gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / spi / spi.c
blobc92c89467e7ed5a688b6ac9ee15bb7f73bb82bcd
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42 #include "internals.h"
44 static DEFINE_IDR(spi_master_idr);
46 static void spidev_release(struct device *dev)
48 struct spi_device *spi = to_spi_device(dev);
50 /* spi controllers may cleanup for released devices */
51 if (spi->controller->cleanup)
52 spi->controller->cleanup(spi);
54 spi_controller_put(spi->controller);
55 kfree(spi->driver_override);
56 kfree(spi);
59 static ssize_t
60 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
62 const struct spi_device *spi = to_spi_device(dev);
63 int len;
65 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66 if (len != -ENODEV)
67 return len;
69 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
71 static DEVICE_ATTR_RO(modalias);
73 static ssize_t driver_override_store(struct device *dev,
74 struct device_attribute *a,
75 const char *buf, size_t count)
77 struct spi_device *spi = to_spi_device(dev);
78 const char *end = memchr(buf, '\n', count);
79 const size_t len = end ? end - buf : count;
80 const char *driver_override, *old;
82 /* We need to keep extra room for a newline when displaying value */
83 if (len >= (PAGE_SIZE - 1))
84 return -EINVAL;
86 driver_override = kstrndup(buf, len, GFP_KERNEL);
87 if (!driver_override)
88 return -ENOMEM;
90 device_lock(dev);
91 old = spi->driver_override;
92 if (len) {
93 spi->driver_override = driver_override;
94 } else {
95 /* Empty string, disable driver override */
96 spi->driver_override = NULL;
97 kfree(driver_override);
99 device_unlock(dev);
100 kfree(old);
102 return count;
105 static ssize_t driver_override_show(struct device *dev,
106 struct device_attribute *a, char *buf)
108 const struct spi_device *spi = to_spi_device(dev);
109 ssize_t len;
111 device_lock(dev);
112 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
113 device_unlock(dev);
114 return len;
116 static DEVICE_ATTR_RW(driver_override);
118 #define SPI_STATISTICS_ATTRS(field, file) \
119 static ssize_t spi_controller_##field##_show(struct device *dev, \
120 struct device_attribute *attr, \
121 char *buf) \
123 struct spi_controller *ctlr = container_of(dev, \
124 struct spi_controller, dev); \
125 return spi_statistics_##field##_show(&ctlr->statistics, buf); \
127 static struct device_attribute dev_attr_spi_controller_##field = { \
128 .attr = { .name = file, .mode = 0444 }, \
129 .show = spi_controller_##field##_show, \
130 }; \
131 static ssize_t spi_device_##field##_show(struct device *dev, \
132 struct device_attribute *attr, \
133 char *buf) \
135 struct spi_device *spi = to_spi_device(dev); \
136 return spi_statistics_##field##_show(&spi->statistics, buf); \
138 static struct device_attribute dev_attr_spi_device_##field = { \
139 .attr = { .name = file, .mode = 0444 }, \
140 .show = spi_device_##field##_show, \
143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
145 char *buf) \
147 unsigned long flags; \
148 ssize_t len; \
149 spin_lock_irqsave(&stat->lock, flags); \
150 len = sprintf(buf, format_string, stat->field); \
151 spin_unlock_irqrestore(&stat->lock, flags); \
152 return len; \
154 SPI_STATISTICS_ATTRS(name, file)
156 #define SPI_STATISTICS_SHOW(field, format_string) \
157 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
158 field, format_string)
160 SPI_STATISTICS_SHOW(messages, "%lu");
161 SPI_STATISTICS_SHOW(transfers, "%lu");
162 SPI_STATISTICS_SHOW(errors, "%lu");
163 SPI_STATISTICS_SHOW(timedout, "%lu");
165 SPI_STATISTICS_SHOW(spi_sync, "%lu");
166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
167 SPI_STATISTICS_SHOW(spi_async, "%lu");
169 SPI_STATISTICS_SHOW(bytes, "%llu");
170 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
171 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
174 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
175 "transfer_bytes_histo_" number, \
176 transfer_bytes_histo[index], "%lu")
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
197 static struct attribute *spi_dev_attrs[] = {
198 &dev_attr_modalias.attr,
199 &dev_attr_driver_override.attr,
200 NULL,
203 static const struct attribute_group spi_dev_group = {
204 .attrs = spi_dev_attrs,
207 static struct attribute *spi_device_statistics_attrs[] = {
208 &dev_attr_spi_device_messages.attr,
209 &dev_attr_spi_device_transfers.attr,
210 &dev_attr_spi_device_errors.attr,
211 &dev_attr_spi_device_timedout.attr,
212 &dev_attr_spi_device_spi_sync.attr,
213 &dev_attr_spi_device_spi_sync_immediate.attr,
214 &dev_attr_spi_device_spi_async.attr,
215 &dev_attr_spi_device_bytes.attr,
216 &dev_attr_spi_device_bytes_rx.attr,
217 &dev_attr_spi_device_bytes_tx.attr,
218 &dev_attr_spi_device_transfer_bytes_histo0.attr,
219 &dev_attr_spi_device_transfer_bytes_histo1.attr,
220 &dev_attr_spi_device_transfer_bytes_histo2.attr,
221 &dev_attr_spi_device_transfer_bytes_histo3.attr,
222 &dev_attr_spi_device_transfer_bytes_histo4.attr,
223 &dev_attr_spi_device_transfer_bytes_histo5.attr,
224 &dev_attr_spi_device_transfer_bytes_histo6.attr,
225 &dev_attr_spi_device_transfer_bytes_histo7.attr,
226 &dev_attr_spi_device_transfer_bytes_histo8.attr,
227 &dev_attr_spi_device_transfer_bytes_histo9.attr,
228 &dev_attr_spi_device_transfer_bytes_histo10.attr,
229 &dev_attr_spi_device_transfer_bytes_histo11.attr,
230 &dev_attr_spi_device_transfer_bytes_histo12.attr,
231 &dev_attr_spi_device_transfer_bytes_histo13.attr,
232 &dev_attr_spi_device_transfer_bytes_histo14.attr,
233 &dev_attr_spi_device_transfer_bytes_histo15.attr,
234 &dev_attr_spi_device_transfer_bytes_histo16.attr,
235 &dev_attr_spi_device_transfers_split_maxsize.attr,
236 NULL,
239 static const struct attribute_group spi_device_statistics_group = {
240 .name = "statistics",
241 .attrs = spi_device_statistics_attrs,
244 static const struct attribute_group *spi_dev_groups[] = {
245 &spi_dev_group,
246 &spi_device_statistics_group,
247 NULL,
250 static struct attribute *spi_controller_statistics_attrs[] = {
251 &dev_attr_spi_controller_messages.attr,
252 &dev_attr_spi_controller_transfers.attr,
253 &dev_attr_spi_controller_errors.attr,
254 &dev_attr_spi_controller_timedout.attr,
255 &dev_attr_spi_controller_spi_sync.attr,
256 &dev_attr_spi_controller_spi_sync_immediate.attr,
257 &dev_attr_spi_controller_spi_async.attr,
258 &dev_attr_spi_controller_bytes.attr,
259 &dev_attr_spi_controller_bytes_rx.attr,
260 &dev_attr_spi_controller_bytes_tx.attr,
261 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
262 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
263 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
264 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
265 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
266 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
267 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
268 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
269 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
270 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
271 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
272 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
273 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
274 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
275 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
276 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
277 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
278 &dev_attr_spi_controller_transfers_split_maxsize.attr,
279 NULL,
282 static const struct attribute_group spi_controller_statistics_group = {
283 .name = "statistics",
284 .attrs = spi_controller_statistics_attrs,
287 static const struct attribute_group *spi_master_groups[] = {
288 &spi_controller_statistics_group,
289 NULL,
292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
293 struct spi_transfer *xfer,
294 struct spi_controller *ctlr)
296 unsigned long flags;
297 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
299 if (l2len < 0)
300 l2len = 0;
302 spin_lock_irqsave(&stats->lock, flags);
304 stats->transfers++;
305 stats->transfer_bytes_histo[l2len]++;
307 stats->bytes += xfer->len;
308 if ((xfer->tx_buf) &&
309 (xfer->tx_buf != ctlr->dummy_tx))
310 stats->bytes_tx += xfer->len;
311 if ((xfer->rx_buf) &&
312 (xfer->rx_buf != ctlr->dummy_rx))
313 stats->bytes_rx += xfer->len;
315 spin_unlock_irqrestore(&stats->lock, flags);
317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
320 * and the sysfs version makes coldplug work too.
323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
324 const struct spi_device *sdev)
326 while (id->name[0]) {
327 if (!strcmp(sdev->modalias, id->name))
328 return id;
329 id++;
331 return NULL;
334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
336 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
338 return spi_match_id(sdrv->id_table, sdev);
340 EXPORT_SYMBOL_GPL(spi_get_device_id);
342 static int spi_match_device(struct device *dev, struct device_driver *drv)
344 const struct spi_device *spi = to_spi_device(dev);
345 const struct spi_driver *sdrv = to_spi_driver(drv);
347 /* Check override first, and if set, only use the named driver */
348 if (spi->driver_override)
349 return strcmp(spi->driver_override, drv->name) == 0;
351 /* Attempt an OF style match */
352 if (of_driver_match_device(dev, drv))
353 return 1;
355 /* Then try ACPI */
356 if (acpi_driver_match_device(dev, drv))
357 return 1;
359 if (sdrv->id_table)
360 return !!spi_match_id(sdrv->id_table, spi);
362 return strcmp(spi->modalias, drv->name) == 0;
365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
367 const struct spi_device *spi = to_spi_device(dev);
368 int rc;
370 rc = acpi_device_uevent_modalias(dev, env);
371 if (rc != -ENODEV)
372 return rc;
374 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
377 struct bus_type spi_bus_type = {
378 .name = "spi",
379 .dev_groups = spi_dev_groups,
380 .match = spi_match_device,
381 .uevent = spi_uevent,
383 EXPORT_SYMBOL_GPL(spi_bus_type);
386 static int spi_drv_probe(struct device *dev)
388 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
389 struct spi_device *spi = to_spi_device(dev);
390 int ret;
392 ret = of_clk_set_defaults(dev->of_node, false);
393 if (ret)
394 return ret;
396 if (dev->of_node) {
397 spi->irq = of_irq_get(dev->of_node, 0);
398 if (spi->irq == -EPROBE_DEFER)
399 return -EPROBE_DEFER;
400 if (spi->irq < 0)
401 spi->irq = 0;
404 ret = dev_pm_domain_attach(dev, true);
405 if (ret)
406 return ret;
408 ret = sdrv->probe(spi);
409 if (ret)
410 dev_pm_domain_detach(dev, true);
412 return ret;
415 static int spi_drv_remove(struct device *dev)
417 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
418 int ret;
420 ret = sdrv->remove(to_spi_device(dev));
421 dev_pm_domain_detach(dev, true);
423 return ret;
426 static void spi_drv_shutdown(struct device *dev)
428 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
430 sdrv->shutdown(to_spi_device(dev));
434 * __spi_register_driver - register a SPI driver
435 * @owner: owner module of the driver to register
436 * @sdrv: the driver to register
437 * Context: can sleep
439 * Return: zero on success, else a negative error code.
441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
443 sdrv->driver.owner = owner;
444 sdrv->driver.bus = &spi_bus_type;
445 if (sdrv->probe)
446 sdrv->driver.probe = spi_drv_probe;
447 if (sdrv->remove)
448 sdrv->driver.remove = spi_drv_remove;
449 if (sdrv->shutdown)
450 sdrv->driver.shutdown = spi_drv_shutdown;
451 return driver_register(&sdrv->driver);
453 EXPORT_SYMBOL_GPL(__spi_register_driver);
455 /*-------------------------------------------------------------------------*/
457 /* SPI devices should normally not be created by SPI device drivers; that
458 * would make them board-specific. Similarly with SPI controller drivers.
459 * Device registration normally goes into like arch/.../mach.../board-YYY.c
460 * with other readonly (flashable) information about mainboard devices.
463 struct boardinfo {
464 struct list_head list;
465 struct spi_board_info board_info;
468 static LIST_HEAD(board_list);
469 static LIST_HEAD(spi_controller_list);
472 * Used to protect add/del operation for board_info list and
473 * spi_controller list, and their matching process
474 * also used to protect object of type struct idr
476 static DEFINE_MUTEX(board_lock);
479 * spi_alloc_device - Allocate a new SPI device
480 * @ctlr: Controller to which device is connected
481 * Context: can sleep
483 * Allows a driver to allocate and initialize a spi_device without
484 * registering it immediately. This allows a driver to directly
485 * fill the spi_device with device parameters before calling
486 * spi_add_device() on it.
488 * Caller is responsible to call spi_add_device() on the returned
489 * spi_device structure to add it to the SPI controller. If the caller
490 * needs to discard the spi_device without adding it, then it should
491 * call spi_dev_put() on it.
493 * Return: a pointer to the new device, or NULL.
495 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
497 struct spi_device *spi;
499 if (!spi_controller_get(ctlr))
500 return NULL;
502 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
503 if (!spi) {
504 spi_controller_put(ctlr);
505 return NULL;
508 spi->master = spi->controller = ctlr;
509 spi->dev.parent = &ctlr->dev;
510 spi->dev.bus = &spi_bus_type;
511 spi->dev.release = spidev_release;
512 spi->cs_gpio = -ENOENT;
513 spi->mode = ctlr->buswidth_override_bits;
515 spin_lock_init(&spi->statistics.lock);
517 device_initialize(&spi->dev);
518 return spi;
520 EXPORT_SYMBOL_GPL(spi_alloc_device);
522 static void spi_dev_set_name(struct spi_device *spi)
524 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
526 if (adev) {
527 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
528 return;
531 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
532 spi->chip_select);
535 static int spi_dev_check(struct device *dev, void *data)
537 struct spi_device *spi = to_spi_device(dev);
538 struct spi_device *new_spi = data;
540 if (spi->controller == new_spi->controller &&
541 spi->chip_select == new_spi->chip_select)
542 return -EBUSY;
543 return 0;
547 * spi_add_device - Add spi_device allocated with spi_alloc_device
548 * @spi: spi_device to register
550 * Companion function to spi_alloc_device. Devices allocated with
551 * spi_alloc_device can be added onto the spi bus with this function.
553 * Return: 0 on success; negative errno on failure
555 int spi_add_device(struct spi_device *spi)
557 static DEFINE_MUTEX(spi_add_lock);
558 struct spi_controller *ctlr = spi->controller;
559 struct device *dev = ctlr->dev.parent;
560 int status;
562 /* Chipselects are numbered 0..max; validate. */
563 if (spi->chip_select >= ctlr->num_chipselect) {
564 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
565 ctlr->num_chipselect);
566 return -EINVAL;
569 /* Set the bus ID string */
570 spi_dev_set_name(spi);
572 /* We need to make sure there's no other device with this
573 * chipselect **BEFORE** we call setup(), else we'll trash
574 * its configuration. Lock against concurrent add() calls.
576 mutex_lock(&spi_add_lock);
578 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
579 if (status) {
580 dev_err(dev, "chipselect %d already in use\n",
581 spi->chip_select);
582 goto done;
585 /* Descriptors take precedence */
586 if (ctlr->cs_gpiods)
587 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
588 else if (ctlr->cs_gpios)
589 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
591 /* Drivers may modify this initial i/o setup, but will
592 * normally rely on the device being setup. Devices
593 * using SPI_CS_HIGH can't coexist well otherwise...
595 status = spi_setup(spi);
596 if (status < 0) {
597 dev_err(dev, "can't setup %s, status %d\n",
598 dev_name(&spi->dev), status);
599 goto done;
602 /* Device may be bound to an active driver when this returns */
603 status = device_add(&spi->dev);
604 if (status < 0)
605 dev_err(dev, "can't add %s, status %d\n",
606 dev_name(&spi->dev), status);
607 else
608 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
610 done:
611 mutex_unlock(&spi_add_lock);
612 return status;
614 EXPORT_SYMBOL_GPL(spi_add_device);
617 * spi_new_device - instantiate one new SPI device
618 * @ctlr: Controller to which device is connected
619 * @chip: Describes the SPI device
620 * Context: can sleep
622 * On typical mainboards, this is purely internal; and it's not needed
623 * after board init creates the hard-wired devices. Some development
624 * platforms may not be able to use spi_register_board_info though, and
625 * this is exported so that for example a USB or parport based adapter
626 * driver could add devices (which it would learn about out-of-band).
628 * Return: the new device, or NULL.
630 struct spi_device *spi_new_device(struct spi_controller *ctlr,
631 struct spi_board_info *chip)
633 struct spi_device *proxy;
634 int status;
636 /* NOTE: caller did any chip->bus_num checks necessary.
638 * Also, unless we change the return value convention to use
639 * error-or-pointer (not NULL-or-pointer), troubleshootability
640 * suggests syslogged diagnostics are best here (ugh).
643 proxy = spi_alloc_device(ctlr);
644 if (!proxy)
645 return NULL;
647 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
649 proxy->chip_select = chip->chip_select;
650 proxy->max_speed_hz = chip->max_speed_hz;
651 proxy->mode = chip->mode;
652 proxy->irq = chip->irq;
653 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
654 proxy->dev.platform_data = (void *) chip->platform_data;
655 proxy->controller_data = chip->controller_data;
656 proxy->controller_state = NULL;
658 if (chip->properties) {
659 status = device_add_properties(&proxy->dev, chip->properties);
660 if (status) {
661 dev_err(&ctlr->dev,
662 "failed to add properties to '%s': %d\n",
663 chip->modalias, status);
664 goto err_dev_put;
668 status = spi_add_device(proxy);
669 if (status < 0)
670 goto err_remove_props;
672 return proxy;
674 err_remove_props:
675 if (chip->properties)
676 device_remove_properties(&proxy->dev);
677 err_dev_put:
678 spi_dev_put(proxy);
679 return NULL;
681 EXPORT_SYMBOL_GPL(spi_new_device);
684 * spi_unregister_device - unregister a single SPI device
685 * @spi: spi_device to unregister
687 * Start making the passed SPI device vanish. Normally this would be handled
688 * by spi_unregister_controller().
690 void spi_unregister_device(struct spi_device *spi)
692 if (!spi)
693 return;
695 if (spi->dev.of_node) {
696 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
697 of_node_put(spi->dev.of_node);
699 if (ACPI_COMPANION(&spi->dev))
700 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
701 device_unregister(&spi->dev);
703 EXPORT_SYMBOL_GPL(spi_unregister_device);
705 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
706 struct spi_board_info *bi)
708 struct spi_device *dev;
710 if (ctlr->bus_num != bi->bus_num)
711 return;
713 dev = spi_new_device(ctlr, bi);
714 if (!dev)
715 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
716 bi->modalias);
720 * spi_register_board_info - register SPI devices for a given board
721 * @info: array of chip descriptors
722 * @n: how many descriptors are provided
723 * Context: can sleep
725 * Board-specific early init code calls this (probably during arch_initcall)
726 * with segments of the SPI device table. Any device nodes are created later,
727 * after the relevant parent SPI controller (bus_num) is defined. We keep
728 * this table of devices forever, so that reloading a controller driver will
729 * not make Linux forget about these hard-wired devices.
731 * Other code can also call this, e.g. a particular add-on board might provide
732 * SPI devices through its expansion connector, so code initializing that board
733 * would naturally declare its SPI devices.
735 * The board info passed can safely be __initdata ... but be careful of
736 * any embedded pointers (platform_data, etc), they're copied as-is.
737 * Device properties are deep-copied though.
739 * Return: zero on success, else a negative error code.
741 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
743 struct boardinfo *bi;
744 int i;
746 if (!n)
747 return 0;
749 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
750 if (!bi)
751 return -ENOMEM;
753 for (i = 0; i < n; i++, bi++, info++) {
754 struct spi_controller *ctlr;
756 memcpy(&bi->board_info, info, sizeof(*info));
757 if (info->properties) {
758 bi->board_info.properties =
759 property_entries_dup(info->properties);
760 if (IS_ERR(bi->board_info.properties))
761 return PTR_ERR(bi->board_info.properties);
764 mutex_lock(&board_lock);
765 list_add_tail(&bi->list, &board_list);
766 list_for_each_entry(ctlr, &spi_controller_list, list)
767 spi_match_controller_to_boardinfo(ctlr,
768 &bi->board_info);
769 mutex_unlock(&board_lock);
772 return 0;
775 /*-------------------------------------------------------------------------*/
777 static void spi_set_cs(struct spi_device *spi, bool enable)
779 bool enable1 = enable;
781 if (!spi->controller->set_cs_timing) {
782 if (enable1)
783 spi_delay_exec(&spi->controller->cs_setup, NULL);
784 else
785 spi_delay_exec(&spi->controller->cs_hold, NULL);
788 if (spi->mode & SPI_CS_HIGH)
789 enable = !enable;
791 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
793 * Honour the SPI_NO_CS flag and invert the enable line, as
794 * active low is default for SPI. Execution paths that handle
795 * polarity inversion in gpiolib (such as device tree) will
796 * enforce active high using the SPI_CS_HIGH resulting in a
797 * double inversion through the code above.
799 if (!(spi->mode & SPI_NO_CS)) {
800 if (spi->cs_gpiod)
801 gpiod_set_value_cansleep(spi->cs_gpiod,
802 !enable);
803 else
804 gpio_set_value_cansleep(spi->cs_gpio, !enable);
806 /* Some SPI masters need both GPIO CS & slave_select */
807 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
808 spi->controller->set_cs)
809 spi->controller->set_cs(spi, !enable);
810 } else if (spi->controller->set_cs) {
811 spi->controller->set_cs(spi, !enable);
814 if (!spi->controller->set_cs_timing) {
815 if (!enable1)
816 spi_delay_exec(&spi->controller->cs_inactive, NULL);
820 #ifdef CONFIG_HAS_DMA
821 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
822 struct sg_table *sgt, void *buf, size_t len,
823 enum dma_data_direction dir)
825 const bool vmalloced_buf = is_vmalloc_addr(buf);
826 unsigned int max_seg_size = dma_get_max_seg_size(dev);
827 #ifdef CONFIG_HIGHMEM
828 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
829 (unsigned long)buf < (PKMAP_BASE +
830 (LAST_PKMAP * PAGE_SIZE)));
831 #else
832 const bool kmap_buf = false;
833 #endif
834 int desc_len;
835 int sgs;
836 struct page *vm_page;
837 struct scatterlist *sg;
838 void *sg_buf;
839 size_t min;
840 int i, ret;
842 if (vmalloced_buf || kmap_buf) {
843 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
844 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
845 } else if (virt_addr_valid(buf)) {
846 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
847 sgs = DIV_ROUND_UP(len, desc_len);
848 } else {
849 return -EINVAL;
852 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
853 if (ret != 0)
854 return ret;
856 sg = &sgt->sgl[0];
857 for (i = 0; i < sgs; i++) {
859 if (vmalloced_buf || kmap_buf) {
861 * Next scatterlist entry size is the minimum between
862 * the desc_len and the remaining buffer length that
863 * fits in a page.
865 min = min_t(size_t, desc_len,
866 min_t(size_t, len,
867 PAGE_SIZE - offset_in_page(buf)));
868 if (vmalloced_buf)
869 vm_page = vmalloc_to_page(buf);
870 else
871 vm_page = kmap_to_page(buf);
872 if (!vm_page) {
873 sg_free_table(sgt);
874 return -ENOMEM;
876 sg_set_page(sg, vm_page,
877 min, offset_in_page(buf));
878 } else {
879 min = min_t(size_t, len, desc_len);
880 sg_buf = buf;
881 sg_set_buf(sg, sg_buf, min);
884 buf += min;
885 len -= min;
886 sg = sg_next(sg);
889 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
890 if (!ret)
891 ret = -ENOMEM;
892 if (ret < 0) {
893 sg_free_table(sgt);
894 return ret;
897 sgt->nents = ret;
899 return 0;
902 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
903 struct sg_table *sgt, enum dma_data_direction dir)
905 if (sgt->orig_nents) {
906 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
907 sg_free_table(sgt);
911 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
913 struct device *tx_dev, *rx_dev;
914 struct spi_transfer *xfer;
915 int ret;
917 if (!ctlr->can_dma)
918 return 0;
920 if (ctlr->dma_tx)
921 tx_dev = ctlr->dma_tx->device->dev;
922 else
923 tx_dev = ctlr->dev.parent;
925 if (ctlr->dma_rx)
926 rx_dev = ctlr->dma_rx->device->dev;
927 else
928 rx_dev = ctlr->dev.parent;
930 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
931 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
932 continue;
934 if (xfer->tx_buf != NULL) {
935 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
936 (void *)xfer->tx_buf, xfer->len,
937 DMA_TO_DEVICE);
938 if (ret != 0)
939 return ret;
942 if (xfer->rx_buf != NULL) {
943 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
944 xfer->rx_buf, xfer->len,
945 DMA_FROM_DEVICE);
946 if (ret != 0) {
947 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
948 DMA_TO_DEVICE);
949 return ret;
954 ctlr->cur_msg_mapped = true;
956 return 0;
959 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
961 struct spi_transfer *xfer;
962 struct device *tx_dev, *rx_dev;
964 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
965 return 0;
967 if (ctlr->dma_tx)
968 tx_dev = ctlr->dma_tx->device->dev;
969 else
970 tx_dev = ctlr->dev.parent;
972 if (ctlr->dma_rx)
973 rx_dev = ctlr->dma_rx->device->dev;
974 else
975 rx_dev = ctlr->dev.parent;
977 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
978 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
979 continue;
981 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
982 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
985 return 0;
987 #else /* !CONFIG_HAS_DMA */
988 static inline int __spi_map_msg(struct spi_controller *ctlr,
989 struct spi_message *msg)
991 return 0;
994 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
995 struct spi_message *msg)
997 return 0;
999 #endif /* !CONFIG_HAS_DMA */
1001 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1002 struct spi_message *msg)
1004 struct spi_transfer *xfer;
1006 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1008 * Restore the original value of tx_buf or rx_buf if they are
1009 * NULL.
1011 if (xfer->tx_buf == ctlr->dummy_tx)
1012 xfer->tx_buf = NULL;
1013 if (xfer->rx_buf == ctlr->dummy_rx)
1014 xfer->rx_buf = NULL;
1017 return __spi_unmap_msg(ctlr, msg);
1020 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1022 struct spi_transfer *xfer;
1023 void *tmp;
1024 unsigned int max_tx, max_rx;
1026 if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
1027 max_tx = 0;
1028 max_rx = 0;
1030 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1031 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1032 !xfer->tx_buf)
1033 max_tx = max(xfer->len, max_tx);
1034 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1035 !xfer->rx_buf)
1036 max_rx = max(xfer->len, max_rx);
1039 if (max_tx) {
1040 tmp = krealloc(ctlr->dummy_tx, max_tx,
1041 GFP_KERNEL | GFP_DMA);
1042 if (!tmp)
1043 return -ENOMEM;
1044 ctlr->dummy_tx = tmp;
1045 memset(tmp, 0, max_tx);
1048 if (max_rx) {
1049 tmp = krealloc(ctlr->dummy_rx, max_rx,
1050 GFP_KERNEL | GFP_DMA);
1051 if (!tmp)
1052 return -ENOMEM;
1053 ctlr->dummy_rx = tmp;
1056 if (max_tx || max_rx) {
1057 list_for_each_entry(xfer, &msg->transfers,
1058 transfer_list) {
1059 if (!xfer->len)
1060 continue;
1061 if (!xfer->tx_buf)
1062 xfer->tx_buf = ctlr->dummy_tx;
1063 if (!xfer->rx_buf)
1064 xfer->rx_buf = ctlr->dummy_rx;
1069 return __spi_map_msg(ctlr, msg);
1072 static int spi_transfer_wait(struct spi_controller *ctlr,
1073 struct spi_message *msg,
1074 struct spi_transfer *xfer)
1076 struct spi_statistics *statm = &ctlr->statistics;
1077 struct spi_statistics *stats = &msg->spi->statistics;
1078 unsigned long long ms = 1;
1080 if (spi_controller_is_slave(ctlr)) {
1081 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1082 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1083 return -EINTR;
1085 } else {
1086 ms = 8LL * 1000LL * xfer->len;
1087 do_div(ms, xfer->speed_hz);
1088 ms += ms + 200; /* some tolerance */
1090 if (ms > UINT_MAX)
1091 ms = UINT_MAX;
1093 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1094 msecs_to_jiffies(ms));
1096 if (ms == 0) {
1097 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1098 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1099 dev_err(&msg->spi->dev,
1100 "SPI transfer timed out\n");
1101 return -ETIMEDOUT;
1105 return 0;
1108 static void _spi_transfer_delay_ns(u32 ns)
1110 if (!ns)
1111 return;
1112 if (ns <= 1000) {
1113 ndelay(ns);
1114 } else {
1115 u32 us = DIV_ROUND_UP(ns, 1000);
1117 if (us <= 10)
1118 udelay(us);
1119 else
1120 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1124 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1126 u32 delay = _delay->value;
1127 u32 unit = _delay->unit;
1128 u32 hz;
1130 if (!delay)
1131 return 0;
1133 switch (unit) {
1134 case SPI_DELAY_UNIT_USECS:
1135 delay *= 1000;
1136 break;
1137 case SPI_DELAY_UNIT_NSECS: /* nothing to do here */
1138 break;
1139 case SPI_DELAY_UNIT_SCK:
1140 /* clock cycles need to be obtained from spi_transfer */
1141 if (!xfer)
1142 return -EINVAL;
1143 /* if there is no effective speed know, then approximate
1144 * by underestimating with half the requested hz
1146 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1147 if (!hz)
1148 return -EINVAL;
1149 delay *= DIV_ROUND_UP(1000000000, hz);
1150 break;
1151 default:
1152 return -EINVAL;
1155 return delay;
1157 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1159 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1161 int delay;
1163 if (!_delay)
1164 return -EINVAL;
1166 delay = spi_delay_to_ns(_delay, xfer);
1167 if (delay < 0)
1168 return delay;
1170 _spi_transfer_delay_ns(delay);
1172 return 0;
1174 EXPORT_SYMBOL_GPL(spi_delay_exec);
1176 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1177 struct spi_transfer *xfer)
1179 u32 delay = xfer->cs_change_delay.value;
1180 u32 unit = xfer->cs_change_delay.unit;
1181 int ret;
1183 /* return early on "fast" mode - for everything but USECS */
1184 if (!delay) {
1185 if (unit == SPI_DELAY_UNIT_USECS)
1186 _spi_transfer_delay_ns(10000);
1187 return;
1190 ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1191 if (ret) {
1192 dev_err_once(&msg->spi->dev,
1193 "Use of unsupported delay unit %i, using default of 10us\n",
1194 unit);
1195 _spi_transfer_delay_ns(10000);
1200 * spi_transfer_one_message - Default implementation of transfer_one_message()
1202 * This is a standard implementation of transfer_one_message() for
1203 * drivers which implement a transfer_one() operation. It provides
1204 * standard handling of delays and chip select management.
1206 static int spi_transfer_one_message(struct spi_controller *ctlr,
1207 struct spi_message *msg)
1209 struct spi_transfer *xfer;
1210 bool keep_cs = false;
1211 int ret = 0;
1212 struct spi_statistics *statm = &ctlr->statistics;
1213 struct spi_statistics *stats = &msg->spi->statistics;
1215 spi_set_cs(msg->spi, true);
1217 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1218 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1220 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1221 trace_spi_transfer_start(msg, xfer);
1223 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1224 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1226 if (!ctlr->ptp_sts_supported) {
1227 xfer->ptp_sts_word_pre = 0;
1228 ptp_read_system_prets(xfer->ptp_sts);
1231 if (xfer->tx_buf || xfer->rx_buf) {
1232 reinit_completion(&ctlr->xfer_completion);
1234 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1235 if (ret < 0) {
1236 SPI_STATISTICS_INCREMENT_FIELD(statm,
1237 errors);
1238 SPI_STATISTICS_INCREMENT_FIELD(stats,
1239 errors);
1240 dev_err(&msg->spi->dev,
1241 "SPI transfer failed: %d\n", ret);
1242 goto out;
1245 if (ret > 0) {
1246 ret = spi_transfer_wait(ctlr, msg, xfer);
1247 if (ret < 0)
1248 msg->status = ret;
1250 } else {
1251 if (xfer->len)
1252 dev_err(&msg->spi->dev,
1253 "Bufferless transfer has length %u\n",
1254 xfer->len);
1257 if (!ctlr->ptp_sts_supported) {
1258 ptp_read_system_postts(xfer->ptp_sts);
1259 xfer->ptp_sts_word_post = xfer->len;
1262 trace_spi_transfer_stop(msg, xfer);
1264 if (msg->status != -EINPROGRESS)
1265 goto out;
1267 spi_transfer_delay_exec(xfer);
1269 if (xfer->cs_change) {
1270 if (list_is_last(&xfer->transfer_list,
1271 &msg->transfers)) {
1272 keep_cs = true;
1273 } else {
1274 spi_set_cs(msg->spi, false);
1275 _spi_transfer_cs_change_delay(msg, xfer);
1276 spi_set_cs(msg->spi, true);
1280 msg->actual_length += xfer->len;
1283 out:
1284 if (ret != 0 || !keep_cs)
1285 spi_set_cs(msg->spi, false);
1287 if (msg->status == -EINPROGRESS)
1288 msg->status = ret;
1290 if (msg->status && ctlr->handle_err)
1291 ctlr->handle_err(ctlr, msg);
1293 spi_res_release(ctlr, msg);
1295 spi_finalize_current_message(ctlr);
1297 return ret;
1301 * spi_finalize_current_transfer - report completion of a transfer
1302 * @ctlr: the controller reporting completion
1304 * Called by SPI drivers using the core transfer_one_message()
1305 * implementation to notify it that the current interrupt driven
1306 * transfer has finished and the next one may be scheduled.
1308 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1310 complete(&ctlr->xfer_completion);
1312 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1315 * __spi_pump_messages - function which processes spi message queue
1316 * @ctlr: controller to process queue for
1317 * @in_kthread: true if we are in the context of the message pump thread
1319 * This function checks if there is any spi message in the queue that
1320 * needs processing and if so call out to the driver to initialize hardware
1321 * and transfer each message.
1323 * Note that it is called both from the kthread itself and also from
1324 * inside spi_sync(); the queue extraction handling at the top of the
1325 * function should deal with this safely.
1327 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1329 struct spi_transfer *xfer;
1330 struct spi_message *msg;
1331 bool was_busy = false;
1332 unsigned long flags;
1333 int ret;
1335 /* Lock queue */
1336 spin_lock_irqsave(&ctlr->queue_lock, flags);
1338 /* Make sure we are not already running a message */
1339 if (ctlr->cur_msg) {
1340 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1341 return;
1344 /* If another context is idling the device then defer */
1345 if (ctlr->idling) {
1346 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1347 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1348 return;
1351 /* Check if the queue is idle */
1352 if (list_empty(&ctlr->queue) || !ctlr->running) {
1353 if (!ctlr->busy) {
1354 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1355 return;
1358 /* Only do teardown in the thread */
1359 if (!in_kthread) {
1360 kthread_queue_work(&ctlr->kworker,
1361 &ctlr->pump_messages);
1362 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1363 return;
1366 ctlr->busy = false;
1367 ctlr->idling = true;
1368 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1370 kfree(ctlr->dummy_rx);
1371 ctlr->dummy_rx = NULL;
1372 kfree(ctlr->dummy_tx);
1373 ctlr->dummy_tx = NULL;
1374 if (ctlr->unprepare_transfer_hardware &&
1375 ctlr->unprepare_transfer_hardware(ctlr))
1376 dev_err(&ctlr->dev,
1377 "failed to unprepare transfer hardware\n");
1378 if (ctlr->auto_runtime_pm) {
1379 pm_runtime_mark_last_busy(ctlr->dev.parent);
1380 pm_runtime_put_autosuspend(ctlr->dev.parent);
1382 trace_spi_controller_idle(ctlr);
1384 spin_lock_irqsave(&ctlr->queue_lock, flags);
1385 ctlr->idling = false;
1386 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1387 return;
1390 /* Extract head of queue */
1391 msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1392 ctlr->cur_msg = msg;
1394 list_del_init(&msg->queue);
1395 if (ctlr->busy)
1396 was_busy = true;
1397 else
1398 ctlr->busy = true;
1399 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1401 mutex_lock(&ctlr->io_mutex);
1403 if (!was_busy && ctlr->auto_runtime_pm) {
1404 ret = pm_runtime_get_sync(ctlr->dev.parent);
1405 if (ret < 0) {
1406 pm_runtime_put_noidle(ctlr->dev.parent);
1407 dev_err(&ctlr->dev, "Failed to power device: %d\n",
1408 ret);
1409 mutex_unlock(&ctlr->io_mutex);
1410 return;
1414 if (!was_busy)
1415 trace_spi_controller_busy(ctlr);
1417 if (!was_busy && ctlr->prepare_transfer_hardware) {
1418 ret = ctlr->prepare_transfer_hardware(ctlr);
1419 if (ret) {
1420 dev_err(&ctlr->dev,
1421 "failed to prepare transfer hardware: %d\n",
1422 ret);
1424 if (ctlr->auto_runtime_pm)
1425 pm_runtime_put(ctlr->dev.parent);
1427 msg->status = ret;
1428 spi_finalize_current_message(ctlr);
1430 mutex_unlock(&ctlr->io_mutex);
1431 return;
1435 trace_spi_message_start(msg);
1437 if (ctlr->prepare_message) {
1438 ret = ctlr->prepare_message(ctlr, msg);
1439 if (ret) {
1440 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1441 ret);
1442 msg->status = ret;
1443 spi_finalize_current_message(ctlr);
1444 goto out;
1446 ctlr->cur_msg_prepared = true;
1449 ret = spi_map_msg(ctlr, msg);
1450 if (ret) {
1451 msg->status = ret;
1452 spi_finalize_current_message(ctlr);
1453 goto out;
1456 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1457 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1458 xfer->ptp_sts_word_pre = 0;
1459 ptp_read_system_prets(xfer->ptp_sts);
1463 ret = ctlr->transfer_one_message(ctlr, msg);
1464 if (ret) {
1465 dev_err(&ctlr->dev,
1466 "failed to transfer one message from queue\n");
1467 goto out;
1470 out:
1471 mutex_unlock(&ctlr->io_mutex);
1473 /* Prod the scheduler in case transfer_one() was busy waiting */
1474 if (!ret)
1475 cond_resched();
1479 * spi_pump_messages - kthread work function which processes spi message queue
1480 * @work: pointer to kthread work struct contained in the controller struct
1482 static void spi_pump_messages(struct kthread_work *work)
1484 struct spi_controller *ctlr =
1485 container_of(work, struct spi_controller, pump_messages);
1487 __spi_pump_messages(ctlr, true);
1491 * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1492 * TX timestamp for the requested byte from the SPI
1493 * transfer. The frequency with which this function
1494 * must be called (once per word, once for the whole
1495 * transfer, once per batch of words etc) is arbitrary
1496 * as long as the @tx buffer offset is greater than or
1497 * equal to the requested byte at the time of the
1498 * call. The timestamp is only taken once, at the
1499 * first such call. It is assumed that the driver
1500 * advances its @tx buffer pointer monotonically.
1501 * @ctlr: Pointer to the spi_controller structure of the driver
1502 * @xfer: Pointer to the transfer being timestamped
1503 * @progress: How many words (not bytes) have been transferred so far
1504 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1505 * transfer, for less jitter in time measurement. Only compatible
1506 * with PIO drivers. If true, must follow up with
1507 * spi_take_timestamp_post or otherwise system will crash.
1508 * WARNING: for fully predictable results, the CPU frequency must
1509 * also be under control (governor).
1511 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1512 struct spi_transfer *xfer,
1513 size_t progress, bool irqs_off)
1515 if (!xfer->ptp_sts)
1516 return;
1518 if (xfer->timestamped)
1519 return;
1521 if (progress > xfer->ptp_sts_word_pre)
1522 return;
1524 /* Capture the resolution of the timestamp */
1525 xfer->ptp_sts_word_pre = progress;
1527 if (irqs_off) {
1528 local_irq_save(ctlr->irq_flags);
1529 preempt_disable();
1532 ptp_read_system_prets(xfer->ptp_sts);
1534 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1537 * spi_take_timestamp_post - helper for drivers to collect the end of the
1538 * TX timestamp for the requested byte from the SPI
1539 * transfer. Can be called with an arbitrary
1540 * frequency: only the first call where @tx exceeds
1541 * or is equal to the requested word will be
1542 * timestamped.
1543 * @ctlr: Pointer to the spi_controller structure of the driver
1544 * @xfer: Pointer to the transfer being timestamped
1545 * @progress: How many words (not bytes) have been transferred so far
1546 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1548 void spi_take_timestamp_post(struct spi_controller *ctlr,
1549 struct spi_transfer *xfer,
1550 size_t progress, bool irqs_off)
1552 if (!xfer->ptp_sts)
1553 return;
1555 if (xfer->timestamped)
1556 return;
1558 if (progress < xfer->ptp_sts_word_post)
1559 return;
1561 ptp_read_system_postts(xfer->ptp_sts);
1563 if (irqs_off) {
1564 local_irq_restore(ctlr->irq_flags);
1565 preempt_enable();
1568 /* Capture the resolution of the timestamp */
1569 xfer->ptp_sts_word_post = progress;
1571 xfer->timestamped = true;
1573 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1576 * spi_set_thread_rt - set the controller to pump at realtime priority
1577 * @ctlr: controller to boost priority of
1579 * This can be called because the controller requested realtime priority
1580 * (by setting the ->rt value before calling spi_register_controller()) or
1581 * because a device on the bus said that its transfers needed realtime
1582 * priority.
1584 * NOTE: at the moment if any device on a bus says it needs realtime then
1585 * the thread will be at realtime priority for all transfers on that
1586 * controller. If this eventually becomes a problem we may see if we can
1587 * find a way to boost the priority only temporarily during relevant
1588 * transfers.
1590 static void spi_set_thread_rt(struct spi_controller *ctlr)
1592 struct sched_param param = { .sched_priority = MAX_RT_PRIO / 2 };
1594 dev_info(&ctlr->dev,
1595 "will run message pump with realtime priority\n");
1596 sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1599 static int spi_init_queue(struct spi_controller *ctlr)
1601 ctlr->running = false;
1602 ctlr->busy = false;
1604 kthread_init_worker(&ctlr->kworker);
1605 ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1606 "%s", dev_name(&ctlr->dev));
1607 if (IS_ERR(ctlr->kworker_task)) {
1608 dev_err(&ctlr->dev, "failed to create message pump task\n");
1609 return PTR_ERR(ctlr->kworker_task);
1611 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1614 * Controller config will indicate if this controller should run the
1615 * message pump with high (realtime) priority to reduce the transfer
1616 * latency on the bus by minimising the delay between a transfer
1617 * request and the scheduling of the message pump thread. Without this
1618 * setting the message pump thread will remain at default priority.
1620 if (ctlr->rt)
1621 spi_set_thread_rt(ctlr);
1623 return 0;
1627 * spi_get_next_queued_message() - called by driver to check for queued
1628 * messages
1629 * @ctlr: the controller to check for queued messages
1631 * If there are more messages in the queue, the next message is returned from
1632 * this call.
1634 * Return: the next message in the queue, else NULL if the queue is empty.
1636 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1638 struct spi_message *next;
1639 unsigned long flags;
1641 /* get a pointer to the next message, if any */
1642 spin_lock_irqsave(&ctlr->queue_lock, flags);
1643 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1644 queue);
1645 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1647 return next;
1649 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1652 * spi_finalize_current_message() - the current message is complete
1653 * @ctlr: the controller to return the message to
1655 * Called by the driver to notify the core that the message in the front of the
1656 * queue is complete and can be removed from the queue.
1658 void spi_finalize_current_message(struct spi_controller *ctlr)
1660 struct spi_transfer *xfer;
1661 struct spi_message *mesg;
1662 unsigned long flags;
1663 int ret;
1665 spin_lock_irqsave(&ctlr->queue_lock, flags);
1666 mesg = ctlr->cur_msg;
1667 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1669 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1670 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1671 ptp_read_system_postts(xfer->ptp_sts);
1672 xfer->ptp_sts_word_post = xfer->len;
1676 if (unlikely(ctlr->ptp_sts_supported))
1677 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1678 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1680 spi_unmap_msg(ctlr, mesg);
1682 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1683 ret = ctlr->unprepare_message(ctlr, mesg);
1684 if (ret) {
1685 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1686 ret);
1690 spin_lock_irqsave(&ctlr->queue_lock, flags);
1691 ctlr->cur_msg = NULL;
1692 ctlr->cur_msg_prepared = false;
1693 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1694 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1696 trace_spi_message_done(mesg);
1698 mesg->state = NULL;
1699 if (mesg->complete)
1700 mesg->complete(mesg->context);
1702 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1704 static int spi_start_queue(struct spi_controller *ctlr)
1706 unsigned long flags;
1708 spin_lock_irqsave(&ctlr->queue_lock, flags);
1710 if (ctlr->running || ctlr->busy) {
1711 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1712 return -EBUSY;
1715 ctlr->running = true;
1716 ctlr->cur_msg = NULL;
1717 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1719 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1721 return 0;
1724 static int spi_stop_queue(struct spi_controller *ctlr)
1726 unsigned long flags;
1727 unsigned limit = 500;
1728 int ret = 0;
1730 spin_lock_irqsave(&ctlr->queue_lock, flags);
1733 * This is a bit lame, but is optimized for the common execution path.
1734 * A wait_queue on the ctlr->busy could be used, but then the common
1735 * execution path (pump_messages) would be required to call wake_up or
1736 * friends on every SPI message. Do this instead.
1738 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1739 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1740 usleep_range(10000, 11000);
1741 spin_lock_irqsave(&ctlr->queue_lock, flags);
1744 if (!list_empty(&ctlr->queue) || ctlr->busy)
1745 ret = -EBUSY;
1746 else
1747 ctlr->running = false;
1749 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1751 if (ret) {
1752 dev_warn(&ctlr->dev, "could not stop message queue\n");
1753 return ret;
1755 return ret;
1758 static int spi_destroy_queue(struct spi_controller *ctlr)
1760 int ret;
1762 ret = spi_stop_queue(ctlr);
1765 * kthread_flush_worker will block until all work is done.
1766 * If the reason that stop_queue timed out is that the work will never
1767 * finish, then it does no good to call flush/stop thread, so
1768 * return anyway.
1770 if (ret) {
1771 dev_err(&ctlr->dev, "problem destroying queue\n");
1772 return ret;
1775 kthread_flush_worker(&ctlr->kworker);
1776 kthread_stop(ctlr->kworker_task);
1778 return 0;
1781 static int __spi_queued_transfer(struct spi_device *spi,
1782 struct spi_message *msg,
1783 bool need_pump)
1785 struct spi_controller *ctlr = spi->controller;
1786 unsigned long flags;
1788 spin_lock_irqsave(&ctlr->queue_lock, flags);
1790 if (!ctlr->running) {
1791 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1792 return -ESHUTDOWN;
1794 msg->actual_length = 0;
1795 msg->status = -EINPROGRESS;
1797 list_add_tail(&msg->queue, &ctlr->queue);
1798 if (!ctlr->busy && need_pump)
1799 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1801 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1802 return 0;
1806 * spi_queued_transfer - transfer function for queued transfers
1807 * @spi: spi device which is requesting transfer
1808 * @msg: spi message which is to handled is queued to driver queue
1810 * Return: zero on success, else a negative error code.
1812 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1814 return __spi_queued_transfer(spi, msg, true);
1817 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1819 int ret;
1821 ctlr->transfer = spi_queued_transfer;
1822 if (!ctlr->transfer_one_message)
1823 ctlr->transfer_one_message = spi_transfer_one_message;
1825 /* Initialize and start queue */
1826 ret = spi_init_queue(ctlr);
1827 if (ret) {
1828 dev_err(&ctlr->dev, "problem initializing queue\n");
1829 goto err_init_queue;
1831 ctlr->queued = true;
1832 ret = spi_start_queue(ctlr);
1833 if (ret) {
1834 dev_err(&ctlr->dev, "problem starting queue\n");
1835 goto err_start_queue;
1838 return 0;
1840 err_start_queue:
1841 spi_destroy_queue(ctlr);
1842 err_init_queue:
1843 return ret;
1847 * spi_flush_queue - Send all pending messages in the queue from the callers'
1848 * context
1849 * @ctlr: controller to process queue for
1851 * This should be used when one wants to ensure all pending messages have been
1852 * sent before doing something. Is used by the spi-mem code to make sure SPI
1853 * memory operations do not preempt regular SPI transfers that have been queued
1854 * before the spi-mem operation.
1856 void spi_flush_queue(struct spi_controller *ctlr)
1858 if (ctlr->transfer == spi_queued_transfer)
1859 __spi_pump_messages(ctlr, false);
1862 /*-------------------------------------------------------------------------*/
1864 #if defined(CONFIG_OF)
1865 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1866 struct device_node *nc)
1868 u32 value;
1869 int rc;
1871 /* Mode (clock phase/polarity/etc.) */
1872 if (of_property_read_bool(nc, "spi-cpha"))
1873 spi->mode |= SPI_CPHA;
1874 if (of_property_read_bool(nc, "spi-cpol"))
1875 spi->mode |= SPI_CPOL;
1876 if (of_property_read_bool(nc, "spi-3wire"))
1877 spi->mode |= SPI_3WIRE;
1878 if (of_property_read_bool(nc, "spi-lsb-first"))
1879 spi->mode |= SPI_LSB_FIRST;
1880 if (of_property_read_bool(nc, "spi-cs-high"))
1881 spi->mode |= SPI_CS_HIGH;
1883 /* Device DUAL/QUAD mode */
1884 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1885 switch (value) {
1886 case 1:
1887 break;
1888 case 2:
1889 spi->mode |= SPI_TX_DUAL;
1890 break;
1891 case 4:
1892 spi->mode |= SPI_TX_QUAD;
1893 break;
1894 case 8:
1895 spi->mode |= SPI_TX_OCTAL;
1896 break;
1897 default:
1898 dev_warn(&ctlr->dev,
1899 "spi-tx-bus-width %d not supported\n",
1900 value);
1901 break;
1905 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1906 switch (value) {
1907 case 1:
1908 break;
1909 case 2:
1910 spi->mode |= SPI_RX_DUAL;
1911 break;
1912 case 4:
1913 spi->mode |= SPI_RX_QUAD;
1914 break;
1915 case 8:
1916 spi->mode |= SPI_RX_OCTAL;
1917 break;
1918 default:
1919 dev_warn(&ctlr->dev,
1920 "spi-rx-bus-width %d not supported\n",
1921 value);
1922 break;
1926 if (spi_controller_is_slave(ctlr)) {
1927 if (!of_node_name_eq(nc, "slave")) {
1928 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1929 nc);
1930 return -EINVAL;
1932 return 0;
1935 /* Device address */
1936 rc = of_property_read_u32(nc, "reg", &value);
1937 if (rc) {
1938 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1939 nc, rc);
1940 return rc;
1942 spi->chip_select = value;
1945 * For descriptors associated with the device, polarity inversion is
1946 * handled in the gpiolib, so all gpio chip selects are "active high"
1947 * in the logical sense, the gpiolib will invert the line if need be.
1949 if ((ctlr->use_gpio_descriptors) && ctlr->cs_gpiods &&
1950 ctlr->cs_gpiods[spi->chip_select])
1951 spi->mode |= SPI_CS_HIGH;
1953 /* Device speed */
1954 if (!of_property_read_u32(nc, "spi-max-frequency", &value))
1955 spi->max_speed_hz = value;
1957 return 0;
1960 static struct spi_device *
1961 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1963 struct spi_device *spi;
1964 int rc;
1966 /* Alloc an spi_device */
1967 spi = spi_alloc_device(ctlr);
1968 if (!spi) {
1969 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1970 rc = -ENOMEM;
1971 goto err_out;
1974 /* Select device driver */
1975 rc = of_modalias_node(nc, spi->modalias,
1976 sizeof(spi->modalias));
1977 if (rc < 0) {
1978 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1979 goto err_out;
1982 rc = of_spi_parse_dt(ctlr, spi, nc);
1983 if (rc)
1984 goto err_out;
1986 /* Store a pointer to the node in the device structure */
1987 of_node_get(nc);
1988 spi->dev.of_node = nc;
1990 /* Register the new device */
1991 rc = spi_add_device(spi);
1992 if (rc) {
1993 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1994 goto err_of_node_put;
1997 return spi;
1999 err_of_node_put:
2000 of_node_put(nc);
2001 err_out:
2002 spi_dev_put(spi);
2003 return ERR_PTR(rc);
2007 * of_register_spi_devices() - Register child devices onto the SPI bus
2008 * @ctlr: Pointer to spi_controller device
2010 * Registers an spi_device for each child node of controller node which
2011 * represents a valid SPI slave.
2013 static void of_register_spi_devices(struct spi_controller *ctlr)
2015 struct spi_device *spi;
2016 struct device_node *nc;
2018 if (!ctlr->dev.of_node)
2019 return;
2021 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2022 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2023 continue;
2024 spi = of_register_spi_device(ctlr, nc);
2025 if (IS_ERR(spi)) {
2026 dev_warn(&ctlr->dev,
2027 "Failed to create SPI device for %pOF\n", nc);
2028 of_node_clear_flag(nc, OF_POPULATED);
2032 #else
2033 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2034 #endif
2036 #ifdef CONFIG_ACPI
2037 struct acpi_spi_lookup {
2038 struct spi_controller *ctlr;
2039 u32 max_speed_hz;
2040 u32 mode;
2041 int irq;
2042 u8 bits_per_word;
2043 u8 chip_select;
2046 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2047 struct acpi_spi_lookup *lookup)
2049 const union acpi_object *obj;
2051 if (!x86_apple_machine)
2052 return;
2054 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2055 && obj->buffer.length >= 4)
2056 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2058 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2059 && obj->buffer.length == 8)
2060 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2062 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2063 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2064 lookup->mode |= SPI_LSB_FIRST;
2066 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2067 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2068 lookup->mode |= SPI_CPOL;
2070 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2071 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2072 lookup->mode |= SPI_CPHA;
2075 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2077 struct acpi_spi_lookup *lookup = data;
2078 struct spi_controller *ctlr = lookup->ctlr;
2080 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2081 struct acpi_resource_spi_serialbus *sb;
2082 acpi_handle parent_handle;
2083 acpi_status status;
2085 sb = &ares->data.spi_serial_bus;
2086 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2088 status = acpi_get_handle(NULL,
2089 sb->resource_source.string_ptr,
2090 &parent_handle);
2092 if (ACPI_FAILURE(status) ||
2093 ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2094 return -ENODEV;
2097 * ACPI DeviceSelection numbering is handled by the
2098 * host controller driver in Windows and can vary
2099 * from driver to driver. In Linux we always expect
2100 * 0 .. max - 1 so we need to ask the driver to
2101 * translate between the two schemes.
2103 if (ctlr->fw_translate_cs) {
2104 int cs = ctlr->fw_translate_cs(ctlr,
2105 sb->device_selection);
2106 if (cs < 0)
2107 return cs;
2108 lookup->chip_select = cs;
2109 } else {
2110 lookup->chip_select = sb->device_selection;
2113 lookup->max_speed_hz = sb->connection_speed;
2115 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2116 lookup->mode |= SPI_CPHA;
2117 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2118 lookup->mode |= SPI_CPOL;
2119 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2120 lookup->mode |= SPI_CS_HIGH;
2122 } else if (lookup->irq < 0) {
2123 struct resource r;
2125 if (acpi_dev_resource_interrupt(ares, 0, &r))
2126 lookup->irq = r.start;
2129 /* Always tell the ACPI core to skip this resource */
2130 return 1;
2133 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2134 struct acpi_device *adev)
2136 acpi_handle parent_handle = NULL;
2137 struct list_head resource_list;
2138 struct acpi_spi_lookup lookup = {};
2139 struct spi_device *spi;
2140 int ret;
2142 if (acpi_bus_get_status(adev) || !adev->status.present ||
2143 acpi_device_enumerated(adev))
2144 return AE_OK;
2146 lookup.ctlr = ctlr;
2147 lookup.irq = -1;
2149 INIT_LIST_HEAD(&resource_list);
2150 ret = acpi_dev_get_resources(adev, &resource_list,
2151 acpi_spi_add_resource, &lookup);
2152 acpi_dev_free_resource_list(&resource_list);
2154 if (ret < 0)
2155 /* found SPI in _CRS but it points to another controller */
2156 return AE_OK;
2158 if (!lookup.max_speed_hz &&
2159 !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) &&
2160 ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2161 /* Apple does not use _CRS but nested devices for SPI slaves */
2162 acpi_spi_parse_apple_properties(adev, &lookup);
2165 if (!lookup.max_speed_hz)
2166 return AE_OK;
2168 spi = spi_alloc_device(ctlr);
2169 if (!spi) {
2170 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2171 dev_name(&adev->dev));
2172 return AE_NO_MEMORY;
2176 ACPI_COMPANION_SET(&spi->dev, adev);
2177 spi->max_speed_hz = lookup.max_speed_hz;
2178 spi->mode |= lookup.mode;
2179 spi->irq = lookup.irq;
2180 spi->bits_per_word = lookup.bits_per_word;
2181 spi->chip_select = lookup.chip_select;
2183 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2184 sizeof(spi->modalias));
2186 if (spi->irq < 0)
2187 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2189 acpi_device_set_enumerated(adev);
2191 adev->power.flags.ignore_parent = true;
2192 if (spi_add_device(spi)) {
2193 adev->power.flags.ignore_parent = false;
2194 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2195 dev_name(&adev->dev));
2196 spi_dev_put(spi);
2199 return AE_OK;
2202 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2203 void *data, void **return_value)
2205 struct spi_controller *ctlr = data;
2206 struct acpi_device *adev;
2208 if (acpi_bus_get_device(handle, &adev))
2209 return AE_OK;
2211 return acpi_register_spi_device(ctlr, adev);
2214 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32
2216 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2218 acpi_status status;
2219 acpi_handle handle;
2221 handle = ACPI_HANDLE(ctlr->dev.parent);
2222 if (!handle)
2223 return;
2225 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2226 SPI_ACPI_ENUMERATE_MAX_DEPTH,
2227 acpi_spi_add_device, NULL, ctlr, NULL);
2228 if (ACPI_FAILURE(status))
2229 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2231 #else
2232 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2233 #endif /* CONFIG_ACPI */
2235 static void spi_controller_release(struct device *dev)
2237 struct spi_controller *ctlr;
2239 ctlr = container_of(dev, struct spi_controller, dev);
2240 kfree(ctlr);
2243 static struct class spi_master_class = {
2244 .name = "spi_master",
2245 .owner = THIS_MODULE,
2246 .dev_release = spi_controller_release,
2247 .dev_groups = spi_master_groups,
2250 #ifdef CONFIG_SPI_SLAVE
2252 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2253 * controller
2254 * @spi: device used for the current transfer
2256 int spi_slave_abort(struct spi_device *spi)
2258 struct spi_controller *ctlr = spi->controller;
2260 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2261 return ctlr->slave_abort(ctlr);
2263 return -ENOTSUPP;
2265 EXPORT_SYMBOL_GPL(spi_slave_abort);
2267 static int match_true(struct device *dev, void *data)
2269 return 1;
2272 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2273 char *buf)
2275 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2276 dev);
2277 struct device *child;
2279 child = device_find_child(&ctlr->dev, NULL, match_true);
2280 return sprintf(buf, "%s\n",
2281 child ? to_spi_device(child)->modalias : NULL);
2284 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2285 const char *buf, size_t count)
2287 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2288 dev);
2289 struct spi_device *spi;
2290 struct device *child;
2291 char name[32];
2292 int rc;
2294 rc = sscanf(buf, "%31s", name);
2295 if (rc != 1 || !name[0])
2296 return -EINVAL;
2298 child = device_find_child(&ctlr->dev, NULL, match_true);
2299 if (child) {
2300 /* Remove registered slave */
2301 device_unregister(child);
2302 put_device(child);
2305 if (strcmp(name, "(null)")) {
2306 /* Register new slave */
2307 spi = spi_alloc_device(ctlr);
2308 if (!spi)
2309 return -ENOMEM;
2311 strlcpy(spi->modalias, name, sizeof(spi->modalias));
2313 rc = spi_add_device(spi);
2314 if (rc) {
2315 spi_dev_put(spi);
2316 return rc;
2320 return count;
2323 static DEVICE_ATTR_RW(slave);
2325 static struct attribute *spi_slave_attrs[] = {
2326 &dev_attr_slave.attr,
2327 NULL,
2330 static const struct attribute_group spi_slave_group = {
2331 .attrs = spi_slave_attrs,
2334 static const struct attribute_group *spi_slave_groups[] = {
2335 &spi_controller_statistics_group,
2336 &spi_slave_group,
2337 NULL,
2340 static struct class spi_slave_class = {
2341 .name = "spi_slave",
2342 .owner = THIS_MODULE,
2343 .dev_release = spi_controller_release,
2344 .dev_groups = spi_slave_groups,
2346 #else
2347 extern struct class spi_slave_class; /* dummy */
2348 #endif
2351 * __spi_alloc_controller - allocate an SPI master or slave controller
2352 * @dev: the controller, possibly using the platform_bus
2353 * @size: how much zeroed driver-private data to allocate; the pointer to this
2354 * memory is in the driver_data field of the returned device, accessible
2355 * with spi_controller_get_devdata(); the memory is cacheline aligned;
2356 * drivers granting DMA access to portions of their private data need to
2357 * round up @size using ALIGN(size, dma_get_cache_alignment()).
2358 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2359 * slave (true) controller
2360 * Context: can sleep
2362 * This call is used only by SPI controller drivers, which are the
2363 * only ones directly touching chip registers. It's how they allocate
2364 * an spi_controller structure, prior to calling spi_register_controller().
2366 * This must be called from context that can sleep.
2368 * The caller is responsible for assigning the bus number and initializing the
2369 * controller's methods before calling spi_register_controller(); and (after
2370 * errors adding the device) calling spi_controller_put() to prevent a memory
2371 * leak.
2373 * Return: the SPI controller structure on success, else NULL.
2375 struct spi_controller *__spi_alloc_controller(struct device *dev,
2376 unsigned int size, bool slave)
2378 struct spi_controller *ctlr;
2379 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2381 if (!dev)
2382 return NULL;
2384 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2385 if (!ctlr)
2386 return NULL;
2388 device_initialize(&ctlr->dev);
2389 ctlr->bus_num = -1;
2390 ctlr->num_chipselect = 1;
2391 ctlr->slave = slave;
2392 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2393 ctlr->dev.class = &spi_slave_class;
2394 else
2395 ctlr->dev.class = &spi_master_class;
2396 ctlr->dev.parent = dev;
2397 pm_suspend_ignore_children(&ctlr->dev, true);
2398 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2400 return ctlr;
2402 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2404 #ifdef CONFIG_OF
2405 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2407 int nb, i, *cs;
2408 struct device_node *np = ctlr->dev.of_node;
2410 if (!np)
2411 return 0;
2413 nb = of_gpio_named_count(np, "cs-gpios");
2414 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2416 /* Return error only for an incorrectly formed cs-gpios property */
2417 if (nb == 0 || nb == -ENOENT)
2418 return 0;
2419 else if (nb < 0)
2420 return nb;
2422 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2423 GFP_KERNEL);
2424 ctlr->cs_gpios = cs;
2426 if (!ctlr->cs_gpios)
2427 return -ENOMEM;
2429 for (i = 0; i < ctlr->num_chipselect; i++)
2430 cs[i] = -ENOENT;
2432 for (i = 0; i < nb; i++)
2433 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2435 return 0;
2437 #else
2438 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2440 return 0;
2442 #endif
2445 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2446 * @ctlr: The SPI master to grab GPIO descriptors for
2448 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2450 int nb, i;
2451 struct gpio_desc **cs;
2452 struct device *dev = &ctlr->dev;
2453 unsigned long native_cs_mask = 0;
2454 unsigned int num_cs_gpios = 0;
2456 nb = gpiod_count(dev, "cs");
2457 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2459 /* No GPIOs at all is fine, else return the error */
2460 if (nb == 0 || nb == -ENOENT)
2461 return 0;
2462 else if (nb < 0)
2463 return nb;
2465 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2466 GFP_KERNEL);
2467 if (!cs)
2468 return -ENOMEM;
2469 ctlr->cs_gpiods = cs;
2471 for (i = 0; i < nb; i++) {
2473 * Most chipselects are active low, the inverted
2474 * semantics are handled by special quirks in gpiolib,
2475 * so initializing them GPIOD_OUT_LOW here means
2476 * "unasserted", in most cases this will drive the physical
2477 * line high.
2479 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2480 GPIOD_OUT_LOW);
2481 if (IS_ERR(cs[i]))
2482 return PTR_ERR(cs[i]);
2484 if (cs[i]) {
2486 * If we find a CS GPIO, name it after the device and
2487 * chip select line.
2489 char *gpioname;
2491 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2492 dev_name(dev), i);
2493 if (!gpioname)
2494 return -ENOMEM;
2495 gpiod_set_consumer_name(cs[i], gpioname);
2496 num_cs_gpios++;
2497 continue;
2500 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2501 dev_err(dev, "Invalid native chip select %d\n", i);
2502 return -EINVAL;
2504 native_cs_mask |= BIT(i);
2507 ctlr->unused_native_cs = ffz(native_cs_mask);
2508 if (num_cs_gpios && ctlr->max_native_cs &&
2509 ctlr->unused_native_cs >= ctlr->max_native_cs) {
2510 dev_err(dev, "No unused native chip select available\n");
2511 return -EINVAL;
2514 return 0;
2517 static int spi_controller_check_ops(struct spi_controller *ctlr)
2520 * The controller may implement only the high-level SPI-memory like
2521 * operations if it does not support regular SPI transfers, and this is
2522 * valid use case.
2523 * If ->mem_ops is NULL, we request that at least one of the
2524 * ->transfer_xxx() method be implemented.
2526 if (ctlr->mem_ops) {
2527 if (!ctlr->mem_ops->exec_op)
2528 return -EINVAL;
2529 } else if (!ctlr->transfer && !ctlr->transfer_one &&
2530 !ctlr->transfer_one_message) {
2531 return -EINVAL;
2534 return 0;
2538 * spi_register_controller - register SPI master or slave controller
2539 * @ctlr: initialized master, originally from spi_alloc_master() or
2540 * spi_alloc_slave()
2541 * Context: can sleep
2543 * SPI controllers connect to their drivers using some non-SPI bus,
2544 * such as the platform bus. The final stage of probe() in that code
2545 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2547 * SPI controllers use board specific (often SOC specific) bus numbers,
2548 * and board-specific addressing for SPI devices combines those numbers
2549 * with chip select numbers. Since SPI does not directly support dynamic
2550 * device identification, boards need configuration tables telling which
2551 * chip is at which address.
2553 * This must be called from context that can sleep. It returns zero on
2554 * success, else a negative error code (dropping the controller's refcount).
2555 * After a successful return, the caller is responsible for calling
2556 * spi_unregister_controller().
2558 * Return: zero on success, else a negative error code.
2560 int spi_register_controller(struct spi_controller *ctlr)
2562 struct device *dev = ctlr->dev.parent;
2563 struct boardinfo *bi;
2564 int status;
2565 int id, first_dynamic;
2567 if (!dev)
2568 return -ENODEV;
2571 * Make sure all necessary hooks are implemented before registering
2572 * the SPI controller.
2574 status = spi_controller_check_ops(ctlr);
2575 if (status)
2576 return status;
2578 if (ctlr->bus_num >= 0) {
2579 /* devices with a fixed bus num must check-in with the num */
2580 mutex_lock(&board_lock);
2581 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2582 ctlr->bus_num + 1, GFP_KERNEL);
2583 mutex_unlock(&board_lock);
2584 if (WARN(id < 0, "couldn't get idr"))
2585 return id == -ENOSPC ? -EBUSY : id;
2586 ctlr->bus_num = id;
2587 } else if (ctlr->dev.of_node) {
2588 /* allocate dynamic bus number using Linux idr */
2589 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2590 if (id >= 0) {
2591 ctlr->bus_num = id;
2592 mutex_lock(&board_lock);
2593 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2594 ctlr->bus_num + 1, GFP_KERNEL);
2595 mutex_unlock(&board_lock);
2596 if (WARN(id < 0, "couldn't get idr"))
2597 return id == -ENOSPC ? -EBUSY : id;
2600 if (ctlr->bus_num < 0) {
2601 first_dynamic = of_alias_get_highest_id("spi");
2602 if (first_dynamic < 0)
2603 first_dynamic = 0;
2604 else
2605 first_dynamic++;
2607 mutex_lock(&board_lock);
2608 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2609 0, GFP_KERNEL);
2610 mutex_unlock(&board_lock);
2611 if (WARN(id < 0, "couldn't get idr"))
2612 return id;
2613 ctlr->bus_num = id;
2615 INIT_LIST_HEAD(&ctlr->queue);
2616 spin_lock_init(&ctlr->queue_lock);
2617 spin_lock_init(&ctlr->bus_lock_spinlock);
2618 mutex_init(&ctlr->bus_lock_mutex);
2619 mutex_init(&ctlr->io_mutex);
2620 ctlr->bus_lock_flag = 0;
2621 init_completion(&ctlr->xfer_completion);
2622 if (!ctlr->max_dma_len)
2623 ctlr->max_dma_len = INT_MAX;
2625 /* register the device, then userspace will see it.
2626 * registration fails if the bus ID is in use.
2628 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2630 if (!spi_controller_is_slave(ctlr)) {
2631 if (ctlr->use_gpio_descriptors) {
2632 status = spi_get_gpio_descs(ctlr);
2633 if (status)
2634 goto free_bus_id;
2636 * A controller using GPIO descriptors always
2637 * supports SPI_CS_HIGH if need be.
2639 ctlr->mode_bits |= SPI_CS_HIGH;
2640 } else {
2641 /* Legacy code path for GPIOs from DT */
2642 status = of_spi_get_gpio_numbers(ctlr);
2643 if (status)
2644 goto free_bus_id;
2649 * Even if it's just one always-selected device, there must
2650 * be at least one chipselect.
2652 if (!ctlr->num_chipselect) {
2653 status = -EINVAL;
2654 goto free_bus_id;
2657 status = device_add(&ctlr->dev);
2658 if (status < 0)
2659 goto free_bus_id;
2660 dev_dbg(dev, "registered %s %s\n",
2661 spi_controller_is_slave(ctlr) ? "slave" : "master",
2662 dev_name(&ctlr->dev));
2665 * If we're using a queued driver, start the queue. Note that we don't
2666 * need the queueing logic if the driver is only supporting high-level
2667 * memory operations.
2669 if (ctlr->transfer) {
2670 dev_info(dev, "controller is unqueued, this is deprecated\n");
2671 } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2672 status = spi_controller_initialize_queue(ctlr);
2673 if (status) {
2674 device_del(&ctlr->dev);
2675 goto free_bus_id;
2678 /* add statistics */
2679 spin_lock_init(&ctlr->statistics.lock);
2681 mutex_lock(&board_lock);
2682 list_add_tail(&ctlr->list, &spi_controller_list);
2683 list_for_each_entry(bi, &board_list, list)
2684 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2685 mutex_unlock(&board_lock);
2687 /* Register devices from the device tree and ACPI */
2688 of_register_spi_devices(ctlr);
2689 acpi_register_spi_devices(ctlr);
2690 return status;
2692 free_bus_id:
2693 mutex_lock(&board_lock);
2694 idr_remove(&spi_master_idr, ctlr->bus_num);
2695 mutex_unlock(&board_lock);
2696 return status;
2698 EXPORT_SYMBOL_GPL(spi_register_controller);
2700 static void devm_spi_unregister(struct device *dev, void *res)
2702 spi_unregister_controller(*(struct spi_controller **)res);
2706 * devm_spi_register_controller - register managed SPI master or slave
2707 * controller
2708 * @dev: device managing SPI controller
2709 * @ctlr: initialized controller, originally from spi_alloc_master() or
2710 * spi_alloc_slave()
2711 * Context: can sleep
2713 * Register a SPI device as with spi_register_controller() which will
2714 * automatically be unregistered and freed.
2716 * Return: zero on success, else a negative error code.
2718 int devm_spi_register_controller(struct device *dev,
2719 struct spi_controller *ctlr)
2721 struct spi_controller **ptr;
2722 int ret;
2724 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2725 if (!ptr)
2726 return -ENOMEM;
2728 ret = spi_register_controller(ctlr);
2729 if (!ret) {
2730 *ptr = ctlr;
2731 devres_add(dev, ptr);
2732 } else {
2733 devres_free(ptr);
2736 return ret;
2738 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2740 static int __unregister(struct device *dev, void *null)
2742 spi_unregister_device(to_spi_device(dev));
2743 return 0;
2747 * spi_unregister_controller - unregister SPI master or slave controller
2748 * @ctlr: the controller being unregistered
2749 * Context: can sleep
2751 * This call is used only by SPI controller drivers, which are the
2752 * only ones directly touching chip registers.
2754 * This must be called from context that can sleep.
2756 * Note that this function also drops a reference to the controller.
2758 void spi_unregister_controller(struct spi_controller *ctlr)
2760 struct spi_controller *found;
2761 int id = ctlr->bus_num;
2763 /* First make sure that this controller was ever added */
2764 mutex_lock(&board_lock);
2765 found = idr_find(&spi_master_idr, id);
2766 mutex_unlock(&board_lock);
2767 if (ctlr->queued) {
2768 if (spi_destroy_queue(ctlr))
2769 dev_err(&ctlr->dev, "queue remove failed\n");
2771 mutex_lock(&board_lock);
2772 list_del(&ctlr->list);
2773 mutex_unlock(&board_lock);
2775 device_for_each_child(&ctlr->dev, NULL, __unregister);
2776 device_unregister(&ctlr->dev);
2777 /* free bus id */
2778 mutex_lock(&board_lock);
2779 if (found == ctlr)
2780 idr_remove(&spi_master_idr, id);
2781 mutex_unlock(&board_lock);
2783 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2785 int spi_controller_suspend(struct spi_controller *ctlr)
2787 int ret;
2789 /* Basically no-ops for non-queued controllers */
2790 if (!ctlr->queued)
2791 return 0;
2793 ret = spi_stop_queue(ctlr);
2794 if (ret)
2795 dev_err(&ctlr->dev, "queue stop failed\n");
2797 return ret;
2799 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2801 int spi_controller_resume(struct spi_controller *ctlr)
2803 int ret;
2805 if (!ctlr->queued)
2806 return 0;
2808 ret = spi_start_queue(ctlr);
2809 if (ret)
2810 dev_err(&ctlr->dev, "queue restart failed\n");
2812 return ret;
2814 EXPORT_SYMBOL_GPL(spi_controller_resume);
2816 static int __spi_controller_match(struct device *dev, const void *data)
2818 struct spi_controller *ctlr;
2819 const u16 *bus_num = data;
2821 ctlr = container_of(dev, struct spi_controller, dev);
2822 return ctlr->bus_num == *bus_num;
2826 * spi_busnum_to_master - look up master associated with bus_num
2827 * @bus_num: the master's bus number
2828 * Context: can sleep
2830 * This call may be used with devices that are registered after
2831 * arch init time. It returns a refcounted pointer to the relevant
2832 * spi_controller (which the caller must release), or NULL if there is
2833 * no such master registered.
2835 * Return: the SPI master structure on success, else NULL.
2837 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2839 struct device *dev;
2840 struct spi_controller *ctlr = NULL;
2842 dev = class_find_device(&spi_master_class, NULL, &bus_num,
2843 __spi_controller_match);
2844 if (dev)
2845 ctlr = container_of(dev, struct spi_controller, dev);
2846 /* reference got in class_find_device */
2847 return ctlr;
2849 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2851 /*-------------------------------------------------------------------------*/
2853 /* Core methods for SPI resource management */
2856 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2857 * during the processing of a spi_message while using
2858 * spi_transfer_one
2859 * @spi: the spi device for which we allocate memory
2860 * @release: the release code to execute for this resource
2861 * @size: size to alloc and return
2862 * @gfp: GFP allocation flags
2864 * Return: the pointer to the allocated data
2866 * This may get enhanced in the future to allocate from a memory pool
2867 * of the @spi_device or @spi_controller to avoid repeated allocations.
2869 void *spi_res_alloc(struct spi_device *spi,
2870 spi_res_release_t release,
2871 size_t size, gfp_t gfp)
2873 struct spi_res *sres;
2875 sres = kzalloc(sizeof(*sres) + size, gfp);
2876 if (!sres)
2877 return NULL;
2879 INIT_LIST_HEAD(&sres->entry);
2880 sres->release = release;
2882 return sres->data;
2884 EXPORT_SYMBOL_GPL(spi_res_alloc);
2887 * spi_res_free - free an spi resource
2888 * @res: pointer to the custom data of a resource
2891 void spi_res_free(void *res)
2893 struct spi_res *sres = container_of(res, struct spi_res, data);
2895 if (!res)
2896 return;
2898 WARN_ON(!list_empty(&sres->entry));
2899 kfree(sres);
2901 EXPORT_SYMBOL_GPL(spi_res_free);
2904 * spi_res_add - add a spi_res to the spi_message
2905 * @message: the spi message
2906 * @res: the spi_resource
2908 void spi_res_add(struct spi_message *message, void *res)
2910 struct spi_res *sres = container_of(res, struct spi_res, data);
2912 WARN_ON(!list_empty(&sres->entry));
2913 list_add_tail(&sres->entry, &message->resources);
2915 EXPORT_SYMBOL_GPL(spi_res_add);
2918 * spi_res_release - release all spi resources for this message
2919 * @ctlr: the @spi_controller
2920 * @message: the @spi_message
2922 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2924 struct spi_res *res, *tmp;
2926 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
2927 if (res->release)
2928 res->release(ctlr, message, res->data);
2930 list_del(&res->entry);
2932 kfree(res);
2935 EXPORT_SYMBOL_GPL(spi_res_release);
2937 /*-------------------------------------------------------------------------*/
2939 /* Core methods for spi_message alterations */
2941 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2942 struct spi_message *msg,
2943 void *res)
2945 struct spi_replaced_transfers *rxfer = res;
2946 size_t i;
2948 /* call extra callback if requested */
2949 if (rxfer->release)
2950 rxfer->release(ctlr, msg, res);
2952 /* insert replaced transfers back into the message */
2953 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2955 /* remove the formerly inserted entries */
2956 for (i = 0; i < rxfer->inserted; i++)
2957 list_del(&rxfer->inserted_transfers[i].transfer_list);
2961 * spi_replace_transfers - replace transfers with several transfers
2962 * and register change with spi_message.resources
2963 * @msg: the spi_message we work upon
2964 * @xfer_first: the first spi_transfer we want to replace
2965 * @remove: number of transfers to remove
2966 * @insert: the number of transfers we want to insert instead
2967 * @release: extra release code necessary in some circumstances
2968 * @extradatasize: extra data to allocate (with alignment guarantees
2969 * of struct @spi_transfer)
2970 * @gfp: gfp flags
2972 * Returns: pointer to @spi_replaced_transfers,
2973 * PTR_ERR(...) in case of errors.
2975 struct spi_replaced_transfers *spi_replace_transfers(
2976 struct spi_message *msg,
2977 struct spi_transfer *xfer_first,
2978 size_t remove,
2979 size_t insert,
2980 spi_replaced_release_t release,
2981 size_t extradatasize,
2982 gfp_t gfp)
2984 struct spi_replaced_transfers *rxfer;
2985 struct spi_transfer *xfer;
2986 size_t i;
2988 /* allocate the structure using spi_res */
2989 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2990 struct_size(rxfer, inserted_transfers, insert)
2991 + extradatasize,
2992 gfp);
2993 if (!rxfer)
2994 return ERR_PTR(-ENOMEM);
2996 /* the release code to invoke before running the generic release */
2997 rxfer->release = release;
2999 /* assign extradata */
3000 if (extradatasize)
3001 rxfer->extradata =
3002 &rxfer->inserted_transfers[insert];
3004 /* init the replaced_transfers list */
3005 INIT_LIST_HEAD(&rxfer->replaced_transfers);
3007 /* assign the list_entry after which we should reinsert
3008 * the @replaced_transfers - it may be spi_message.messages!
3010 rxfer->replaced_after = xfer_first->transfer_list.prev;
3012 /* remove the requested number of transfers */
3013 for (i = 0; i < remove; i++) {
3014 /* if the entry after replaced_after it is msg->transfers
3015 * then we have been requested to remove more transfers
3016 * than are in the list
3018 if (rxfer->replaced_after->next == &msg->transfers) {
3019 dev_err(&msg->spi->dev,
3020 "requested to remove more spi_transfers than are available\n");
3021 /* insert replaced transfers back into the message */
3022 list_splice(&rxfer->replaced_transfers,
3023 rxfer->replaced_after);
3025 /* free the spi_replace_transfer structure */
3026 spi_res_free(rxfer);
3028 /* and return with an error */
3029 return ERR_PTR(-EINVAL);
3032 /* remove the entry after replaced_after from list of
3033 * transfers and add it to list of replaced_transfers
3035 list_move_tail(rxfer->replaced_after->next,
3036 &rxfer->replaced_transfers);
3039 /* create copy of the given xfer with identical settings
3040 * based on the first transfer to get removed
3042 for (i = 0; i < insert; i++) {
3043 /* we need to run in reverse order */
3044 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3046 /* copy all spi_transfer data */
3047 memcpy(xfer, xfer_first, sizeof(*xfer));
3049 /* add to list */
3050 list_add(&xfer->transfer_list, rxfer->replaced_after);
3052 /* clear cs_change and delay for all but the last */
3053 if (i) {
3054 xfer->cs_change = false;
3055 xfer->delay_usecs = 0;
3056 xfer->delay.value = 0;
3060 /* set up inserted */
3061 rxfer->inserted = insert;
3063 /* and register it with spi_res/spi_message */
3064 spi_res_add(msg, rxfer);
3066 return rxfer;
3068 EXPORT_SYMBOL_GPL(spi_replace_transfers);
3070 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3071 struct spi_message *msg,
3072 struct spi_transfer **xferp,
3073 size_t maxsize,
3074 gfp_t gfp)
3076 struct spi_transfer *xfer = *xferp, *xfers;
3077 struct spi_replaced_transfers *srt;
3078 size_t offset;
3079 size_t count, i;
3081 /* calculate how many we have to replace */
3082 count = DIV_ROUND_UP(xfer->len, maxsize);
3084 /* create replacement */
3085 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3086 if (IS_ERR(srt))
3087 return PTR_ERR(srt);
3088 xfers = srt->inserted_transfers;
3090 /* now handle each of those newly inserted spi_transfers
3091 * note that the replacements spi_transfers all are preset
3092 * to the same values as *xferp, so tx_buf, rx_buf and len
3093 * are all identical (as well as most others)
3094 * so we just have to fix up len and the pointers.
3096 * this also includes support for the depreciated
3097 * spi_message.is_dma_mapped interface
3100 /* the first transfer just needs the length modified, so we
3101 * run it outside the loop
3103 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3105 /* all the others need rx_buf/tx_buf also set */
3106 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3107 /* update rx_buf, tx_buf and dma */
3108 if (xfers[i].rx_buf)
3109 xfers[i].rx_buf += offset;
3110 if (xfers[i].rx_dma)
3111 xfers[i].rx_dma += offset;
3112 if (xfers[i].tx_buf)
3113 xfers[i].tx_buf += offset;
3114 if (xfers[i].tx_dma)
3115 xfers[i].tx_dma += offset;
3117 /* update length */
3118 xfers[i].len = min(maxsize, xfers[i].len - offset);
3121 /* we set up xferp to the last entry we have inserted,
3122 * so that we skip those already split transfers
3124 *xferp = &xfers[count - 1];
3126 /* increment statistics counters */
3127 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3128 transfers_split_maxsize);
3129 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3130 transfers_split_maxsize);
3132 return 0;
3136 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
3137 * when an individual transfer exceeds a
3138 * certain size
3139 * @ctlr: the @spi_controller for this transfer
3140 * @msg: the @spi_message to transform
3141 * @maxsize: the maximum when to apply this
3142 * @gfp: GFP allocation flags
3144 * Return: status of transformation
3146 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3147 struct spi_message *msg,
3148 size_t maxsize,
3149 gfp_t gfp)
3151 struct spi_transfer *xfer;
3152 int ret;
3154 /* iterate over the transfer_list,
3155 * but note that xfer is advanced to the last transfer inserted
3156 * to avoid checking sizes again unnecessarily (also xfer does
3157 * potentiall belong to a different list by the time the
3158 * replacement has happened
3160 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3161 if (xfer->len > maxsize) {
3162 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3163 maxsize, gfp);
3164 if (ret)
3165 return ret;
3169 return 0;
3171 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3173 /*-------------------------------------------------------------------------*/
3175 /* Core methods for SPI controller protocol drivers. Some of the
3176 * other core methods are currently defined as inline functions.
3179 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3180 u8 bits_per_word)
3182 if (ctlr->bits_per_word_mask) {
3183 /* Only 32 bits fit in the mask */
3184 if (bits_per_word > 32)
3185 return -EINVAL;
3186 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3187 return -EINVAL;
3190 return 0;
3194 * spi_setup - setup SPI mode and clock rate
3195 * @spi: the device whose settings are being modified
3196 * Context: can sleep, and no requests are queued to the device
3198 * SPI protocol drivers may need to update the transfer mode if the
3199 * device doesn't work with its default. They may likewise need
3200 * to update clock rates or word sizes from initial values. This function
3201 * changes those settings, and must be called from a context that can sleep.
3202 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3203 * effect the next time the device is selected and data is transferred to
3204 * or from it. When this function returns, the spi device is deselected.
3206 * Note that this call will fail if the protocol driver specifies an option
3207 * that the underlying controller or its driver does not support. For
3208 * example, not all hardware supports wire transfers using nine bit words,
3209 * LSB-first wire encoding, or active-high chipselects.
3211 * Return: zero on success, else a negative error code.
3213 int spi_setup(struct spi_device *spi)
3215 unsigned bad_bits, ugly_bits;
3216 int status;
3218 /* check mode to prevent that DUAL and QUAD set at the same time
3220 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
3221 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
3222 dev_err(&spi->dev,
3223 "setup: can not select dual and quad at the same time\n");
3224 return -EINVAL;
3226 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3228 if ((spi->mode & SPI_3WIRE) && (spi->mode &
3229 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3230 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3231 return -EINVAL;
3232 /* help drivers fail *cleanly* when they need options
3233 * that aren't supported with their current controller
3234 * SPI_CS_WORD has a fallback software implementation,
3235 * so it is ignored here.
3237 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
3238 /* nothing prevents from working with active-high CS in case if it
3239 * is driven by GPIO.
3241 if (gpio_is_valid(spi->cs_gpio))
3242 bad_bits &= ~SPI_CS_HIGH;
3243 ugly_bits = bad_bits &
3244 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3245 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3246 if (ugly_bits) {
3247 dev_warn(&spi->dev,
3248 "setup: ignoring unsupported mode bits %x\n",
3249 ugly_bits);
3250 spi->mode &= ~ugly_bits;
3251 bad_bits &= ~ugly_bits;
3253 if (bad_bits) {
3254 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3255 bad_bits);
3256 return -EINVAL;
3259 if (!spi->bits_per_word)
3260 spi->bits_per_word = 8;
3262 status = __spi_validate_bits_per_word(spi->controller,
3263 spi->bits_per_word);
3264 if (status)
3265 return status;
3267 if (!spi->max_speed_hz)
3268 spi->max_speed_hz = spi->controller->max_speed_hz;
3270 if (spi->controller->setup)
3271 status = spi->controller->setup(spi);
3273 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3274 status = pm_runtime_get_sync(spi->controller->dev.parent);
3275 if (status < 0) {
3276 pm_runtime_put_noidle(spi->controller->dev.parent);
3277 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3278 status);
3279 return status;
3283 * We do not want to return positive value from pm_runtime_get,
3284 * there are many instances of devices calling spi_setup() and
3285 * checking for a non-zero return value instead of a negative
3286 * return value.
3288 status = 0;
3290 spi_set_cs(spi, false);
3291 pm_runtime_mark_last_busy(spi->controller->dev.parent);
3292 pm_runtime_put_autosuspend(spi->controller->dev.parent);
3293 } else {
3294 spi_set_cs(spi, false);
3297 if (spi->rt && !spi->controller->rt) {
3298 spi->controller->rt = true;
3299 spi_set_thread_rt(spi->controller);
3302 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3303 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
3304 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3305 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3306 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3307 (spi->mode & SPI_LOOP) ? "loopback, " : "",
3308 spi->bits_per_word, spi->max_speed_hz,
3309 status);
3311 return status;
3313 EXPORT_SYMBOL_GPL(spi_setup);
3316 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3317 * @spi: the device that requires specific CS timing configuration
3318 * @setup: CS setup time specified via @spi_delay
3319 * @hold: CS hold time specified via @spi_delay
3320 * @inactive: CS inactive delay between transfers specified via @spi_delay
3322 * Return: zero on success, else a negative error code.
3324 int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup,
3325 struct spi_delay *hold, struct spi_delay *inactive)
3327 size_t len;
3329 if (spi->controller->set_cs_timing)
3330 return spi->controller->set_cs_timing(spi, setup, hold,
3331 inactive);
3333 if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) ||
3334 (hold && hold->unit == SPI_DELAY_UNIT_SCK) ||
3335 (inactive && inactive->unit == SPI_DELAY_UNIT_SCK)) {
3336 dev_err(&spi->dev,
3337 "Clock-cycle delays for CS not supported in SW mode\n");
3338 return -ENOTSUPP;
3341 len = sizeof(struct spi_delay);
3343 /* copy delays to controller */
3344 if (setup)
3345 memcpy(&spi->controller->cs_setup, setup, len);
3346 else
3347 memset(&spi->controller->cs_setup, 0, len);
3349 if (hold)
3350 memcpy(&spi->controller->cs_hold, hold, len);
3351 else
3352 memset(&spi->controller->cs_hold, 0, len);
3354 if (inactive)
3355 memcpy(&spi->controller->cs_inactive, inactive, len);
3356 else
3357 memset(&spi->controller->cs_inactive, 0, len);
3359 return 0;
3361 EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3363 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3364 struct spi_device *spi)
3366 int delay1, delay2;
3368 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3369 if (delay1 < 0)
3370 return delay1;
3372 delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3373 if (delay2 < 0)
3374 return delay2;
3376 if (delay1 < delay2)
3377 memcpy(&xfer->word_delay, &spi->word_delay,
3378 sizeof(xfer->word_delay));
3380 return 0;
3383 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3385 struct spi_controller *ctlr = spi->controller;
3386 struct spi_transfer *xfer;
3387 int w_size;
3389 if (list_empty(&message->transfers))
3390 return -EINVAL;
3392 /* If an SPI controller does not support toggling the CS line on each
3393 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3394 * for the CS line, we can emulate the CS-per-word hardware function by
3395 * splitting transfers into one-word transfers and ensuring that
3396 * cs_change is set for each transfer.
3398 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3399 spi->cs_gpiod ||
3400 gpio_is_valid(spi->cs_gpio))) {
3401 size_t maxsize;
3402 int ret;
3404 maxsize = (spi->bits_per_word + 7) / 8;
3406 /* spi_split_transfers_maxsize() requires message->spi */
3407 message->spi = spi;
3409 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3410 GFP_KERNEL);
3411 if (ret)
3412 return ret;
3414 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3415 /* don't change cs_change on the last entry in the list */
3416 if (list_is_last(&xfer->transfer_list, &message->transfers))
3417 break;
3418 xfer->cs_change = 1;
3422 /* Half-duplex links include original MicroWire, and ones with
3423 * only one data pin like SPI_3WIRE (switches direction) or where
3424 * either MOSI or MISO is missing. They can also be caused by
3425 * software limitations.
3427 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3428 (spi->mode & SPI_3WIRE)) {
3429 unsigned flags = ctlr->flags;
3431 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3432 if (xfer->rx_buf && xfer->tx_buf)
3433 return -EINVAL;
3434 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3435 return -EINVAL;
3436 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3437 return -EINVAL;
3442 * Set transfer bits_per_word and max speed as spi device default if
3443 * it is not set for this transfer.
3444 * Set transfer tx_nbits and rx_nbits as single transfer default
3445 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3446 * Ensure transfer word_delay is at least as long as that required by
3447 * device itself.
3449 message->frame_length = 0;
3450 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3451 xfer->effective_speed_hz = 0;
3452 message->frame_length += xfer->len;
3453 if (!xfer->bits_per_word)
3454 xfer->bits_per_word = spi->bits_per_word;
3456 if (!xfer->speed_hz)
3457 xfer->speed_hz = spi->max_speed_hz;
3459 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3460 xfer->speed_hz = ctlr->max_speed_hz;
3462 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3463 return -EINVAL;
3466 * SPI transfer length should be multiple of SPI word size
3467 * where SPI word size should be power-of-two multiple
3469 if (xfer->bits_per_word <= 8)
3470 w_size = 1;
3471 else if (xfer->bits_per_word <= 16)
3472 w_size = 2;
3473 else
3474 w_size = 4;
3476 /* No partial transfers accepted */
3477 if (xfer->len % w_size)
3478 return -EINVAL;
3480 if (xfer->speed_hz && ctlr->min_speed_hz &&
3481 xfer->speed_hz < ctlr->min_speed_hz)
3482 return -EINVAL;
3484 if (xfer->tx_buf && !xfer->tx_nbits)
3485 xfer->tx_nbits = SPI_NBITS_SINGLE;
3486 if (xfer->rx_buf && !xfer->rx_nbits)
3487 xfer->rx_nbits = SPI_NBITS_SINGLE;
3488 /* check transfer tx/rx_nbits:
3489 * 1. check the value matches one of single, dual and quad
3490 * 2. check tx/rx_nbits match the mode in spi_device
3492 if (xfer->tx_buf) {
3493 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3494 xfer->tx_nbits != SPI_NBITS_DUAL &&
3495 xfer->tx_nbits != SPI_NBITS_QUAD)
3496 return -EINVAL;
3497 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3498 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3499 return -EINVAL;
3500 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3501 !(spi->mode & SPI_TX_QUAD))
3502 return -EINVAL;
3504 /* check transfer rx_nbits */
3505 if (xfer->rx_buf) {
3506 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3507 xfer->rx_nbits != SPI_NBITS_DUAL &&
3508 xfer->rx_nbits != SPI_NBITS_QUAD)
3509 return -EINVAL;
3510 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3511 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3512 return -EINVAL;
3513 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3514 !(spi->mode & SPI_RX_QUAD))
3515 return -EINVAL;
3518 if (_spi_xfer_word_delay_update(xfer, spi))
3519 return -EINVAL;
3522 message->status = -EINPROGRESS;
3524 return 0;
3527 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3529 struct spi_controller *ctlr = spi->controller;
3530 struct spi_transfer *xfer;
3533 * Some controllers do not support doing regular SPI transfers. Return
3534 * ENOTSUPP when this is the case.
3536 if (!ctlr->transfer)
3537 return -ENOTSUPP;
3539 message->spi = spi;
3541 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3542 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3544 trace_spi_message_submit(message);
3546 if (!ctlr->ptp_sts_supported) {
3547 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3548 xfer->ptp_sts_word_pre = 0;
3549 ptp_read_system_prets(xfer->ptp_sts);
3553 return ctlr->transfer(spi, message);
3557 * spi_async - asynchronous SPI transfer
3558 * @spi: device with which data will be exchanged
3559 * @message: describes the data transfers, including completion callback
3560 * Context: any (irqs may be blocked, etc)
3562 * This call may be used in_irq and other contexts which can't sleep,
3563 * as well as from task contexts which can sleep.
3565 * The completion callback is invoked in a context which can't sleep.
3566 * Before that invocation, the value of message->status is undefined.
3567 * When the callback is issued, message->status holds either zero (to
3568 * indicate complete success) or a negative error code. After that
3569 * callback returns, the driver which issued the transfer request may
3570 * deallocate the associated memory; it's no longer in use by any SPI
3571 * core or controller driver code.
3573 * Note that although all messages to a spi_device are handled in
3574 * FIFO order, messages may go to different devices in other orders.
3575 * Some device might be higher priority, or have various "hard" access
3576 * time requirements, for example.
3578 * On detection of any fault during the transfer, processing of
3579 * the entire message is aborted, and the device is deselected.
3580 * Until returning from the associated message completion callback,
3581 * no other spi_message queued to that device will be processed.
3582 * (This rule applies equally to all the synchronous transfer calls,
3583 * which are wrappers around this core asynchronous primitive.)
3585 * Return: zero on success, else a negative error code.
3587 int spi_async(struct spi_device *spi, struct spi_message *message)
3589 struct spi_controller *ctlr = spi->controller;
3590 int ret;
3591 unsigned long flags;
3593 ret = __spi_validate(spi, message);
3594 if (ret != 0)
3595 return ret;
3597 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3599 if (ctlr->bus_lock_flag)
3600 ret = -EBUSY;
3601 else
3602 ret = __spi_async(spi, message);
3604 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3606 return ret;
3608 EXPORT_SYMBOL_GPL(spi_async);
3611 * spi_async_locked - version of spi_async with exclusive bus usage
3612 * @spi: device with which data will be exchanged
3613 * @message: describes the data transfers, including completion callback
3614 * Context: any (irqs may be blocked, etc)
3616 * This call may be used in_irq and other contexts which can't sleep,
3617 * as well as from task contexts which can sleep.
3619 * The completion callback is invoked in a context which can't sleep.
3620 * Before that invocation, the value of message->status is undefined.
3621 * When the callback is issued, message->status holds either zero (to
3622 * indicate complete success) or a negative error code. After that
3623 * callback returns, the driver which issued the transfer request may
3624 * deallocate the associated memory; it's no longer in use by any SPI
3625 * core or controller driver code.
3627 * Note that although all messages to a spi_device are handled in
3628 * FIFO order, messages may go to different devices in other orders.
3629 * Some device might be higher priority, or have various "hard" access
3630 * time requirements, for example.
3632 * On detection of any fault during the transfer, processing of
3633 * the entire message is aborted, and the device is deselected.
3634 * Until returning from the associated message completion callback,
3635 * no other spi_message queued to that device will be processed.
3636 * (This rule applies equally to all the synchronous transfer calls,
3637 * which are wrappers around this core asynchronous primitive.)
3639 * Return: zero on success, else a negative error code.
3641 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3643 struct spi_controller *ctlr = spi->controller;
3644 int ret;
3645 unsigned long flags;
3647 ret = __spi_validate(spi, message);
3648 if (ret != 0)
3649 return ret;
3651 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3653 ret = __spi_async(spi, message);
3655 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3657 return ret;
3660 EXPORT_SYMBOL_GPL(spi_async_locked);
3662 /*-------------------------------------------------------------------------*/
3664 /* Utility methods for SPI protocol drivers, layered on
3665 * top of the core. Some other utility methods are defined as
3666 * inline functions.
3669 static void spi_complete(void *arg)
3671 complete(arg);
3674 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3676 DECLARE_COMPLETION_ONSTACK(done);
3677 int status;
3678 struct spi_controller *ctlr = spi->controller;
3679 unsigned long flags;
3681 status = __spi_validate(spi, message);
3682 if (status != 0)
3683 return status;
3685 message->complete = spi_complete;
3686 message->context = &done;
3687 message->spi = spi;
3689 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3690 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3692 /* If we're not using the legacy transfer method then we will
3693 * try to transfer in the calling context so special case.
3694 * This code would be less tricky if we could remove the
3695 * support for driver implemented message queues.
3697 if (ctlr->transfer == spi_queued_transfer) {
3698 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3700 trace_spi_message_submit(message);
3702 status = __spi_queued_transfer(spi, message, false);
3704 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3705 } else {
3706 status = spi_async_locked(spi, message);
3709 if (status == 0) {
3710 /* Push out the messages in the calling context if we
3711 * can.
3713 if (ctlr->transfer == spi_queued_transfer) {
3714 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3715 spi_sync_immediate);
3716 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3717 spi_sync_immediate);
3718 __spi_pump_messages(ctlr, false);
3721 wait_for_completion(&done);
3722 status = message->status;
3724 message->context = NULL;
3725 return status;
3729 * spi_sync - blocking/synchronous SPI data transfers
3730 * @spi: device with which data will be exchanged
3731 * @message: describes the data transfers
3732 * Context: can sleep
3734 * This call may only be used from a context that may sleep. The sleep
3735 * is non-interruptible, and has no timeout. Low-overhead controller
3736 * drivers may DMA directly into and out of the message buffers.
3738 * Note that the SPI device's chip select is active during the message,
3739 * and then is normally disabled between messages. Drivers for some
3740 * frequently-used devices may want to minimize costs of selecting a chip,
3741 * by leaving it selected in anticipation that the next message will go
3742 * to the same chip. (That may increase power usage.)
3744 * Also, the caller is guaranteeing that the memory associated with the
3745 * message will not be freed before this call returns.
3747 * Return: zero on success, else a negative error code.
3749 int spi_sync(struct spi_device *spi, struct spi_message *message)
3751 int ret;
3753 mutex_lock(&spi->controller->bus_lock_mutex);
3754 ret = __spi_sync(spi, message);
3755 mutex_unlock(&spi->controller->bus_lock_mutex);
3757 return ret;
3759 EXPORT_SYMBOL_GPL(spi_sync);
3762 * spi_sync_locked - version of spi_sync with exclusive bus usage
3763 * @spi: device with which data will be exchanged
3764 * @message: describes the data transfers
3765 * Context: can sleep
3767 * This call may only be used from a context that may sleep. The sleep
3768 * is non-interruptible, and has no timeout. Low-overhead controller
3769 * drivers may DMA directly into and out of the message buffers.
3771 * This call should be used by drivers that require exclusive access to the
3772 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3773 * be released by a spi_bus_unlock call when the exclusive access is over.
3775 * Return: zero on success, else a negative error code.
3777 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3779 return __spi_sync(spi, message);
3781 EXPORT_SYMBOL_GPL(spi_sync_locked);
3784 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3785 * @ctlr: SPI bus master that should be locked for exclusive bus access
3786 * Context: can sleep
3788 * This call may only be used from a context that may sleep. The sleep
3789 * is non-interruptible, and has no timeout.
3791 * This call should be used by drivers that require exclusive access to the
3792 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3793 * exclusive access is over. Data transfer must be done by spi_sync_locked
3794 * and spi_async_locked calls when the SPI bus lock is held.
3796 * Return: always zero.
3798 int spi_bus_lock(struct spi_controller *ctlr)
3800 unsigned long flags;
3802 mutex_lock(&ctlr->bus_lock_mutex);
3804 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3805 ctlr->bus_lock_flag = 1;
3806 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3808 /* mutex remains locked until spi_bus_unlock is called */
3810 return 0;
3812 EXPORT_SYMBOL_GPL(spi_bus_lock);
3815 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3816 * @ctlr: SPI bus master that was locked for exclusive bus access
3817 * Context: can sleep
3819 * This call may only be used from a context that may sleep. The sleep
3820 * is non-interruptible, and has no timeout.
3822 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3823 * call.
3825 * Return: always zero.
3827 int spi_bus_unlock(struct spi_controller *ctlr)
3829 ctlr->bus_lock_flag = 0;
3831 mutex_unlock(&ctlr->bus_lock_mutex);
3833 return 0;
3835 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3837 /* portable code must never pass more than 32 bytes */
3838 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
3840 static u8 *buf;
3843 * spi_write_then_read - SPI synchronous write followed by read
3844 * @spi: device with which data will be exchanged
3845 * @txbuf: data to be written (need not be dma-safe)
3846 * @n_tx: size of txbuf, in bytes
3847 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3848 * @n_rx: size of rxbuf, in bytes
3849 * Context: can sleep
3851 * This performs a half duplex MicroWire style transaction with the
3852 * device, sending txbuf and then reading rxbuf. The return value
3853 * is zero for success, else a negative errno status code.
3854 * This call may only be used from a context that may sleep.
3856 * Parameters to this routine are always copied using a small buffer;
3857 * portable code should never use this for more than 32 bytes.
3858 * Performance-sensitive or bulk transfer code should instead use
3859 * spi_{async,sync}() calls with dma-safe buffers.
3861 * Return: zero on success, else a negative error code.
3863 int spi_write_then_read(struct spi_device *spi,
3864 const void *txbuf, unsigned n_tx,
3865 void *rxbuf, unsigned n_rx)
3867 static DEFINE_MUTEX(lock);
3869 int status;
3870 struct spi_message message;
3871 struct spi_transfer x[2];
3872 u8 *local_buf;
3874 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3875 * copying here, (as a pure convenience thing), but we can
3876 * keep heap costs out of the hot path unless someone else is
3877 * using the pre-allocated buffer or the transfer is too large.
3879 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3880 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3881 GFP_KERNEL | GFP_DMA);
3882 if (!local_buf)
3883 return -ENOMEM;
3884 } else {
3885 local_buf = buf;
3888 spi_message_init(&message);
3889 memset(x, 0, sizeof(x));
3890 if (n_tx) {
3891 x[0].len = n_tx;
3892 spi_message_add_tail(&x[0], &message);
3894 if (n_rx) {
3895 x[1].len = n_rx;
3896 spi_message_add_tail(&x[1], &message);
3899 memcpy(local_buf, txbuf, n_tx);
3900 x[0].tx_buf = local_buf;
3901 x[1].rx_buf = local_buf + n_tx;
3903 /* do the i/o */
3904 status = spi_sync(spi, &message);
3905 if (status == 0)
3906 memcpy(rxbuf, x[1].rx_buf, n_rx);
3908 if (x[0].tx_buf == buf)
3909 mutex_unlock(&lock);
3910 else
3911 kfree(local_buf);
3913 return status;
3915 EXPORT_SYMBOL_GPL(spi_write_then_read);
3917 /*-------------------------------------------------------------------------*/
3919 #if IS_ENABLED(CONFIG_OF)
3920 /* must call put_device() when done with returned spi_device device */
3921 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3923 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
3925 return dev ? to_spi_device(dev) : NULL;
3927 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
3928 #endif /* IS_ENABLED(CONFIG_OF) */
3930 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3931 /* the spi controllers are not using spi_bus, so we find it with another way */
3932 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3934 struct device *dev;
3936 dev = class_find_device_by_of_node(&spi_master_class, node);
3937 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3938 dev = class_find_device_by_of_node(&spi_slave_class, node);
3939 if (!dev)
3940 return NULL;
3942 /* reference got in class_find_device */
3943 return container_of(dev, struct spi_controller, dev);
3946 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3947 void *arg)
3949 struct of_reconfig_data *rd = arg;
3950 struct spi_controller *ctlr;
3951 struct spi_device *spi;
3953 switch (of_reconfig_get_state_change(action, arg)) {
3954 case OF_RECONFIG_CHANGE_ADD:
3955 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3956 if (ctlr == NULL)
3957 return NOTIFY_OK; /* not for us */
3959 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3960 put_device(&ctlr->dev);
3961 return NOTIFY_OK;
3964 spi = of_register_spi_device(ctlr, rd->dn);
3965 put_device(&ctlr->dev);
3967 if (IS_ERR(spi)) {
3968 pr_err("%s: failed to create for '%pOF'\n",
3969 __func__, rd->dn);
3970 of_node_clear_flag(rd->dn, OF_POPULATED);
3971 return notifier_from_errno(PTR_ERR(spi));
3973 break;
3975 case OF_RECONFIG_CHANGE_REMOVE:
3976 /* already depopulated? */
3977 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3978 return NOTIFY_OK;
3980 /* find our device by node */
3981 spi = of_find_spi_device_by_node(rd->dn);
3982 if (spi == NULL)
3983 return NOTIFY_OK; /* no? not meant for us */
3985 /* unregister takes one ref away */
3986 spi_unregister_device(spi);
3988 /* and put the reference of the find */
3989 put_device(&spi->dev);
3990 break;
3993 return NOTIFY_OK;
3996 static struct notifier_block spi_of_notifier = {
3997 .notifier_call = of_spi_notify,
3999 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4000 extern struct notifier_block spi_of_notifier;
4001 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4003 #if IS_ENABLED(CONFIG_ACPI)
4004 static int spi_acpi_controller_match(struct device *dev, const void *data)
4006 return ACPI_COMPANION(dev->parent) == data;
4009 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4011 struct device *dev;
4013 dev = class_find_device(&spi_master_class, NULL, adev,
4014 spi_acpi_controller_match);
4015 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4016 dev = class_find_device(&spi_slave_class, NULL, adev,
4017 spi_acpi_controller_match);
4018 if (!dev)
4019 return NULL;
4021 return container_of(dev, struct spi_controller, dev);
4024 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4026 struct device *dev;
4028 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4029 return to_spi_device(dev);
4032 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4033 void *arg)
4035 struct acpi_device *adev = arg;
4036 struct spi_controller *ctlr;
4037 struct spi_device *spi;
4039 switch (value) {
4040 case ACPI_RECONFIG_DEVICE_ADD:
4041 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4042 if (!ctlr)
4043 break;
4045 acpi_register_spi_device(ctlr, adev);
4046 put_device(&ctlr->dev);
4047 break;
4048 case ACPI_RECONFIG_DEVICE_REMOVE:
4049 if (!acpi_device_enumerated(adev))
4050 break;
4052 spi = acpi_spi_find_device_by_adev(adev);
4053 if (!spi)
4054 break;
4056 spi_unregister_device(spi);
4057 put_device(&spi->dev);
4058 break;
4061 return NOTIFY_OK;
4064 static struct notifier_block spi_acpi_notifier = {
4065 .notifier_call = acpi_spi_notify,
4067 #else
4068 extern struct notifier_block spi_acpi_notifier;
4069 #endif
4071 static int __init spi_init(void)
4073 int status;
4075 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4076 if (!buf) {
4077 status = -ENOMEM;
4078 goto err0;
4081 status = bus_register(&spi_bus_type);
4082 if (status < 0)
4083 goto err1;
4085 status = class_register(&spi_master_class);
4086 if (status < 0)
4087 goto err2;
4089 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4090 status = class_register(&spi_slave_class);
4091 if (status < 0)
4092 goto err3;
4095 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4096 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4097 if (IS_ENABLED(CONFIG_ACPI))
4098 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4100 return 0;
4102 err3:
4103 class_unregister(&spi_master_class);
4104 err2:
4105 bus_unregister(&spi_bus_type);
4106 err1:
4107 kfree(buf);
4108 buf = NULL;
4109 err0:
4110 return status;
4113 /* board_info is normally registered in arch_initcall(),
4114 * but even essential drivers wait till later
4116 * REVISIT only boardinfo really needs static linking. the rest (device and
4117 * driver registration) _could_ be dynamically linked (modular) ... costs
4118 * include needing to have boardinfo data structures be much more public.
4120 postcore_initcall(spi_init);