gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / thunderbolt / usb4.c
blob3d084cec136f552a1048df38be78b6c0e6dfb573
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * USB4 specific functionality
5 * Copyright (C) 2019, Intel Corporation
6 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7 * Rajmohan Mani <rajmohan.mani@intel.com>
8 */
10 #include <linux/delay.h>
11 #include <linux/ktime.h>
13 #include "tb.h"
15 #define USB4_DATA_DWORDS 16
16 #define USB4_DATA_RETRIES 3
18 enum usb4_switch_op {
19 USB4_SWITCH_OP_QUERY_DP_RESOURCE = 0x10,
20 USB4_SWITCH_OP_ALLOC_DP_RESOURCE = 0x11,
21 USB4_SWITCH_OP_DEALLOC_DP_RESOURCE = 0x12,
22 USB4_SWITCH_OP_NVM_WRITE = 0x20,
23 USB4_SWITCH_OP_NVM_AUTH = 0x21,
24 USB4_SWITCH_OP_NVM_READ = 0x22,
25 USB4_SWITCH_OP_NVM_SET_OFFSET = 0x23,
26 USB4_SWITCH_OP_DROM_READ = 0x24,
27 USB4_SWITCH_OP_NVM_SECTOR_SIZE = 0x25,
30 #define USB4_NVM_READ_OFFSET_MASK GENMASK(23, 2)
31 #define USB4_NVM_READ_OFFSET_SHIFT 2
32 #define USB4_NVM_READ_LENGTH_MASK GENMASK(27, 24)
33 #define USB4_NVM_READ_LENGTH_SHIFT 24
35 #define USB4_NVM_SET_OFFSET_MASK USB4_NVM_READ_OFFSET_MASK
36 #define USB4_NVM_SET_OFFSET_SHIFT USB4_NVM_READ_OFFSET_SHIFT
38 #define USB4_DROM_ADDRESS_MASK GENMASK(14, 2)
39 #define USB4_DROM_ADDRESS_SHIFT 2
40 #define USB4_DROM_SIZE_MASK GENMASK(19, 15)
41 #define USB4_DROM_SIZE_SHIFT 15
43 #define USB4_NVM_SECTOR_SIZE_MASK GENMASK(23, 0)
45 typedef int (*read_block_fn)(struct tb_switch *, unsigned int, void *, size_t);
46 typedef int (*write_block_fn)(struct tb_switch *, const void *, size_t);
48 static int usb4_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
49 u32 value, int timeout_msec)
51 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
53 do {
54 u32 val;
55 int ret;
57 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
58 if (ret)
59 return ret;
61 if ((val & bit) == value)
62 return 0;
64 usleep_range(50, 100);
65 } while (ktime_before(ktime_get(), timeout));
67 return -ETIMEDOUT;
70 static int usb4_switch_op_read_data(struct tb_switch *sw, void *data,
71 size_t dwords)
73 if (dwords > USB4_DATA_DWORDS)
74 return -EINVAL;
76 return tb_sw_read(sw, data, TB_CFG_SWITCH, ROUTER_CS_9, dwords);
79 static int usb4_switch_op_write_data(struct tb_switch *sw, const void *data,
80 size_t dwords)
82 if (dwords > USB4_DATA_DWORDS)
83 return -EINVAL;
85 return tb_sw_write(sw, data, TB_CFG_SWITCH, ROUTER_CS_9, dwords);
88 static int usb4_switch_op_read_metadata(struct tb_switch *sw, u32 *metadata)
90 return tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
93 static int usb4_switch_op_write_metadata(struct tb_switch *sw, u32 metadata)
95 return tb_sw_write(sw, &metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
98 static int usb4_switch_do_read_data(struct tb_switch *sw, u16 address,
99 void *buf, size_t size, read_block_fn read_block)
101 unsigned int retries = USB4_DATA_RETRIES;
102 unsigned int offset;
104 offset = address & 3;
105 address = address & ~3;
107 do {
108 size_t nbytes = min_t(size_t, size, USB4_DATA_DWORDS * 4);
109 unsigned int dwaddress, dwords;
110 u8 data[USB4_DATA_DWORDS * 4];
111 int ret;
113 dwaddress = address / 4;
114 dwords = ALIGN(nbytes, 4) / 4;
116 ret = read_block(sw, dwaddress, data, dwords);
117 if (ret) {
118 if (ret == -ETIMEDOUT) {
119 if (retries--)
120 continue;
121 ret = -EIO;
123 return ret;
126 memcpy(buf, data + offset, nbytes);
128 size -= nbytes;
129 address += nbytes;
130 buf += nbytes;
131 } while (size > 0);
133 return 0;
136 static int usb4_switch_do_write_data(struct tb_switch *sw, u16 address,
137 const void *buf, size_t size, write_block_fn write_next_block)
139 unsigned int retries = USB4_DATA_RETRIES;
140 unsigned int offset;
142 offset = address & 3;
143 address = address & ~3;
145 do {
146 u32 nbytes = min_t(u32, size, USB4_DATA_DWORDS * 4);
147 u8 data[USB4_DATA_DWORDS * 4];
148 int ret;
150 memcpy(data + offset, buf, nbytes);
152 ret = write_next_block(sw, data, nbytes / 4);
153 if (ret) {
154 if (ret == -ETIMEDOUT) {
155 if (retries--)
156 continue;
157 ret = -EIO;
159 return ret;
162 size -= nbytes;
163 address += nbytes;
164 buf += nbytes;
165 } while (size > 0);
167 return 0;
170 static int usb4_switch_op(struct tb_switch *sw, u16 opcode, u8 *status)
172 u32 val;
173 int ret;
175 val = opcode | ROUTER_CS_26_OV;
176 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
177 if (ret)
178 return ret;
180 ret = usb4_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500);
181 if (ret)
182 return ret;
184 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
185 if (val & ROUTER_CS_26_ONS)
186 return -EOPNOTSUPP;
188 *status = (val & ROUTER_CS_26_STATUS_MASK) >> ROUTER_CS_26_STATUS_SHIFT;
189 return 0;
193 * usb4_switch_setup() - Additional setup for USB4 device
194 * @sw: USB4 router to setup
196 * USB4 routers need additional settings in order to enable all the
197 * tunneling. This function enables USB and PCIe tunneling if it can be
198 * enabled (e.g the parent switch also supports them). If USB tunneling
199 * is not available for some reason (like that there is Thunderbolt 3
200 * switch upstream) then the internal xHCI controller is enabled
201 * instead.
203 int usb4_switch_setup(struct tb_switch *sw)
205 struct tb_switch *parent;
206 bool tbt3, xhci;
207 u32 val = 0;
208 int ret;
210 if (!tb_route(sw))
211 return 0;
213 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1);
214 if (ret)
215 return ret;
217 xhci = val & ROUTER_CS_6_HCI;
218 tbt3 = !(val & ROUTER_CS_6_TNS);
220 tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n",
221 tbt3 ? "yes" : "no", xhci ? "yes" : "no");
223 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
224 if (ret)
225 return ret;
227 parent = tb_switch_parent(sw);
229 if (tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) {
230 val |= ROUTER_CS_5_UTO;
231 xhci = false;
234 /* Only enable PCIe tunneling if the parent router supports it */
235 if (tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) {
236 val |= ROUTER_CS_5_PTO;
238 * xHCI can be enabled if PCIe tunneling is supported
239 * and the parent does not have any USB3 dowstream
240 * adapters (so we cannot do USB 3.x tunneling).
242 if (xhci)
243 val |= ROUTER_CS_5_HCO;
246 /* TBT3 supported by the CM */
247 val |= ROUTER_CS_5_C3S;
248 /* Tunneling configuration is ready now */
249 val |= ROUTER_CS_5_CV;
251 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
252 if (ret)
253 return ret;
255 return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR,
256 ROUTER_CS_6_CR, 50);
260 * usb4_switch_read_uid() - Read UID from USB4 router
261 * @sw: USB4 router
262 * @uid: UID is stored here
264 * Reads 64-bit UID from USB4 router config space.
266 int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid)
268 return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2);
271 static int usb4_switch_drom_read_block(struct tb_switch *sw,
272 unsigned int dwaddress, void *buf,
273 size_t dwords)
275 u8 status = 0;
276 u32 metadata;
277 int ret;
279 metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK;
280 metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) &
281 USB4_DROM_ADDRESS_MASK;
283 ret = usb4_switch_op_write_metadata(sw, metadata);
284 if (ret)
285 return ret;
287 ret = usb4_switch_op(sw, USB4_SWITCH_OP_DROM_READ, &status);
288 if (ret)
289 return ret;
291 if (status)
292 return -EIO;
294 return usb4_switch_op_read_data(sw, buf, dwords);
298 * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM
299 * @sw: USB4 router
300 * @address: Byte address inside DROM to start reading
301 * @buf: Buffer where the DROM content is stored
302 * @size: Number of bytes to read from DROM
304 * Uses USB4 router operations to read router DROM. For devices this
305 * should always work but for hosts it may return %-EOPNOTSUPP in which
306 * case the host router does not have DROM.
308 int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf,
309 size_t size)
311 return usb4_switch_do_read_data(sw, address, buf, size,
312 usb4_switch_drom_read_block);
315 static int usb4_set_port_configured(struct tb_port *port, bool configured)
317 int ret;
318 u32 val;
320 ret = tb_port_read(port, &val, TB_CFG_PORT,
321 port->cap_usb4 + PORT_CS_19, 1);
322 if (ret)
323 return ret;
325 if (configured)
326 val |= PORT_CS_19_PC;
327 else
328 val &= ~PORT_CS_19_PC;
330 return tb_port_write(port, &val, TB_CFG_PORT,
331 port->cap_usb4 + PORT_CS_19, 1);
335 * usb4_switch_configure_link() - Set upstream USB4 link configured
336 * @sw: USB4 router
338 * Sets the upstream USB4 link to be configured for power management
339 * purposes.
341 int usb4_switch_configure_link(struct tb_switch *sw)
343 struct tb_port *up;
345 if (!tb_route(sw))
346 return 0;
348 up = tb_upstream_port(sw);
349 return usb4_set_port_configured(up, true);
353 * usb4_switch_unconfigure_link() - Un-set upstream USB4 link configuration
354 * @sw: USB4 router
356 * Reverse of usb4_switch_configure_link().
358 void usb4_switch_unconfigure_link(struct tb_switch *sw)
360 struct tb_port *up;
362 if (sw->is_unplugged || !tb_route(sw))
363 return;
365 up = tb_upstream_port(sw);
366 usb4_set_port_configured(up, false);
370 * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding
371 * @sw: USB4 router
373 * Checks whether conditions are met so that lane bonding can be
374 * established with the upstream router. Call only for device routers.
376 bool usb4_switch_lane_bonding_possible(struct tb_switch *sw)
378 struct tb_port *up;
379 int ret;
380 u32 val;
382 up = tb_upstream_port(sw);
383 ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1);
384 if (ret)
385 return false;
387 return !!(val & PORT_CS_18_BE);
391 * usb4_switch_set_sleep() - Prepare the router to enter sleep
392 * @sw: USB4 router
394 * Enables wakes and sets sleep bit for the router. Returns when the
395 * router sleep ready bit has been asserted.
397 int usb4_switch_set_sleep(struct tb_switch *sw)
399 int ret;
400 u32 val;
402 /* Set sleep bit and wait for sleep ready to be asserted */
403 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
404 if (ret)
405 return ret;
407 val |= ROUTER_CS_5_SLP;
409 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
410 if (ret)
411 return ret;
413 return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR,
414 ROUTER_CS_6_SLPR, 500);
418 * usb4_switch_nvm_sector_size() - Return router NVM sector size
419 * @sw: USB4 router
421 * If the router supports NVM operations this function returns the NVM
422 * sector size in bytes. If NVM operations are not supported returns
423 * %-EOPNOTSUPP.
425 int usb4_switch_nvm_sector_size(struct tb_switch *sw)
427 u32 metadata;
428 u8 status;
429 int ret;
431 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &status);
432 if (ret)
433 return ret;
435 if (status)
436 return status == 0x2 ? -EOPNOTSUPP : -EIO;
438 ret = usb4_switch_op_read_metadata(sw, &metadata);
439 if (ret)
440 return ret;
442 return metadata & USB4_NVM_SECTOR_SIZE_MASK;
445 static int usb4_switch_nvm_read_block(struct tb_switch *sw,
446 unsigned int dwaddress, void *buf, size_t dwords)
448 u8 status = 0;
449 u32 metadata;
450 int ret;
452 metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) &
453 USB4_NVM_READ_LENGTH_MASK;
454 metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) &
455 USB4_NVM_READ_OFFSET_MASK;
457 ret = usb4_switch_op_write_metadata(sw, metadata);
458 if (ret)
459 return ret;
461 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_READ, &status);
462 if (ret)
463 return ret;
465 if (status)
466 return -EIO;
468 return usb4_switch_op_read_data(sw, buf, dwords);
472 * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM
473 * @sw: USB4 router
474 * @address: Starting address in bytes
475 * @buf: Read data is placed here
476 * @size: How many bytes to read
478 * Reads NVM contents of the router. If NVM is not supported returns
479 * %-EOPNOTSUPP.
481 int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
482 size_t size)
484 return usb4_switch_do_read_data(sw, address, buf, size,
485 usb4_switch_nvm_read_block);
488 static int usb4_switch_nvm_set_offset(struct tb_switch *sw,
489 unsigned int address)
491 u32 metadata, dwaddress;
492 u8 status = 0;
493 int ret;
495 dwaddress = address / 4;
496 metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
497 USB4_NVM_SET_OFFSET_MASK;
499 ret = usb4_switch_op_write_metadata(sw, metadata);
500 if (ret)
501 return ret;
503 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &status);
504 if (ret)
505 return ret;
507 return status ? -EIO : 0;
510 static int usb4_switch_nvm_write_next_block(struct tb_switch *sw,
511 const void *buf, size_t dwords)
513 u8 status;
514 int ret;
516 ret = usb4_switch_op_write_data(sw, buf, dwords);
517 if (ret)
518 return ret;
520 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_WRITE, &status);
521 if (ret)
522 return ret;
524 return status ? -EIO : 0;
528 * usb4_switch_nvm_write() - Write to the router NVM
529 * @sw: USB4 router
530 * @address: Start address where to write in bytes
531 * @buf: Pointer to the data to write
532 * @size: Size of @buf in bytes
534 * Writes @buf to the router NVM using USB4 router operations. If NVM
535 * write is not supported returns %-EOPNOTSUPP.
537 int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address,
538 const void *buf, size_t size)
540 int ret;
542 ret = usb4_switch_nvm_set_offset(sw, address);
543 if (ret)
544 return ret;
546 return usb4_switch_do_write_data(sw, address, buf, size,
547 usb4_switch_nvm_write_next_block);
551 * usb4_switch_nvm_authenticate() - Authenticate new NVM
552 * @sw: USB4 router
554 * After the new NVM has been written via usb4_switch_nvm_write(), this
555 * function triggers NVM authentication process. If the authentication
556 * is successful the router is power cycled and the new NVM starts
557 * running. In case of failure returns negative errno.
559 int usb4_switch_nvm_authenticate(struct tb_switch *sw)
561 u8 status = 0;
562 int ret;
564 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, &status);
565 if (ret)
566 return ret;
568 switch (status) {
569 case 0x0:
570 tb_sw_dbg(sw, "NVM authentication successful\n");
571 return 0;
572 case 0x1:
573 return -EINVAL;
574 case 0x2:
575 return -EAGAIN;
576 case 0x3:
577 return -EOPNOTSUPP;
578 default:
579 return -EIO;
584 * usb4_switch_query_dp_resource() - Query availability of DP IN resource
585 * @sw: USB4 router
586 * @in: DP IN adapter
588 * For DP tunneling this function can be used to query availability of
589 * DP IN resource. Returns true if the resource is available for DP
590 * tunneling, false otherwise.
592 bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
594 u8 status;
595 int ret;
597 ret = usb4_switch_op_write_metadata(sw, in->port);
598 if (ret)
599 return false;
601 ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &status);
603 * If DP resource allocation is not supported assume it is
604 * always available.
606 if (ret == -EOPNOTSUPP)
607 return true;
608 else if (ret)
609 return false;
611 return !status;
615 * usb4_switch_alloc_dp_resource() - Allocate DP IN resource
616 * @sw: USB4 router
617 * @in: DP IN adapter
619 * Allocates DP IN resource for DP tunneling using USB4 router
620 * operations. If the resource was allocated returns %0. Otherwise
621 * returns negative errno, in particular %-EBUSY if the resource is
622 * already allocated.
624 int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
626 u8 status;
627 int ret;
629 ret = usb4_switch_op_write_metadata(sw, in->port);
630 if (ret)
631 return ret;
633 ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &status);
634 if (ret == -EOPNOTSUPP)
635 return 0;
636 else if (ret)
637 return ret;
639 return status ? -EBUSY : 0;
643 * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource
644 * @sw: USB4 router
645 * @in: DP IN adapter
647 * Releases the previously allocated DP IN resource.
649 int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
651 u8 status;
652 int ret;
654 ret = usb4_switch_op_write_metadata(sw, in->port);
655 if (ret)
656 return ret;
658 ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &status);
659 if (ret == -EOPNOTSUPP)
660 return 0;
661 else if (ret)
662 return ret;
664 return status ? -EIO : 0;
667 static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port)
669 struct tb_port *p;
670 int usb4_idx = 0;
672 /* Assume port is primary */
673 tb_switch_for_each_port(sw, p) {
674 if (!tb_port_is_null(p))
675 continue;
676 if (tb_is_upstream_port(p))
677 continue;
678 if (!p->link_nr) {
679 if (p == port)
680 break;
681 usb4_idx++;
685 return usb4_idx;
689 * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter
690 * @sw: USB4 router
691 * @port: USB4 port
693 * USB4 routers have direct mapping between USB4 ports and PCIe
694 * downstream adapters where the PCIe topology is extended. This
695 * function returns the corresponding downstream PCIe adapter or %NULL
696 * if no such mapping was possible.
698 struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw,
699 const struct tb_port *port)
701 int usb4_idx = usb4_port_idx(sw, port);
702 struct tb_port *p;
703 int pcie_idx = 0;
705 /* Find PCIe down port matching usb4_port */
706 tb_switch_for_each_port(sw, p) {
707 if (!tb_port_is_pcie_down(p))
708 continue;
710 if (pcie_idx == usb4_idx && !tb_pci_port_is_enabled(p))
711 return p;
713 pcie_idx++;
716 return NULL;
720 * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter
721 * @sw: USB4 router
722 * @port: USB4 port
724 * USB4 routers have direct mapping between USB4 ports and USB 3.x
725 * downstream adapters where the USB 3.x topology is extended. This
726 * function returns the corresponding downstream USB 3.x adapter or
727 * %NULL if no such mapping was possible.
729 struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw,
730 const struct tb_port *port)
732 int usb4_idx = usb4_port_idx(sw, port);
733 struct tb_port *p;
734 int usb_idx = 0;
736 /* Find USB3 down port matching usb4_port */
737 tb_switch_for_each_port(sw, p) {
738 if (!tb_port_is_usb3_down(p))
739 continue;
741 if (usb_idx == usb4_idx && !tb_usb3_port_is_enabled(p))
742 return p;
744 usb_idx++;
747 return NULL;
751 * usb4_port_unlock() - Unlock USB4 downstream port
752 * @port: USB4 port to unlock
754 * Unlocks USB4 downstream port so that the connection manager can
755 * access the router below this port.
757 int usb4_port_unlock(struct tb_port *port)
759 int ret;
760 u32 val;
762 ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
763 if (ret)
764 return ret;
766 val &= ~ADP_CS_4_LCK;
767 return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1);