1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (C) 2012 - 2014 Allwinner Tech
4 * Pan Nan <pannan@allwinnertech.com>
6 * Copyright (C) 2014 Maxime Ripard
7 * Maxime Ripard <maxime.ripard@free-electrons.com>
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/of_device.h>
17 #include <linux/platform_device.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/reset.h>
21 #include <linux/spi/spi.h>
23 #define SUN6I_FIFO_DEPTH 128
24 #define SUN8I_FIFO_DEPTH 64
26 #define SUN6I_GBL_CTL_REG 0x04
27 #define SUN6I_GBL_CTL_BUS_ENABLE BIT(0)
28 #define SUN6I_GBL_CTL_MASTER BIT(1)
29 #define SUN6I_GBL_CTL_TP BIT(7)
30 #define SUN6I_GBL_CTL_RST BIT(31)
32 #define SUN6I_TFR_CTL_REG 0x08
33 #define SUN6I_TFR_CTL_CPHA BIT(0)
34 #define SUN6I_TFR_CTL_CPOL BIT(1)
35 #define SUN6I_TFR_CTL_SPOL BIT(2)
36 #define SUN6I_TFR_CTL_CS_MASK 0x30
37 #define SUN6I_TFR_CTL_CS(cs) (((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
38 #define SUN6I_TFR_CTL_CS_MANUAL BIT(6)
39 #define SUN6I_TFR_CTL_CS_LEVEL BIT(7)
40 #define SUN6I_TFR_CTL_DHB BIT(8)
41 #define SUN6I_TFR_CTL_FBS BIT(12)
42 #define SUN6I_TFR_CTL_XCH BIT(31)
44 #define SUN6I_INT_CTL_REG 0x10
45 #define SUN6I_INT_CTL_RF_RDY BIT(0)
46 #define SUN6I_INT_CTL_TF_ERQ BIT(4)
47 #define SUN6I_INT_CTL_RF_OVF BIT(8)
48 #define SUN6I_INT_CTL_TC BIT(12)
50 #define SUN6I_INT_STA_REG 0x14
52 #define SUN6I_FIFO_CTL_REG 0x18
53 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK 0xff
54 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS 0
55 #define SUN6I_FIFO_CTL_RF_RST BIT(15)
56 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK 0xff
57 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS 16
58 #define SUN6I_FIFO_CTL_TF_RST BIT(31)
60 #define SUN6I_FIFO_STA_REG 0x1c
61 #define SUN6I_FIFO_STA_RF_CNT_MASK 0x7f
62 #define SUN6I_FIFO_STA_RF_CNT_BITS 0
63 #define SUN6I_FIFO_STA_TF_CNT_MASK 0x7f
64 #define SUN6I_FIFO_STA_TF_CNT_BITS 16
66 #define SUN6I_CLK_CTL_REG 0x24
67 #define SUN6I_CLK_CTL_CDR2_MASK 0xff
68 #define SUN6I_CLK_CTL_CDR2(div) (((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
69 #define SUN6I_CLK_CTL_CDR1_MASK 0xf
70 #define SUN6I_CLK_CTL_CDR1(div) (((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
71 #define SUN6I_CLK_CTL_DRS BIT(12)
73 #define SUN6I_MAX_XFER_SIZE 0xffffff
75 #define SUN6I_BURST_CNT_REG 0x30
76 #define SUN6I_BURST_CNT(cnt) ((cnt) & SUN6I_MAX_XFER_SIZE)
78 #define SUN6I_XMIT_CNT_REG 0x34
79 #define SUN6I_XMIT_CNT(cnt) ((cnt) & SUN6I_MAX_XFER_SIZE)
81 #define SUN6I_BURST_CTL_CNT_REG 0x38
82 #define SUN6I_BURST_CTL_CNT_STC(cnt) ((cnt) & SUN6I_MAX_XFER_SIZE)
84 #define SUN6I_TXDATA_REG 0x200
85 #define SUN6I_RXDATA_REG 0x300
88 struct spi_master
*master
;
89 void __iomem
*base_addr
;
92 struct reset_control
*rstc
;
94 struct completion done
;
99 unsigned long fifo_depth
;
102 static inline u32
sun6i_spi_read(struct sun6i_spi
*sspi
, u32 reg
)
104 return readl(sspi
->base_addr
+ reg
);
107 static inline void sun6i_spi_write(struct sun6i_spi
*sspi
, u32 reg
, u32 value
)
109 writel(value
, sspi
->base_addr
+ reg
);
112 static inline u32
sun6i_spi_get_tx_fifo_count(struct sun6i_spi
*sspi
)
114 u32 reg
= sun6i_spi_read(sspi
, SUN6I_FIFO_STA_REG
);
116 reg
>>= SUN6I_FIFO_STA_TF_CNT_BITS
;
118 return reg
& SUN6I_FIFO_STA_TF_CNT_MASK
;
121 static inline void sun6i_spi_enable_interrupt(struct sun6i_spi
*sspi
, u32 mask
)
123 u32 reg
= sun6i_spi_read(sspi
, SUN6I_INT_CTL_REG
);
126 sun6i_spi_write(sspi
, SUN6I_INT_CTL_REG
, reg
);
129 static inline void sun6i_spi_disable_interrupt(struct sun6i_spi
*sspi
, u32 mask
)
131 u32 reg
= sun6i_spi_read(sspi
, SUN6I_INT_CTL_REG
);
134 sun6i_spi_write(sspi
, SUN6I_INT_CTL_REG
, reg
);
137 static inline void sun6i_spi_drain_fifo(struct sun6i_spi
*sspi
, int len
)
142 /* See how much data is available */
143 reg
= sun6i_spi_read(sspi
, SUN6I_FIFO_STA_REG
);
144 reg
&= SUN6I_FIFO_STA_RF_CNT_MASK
;
145 cnt
= reg
>> SUN6I_FIFO_STA_RF_CNT_BITS
;
151 byte
= readb(sspi
->base_addr
+ SUN6I_RXDATA_REG
);
153 *sspi
->rx_buf
++ = byte
;
157 static inline void sun6i_spi_fill_fifo(struct sun6i_spi
*sspi
, int len
)
162 /* See how much data we can fit */
163 cnt
= sspi
->fifo_depth
- sun6i_spi_get_tx_fifo_count(sspi
);
165 len
= min3(len
, (int)cnt
, sspi
->len
);
168 byte
= sspi
->tx_buf
? *sspi
->tx_buf
++ : 0;
169 writeb(byte
, sspi
->base_addr
+ SUN6I_TXDATA_REG
);
174 static void sun6i_spi_set_cs(struct spi_device
*spi
, bool enable
)
176 struct sun6i_spi
*sspi
= spi_master_get_devdata(spi
->master
);
179 reg
= sun6i_spi_read(sspi
, SUN6I_TFR_CTL_REG
);
180 reg
&= ~SUN6I_TFR_CTL_CS_MASK
;
181 reg
|= SUN6I_TFR_CTL_CS(spi
->chip_select
);
184 reg
|= SUN6I_TFR_CTL_CS_LEVEL
;
186 reg
&= ~SUN6I_TFR_CTL_CS_LEVEL
;
188 sun6i_spi_write(sspi
, SUN6I_TFR_CTL_REG
, reg
);
191 static size_t sun6i_spi_max_transfer_size(struct spi_device
*spi
)
193 return SUN6I_MAX_XFER_SIZE
- 1;
196 static int sun6i_spi_transfer_one(struct spi_master
*master
,
197 struct spi_device
*spi
,
198 struct spi_transfer
*tfr
)
200 struct sun6i_spi
*sspi
= spi_master_get_devdata(master
);
201 unsigned int mclk_rate
, div
, timeout
;
202 unsigned int start
, end
, tx_time
;
203 unsigned int trig_level
;
204 unsigned int tx_len
= 0;
208 if (tfr
->len
> SUN6I_MAX_XFER_SIZE
)
211 reinit_completion(&sspi
->done
);
212 sspi
->tx_buf
= tfr
->tx_buf
;
213 sspi
->rx_buf
= tfr
->rx_buf
;
214 sspi
->len
= tfr
->len
;
216 /* Clear pending interrupts */
217 sun6i_spi_write(sspi
, SUN6I_INT_STA_REG
, ~0);
220 sun6i_spi_write(sspi
, SUN6I_FIFO_CTL_REG
,
221 SUN6I_FIFO_CTL_RF_RST
| SUN6I_FIFO_CTL_TF_RST
);
224 * Setup FIFO interrupt trigger level
225 * Here we choose 3/4 of the full fifo depth, as it's the hardcoded
226 * value used in old generation of Allwinner SPI controller.
229 trig_level
= sspi
->fifo_depth
/ 4 * 3;
230 sun6i_spi_write(sspi
, SUN6I_FIFO_CTL_REG
,
231 (trig_level
<< SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS
) |
232 (trig_level
<< SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS
));
235 * Setup the transfer control register: Chip Select,
238 reg
= sun6i_spi_read(sspi
, SUN6I_TFR_CTL_REG
);
240 if (spi
->mode
& SPI_CPOL
)
241 reg
|= SUN6I_TFR_CTL_CPOL
;
243 reg
&= ~SUN6I_TFR_CTL_CPOL
;
245 if (spi
->mode
& SPI_CPHA
)
246 reg
|= SUN6I_TFR_CTL_CPHA
;
248 reg
&= ~SUN6I_TFR_CTL_CPHA
;
250 if (spi
->mode
& SPI_LSB_FIRST
)
251 reg
|= SUN6I_TFR_CTL_FBS
;
253 reg
&= ~SUN6I_TFR_CTL_FBS
;
256 * If it's a TX only transfer, we don't want to fill the RX
257 * FIFO with bogus data
260 reg
&= ~SUN6I_TFR_CTL_DHB
;
262 reg
|= SUN6I_TFR_CTL_DHB
;
264 /* We want to control the chip select manually */
265 reg
|= SUN6I_TFR_CTL_CS_MANUAL
;
267 sun6i_spi_write(sspi
, SUN6I_TFR_CTL_REG
, reg
);
269 /* Ensure that we have a parent clock fast enough */
270 mclk_rate
= clk_get_rate(sspi
->mclk
);
271 if (mclk_rate
< (2 * tfr
->speed_hz
)) {
272 clk_set_rate(sspi
->mclk
, 2 * tfr
->speed_hz
);
273 mclk_rate
= clk_get_rate(sspi
->mclk
);
277 * Setup clock divider.
279 * We have two choices there. Either we can use the clock
280 * divide rate 1, which is calculated thanks to this formula:
281 * SPI_CLK = MOD_CLK / (2 ^ cdr)
282 * Or we can use CDR2, which is calculated with the formula:
283 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
284 * Wether we use the former or the latter is set through the
287 * First try CDR2, and if we can't reach the expected
288 * frequency, fall back to CDR1.
290 div
= mclk_rate
/ (2 * tfr
->speed_hz
);
291 if (div
<= (SUN6I_CLK_CTL_CDR2_MASK
+ 1)) {
295 reg
= SUN6I_CLK_CTL_CDR2(div
) | SUN6I_CLK_CTL_DRS
;
297 div
= ilog2(mclk_rate
) - ilog2(tfr
->speed_hz
);
298 reg
= SUN6I_CLK_CTL_CDR1(div
);
301 sun6i_spi_write(sspi
, SUN6I_CLK_CTL_REG
, reg
);
303 /* Setup the transfer now... */
307 /* Setup the counters */
308 sun6i_spi_write(sspi
, SUN6I_BURST_CNT_REG
, SUN6I_BURST_CNT(tfr
->len
));
309 sun6i_spi_write(sspi
, SUN6I_XMIT_CNT_REG
, SUN6I_XMIT_CNT(tx_len
));
310 sun6i_spi_write(sspi
, SUN6I_BURST_CTL_CNT_REG
,
311 SUN6I_BURST_CTL_CNT_STC(tx_len
));
313 /* Fill the TX FIFO */
314 sun6i_spi_fill_fifo(sspi
, sspi
->fifo_depth
);
316 /* Enable the interrupts */
317 sun6i_spi_write(sspi
, SUN6I_INT_CTL_REG
, SUN6I_INT_CTL_TC
);
318 sun6i_spi_enable_interrupt(sspi
, SUN6I_INT_CTL_TC
|
319 SUN6I_INT_CTL_RF_RDY
);
320 if (tx_len
> sspi
->fifo_depth
)
321 sun6i_spi_enable_interrupt(sspi
, SUN6I_INT_CTL_TF_ERQ
);
323 /* Start the transfer */
324 reg
= sun6i_spi_read(sspi
, SUN6I_TFR_CTL_REG
);
325 sun6i_spi_write(sspi
, SUN6I_TFR_CTL_REG
, reg
| SUN6I_TFR_CTL_XCH
);
327 tx_time
= max(tfr
->len
* 8 * 2 / (tfr
->speed_hz
/ 1000), 100U);
329 timeout
= wait_for_completion_timeout(&sspi
->done
,
330 msecs_to_jiffies(tx_time
));
333 dev_warn(&master
->dev
,
334 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
335 dev_name(&spi
->dev
), tfr
->len
, tfr
->speed_hz
,
336 jiffies_to_msecs(end
- start
), tx_time
);
342 sun6i_spi_write(sspi
, SUN6I_INT_CTL_REG
, 0);
347 static irqreturn_t
sun6i_spi_handler(int irq
, void *dev_id
)
349 struct sun6i_spi
*sspi
= dev_id
;
350 u32 status
= sun6i_spi_read(sspi
, SUN6I_INT_STA_REG
);
352 /* Transfer complete */
353 if (status
& SUN6I_INT_CTL_TC
) {
354 sun6i_spi_write(sspi
, SUN6I_INT_STA_REG
, SUN6I_INT_CTL_TC
);
355 sun6i_spi_drain_fifo(sspi
, sspi
->fifo_depth
);
356 complete(&sspi
->done
);
360 /* Receive FIFO 3/4 full */
361 if (status
& SUN6I_INT_CTL_RF_RDY
) {
362 sun6i_spi_drain_fifo(sspi
, SUN6I_FIFO_DEPTH
);
363 /* Only clear the interrupt _after_ draining the FIFO */
364 sun6i_spi_write(sspi
, SUN6I_INT_STA_REG
, SUN6I_INT_CTL_RF_RDY
);
368 /* Transmit FIFO 3/4 empty */
369 if (status
& SUN6I_INT_CTL_TF_ERQ
) {
370 sun6i_spi_fill_fifo(sspi
, SUN6I_FIFO_DEPTH
);
373 /* nothing left to transmit */
374 sun6i_spi_disable_interrupt(sspi
, SUN6I_INT_CTL_TF_ERQ
);
376 /* Only clear the interrupt _after_ re-seeding the FIFO */
377 sun6i_spi_write(sspi
, SUN6I_INT_STA_REG
, SUN6I_INT_CTL_TF_ERQ
);
385 static int sun6i_spi_runtime_resume(struct device
*dev
)
387 struct spi_master
*master
= dev_get_drvdata(dev
);
388 struct sun6i_spi
*sspi
= spi_master_get_devdata(master
);
391 ret
= clk_prepare_enable(sspi
->hclk
);
393 dev_err(dev
, "Couldn't enable AHB clock\n");
397 ret
= clk_prepare_enable(sspi
->mclk
);
399 dev_err(dev
, "Couldn't enable module clock\n");
403 ret
= reset_control_deassert(sspi
->rstc
);
405 dev_err(dev
, "Couldn't deassert the device from reset\n");
409 sun6i_spi_write(sspi
, SUN6I_GBL_CTL_REG
,
410 SUN6I_GBL_CTL_BUS_ENABLE
| SUN6I_GBL_CTL_MASTER
| SUN6I_GBL_CTL_TP
);
415 clk_disable_unprepare(sspi
->mclk
);
417 clk_disable_unprepare(sspi
->hclk
);
422 static int sun6i_spi_runtime_suspend(struct device
*dev
)
424 struct spi_master
*master
= dev_get_drvdata(dev
);
425 struct sun6i_spi
*sspi
= spi_master_get_devdata(master
);
427 reset_control_assert(sspi
->rstc
);
428 clk_disable_unprepare(sspi
->mclk
);
429 clk_disable_unprepare(sspi
->hclk
);
434 static int sun6i_spi_probe(struct platform_device
*pdev
)
436 struct spi_master
*master
;
437 struct sun6i_spi
*sspi
;
440 master
= spi_alloc_master(&pdev
->dev
, sizeof(struct sun6i_spi
));
442 dev_err(&pdev
->dev
, "Unable to allocate SPI Master\n");
446 platform_set_drvdata(pdev
, master
);
447 sspi
= spi_master_get_devdata(master
);
449 sspi
->base_addr
= devm_platform_ioremap_resource(pdev
, 0);
450 if (IS_ERR(sspi
->base_addr
)) {
451 ret
= PTR_ERR(sspi
->base_addr
);
452 goto err_free_master
;
455 irq
= platform_get_irq(pdev
, 0);
458 goto err_free_master
;
461 ret
= devm_request_irq(&pdev
->dev
, irq
, sun6i_spi_handler
,
462 0, "sun6i-spi", sspi
);
464 dev_err(&pdev
->dev
, "Cannot request IRQ\n");
465 goto err_free_master
;
468 sspi
->master
= master
;
469 sspi
->fifo_depth
= (unsigned long)of_device_get_match_data(&pdev
->dev
);
471 master
->max_speed_hz
= 100 * 1000 * 1000;
472 master
->min_speed_hz
= 3 * 1000;
473 master
->set_cs
= sun6i_spi_set_cs
;
474 master
->transfer_one
= sun6i_spi_transfer_one
;
475 master
->num_chipselect
= 4;
476 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
| SPI_LSB_FIRST
;
477 master
->bits_per_word_mask
= SPI_BPW_MASK(8);
478 master
->dev
.of_node
= pdev
->dev
.of_node
;
479 master
->auto_runtime_pm
= true;
480 master
->max_transfer_size
= sun6i_spi_max_transfer_size
;
482 sspi
->hclk
= devm_clk_get(&pdev
->dev
, "ahb");
483 if (IS_ERR(sspi
->hclk
)) {
484 dev_err(&pdev
->dev
, "Unable to acquire AHB clock\n");
485 ret
= PTR_ERR(sspi
->hclk
);
486 goto err_free_master
;
489 sspi
->mclk
= devm_clk_get(&pdev
->dev
, "mod");
490 if (IS_ERR(sspi
->mclk
)) {
491 dev_err(&pdev
->dev
, "Unable to acquire module clock\n");
492 ret
= PTR_ERR(sspi
->mclk
);
493 goto err_free_master
;
496 init_completion(&sspi
->done
);
498 sspi
->rstc
= devm_reset_control_get_exclusive(&pdev
->dev
, NULL
);
499 if (IS_ERR(sspi
->rstc
)) {
500 dev_err(&pdev
->dev
, "Couldn't get reset controller\n");
501 ret
= PTR_ERR(sspi
->rstc
);
502 goto err_free_master
;
506 * This wake-up/shutdown pattern is to be able to have the
507 * device woken up, even if runtime_pm is disabled
509 ret
= sun6i_spi_runtime_resume(&pdev
->dev
);
511 dev_err(&pdev
->dev
, "Couldn't resume the device\n");
512 goto err_free_master
;
515 pm_runtime_set_active(&pdev
->dev
);
516 pm_runtime_enable(&pdev
->dev
);
517 pm_runtime_idle(&pdev
->dev
);
519 ret
= devm_spi_register_master(&pdev
->dev
, master
);
521 dev_err(&pdev
->dev
, "cannot register SPI master\n");
528 pm_runtime_disable(&pdev
->dev
);
529 sun6i_spi_runtime_suspend(&pdev
->dev
);
531 spi_master_put(master
);
535 static int sun6i_spi_remove(struct platform_device
*pdev
)
537 pm_runtime_force_suspend(&pdev
->dev
);
542 static const struct of_device_id sun6i_spi_match
[] = {
543 { .compatible
= "allwinner,sun6i-a31-spi", .data
= (void *)SUN6I_FIFO_DEPTH
},
544 { .compatible
= "allwinner,sun8i-h3-spi", .data
= (void *)SUN8I_FIFO_DEPTH
},
547 MODULE_DEVICE_TABLE(of
, sun6i_spi_match
);
549 static const struct dev_pm_ops sun6i_spi_pm_ops
= {
550 .runtime_resume
= sun6i_spi_runtime_resume
,
551 .runtime_suspend
= sun6i_spi_runtime_suspend
,
554 static struct platform_driver sun6i_spi_driver
= {
555 .probe
= sun6i_spi_probe
,
556 .remove
= sun6i_spi_remove
,
559 .of_match_table
= sun6i_spi_match
,
560 .pm
= &sun6i_spi_pm_ops
,
563 module_platform_driver(sun6i_spi_driver
);
565 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
566 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
567 MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
568 MODULE_LICENSE("GPL");