #define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
93 #define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
95 /* SPSR - Status Register */
96 #define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */
97 #define SPSR_TEND 0x40 /* Transmit End */
98 #define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */
99 #define SPSR_PERF 0x08 /* Parity Error Flag */
100 #define SPSR_MODF 0x04 /* Mode Fault Error Flag */
101 #define SPSR_IDLNF 0x02 /* RSPI Idle Flag */
102 #define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */
104 /* SPSCR - Sequence Control Register */
105 #define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */
107 /* SPSSR - Sequence Status Register */
108 #define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */
109 #define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */
111 /* SPDCR - Data Control Register */
112 #define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */
113 #define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */
114 #define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */
115 #define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0)
116 #define SPDCR_SPLWORD SPDCR_SPLW1
117 #define SPDCR_SPLBYTE SPDCR_SPLW0
118 #define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */
119 #define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */
120 #define SPDCR_SLSEL1 0x08
121 #define SPDCR_SLSEL0 0x04
122 #define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */
123 #define SPDCR_SPFC1 0x02
124 #define SPDCR_SPFC0 0x01
125 #define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */
127 /* SPCKD - Clock Delay Register */
128 #define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */
130 /* SSLND - Slave Select Negation Delay Register */
131 #define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */
133 /* SPND - Next-Access Delay Register */
134 #define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */
136 /* SPCR2 - Control Register 2 */
137 #define SPCR2_PTE 0x08 /* Parity Self-Test Enable */
138 #define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */
139 #define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */
140 #define SPCR2_SPPE 0x01 /* Parity Enable */
142 /* SPCMDn - Command Registers */
143 #define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */
144 #define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */
145 #define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */
146 #define SPCMD_LSBF 0x1000 /* LSB First */
147 #define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */
148 #define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
149 #define SPCMD_SPB_8BIT 0x0000 /* QSPI only */
150 #define SPCMD_SPB_16BIT 0x0100
151 #define SPCMD_SPB_20BIT 0x0000
152 #define SPCMD_SPB_24BIT 0x0100
153 #define SPCMD_SPB_32BIT 0x0200
154 #define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */
155 #define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */
156 #define SPCMD_SPIMOD1 0x0040
157 #define SPCMD_SPIMOD0 0x0020
158 #define SPCMD_SPIMOD_SINGLE 0
159 #define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0
160 #define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1
161 #define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */
162 #define SPCMD_SSLA(i) ((i) << 4) /* SSL Assert Signal Setting */
163 #define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */
164 #define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */
165 #define SPCMD_CPHA 0x0001 /* Clock Phase Setting */
167 /* SPBFCR - Buffer Control Register */
168 #define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */
169 #define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */
170 #define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */
171 #define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */
172 /* QSPI on R-Car Gen2 */
173 #define SPBFCR_TXTRG_1B 0x00 /* 31 bytes (1 byte available) */
174 #define SPBFCR_TXTRG_32B 0x30 /* 0 byte (32 bytes available) */
175 #define SPBFCR_RXTRG_1B 0x00 /* 1 byte (31 bytes available) */
176 #define SPBFCR_RXTRG_32B 0x07 /* 32 bytes (0 byte available) */
178 #define QSPI_BUFFER_SIZE 32u
180 struct rspi_data {
181 void __iomem *addr;
182 u32 max_speed_hz;
183 struct spi_controller *ctlr;
184 struct platform_device *pdev;
185 wait_queue_head_t wait;
186 spinlock_t lock; /* Protects RMW-access to RSPI_SSLP */
187 struct clk *clk;
188 u16 spcmd;
189 u8 spsr;
190 u8 sppcr;
191 int rx_irq, tx_irq;
192 const struct spi_ops *ops;
194 unsigned dma_callbacked:1;
195 unsigned byte_access:1;
198 static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
200 iowrite8(data, rspi->addr + offset);
203 static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
205 iowrite16(data, rspi->addr + offset);
208 static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
210 iowrite32(data, rspi->addr + offset);
213 static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
215 return ioread8(rspi->addr + offset);
218 static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
220 return ioread16(rspi->addr + offset);
223 static void rspi_write_data(const struct rspi_data *rspi, u16 data)
225 if (rspi->byte_access)
226 rspi_write8(rspi, data, RSPI_SPDR);
227 else /* 16 bit */
228 rspi_write16(rspi, data, RSPI_SPDR);
231 static u16 rspi_read_data(const struct rspi_data *rspi)
233 if (rspi->byte_access)
234 return rspi_read8(rspi, RSPI_SPDR);
235 else /* 16 bit */
236 return rspi_read16(rspi, RSPI_SPDR);
239 /* optional functions */
240 struct spi_ops {
241 int (*set_config_register)(struct rspi_data *rspi, int access_size);
242 int (*transfer_one)(struct spi_controller *ctlr,
243 struct spi_device *spi, struct spi_transfer *xfer);
244 u16 extra_mode_bits;
245 u16 flags;
246 u16 fifo_size;
247 u8 num_hw_ss;
251 * functions for RSPI on legacy SH
253 static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
255 int spbr;
257 /* Sets output mode, MOSI signal, and (optionally) loopback */
258 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
260 /* Sets transfer bit rate */
261 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
262 2 * rspi->max_speed_hz) - 1;
263 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
265 /* Disable dummy transmission, set 16-bit word access, 1 frame */
266 rspi_write8(rspi, 0, RSPI_SPDCR);
267 rspi->byte_access = 0;
269 /* Sets RSPCK, SSL, next-access delay value */
270 rspi_write8(rspi, 0x00, RSPI_SPCKD);
271 rspi_write8(rspi, 0x00, RSPI_SSLND);
272 rspi_write8(rspi, 0x00, RSPI_SPND);
274 /* Sets parity, interrupt mask */
275 rspi_write8(rspi, 0x00, RSPI_SPCR2);
277 /* Resets sequencer */
278 rspi_write8(rspi, 0, RSPI_SPSCR);
279 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
280 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
282 /* Sets RSPI mode */
283 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
285 return 0;
289 * functions for RSPI on RZ
291 static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
293 int spbr;
294 int div = 0;
295 unsigned long clksrc;
297 /* Sets output mode, MOSI signal, and (optionally) loopback */
298 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
300 clksrc = clk_get_rate(rspi->clk);
301 while (div < 3) {
302 if (rspi->max_speed_hz >= clksrc/4) /* 4=(CLK/2)/2 */
303 break;
304 div++;
305 clksrc /= 2;
308 /* Sets transfer bit rate */
309 spbr = DIV_ROUND_UP(clksrc, 2 * rspi->max_speed_hz) - 1;
310 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
311 rspi->spcmd |= div << 2;
313 /* Disable dummy transmission, set byte access */
314 rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
315 rspi->byte_access = 1;
317 /* Sets RSPCK, SSL, next-access delay value */
318 rspi_write8(rspi, 0x00, RSPI_SPCKD);
319 rspi_write8(rspi, 0x00, RSPI_SSLND);
320 rspi_write8(rspi, 0x00, RSPI_SPND);
322 /* Resets sequencer */
323 rspi_write8(rspi, 0, RSPI_SPSCR);
324 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
325 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
327 /* Sets RSPI mode */
328 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
330 return 0;
334 * functions for QSPI
336 static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
338 int spbr;
340 /* Sets output mode, MOSI signal, and (optionally) loopback */
341 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
343 /* Sets transfer bit rate */
344 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz);
345 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
347 /* Disable dummy transmission, set byte access */
348 rspi_write8(rspi, 0, RSPI_SPDCR);
349 rspi->byte_access = 1;
351 /* Sets RSPCK, SSL, next-access delay value */
352 rspi_write8(rspi, 0x00, RSPI_SPCKD);
353 rspi_write8(rspi, 0x00, RSPI_SSLND);
354 rspi_write8(rspi, 0x00, RSPI_SPND);
356 /* Data Length Setting */
357 if (access_size == 8)
358 rspi->spcmd |= SPCMD_SPB_8BIT;
359 else if (access_size == 16)
360 rspi->spcmd |= SPCMD_SPB_16BIT;
361 else
362 rspi->spcmd |= SPCMD_SPB_32BIT;
364 rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
366 /* Resets transfer data length */
367 rspi_write32(rspi, 0, QSPI_SPBMUL0);
369 /* Resets transmit and receive buffer */
370 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
371 /* Sets buffer to allow normal operation */
372 rspi_write8(rspi, 0x00, QSPI_SPBFCR);
374 /* Resets sequencer */
375 rspi_write8(rspi, 0, RSPI_SPSCR);
376 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
378 /* Sets RSPI mode */
379 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
381 return 0;
384 static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
386 u8 data;
388 data = rspi_read8(rspi, reg);
389 data &= ~mask;
390 data |= (val & mask);
391 rspi_write8(rspi, data, reg);
394 static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
395 unsigned int len)
397 unsigned int n;
399 n = min(len, QSPI_BUFFER_SIZE);
401 if (len >= QSPI_BUFFER_SIZE) {
402 /* sets triggering number to 32 bytes */
403 qspi_update(rspi, SPBFCR_TXTRG_MASK,
404 SPBFCR_TXTRG_32B, QSPI_SPBFCR);
405 } else {
406 /* sets triggering number to 1 byte */
407 qspi_update(rspi, SPBFCR_TXTRG_MASK,
408 SPBFCR_TXTRG_1B, QSPI_SPBFCR);
411 return n;
414 static int qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
416 unsigned int n;
418 n = min(len, QSPI_BUFFER_SIZE);
420 if (len >= QSPI_BUFFER_SIZE) {
421 /* sets triggering number to 32 bytes */
422 qspi_update(rspi, SPBFCR_RXTRG_MASK,
423 SPBFCR_RXTRG_32B, QSPI_SPBFCR);
424 } else {
425 /* sets triggering number to 1 byte */
426 qspi_update(rspi, SPBFCR_RXTRG_MASK,
427 SPBFCR_RXTRG_1B, QSPI_SPBFCR);
429 return n;
432 static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
434 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
437 static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
439 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
442 static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
443 u8 enable_bit)
445 int ret;
447 rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
448 if (rspi->spsr & wait_mask)
449 return 0;
451 rspi_enable_irq(rspi, enable_bit);
452 ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
453 if (ret == 0 && !(rspi->spsr & wait_mask))
454 return -ETIMEDOUT;
456 return 0;
459 static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
461 return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
464 static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
466 return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
469 static int rspi_data_out(struct rspi_data *rspi, u8 data)
471 int error = rspi_wait_for_tx_empty(rspi);
472 if (error < 0) {
473 dev_err(&rspi->ctlr->dev, "transmit timeout\n");
474 return error;
476 rspi_write_data(rspi, data);
477 return 0;
480 static int rspi_data_in(struct rspi_data *rspi)
482 int error;
483 u8 data;
485 error = rspi_wait_for_rx_full(rspi);
486 if (error < 0) {
487 dev_err(&rspi->ctlr->dev, "receive timeout\n");
488 return error;
490 data = rspi_read_data(rspi);
491 return data;
494 static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
495 unsigned int n)
497 while (n-- > 0) {
498 if (tx) {
499 int ret = rspi_data_out(rspi, *tx++);
500 if (ret < 0)
501 return ret;
503 if (rx) {
504 int ret = rspi_data_in(rspi);
505 if (ret < 0)
506 return ret;
507 *rx++ = ret;
511 return 0;
514 static void rspi_dma_complete(void *arg)
516 struct rspi_data *rspi = arg;
518 rspi->dma_callbacked = 1;
519 wake_up_interruptible(&rspi->wait);
522 static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
523 struct sg_table *rx)
525 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
526 u8 irq_mask = 0;
527 unsigned int other_irq = 0;
528 dma_cookie_t cookie;
529 int ret;
531 /* First prepare and submit the DMA request(s), as this may fail */
532 if (rx) {
533 desc_rx = dmaengine_prep_slave_sg(rspi->ctlr->dma_rx, rx->sgl,
534 rx->nents, DMA_DEV_TO_MEM,
535 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
536 if (!desc_rx) {
537 ret = -EAGAIN;
538 goto no_dma_rx;
541 desc_rx->callback = rspi_dma_complete;
542 desc_rx->callback_param = rspi;
543 cookie = dmaengine_submit(desc_rx);
544 if (dma_submit_error(cookie)) {
545 ret = cookie;
546 goto no_dma_rx;
549 irq_mask |= SPCR_SPRIE;
552 if (tx) {
553 desc_tx = dmaengine_prep_slave_sg(rspi->ctlr->dma_tx, tx->sgl,
554 tx->nents, DMA_MEM_TO_DEV,
555 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
556 if (!desc_tx) {
557 ret = -EAGAIN;
558 goto no_dma_tx;
561 if (rx) {
562 /* No callback */
563 desc_tx->callback = NULL;
564 } else {
565 desc_tx->callback = rspi_dma_complete;
566 desc_tx->callback_param = rspi;
568 cookie = dmaengine_submit(desc_tx);
569 if (dma_submit_error(cookie)) {
570 ret = cookie;
571 goto no_dma_tx;
574 irq_mask |= SPCR_SPTIE;
578 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
579 * called. So, this driver disables the IRQ while DMA transfer.
581 if (tx)
582 disable_irq(other_irq = rspi->tx_irq);
583 if (rx && rspi->rx_irq != other_irq)
584 disable_irq(rspi->rx_irq);
586 rspi_enable_irq(rspi, irq_mask);
587 rspi->dma_callbacked = 0;
589 /* Now start DMA */
590 if (rx)
591 dma_async_issue_pending(rspi->ctlr->dma_rx);
592 if (tx)
593 dma_async_issue_pending(rspi->ctlr->dma_tx);
595 ret = wait_event_interruptible_timeout(rspi->wait,
596 rspi->dma_callbacked, HZ);
597 if (ret > 0 && rspi->dma_callbacked) {
598 ret = 0;
599 } else {
600 if (!ret) {
601 dev_err(&rspi->ctlr->dev, "DMA timeout\n");
602 ret = -ETIMEDOUT;
604 if (tx)
605 dmaengine_terminate_all(rspi->ctlr->dma_tx);
606 if (rx)
607 dmaengine_terminate_all(rspi->ctlr->dma_rx);
610 rspi_disable_irq(rspi, irq_mask);
612 if (tx)
613 enable_irq(rspi->tx_irq);
614 if (rx && rspi->rx_irq != other_irq)
615 enable_irq(rspi->rx_irq);
617 return ret;
619 no_dma_tx:
620 if (rx)
621 dmaengine_terminate_all(rspi->ctlr->dma_rx);
622 no_dma_rx:
623 if (ret == -EAGAIN) {
624 dev_warn_once(&rspi->ctlr->dev,
625 "DMA not available, falling back to PIO\n");
627 return ret;
630 static void rspi_receive_init(const struct rspi_data *rspi)
632 u8 spsr;
634 spsr = rspi_read8(rspi, RSPI_SPSR);
635 if (spsr & SPSR_SPRF)
636 rspi_read_data(rspi); /* dummy read */
637 if (spsr & SPSR_OVRF)
638 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
639 RSPI_SPSR);
642 static void rspi_rz_receive_init(const struct rspi_data *rspi)
644 rspi_receive_init(rspi);
645 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
646 rspi_write8(rspi, 0, RSPI_SPBFCR);
649 static void qspi_receive_init(const struct rspi_data *rspi)
651 u8 spsr;
653 spsr = rspi_read8(rspi, RSPI_SPSR);
654 if (spsr & SPSR_SPRF)
655 rspi_read_data(rspi); /* dummy read */
656 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
657 rspi_write8(rspi, 0, QSPI_SPBFCR);
660 static bool __rspi_can_dma(const struct rspi_data *rspi,
661 const struct spi_transfer *xfer)
663 return xfer->len > rspi->ops->fifo_size;
666 static bool rspi_can_dma(struct spi_controller *ctlr, struct spi_device *spi,
667 struct spi_transfer *xfer)
669 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
671 return __rspi_can_dma(rspi, xfer);
674 static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
675 struct spi_transfer *xfer)
677 if (!rspi->ctlr->can_dma || !__rspi_can_dma(rspi, xfer))
678 return -EAGAIN;
680 /* rx_buf can be NULL on RSPI on SH in TX-only Mode */
681 return rspi_dma_transfer(rspi, &xfer->tx_sg,
682 xfer->rx_buf ? &xfer->rx_sg : NULL);
685 static int rspi_common_transfer(struct rspi_data *rspi,
686 struct spi_transfer *xfer)
688 int ret;
690 ret = rspi_dma_check_then_transfer(rspi, xfer);
691 if (ret != -EAGAIN)
692 return ret;
694 ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
695 if (ret < 0)
696 return ret;
698 /* Wait for the last transmission */
699 rspi_wait_for_tx_empty(rspi);
701 return 0;
704 static int rspi_transfer_one(struct spi_controller *ctlr,
705 struct spi_device *spi, struct spi_transfer *xfer)
707 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
708 u8 spcr;
710 spcr = rspi_read8(rspi, RSPI_SPCR);
711 if (xfer->rx_buf) {
712 rspi_receive_init(rspi);
713 spcr &= ~SPCR_TXMD;
714 } else {
715 spcr |= SPCR_TXMD;
717 rspi_write8(rspi, spcr, RSPI_SPCR);
719 return rspi_common_transfer(rspi, xfer);
722 static int rspi_rz_transfer_one(struct spi_controller *ctlr,
723 struct spi_device *spi,
724 struct spi_transfer *xfer)
726 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
728 rspi_rz_receive_init(rspi);
730 return rspi_common_transfer(rspi, xfer);
733 static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
734 u8 *rx, unsigned int len)
736 unsigned int i, n;
737 int ret;
739 while (len > 0) {
740 n = qspi_set_send_trigger(rspi, len);
741 qspi_set_receive_trigger(rspi, len);
742 ret = rspi_wait_for_tx_empty(rspi);
743 if (ret < 0) {
744 dev_err(&rspi->ctlr->dev, "transmit timeout\n");
745 return ret;
747 for (i = 0; i < n; i++)
748 rspi_write_data(rspi, *tx++);
750 ret = rspi_wait_for_rx_full(rspi);
751 if (ret < 0) {
752 dev_err(&rspi->ctlr->dev, "receive timeout\n");
753 return ret;
755 for (i = 0; i < n; i++)
756 *rx++ = rspi_read_data(rspi);
758 len -= n;
761 return 0;
764 static int qspi_transfer_out_in(struct rspi_data *rspi,
765 struct spi_transfer *xfer)
767 int ret;
769 qspi_receive_init(rspi);
771 ret = rspi_dma_check_then_transfer(rspi, xfer);
772 if (ret != -EAGAIN)
773 return ret;
775 return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
776 xfer->rx_buf, xfer->len);
779 static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
781 const u8 *tx = xfer->tx_buf;
782 unsigned int n = xfer->len;
783 unsigned int i, len;
784 int ret;
786 if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
787 ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
788 if (ret != -EAGAIN)
789 return ret;
792 while (n > 0) {
793 len = qspi_set_send_trigger(rspi, n);
794 ret = rspi_wait_for_tx_empty(rspi);
795 if (ret < 0) {
796 dev_err(&rspi->ctlr->dev, "transmit timeout\n");
797 return ret;
799 for (i = 0; i < len; i++)
800 rspi_write_data(rspi, *tx++);
802 n -= len;
805 /* Wait for the last transmission */
806 rspi_wait_for_tx_empty(rspi);
808 return 0;
811 static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
813 u8 *rx = xfer->rx_buf;
814 unsigned int n = xfer->len;
815 unsigned int i, len;
816 int ret;
818 if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
819 int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
820 if (ret != -EAGAIN)
821 return ret;
824 while (n > 0) {
825 len = qspi_set_receive_trigger(rspi, n);
826 ret = rspi_wait_for_rx_full(rspi);
827 if (ret < 0) {
828 dev_err(&rspi->ctlr->dev, "receive timeout\n");
829 return ret;
831 for (i = 0; i < len; i++)
832 *rx++ = rspi_read_data(rspi);
834 n -= len;
837 return 0;
840 static int qspi_transfer_one(struct spi_controller *ctlr,
841 struct spi_device *spi, struct spi_transfer *xfer)
843 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
845 if (spi->mode & SPI_LOOP) {
846 return qspi_transfer_out_in(rspi, xfer);
847 } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
848 /* Quad or Dual SPI Write */
849 return qspi_transfer_out(rspi, xfer);
850 } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
851 /* Quad or Dual SPI Read */
852 return qspi_transfer_in(rspi, xfer);
853 } else {
854 /* Single SPI Transfer */
855 return qspi_transfer_out_in(rspi, xfer);
859 static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
861 if (xfer->tx_buf)
862 switch (xfer->tx_nbits) {
863 case SPI_NBITS_QUAD:
864 return SPCMD_SPIMOD_QUAD;
865 case SPI_NBITS_DUAL:
866 return SPCMD_SPIMOD_DUAL;
867 default:
868 return 0;
870 if (xfer->rx_buf)
871 switch (xfer->rx_nbits) {
872 case SPI_NBITS_QUAD:
873 return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
874 case SPI_NBITS_DUAL:
875 return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
876 default:
877 return 0;
880 return 0;
883 static int qspi_setup_sequencer(struct rspi_data *rspi,
884 const struct spi_message *msg)
886 const struct spi_transfer *xfer;
887 unsigned int i = 0, len = 0;
888 u16 current_mode = 0xffff, mode;
890 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
891 mode = qspi_transfer_mode(xfer);
892 if (mode == current_mode) {
893 len += xfer->len;
894 continue;
897 /* Transfer mode change */
898 if (i) {
899 /* Set transfer data length of previous transfer */
900 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
903 if (i >= QSPI_NUM_SPCMD) {
904 dev_err(&msg->spi->dev,
905 "Too many different transfer modes");
906 return -EINVAL;
909 /* Program transfer mode for this transfer */
910 rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
911 current_mode = mode;
912 len = xfer->len;
913 i++;
915 if (i) {
916 /* Set final transfer data length and sequence length */
917 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
918 rspi_write8(rspi, i - 1, RSPI_SPSCR);
921 return 0;
924 static int rspi_setup(struct spi_device *spi)
926 struct rspi_data *rspi = spi_controller_get_devdata(spi->controller);
927 u8 sslp;
929 if (spi->cs_gpiod)
930 return 0;
932 pm_runtime_get_sync(&rspi->pdev->dev);
933 spin_lock_irq(&rspi->lock);
935 sslp = rspi_read8(rspi, RSPI_SSLP);
936 if (spi->mode & SPI_CS_HIGH)
937 sslp |= SSLP_SSLP(spi->chip_select);
938 else
939 sslp &= ~SSLP_SSLP(spi->chip_select);
940 rspi_write8(rspi, sslp, RSPI_SSLP);
942 spin_unlock_irq(&rspi->lock);
943 pm_runtime_put(&rspi->pdev->dev);
944 return 0;
947 static int rspi_prepare_message(struct spi_controller *ctlr,
948 struct spi_message *msg)
950 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
951 struct spi_device *spi = msg->spi;
952 int ret;
954 rspi->max_speed_hz = spi->max_speed_hz;
956 rspi->spcmd = SPCMD_SSLKP;
957 if (spi->mode & SPI_CPOL)
958 rspi->spcmd |= SPCMD_CPOL;
959 if (spi->mode & SPI_CPHA)
960 rspi->spcmd |= SPCMD_CPHA;
961 if (spi->mode & SPI_LSB_FIRST)
962 rspi->spcmd |= SPCMD_LSBF;
964 /* Configure slave signal to assert */
965 rspi->spcmd |= SPCMD_SSLA(spi->cs_gpiod ? rspi->ctlr->unused_native_cs
966 : spi->chip_select);
968 /* CMOS output mode and MOSI signal from previous transfer */
969 rspi->sppcr = 0;
970 if (spi->mode & SPI_LOOP)
971 rspi->sppcr |= SPPCR_SPLP;
973 rspi->ops->set_config_register(rspi, 8);
975 if (msg->spi->mode &
976 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
977 /* Setup sequencer for messages with multiple transfer modes */
978 ret = qspi_setup_sequencer(rspi, msg);
979 if (ret < 0)
980 return ret;
983 /* Enable SPI function in master mode */
984 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
985 return 0;
988 static int rspi_unprepare_message(struct spi_controller *ctlr,
989 struct spi_message *msg)
991 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
993 /* Disable SPI function */
994 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
996 /* Reset sequencer for Single SPI Transfers */
997 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
998 rspi_write8(rspi, 0, RSPI_SPSCR);
999 return 0;
1002 static irqreturn_t rspi_irq_mux(int irq, void *_sr)
1004 struct rspi_data *rspi = _sr;
1005 u8 spsr;
1006 irqreturn_t ret = IRQ_NONE;
1007 u8 disable_irq = 0;
1009 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1010 if (spsr & SPSR_SPRF)
1011 disable_irq |= SPCR_SPRIE;
1012 if (spsr & SPSR_SPTEF)
1013 disable_irq |= SPCR_SPTIE;
1015 if (disable_irq) {
1016 ret = IRQ_HANDLED;
1017 rspi_disable_irq(rspi, disable_irq);
1018 wake_up(&rspi->wait);
1021 return ret;
1024 static irqreturn_t rspi_irq_rx(int irq, void *_sr)
1026 struct rspi_data *rspi = _sr;
1027 u8 spsr;
1029 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1030 if (spsr & SPSR_SPRF) {
1031 rspi_disable_irq(rspi, SPCR_SPRIE);
1032 wake_up(&rspi->wait);
1033 return IRQ_HANDLED;
1036 return 0;
1039 static irqreturn_t rspi_irq_tx(int irq, void *_sr)
1041 struct rspi_data *rspi = _sr;
1042 u8 spsr;
1044 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1045 if (spsr & SPSR_SPTEF) {
1046 rspi_disable_irq(rspi, SPCR_SPTIE);
1047 wake_up(&rspi->wait);
1048 return IRQ_HANDLED;
1051 return 0;
1054 static struct dma_chan *rspi_request_dma_chan(struct device *dev,
1055 enum dma_transfer_direction dir,
1056 unsigned int id,
1057 dma_addr_t port_addr)
1059 dma_cap_mask_t mask;
1060 struct dma_chan *chan;
1061 struct dma_slave_config cfg;
1062 int ret;
1064 dma_cap_zero(mask);
1065 dma_cap_set(DMA_SLAVE, mask);
1067 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1068 (void *)(unsigned long)id, dev,
1069 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1070 if (!chan) {
1071 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1072 return NULL;
1075 memset(&cfg, 0, sizeof(cfg));
1076 cfg.direction = dir;
1077 if (dir == DMA_MEM_TO_DEV) {
1078 cfg.dst_addr = port_addr;
1079 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1080 } else {
1081 cfg.src_addr = port_addr;
1082 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1085 ret = dmaengine_slave_config(chan, &cfg);
1086 if (ret) {
1087 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1088 dma_release_channel(chan);
1089 return NULL;
1092 return chan;
1095 static int rspi_request_dma(struct device *dev, struct spi_controller *ctlr,
1096 const struct resource *res)
1098 const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
1099 unsigned int dma_tx_id, dma_rx_id;
1101 if (dev->of_node) {
1102 /* In the OF case we will get the slave IDs from the DT */
1103 dma_tx_id = 0;
1104 dma_rx_id = 0;
1105 } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
1106 dma_tx_id = rspi_pd->dma_tx_id;
1107 dma_rx_id = rspi_pd->dma_rx_id;
1108 } else {
1109 /* The driver assumes no error. */
1110 return 0;
1113 ctlr->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
1114 res->start + RSPI_SPDR);
1115 if (!ctlr->dma_tx)
1116 return -ENODEV;
1118 ctlr->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
1119 res->start + RSPI_SPDR);
1120 if (!ctlr->dma_rx) {
1121 dma_release_channel(ctlr->dma_tx);
1122 ctlr->dma_tx = NULL;
1123 return -ENODEV;
1126 ctlr->can_dma = rspi_can_dma;
1127 dev_info(dev, "DMA available");
1128 return 0;
1131 static void rspi_release_dma(struct spi_controller *ctlr)
1133 if (ctlr->dma_tx)
1134 dma_release_channel(ctlr->dma_tx);
1135 if (ctlr->dma_rx)
1136 dma_release_channel(ctlr->dma_rx);
1139 static int rspi_remove(struct platform_device *pdev)
1141 struct rspi_data *rspi = platform_get_drvdata(pdev);
1143 rspi_release_dma(rspi->ctlr);
1144 pm_runtime_disable(&pdev->dev);
1146 return 0;
1149 static const struct spi_ops rspi_ops = {
1150 .set_config_register = rspi_set_config_register,
1151 .transfer_one = rspi_transfer_one,
1152 .flags = SPI_CONTROLLER_MUST_TX,
1153 .fifo_size = 8,
1154 .num_hw_ss = 2,
1157 static const struct spi_ops rspi_rz_ops = {
1158 .set_config_register = rspi_rz_set_config_register,
1159 .transfer_one = rspi_rz_transfer_one,
1160 .flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1161 .fifo_size = 8, /* 8 for TX, 32 for RX */
1162 .num_hw_ss = 1,
1165 static const struct spi_ops qspi_ops = {
1166 .set_config_register = qspi_set_config_register,
1167 .transfer_one = qspi_transfer_one,
1168 .extra_mode_bits = SPI_TX_DUAL | SPI_TX_QUAD |
1169 SPI_RX_DUAL | SPI_RX_QUAD,
1170 .flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1171 .fifo_size = 32,
1172 .num_hw_ss = 1,
1175 #ifdef CONFIG_OF
1176 static const struct of_device_id rspi_of_match[] = {
1177 /* RSPI on legacy SH */
1178 { .compatible = "renesas,rspi", .data = &rspi_ops },
1179 /* RSPI on RZ/A1H */
1180 { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1181 /* QSPI on R-Car Gen2 */
1182 { .compatible = "renesas,qspi", .data = &qspi_ops },
1183 { /* sentinel */ }
1186 MODULE_DEVICE_TABLE(of, rspi_of_match);
1188 static int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1190 u32 num_cs;
1191 int error;
1193 /* Parse DT properties */
1194 error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1195 if (error) {
1196 dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1197 return error;
1200 ctlr->num_chipselect = num_cs;
1201 return 0;
1203 #else
1204 #define rspi_of_match NULL
1205 static inline int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1207 return -EINVAL;
1209 #endif /* CONFIG_OF */
1211 static int rspi_request_irq(struct device *dev, unsigned int irq,
1212 irq_handler_t handler, const char *suffix,
1213 void *dev_id)
1215 const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
1216 dev_name(dev), suffix);
1217 if (!name)
1218 return -ENOMEM;
1220 return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1223 static int rspi_probe(struct platform_device *pdev)
1225 struct resource *res;
1226 struct spi_controller *ctlr;
1227 struct rspi_data *rspi;
1228 int ret;
1229 const struct rspi_plat_data *rspi_pd;
1230 const struct spi_ops *ops;
1232 ctlr = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1233 if (ctlr == NULL)
1234 return -ENOMEM;
1236 ops = of_device_get_match_data(&pdev->dev);
1237 if (ops) {
1238 ret = rspi_parse_dt(&pdev->dev, ctlr);
1239 if (ret)
1240 goto error1;
1241 } else {
1242 ops = (struct spi_ops *)pdev->id_entry->driver_data;
1243 rspi_pd = dev_get_platdata(&pdev->dev);
1244 if (rspi_pd && rspi_pd->num_chipselect)
1245 ctlr->num_chipselect = rspi_pd->num_chipselect;
1246 else
1247 ctlr->num_chipselect = 2; /* default */
1250 /* ops parameter check */
1251 if (!ops->set_config_register) {
1252 dev_err(&pdev->dev, "there is no set_config_register\n");
1253 ret = -ENODEV;
1254 goto error1;
1257 rspi = spi_controller_get_devdata(ctlr);
1258 platform_set_drvdata(pdev, rspi);
1259 rspi->ops = ops;
1260 rspi->ctlr = ctlr;
1262 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1263 rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1264 if (IS_ERR(rspi->addr)) {
1265 ret = PTR_ERR(rspi->addr);
1266 goto error1;
1269 rspi->clk = devm_clk_get(&pdev->dev, NULL);
1270 if (IS_ERR(rspi->clk)) {
1271 dev_err(&pdev->dev, "cannot get clock\n");
1272 ret = PTR_ERR(rspi->clk);
1273 goto error1;
1276 rspi->pdev = pdev;
1277 pm_runtime_enable(&pdev->dev);
1279 init_waitqueue_head(&rspi->wait);
1280 spin_lock_init(&rspi->lock);
1282 ctlr->bus_num = pdev->id;
1283 ctlr->setup = rspi_setup;
1284 ctlr->auto_runtime_pm = true;
1285 ctlr->transfer_one = ops->transfer_one;
1286 ctlr->prepare_message = rspi_prepare_message;
1287 ctlr->unprepare_message = rspi_unprepare_message;
1288 ctlr->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1289 SPI_LOOP | ops->extra_mode_bits;
1290 ctlr->flags = ops->flags;
1291 ctlr->dev.of_node = pdev->dev.of_node;
1292 ctlr->use_gpio_descriptors = true;
1293 ctlr->max_native_cs = rspi->ops->num_hw_ss;
1295 ret = platform_get_irq_byname_optional(pdev, "rx");
1296 if (ret < 0) {
1297 ret = platform_get_irq_byname_optional(pdev, "mux");
1298 if (ret < 0)
1299 ret = platform_get_irq(pdev, 0);
1300 if (ret >= 0)
1301 rspi->rx_irq = rspi->tx_irq = ret;
1302 } else {
1303 rspi->rx_irq = ret;
1304 ret = platform_get_irq_byname(pdev, "tx");
1305 if (ret >= 0)
1306 rspi->tx_irq = ret;
1309 if (rspi->rx_irq == rspi->tx_irq) {
1310 /* Single multiplexed interrupt */
1311 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1312 "mux", rspi);
1313 } else {
1314 /* Multi-interrupt mode, only SPRI and SPTI are used */
1315 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1316 "rx", rspi);
1317 if (!ret)
1318 ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1319 rspi_irq_tx, "tx", rspi);
1321 if (ret < 0) {
1322 dev_err(&pdev->dev, "request_irq error\n");
1323 goto error2;
1326 ret = rspi_request_dma(&pdev->dev, ctlr, res);
1327 if (ret < 0)
1328 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1330 ret = devm_spi_register_controller(&pdev->dev, ctlr);
1331 if (ret < 0) {
1332 dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1333 goto error3;
1336 dev_info(&pdev->dev, "probed\n");
1338 return 0;
1340 error3:
1341 rspi_release_dma(ctlr);
1342 error2:
1343 pm_runtime_disable(&pdev->dev);
1344 error1:
1345 spi_controller_put(ctlr);
1347 return ret;
1350 static const struct platform_device_id spi_driver_ids[] = {
1351 { "rspi", (kernel_ulong_t)&rspi_ops },
1355 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1357 #ifdef CONFIG_PM_SLEEP
1358 static int rspi_suspend(struct device *dev)
1360 struct rspi_data *rspi = dev_get_drvdata(dev);
1362 return spi_controller_suspend(rspi->ctlr);
1365 static int rspi_resume(struct device *dev)
1367 struct rspi_data *rspi = dev_get_drvdata(dev);
1369 return spi_controller_resume(rspi->ctlr);
1372 static SIMPLE_DEV_PM_OPS(rspi_pm_ops, rspi_suspend, rspi_resume);
1373 #define DEV_PM_OPS &rspi_pm_ops
1374 #else
1375 #define DEV_PM_OPS NULL
1376 #endif /* CONFIG_PM_SLEEP */
1378 static struct platform_driver rspi_driver = {
1379 .probe = rspi_probe,
1380 .remove = rspi_remove,
1381 .id_table = spi_driver_ids,
1382 .driver = {
1383 .name = "renesas_spi",
1384 .pm = DEV_PM_OPS,
1385 .of_match_table = of_match_ptr(rspi_of_match),
1388 module_platform_driver(rspi_driver);
1390 MODULE_DESCRIPTION("Renesas RSPI bus driver");
1391 MODULE_LICENSE("GPL v2");
1392 MODULE_AUTHOR("Yoshihiro Shimoda");
1393 MODULE_ALIAS("platform:rspi");