1 // SPDX-License-Identifier: GPL-2.0-only
3 * SPI driver for NVIDIA's Tegra114 SPI Controller.
5 * Copyright (c) 2013, NVIDIA CORPORATION. All rights reserved.
9 #include <linux/completion.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmapool.h>
14 #include <linux/err.h>
15 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/kthread.h>
19 #include <linux/module.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
23 #include <linux/of_device.h>
24 #include <linux/reset.h>
25 #include <linux/spi/spi.h>
27 #define SPI_COMMAND1 0x000
28 #define SPI_BIT_LENGTH(x) (((x) & 0x1f) << 0)
29 #define SPI_PACKED (1 << 5)
30 #define SPI_TX_EN (1 << 11)
31 #define SPI_RX_EN (1 << 12)
32 #define SPI_BOTH_EN_BYTE (1 << 13)
33 #define SPI_BOTH_EN_BIT (1 << 14)
34 #define SPI_LSBYTE_FE (1 << 15)
35 #define SPI_LSBIT_FE (1 << 16)
36 #define SPI_BIDIROE (1 << 17)
37 #define SPI_IDLE_SDA_DRIVE_LOW (0 << 18)
38 #define SPI_IDLE_SDA_DRIVE_HIGH (1 << 18)
39 #define SPI_IDLE_SDA_PULL_LOW (2 << 18)
40 #define SPI_IDLE_SDA_PULL_HIGH (3 << 18)
41 #define SPI_IDLE_SDA_MASK (3 << 18)
42 #define SPI_CS_SW_VAL (1 << 20)
43 #define SPI_CS_SW_HW (1 << 21)
44 /* SPI_CS_POL_INACTIVE bits are default high */
46 #define SPI_CS_POL_INACTIVE(n) (1 << (22 + (n)))
47 #define SPI_CS_POL_INACTIVE_MASK (0xF << 22)
49 #define SPI_CS_SEL_0 (0 << 26)
50 #define SPI_CS_SEL_1 (1 << 26)
51 #define SPI_CS_SEL_2 (2 << 26)
52 #define SPI_CS_SEL_3 (3 << 26)
53 #define SPI_CS_SEL_MASK (3 << 26)
54 #define SPI_CS_SEL(x) (((x) & 0x3) << 26)
55 #define SPI_CONTROL_MODE_0 (0 << 28)
56 #define SPI_CONTROL_MODE_1 (1 << 28)
57 #define SPI_CONTROL_MODE_2 (2 << 28)
58 #define SPI_CONTROL_MODE_3 (3 << 28)
59 #define SPI_CONTROL_MODE_MASK (3 << 28)
60 #define SPI_MODE_SEL(x) (((x) & 0x3) << 28)
61 #define SPI_M_S (1 << 30)
62 #define SPI_PIO (1 << 31)
64 #define SPI_COMMAND2 0x004
65 #define SPI_TX_TAP_DELAY(x) (((x) & 0x3F) << 6)
66 #define SPI_RX_TAP_DELAY(x) (((x) & 0x3F) << 0)
68 #define SPI_CS_TIMING1 0x008
69 #define SPI_SETUP_HOLD(setup, hold) (((setup) << 4) | (hold))
70 #define SPI_CS_SETUP_HOLD(reg, cs, val) \
71 ((((val) & 0xFFu) << ((cs) * 8)) | \
72 ((reg) & ~(0xFFu << ((cs) * 8))))
74 #define SPI_CS_TIMING2 0x00C
75 #define CYCLES_BETWEEN_PACKETS_0(x) (((x) & 0x1F) << 0)
76 #define CS_ACTIVE_BETWEEN_PACKETS_0 (1 << 5)
77 #define CYCLES_BETWEEN_PACKETS_1(x) (((x) & 0x1F) << 8)
78 #define CS_ACTIVE_BETWEEN_PACKETS_1 (1 << 13)
79 #define CYCLES_BETWEEN_PACKETS_2(x) (((x) & 0x1F) << 16)
80 #define CS_ACTIVE_BETWEEN_PACKETS_2 (1 << 21)
81 #define CYCLES_BETWEEN_PACKETS_3(x) (((x) & 0x1F) << 24)
82 #define CS_ACTIVE_BETWEEN_PACKETS_3 (1 << 29)
83 #define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val) \
84 (reg = (((val) & 0x1) << ((cs) * 8 + 5)) | \
85 ((reg) & ~(1 << ((cs) * 8 + 5))))
86 #define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val) \
87 (reg = (((val) & 0x1F) << ((cs) * 8)) | \
88 ((reg) & ~(0x1F << ((cs) * 8))))
89 #define MAX_SETUP_HOLD_CYCLES 16
90 #define MAX_INACTIVE_CYCLES 32
92 #define SPI_TRANS_STATUS 0x010
93 #define SPI_BLK_CNT(val) (((val) >> 0) & 0xFFFF)
94 #define SPI_SLV_IDLE_COUNT(val) (((val) >> 16) & 0xFF)
95 #define SPI_RDY (1 << 30)
97 #define SPI_FIFO_STATUS 0x014
98 #define SPI_RX_FIFO_EMPTY (1 << 0)
99 #define SPI_RX_FIFO_FULL (1 << 1)
100 #define SPI_TX_FIFO_EMPTY (1 << 2)
101 #define SPI_TX_FIFO_FULL (1 << 3)
102 #define SPI_RX_FIFO_UNF (1 << 4)
103 #define SPI_RX_FIFO_OVF (1 << 5)
104 #define SPI_TX_FIFO_UNF (1 << 6)
105 #define SPI_TX_FIFO_OVF (1 << 7)
106 #define SPI_ERR (1 << 8)
107 #define SPI_TX_FIFO_FLUSH (1 << 14)
108 #define SPI_RX_FIFO_FLUSH (1 << 15)
109 #define SPI_TX_FIFO_EMPTY_COUNT(val) (((val) >> 16) & 0x7F)
110 #define SPI_RX_FIFO_FULL_COUNT(val) (((val) >> 23) & 0x7F)
111 #define SPI_FRAME_END (1 << 30)
112 #define SPI_CS_INACTIVE (1 << 31)
114 #define SPI_FIFO_ERROR (SPI_RX_FIFO_UNF | \
115 SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF)
116 #define SPI_FIFO_EMPTY (SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY)
118 #define SPI_TX_DATA 0x018
119 #define SPI_RX_DATA 0x01C
121 #define SPI_DMA_CTL 0x020
122 #define SPI_TX_TRIG_1 (0 << 15)
123 #define SPI_TX_TRIG_4 (1 << 15)
124 #define SPI_TX_TRIG_8 (2 << 15)
125 #define SPI_TX_TRIG_16 (3 << 15)
126 #define SPI_TX_TRIG_MASK (3 << 15)
127 #define SPI_RX_TRIG_1 (0 << 19)
128 #define SPI_RX_TRIG_4 (1 << 19)
129 #define SPI_RX_TRIG_8 (2 << 19)
130 #define SPI_RX_TRIG_16 (3 << 19)
131 #define SPI_RX_TRIG_MASK (3 << 19)
132 #define SPI_IE_TX (1 << 28)
133 #define SPI_IE_RX (1 << 29)
134 #define SPI_CONT (1 << 30)
135 #define SPI_DMA (1 << 31)
136 #define SPI_DMA_EN SPI_DMA
138 #define SPI_DMA_BLK 0x024
139 #define SPI_DMA_BLK_SET(x) (((x) & 0xFFFF) << 0)
141 #define SPI_TX_FIFO 0x108
142 #define SPI_RX_FIFO 0x188
143 #define SPI_INTR_MASK 0x18c
144 #define SPI_INTR_ALL_MASK (0x1fUL << 25)
145 #define MAX_CHIP_SELECT 4
146 #define SPI_FIFO_DEPTH 64
147 #define DATA_DIR_TX (1 << 0)
148 #define DATA_DIR_RX (1 << 1)
150 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
151 #define DEFAULT_SPI_DMA_BUF_LEN (16*1024)
152 #define TX_FIFO_EMPTY_COUNT_MAX SPI_TX_FIFO_EMPTY_COUNT(0x40)
153 #define RX_FIFO_FULL_COUNT_ZERO SPI_RX_FIFO_FULL_COUNT(0)
154 #define MAX_HOLD_CYCLES 16
155 #define SPI_DEFAULT_SPEED 25000000
157 struct tegra_spi_soc_data
{
158 bool has_intr_mask_reg
;
161 struct tegra_spi_client_data
{
162 int tx_clk_tap_delay
;
163 int rx_clk_tap_delay
;
166 struct tegra_spi_data
{
168 struct spi_master
*master
;
172 struct reset_control
*rst
;
178 struct spi_device
*cur_spi
;
179 struct spi_device
*cs_control
;
181 unsigned words_per_32bit
;
182 unsigned bytes_per_word
;
183 unsigned curr_dma_words
;
184 unsigned cur_direction
;
189 unsigned dma_buf_size
;
190 unsigned max_buf_size
;
191 bool is_curr_dma_xfer
;
192 bool use_hw_based_cs
;
194 struct completion rx_dma_complete
;
195 struct completion tx_dma_complete
;
204 u32 def_command1_reg
;
205 u32 def_command2_reg
;
210 struct completion xfer_completion
;
211 struct spi_transfer
*curr_xfer
;
212 struct dma_chan
*rx_dma_chan
;
214 dma_addr_t rx_dma_phys
;
215 struct dma_async_tx_descriptor
*rx_dma_desc
;
217 struct dma_chan
*tx_dma_chan
;
219 dma_addr_t tx_dma_phys
;
220 struct dma_async_tx_descriptor
*tx_dma_desc
;
221 const struct tegra_spi_soc_data
*soc_data
;
224 static int tegra_spi_runtime_suspend(struct device
*dev
);
225 static int tegra_spi_runtime_resume(struct device
*dev
);
227 static inline u32
tegra_spi_readl(struct tegra_spi_data
*tspi
,
230 return readl(tspi
->base
+ reg
);
233 static inline void tegra_spi_writel(struct tegra_spi_data
*tspi
,
234 u32 val
, unsigned long reg
)
236 writel(val
, tspi
->base
+ reg
);
238 /* Read back register to make sure that register writes completed */
239 if (reg
!= SPI_TX_FIFO
)
240 readl(tspi
->base
+ SPI_COMMAND1
);
243 static void tegra_spi_clear_status(struct tegra_spi_data
*tspi
)
247 /* Write 1 to clear status register */
248 val
= tegra_spi_readl(tspi
, SPI_TRANS_STATUS
);
249 tegra_spi_writel(tspi
, val
, SPI_TRANS_STATUS
);
251 /* Clear fifo status error if any */
252 val
= tegra_spi_readl(tspi
, SPI_FIFO_STATUS
);
254 tegra_spi_writel(tspi
, SPI_ERR
| SPI_FIFO_ERROR
,
258 static unsigned tegra_spi_calculate_curr_xfer_param(
259 struct spi_device
*spi
, struct tegra_spi_data
*tspi
,
260 struct spi_transfer
*t
)
262 unsigned remain_len
= t
->len
- tspi
->cur_pos
;
264 unsigned bits_per_word
= t
->bits_per_word
;
266 unsigned total_fifo_words
;
268 tspi
->bytes_per_word
= DIV_ROUND_UP(bits_per_word
, 8);
270 if ((bits_per_word
== 8 || bits_per_word
== 16 ||
271 bits_per_word
== 32) && t
->len
> 3) {
272 tspi
->is_packed
= true;
273 tspi
->words_per_32bit
= 32/bits_per_word
;
275 tspi
->is_packed
= false;
276 tspi
->words_per_32bit
= 1;
279 if (tspi
->is_packed
) {
280 max_len
= min(remain_len
, tspi
->max_buf_size
);
281 tspi
->curr_dma_words
= max_len
/tspi
->bytes_per_word
;
282 total_fifo_words
= (max_len
+ 3) / 4;
284 max_word
= (remain_len
- 1) / tspi
->bytes_per_word
+ 1;
285 max_word
= min(max_word
, tspi
->max_buf_size
/4);
286 tspi
->curr_dma_words
= max_word
;
287 total_fifo_words
= max_word
;
289 return total_fifo_words
;
292 static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf(
293 struct tegra_spi_data
*tspi
, struct spi_transfer
*t
)
296 unsigned tx_empty_count
;
298 unsigned max_n_32bit
;
300 unsigned int written_words
;
301 unsigned fifo_words_left
;
302 u8
*tx_buf
= (u8
*)t
->tx_buf
+ tspi
->cur_tx_pos
;
304 fifo_status
= tegra_spi_readl(tspi
, SPI_FIFO_STATUS
);
305 tx_empty_count
= SPI_TX_FIFO_EMPTY_COUNT(fifo_status
);
307 if (tspi
->is_packed
) {
308 fifo_words_left
= tx_empty_count
* tspi
->words_per_32bit
;
309 written_words
= min(fifo_words_left
, tspi
->curr_dma_words
);
310 nbytes
= written_words
* tspi
->bytes_per_word
;
311 max_n_32bit
= DIV_ROUND_UP(nbytes
, 4);
312 for (count
= 0; count
< max_n_32bit
; count
++) {
315 for (i
= 0; (i
< 4) && nbytes
; i
++, nbytes
--)
316 x
|= (u32
)(*tx_buf
++) << (i
* 8);
317 tegra_spi_writel(tspi
, x
, SPI_TX_FIFO
);
320 tspi
->cur_tx_pos
+= written_words
* tspi
->bytes_per_word
;
322 unsigned int write_bytes
;
323 max_n_32bit
= min(tspi
->curr_dma_words
, tx_empty_count
);
324 written_words
= max_n_32bit
;
325 nbytes
= written_words
* tspi
->bytes_per_word
;
326 if (nbytes
> t
->len
- tspi
->cur_pos
)
327 nbytes
= t
->len
- tspi
->cur_pos
;
328 write_bytes
= nbytes
;
329 for (count
= 0; count
< max_n_32bit
; count
++) {
332 for (i
= 0; nbytes
&& (i
< tspi
->bytes_per_word
);
334 x
|= (u32
)(*tx_buf
++) << (i
* 8);
335 tegra_spi_writel(tspi
, x
, SPI_TX_FIFO
);
338 tspi
->cur_tx_pos
+= write_bytes
;
341 return written_words
;
344 static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf(
345 struct tegra_spi_data
*tspi
, struct spi_transfer
*t
)
347 unsigned rx_full_count
;
350 unsigned int read_words
= 0;
352 u8
*rx_buf
= (u8
*)t
->rx_buf
+ tspi
->cur_rx_pos
;
354 fifo_status
= tegra_spi_readl(tspi
, SPI_FIFO_STATUS
);
355 rx_full_count
= SPI_RX_FIFO_FULL_COUNT(fifo_status
);
356 if (tspi
->is_packed
) {
357 len
= tspi
->curr_dma_words
* tspi
->bytes_per_word
;
358 for (count
= 0; count
< rx_full_count
; count
++) {
359 u32 x
= tegra_spi_readl(tspi
, SPI_RX_FIFO
);
361 for (i
= 0; len
&& (i
< 4); i
++, len
--)
362 *rx_buf
++ = (x
>> i
*8) & 0xFF;
364 read_words
+= tspi
->curr_dma_words
;
365 tspi
->cur_rx_pos
+= tspi
->curr_dma_words
* tspi
->bytes_per_word
;
367 u32 rx_mask
= ((u32
)1 << t
->bits_per_word
) - 1;
368 u8 bytes_per_word
= tspi
->bytes_per_word
;
369 unsigned int read_bytes
;
371 len
= rx_full_count
* bytes_per_word
;
372 if (len
> t
->len
- tspi
->cur_pos
)
373 len
= t
->len
- tspi
->cur_pos
;
375 for (count
= 0; count
< rx_full_count
; count
++) {
376 u32 x
= tegra_spi_readl(tspi
, SPI_RX_FIFO
) & rx_mask
;
378 for (i
= 0; len
&& (i
< bytes_per_word
); i
++, len
--)
379 *rx_buf
++ = (x
>> (i
*8)) & 0xFF;
381 read_words
+= rx_full_count
;
382 tspi
->cur_rx_pos
+= read_bytes
;
388 static void tegra_spi_copy_client_txbuf_to_spi_txbuf(
389 struct tegra_spi_data
*tspi
, struct spi_transfer
*t
)
391 /* Make the dma buffer to read by cpu */
392 dma_sync_single_for_cpu(tspi
->dev
, tspi
->tx_dma_phys
,
393 tspi
->dma_buf_size
, DMA_TO_DEVICE
);
395 if (tspi
->is_packed
) {
396 unsigned len
= tspi
->curr_dma_words
* tspi
->bytes_per_word
;
398 memcpy(tspi
->tx_dma_buf
, t
->tx_buf
+ tspi
->cur_pos
, len
);
399 tspi
->cur_tx_pos
+= tspi
->curr_dma_words
* tspi
->bytes_per_word
;
403 u8
*tx_buf
= (u8
*)t
->tx_buf
+ tspi
->cur_tx_pos
;
404 unsigned consume
= tspi
->curr_dma_words
* tspi
->bytes_per_word
;
405 unsigned int write_bytes
;
407 if (consume
> t
->len
- tspi
->cur_pos
)
408 consume
= t
->len
- tspi
->cur_pos
;
409 write_bytes
= consume
;
410 for (count
= 0; count
< tspi
->curr_dma_words
; count
++) {
413 for (i
= 0; consume
&& (i
< tspi
->bytes_per_word
);
415 x
|= (u32
)(*tx_buf
++) << (i
* 8);
416 tspi
->tx_dma_buf
[count
] = x
;
419 tspi
->cur_tx_pos
+= write_bytes
;
422 /* Make the dma buffer to read by dma */
423 dma_sync_single_for_device(tspi
->dev
, tspi
->tx_dma_phys
,
424 tspi
->dma_buf_size
, DMA_TO_DEVICE
);
427 static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf(
428 struct tegra_spi_data
*tspi
, struct spi_transfer
*t
)
430 /* Make the dma buffer to read by cpu */
431 dma_sync_single_for_cpu(tspi
->dev
, tspi
->rx_dma_phys
,
432 tspi
->dma_buf_size
, DMA_FROM_DEVICE
);
434 if (tspi
->is_packed
) {
435 unsigned len
= tspi
->curr_dma_words
* tspi
->bytes_per_word
;
437 memcpy(t
->rx_buf
+ tspi
->cur_rx_pos
, tspi
->rx_dma_buf
, len
);
438 tspi
->cur_rx_pos
+= tspi
->curr_dma_words
* tspi
->bytes_per_word
;
442 unsigned char *rx_buf
= t
->rx_buf
+ tspi
->cur_rx_pos
;
443 u32 rx_mask
= ((u32
)1 << t
->bits_per_word
) - 1;
444 unsigned consume
= tspi
->curr_dma_words
* tspi
->bytes_per_word
;
445 unsigned int read_bytes
;
447 if (consume
> t
->len
- tspi
->cur_pos
)
448 consume
= t
->len
- tspi
->cur_pos
;
449 read_bytes
= consume
;
450 for (count
= 0; count
< tspi
->curr_dma_words
; count
++) {
451 u32 x
= tspi
->rx_dma_buf
[count
] & rx_mask
;
453 for (i
= 0; consume
&& (i
< tspi
->bytes_per_word
);
455 *rx_buf
++ = (x
>> (i
*8)) & 0xFF;
458 tspi
->cur_rx_pos
+= read_bytes
;
461 /* Make the dma buffer to read by dma */
462 dma_sync_single_for_device(tspi
->dev
, tspi
->rx_dma_phys
,
463 tspi
->dma_buf_size
, DMA_FROM_DEVICE
);
466 static void tegra_spi_dma_complete(void *args
)
468 struct completion
*dma_complete
= args
;
470 complete(dma_complete
);
473 static int tegra_spi_start_tx_dma(struct tegra_spi_data
*tspi
, int len
)
475 reinit_completion(&tspi
->tx_dma_complete
);
476 tspi
->tx_dma_desc
= dmaengine_prep_slave_single(tspi
->tx_dma_chan
,
477 tspi
->tx_dma_phys
, len
, DMA_MEM_TO_DEV
,
478 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
479 if (!tspi
->tx_dma_desc
) {
480 dev_err(tspi
->dev
, "Not able to get desc for Tx\n");
484 tspi
->tx_dma_desc
->callback
= tegra_spi_dma_complete
;
485 tspi
->tx_dma_desc
->callback_param
= &tspi
->tx_dma_complete
;
487 dmaengine_submit(tspi
->tx_dma_desc
);
488 dma_async_issue_pending(tspi
->tx_dma_chan
);
492 static int tegra_spi_start_rx_dma(struct tegra_spi_data
*tspi
, int len
)
494 reinit_completion(&tspi
->rx_dma_complete
);
495 tspi
->rx_dma_desc
= dmaengine_prep_slave_single(tspi
->rx_dma_chan
,
496 tspi
->rx_dma_phys
, len
, DMA_DEV_TO_MEM
,
497 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
498 if (!tspi
->rx_dma_desc
) {
499 dev_err(tspi
->dev
, "Not able to get desc for Rx\n");
503 tspi
->rx_dma_desc
->callback
= tegra_spi_dma_complete
;
504 tspi
->rx_dma_desc
->callback_param
= &tspi
->rx_dma_complete
;
506 dmaengine_submit(tspi
->rx_dma_desc
);
507 dma_async_issue_pending(tspi
->rx_dma_chan
);
511 static int tegra_spi_flush_fifos(struct tegra_spi_data
*tspi
)
513 unsigned long timeout
= jiffies
+ HZ
;
516 status
= tegra_spi_readl(tspi
, SPI_FIFO_STATUS
);
517 if ((status
& SPI_FIFO_EMPTY
) != SPI_FIFO_EMPTY
) {
518 status
|= SPI_RX_FIFO_FLUSH
| SPI_TX_FIFO_FLUSH
;
519 tegra_spi_writel(tspi
, status
, SPI_FIFO_STATUS
);
520 while ((status
& SPI_FIFO_EMPTY
) != SPI_FIFO_EMPTY
) {
521 status
= tegra_spi_readl(tspi
, SPI_FIFO_STATUS
);
522 if (time_after(jiffies
, timeout
)) {
524 "timeout waiting for fifo flush\n");
535 static int tegra_spi_start_dma_based_transfer(
536 struct tegra_spi_data
*tspi
, struct spi_transfer
*t
)
542 struct dma_slave_config dma_sconfig
= {0};
544 val
= SPI_DMA_BLK_SET(tspi
->curr_dma_words
- 1);
545 tegra_spi_writel(tspi
, val
, SPI_DMA_BLK
);
548 len
= DIV_ROUND_UP(tspi
->curr_dma_words
* tspi
->bytes_per_word
,
551 len
= tspi
->curr_dma_words
* 4;
553 /* Set attention level based on length of transfer */
555 val
|= SPI_TX_TRIG_1
| SPI_RX_TRIG_1
;
557 } else if (((len
) >> 4) & 0x1) {
558 val
|= SPI_TX_TRIG_4
| SPI_RX_TRIG_4
;
561 val
|= SPI_TX_TRIG_8
| SPI_RX_TRIG_8
;
565 if (!tspi
->soc_data
->has_intr_mask_reg
) {
566 if (tspi
->cur_direction
& DATA_DIR_TX
)
569 if (tspi
->cur_direction
& DATA_DIR_RX
)
573 tegra_spi_writel(tspi
, val
, SPI_DMA_CTL
);
574 tspi
->dma_control_reg
= val
;
576 dma_sconfig
.device_fc
= true;
577 if (tspi
->cur_direction
& DATA_DIR_TX
) {
578 dma_sconfig
.dst_addr
= tspi
->phys
+ SPI_TX_FIFO
;
579 dma_sconfig
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
580 dma_sconfig
.dst_maxburst
= dma_burst
;
581 ret
= dmaengine_slave_config(tspi
->tx_dma_chan
, &dma_sconfig
);
584 "DMA slave config failed: %d\n", ret
);
588 tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi
, t
);
589 ret
= tegra_spi_start_tx_dma(tspi
, len
);
592 "Starting tx dma failed, err %d\n", ret
);
597 if (tspi
->cur_direction
& DATA_DIR_RX
) {
598 dma_sconfig
.src_addr
= tspi
->phys
+ SPI_RX_FIFO
;
599 dma_sconfig
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
600 dma_sconfig
.src_maxburst
= dma_burst
;
601 ret
= dmaengine_slave_config(tspi
->rx_dma_chan
, &dma_sconfig
);
604 "DMA slave config failed: %d\n", ret
);
608 /* Make the dma buffer to read by dma */
609 dma_sync_single_for_device(tspi
->dev
, tspi
->rx_dma_phys
,
610 tspi
->dma_buf_size
, DMA_FROM_DEVICE
);
612 ret
= tegra_spi_start_rx_dma(tspi
, len
);
615 "Starting rx dma failed, err %d\n", ret
);
616 if (tspi
->cur_direction
& DATA_DIR_TX
)
617 dmaengine_terminate_all(tspi
->tx_dma_chan
);
621 tspi
->is_curr_dma_xfer
= true;
622 tspi
->dma_control_reg
= val
;
625 tegra_spi_writel(tspi
, val
, SPI_DMA_CTL
);
629 static int tegra_spi_start_cpu_based_transfer(
630 struct tegra_spi_data
*tspi
, struct spi_transfer
*t
)
635 if (tspi
->cur_direction
& DATA_DIR_TX
)
636 cur_words
= tegra_spi_fill_tx_fifo_from_client_txbuf(tspi
, t
);
638 cur_words
= tspi
->curr_dma_words
;
640 val
= SPI_DMA_BLK_SET(cur_words
- 1);
641 tegra_spi_writel(tspi
, val
, SPI_DMA_BLK
);
644 if (tspi
->cur_direction
& DATA_DIR_TX
)
647 if (tspi
->cur_direction
& DATA_DIR_RX
)
650 tegra_spi_writel(tspi
, val
, SPI_DMA_CTL
);
651 tspi
->dma_control_reg
= val
;
653 tspi
->is_curr_dma_xfer
= false;
655 val
= tspi
->command1_reg
;
657 tegra_spi_writel(tspi
, val
, SPI_COMMAND1
);
661 static int tegra_spi_init_dma_param(struct tegra_spi_data
*tspi
,
664 struct dma_chan
*dma_chan
;
669 dma_chan
= dma_request_chan(tspi
->dev
, dma_to_memory
? "rx" : "tx");
670 if (IS_ERR(dma_chan
)) {
671 ret
= PTR_ERR(dma_chan
);
672 if (ret
!= -EPROBE_DEFER
)
674 "Dma channel is not available: %d\n", ret
);
678 dma_buf
= dma_alloc_coherent(tspi
->dev
, tspi
->dma_buf_size
,
679 &dma_phys
, GFP_KERNEL
);
681 dev_err(tspi
->dev
, " Not able to allocate the dma buffer\n");
682 dma_release_channel(dma_chan
);
687 tspi
->rx_dma_chan
= dma_chan
;
688 tspi
->rx_dma_buf
= dma_buf
;
689 tspi
->rx_dma_phys
= dma_phys
;
691 tspi
->tx_dma_chan
= dma_chan
;
692 tspi
->tx_dma_buf
= dma_buf
;
693 tspi
->tx_dma_phys
= dma_phys
;
698 static void tegra_spi_deinit_dma_param(struct tegra_spi_data
*tspi
,
703 struct dma_chan
*dma_chan
;
706 dma_buf
= tspi
->rx_dma_buf
;
707 dma_chan
= tspi
->rx_dma_chan
;
708 dma_phys
= tspi
->rx_dma_phys
;
709 tspi
->rx_dma_chan
= NULL
;
710 tspi
->rx_dma_buf
= NULL
;
712 dma_buf
= tspi
->tx_dma_buf
;
713 dma_chan
= tspi
->tx_dma_chan
;
714 dma_phys
= tspi
->tx_dma_phys
;
715 tspi
->tx_dma_buf
= NULL
;
716 tspi
->tx_dma_chan
= NULL
;
721 dma_free_coherent(tspi
->dev
, tspi
->dma_buf_size
, dma_buf
, dma_phys
);
722 dma_release_channel(dma_chan
);
725 static int tegra_spi_set_hw_cs_timing(struct spi_device
*spi
,
726 struct spi_delay
*setup
,
727 struct spi_delay
*hold
,
728 struct spi_delay
*inactive
)
730 struct tegra_spi_data
*tspi
= spi_master_get_devdata(spi
->master
);
731 u8 setup_dly
, hold_dly
, inactive_dly
;
737 if ((setup
&& setup
->unit
!= SPI_DELAY_UNIT_SCK
) ||
738 (hold
&& hold
->unit
!= SPI_DELAY_UNIT_SCK
) ||
739 (inactive
&& inactive
->unit
!= SPI_DELAY_UNIT_SCK
)) {
741 "Invalid delay unit %d, should be SPI_DELAY_UNIT_SCK\n",
746 setup_dly
= setup
? setup
->value
: 0;
747 hold_dly
= hold
? hold
->value
: 0;
748 inactive_dly
= inactive
? inactive
->value
: 0;
750 setup_dly
= min_t(u8
, setup_dly
, MAX_SETUP_HOLD_CYCLES
);
751 hold_dly
= min_t(u8
, hold_dly
, MAX_SETUP_HOLD_CYCLES
);
752 if (setup_dly
&& hold_dly
) {
753 setup_hold
= SPI_SETUP_HOLD(setup_dly
- 1, hold_dly
- 1);
754 spi_cs_timing
= SPI_CS_SETUP_HOLD(tspi
->spi_cs_timing1
,
757 if (tspi
->spi_cs_timing1
!= spi_cs_timing
) {
758 tspi
->spi_cs_timing1
= spi_cs_timing
;
759 tegra_spi_writel(tspi
, spi_cs_timing
, SPI_CS_TIMING1
);
763 inactive_cycles
= min_t(u8
, inactive_dly
, MAX_INACTIVE_CYCLES
);
766 cs_state
= inactive_cycles
? 0 : 1;
767 spi_cs_timing
= tspi
->spi_cs_timing2
;
768 SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(spi_cs_timing
, spi
->chip_select
,
770 SPI_SET_CYCLES_BETWEEN_PACKETS(spi_cs_timing
, spi
->chip_select
,
772 if (tspi
->spi_cs_timing2
!= spi_cs_timing
) {
773 tspi
->spi_cs_timing2
= spi_cs_timing
;
774 tegra_spi_writel(tspi
, spi_cs_timing
, SPI_CS_TIMING2
);
780 static u32
tegra_spi_setup_transfer_one(struct spi_device
*spi
,
781 struct spi_transfer
*t
,
782 bool is_first_of_msg
,
785 struct tegra_spi_data
*tspi
= spi_master_get_devdata(spi
->master
);
786 struct tegra_spi_client_data
*cdata
= spi
->controller_data
;
787 u32 speed
= t
->speed_hz
;
788 u8 bits_per_word
= t
->bits_per_word
;
789 u32 command1
, command2
;
791 u32 tx_tap
= 0, rx_tap
= 0;
793 if (speed
!= tspi
->cur_speed
) {
794 clk_set_rate(tspi
->clk
, speed
);
795 tspi
->cur_speed
= speed
;
800 tspi
->cur_rx_pos
= 0;
801 tspi
->cur_tx_pos
= 0;
804 if (is_first_of_msg
) {
805 tegra_spi_clear_status(tspi
);
807 command1
= tspi
->def_command1_reg
;
808 command1
|= SPI_BIT_LENGTH(bits_per_word
- 1);
810 command1
&= ~SPI_CONTROL_MODE_MASK
;
811 req_mode
= spi
->mode
& 0x3;
812 if (req_mode
== SPI_MODE_0
)
813 command1
|= SPI_CONTROL_MODE_0
;
814 else if (req_mode
== SPI_MODE_1
)
815 command1
|= SPI_CONTROL_MODE_1
;
816 else if (req_mode
== SPI_MODE_2
)
817 command1
|= SPI_CONTROL_MODE_2
;
818 else if (req_mode
== SPI_MODE_3
)
819 command1
|= SPI_CONTROL_MODE_3
;
821 if (spi
->mode
& SPI_LSB_FIRST
)
822 command1
|= SPI_LSBIT_FE
;
824 command1
&= ~SPI_LSBIT_FE
;
826 if (spi
->mode
& SPI_3WIRE
)
827 command1
|= SPI_BIDIROE
;
829 command1
&= ~SPI_BIDIROE
;
831 if (tspi
->cs_control
) {
832 if (tspi
->cs_control
!= spi
)
833 tegra_spi_writel(tspi
, command1
, SPI_COMMAND1
);
834 tspi
->cs_control
= NULL
;
836 tegra_spi_writel(tspi
, command1
, SPI_COMMAND1
);
838 /* GPIO based chip select control */
840 gpiod_set_value(spi
->cs_gpiod
, 1);
842 if (is_single_xfer
&& !(t
->cs_change
)) {
843 tspi
->use_hw_based_cs
= true;
844 command1
&= ~(SPI_CS_SW_HW
| SPI_CS_SW_VAL
);
846 tspi
->use_hw_based_cs
= false;
847 command1
|= SPI_CS_SW_HW
;
848 if (spi
->mode
& SPI_CS_HIGH
)
849 command1
|= SPI_CS_SW_VAL
;
851 command1
&= ~SPI_CS_SW_VAL
;
854 if (tspi
->last_used_cs
!= spi
->chip_select
) {
855 if (cdata
&& cdata
->tx_clk_tap_delay
)
856 tx_tap
= cdata
->tx_clk_tap_delay
;
857 if (cdata
&& cdata
->rx_clk_tap_delay
)
858 rx_tap
= cdata
->rx_clk_tap_delay
;
859 command2
= SPI_TX_TAP_DELAY(tx_tap
) |
860 SPI_RX_TAP_DELAY(rx_tap
);
861 if (command2
!= tspi
->def_command2_reg
)
862 tegra_spi_writel(tspi
, command2
, SPI_COMMAND2
);
863 tspi
->last_used_cs
= spi
->chip_select
;
867 command1
= tspi
->command1_reg
;
868 command1
&= ~SPI_BIT_LENGTH(~0);
869 command1
|= SPI_BIT_LENGTH(bits_per_word
- 1);
875 static int tegra_spi_start_transfer_one(struct spi_device
*spi
,
876 struct spi_transfer
*t
, u32 command1
)
878 struct tegra_spi_data
*tspi
= spi_master_get_devdata(spi
->master
);
879 unsigned total_fifo_words
;
882 total_fifo_words
= tegra_spi_calculate_curr_xfer_param(spi
, tspi
, t
);
884 if (t
->rx_nbits
== SPI_NBITS_DUAL
|| t
->tx_nbits
== SPI_NBITS_DUAL
)
885 command1
|= SPI_BOTH_EN_BIT
;
887 command1
&= ~SPI_BOTH_EN_BIT
;
890 command1
|= SPI_PACKED
;
892 command1
&= ~SPI_PACKED
;
894 command1
&= ~(SPI_CS_SEL_MASK
| SPI_TX_EN
| SPI_RX_EN
);
895 tspi
->cur_direction
= 0;
897 command1
|= SPI_RX_EN
;
898 tspi
->cur_direction
|= DATA_DIR_RX
;
901 command1
|= SPI_TX_EN
;
902 tspi
->cur_direction
|= DATA_DIR_TX
;
904 command1
|= SPI_CS_SEL(spi
->chip_select
);
905 tegra_spi_writel(tspi
, command1
, SPI_COMMAND1
);
906 tspi
->command1_reg
= command1
;
908 dev_dbg(tspi
->dev
, "The def 0x%x and written 0x%x\n",
909 tspi
->def_command1_reg
, (unsigned)command1
);
911 ret
= tegra_spi_flush_fifos(tspi
);
914 if (total_fifo_words
> SPI_FIFO_DEPTH
)
915 ret
= tegra_spi_start_dma_based_transfer(tspi
, t
);
917 ret
= tegra_spi_start_cpu_based_transfer(tspi
, t
);
921 static struct tegra_spi_client_data
922 *tegra_spi_parse_cdata_dt(struct spi_device
*spi
)
924 struct tegra_spi_client_data
*cdata
;
925 struct device_node
*slave_np
;
927 slave_np
= spi
->dev
.of_node
;
929 dev_dbg(&spi
->dev
, "device node not found\n");
933 cdata
= kzalloc(sizeof(*cdata
), GFP_KERNEL
);
937 of_property_read_u32(slave_np
, "nvidia,tx-clk-tap-delay",
938 &cdata
->tx_clk_tap_delay
);
939 of_property_read_u32(slave_np
, "nvidia,rx-clk-tap-delay",
940 &cdata
->rx_clk_tap_delay
);
944 static void tegra_spi_cleanup(struct spi_device
*spi
)
946 struct tegra_spi_client_data
*cdata
= spi
->controller_data
;
948 spi
->controller_data
= NULL
;
949 if (spi
->dev
.of_node
)
953 static int tegra_spi_setup(struct spi_device
*spi
)
955 struct tegra_spi_data
*tspi
= spi_master_get_devdata(spi
->master
);
956 struct tegra_spi_client_data
*cdata
= spi
->controller_data
;
961 dev_dbg(&spi
->dev
, "setup %d bpw, %scpol, %scpha, %dHz\n",
963 spi
->mode
& SPI_CPOL
? "" : "~",
964 spi
->mode
& SPI_CPHA
? "" : "~",
968 cdata
= tegra_spi_parse_cdata_dt(spi
);
969 spi
->controller_data
= cdata
;
972 ret
= pm_runtime_get_sync(tspi
->dev
);
974 dev_err(tspi
->dev
, "pm runtime failed, e = %d\n", ret
);
976 tegra_spi_cleanup(spi
);
980 if (tspi
->soc_data
->has_intr_mask_reg
) {
981 val
= tegra_spi_readl(tspi
, SPI_INTR_MASK
);
982 val
&= ~SPI_INTR_ALL_MASK
;
983 tegra_spi_writel(tspi
, val
, SPI_INTR_MASK
);
986 spin_lock_irqsave(&tspi
->lock
, flags
);
987 /* GPIO based chip select control */
989 gpiod_set_value(spi
->cs_gpiod
, 0);
991 val
= tspi
->def_command1_reg
;
992 if (spi
->mode
& SPI_CS_HIGH
)
993 val
&= ~SPI_CS_POL_INACTIVE(spi
->chip_select
);
995 val
|= SPI_CS_POL_INACTIVE(spi
->chip_select
);
996 tspi
->def_command1_reg
= val
;
997 tegra_spi_writel(tspi
, tspi
->def_command1_reg
, SPI_COMMAND1
);
998 spin_unlock_irqrestore(&tspi
->lock
, flags
);
1000 pm_runtime_put(tspi
->dev
);
1004 static void tegra_spi_transfer_end(struct spi_device
*spi
)
1006 struct tegra_spi_data
*tspi
= spi_master_get_devdata(spi
->master
);
1007 int cs_val
= (spi
->mode
& SPI_CS_HIGH
) ? 0 : 1;
1009 /* GPIO based chip select control */
1011 gpiod_set_value(spi
->cs_gpiod
, 0);
1013 if (!tspi
->use_hw_based_cs
) {
1015 tspi
->command1_reg
|= SPI_CS_SW_VAL
;
1017 tspi
->command1_reg
&= ~SPI_CS_SW_VAL
;
1018 tegra_spi_writel(tspi
, tspi
->command1_reg
, SPI_COMMAND1
);
1021 tegra_spi_writel(tspi
, tspi
->def_command1_reg
, SPI_COMMAND1
);
1024 static void tegra_spi_dump_regs(struct tegra_spi_data
*tspi
)
1026 dev_dbg(tspi
->dev
, "============ SPI REGISTER DUMP ============\n");
1027 dev_dbg(tspi
->dev
, "Command1: 0x%08x | Command2: 0x%08x\n",
1028 tegra_spi_readl(tspi
, SPI_COMMAND1
),
1029 tegra_spi_readl(tspi
, SPI_COMMAND2
));
1030 dev_dbg(tspi
->dev
, "DMA_CTL: 0x%08x | DMA_BLK: 0x%08x\n",
1031 tegra_spi_readl(tspi
, SPI_DMA_CTL
),
1032 tegra_spi_readl(tspi
, SPI_DMA_BLK
));
1033 dev_dbg(tspi
->dev
, "TRANS_STAT: 0x%08x | FIFO_STATUS: 0x%08x\n",
1034 tegra_spi_readl(tspi
, SPI_TRANS_STATUS
),
1035 tegra_spi_readl(tspi
, SPI_FIFO_STATUS
));
1038 static int tegra_spi_transfer_one_message(struct spi_master
*master
,
1039 struct spi_message
*msg
)
1041 bool is_first_msg
= true;
1042 struct tegra_spi_data
*tspi
= spi_master_get_devdata(master
);
1043 struct spi_transfer
*xfer
;
1044 struct spi_device
*spi
= msg
->spi
;
1050 msg
->actual_length
= 0;
1052 single_xfer
= list_is_singular(&msg
->transfers
);
1053 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1056 reinit_completion(&tspi
->xfer_completion
);
1058 cmd1
= tegra_spi_setup_transfer_one(spi
, xfer
, is_first_msg
,
1067 ret
= tegra_spi_start_transfer_one(spi
, xfer
, cmd1
);
1070 "spi can not start transfer, err %d\n", ret
);
1074 is_first_msg
= false;
1075 ret
= wait_for_completion_timeout(&tspi
->xfer_completion
,
1077 if (WARN_ON(ret
== 0)) {
1079 "spi transfer timeout, err %d\n", ret
);
1080 if (tspi
->is_curr_dma_xfer
&&
1081 (tspi
->cur_direction
& DATA_DIR_TX
))
1082 dmaengine_terminate_all(tspi
->tx_dma_chan
);
1083 if (tspi
->is_curr_dma_xfer
&&
1084 (tspi
->cur_direction
& DATA_DIR_RX
))
1085 dmaengine_terminate_all(tspi
->rx_dma_chan
);
1087 tegra_spi_dump_regs(tspi
);
1088 tegra_spi_flush_fifos(tspi
);
1089 reset_control_assert(tspi
->rst
);
1091 reset_control_deassert(tspi
->rst
);
1092 tspi
->last_used_cs
= master
->num_chipselect
+ 1;
1096 if (tspi
->tx_status
|| tspi
->rx_status
) {
1097 dev_err(tspi
->dev
, "Error in Transfer\n");
1099 tegra_spi_dump_regs(tspi
);
1102 msg
->actual_length
+= xfer
->len
;
1105 if (ret
< 0 || skip
) {
1106 tegra_spi_transfer_end(spi
);
1107 spi_transfer_delay_exec(xfer
);
1109 } else if (list_is_last(&xfer
->transfer_list
,
1111 if (xfer
->cs_change
)
1112 tspi
->cs_control
= spi
;
1114 tegra_spi_transfer_end(spi
);
1115 spi_transfer_delay_exec(xfer
);
1117 } else if (xfer
->cs_change
) {
1118 tegra_spi_transfer_end(spi
);
1119 spi_transfer_delay_exec(xfer
);
1126 spi_finalize_current_message(master
);
1130 static irqreturn_t
handle_cpu_based_xfer(struct tegra_spi_data
*tspi
)
1132 struct spi_transfer
*t
= tspi
->curr_xfer
;
1133 unsigned long flags
;
1135 spin_lock_irqsave(&tspi
->lock
, flags
);
1136 if (tspi
->tx_status
|| tspi
->rx_status
) {
1137 dev_err(tspi
->dev
, "CpuXfer ERROR bit set 0x%x\n",
1139 dev_err(tspi
->dev
, "CpuXfer 0x%08x:0x%08x\n",
1140 tspi
->command1_reg
, tspi
->dma_control_reg
);
1141 tegra_spi_dump_regs(tspi
);
1142 tegra_spi_flush_fifos(tspi
);
1143 complete(&tspi
->xfer_completion
);
1144 spin_unlock_irqrestore(&tspi
->lock
, flags
);
1145 reset_control_assert(tspi
->rst
);
1147 reset_control_deassert(tspi
->rst
);
1151 if (tspi
->cur_direction
& DATA_DIR_RX
)
1152 tegra_spi_read_rx_fifo_to_client_rxbuf(tspi
, t
);
1154 if (tspi
->cur_direction
& DATA_DIR_TX
)
1155 tspi
->cur_pos
= tspi
->cur_tx_pos
;
1157 tspi
->cur_pos
= tspi
->cur_rx_pos
;
1159 if (tspi
->cur_pos
== t
->len
) {
1160 complete(&tspi
->xfer_completion
);
1164 tegra_spi_calculate_curr_xfer_param(tspi
->cur_spi
, tspi
, t
);
1165 tegra_spi_start_cpu_based_transfer(tspi
, t
);
1167 spin_unlock_irqrestore(&tspi
->lock
, flags
);
1171 static irqreturn_t
handle_dma_based_xfer(struct tegra_spi_data
*tspi
)
1173 struct spi_transfer
*t
= tspi
->curr_xfer
;
1176 unsigned total_fifo_words
;
1177 unsigned long flags
;
1179 /* Abort dmas if any error */
1180 if (tspi
->cur_direction
& DATA_DIR_TX
) {
1181 if (tspi
->tx_status
) {
1182 dmaengine_terminate_all(tspi
->tx_dma_chan
);
1185 wait_status
= wait_for_completion_interruptible_timeout(
1186 &tspi
->tx_dma_complete
, SPI_DMA_TIMEOUT
);
1187 if (wait_status
<= 0) {
1188 dmaengine_terminate_all(tspi
->tx_dma_chan
);
1189 dev_err(tspi
->dev
, "TxDma Xfer failed\n");
1195 if (tspi
->cur_direction
& DATA_DIR_RX
) {
1196 if (tspi
->rx_status
) {
1197 dmaengine_terminate_all(tspi
->rx_dma_chan
);
1200 wait_status
= wait_for_completion_interruptible_timeout(
1201 &tspi
->rx_dma_complete
, SPI_DMA_TIMEOUT
);
1202 if (wait_status
<= 0) {
1203 dmaengine_terminate_all(tspi
->rx_dma_chan
);
1204 dev_err(tspi
->dev
, "RxDma Xfer failed\n");
1210 spin_lock_irqsave(&tspi
->lock
, flags
);
1212 dev_err(tspi
->dev
, "DmaXfer: ERROR bit set 0x%x\n",
1214 dev_err(tspi
->dev
, "DmaXfer 0x%08x:0x%08x\n",
1215 tspi
->command1_reg
, tspi
->dma_control_reg
);
1216 tegra_spi_dump_regs(tspi
);
1217 tegra_spi_flush_fifos(tspi
);
1218 complete(&tspi
->xfer_completion
);
1219 spin_unlock_irqrestore(&tspi
->lock
, flags
);
1220 reset_control_assert(tspi
->rst
);
1222 reset_control_deassert(tspi
->rst
);
1226 if (tspi
->cur_direction
& DATA_DIR_RX
)
1227 tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi
, t
);
1229 if (tspi
->cur_direction
& DATA_DIR_TX
)
1230 tspi
->cur_pos
= tspi
->cur_tx_pos
;
1232 tspi
->cur_pos
= tspi
->cur_rx_pos
;
1234 if (tspi
->cur_pos
== t
->len
) {
1235 complete(&tspi
->xfer_completion
);
1239 /* Continue transfer in current message */
1240 total_fifo_words
= tegra_spi_calculate_curr_xfer_param(tspi
->cur_spi
,
1242 if (total_fifo_words
> SPI_FIFO_DEPTH
)
1243 err
= tegra_spi_start_dma_based_transfer(tspi
, t
);
1245 err
= tegra_spi_start_cpu_based_transfer(tspi
, t
);
1248 spin_unlock_irqrestore(&tspi
->lock
, flags
);
1252 static irqreturn_t
tegra_spi_isr_thread(int irq
, void *context_data
)
1254 struct tegra_spi_data
*tspi
= context_data
;
1256 if (!tspi
->is_curr_dma_xfer
)
1257 return handle_cpu_based_xfer(tspi
);
1258 return handle_dma_based_xfer(tspi
);
1261 static irqreturn_t
tegra_spi_isr(int irq
, void *context_data
)
1263 struct tegra_spi_data
*tspi
= context_data
;
1265 tspi
->status_reg
= tegra_spi_readl(tspi
, SPI_FIFO_STATUS
);
1266 if (tspi
->cur_direction
& DATA_DIR_TX
)
1267 tspi
->tx_status
= tspi
->status_reg
&
1268 (SPI_TX_FIFO_UNF
| SPI_TX_FIFO_OVF
);
1270 if (tspi
->cur_direction
& DATA_DIR_RX
)
1271 tspi
->rx_status
= tspi
->status_reg
&
1272 (SPI_RX_FIFO_OVF
| SPI_RX_FIFO_UNF
);
1273 tegra_spi_clear_status(tspi
);
1275 return IRQ_WAKE_THREAD
;
1278 static struct tegra_spi_soc_data tegra114_spi_soc_data
= {
1279 .has_intr_mask_reg
= false,
1282 static struct tegra_spi_soc_data tegra124_spi_soc_data
= {
1283 .has_intr_mask_reg
= false,
1286 static struct tegra_spi_soc_data tegra210_spi_soc_data
= {
1287 .has_intr_mask_reg
= true,
1290 static const struct of_device_id tegra_spi_of_match
[] = {
1292 .compatible
= "nvidia,tegra114-spi",
1293 .data
= &tegra114_spi_soc_data
,
1295 .compatible
= "nvidia,tegra124-spi",
1296 .data
= &tegra124_spi_soc_data
,
1298 .compatible
= "nvidia,tegra210-spi",
1299 .data
= &tegra210_spi_soc_data
,
1303 MODULE_DEVICE_TABLE(of
, tegra_spi_of_match
);
1305 static int tegra_spi_probe(struct platform_device
*pdev
)
1307 struct spi_master
*master
;
1308 struct tegra_spi_data
*tspi
;
1313 master
= spi_alloc_master(&pdev
->dev
, sizeof(*tspi
));
1315 dev_err(&pdev
->dev
, "master allocation failed\n");
1318 platform_set_drvdata(pdev
, master
);
1319 tspi
= spi_master_get_devdata(master
);
1321 if (of_property_read_u32(pdev
->dev
.of_node
, "spi-max-frequency",
1322 &master
->max_speed_hz
))
1323 master
->max_speed_hz
= 25000000; /* 25MHz */
1325 /* the spi->mode bits understood by this driver: */
1326 master
->use_gpio_descriptors
= true;
1327 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
| SPI_LSB_FIRST
|
1328 SPI_TX_DUAL
| SPI_RX_DUAL
| SPI_3WIRE
;
1329 master
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 32);
1330 master
->setup
= tegra_spi_setup
;
1331 master
->cleanup
= tegra_spi_cleanup
;
1332 master
->transfer_one_message
= tegra_spi_transfer_one_message
;
1333 master
->set_cs_timing
= tegra_spi_set_hw_cs_timing
;
1334 master
->num_chipselect
= MAX_CHIP_SELECT
;
1335 master
->auto_runtime_pm
= true;
1336 bus_num
= of_alias_get_id(pdev
->dev
.of_node
, "spi");
1338 master
->bus_num
= bus_num
;
1340 tspi
->master
= master
;
1341 tspi
->dev
= &pdev
->dev
;
1342 spin_lock_init(&tspi
->lock
);
1344 tspi
->soc_data
= of_device_get_match_data(&pdev
->dev
);
1345 if (!tspi
->soc_data
) {
1346 dev_err(&pdev
->dev
, "unsupported tegra\n");
1348 goto exit_free_master
;
1351 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1352 tspi
->base
= devm_ioremap_resource(&pdev
->dev
, r
);
1353 if (IS_ERR(tspi
->base
)) {
1354 ret
= PTR_ERR(tspi
->base
);
1355 goto exit_free_master
;
1357 tspi
->phys
= r
->start
;
1359 spi_irq
= platform_get_irq(pdev
, 0);
1360 tspi
->irq
= spi_irq
;
1362 tspi
->clk
= devm_clk_get(&pdev
->dev
, "spi");
1363 if (IS_ERR(tspi
->clk
)) {
1364 dev_err(&pdev
->dev
, "can not get clock\n");
1365 ret
= PTR_ERR(tspi
->clk
);
1366 goto exit_free_master
;
1369 tspi
->rst
= devm_reset_control_get_exclusive(&pdev
->dev
, "spi");
1370 if (IS_ERR(tspi
->rst
)) {
1371 dev_err(&pdev
->dev
, "can not get reset\n");
1372 ret
= PTR_ERR(tspi
->rst
);
1373 goto exit_free_master
;
1376 tspi
->max_buf_size
= SPI_FIFO_DEPTH
<< 2;
1377 tspi
->dma_buf_size
= DEFAULT_SPI_DMA_BUF_LEN
;
1379 ret
= tegra_spi_init_dma_param(tspi
, true);
1381 goto exit_free_master
;
1382 ret
= tegra_spi_init_dma_param(tspi
, false);
1384 goto exit_rx_dma_free
;
1385 tspi
->max_buf_size
= tspi
->dma_buf_size
;
1386 init_completion(&tspi
->tx_dma_complete
);
1387 init_completion(&tspi
->rx_dma_complete
);
1389 init_completion(&tspi
->xfer_completion
);
1391 pm_runtime_enable(&pdev
->dev
);
1392 if (!pm_runtime_enabled(&pdev
->dev
)) {
1393 ret
= tegra_spi_runtime_resume(&pdev
->dev
);
1395 goto exit_pm_disable
;
1398 ret
= pm_runtime_get_sync(&pdev
->dev
);
1400 dev_err(&pdev
->dev
, "pm runtime get failed, e = %d\n", ret
);
1401 goto exit_pm_disable
;
1404 reset_control_assert(tspi
->rst
);
1406 reset_control_deassert(tspi
->rst
);
1407 tspi
->def_command1_reg
= SPI_M_S
;
1408 tegra_spi_writel(tspi
, tspi
->def_command1_reg
, SPI_COMMAND1
);
1409 tspi
->spi_cs_timing1
= tegra_spi_readl(tspi
, SPI_CS_TIMING1
);
1410 tspi
->spi_cs_timing2
= tegra_spi_readl(tspi
, SPI_CS_TIMING2
);
1411 tspi
->def_command2_reg
= tegra_spi_readl(tspi
, SPI_COMMAND2
);
1412 tspi
->last_used_cs
= master
->num_chipselect
+ 1;
1413 pm_runtime_put(&pdev
->dev
);
1414 ret
= request_threaded_irq(tspi
->irq
, tegra_spi_isr
,
1415 tegra_spi_isr_thread
, IRQF_ONESHOT
,
1416 dev_name(&pdev
->dev
), tspi
);
1418 dev_err(&pdev
->dev
, "Failed to register ISR for IRQ %d\n",
1420 goto exit_pm_disable
;
1423 master
->dev
.of_node
= pdev
->dev
.of_node
;
1424 ret
= devm_spi_register_master(&pdev
->dev
, master
);
1426 dev_err(&pdev
->dev
, "can not register to master err %d\n", ret
);
1432 free_irq(spi_irq
, tspi
);
1434 pm_runtime_disable(&pdev
->dev
);
1435 if (!pm_runtime_status_suspended(&pdev
->dev
))
1436 tegra_spi_runtime_suspend(&pdev
->dev
);
1437 tegra_spi_deinit_dma_param(tspi
, false);
1439 tegra_spi_deinit_dma_param(tspi
, true);
1441 spi_master_put(master
);
1445 static int tegra_spi_remove(struct platform_device
*pdev
)
1447 struct spi_master
*master
= platform_get_drvdata(pdev
);
1448 struct tegra_spi_data
*tspi
= spi_master_get_devdata(master
);
1450 free_irq(tspi
->irq
, tspi
);
1452 if (tspi
->tx_dma_chan
)
1453 tegra_spi_deinit_dma_param(tspi
, false);
1455 if (tspi
->rx_dma_chan
)
1456 tegra_spi_deinit_dma_param(tspi
, true);
1458 pm_runtime_disable(&pdev
->dev
);
1459 if (!pm_runtime_status_suspended(&pdev
->dev
))
1460 tegra_spi_runtime_suspend(&pdev
->dev
);
1465 #ifdef CONFIG_PM_SLEEP
1466 static int tegra_spi_suspend(struct device
*dev
)
1468 struct spi_master
*master
= dev_get_drvdata(dev
);
1470 return spi_master_suspend(master
);
1473 static int tegra_spi_resume(struct device
*dev
)
1475 struct spi_master
*master
= dev_get_drvdata(dev
);
1476 struct tegra_spi_data
*tspi
= spi_master_get_devdata(master
);
1479 ret
= pm_runtime_get_sync(dev
);
1481 dev_err(dev
, "pm runtime failed, e = %d\n", ret
);
1484 tegra_spi_writel(tspi
, tspi
->command1_reg
, SPI_COMMAND1
);
1485 tegra_spi_writel(tspi
, tspi
->def_command2_reg
, SPI_COMMAND2
);
1486 tspi
->last_used_cs
= master
->num_chipselect
+ 1;
1487 pm_runtime_put(dev
);
1489 return spi_master_resume(master
);
1493 static int tegra_spi_runtime_suspend(struct device
*dev
)
1495 struct spi_master
*master
= dev_get_drvdata(dev
);
1496 struct tegra_spi_data
*tspi
= spi_master_get_devdata(master
);
1498 /* Flush all write which are in PPSB queue by reading back */
1499 tegra_spi_readl(tspi
, SPI_COMMAND1
);
1501 clk_disable_unprepare(tspi
->clk
);
1505 static int tegra_spi_runtime_resume(struct device
*dev
)
1507 struct spi_master
*master
= dev_get_drvdata(dev
);
1508 struct tegra_spi_data
*tspi
= spi_master_get_devdata(master
);
1511 ret
= clk_prepare_enable(tspi
->clk
);
1513 dev_err(tspi
->dev
, "clk_prepare failed: %d\n", ret
);
1519 static const struct dev_pm_ops tegra_spi_pm_ops
= {
1520 SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend
,
1521 tegra_spi_runtime_resume
, NULL
)
1522 SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend
, tegra_spi_resume
)
1524 static struct platform_driver tegra_spi_driver
= {
1526 .name
= "spi-tegra114",
1527 .pm
= &tegra_spi_pm_ops
,
1528 .of_match_table
= tegra_spi_of_match
,
1530 .probe
= tegra_spi_probe
,
1531 .remove
= tegra_spi_remove
,
1533 module_platform_driver(tegra_spi_driver
);
1535 MODULE_ALIAS("platform:spi-tegra114");
1536 MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver");
1537 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1538 MODULE_LICENSE("GPL v2");