1 // SPDX-License-Identifier: GPL-2.0-or-later
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start
);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop
);
42 #include "internals.h"
44 static DEFINE_IDR(spi_master_idr
);
46 static void spidev_release(struct device
*dev
)
48 struct spi_device
*spi
= to_spi_device(dev
);
50 /* spi controllers may cleanup for released devices */
51 if (spi
->controller
->cleanup
)
52 spi
->controller
->cleanup(spi
);
54 spi_controller_put(spi
->controller
);
55 kfree(spi
->driver_override
);
60 modalias_show(struct device
*dev
, struct device_attribute
*a
, char *buf
)
62 const struct spi_device
*spi
= to_spi_device(dev
);
65 len
= acpi_device_modalias(dev
, buf
, PAGE_SIZE
- 1);
69 return sprintf(buf
, "%s%s\n", SPI_MODULE_PREFIX
, spi
->modalias
);
71 static DEVICE_ATTR_RO(modalias
);
73 static ssize_t
driver_override_store(struct device
*dev
,
74 struct device_attribute
*a
,
75 const char *buf
, size_t count
)
77 struct spi_device
*spi
= to_spi_device(dev
);
78 const char *end
= memchr(buf
, '\n', count
);
79 const size_t len
= end
? end
- buf
: count
;
80 const char *driver_override
, *old
;
82 /* We need to keep extra room for a newline when displaying value */
83 if (len
>= (PAGE_SIZE
- 1))
86 driver_override
= kstrndup(buf
, len
, GFP_KERNEL
);
91 old
= spi
->driver_override
;
93 spi
->driver_override
= driver_override
;
95 /* Empty string, disable driver override */
96 spi
->driver_override
= NULL
;
97 kfree(driver_override
);
105 static ssize_t
driver_override_show(struct device
*dev
,
106 struct device_attribute
*a
, char *buf
)
108 const struct spi_device
*spi
= to_spi_device(dev
);
112 len
= snprintf(buf
, PAGE_SIZE
, "%s\n", spi
->driver_override
? : "");
116 static DEVICE_ATTR_RW(driver_override
);
118 #define SPI_STATISTICS_ATTRS(field, file) \
119 static ssize_t spi_controller_##field##_show(struct device *dev, \
120 struct device_attribute *attr, \
123 struct spi_controller *ctlr = container_of(dev, \
124 struct spi_controller, dev); \
125 return spi_statistics_##field##_show(&ctlr->statistics, buf); \
127 static struct device_attribute dev_attr_spi_controller_##field = { \
128 .attr = { .name = file, .mode = 0444 }, \
129 .show = spi_controller_##field##_show, \
131 static ssize_t spi_device_##field##_show(struct device *dev, \
132 struct device_attribute *attr, \
135 struct spi_device *spi = to_spi_device(dev); \
136 return spi_statistics_##field##_show(&spi->statistics, buf); \
138 static struct device_attribute dev_attr_spi_device_##field = { \
139 .attr = { .name = file, .mode = 0444 }, \
140 .show = spi_device_##field##_show, \
143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
147 unsigned long flags; \
149 spin_lock_irqsave(&stat->lock, flags); \
150 len = sprintf(buf, format_string, stat->field); \
151 spin_unlock_irqrestore(&stat->lock, flags); \
154 SPI_STATISTICS_ATTRS(name, file)
156 #define SPI_STATISTICS_SHOW(field, format_string) \
157 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
158 field, format_string)
160 SPI_STATISTICS_SHOW(messages
, "%lu");
161 SPI_STATISTICS_SHOW(transfers
, "%lu");
162 SPI_STATISTICS_SHOW(errors
, "%lu");
163 SPI_STATISTICS_SHOW(timedout
, "%lu");
165 SPI_STATISTICS_SHOW(spi_sync
, "%lu");
166 SPI_STATISTICS_SHOW(spi_sync_immediate
, "%lu");
167 SPI_STATISTICS_SHOW(spi_async
, "%lu");
169 SPI_STATISTICS_SHOW(bytes
, "%llu");
170 SPI_STATISTICS_SHOW(bytes_rx
, "%llu");
171 SPI_STATISTICS_SHOW(bytes_tx
, "%llu");
173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
174 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
175 "transfer_bytes_histo_" number, \
176 transfer_bytes_histo[index], "%lu")
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
195 SPI_STATISTICS_SHOW(transfers_split_maxsize
, "%lu");
197 static struct attribute
*spi_dev_attrs
[] = {
198 &dev_attr_modalias
.attr
,
199 &dev_attr_driver_override
.attr
,
203 static const struct attribute_group spi_dev_group
= {
204 .attrs
= spi_dev_attrs
,
207 static struct attribute
*spi_device_statistics_attrs
[] = {
208 &dev_attr_spi_device_messages
.attr
,
209 &dev_attr_spi_device_transfers
.attr
,
210 &dev_attr_spi_device_errors
.attr
,
211 &dev_attr_spi_device_timedout
.attr
,
212 &dev_attr_spi_device_spi_sync
.attr
,
213 &dev_attr_spi_device_spi_sync_immediate
.attr
,
214 &dev_attr_spi_device_spi_async
.attr
,
215 &dev_attr_spi_device_bytes
.attr
,
216 &dev_attr_spi_device_bytes_rx
.attr
,
217 &dev_attr_spi_device_bytes_tx
.attr
,
218 &dev_attr_spi_device_transfer_bytes_histo0
.attr
,
219 &dev_attr_spi_device_transfer_bytes_histo1
.attr
,
220 &dev_attr_spi_device_transfer_bytes_histo2
.attr
,
221 &dev_attr_spi_device_transfer_bytes_histo3
.attr
,
222 &dev_attr_spi_device_transfer_bytes_histo4
.attr
,
223 &dev_attr_spi_device_transfer_bytes_histo5
.attr
,
224 &dev_attr_spi_device_transfer_bytes_histo6
.attr
,
225 &dev_attr_spi_device_transfer_bytes_histo7
.attr
,
226 &dev_attr_spi_device_transfer_bytes_histo8
.attr
,
227 &dev_attr_spi_device_transfer_bytes_histo9
.attr
,
228 &dev_attr_spi_device_transfer_bytes_histo10
.attr
,
229 &dev_attr_spi_device_transfer_bytes_histo11
.attr
,
230 &dev_attr_spi_device_transfer_bytes_histo12
.attr
,
231 &dev_attr_spi_device_transfer_bytes_histo13
.attr
,
232 &dev_attr_spi_device_transfer_bytes_histo14
.attr
,
233 &dev_attr_spi_device_transfer_bytes_histo15
.attr
,
234 &dev_attr_spi_device_transfer_bytes_histo16
.attr
,
235 &dev_attr_spi_device_transfers_split_maxsize
.attr
,
239 static const struct attribute_group spi_device_statistics_group
= {
240 .name
= "statistics",
241 .attrs
= spi_device_statistics_attrs
,
244 static const struct attribute_group
*spi_dev_groups
[] = {
246 &spi_device_statistics_group
,
250 static struct attribute
*spi_controller_statistics_attrs
[] = {
251 &dev_attr_spi_controller_messages
.attr
,
252 &dev_attr_spi_controller_transfers
.attr
,
253 &dev_attr_spi_controller_errors
.attr
,
254 &dev_attr_spi_controller_timedout
.attr
,
255 &dev_attr_spi_controller_spi_sync
.attr
,
256 &dev_attr_spi_controller_spi_sync_immediate
.attr
,
257 &dev_attr_spi_controller_spi_async
.attr
,
258 &dev_attr_spi_controller_bytes
.attr
,
259 &dev_attr_spi_controller_bytes_rx
.attr
,
260 &dev_attr_spi_controller_bytes_tx
.attr
,
261 &dev_attr_spi_controller_transfer_bytes_histo0
.attr
,
262 &dev_attr_spi_controller_transfer_bytes_histo1
.attr
,
263 &dev_attr_spi_controller_transfer_bytes_histo2
.attr
,
264 &dev_attr_spi_controller_transfer_bytes_histo3
.attr
,
265 &dev_attr_spi_controller_transfer_bytes_histo4
.attr
,
266 &dev_attr_spi_controller_transfer_bytes_histo5
.attr
,
267 &dev_attr_spi_controller_transfer_bytes_histo6
.attr
,
268 &dev_attr_spi_controller_transfer_bytes_histo7
.attr
,
269 &dev_attr_spi_controller_transfer_bytes_histo8
.attr
,
270 &dev_attr_spi_controller_transfer_bytes_histo9
.attr
,
271 &dev_attr_spi_controller_transfer_bytes_histo10
.attr
,
272 &dev_attr_spi_controller_transfer_bytes_histo11
.attr
,
273 &dev_attr_spi_controller_transfer_bytes_histo12
.attr
,
274 &dev_attr_spi_controller_transfer_bytes_histo13
.attr
,
275 &dev_attr_spi_controller_transfer_bytes_histo14
.attr
,
276 &dev_attr_spi_controller_transfer_bytes_histo15
.attr
,
277 &dev_attr_spi_controller_transfer_bytes_histo16
.attr
,
278 &dev_attr_spi_controller_transfers_split_maxsize
.attr
,
282 static const struct attribute_group spi_controller_statistics_group
= {
283 .name
= "statistics",
284 .attrs
= spi_controller_statistics_attrs
,
287 static const struct attribute_group
*spi_master_groups
[] = {
288 &spi_controller_statistics_group
,
292 void spi_statistics_add_transfer_stats(struct spi_statistics
*stats
,
293 struct spi_transfer
*xfer
,
294 struct spi_controller
*ctlr
)
297 int l2len
= min(fls(xfer
->len
), SPI_STATISTICS_HISTO_SIZE
) - 1;
302 spin_lock_irqsave(&stats
->lock
, flags
);
305 stats
->transfer_bytes_histo
[l2len
]++;
307 stats
->bytes
+= xfer
->len
;
308 if ((xfer
->tx_buf
) &&
309 (xfer
->tx_buf
!= ctlr
->dummy_tx
))
310 stats
->bytes_tx
+= xfer
->len
;
311 if ((xfer
->rx_buf
) &&
312 (xfer
->rx_buf
!= ctlr
->dummy_rx
))
313 stats
->bytes_rx
+= xfer
->len
;
315 spin_unlock_irqrestore(&stats
->lock
, flags
);
317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats
);
319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
320 * and the sysfs version makes coldplug work too.
323 static const struct spi_device_id
*spi_match_id(const struct spi_device_id
*id
,
324 const struct spi_device
*sdev
)
326 while (id
->name
[0]) {
327 if (!strcmp(sdev
->modalias
, id
->name
))
334 const struct spi_device_id
*spi_get_device_id(const struct spi_device
*sdev
)
336 const struct spi_driver
*sdrv
= to_spi_driver(sdev
->dev
.driver
);
338 return spi_match_id(sdrv
->id_table
, sdev
);
340 EXPORT_SYMBOL_GPL(spi_get_device_id
);
342 static int spi_match_device(struct device
*dev
, struct device_driver
*drv
)
344 const struct spi_device
*spi
= to_spi_device(dev
);
345 const struct spi_driver
*sdrv
= to_spi_driver(drv
);
347 /* Check override first, and if set, only use the named driver */
348 if (spi
->driver_override
)
349 return strcmp(spi
->driver_override
, drv
->name
) == 0;
351 /* Attempt an OF style match */
352 if (of_driver_match_device(dev
, drv
))
356 if (acpi_driver_match_device(dev
, drv
))
360 return !!spi_match_id(sdrv
->id_table
, spi
);
362 return strcmp(spi
->modalias
, drv
->name
) == 0;
365 static int spi_uevent(struct device
*dev
, struct kobj_uevent_env
*env
)
367 const struct spi_device
*spi
= to_spi_device(dev
);
370 rc
= acpi_device_uevent_modalias(dev
, env
);
374 return add_uevent_var(env
, "MODALIAS=%s%s", SPI_MODULE_PREFIX
, spi
->modalias
);
377 struct bus_type spi_bus_type
= {
379 .dev_groups
= spi_dev_groups
,
380 .match
= spi_match_device
,
381 .uevent
= spi_uevent
,
383 EXPORT_SYMBOL_GPL(spi_bus_type
);
386 static int spi_drv_probe(struct device
*dev
)
388 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
389 struct spi_device
*spi
= to_spi_device(dev
);
392 ret
= of_clk_set_defaults(dev
->of_node
, false);
397 spi
->irq
= of_irq_get(dev
->of_node
, 0);
398 if (spi
->irq
== -EPROBE_DEFER
)
399 return -EPROBE_DEFER
;
404 ret
= dev_pm_domain_attach(dev
, true);
408 ret
= sdrv
->probe(spi
);
410 dev_pm_domain_detach(dev
, true);
415 static int spi_drv_remove(struct device
*dev
)
417 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
420 ret
= sdrv
->remove(to_spi_device(dev
));
421 dev_pm_domain_detach(dev
, true);
426 static void spi_drv_shutdown(struct device
*dev
)
428 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
430 sdrv
->shutdown(to_spi_device(dev
));
434 * __spi_register_driver - register a SPI driver
435 * @owner: owner module of the driver to register
436 * @sdrv: the driver to register
439 * Return: zero on success, else a negative error code.
441 int __spi_register_driver(struct module
*owner
, struct spi_driver
*sdrv
)
443 sdrv
->driver
.owner
= owner
;
444 sdrv
->driver
.bus
= &spi_bus_type
;
446 sdrv
->driver
.probe
= spi_drv_probe
;
448 sdrv
->driver
.remove
= spi_drv_remove
;
450 sdrv
->driver
.shutdown
= spi_drv_shutdown
;
451 return driver_register(&sdrv
->driver
);
453 EXPORT_SYMBOL_GPL(__spi_register_driver
);
455 /*-------------------------------------------------------------------------*/
457 /* SPI devices should normally not be created by SPI device drivers; that
458 * would make them board-specific. Similarly with SPI controller drivers.
459 * Device registration normally goes into like arch/.../mach.../board-YYY.c
460 * with other readonly (flashable) information about mainboard devices.
464 struct list_head list
;
465 struct spi_board_info board_info
;
468 static LIST_HEAD(board_list
);
469 static LIST_HEAD(spi_controller_list
);
472 * Used to protect add/del operation for board_info list and
473 * spi_controller list, and their matching process
474 * also used to protect object of type struct idr
476 static DEFINE_MUTEX(board_lock
);
479 * spi_alloc_device - Allocate a new SPI device
480 * @ctlr: Controller to which device is connected
483 * Allows a driver to allocate and initialize a spi_device without
484 * registering it immediately. This allows a driver to directly
485 * fill the spi_device with device parameters before calling
486 * spi_add_device() on it.
488 * Caller is responsible to call spi_add_device() on the returned
489 * spi_device structure to add it to the SPI controller. If the caller
490 * needs to discard the spi_device without adding it, then it should
491 * call spi_dev_put() on it.
493 * Return: a pointer to the new device, or NULL.
495 struct spi_device
*spi_alloc_device(struct spi_controller
*ctlr
)
497 struct spi_device
*spi
;
499 if (!spi_controller_get(ctlr
))
502 spi
= kzalloc(sizeof(*spi
), GFP_KERNEL
);
504 spi_controller_put(ctlr
);
508 spi
->master
= spi
->controller
= ctlr
;
509 spi
->dev
.parent
= &ctlr
->dev
;
510 spi
->dev
.bus
= &spi_bus_type
;
511 spi
->dev
.release
= spidev_release
;
512 spi
->cs_gpio
= -ENOENT
;
513 spi
->mode
= ctlr
->buswidth_override_bits
;
515 spin_lock_init(&spi
->statistics
.lock
);
517 device_initialize(&spi
->dev
);
520 EXPORT_SYMBOL_GPL(spi_alloc_device
);
522 static void spi_dev_set_name(struct spi_device
*spi
)
524 struct acpi_device
*adev
= ACPI_COMPANION(&spi
->dev
);
527 dev_set_name(&spi
->dev
, "spi-%s", acpi_dev_name(adev
));
531 dev_set_name(&spi
->dev
, "%s.%u", dev_name(&spi
->controller
->dev
),
535 static int spi_dev_check(struct device
*dev
, void *data
)
537 struct spi_device
*spi
= to_spi_device(dev
);
538 struct spi_device
*new_spi
= data
;
540 if (spi
->controller
== new_spi
->controller
&&
541 spi
->chip_select
== new_spi
->chip_select
)
547 * spi_add_device - Add spi_device allocated with spi_alloc_device
548 * @spi: spi_device to register
550 * Companion function to spi_alloc_device. Devices allocated with
551 * spi_alloc_device can be added onto the spi bus with this function.
553 * Return: 0 on success; negative errno on failure
555 int spi_add_device(struct spi_device
*spi
)
557 static DEFINE_MUTEX(spi_add_lock
);
558 struct spi_controller
*ctlr
= spi
->controller
;
559 struct device
*dev
= ctlr
->dev
.parent
;
562 /* Chipselects are numbered 0..max; validate. */
563 if (spi
->chip_select
>= ctlr
->num_chipselect
) {
564 dev_err(dev
, "cs%d >= max %d\n", spi
->chip_select
,
565 ctlr
->num_chipselect
);
569 /* Set the bus ID string */
570 spi_dev_set_name(spi
);
572 /* We need to make sure there's no other device with this
573 * chipselect **BEFORE** we call setup(), else we'll trash
574 * its configuration. Lock against concurrent add() calls.
576 mutex_lock(&spi_add_lock
);
578 status
= bus_for_each_dev(&spi_bus_type
, NULL
, spi
, spi_dev_check
);
580 dev_err(dev
, "chipselect %d already in use\n",
585 /* Descriptors take precedence */
587 spi
->cs_gpiod
= ctlr
->cs_gpiods
[spi
->chip_select
];
588 else if (ctlr
->cs_gpios
)
589 spi
->cs_gpio
= ctlr
->cs_gpios
[spi
->chip_select
];
591 /* Drivers may modify this initial i/o setup, but will
592 * normally rely on the device being setup. Devices
593 * using SPI_CS_HIGH can't coexist well otherwise...
595 status
= spi_setup(spi
);
597 dev_err(dev
, "can't setup %s, status %d\n",
598 dev_name(&spi
->dev
), status
);
602 /* Device may be bound to an active driver when this returns */
603 status
= device_add(&spi
->dev
);
605 dev_err(dev
, "can't add %s, status %d\n",
606 dev_name(&spi
->dev
), status
);
608 dev_dbg(dev
, "registered child %s\n", dev_name(&spi
->dev
));
611 mutex_unlock(&spi_add_lock
);
614 EXPORT_SYMBOL_GPL(spi_add_device
);
617 * spi_new_device - instantiate one new SPI device
618 * @ctlr: Controller to which device is connected
619 * @chip: Describes the SPI device
622 * On typical mainboards, this is purely internal; and it's not needed
623 * after board init creates the hard-wired devices. Some development
624 * platforms may not be able to use spi_register_board_info though, and
625 * this is exported so that for example a USB or parport based adapter
626 * driver could add devices (which it would learn about out-of-band).
628 * Return: the new device, or NULL.
630 struct spi_device
*spi_new_device(struct spi_controller
*ctlr
,
631 struct spi_board_info
*chip
)
633 struct spi_device
*proxy
;
636 /* NOTE: caller did any chip->bus_num checks necessary.
638 * Also, unless we change the return value convention to use
639 * error-or-pointer (not NULL-or-pointer), troubleshootability
640 * suggests syslogged diagnostics are best here (ugh).
643 proxy
= spi_alloc_device(ctlr
);
647 WARN_ON(strlen(chip
->modalias
) >= sizeof(proxy
->modalias
));
649 proxy
->chip_select
= chip
->chip_select
;
650 proxy
->max_speed_hz
= chip
->max_speed_hz
;
651 proxy
->mode
= chip
->mode
;
652 proxy
->irq
= chip
->irq
;
653 strlcpy(proxy
->modalias
, chip
->modalias
, sizeof(proxy
->modalias
));
654 proxy
->dev
.platform_data
= (void *) chip
->platform_data
;
655 proxy
->controller_data
= chip
->controller_data
;
656 proxy
->controller_state
= NULL
;
658 if (chip
->properties
) {
659 status
= device_add_properties(&proxy
->dev
, chip
->properties
);
662 "failed to add properties to '%s': %d\n",
663 chip
->modalias
, status
);
668 status
= spi_add_device(proxy
);
670 goto err_remove_props
;
675 if (chip
->properties
)
676 device_remove_properties(&proxy
->dev
);
681 EXPORT_SYMBOL_GPL(spi_new_device
);
684 * spi_unregister_device - unregister a single SPI device
685 * @spi: spi_device to unregister
687 * Start making the passed SPI device vanish. Normally this would be handled
688 * by spi_unregister_controller().
690 void spi_unregister_device(struct spi_device
*spi
)
695 if (spi
->dev
.of_node
) {
696 of_node_clear_flag(spi
->dev
.of_node
, OF_POPULATED
);
697 of_node_put(spi
->dev
.of_node
);
699 if (ACPI_COMPANION(&spi
->dev
))
700 acpi_device_clear_enumerated(ACPI_COMPANION(&spi
->dev
));
701 device_unregister(&spi
->dev
);
703 EXPORT_SYMBOL_GPL(spi_unregister_device
);
705 static void spi_match_controller_to_boardinfo(struct spi_controller
*ctlr
,
706 struct spi_board_info
*bi
)
708 struct spi_device
*dev
;
710 if (ctlr
->bus_num
!= bi
->bus_num
)
713 dev
= spi_new_device(ctlr
, bi
);
715 dev_err(ctlr
->dev
.parent
, "can't create new device for %s\n",
720 * spi_register_board_info - register SPI devices for a given board
721 * @info: array of chip descriptors
722 * @n: how many descriptors are provided
725 * Board-specific early init code calls this (probably during arch_initcall)
726 * with segments of the SPI device table. Any device nodes are created later,
727 * after the relevant parent SPI controller (bus_num) is defined. We keep
728 * this table of devices forever, so that reloading a controller driver will
729 * not make Linux forget about these hard-wired devices.
731 * Other code can also call this, e.g. a particular add-on board might provide
732 * SPI devices through its expansion connector, so code initializing that board
733 * would naturally declare its SPI devices.
735 * The board info passed can safely be __initdata ... but be careful of
736 * any embedded pointers (platform_data, etc), they're copied as-is.
737 * Device properties are deep-copied though.
739 * Return: zero on success, else a negative error code.
741 int spi_register_board_info(struct spi_board_info
const *info
, unsigned n
)
743 struct boardinfo
*bi
;
749 bi
= kcalloc(n
, sizeof(*bi
), GFP_KERNEL
);
753 for (i
= 0; i
< n
; i
++, bi
++, info
++) {
754 struct spi_controller
*ctlr
;
756 memcpy(&bi
->board_info
, info
, sizeof(*info
));
757 if (info
->properties
) {
758 bi
->board_info
.properties
=
759 property_entries_dup(info
->properties
);
760 if (IS_ERR(bi
->board_info
.properties
))
761 return PTR_ERR(bi
->board_info
.properties
);
764 mutex_lock(&board_lock
);
765 list_add_tail(&bi
->list
, &board_list
);
766 list_for_each_entry(ctlr
, &spi_controller_list
, list
)
767 spi_match_controller_to_boardinfo(ctlr
,
769 mutex_unlock(&board_lock
);
775 /*-------------------------------------------------------------------------*/
777 static void spi_set_cs(struct spi_device
*spi
, bool enable
)
779 bool enable1
= enable
;
781 if (!spi
->controller
->set_cs_timing
) {
783 spi_delay_exec(&spi
->controller
->cs_setup
, NULL
);
785 spi_delay_exec(&spi
->controller
->cs_hold
, NULL
);
788 if (spi
->mode
& SPI_CS_HIGH
)
791 if (spi
->cs_gpiod
|| gpio_is_valid(spi
->cs_gpio
)) {
793 * Honour the SPI_NO_CS flag and invert the enable line, as
794 * active low is default for SPI. Execution paths that handle
795 * polarity inversion in gpiolib (such as device tree) will
796 * enforce active high using the SPI_CS_HIGH resulting in a
797 * double inversion through the code above.
799 if (!(spi
->mode
& SPI_NO_CS
)) {
801 gpiod_set_value_cansleep(spi
->cs_gpiod
,
804 gpio_set_value_cansleep(spi
->cs_gpio
, !enable
);
806 /* Some SPI masters need both GPIO CS & slave_select */
807 if ((spi
->controller
->flags
& SPI_MASTER_GPIO_SS
) &&
808 spi
->controller
->set_cs
)
809 spi
->controller
->set_cs(spi
, !enable
);
810 } else if (spi
->controller
->set_cs
) {
811 spi
->controller
->set_cs(spi
, !enable
);
814 if (!spi
->controller
->set_cs_timing
) {
816 spi_delay_exec(&spi
->controller
->cs_inactive
, NULL
);
820 #ifdef CONFIG_HAS_DMA
821 int spi_map_buf(struct spi_controller
*ctlr
, struct device
*dev
,
822 struct sg_table
*sgt
, void *buf
, size_t len
,
823 enum dma_data_direction dir
)
825 const bool vmalloced_buf
= is_vmalloc_addr(buf
);
826 unsigned int max_seg_size
= dma_get_max_seg_size(dev
);
827 #ifdef CONFIG_HIGHMEM
828 const bool kmap_buf
= ((unsigned long)buf
>= PKMAP_BASE
&&
829 (unsigned long)buf
< (PKMAP_BASE
+
830 (LAST_PKMAP
* PAGE_SIZE
)));
832 const bool kmap_buf
= false;
836 struct page
*vm_page
;
837 struct scatterlist
*sg
;
842 if (vmalloced_buf
|| kmap_buf
) {
843 desc_len
= min_t(int, max_seg_size
, PAGE_SIZE
);
844 sgs
= DIV_ROUND_UP(len
+ offset_in_page(buf
), desc_len
);
845 } else if (virt_addr_valid(buf
)) {
846 desc_len
= min_t(int, max_seg_size
, ctlr
->max_dma_len
);
847 sgs
= DIV_ROUND_UP(len
, desc_len
);
852 ret
= sg_alloc_table(sgt
, sgs
, GFP_KERNEL
);
857 for (i
= 0; i
< sgs
; i
++) {
859 if (vmalloced_buf
|| kmap_buf
) {
861 * Next scatterlist entry size is the minimum between
862 * the desc_len and the remaining buffer length that
865 min
= min_t(size_t, desc_len
,
867 PAGE_SIZE
- offset_in_page(buf
)));
869 vm_page
= vmalloc_to_page(buf
);
871 vm_page
= kmap_to_page(buf
);
876 sg_set_page(sg
, vm_page
,
877 min
, offset_in_page(buf
));
879 min
= min_t(size_t, len
, desc_len
);
881 sg_set_buf(sg
, sg_buf
, min
);
889 ret
= dma_map_sg(dev
, sgt
->sgl
, sgt
->nents
, dir
);
902 void spi_unmap_buf(struct spi_controller
*ctlr
, struct device
*dev
,
903 struct sg_table
*sgt
, enum dma_data_direction dir
)
905 if (sgt
->orig_nents
) {
906 dma_unmap_sg(dev
, sgt
->sgl
, sgt
->orig_nents
, dir
);
911 static int __spi_map_msg(struct spi_controller
*ctlr
, struct spi_message
*msg
)
913 struct device
*tx_dev
, *rx_dev
;
914 struct spi_transfer
*xfer
;
921 tx_dev
= ctlr
->dma_tx
->device
->dev
;
923 tx_dev
= ctlr
->dev
.parent
;
926 rx_dev
= ctlr
->dma_rx
->device
->dev
;
928 rx_dev
= ctlr
->dev
.parent
;
930 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
931 if (!ctlr
->can_dma(ctlr
, msg
->spi
, xfer
))
934 if (xfer
->tx_buf
!= NULL
) {
935 ret
= spi_map_buf(ctlr
, tx_dev
, &xfer
->tx_sg
,
936 (void *)xfer
->tx_buf
, xfer
->len
,
942 if (xfer
->rx_buf
!= NULL
) {
943 ret
= spi_map_buf(ctlr
, rx_dev
, &xfer
->rx_sg
,
944 xfer
->rx_buf
, xfer
->len
,
947 spi_unmap_buf(ctlr
, tx_dev
, &xfer
->tx_sg
,
954 ctlr
->cur_msg_mapped
= true;
959 static int __spi_unmap_msg(struct spi_controller
*ctlr
, struct spi_message
*msg
)
961 struct spi_transfer
*xfer
;
962 struct device
*tx_dev
, *rx_dev
;
964 if (!ctlr
->cur_msg_mapped
|| !ctlr
->can_dma
)
968 tx_dev
= ctlr
->dma_tx
->device
->dev
;
970 tx_dev
= ctlr
->dev
.parent
;
973 rx_dev
= ctlr
->dma_rx
->device
->dev
;
975 rx_dev
= ctlr
->dev
.parent
;
977 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
978 if (!ctlr
->can_dma(ctlr
, msg
->spi
, xfer
))
981 spi_unmap_buf(ctlr
, rx_dev
, &xfer
->rx_sg
, DMA_FROM_DEVICE
);
982 spi_unmap_buf(ctlr
, tx_dev
, &xfer
->tx_sg
, DMA_TO_DEVICE
);
987 #else /* !CONFIG_HAS_DMA */
988 static inline int __spi_map_msg(struct spi_controller
*ctlr
,
989 struct spi_message
*msg
)
994 static inline int __spi_unmap_msg(struct spi_controller
*ctlr
,
995 struct spi_message
*msg
)
999 #endif /* !CONFIG_HAS_DMA */
1001 static inline int spi_unmap_msg(struct spi_controller
*ctlr
,
1002 struct spi_message
*msg
)
1004 struct spi_transfer
*xfer
;
1006 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1008 * Restore the original value of tx_buf or rx_buf if they are
1011 if (xfer
->tx_buf
== ctlr
->dummy_tx
)
1012 xfer
->tx_buf
= NULL
;
1013 if (xfer
->rx_buf
== ctlr
->dummy_rx
)
1014 xfer
->rx_buf
= NULL
;
1017 return __spi_unmap_msg(ctlr
, msg
);
1020 static int spi_map_msg(struct spi_controller
*ctlr
, struct spi_message
*msg
)
1022 struct spi_transfer
*xfer
;
1024 unsigned int max_tx
, max_rx
;
1026 if (ctlr
->flags
& (SPI_CONTROLLER_MUST_RX
| SPI_CONTROLLER_MUST_TX
)) {
1030 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1031 if ((ctlr
->flags
& SPI_CONTROLLER_MUST_TX
) &&
1033 max_tx
= max(xfer
->len
, max_tx
);
1034 if ((ctlr
->flags
& SPI_CONTROLLER_MUST_RX
) &&
1036 max_rx
= max(xfer
->len
, max_rx
);
1040 tmp
= krealloc(ctlr
->dummy_tx
, max_tx
,
1041 GFP_KERNEL
| GFP_DMA
);
1044 ctlr
->dummy_tx
= tmp
;
1045 memset(tmp
, 0, max_tx
);
1049 tmp
= krealloc(ctlr
->dummy_rx
, max_rx
,
1050 GFP_KERNEL
| GFP_DMA
);
1053 ctlr
->dummy_rx
= tmp
;
1056 if (max_tx
|| max_rx
) {
1057 list_for_each_entry(xfer
, &msg
->transfers
,
1062 xfer
->tx_buf
= ctlr
->dummy_tx
;
1064 xfer
->rx_buf
= ctlr
->dummy_rx
;
1069 return __spi_map_msg(ctlr
, msg
);
1072 static int spi_transfer_wait(struct spi_controller
*ctlr
,
1073 struct spi_message
*msg
,
1074 struct spi_transfer
*xfer
)
1076 struct spi_statistics
*statm
= &ctlr
->statistics
;
1077 struct spi_statistics
*stats
= &msg
->spi
->statistics
;
1078 unsigned long long ms
= 1;
1080 if (spi_controller_is_slave(ctlr
)) {
1081 if (wait_for_completion_interruptible(&ctlr
->xfer_completion
)) {
1082 dev_dbg(&msg
->spi
->dev
, "SPI transfer interrupted\n");
1086 ms
= 8LL * 1000LL * xfer
->len
;
1087 do_div(ms
, xfer
->speed_hz
);
1088 ms
+= ms
+ 200; /* some tolerance */
1093 ms
= wait_for_completion_timeout(&ctlr
->xfer_completion
,
1094 msecs_to_jiffies(ms
));
1097 SPI_STATISTICS_INCREMENT_FIELD(statm
, timedout
);
1098 SPI_STATISTICS_INCREMENT_FIELD(stats
, timedout
);
1099 dev_err(&msg
->spi
->dev
,
1100 "SPI transfer timed out\n");
1108 static void _spi_transfer_delay_ns(u32 ns
)
1115 u32 us
= DIV_ROUND_UP(ns
, 1000);
1120 usleep_range(us
, us
+ DIV_ROUND_UP(us
, 10));
1124 int spi_delay_to_ns(struct spi_delay
*_delay
, struct spi_transfer
*xfer
)
1126 u32 delay
= _delay
->value
;
1127 u32 unit
= _delay
->unit
;
1134 case SPI_DELAY_UNIT_USECS
:
1137 case SPI_DELAY_UNIT_NSECS
: /* nothing to do here */
1139 case SPI_DELAY_UNIT_SCK
:
1140 /* clock cycles need to be obtained from spi_transfer */
1143 /* if there is no effective speed know, then approximate
1144 * by underestimating with half the requested hz
1146 hz
= xfer
->effective_speed_hz
?: xfer
->speed_hz
/ 2;
1149 delay
*= DIV_ROUND_UP(1000000000, hz
);
1157 EXPORT_SYMBOL_GPL(spi_delay_to_ns
);
1159 int spi_delay_exec(struct spi_delay
*_delay
, struct spi_transfer
*xfer
)
1166 delay
= spi_delay_to_ns(_delay
, xfer
);
1170 _spi_transfer_delay_ns(delay
);
1174 EXPORT_SYMBOL_GPL(spi_delay_exec
);
1176 static void _spi_transfer_cs_change_delay(struct spi_message
*msg
,
1177 struct spi_transfer
*xfer
)
1179 u32 delay
= xfer
->cs_change_delay
.value
;
1180 u32 unit
= xfer
->cs_change_delay
.unit
;
1183 /* return early on "fast" mode - for everything but USECS */
1185 if (unit
== SPI_DELAY_UNIT_USECS
)
1186 _spi_transfer_delay_ns(10000);
1190 ret
= spi_delay_exec(&xfer
->cs_change_delay
, xfer
);
1192 dev_err_once(&msg
->spi
->dev
,
1193 "Use of unsupported delay unit %i, using default of 10us\n",
1195 _spi_transfer_delay_ns(10000);
1200 * spi_transfer_one_message - Default implementation of transfer_one_message()
1202 * This is a standard implementation of transfer_one_message() for
1203 * drivers which implement a transfer_one() operation. It provides
1204 * standard handling of delays and chip select management.
1206 static int spi_transfer_one_message(struct spi_controller
*ctlr
,
1207 struct spi_message
*msg
)
1209 struct spi_transfer
*xfer
;
1210 bool keep_cs
= false;
1212 struct spi_statistics
*statm
= &ctlr
->statistics
;
1213 struct spi_statistics
*stats
= &msg
->spi
->statistics
;
1215 spi_set_cs(msg
->spi
, true);
1217 SPI_STATISTICS_INCREMENT_FIELD(statm
, messages
);
1218 SPI_STATISTICS_INCREMENT_FIELD(stats
, messages
);
1220 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1221 trace_spi_transfer_start(msg
, xfer
);
1223 spi_statistics_add_transfer_stats(statm
, xfer
, ctlr
);
1224 spi_statistics_add_transfer_stats(stats
, xfer
, ctlr
);
1226 if (!ctlr
->ptp_sts_supported
) {
1227 xfer
->ptp_sts_word_pre
= 0;
1228 ptp_read_system_prets(xfer
->ptp_sts
);
1231 if (xfer
->tx_buf
|| xfer
->rx_buf
) {
1232 reinit_completion(&ctlr
->xfer_completion
);
1234 ret
= ctlr
->transfer_one(ctlr
, msg
->spi
, xfer
);
1236 SPI_STATISTICS_INCREMENT_FIELD(statm
,
1238 SPI_STATISTICS_INCREMENT_FIELD(stats
,
1240 dev_err(&msg
->spi
->dev
,
1241 "SPI transfer failed: %d\n", ret
);
1246 ret
= spi_transfer_wait(ctlr
, msg
, xfer
);
1252 dev_err(&msg
->spi
->dev
,
1253 "Bufferless transfer has length %u\n",
1257 if (!ctlr
->ptp_sts_supported
) {
1258 ptp_read_system_postts(xfer
->ptp_sts
);
1259 xfer
->ptp_sts_word_post
= xfer
->len
;
1262 trace_spi_transfer_stop(msg
, xfer
);
1264 if (msg
->status
!= -EINPROGRESS
)
1267 spi_transfer_delay_exec(xfer
);
1269 if (xfer
->cs_change
) {
1270 if (list_is_last(&xfer
->transfer_list
,
1274 spi_set_cs(msg
->spi
, false);
1275 _spi_transfer_cs_change_delay(msg
, xfer
);
1276 spi_set_cs(msg
->spi
, true);
1280 msg
->actual_length
+= xfer
->len
;
1284 if (ret
!= 0 || !keep_cs
)
1285 spi_set_cs(msg
->spi
, false);
1287 if (msg
->status
== -EINPROGRESS
)
1290 if (msg
->status
&& ctlr
->handle_err
)
1291 ctlr
->handle_err(ctlr
, msg
);
1293 spi_res_release(ctlr
, msg
);
1295 spi_finalize_current_message(ctlr
);
1301 * spi_finalize_current_transfer - report completion of a transfer
1302 * @ctlr: the controller reporting completion
1304 * Called by SPI drivers using the core transfer_one_message()
1305 * implementation to notify it that the current interrupt driven
1306 * transfer has finished and the next one may be scheduled.
1308 void spi_finalize_current_transfer(struct spi_controller
*ctlr
)
1310 complete(&ctlr
->xfer_completion
);
1312 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer
);
1315 * __spi_pump_messages - function which processes spi message queue
1316 * @ctlr: controller to process queue for
1317 * @in_kthread: true if we are in the context of the message pump thread
1319 * This function checks if there is any spi message in the queue that
1320 * needs processing and if so call out to the driver to initialize hardware
1321 * and transfer each message.
1323 * Note that it is called both from the kthread itself and also from
1324 * inside spi_sync(); the queue extraction handling at the top of the
1325 * function should deal with this safely.
1327 static void __spi_pump_messages(struct spi_controller
*ctlr
, bool in_kthread
)
1329 struct spi_transfer
*xfer
;
1330 struct spi_message
*msg
;
1331 bool was_busy
= false;
1332 unsigned long flags
;
1336 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1338 /* Make sure we are not already running a message */
1339 if (ctlr
->cur_msg
) {
1340 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1344 /* If another context is idling the device then defer */
1346 kthread_queue_work(&ctlr
->kworker
, &ctlr
->pump_messages
);
1347 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1351 /* Check if the queue is idle */
1352 if (list_empty(&ctlr
->queue
) || !ctlr
->running
) {
1354 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1358 /* Only do teardown in the thread */
1360 kthread_queue_work(&ctlr
->kworker
,
1361 &ctlr
->pump_messages
);
1362 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1367 ctlr
->idling
= true;
1368 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1370 kfree(ctlr
->dummy_rx
);
1371 ctlr
->dummy_rx
= NULL
;
1372 kfree(ctlr
->dummy_tx
);
1373 ctlr
->dummy_tx
= NULL
;
1374 if (ctlr
->unprepare_transfer_hardware
&&
1375 ctlr
->unprepare_transfer_hardware(ctlr
))
1377 "failed to unprepare transfer hardware\n");
1378 if (ctlr
->auto_runtime_pm
) {
1379 pm_runtime_mark_last_busy(ctlr
->dev
.parent
);
1380 pm_runtime_put_autosuspend(ctlr
->dev
.parent
);
1382 trace_spi_controller_idle(ctlr
);
1384 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1385 ctlr
->idling
= false;
1386 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1390 /* Extract head of queue */
1391 msg
= list_first_entry(&ctlr
->queue
, struct spi_message
, queue
);
1392 ctlr
->cur_msg
= msg
;
1394 list_del_init(&msg
->queue
);
1399 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1401 mutex_lock(&ctlr
->io_mutex
);
1403 if (!was_busy
&& ctlr
->auto_runtime_pm
) {
1404 ret
= pm_runtime_get_sync(ctlr
->dev
.parent
);
1406 pm_runtime_put_noidle(ctlr
->dev
.parent
);
1407 dev_err(&ctlr
->dev
, "Failed to power device: %d\n",
1409 mutex_unlock(&ctlr
->io_mutex
);
1415 trace_spi_controller_busy(ctlr
);
1417 if (!was_busy
&& ctlr
->prepare_transfer_hardware
) {
1418 ret
= ctlr
->prepare_transfer_hardware(ctlr
);
1421 "failed to prepare transfer hardware: %d\n",
1424 if (ctlr
->auto_runtime_pm
)
1425 pm_runtime_put(ctlr
->dev
.parent
);
1428 spi_finalize_current_message(ctlr
);
1430 mutex_unlock(&ctlr
->io_mutex
);
1435 trace_spi_message_start(msg
);
1437 if (ctlr
->prepare_message
) {
1438 ret
= ctlr
->prepare_message(ctlr
, msg
);
1440 dev_err(&ctlr
->dev
, "failed to prepare message: %d\n",
1443 spi_finalize_current_message(ctlr
);
1446 ctlr
->cur_msg_prepared
= true;
1449 ret
= spi_map_msg(ctlr
, msg
);
1452 spi_finalize_current_message(ctlr
);
1456 if (!ctlr
->ptp_sts_supported
&& !ctlr
->transfer_one
) {
1457 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1458 xfer
->ptp_sts_word_pre
= 0;
1459 ptp_read_system_prets(xfer
->ptp_sts
);
1463 ret
= ctlr
->transfer_one_message(ctlr
, msg
);
1466 "failed to transfer one message from queue\n");
1471 mutex_unlock(&ctlr
->io_mutex
);
1473 /* Prod the scheduler in case transfer_one() was busy waiting */
1479 * spi_pump_messages - kthread work function which processes spi message queue
1480 * @work: pointer to kthread work struct contained in the controller struct
1482 static void spi_pump_messages(struct kthread_work
*work
)
1484 struct spi_controller
*ctlr
=
1485 container_of(work
, struct spi_controller
, pump_messages
);
1487 __spi_pump_messages(ctlr
, true);
1491 * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1492 * TX timestamp for the requested byte from the SPI
1493 * transfer. The frequency with which this function
1494 * must be called (once per word, once for the whole
1495 * transfer, once per batch of words etc) is arbitrary
1496 * as long as the @tx buffer offset is greater than or
1497 * equal to the requested byte at the time of the
1498 * call. The timestamp is only taken once, at the
1499 * first such call. It is assumed that the driver
1500 * advances its @tx buffer pointer monotonically.
1501 * @ctlr: Pointer to the spi_controller structure of the driver
1502 * @xfer: Pointer to the transfer being timestamped
1503 * @progress: How many words (not bytes) have been transferred so far
1504 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1505 * transfer, for less jitter in time measurement. Only compatible
1506 * with PIO drivers. If true, must follow up with
1507 * spi_take_timestamp_post or otherwise system will crash.
1508 * WARNING: for fully predictable results, the CPU frequency must
1509 * also be under control (governor).
1511 void spi_take_timestamp_pre(struct spi_controller
*ctlr
,
1512 struct spi_transfer
*xfer
,
1513 size_t progress
, bool irqs_off
)
1518 if (xfer
->timestamped
)
1521 if (progress
> xfer
->ptp_sts_word_pre
)
1524 /* Capture the resolution of the timestamp */
1525 xfer
->ptp_sts_word_pre
= progress
;
1528 local_irq_save(ctlr
->irq_flags
);
1532 ptp_read_system_prets(xfer
->ptp_sts
);
1534 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre
);
1537 * spi_take_timestamp_post - helper for drivers to collect the end of the
1538 * TX timestamp for the requested byte from the SPI
1539 * transfer. Can be called with an arbitrary
1540 * frequency: only the first call where @tx exceeds
1541 * or is equal to the requested word will be
1543 * @ctlr: Pointer to the spi_controller structure of the driver
1544 * @xfer: Pointer to the transfer being timestamped
1545 * @progress: How many words (not bytes) have been transferred so far
1546 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1548 void spi_take_timestamp_post(struct spi_controller
*ctlr
,
1549 struct spi_transfer
*xfer
,
1550 size_t progress
, bool irqs_off
)
1555 if (xfer
->timestamped
)
1558 if (progress
< xfer
->ptp_sts_word_post
)
1561 ptp_read_system_postts(xfer
->ptp_sts
);
1564 local_irq_restore(ctlr
->irq_flags
);
1568 /* Capture the resolution of the timestamp */
1569 xfer
->ptp_sts_word_post
= progress
;
1571 xfer
->timestamped
= true;
1573 EXPORT_SYMBOL_GPL(spi_take_timestamp_post
);
1576 * spi_set_thread_rt - set the controller to pump at realtime priority
1577 * @ctlr: controller to boost priority of
1579 * This can be called because the controller requested realtime priority
1580 * (by setting the ->rt value before calling spi_register_controller()) or
1581 * because a device on the bus said that its transfers needed realtime
1584 * NOTE: at the moment if any device on a bus says it needs realtime then
1585 * the thread will be at realtime priority for all transfers on that
1586 * controller. If this eventually becomes a problem we may see if we can
1587 * find a way to boost the priority only temporarily during relevant
1590 static void spi_set_thread_rt(struct spi_controller
*ctlr
)
1592 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
/ 2 };
1594 dev_info(&ctlr
->dev
,
1595 "will run message pump with realtime priority\n");
1596 sched_setscheduler(ctlr
->kworker_task
, SCHED_FIFO
, ¶m
);
1599 static int spi_init_queue(struct spi_controller
*ctlr
)
1601 ctlr
->running
= false;
1604 kthread_init_worker(&ctlr
->kworker
);
1605 ctlr
->kworker_task
= kthread_run(kthread_worker_fn
, &ctlr
->kworker
,
1606 "%s", dev_name(&ctlr
->dev
));
1607 if (IS_ERR(ctlr
->kworker_task
)) {
1608 dev_err(&ctlr
->dev
, "failed to create message pump task\n");
1609 return PTR_ERR(ctlr
->kworker_task
);
1611 kthread_init_work(&ctlr
->pump_messages
, spi_pump_messages
);
1614 * Controller config will indicate if this controller should run the
1615 * message pump with high (realtime) priority to reduce the transfer
1616 * latency on the bus by minimising the delay between a transfer
1617 * request and the scheduling of the message pump thread. Without this
1618 * setting the message pump thread will remain at default priority.
1621 spi_set_thread_rt(ctlr
);
1627 * spi_get_next_queued_message() - called by driver to check for queued
1629 * @ctlr: the controller to check for queued messages
1631 * If there are more messages in the queue, the next message is returned from
1634 * Return: the next message in the queue, else NULL if the queue is empty.
1636 struct spi_message
*spi_get_next_queued_message(struct spi_controller
*ctlr
)
1638 struct spi_message
*next
;
1639 unsigned long flags
;
1641 /* get a pointer to the next message, if any */
1642 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1643 next
= list_first_entry_or_null(&ctlr
->queue
, struct spi_message
,
1645 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1649 EXPORT_SYMBOL_GPL(spi_get_next_queued_message
);
1652 * spi_finalize_current_message() - the current message is complete
1653 * @ctlr: the controller to return the message to
1655 * Called by the driver to notify the core that the message in the front of the
1656 * queue is complete and can be removed from the queue.
1658 void spi_finalize_current_message(struct spi_controller
*ctlr
)
1660 struct spi_transfer
*xfer
;
1661 struct spi_message
*mesg
;
1662 unsigned long flags
;
1665 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1666 mesg
= ctlr
->cur_msg
;
1667 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1669 if (!ctlr
->ptp_sts_supported
&& !ctlr
->transfer_one
) {
1670 list_for_each_entry(xfer
, &mesg
->transfers
, transfer_list
) {
1671 ptp_read_system_postts(xfer
->ptp_sts
);
1672 xfer
->ptp_sts_word_post
= xfer
->len
;
1676 if (unlikely(ctlr
->ptp_sts_supported
))
1677 list_for_each_entry(xfer
, &mesg
->transfers
, transfer_list
)
1678 WARN_ON_ONCE(xfer
->ptp_sts
&& !xfer
->timestamped
);
1680 spi_unmap_msg(ctlr
, mesg
);
1682 if (ctlr
->cur_msg_prepared
&& ctlr
->unprepare_message
) {
1683 ret
= ctlr
->unprepare_message(ctlr
, mesg
);
1685 dev_err(&ctlr
->dev
, "failed to unprepare message: %d\n",
1690 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1691 ctlr
->cur_msg
= NULL
;
1692 ctlr
->cur_msg_prepared
= false;
1693 kthread_queue_work(&ctlr
->kworker
, &ctlr
->pump_messages
);
1694 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1696 trace_spi_message_done(mesg
);
1700 mesg
->complete(mesg
->context
);
1702 EXPORT_SYMBOL_GPL(spi_finalize_current_message
);
1704 static int spi_start_queue(struct spi_controller
*ctlr
)
1706 unsigned long flags
;
1708 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1710 if (ctlr
->running
|| ctlr
->busy
) {
1711 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1715 ctlr
->running
= true;
1716 ctlr
->cur_msg
= NULL
;
1717 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1719 kthread_queue_work(&ctlr
->kworker
, &ctlr
->pump_messages
);
1724 static int spi_stop_queue(struct spi_controller
*ctlr
)
1726 unsigned long flags
;
1727 unsigned limit
= 500;
1730 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1733 * This is a bit lame, but is optimized for the common execution path.
1734 * A wait_queue on the ctlr->busy could be used, but then the common
1735 * execution path (pump_messages) would be required to call wake_up or
1736 * friends on every SPI message. Do this instead.
1738 while ((!list_empty(&ctlr
->queue
) || ctlr
->busy
) && limit
--) {
1739 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1740 usleep_range(10000, 11000);
1741 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1744 if (!list_empty(&ctlr
->queue
) || ctlr
->busy
)
1747 ctlr
->running
= false;
1749 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1752 dev_warn(&ctlr
->dev
, "could not stop message queue\n");
1758 static int spi_destroy_queue(struct spi_controller
*ctlr
)
1762 ret
= spi_stop_queue(ctlr
);
1765 * kthread_flush_worker will block until all work is done.
1766 * If the reason that stop_queue timed out is that the work will never
1767 * finish, then it does no good to call flush/stop thread, so
1771 dev_err(&ctlr
->dev
, "problem destroying queue\n");
1775 kthread_flush_worker(&ctlr
->kworker
);
1776 kthread_stop(ctlr
->kworker_task
);
1781 static int __spi_queued_transfer(struct spi_device
*spi
,
1782 struct spi_message
*msg
,
1785 struct spi_controller
*ctlr
= spi
->controller
;
1786 unsigned long flags
;
1788 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1790 if (!ctlr
->running
) {
1791 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1794 msg
->actual_length
= 0;
1795 msg
->status
= -EINPROGRESS
;
1797 list_add_tail(&msg
->queue
, &ctlr
->queue
);
1798 if (!ctlr
->busy
&& need_pump
)
1799 kthread_queue_work(&ctlr
->kworker
, &ctlr
->pump_messages
);
1801 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1806 * spi_queued_transfer - transfer function for queued transfers
1807 * @spi: spi device which is requesting transfer
1808 * @msg: spi message which is to handled is queued to driver queue
1810 * Return: zero on success, else a negative error code.
1812 static int spi_queued_transfer(struct spi_device
*spi
, struct spi_message
*msg
)
1814 return __spi_queued_transfer(spi
, msg
, true);
1817 static int spi_controller_initialize_queue(struct spi_controller
*ctlr
)
1821 ctlr
->transfer
= spi_queued_transfer
;
1822 if (!ctlr
->transfer_one_message
)
1823 ctlr
->transfer_one_message
= spi_transfer_one_message
;
1825 /* Initialize and start queue */
1826 ret
= spi_init_queue(ctlr
);
1828 dev_err(&ctlr
->dev
, "problem initializing queue\n");
1829 goto err_init_queue
;
1831 ctlr
->queued
= true;
1832 ret
= spi_start_queue(ctlr
);
1834 dev_err(&ctlr
->dev
, "problem starting queue\n");
1835 goto err_start_queue
;
1841 spi_destroy_queue(ctlr
);
1847 * spi_flush_queue - Send all pending messages in the queue from the callers'
1849 * @ctlr: controller to process queue for
1851 * This should be used when one wants to ensure all pending messages have been
1852 * sent before doing something. Is used by the spi-mem code to make sure SPI
1853 * memory operations do not preempt regular SPI transfers that have been queued
1854 * before the spi-mem operation.
1856 void spi_flush_queue(struct spi_controller
*ctlr
)
1858 if (ctlr
->transfer
== spi_queued_transfer
)
1859 __spi_pump_messages(ctlr
, false);
1862 /*-------------------------------------------------------------------------*/
1864 #if defined(CONFIG_OF)
1865 static int of_spi_parse_dt(struct spi_controller
*ctlr
, struct spi_device
*spi
,
1866 struct device_node
*nc
)
1871 /* Mode (clock phase/polarity/etc.) */
1872 if (of_property_read_bool(nc
, "spi-cpha"))
1873 spi
->mode
|= SPI_CPHA
;
1874 if (of_property_read_bool(nc
, "spi-cpol"))
1875 spi
->mode
|= SPI_CPOL
;
1876 if (of_property_read_bool(nc
, "spi-3wire"))
1877 spi
->mode
|= SPI_3WIRE
;
1878 if (of_property_read_bool(nc
, "spi-lsb-first"))
1879 spi
->mode
|= SPI_LSB_FIRST
;
1880 if (of_property_read_bool(nc
, "spi-cs-high"))
1881 spi
->mode
|= SPI_CS_HIGH
;
1883 /* Device DUAL/QUAD mode */
1884 if (!of_property_read_u32(nc
, "spi-tx-bus-width", &value
)) {
1889 spi
->mode
|= SPI_TX_DUAL
;
1892 spi
->mode
|= SPI_TX_QUAD
;
1895 spi
->mode
|= SPI_TX_OCTAL
;
1898 dev_warn(&ctlr
->dev
,
1899 "spi-tx-bus-width %d not supported\n",
1905 if (!of_property_read_u32(nc
, "spi-rx-bus-width", &value
)) {
1910 spi
->mode
|= SPI_RX_DUAL
;
1913 spi
->mode
|= SPI_RX_QUAD
;
1916 spi
->mode
|= SPI_RX_OCTAL
;
1919 dev_warn(&ctlr
->dev
,
1920 "spi-rx-bus-width %d not supported\n",
1926 if (spi_controller_is_slave(ctlr
)) {
1927 if (!of_node_name_eq(nc
, "slave")) {
1928 dev_err(&ctlr
->dev
, "%pOF is not called 'slave'\n",
1935 /* Device address */
1936 rc
= of_property_read_u32(nc
, "reg", &value
);
1938 dev_err(&ctlr
->dev
, "%pOF has no valid 'reg' property (%d)\n",
1942 spi
->chip_select
= value
;
1945 * For descriptors associated with the device, polarity inversion is
1946 * handled in the gpiolib, so all gpio chip selects are "active high"
1947 * in the logical sense, the gpiolib will invert the line if need be.
1949 if ((ctlr
->use_gpio_descriptors
) && ctlr
->cs_gpiods
&&
1950 ctlr
->cs_gpiods
[spi
->chip_select
])
1951 spi
->mode
|= SPI_CS_HIGH
;
1954 if (!of_property_read_u32(nc
, "spi-max-frequency", &value
))
1955 spi
->max_speed_hz
= value
;
1960 static struct spi_device
*
1961 of_register_spi_device(struct spi_controller
*ctlr
, struct device_node
*nc
)
1963 struct spi_device
*spi
;
1966 /* Alloc an spi_device */
1967 spi
= spi_alloc_device(ctlr
);
1969 dev_err(&ctlr
->dev
, "spi_device alloc error for %pOF\n", nc
);
1974 /* Select device driver */
1975 rc
= of_modalias_node(nc
, spi
->modalias
,
1976 sizeof(spi
->modalias
));
1978 dev_err(&ctlr
->dev
, "cannot find modalias for %pOF\n", nc
);
1982 rc
= of_spi_parse_dt(ctlr
, spi
, nc
);
1986 /* Store a pointer to the node in the device structure */
1988 spi
->dev
.of_node
= nc
;
1990 /* Register the new device */
1991 rc
= spi_add_device(spi
);
1993 dev_err(&ctlr
->dev
, "spi_device register error %pOF\n", nc
);
1994 goto err_of_node_put
;
2007 * of_register_spi_devices() - Register child devices onto the SPI bus
2008 * @ctlr: Pointer to spi_controller device
2010 * Registers an spi_device for each child node of controller node which
2011 * represents a valid SPI slave.
2013 static void of_register_spi_devices(struct spi_controller
*ctlr
)
2015 struct spi_device
*spi
;
2016 struct device_node
*nc
;
2018 if (!ctlr
->dev
.of_node
)
2021 for_each_available_child_of_node(ctlr
->dev
.of_node
, nc
) {
2022 if (of_node_test_and_set_flag(nc
, OF_POPULATED
))
2024 spi
= of_register_spi_device(ctlr
, nc
);
2026 dev_warn(&ctlr
->dev
,
2027 "Failed to create SPI device for %pOF\n", nc
);
2028 of_node_clear_flag(nc
, OF_POPULATED
);
2033 static void of_register_spi_devices(struct spi_controller
*ctlr
) { }
2037 struct acpi_spi_lookup
{
2038 struct spi_controller
*ctlr
;
2046 static void acpi_spi_parse_apple_properties(struct acpi_device
*dev
,
2047 struct acpi_spi_lookup
*lookup
)
2049 const union acpi_object
*obj
;
2051 if (!x86_apple_machine
)
2054 if (!acpi_dev_get_property(dev
, "spiSclkPeriod", ACPI_TYPE_BUFFER
, &obj
)
2055 && obj
->buffer
.length
>= 4)
2056 lookup
->max_speed_hz
= NSEC_PER_SEC
/ *(u32
*)obj
->buffer
.pointer
;
2058 if (!acpi_dev_get_property(dev
, "spiWordSize", ACPI_TYPE_BUFFER
, &obj
)
2059 && obj
->buffer
.length
== 8)
2060 lookup
->bits_per_word
= *(u64
*)obj
->buffer
.pointer
;
2062 if (!acpi_dev_get_property(dev
, "spiBitOrder", ACPI_TYPE_BUFFER
, &obj
)
2063 && obj
->buffer
.length
== 8 && !*(u64
*)obj
->buffer
.pointer
)
2064 lookup
->mode
|= SPI_LSB_FIRST
;
2066 if (!acpi_dev_get_property(dev
, "spiSPO", ACPI_TYPE_BUFFER
, &obj
)
2067 && obj
->buffer
.length
== 8 && *(u64
*)obj
->buffer
.pointer
)
2068 lookup
->mode
|= SPI_CPOL
;
2070 if (!acpi_dev_get_property(dev
, "spiSPH", ACPI_TYPE_BUFFER
, &obj
)
2071 && obj
->buffer
.length
== 8 && *(u64
*)obj
->buffer
.pointer
)
2072 lookup
->mode
|= SPI_CPHA
;
2075 static int acpi_spi_add_resource(struct acpi_resource
*ares
, void *data
)
2077 struct acpi_spi_lookup
*lookup
= data
;
2078 struct spi_controller
*ctlr
= lookup
->ctlr
;
2080 if (ares
->type
== ACPI_RESOURCE_TYPE_SERIAL_BUS
) {
2081 struct acpi_resource_spi_serialbus
*sb
;
2082 acpi_handle parent_handle
;
2085 sb
= &ares
->data
.spi_serial_bus
;
2086 if (sb
->type
== ACPI_RESOURCE_SERIAL_TYPE_SPI
) {
2088 status
= acpi_get_handle(NULL
,
2089 sb
->resource_source
.string_ptr
,
2092 if (ACPI_FAILURE(status
) ||
2093 ACPI_HANDLE(ctlr
->dev
.parent
) != parent_handle
)
2097 * ACPI DeviceSelection numbering is handled by the
2098 * host controller driver in Windows and can vary
2099 * from driver to driver. In Linux we always expect
2100 * 0 .. max - 1 so we need to ask the driver to
2101 * translate between the two schemes.
2103 if (ctlr
->fw_translate_cs
) {
2104 int cs
= ctlr
->fw_translate_cs(ctlr
,
2105 sb
->device_selection
);
2108 lookup
->chip_select
= cs
;
2110 lookup
->chip_select
= sb
->device_selection
;
2113 lookup
->max_speed_hz
= sb
->connection_speed
;
2115 if (sb
->clock_phase
== ACPI_SPI_SECOND_PHASE
)
2116 lookup
->mode
|= SPI_CPHA
;
2117 if (sb
->clock_polarity
== ACPI_SPI_START_HIGH
)
2118 lookup
->mode
|= SPI_CPOL
;
2119 if (sb
->device_polarity
== ACPI_SPI_ACTIVE_HIGH
)
2120 lookup
->mode
|= SPI_CS_HIGH
;
2122 } else if (lookup
->irq
< 0) {
2125 if (acpi_dev_resource_interrupt(ares
, 0, &r
))
2126 lookup
->irq
= r
.start
;
2129 /* Always tell the ACPI core to skip this resource */
2133 static acpi_status
acpi_register_spi_device(struct spi_controller
*ctlr
,
2134 struct acpi_device
*adev
)
2136 acpi_handle parent_handle
= NULL
;
2137 struct list_head resource_list
;
2138 struct acpi_spi_lookup lookup
= {};
2139 struct spi_device
*spi
;
2142 if (acpi_bus_get_status(adev
) || !adev
->status
.present
||
2143 acpi_device_enumerated(adev
))
2149 INIT_LIST_HEAD(&resource_list
);
2150 ret
= acpi_dev_get_resources(adev
, &resource_list
,
2151 acpi_spi_add_resource
, &lookup
);
2152 acpi_dev_free_resource_list(&resource_list
);
2155 /* found SPI in _CRS but it points to another controller */
2158 if (!lookup
.max_speed_hz
&&
2159 !ACPI_FAILURE(acpi_get_parent(adev
->handle
, &parent_handle
)) &&
2160 ACPI_HANDLE(ctlr
->dev
.parent
) == parent_handle
) {
2161 /* Apple does not use _CRS but nested devices for SPI slaves */
2162 acpi_spi_parse_apple_properties(adev
, &lookup
);
2165 if (!lookup
.max_speed_hz
)
2168 spi
= spi_alloc_device(ctlr
);
2170 dev_err(&ctlr
->dev
, "failed to allocate SPI device for %s\n",
2171 dev_name(&adev
->dev
));
2172 return AE_NO_MEMORY
;
2176 ACPI_COMPANION_SET(&spi
->dev
, adev
);
2177 spi
->max_speed_hz
= lookup
.max_speed_hz
;
2178 spi
->mode
|= lookup
.mode
;
2179 spi
->irq
= lookup
.irq
;
2180 spi
->bits_per_word
= lookup
.bits_per_word
;
2181 spi
->chip_select
= lookup
.chip_select
;
2183 acpi_set_modalias(adev
, acpi_device_hid(adev
), spi
->modalias
,
2184 sizeof(spi
->modalias
));
2187 spi
->irq
= acpi_dev_gpio_irq_get(adev
, 0);
2189 acpi_device_set_enumerated(adev
);
2191 adev
->power
.flags
.ignore_parent
= true;
2192 if (spi_add_device(spi
)) {
2193 adev
->power
.flags
.ignore_parent
= false;
2194 dev_err(&ctlr
->dev
, "failed to add SPI device %s from ACPI\n",
2195 dev_name(&adev
->dev
));
2202 static acpi_status
acpi_spi_add_device(acpi_handle handle
, u32 level
,
2203 void *data
, void **return_value
)
2205 struct spi_controller
*ctlr
= data
;
2206 struct acpi_device
*adev
;
2208 if (acpi_bus_get_device(handle
, &adev
))
2211 return acpi_register_spi_device(ctlr
, adev
);
2214 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32
2216 static void acpi_register_spi_devices(struct spi_controller
*ctlr
)
2221 handle
= ACPI_HANDLE(ctlr
->dev
.parent
);
2225 status
= acpi_walk_namespace(ACPI_TYPE_DEVICE
, ACPI_ROOT_OBJECT
,
2226 SPI_ACPI_ENUMERATE_MAX_DEPTH
,
2227 acpi_spi_add_device
, NULL
, ctlr
, NULL
);
2228 if (ACPI_FAILURE(status
))
2229 dev_warn(&ctlr
->dev
, "failed to enumerate SPI slaves\n");
2232 static inline void acpi_register_spi_devices(struct spi_controller
*ctlr
) {}
2233 #endif /* CONFIG_ACPI */
2235 static void spi_controller_release(struct device
*dev
)
2237 struct spi_controller
*ctlr
;
2239 ctlr
= container_of(dev
, struct spi_controller
, dev
);
2243 static struct class spi_master_class
= {
2244 .name
= "spi_master",
2245 .owner
= THIS_MODULE
,
2246 .dev_release
= spi_controller_release
,
2247 .dev_groups
= spi_master_groups
,
2250 #ifdef CONFIG_SPI_SLAVE
2252 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2254 * @spi: device used for the current transfer
2256 int spi_slave_abort(struct spi_device
*spi
)
2258 struct spi_controller
*ctlr
= spi
->controller
;
2260 if (spi_controller_is_slave(ctlr
) && ctlr
->slave_abort
)
2261 return ctlr
->slave_abort(ctlr
);
2265 EXPORT_SYMBOL_GPL(spi_slave_abort
);
2267 static int match_true(struct device
*dev
, void *data
)
2272 static ssize_t
slave_show(struct device
*dev
, struct device_attribute
*attr
,
2275 struct spi_controller
*ctlr
= container_of(dev
, struct spi_controller
,
2277 struct device
*child
;
2279 child
= device_find_child(&ctlr
->dev
, NULL
, match_true
);
2280 return sprintf(buf
, "%s\n",
2281 child
? to_spi_device(child
)->modalias
: NULL
);
2284 static ssize_t
slave_store(struct device
*dev
, struct device_attribute
*attr
,
2285 const char *buf
, size_t count
)
2287 struct spi_controller
*ctlr
= container_of(dev
, struct spi_controller
,
2289 struct spi_device
*spi
;
2290 struct device
*child
;
2294 rc
= sscanf(buf
, "%31s", name
);
2295 if (rc
!= 1 || !name
[0])
2298 child
= device_find_child(&ctlr
->dev
, NULL
, match_true
);
2300 /* Remove registered slave */
2301 device_unregister(child
);
2305 if (strcmp(name
, "(null)")) {
2306 /* Register new slave */
2307 spi
= spi_alloc_device(ctlr
);
2311 strlcpy(spi
->modalias
, name
, sizeof(spi
->modalias
));
2313 rc
= spi_add_device(spi
);
2323 static DEVICE_ATTR_RW(slave
);
2325 static struct attribute
*spi_slave_attrs
[] = {
2326 &dev_attr_slave
.attr
,
2330 static const struct attribute_group spi_slave_group
= {
2331 .attrs
= spi_slave_attrs
,
2334 static const struct attribute_group
*spi_slave_groups
[] = {
2335 &spi_controller_statistics_group
,
2340 static struct class spi_slave_class
= {
2341 .name
= "spi_slave",
2342 .owner
= THIS_MODULE
,
2343 .dev_release
= spi_controller_release
,
2344 .dev_groups
= spi_slave_groups
,
2347 extern struct class spi_slave_class
; /* dummy */
2351 * __spi_alloc_controller - allocate an SPI master or slave controller
2352 * @dev: the controller, possibly using the platform_bus
2353 * @size: how much zeroed driver-private data to allocate; the pointer to this
2354 * memory is in the driver_data field of the returned device, accessible
2355 * with spi_controller_get_devdata(); the memory is cacheline aligned;
2356 * drivers granting DMA access to portions of their private data need to
2357 * round up @size using ALIGN(size, dma_get_cache_alignment()).
2358 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2359 * slave (true) controller
2360 * Context: can sleep
2362 * This call is used only by SPI controller drivers, which are the
2363 * only ones directly touching chip registers. It's how they allocate
2364 * an spi_controller structure, prior to calling spi_register_controller().
2366 * This must be called from context that can sleep.
2368 * The caller is responsible for assigning the bus number and initializing the
2369 * controller's methods before calling spi_register_controller(); and (after
2370 * errors adding the device) calling spi_controller_put() to prevent a memory
2373 * Return: the SPI controller structure on success, else NULL.
2375 struct spi_controller
*__spi_alloc_controller(struct device
*dev
,
2376 unsigned int size
, bool slave
)
2378 struct spi_controller
*ctlr
;
2379 size_t ctlr_size
= ALIGN(sizeof(*ctlr
), dma_get_cache_alignment());
2384 ctlr
= kzalloc(size
+ ctlr_size
, GFP_KERNEL
);
2388 device_initialize(&ctlr
->dev
);
2390 ctlr
->num_chipselect
= 1;
2391 ctlr
->slave
= slave
;
2392 if (IS_ENABLED(CONFIG_SPI_SLAVE
) && slave
)
2393 ctlr
->dev
.class = &spi_slave_class
;
2395 ctlr
->dev
.class = &spi_master_class
;
2396 ctlr
->dev
.parent
= dev
;
2397 pm_suspend_ignore_children(&ctlr
->dev
, true);
2398 spi_controller_set_devdata(ctlr
, (void *)ctlr
+ ctlr_size
);
2402 EXPORT_SYMBOL_GPL(__spi_alloc_controller
);
2405 static int of_spi_get_gpio_numbers(struct spi_controller
*ctlr
)
2408 struct device_node
*np
= ctlr
->dev
.of_node
;
2413 nb
= of_gpio_named_count(np
, "cs-gpios");
2414 ctlr
->num_chipselect
= max_t(int, nb
, ctlr
->num_chipselect
);
2416 /* Return error only for an incorrectly formed cs-gpios property */
2417 if (nb
== 0 || nb
== -ENOENT
)
2422 cs
= devm_kcalloc(&ctlr
->dev
, ctlr
->num_chipselect
, sizeof(int),
2424 ctlr
->cs_gpios
= cs
;
2426 if (!ctlr
->cs_gpios
)
2429 for (i
= 0; i
< ctlr
->num_chipselect
; i
++)
2432 for (i
= 0; i
< nb
; i
++)
2433 cs
[i
] = of_get_named_gpio(np
, "cs-gpios", i
);
2438 static int of_spi_get_gpio_numbers(struct spi_controller
*ctlr
)
2445 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2446 * @ctlr: The SPI master to grab GPIO descriptors for
2448 static int spi_get_gpio_descs(struct spi_controller
*ctlr
)
2451 struct gpio_desc
**cs
;
2452 struct device
*dev
= &ctlr
->dev
;
2453 unsigned long native_cs_mask
= 0;
2454 unsigned int num_cs_gpios
= 0;
2456 nb
= gpiod_count(dev
, "cs");
2457 ctlr
->num_chipselect
= max_t(int, nb
, ctlr
->num_chipselect
);
2459 /* No GPIOs at all is fine, else return the error */
2460 if (nb
== 0 || nb
== -ENOENT
)
2465 cs
= devm_kcalloc(dev
, ctlr
->num_chipselect
, sizeof(*cs
),
2469 ctlr
->cs_gpiods
= cs
;
2471 for (i
= 0; i
< nb
; i
++) {
2473 * Most chipselects are active low, the inverted
2474 * semantics are handled by special quirks in gpiolib,
2475 * so initializing them GPIOD_OUT_LOW here means
2476 * "unasserted", in most cases this will drive the physical
2479 cs
[i
] = devm_gpiod_get_index_optional(dev
, "cs", i
,
2482 return PTR_ERR(cs
[i
]);
2486 * If we find a CS GPIO, name it after the device and
2491 gpioname
= devm_kasprintf(dev
, GFP_KERNEL
, "%s CS%d",
2495 gpiod_set_consumer_name(cs
[i
], gpioname
);
2500 if (ctlr
->max_native_cs
&& i
>= ctlr
->max_native_cs
) {
2501 dev_err(dev
, "Invalid native chip select %d\n", i
);
2504 native_cs_mask
|= BIT(i
);
2507 ctlr
->unused_native_cs
= ffz(native_cs_mask
);
2508 if (num_cs_gpios
&& ctlr
->max_native_cs
&&
2509 ctlr
->unused_native_cs
>= ctlr
->max_native_cs
) {
2510 dev_err(dev
, "No unused native chip select available\n");
2517 static int spi_controller_check_ops(struct spi_controller
*ctlr
)
2520 * The controller may implement only the high-level SPI-memory like
2521 * operations if it does not support regular SPI transfers, and this is
2523 * If ->mem_ops is NULL, we request that at least one of the
2524 * ->transfer_xxx() method be implemented.
2526 if (ctlr
->mem_ops
) {
2527 if (!ctlr
->mem_ops
->exec_op
)
2529 } else if (!ctlr
->transfer
&& !ctlr
->transfer_one
&&
2530 !ctlr
->transfer_one_message
) {
2538 * spi_register_controller - register SPI master or slave controller
2539 * @ctlr: initialized master, originally from spi_alloc_master() or
2541 * Context: can sleep
2543 * SPI controllers connect to their drivers using some non-SPI bus,
2544 * such as the platform bus. The final stage of probe() in that code
2545 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2547 * SPI controllers use board specific (often SOC specific) bus numbers,
2548 * and board-specific addressing for SPI devices combines those numbers
2549 * with chip select numbers. Since SPI does not directly support dynamic
2550 * device identification, boards need configuration tables telling which
2551 * chip is at which address.
2553 * This must be called from context that can sleep. It returns zero on
2554 * success, else a negative error code (dropping the controller's refcount).
2555 * After a successful return, the caller is responsible for calling
2556 * spi_unregister_controller().
2558 * Return: zero on success, else a negative error code.
2560 int spi_register_controller(struct spi_controller
*ctlr
)
2562 struct device
*dev
= ctlr
->dev
.parent
;
2563 struct boardinfo
*bi
;
2565 int id
, first_dynamic
;
2571 * Make sure all necessary hooks are implemented before registering
2572 * the SPI controller.
2574 status
= spi_controller_check_ops(ctlr
);
2578 if (ctlr
->bus_num
>= 0) {
2579 /* devices with a fixed bus num must check-in with the num */
2580 mutex_lock(&board_lock
);
2581 id
= idr_alloc(&spi_master_idr
, ctlr
, ctlr
->bus_num
,
2582 ctlr
->bus_num
+ 1, GFP_KERNEL
);
2583 mutex_unlock(&board_lock
);
2584 if (WARN(id
< 0, "couldn't get idr"))
2585 return id
== -ENOSPC
? -EBUSY
: id
;
2587 } else if (ctlr
->dev
.of_node
) {
2588 /* allocate dynamic bus number using Linux idr */
2589 id
= of_alias_get_id(ctlr
->dev
.of_node
, "spi");
2592 mutex_lock(&board_lock
);
2593 id
= idr_alloc(&spi_master_idr
, ctlr
, ctlr
->bus_num
,
2594 ctlr
->bus_num
+ 1, GFP_KERNEL
);
2595 mutex_unlock(&board_lock
);
2596 if (WARN(id
< 0, "couldn't get idr"))
2597 return id
== -ENOSPC
? -EBUSY
: id
;
2600 if (ctlr
->bus_num
< 0) {
2601 first_dynamic
= of_alias_get_highest_id("spi");
2602 if (first_dynamic
< 0)
2607 mutex_lock(&board_lock
);
2608 id
= idr_alloc(&spi_master_idr
, ctlr
, first_dynamic
,
2610 mutex_unlock(&board_lock
);
2611 if (WARN(id
< 0, "couldn't get idr"))
2615 INIT_LIST_HEAD(&ctlr
->queue
);
2616 spin_lock_init(&ctlr
->queue_lock
);
2617 spin_lock_init(&ctlr
->bus_lock_spinlock
);
2618 mutex_init(&ctlr
->bus_lock_mutex
);
2619 mutex_init(&ctlr
->io_mutex
);
2620 ctlr
->bus_lock_flag
= 0;
2621 init_completion(&ctlr
->xfer_completion
);
2622 if (!ctlr
->max_dma_len
)
2623 ctlr
->max_dma_len
= INT_MAX
;
2625 /* register the device, then userspace will see it.
2626 * registration fails if the bus ID is in use.
2628 dev_set_name(&ctlr
->dev
, "spi%u", ctlr
->bus_num
);
2630 if (!spi_controller_is_slave(ctlr
)) {
2631 if (ctlr
->use_gpio_descriptors
) {
2632 status
= spi_get_gpio_descs(ctlr
);
2636 * A controller using GPIO descriptors always
2637 * supports SPI_CS_HIGH if need be.
2639 ctlr
->mode_bits
|= SPI_CS_HIGH
;
2641 /* Legacy code path for GPIOs from DT */
2642 status
= of_spi_get_gpio_numbers(ctlr
);
2649 * Even if it's just one always-selected device, there must
2650 * be at least one chipselect.
2652 if (!ctlr
->num_chipselect
) {
2657 status
= device_add(&ctlr
->dev
);
2660 dev_dbg(dev
, "registered %s %s\n",
2661 spi_controller_is_slave(ctlr
) ? "slave" : "master",
2662 dev_name(&ctlr
->dev
));
2665 * If we're using a queued driver, start the queue. Note that we don't
2666 * need the queueing logic if the driver is only supporting high-level
2667 * memory operations.
2669 if (ctlr
->transfer
) {
2670 dev_info(dev
, "controller is unqueued, this is deprecated\n");
2671 } else if (ctlr
->transfer_one
|| ctlr
->transfer_one_message
) {
2672 status
= spi_controller_initialize_queue(ctlr
);
2674 device_del(&ctlr
->dev
);
2678 /* add statistics */
2679 spin_lock_init(&ctlr
->statistics
.lock
);
2681 mutex_lock(&board_lock
);
2682 list_add_tail(&ctlr
->list
, &spi_controller_list
);
2683 list_for_each_entry(bi
, &board_list
, list
)
2684 spi_match_controller_to_boardinfo(ctlr
, &bi
->board_info
);
2685 mutex_unlock(&board_lock
);
2687 /* Register devices from the device tree and ACPI */
2688 of_register_spi_devices(ctlr
);
2689 acpi_register_spi_devices(ctlr
);
2693 mutex_lock(&board_lock
);
2694 idr_remove(&spi_master_idr
, ctlr
->bus_num
);
2695 mutex_unlock(&board_lock
);
2698 EXPORT_SYMBOL_GPL(spi_register_controller
);
2700 static void devm_spi_unregister(struct device
*dev
, void *res
)
2702 spi_unregister_controller(*(struct spi_controller
**)res
);
2706 * devm_spi_register_controller - register managed SPI master or slave
2708 * @dev: device managing SPI controller
2709 * @ctlr: initialized controller, originally from spi_alloc_master() or
2711 * Context: can sleep
2713 * Register a SPI device as with spi_register_controller() which will
2714 * automatically be unregistered and freed.
2716 * Return: zero on success, else a negative error code.
2718 int devm_spi_register_controller(struct device
*dev
,
2719 struct spi_controller
*ctlr
)
2721 struct spi_controller
**ptr
;
2724 ptr
= devres_alloc(devm_spi_unregister
, sizeof(*ptr
), GFP_KERNEL
);
2728 ret
= spi_register_controller(ctlr
);
2731 devres_add(dev
, ptr
);
2738 EXPORT_SYMBOL_GPL(devm_spi_register_controller
);
2740 static int __unregister(struct device
*dev
, void *null
)
2742 spi_unregister_device(to_spi_device(dev
));
2747 * spi_unregister_controller - unregister SPI master or slave controller
2748 * @ctlr: the controller being unregistered
2749 * Context: can sleep
2751 * This call is used only by SPI controller drivers, which are the
2752 * only ones directly touching chip registers.
2754 * This must be called from context that can sleep.
2756 * Note that this function also drops a reference to the controller.
2758 void spi_unregister_controller(struct spi_controller
*ctlr
)
2760 struct spi_controller
*found
;
2761 int id
= ctlr
->bus_num
;
2763 /* First make sure that this controller was ever added */
2764 mutex_lock(&board_lock
);
2765 found
= idr_find(&spi_master_idr
, id
);
2766 mutex_unlock(&board_lock
);
2768 if (spi_destroy_queue(ctlr
))
2769 dev_err(&ctlr
->dev
, "queue remove failed\n");
2771 mutex_lock(&board_lock
);
2772 list_del(&ctlr
->list
);
2773 mutex_unlock(&board_lock
);
2775 device_for_each_child(&ctlr
->dev
, NULL
, __unregister
);
2776 device_unregister(&ctlr
->dev
);
2778 mutex_lock(&board_lock
);
2780 idr_remove(&spi_master_idr
, id
);
2781 mutex_unlock(&board_lock
);
2783 EXPORT_SYMBOL_GPL(spi_unregister_controller
);
2785 int spi_controller_suspend(struct spi_controller
*ctlr
)
2789 /* Basically no-ops for non-queued controllers */
2793 ret
= spi_stop_queue(ctlr
);
2795 dev_err(&ctlr
->dev
, "queue stop failed\n");
2799 EXPORT_SYMBOL_GPL(spi_controller_suspend
);
2801 int spi_controller_resume(struct spi_controller
*ctlr
)
2808 ret
= spi_start_queue(ctlr
);
2810 dev_err(&ctlr
->dev
, "queue restart failed\n");
2814 EXPORT_SYMBOL_GPL(spi_controller_resume
);
2816 static int __spi_controller_match(struct device
*dev
, const void *data
)
2818 struct spi_controller
*ctlr
;
2819 const u16
*bus_num
= data
;
2821 ctlr
= container_of(dev
, struct spi_controller
, dev
);
2822 return ctlr
->bus_num
== *bus_num
;
2826 * spi_busnum_to_master - look up master associated with bus_num
2827 * @bus_num: the master's bus number
2828 * Context: can sleep
2830 * This call may be used with devices that are registered after
2831 * arch init time. It returns a refcounted pointer to the relevant
2832 * spi_controller (which the caller must release), or NULL if there is
2833 * no such master registered.
2835 * Return: the SPI master structure on success, else NULL.
2837 struct spi_controller
*spi_busnum_to_master(u16 bus_num
)
2840 struct spi_controller
*ctlr
= NULL
;
2842 dev
= class_find_device(&spi_master_class
, NULL
, &bus_num
,
2843 __spi_controller_match
);
2845 ctlr
= container_of(dev
, struct spi_controller
, dev
);
2846 /* reference got in class_find_device */
2849 EXPORT_SYMBOL_GPL(spi_busnum_to_master
);
2851 /*-------------------------------------------------------------------------*/
2853 /* Core methods for SPI resource management */
2856 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2857 * during the processing of a spi_message while using
2859 * @spi: the spi device for which we allocate memory
2860 * @release: the release code to execute for this resource
2861 * @size: size to alloc and return
2862 * @gfp: GFP allocation flags
2864 * Return: the pointer to the allocated data
2866 * This may get enhanced in the future to allocate from a memory pool
2867 * of the @spi_device or @spi_controller to avoid repeated allocations.
2869 void *spi_res_alloc(struct spi_device
*spi
,
2870 spi_res_release_t release
,
2871 size_t size
, gfp_t gfp
)
2873 struct spi_res
*sres
;
2875 sres
= kzalloc(sizeof(*sres
) + size
, gfp
);
2879 INIT_LIST_HEAD(&sres
->entry
);
2880 sres
->release
= release
;
2884 EXPORT_SYMBOL_GPL(spi_res_alloc
);
2887 * spi_res_free - free an spi resource
2888 * @res: pointer to the custom data of a resource
2891 void spi_res_free(void *res
)
2893 struct spi_res
*sres
= container_of(res
, struct spi_res
, data
);
2898 WARN_ON(!list_empty(&sres
->entry
));
2901 EXPORT_SYMBOL_GPL(spi_res_free
);
2904 * spi_res_add - add a spi_res to the spi_message
2905 * @message: the spi message
2906 * @res: the spi_resource
2908 void spi_res_add(struct spi_message
*message
, void *res
)
2910 struct spi_res
*sres
= container_of(res
, struct spi_res
, data
);
2912 WARN_ON(!list_empty(&sres
->entry
));
2913 list_add_tail(&sres
->entry
, &message
->resources
);
2915 EXPORT_SYMBOL_GPL(spi_res_add
);
2918 * spi_res_release - release all spi resources for this message
2919 * @ctlr: the @spi_controller
2920 * @message: the @spi_message
2922 void spi_res_release(struct spi_controller
*ctlr
, struct spi_message
*message
)
2924 struct spi_res
*res
, *tmp
;
2926 list_for_each_entry_safe_reverse(res
, tmp
, &message
->resources
, entry
) {
2928 res
->release(ctlr
, message
, res
->data
);
2930 list_del(&res
->entry
);
2935 EXPORT_SYMBOL_GPL(spi_res_release
);
2937 /*-------------------------------------------------------------------------*/
2939 /* Core methods for spi_message alterations */
2941 static void __spi_replace_transfers_release(struct spi_controller
*ctlr
,
2942 struct spi_message
*msg
,
2945 struct spi_replaced_transfers
*rxfer
= res
;
2948 /* call extra callback if requested */
2950 rxfer
->release(ctlr
, msg
, res
);
2952 /* insert replaced transfers back into the message */
2953 list_splice(&rxfer
->replaced_transfers
, rxfer
->replaced_after
);
2955 /* remove the formerly inserted entries */
2956 for (i
= 0; i
< rxfer
->inserted
; i
++)
2957 list_del(&rxfer
->inserted_transfers
[i
].transfer_list
);
2961 * spi_replace_transfers - replace transfers with several transfers
2962 * and register change with spi_message.resources
2963 * @msg: the spi_message we work upon
2964 * @xfer_first: the first spi_transfer we want to replace
2965 * @remove: number of transfers to remove
2966 * @insert: the number of transfers we want to insert instead
2967 * @release: extra release code necessary in some circumstances
2968 * @extradatasize: extra data to allocate (with alignment guarantees
2969 * of struct @spi_transfer)
2972 * Returns: pointer to @spi_replaced_transfers,
2973 * PTR_ERR(...) in case of errors.
2975 struct spi_replaced_transfers
*spi_replace_transfers(
2976 struct spi_message
*msg
,
2977 struct spi_transfer
*xfer_first
,
2980 spi_replaced_release_t release
,
2981 size_t extradatasize
,
2984 struct spi_replaced_transfers
*rxfer
;
2985 struct spi_transfer
*xfer
;
2988 /* allocate the structure using spi_res */
2989 rxfer
= spi_res_alloc(msg
->spi
, __spi_replace_transfers_release
,
2990 struct_size(rxfer
, inserted_transfers
, insert
)
2994 return ERR_PTR(-ENOMEM
);
2996 /* the release code to invoke before running the generic release */
2997 rxfer
->release
= release
;
2999 /* assign extradata */
3002 &rxfer
->inserted_transfers
[insert
];
3004 /* init the replaced_transfers list */
3005 INIT_LIST_HEAD(&rxfer
->replaced_transfers
);
3007 /* assign the list_entry after which we should reinsert
3008 * the @replaced_transfers - it may be spi_message.messages!
3010 rxfer
->replaced_after
= xfer_first
->transfer_list
.prev
;
3012 /* remove the requested number of transfers */
3013 for (i
= 0; i
< remove
; i
++) {
3014 /* if the entry after replaced_after it is msg->transfers
3015 * then we have been requested to remove more transfers
3016 * than are in the list
3018 if (rxfer
->replaced_after
->next
== &msg
->transfers
) {
3019 dev_err(&msg
->spi
->dev
,
3020 "requested to remove more spi_transfers than are available\n");
3021 /* insert replaced transfers back into the message */
3022 list_splice(&rxfer
->replaced_transfers
,
3023 rxfer
->replaced_after
);
3025 /* free the spi_replace_transfer structure */
3026 spi_res_free(rxfer
);
3028 /* and return with an error */
3029 return ERR_PTR(-EINVAL
);
3032 /* remove the entry after replaced_after from list of
3033 * transfers and add it to list of replaced_transfers
3035 list_move_tail(rxfer
->replaced_after
->next
,
3036 &rxfer
->replaced_transfers
);
3039 /* create copy of the given xfer with identical settings
3040 * based on the first transfer to get removed
3042 for (i
= 0; i
< insert
; i
++) {
3043 /* we need to run in reverse order */
3044 xfer
= &rxfer
->inserted_transfers
[insert
- 1 - i
];
3046 /* copy all spi_transfer data */
3047 memcpy(xfer
, xfer_first
, sizeof(*xfer
));
3050 list_add(&xfer
->transfer_list
, rxfer
->replaced_after
);
3052 /* clear cs_change and delay for all but the last */
3054 xfer
->cs_change
= false;
3055 xfer
->delay_usecs
= 0;
3056 xfer
->delay
.value
= 0;
3060 /* set up inserted */
3061 rxfer
->inserted
= insert
;
3063 /* and register it with spi_res/spi_message */
3064 spi_res_add(msg
, rxfer
);
3068 EXPORT_SYMBOL_GPL(spi_replace_transfers
);
3070 static int __spi_split_transfer_maxsize(struct spi_controller
*ctlr
,
3071 struct spi_message
*msg
,
3072 struct spi_transfer
**xferp
,
3076 struct spi_transfer
*xfer
= *xferp
, *xfers
;
3077 struct spi_replaced_transfers
*srt
;
3081 /* calculate how many we have to replace */
3082 count
= DIV_ROUND_UP(xfer
->len
, maxsize
);
3084 /* create replacement */
3085 srt
= spi_replace_transfers(msg
, xfer
, 1, count
, NULL
, 0, gfp
);
3087 return PTR_ERR(srt
);
3088 xfers
= srt
->inserted_transfers
;
3090 /* now handle each of those newly inserted spi_transfers
3091 * note that the replacements spi_transfers all are preset
3092 * to the same values as *xferp, so tx_buf, rx_buf and len
3093 * are all identical (as well as most others)
3094 * so we just have to fix up len and the pointers.
3096 * this also includes support for the depreciated
3097 * spi_message.is_dma_mapped interface
3100 /* the first transfer just needs the length modified, so we
3101 * run it outside the loop
3103 xfers
[0].len
= min_t(size_t, maxsize
, xfer
[0].len
);
3105 /* all the others need rx_buf/tx_buf also set */
3106 for (i
= 1, offset
= maxsize
; i
< count
; offset
+= maxsize
, i
++) {
3107 /* update rx_buf, tx_buf and dma */
3108 if (xfers
[i
].rx_buf
)
3109 xfers
[i
].rx_buf
+= offset
;
3110 if (xfers
[i
].rx_dma
)
3111 xfers
[i
].rx_dma
+= offset
;
3112 if (xfers
[i
].tx_buf
)
3113 xfers
[i
].tx_buf
+= offset
;
3114 if (xfers
[i
].tx_dma
)
3115 xfers
[i
].tx_dma
+= offset
;
3118 xfers
[i
].len
= min(maxsize
, xfers
[i
].len
- offset
);
3121 /* we set up xferp to the last entry we have inserted,
3122 * so that we skip those already split transfers
3124 *xferp
= &xfers
[count
- 1];
3126 /* increment statistics counters */
3127 SPI_STATISTICS_INCREMENT_FIELD(&ctlr
->statistics
,
3128 transfers_split_maxsize
);
3129 SPI_STATISTICS_INCREMENT_FIELD(&msg
->spi
->statistics
,
3130 transfers_split_maxsize
);
3136 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
3137 * when an individual transfer exceeds a
3139 * @ctlr: the @spi_controller for this transfer
3140 * @msg: the @spi_message to transform
3141 * @maxsize: the maximum when to apply this
3142 * @gfp: GFP allocation flags
3144 * Return: status of transformation
3146 int spi_split_transfers_maxsize(struct spi_controller
*ctlr
,
3147 struct spi_message
*msg
,
3151 struct spi_transfer
*xfer
;
3154 /* iterate over the transfer_list,
3155 * but note that xfer is advanced to the last transfer inserted
3156 * to avoid checking sizes again unnecessarily (also xfer does
3157 * potentiall belong to a different list by the time the
3158 * replacement has happened
3160 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
3161 if (xfer
->len
> maxsize
) {
3162 ret
= __spi_split_transfer_maxsize(ctlr
, msg
, &xfer
,
3171 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize
);
3173 /*-------------------------------------------------------------------------*/
3175 /* Core methods for SPI controller protocol drivers. Some of the
3176 * other core methods are currently defined as inline functions.
3179 static int __spi_validate_bits_per_word(struct spi_controller
*ctlr
,
3182 if (ctlr
->bits_per_word_mask
) {
3183 /* Only 32 bits fit in the mask */
3184 if (bits_per_word
> 32)
3186 if (!(ctlr
->bits_per_word_mask
& SPI_BPW_MASK(bits_per_word
)))
3194 * spi_setup - setup SPI mode and clock rate
3195 * @spi: the device whose settings are being modified
3196 * Context: can sleep, and no requests are queued to the device
3198 * SPI protocol drivers may need to update the transfer mode if the
3199 * device doesn't work with its default. They may likewise need
3200 * to update clock rates or word sizes from initial values. This function
3201 * changes those settings, and must be called from a context that can sleep.
3202 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3203 * effect the next time the device is selected and data is transferred to
3204 * or from it. When this function returns, the spi device is deselected.
3206 * Note that this call will fail if the protocol driver specifies an option
3207 * that the underlying controller or its driver does not support. For
3208 * example, not all hardware supports wire transfers using nine bit words,
3209 * LSB-first wire encoding, or active-high chipselects.
3211 * Return: zero on success, else a negative error code.
3213 int spi_setup(struct spi_device
*spi
)
3215 unsigned bad_bits
, ugly_bits
;
3218 /* check mode to prevent that DUAL and QUAD set at the same time
3220 if (((spi
->mode
& SPI_TX_DUAL
) && (spi
->mode
& SPI_TX_QUAD
)) ||
3221 ((spi
->mode
& SPI_RX_DUAL
) && (spi
->mode
& SPI_RX_QUAD
))) {
3223 "setup: can not select dual and quad at the same time\n");
3226 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3228 if ((spi
->mode
& SPI_3WIRE
) && (spi
->mode
&
3229 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_TX_OCTAL
|
3230 SPI_RX_DUAL
| SPI_RX_QUAD
| SPI_RX_OCTAL
)))
3232 /* help drivers fail *cleanly* when they need options
3233 * that aren't supported with their current controller
3234 * SPI_CS_WORD has a fallback software implementation,
3235 * so it is ignored here.
3237 bad_bits
= spi
->mode
& ~(spi
->controller
->mode_bits
| SPI_CS_WORD
);
3238 /* nothing prevents from working with active-high CS in case if it
3239 * is driven by GPIO.
3241 if (gpio_is_valid(spi
->cs_gpio
))
3242 bad_bits
&= ~SPI_CS_HIGH
;
3243 ugly_bits
= bad_bits
&
3244 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_TX_OCTAL
|
3245 SPI_RX_DUAL
| SPI_RX_QUAD
| SPI_RX_OCTAL
);
3248 "setup: ignoring unsupported mode bits %x\n",
3250 spi
->mode
&= ~ugly_bits
;
3251 bad_bits
&= ~ugly_bits
;
3254 dev_err(&spi
->dev
, "setup: unsupported mode bits %x\n",
3259 if (!spi
->bits_per_word
)
3260 spi
->bits_per_word
= 8;
3262 status
= __spi_validate_bits_per_word(spi
->controller
,
3263 spi
->bits_per_word
);
3267 if (!spi
->max_speed_hz
)
3268 spi
->max_speed_hz
= spi
->controller
->max_speed_hz
;
3270 if (spi
->controller
->setup
)
3271 status
= spi
->controller
->setup(spi
);
3273 if (spi
->controller
->auto_runtime_pm
&& spi
->controller
->set_cs
) {
3274 status
= pm_runtime_get_sync(spi
->controller
->dev
.parent
);
3276 pm_runtime_put_noidle(spi
->controller
->dev
.parent
);
3277 dev_err(&spi
->controller
->dev
, "Failed to power device: %d\n",
3283 * We do not want to return positive value from pm_runtime_get,
3284 * there are many instances of devices calling spi_setup() and
3285 * checking for a non-zero return value instead of a negative
3290 spi_set_cs(spi
, false);
3291 pm_runtime_mark_last_busy(spi
->controller
->dev
.parent
);
3292 pm_runtime_put_autosuspend(spi
->controller
->dev
.parent
);
3294 spi_set_cs(spi
, false);
3297 if (spi
->rt
&& !spi
->controller
->rt
) {
3298 spi
->controller
->rt
= true;
3299 spi_set_thread_rt(spi
->controller
);
3302 dev_dbg(&spi
->dev
, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3303 (int) (spi
->mode
& (SPI_CPOL
| SPI_CPHA
)),
3304 (spi
->mode
& SPI_CS_HIGH
) ? "cs_high, " : "",
3305 (spi
->mode
& SPI_LSB_FIRST
) ? "lsb, " : "",
3306 (spi
->mode
& SPI_3WIRE
) ? "3wire, " : "",
3307 (spi
->mode
& SPI_LOOP
) ? "loopback, " : "",
3308 spi
->bits_per_word
, spi
->max_speed_hz
,
3313 EXPORT_SYMBOL_GPL(spi_setup
);
3316 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3317 * @spi: the device that requires specific CS timing configuration
3318 * @setup: CS setup time specified via @spi_delay
3319 * @hold: CS hold time specified via @spi_delay
3320 * @inactive: CS inactive delay between transfers specified via @spi_delay
3322 * Return: zero on success, else a negative error code.
3324 int spi_set_cs_timing(struct spi_device
*spi
, struct spi_delay
*setup
,
3325 struct spi_delay
*hold
, struct spi_delay
*inactive
)
3329 if (spi
->controller
->set_cs_timing
)
3330 return spi
->controller
->set_cs_timing(spi
, setup
, hold
,
3333 if ((setup
&& setup
->unit
== SPI_DELAY_UNIT_SCK
) ||
3334 (hold
&& hold
->unit
== SPI_DELAY_UNIT_SCK
) ||
3335 (inactive
&& inactive
->unit
== SPI_DELAY_UNIT_SCK
)) {
3337 "Clock-cycle delays for CS not supported in SW mode\n");
3341 len
= sizeof(struct spi_delay
);
3343 /* copy delays to controller */
3345 memcpy(&spi
->controller
->cs_setup
, setup
, len
);
3347 memset(&spi
->controller
->cs_setup
, 0, len
);
3350 memcpy(&spi
->controller
->cs_hold
, hold
, len
);
3352 memset(&spi
->controller
->cs_hold
, 0, len
);
3355 memcpy(&spi
->controller
->cs_inactive
, inactive
, len
);
3357 memset(&spi
->controller
->cs_inactive
, 0, len
);
3361 EXPORT_SYMBOL_GPL(spi_set_cs_timing
);
3363 static int _spi_xfer_word_delay_update(struct spi_transfer
*xfer
,
3364 struct spi_device
*spi
)
3368 delay1
= spi_delay_to_ns(&xfer
->word_delay
, xfer
);
3372 delay2
= spi_delay_to_ns(&spi
->word_delay
, xfer
);
3376 if (delay1
< delay2
)
3377 memcpy(&xfer
->word_delay
, &spi
->word_delay
,
3378 sizeof(xfer
->word_delay
));
3383 static int __spi_validate(struct spi_device
*spi
, struct spi_message
*message
)
3385 struct spi_controller
*ctlr
= spi
->controller
;
3386 struct spi_transfer
*xfer
;
3389 if (list_empty(&message
->transfers
))
3392 /* If an SPI controller does not support toggling the CS line on each
3393 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3394 * for the CS line, we can emulate the CS-per-word hardware function by
3395 * splitting transfers into one-word transfers and ensuring that
3396 * cs_change is set for each transfer.
3398 if ((spi
->mode
& SPI_CS_WORD
) && (!(ctlr
->mode_bits
& SPI_CS_WORD
) ||
3400 gpio_is_valid(spi
->cs_gpio
))) {
3404 maxsize
= (spi
->bits_per_word
+ 7) / 8;
3406 /* spi_split_transfers_maxsize() requires message->spi */
3409 ret
= spi_split_transfers_maxsize(ctlr
, message
, maxsize
,
3414 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
3415 /* don't change cs_change on the last entry in the list */
3416 if (list_is_last(&xfer
->transfer_list
, &message
->transfers
))
3418 xfer
->cs_change
= 1;
3422 /* Half-duplex links include original MicroWire, and ones with
3423 * only one data pin like SPI_3WIRE (switches direction) or where
3424 * either MOSI or MISO is missing. They can also be caused by
3425 * software limitations.
3427 if ((ctlr
->flags
& SPI_CONTROLLER_HALF_DUPLEX
) ||
3428 (spi
->mode
& SPI_3WIRE
)) {
3429 unsigned flags
= ctlr
->flags
;
3431 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
3432 if (xfer
->rx_buf
&& xfer
->tx_buf
)
3434 if ((flags
& SPI_CONTROLLER_NO_TX
) && xfer
->tx_buf
)
3436 if ((flags
& SPI_CONTROLLER_NO_RX
) && xfer
->rx_buf
)
3442 * Set transfer bits_per_word and max speed as spi device default if
3443 * it is not set for this transfer.
3444 * Set transfer tx_nbits and rx_nbits as single transfer default
3445 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3446 * Ensure transfer word_delay is at least as long as that required by
3449 message
->frame_length
= 0;
3450 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
3451 xfer
->effective_speed_hz
= 0;
3452 message
->frame_length
+= xfer
->len
;
3453 if (!xfer
->bits_per_word
)
3454 xfer
->bits_per_word
= spi
->bits_per_word
;
3456 if (!xfer
->speed_hz
)
3457 xfer
->speed_hz
= spi
->max_speed_hz
;
3459 if (ctlr
->max_speed_hz
&& xfer
->speed_hz
> ctlr
->max_speed_hz
)
3460 xfer
->speed_hz
= ctlr
->max_speed_hz
;
3462 if (__spi_validate_bits_per_word(ctlr
, xfer
->bits_per_word
))
3466 * SPI transfer length should be multiple of SPI word size
3467 * where SPI word size should be power-of-two multiple
3469 if (xfer
->bits_per_word
<= 8)
3471 else if (xfer
->bits_per_word
<= 16)
3476 /* No partial transfers accepted */
3477 if (xfer
->len
% w_size
)
3480 if (xfer
->speed_hz
&& ctlr
->min_speed_hz
&&
3481 xfer
->speed_hz
< ctlr
->min_speed_hz
)
3484 if (xfer
->tx_buf
&& !xfer
->tx_nbits
)
3485 xfer
->tx_nbits
= SPI_NBITS_SINGLE
;
3486 if (xfer
->rx_buf
&& !xfer
->rx_nbits
)
3487 xfer
->rx_nbits
= SPI_NBITS_SINGLE
;
3488 /* check transfer tx/rx_nbits:
3489 * 1. check the value matches one of single, dual and quad
3490 * 2. check tx/rx_nbits match the mode in spi_device
3493 if (xfer
->tx_nbits
!= SPI_NBITS_SINGLE
&&
3494 xfer
->tx_nbits
!= SPI_NBITS_DUAL
&&
3495 xfer
->tx_nbits
!= SPI_NBITS_QUAD
)
3497 if ((xfer
->tx_nbits
== SPI_NBITS_DUAL
) &&
3498 !(spi
->mode
& (SPI_TX_DUAL
| SPI_TX_QUAD
)))
3500 if ((xfer
->tx_nbits
== SPI_NBITS_QUAD
) &&
3501 !(spi
->mode
& SPI_TX_QUAD
))
3504 /* check transfer rx_nbits */
3506 if (xfer
->rx_nbits
!= SPI_NBITS_SINGLE
&&
3507 xfer
->rx_nbits
!= SPI_NBITS_DUAL
&&
3508 xfer
->rx_nbits
!= SPI_NBITS_QUAD
)
3510 if ((xfer
->rx_nbits
== SPI_NBITS_DUAL
) &&
3511 !(spi
->mode
& (SPI_RX_DUAL
| SPI_RX_QUAD
)))
3513 if ((xfer
->rx_nbits
== SPI_NBITS_QUAD
) &&
3514 !(spi
->mode
& SPI_RX_QUAD
))
3518 if (_spi_xfer_word_delay_update(xfer
, spi
))
3522 message
->status
= -EINPROGRESS
;
3527 static int __spi_async(struct spi_device
*spi
, struct spi_message
*message
)
3529 struct spi_controller
*ctlr
= spi
->controller
;
3530 struct spi_transfer
*xfer
;
3533 * Some controllers do not support doing regular SPI transfers. Return
3534 * ENOTSUPP when this is the case.
3536 if (!ctlr
->transfer
)
3541 SPI_STATISTICS_INCREMENT_FIELD(&ctlr
->statistics
, spi_async
);
3542 SPI_STATISTICS_INCREMENT_FIELD(&spi
->statistics
, spi_async
);
3544 trace_spi_message_submit(message
);
3546 if (!ctlr
->ptp_sts_supported
) {
3547 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
3548 xfer
->ptp_sts_word_pre
= 0;
3549 ptp_read_system_prets(xfer
->ptp_sts
);
3553 return ctlr
->transfer(spi
, message
);
3557 * spi_async - asynchronous SPI transfer
3558 * @spi: device with which data will be exchanged
3559 * @message: describes the data transfers, including completion callback
3560 * Context: any (irqs may be blocked, etc)
3562 * This call may be used in_irq and other contexts which can't sleep,
3563 * as well as from task contexts which can sleep.
3565 * The completion callback is invoked in a context which can't sleep.
3566 * Before that invocation, the value of message->status is undefined.
3567 * When the callback is issued, message->status holds either zero (to
3568 * indicate complete success) or a negative error code. After that
3569 * callback returns, the driver which issued the transfer request may
3570 * deallocate the associated memory; it's no longer in use by any SPI
3571 * core or controller driver code.
3573 * Note that although all messages to a spi_device are handled in
3574 * FIFO order, messages may go to different devices in other orders.
3575 * Some device might be higher priority, or have various "hard" access
3576 * time requirements, for example.
3578 * On detection of any fault during the transfer, processing of
3579 * the entire message is aborted, and the device is deselected.
3580 * Until returning from the associated message completion callback,
3581 * no other spi_message queued to that device will be processed.
3582 * (This rule applies equally to all the synchronous transfer calls,
3583 * which are wrappers around this core asynchronous primitive.)
3585 * Return: zero on success, else a negative error code.
3587 int spi_async(struct spi_device
*spi
, struct spi_message
*message
)
3589 struct spi_controller
*ctlr
= spi
->controller
;
3591 unsigned long flags
;
3593 ret
= __spi_validate(spi
, message
);
3597 spin_lock_irqsave(&ctlr
->bus_lock_spinlock
, flags
);
3599 if (ctlr
->bus_lock_flag
)
3602 ret
= __spi_async(spi
, message
);
3604 spin_unlock_irqrestore(&ctlr
->bus_lock_spinlock
, flags
);
3608 EXPORT_SYMBOL_GPL(spi_async
);
3611 * spi_async_locked - version of spi_async with exclusive bus usage
3612 * @spi: device with which data will be exchanged
3613 * @message: describes the data transfers, including completion callback
3614 * Context: any (irqs may be blocked, etc)
3616 * This call may be used in_irq and other contexts which can't sleep,
3617 * as well as from task contexts which can sleep.
3619 * The completion callback is invoked in a context which can't sleep.
3620 * Before that invocation, the value of message->status is undefined.
3621 * When the callback is issued, message->status holds either zero (to
3622 * indicate complete success) or a negative error code. After that
3623 * callback returns, the driver which issued the transfer request may
3624 * deallocate the associated memory; it's no longer in use by any SPI
3625 * core or controller driver code.
3627 * Note that although all messages to a spi_device are handled in
3628 * FIFO order, messages may go to different devices in other orders.
3629 * Some device might be higher priority, or have various "hard" access
3630 * time requirements, for example.
3632 * On detection of any fault during the transfer, processing of
3633 * the entire message is aborted, and the device is deselected.
3634 * Until returning from the associated message completion callback,
3635 * no other spi_message queued to that device will be processed.
3636 * (This rule applies equally to all the synchronous transfer calls,
3637 * which are wrappers around this core asynchronous primitive.)
3639 * Return: zero on success, else a negative error code.
3641 int spi_async_locked(struct spi_device
*spi
, struct spi_message
*message
)
3643 struct spi_controller
*ctlr
= spi
->controller
;
3645 unsigned long flags
;
3647 ret
= __spi_validate(spi
, message
);
3651 spin_lock_irqsave(&ctlr
->bus_lock_spinlock
, flags
);
3653 ret
= __spi_async(spi
, message
);
3655 spin_unlock_irqrestore(&ctlr
->bus_lock_spinlock
, flags
);
3660 EXPORT_SYMBOL_GPL(spi_async_locked
);
3662 /*-------------------------------------------------------------------------*/
3664 /* Utility methods for SPI protocol drivers, layered on
3665 * top of the core. Some other utility methods are defined as
3669 static void spi_complete(void *arg
)
3674 static int __spi_sync(struct spi_device
*spi
, struct spi_message
*message
)
3676 DECLARE_COMPLETION_ONSTACK(done
);
3678 struct spi_controller
*ctlr
= spi
->controller
;
3679 unsigned long flags
;
3681 status
= __spi_validate(spi
, message
);
3685 message
->complete
= spi_complete
;
3686 message
->context
= &done
;
3689 SPI_STATISTICS_INCREMENT_FIELD(&ctlr
->statistics
, spi_sync
);
3690 SPI_STATISTICS_INCREMENT_FIELD(&spi
->statistics
, spi_sync
);
3692 /* If we're not using the legacy transfer method then we will
3693 * try to transfer in the calling context so special case.
3694 * This code would be less tricky if we could remove the
3695 * support for driver implemented message queues.
3697 if (ctlr
->transfer
== spi_queued_transfer
) {
3698 spin_lock_irqsave(&ctlr
->bus_lock_spinlock
, flags
);
3700 trace_spi_message_submit(message
);
3702 status
= __spi_queued_transfer(spi
, message
, false);
3704 spin_unlock_irqrestore(&ctlr
->bus_lock_spinlock
, flags
);
3706 status
= spi_async_locked(spi
, message
);
3710 /* Push out the messages in the calling context if we
3713 if (ctlr
->transfer
== spi_queued_transfer
) {
3714 SPI_STATISTICS_INCREMENT_FIELD(&ctlr
->statistics
,
3715 spi_sync_immediate
);
3716 SPI_STATISTICS_INCREMENT_FIELD(&spi
->statistics
,
3717 spi_sync_immediate
);
3718 __spi_pump_messages(ctlr
, false);
3721 wait_for_completion(&done
);
3722 status
= message
->status
;
3724 message
->context
= NULL
;
3729 * spi_sync - blocking/synchronous SPI data transfers
3730 * @spi: device with which data will be exchanged
3731 * @message: describes the data transfers
3732 * Context: can sleep
3734 * This call may only be used from a context that may sleep. The sleep
3735 * is non-interruptible, and has no timeout. Low-overhead controller
3736 * drivers may DMA directly into and out of the message buffers.
3738 * Note that the SPI device's chip select is active during the message,
3739 * and then is normally disabled between messages. Drivers for some
3740 * frequently-used devices may want to minimize costs of selecting a chip,
3741 * by leaving it selected in anticipation that the next message will go
3742 * to the same chip. (That may increase power usage.)
3744 * Also, the caller is guaranteeing that the memory associated with the
3745 * message will not be freed before this call returns.
3747 * Return: zero on success, else a negative error code.
3749 int spi_sync(struct spi_device
*spi
, struct spi_message
*message
)
3753 mutex_lock(&spi
->controller
->bus_lock_mutex
);
3754 ret
= __spi_sync(spi
, message
);
3755 mutex_unlock(&spi
->controller
->bus_lock_mutex
);
3759 EXPORT_SYMBOL_GPL(spi_sync
);
3762 * spi_sync_locked - version of spi_sync with exclusive bus usage
3763 * @spi: device with which data will be exchanged
3764 * @message: describes the data transfers
3765 * Context: can sleep
3767 * This call may only be used from a context that may sleep. The sleep
3768 * is non-interruptible, and has no timeout. Low-overhead controller
3769 * drivers may DMA directly into and out of the message buffers.
3771 * This call should be used by drivers that require exclusive access to the
3772 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3773 * be released by a spi_bus_unlock call when the exclusive access is over.
3775 * Return: zero on success, else a negative error code.
3777 int spi_sync_locked(struct spi_device
*spi
, struct spi_message
*message
)
3779 return __spi_sync(spi
, message
);
3781 EXPORT_SYMBOL_GPL(spi_sync_locked
);
3784 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3785 * @ctlr: SPI bus master that should be locked for exclusive bus access
3786 * Context: can sleep
3788 * This call may only be used from a context that may sleep. The sleep
3789 * is non-interruptible, and has no timeout.
3791 * This call should be used by drivers that require exclusive access to the
3792 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3793 * exclusive access is over. Data transfer must be done by spi_sync_locked
3794 * and spi_async_locked calls when the SPI bus lock is held.
3796 * Return: always zero.
3798 int spi_bus_lock(struct spi_controller
*ctlr
)
3800 unsigned long flags
;
3802 mutex_lock(&ctlr
->bus_lock_mutex
);
3804 spin_lock_irqsave(&ctlr
->bus_lock_spinlock
, flags
);
3805 ctlr
->bus_lock_flag
= 1;
3806 spin_unlock_irqrestore(&ctlr
->bus_lock_spinlock
, flags
);
3808 /* mutex remains locked until spi_bus_unlock is called */
3812 EXPORT_SYMBOL_GPL(spi_bus_lock
);
3815 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3816 * @ctlr: SPI bus master that was locked for exclusive bus access
3817 * Context: can sleep
3819 * This call may only be used from a context that may sleep. The sleep
3820 * is non-interruptible, and has no timeout.
3822 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3825 * Return: always zero.
3827 int spi_bus_unlock(struct spi_controller
*ctlr
)
3829 ctlr
->bus_lock_flag
= 0;
3831 mutex_unlock(&ctlr
->bus_lock_mutex
);
3835 EXPORT_SYMBOL_GPL(spi_bus_unlock
);
3837 /* portable code must never pass more than 32 bytes */
3838 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
3843 * spi_write_then_read - SPI synchronous write followed by read
3844 * @spi: device with which data will be exchanged
3845 * @txbuf: data to be written (need not be dma-safe)
3846 * @n_tx: size of txbuf, in bytes
3847 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3848 * @n_rx: size of rxbuf, in bytes
3849 * Context: can sleep
3851 * This performs a half duplex MicroWire style transaction with the
3852 * device, sending txbuf and then reading rxbuf. The return value
3853 * is zero for success, else a negative errno status code.
3854 * This call may only be used from a context that may sleep.
3856 * Parameters to this routine are always copied using a small buffer;
3857 * portable code should never use this for more than 32 bytes.
3858 * Performance-sensitive or bulk transfer code should instead use
3859 * spi_{async,sync}() calls with dma-safe buffers.
3861 * Return: zero on success, else a negative error code.
3863 int spi_write_then_read(struct spi_device
*spi
,
3864 const void *txbuf
, unsigned n_tx
,
3865 void *rxbuf
, unsigned n_rx
)
3867 static DEFINE_MUTEX(lock
);
3870 struct spi_message message
;
3871 struct spi_transfer x
[2];
3874 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3875 * copying here, (as a pure convenience thing), but we can
3876 * keep heap costs out of the hot path unless someone else is
3877 * using the pre-allocated buffer or the transfer is too large.
3879 if ((n_tx
+ n_rx
) > SPI_BUFSIZ
|| !mutex_trylock(&lock
)) {
3880 local_buf
= kmalloc(max((unsigned)SPI_BUFSIZ
, n_tx
+ n_rx
),
3881 GFP_KERNEL
| GFP_DMA
);
3888 spi_message_init(&message
);
3889 memset(x
, 0, sizeof(x
));
3892 spi_message_add_tail(&x
[0], &message
);
3896 spi_message_add_tail(&x
[1], &message
);
3899 memcpy(local_buf
, txbuf
, n_tx
);
3900 x
[0].tx_buf
= local_buf
;
3901 x
[1].rx_buf
= local_buf
+ n_tx
;
3904 status
= spi_sync(spi
, &message
);
3906 memcpy(rxbuf
, x
[1].rx_buf
, n_rx
);
3908 if (x
[0].tx_buf
== buf
)
3909 mutex_unlock(&lock
);
3915 EXPORT_SYMBOL_GPL(spi_write_then_read
);
3917 /*-------------------------------------------------------------------------*/
3919 #if IS_ENABLED(CONFIG_OF)
3920 /* must call put_device() when done with returned spi_device device */
3921 struct spi_device
*of_find_spi_device_by_node(struct device_node
*node
)
3923 struct device
*dev
= bus_find_device_by_of_node(&spi_bus_type
, node
);
3925 return dev
? to_spi_device(dev
) : NULL
;
3927 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node
);
3928 #endif /* IS_ENABLED(CONFIG_OF) */
3930 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3931 /* the spi controllers are not using spi_bus, so we find it with another way */
3932 static struct spi_controller
*of_find_spi_controller_by_node(struct device_node
*node
)
3936 dev
= class_find_device_by_of_node(&spi_master_class
, node
);
3937 if (!dev
&& IS_ENABLED(CONFIG_SPI_SLAVE
))
3938 dev
= class_find_device_by_of_node(&spi_slave_class
, node
);
3942 /* reference got in class_find_device */
3943 return container_of(dev
, struct spi_controller
, dev
);
3946 static int of_spi_notify(struct notifier_block
*nb
, unsigned long action
,
3949 struct of_reconfig_data
*rd
= arg
;
3950 struct spi_controller
*ctlr
;
3951 struct spi_device
*spi
;
3953 switch (of_reconfig_get_state_change(action
, arg
)) {
3954 case OF_RECONFIG_CHANGE_ADD
:
3955 ctlr
= of_find_spi_controller_by_node(rd
->dn
->parent
);
3957 return NOTIFY_OK
; /* not for us */
3959 if (of_node_test_and_set_flag(rd
->dn
, OF_POPULATED
)) {
3960 put_device(&ctlr
->dev
);
3964 spi
= of_register_spi_device(ctlr
, rd
->dn
);
3965 put_device(&ctlr
->dev
);
3968 pr_err("%s: failed to create for '%pOF'\n",
3970 of_node_clear_flag(rd
->dn
, OF_POPULATED
);
3971 return notifier_from_errno(PTR_ERR(spi
));
3975 case OF_RECONFIG_CHANGE_REMOVE
:
3976 /* already depopulated? */
3977 if (!of_node_check_flag(rd
->dn
, OF_POPULATED
))
3980 /* find our device by node */
3981 spi
= of_find_spi_device_by_node(rd
->dn
);
3983 return NOTIFY_OK
; /* no? not meant for us */
3985 /* unregister takes one ref away */
3986 spi_unregister_device(spi
);
3988 /* and put the reference of the find */
3989 put_device(&spi
->dev
);
3996 static struct notifier_block spi_of_notifier
= {
3997 .notifier_call
= of_spi_notify
,
3999 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4000 extern struct notifier_block spi_of_notifier
;
4001 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4003 #if IS_ENABLED(CONFIG_ACPI)
4004 static int spi_acpi_controller_match(struct device
*dev
, const void *data
)
4006 return ACPI_COMPANION(dev
->parent
) == data
;
4009 static struct spi_controller
*acpi_spi_find_controller_by_adev(struct acpi_device
*adev
)
4013 dev
= class_find_device(&spi_master_class
, NULL
, adev
,
4014 spi_acpi_controller_match
);
4015 if (!dev
&& IS_ENABLED(CONFIG_SPI_SLAVE
))
4016 dev
= class_find_device(&spi_slave_class
, NULL
, adev
,
4017 spi_acpi_controller_match
);
4021 return container_of(dev
, struct spi_controller
, dev
);
4024 static struct spi_device
*acpi_spi_find_device_by_adev(struct acpi_device
*adev
)
4028 dev
= bus_find_device_by_acpi_dev(&spi_bus_type
, adev
);
4029 return to_spi_device(dev
);
4032 static int acpi_spi_notify(struct notifier_block
*nb
, unsigned long value
,
4035 struct acpi_device
*adev
= arg
;
4036 struct spi_controller
*ctlr
;
4037 struct spi_device
*spi
;
4040 case ACPI_RECONFIG_DEVICE_ADD
:
4041 ctlr
= acpi_spi_find_controller_by_adev(adev
->parent
);
4045 acpi_register_spi_device(ctlr
, adev
);
4046 put_device(&ctlr
->dev
);
4048 case ACPI_RECONFIG_DEVICE_REMOVE
:
4049 if (!acpi_device_enumerated(adev
))
4052 spi
= acpi_spi_find_device_by_adev(adev
);
4056 spi_unregister_device(spi
);
4057 put_device(&spi
->dev
);
4064 static struct notifier_block spi_acpi_notifier
= {
4065 .notifier_call
= acpi_spi_notify
,
4068 extern struct notifier_block spi_acpi_notifier
;
4071 static int __init
spi_init(void)
4075 buf
= kmalloc(SPI_BUFSIZ
, GFP_KERNEL
);
4081 status
= bus_register(&spi_bus_type
);
4085 status
= class_register(&spi_master_class
);
4089 if (IS_ENABLED(CONFIG_SPI_SLAVE
)) {
4090 status
= class_register(&spi_slave_class
);
4095 if (IS_ENABLED(CONFIG_OF_DYNAMIC
))
4096 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier
));
4097 if (IS_ENABLED(CONFIG_ACPI
))
4098 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier
));
4103 class_unregister(&spi_master_class
);
4105 bus_unregister(&spi_bus_type
);
4113 /* board_info is normally registered in arch_initcall(),
4114 * but even essential drivers wait till later
4116 * REVISIT only boardinfo really needs static linking. the rest (device and
4117 * driver registration) _could_ be dynamically linked (modular) ... costs
4118 * include needing to have boardinfo data structures be much more public.
4120 postcore_initcall(spi_init
);