2 * linux/drivers/video/pxafb.c
4 * Copyright (C) 1999 Eric A. Thomas.
5 * Copyright (C) 2004 Jean-Frederic Clere.
6 * Copyright (C) 2004 Ian Campbell.
7 * Copyright (C) 2004 Jeff Lackey.
8 * Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas
10 * Based on acornfb.c Copyright (C) Russell King.
12 * This file is subject to the terms and conditions of the GNU General Public
13 * License. See the file COPYING in the main directory of this archive for
16 * Intel PXA250/210 LCD Controller Frame Buffer Driver
18 * Please direct your questions and comments on this driver to the following
21 * linux-arm-kernel@lists.arm.linux.org.uk
23 * Add support for overlay1 and overlay2 based on pxafb_overlay.c:
25 * Copyright (C) 2004, Intel Corporation
27 * 2003/08/27: <yu.tang@intel.com>
28 * 2004/03/10: <stanley.cai@intel.com>
29 * 2004/10/28: <yan.yin@intel.com>
31 * Copyright (C) 2006-2008 Marvell International Ltd.
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/kernel.h>
38 #include <linux/sched.h>
39 #include <linux/errno.h>
40 #include <linux/string.h>
41 #include <linux/interrupt.h>
42 #include <linux/slab.h>
45 #include <linux/delay.h>
46 #include <linux/init.h>
47 #include <linux/ioport.h>
48 #include <linux/cpufreq.h>
49 #include <linux/platform_device.h>
50 #include <linux/dma-mapping.h>
51 #include <linux/clk.h>
52 #include <linux/err.h>
53 #include <linux/completion.h>
54 #include <linux/mutex.h>
55 #include <linux/kthread.h>
56 #include <linux/freezer.h>
57 #include <linux/console.h>
58 #include <linux/of_graph.h>
59 #include <linux/regulator/consumer.h>
60 #include <video/of_display_timing.h>
61 #include <video/videomode.h>
63 #include <mach/hardware.h>
66 #include <asm/div64.h>
67 #include <mach/bitfield.h>
68 #include <linux/platform_data/video-pxafb.h>
71 * Complain if VAR is out of range.
77 /* Bits which should not be set in machine configuration structures */
78 #define LCCR0_INVALID_CONFIG_MASK (LCCR0_OUM | LCCR0_BM | LCCR0_QDM |\
79 LCCR0_DIS | LCCR0_EFM | LCCR0_IUM |\
80 LCCR0_SFM | LCCR0_LDM | LCCR0_ENB)
82 #define LCCR3_INVALID_CONFIG_MASK (LCCR3_HSP | LCCR3_VSP |\
83 LCCR3_PCD | LCCR3_BPP(0xf))
85 static int pxafb_activate_var(struct fb_var_screeninfo
*var
,
87 static void set_ctrlr_state(struct pxafb_info
*fbi
, u_int state
);
88 static void setup_base_frame(struct pxafb_info
*fbi
,
89 struct fb_var_screeninfo
*var
, int branch
);
90 static int setup_frame_dma(struct pxafb_info
*fbi
, int dma
, int pal
,
91 unsigned long offset
, size_t size
);
93 static unsigned long video_mem_size
= 0;
95 static inline unsigned long
96 lcd_readl(struct pxafb_info
*fbi
, unsigned int off
)
98 return __raw_readl(fbi
->mmio_base
+ off
);
102 lcd_writel(struct pxafb_info
*fbi
, unsigned int off
, unsigned long val
)
104 __raw_writel(val
, fbi
->mmio_base
+ off
);
107 static inline void pxafb_schedule_work(struct pxafb_info
*fbi
, u_int state
)
111 local_irq_save(flags
);
113 * We need to handle two requests being made at the same time.
114 * There are two important cases:
115 * 1. When we are changing VT (C_REENABLE) while unblanking
116 * (C_ENABLE) We must perform the unblanking, which will
117 * do our REENABLE for us.
118 * 2. When we are blanking, but immediately unblank before
119 * we have blanked. We do the "REENABLE" thing here as
120 * well, just to be sure.
122 if (fbi
->task_state
== C_ENABLE
&& state
== C_REENABLE
)
124 if (fbi
->task_state
== C_DISABLE
&& state
== C_ENABLE
)
127 if (state
!= (u_int
)-1) {
128 fbi
->task_state
= state
;
129 schedule_work(&fbi
->task
);
131 local_irq_restore(flags
);
134 static inline u_int
chan_to_field(u_int chan
, struct fb_bitfield
*bf
)
137 chan
>>= 16 - bf
->length
;
138 return chan
<< bf
->offset
;
142 pxafb_setpalettereg(u_int regno
, u_int red
, u_int green
, u_int blue
,
143 u_int trans
, struct fb_info
*info
)
145 struct pxafb_info
*fbi
= container_of(info
, struct pxafb_info
, fb
);
148 if (regno
>= fbi
->palette_size
)
151 if (fbi
->fb
.var
.grayscale
) {
152 fbi
->palette_cpu
[regno
] = ((blue
>> 8) & 0x00ff);
156 switch (fbi
->lccr4
& LCCR4_PAL_FOR_MASK
) {
157 case LCCR4_PAL_FOR_0
:
158 val
= ((red
>> 0) & 0xf800);
159 val
|= ((green
>> 5) & 0x07e0);
160 val
|= ((blue
>> 11) & 0x001f);
161 fbi
->palette_cpu
[regno
] = val
;
163 case LCCR4_PAL_FOR_1
:
164 val
= ((red
<< 8) & 0x00f80000);
165 val
|= ((green
>> 0) & 0x0000fc00);
166 val
|= ((blue
>> 8) & 0x000000f8);
167 ((u32
*)(fbi
->palette_cpu
))[regno
] = val
;
169 case LCCR4_PAL_FOR_2
:
170 val
= ((red
<< 8) & 0x00fc0000);
171 val
|= ((green
>> 0) & 0x0000fc00);
172 val
|= ((blue
>> 8) & 0x000000fc);
173 ((u32
*)(fbi
->palette_cpu
))[regno
] = val
;
175 case LCCR4_PAL_FOR_3
:
176 val
= ((red
<< 8) & 0x00ff0000);
177 val
|= ((green
>> 0) & 0x0000ff00);
178 val
|= ((blue
>> 8) & 0x000000ff);
179 ((u32
*)(fbi
->palette_cpu
))[regno
] = val
;
187 pxafb_setcolreg(u_int regno
, u_int red
, u_int green
, u_int blue
,
188 u_int trans
, struct fb_info
*info
)
190 struct pxafb_info
*fbi
= container_of(info
, struct pxafb_info
, fb
);
195 * If inverse mode was selected, invert all the colours
196 * rather than the register number. The register number
197 * is what you poke into the framebuffer to produce the
198 * colour you requested.
200 if (fbi
->cmap_inverse
) {
202 green
= 0xffff - green
;
203 blue
= 0xffff - blue
;
207 * If greyscale is true, then we convert the RGB value
208 * to greyscale no matter what visual we are using.
210 if (fbi
->fb
.var
.grayscale
)
211 red
= green
= blue
= (19595 * red
+ 38470 * green
+
214 switch (fbi
->fb
.fix
.visual
) {
215 case FB_VISUAL_TRUECOLOR
:
217 * 16-bit True Colour. We encode the RGB value
218 * according to the RGB bitfield information.
221 u32
*pal
= fbi
->fb
.pseudo_palette
;
223 val
= chan_to_field(red
, &fbi
->fb
.var
.red
);
224 val
|= chan_to_field(green
, &fbi
->fb
.var
.green
);
225 val
|= chan_to_field(blue
, &fbi
->fb
.var
.blue
);
232 case FB_VISUAL_STATIC_PSEUDOCOLOR
:
233 case FB_VISUAL_PSEUDOCOLOR
:
234 ret
= pxafb_setpalettereg(regno
, red
, green
, blue
, trans
, info
);
241 /* calculate pixel depth, transparency bit included, >=16bpp formats _only_ */
242 static inline int var_to_depth(struct fb_var_screeninfo
*var
)
244 return var
->red
.length
+ var
->green
.length
+
245 var
->blue
.length
+ var
->transp
.length
;
248 /* calculate 4-bit BPP value for LCCR3 and OVLxC1 */
249 static int pxafb_var_to_bpp(struct fb_var_screeninfo
*var
)
253 switch (var
->bits_per_pixel
) {
254 case 1: bpp
= 0; break;
255 case 2: bpp
= 1; break;
256 case 4: bpp
= 2; break;
257 case 8: bpp
= 3; break;
258 case 16: bpp
= 4; break;
260 switch (var_to_depth(var
)) {
261 case 18: bpp
= 6; break; /* 18-bits/pixel packed */
262 case 19: bpp
= 8; break; /* 19-bits/pixel packed */
263 case 24: bpp
= 9; break;
267 switch (var_to_depth(var
)) {
268 case 18: bpp
= 5; break; /* 18-bits/pixel unpacked */
269 case 19: bpp
= 7; break; /* 19-bits/pixel unpacked */
270 case 25: bpp
= 10; break;
278 * pxafb_var_to_lccr3():
279 * Convert a bits per pixel value to the correct bit pattern for LCCR3
281 * NOTE: for PXA27x with overlays support, the LCCR3_PDFOR_x bits have an
282 * implication of the acutal use of transparency bit, which we handle it
283 * here separatedly. See PXA27x Developer's Manual, Section <<7.4.6 Pixel
284 * Formats>> for the valid combination of PDFOR, PAL_FOR for various BPP.
286 * Transparency for palette pixel formats is not supported at the moment.
288 static uint32_t pxafb_var_to_lccr3(struct fb_var_screeninfo
*var
)
290 int bpp
= pxafb_var_to_bpp(var
);
296 lccr3
= LCCR3_BPP(bpp
);
298 switch (var_to_depth(var
)) {
299 case 16: lccr3
|= var
->transp
.length
? LCCR3_PDFOR_3
: 0; break;
300 case 18: lccr3
|= LCCR3_PDFOR_3
; break;
301 case 24: lccr3
|= var
->transp
.length
? LCCR3_PDFOR_2
: LCCR3_PDFOR_3
;
304 case 25: lccr3
|= LCCR3_PDFOR_0
; break;
309 #define SET_PIXFMT(v, r, g, b, t) \
311 (v)->transp.offset = (t) ? (r) + (g) + (b) : 0; \
312 (v)->transp.length = (t) ? (t) : 0; \
313 (v)->blue.length = (b); (v)->blue.offset = 0; \
314 (v)->green.length = (g); (v)->green.offset = (b); \
315 (v)->red.length = (r); (v)->red.offset = (b) + (g); \
318 /* set the RGBT bitfields of fb_var_screeninf according to
319 * var->bits_per_pixel and given depth
321 static void pxafb_set_pixfmt(struct fb_var_screeninfo
*var
, int depth
)
324 depth
= var
->bits_per_pixel
;
326 if (var
->bits_per_pixel
< 16) {
327 /* indexed pixel formats */
328 var
->red
.offset
= 0; var
->red
.length
= 8;
329 var
->green
.offset
= 0; var
->green
.length
= 8;
330 var
->blue
.offset
= 0; var
->blue
.length
= 8;
331 var
->transp
.offset
= 0; var
->transp
.length
= 8;
335 case 16: var
->transp
.length
?
336 SET_PIXFMT(var
, 5, 5, 5, 1) : /* RGBT555 */
337 SET_PIXFMT(var
, 5, 6, 5, 0); break; /* RGB565 */
338 case 18: SET_PIXFMT(var
, 6, 6, 6, 0); break; /* RGB666 */
339 case 19: SET_PIXFMT(var
, 6, 6, 6, 1); break; /* RGBT666 */
340 case 24: var
->transp
.length
?
341 SET_PIXFMT(var
, 8, 8, 7, 1) : /* RGBT887 */
342 SET_PIXFMT(var
, 8, 8, 8, 0); break; /* RGB888 */
343 case 25: SET_PIXFMT(var
, 8, 8, 8, 1); break; /* RGBT888 */
347 #ifdef CONFIG_CPU_FREQ
349 * pxafb_display_dma_period()
350 * Calculate the minimum period (in picoseconds) between two DMA
351 * requests for the LCD controller. If we hit this, it means we're
352 * doing nothing but LCD DMA.
354 static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo
*var
)
357 * Period = pixclock * bits_per_byte * bytes_per_transfer
358 * / memory_bits_per_pixel;
360 return var
->pixclock
* 8 * 16 / var
->bits_per_pixel
;
365 * Select the smallest mode that allows the desired resolution to be
366 * displayed. If desired parameters can be rounded up.
368 static struct pxafb_mode_info
*pxafb_getmode(struct pxafb_mach_info
*mach
,
369 struct fb_var_screeninfo
*var
)
371 struct pxafb_mode_info
*mode
= NULL
;
372 struct pxafb_mode_info
*modelist
= mach
->modes
;
373 unsigned int best_x
= 0xffffffff, best_y
= 0xffffffff;
376 for (i
= 0; i
< mach
->num_modes
; i
++) {
377 if (modelist
[i
].xres
>= var
->xres
&&
378 modelist
[i
].yres
>= var
->yres
&&
379 modelist
[i
].xres
< best_x
&&
380 modelist
[i
].yres
< best_y
&&
381 modelist
[i
].bpp
>= var
->bits_per_pixel
) {
382 best_x
= modelist
[i
].xres
;
383 best_y
= modelist
[i
].yres
;
391 static void pxafb_setmode(struct fb_var_screeninfo
*var
,
392 struct pxafb_mode_info
*mode
)
394 var
->xres
= mode
->xres
;
395 var
->yres
= mode
->yres
;
396 var
->bits_per_pixel
= mode
->bpp
;
397 var
->pixclock
= mode
->pixclock
;
398 var
->hsync_len
= mode
->hsync_len
;
399 var
->left_margin
= mode
->left_margin
;
400 var
->right_margin
= mode
->right_margin
;
401 var
->vsync_len
= mode
->vsync_len
;
402 var
->upper_margin
= mode
->upper_margin
;
403 var
->lower_margin
= mode
->lower_margin
;
404 var
->sync
= mode
->sync
;
405 var
->grayscale
= mode
->cmap_greyscale
;
406 var
->transp
.length
= mode
->transparency
;
408 /* set the initial RGBA bitfields */
409 pxafb_set_pixfmt(var
, mode
->depth
);
412 static int pxafb_adjust_timing(struct pxafb_info
*fbi
,
413 struct fb_var_screeninfo
*var
)
417 var
->xres
= max_t(int, var
->xres
, MIN_XRES
);
418 var
->yres
= max_t(int, var
->yres
, MIN_YRES
);
420 if (!(fbi
->lccr0
& LCCR0_LCDT
)) {
421 clamp_val(var
->hsync_len
, 1, 64);
422 clamp_val(var
->vsync_len
, 1, 64);
423 clamp_val(var
->left_margin
, 1, 255);
424 clamp_val(var
->right_margin
, 1, 255);
425 clamp_val(var
->upper_margin
, 1, 255);
426 clamp_val(var
->lower_margin
, 1, 255);
429 /* make sure each line is aligned on word boundary */
430 line_length
= var
->xres
* var
->bits_per_pixel
/ 8;
431 line_length
= ALIGN(line_length
, 4);
432 var
->xres
= line_length
* 8 / var
->bits_per_pixel
;
434 /* we don't support xpan, force xres_virtual to be equal to xres */
435 var
->xres_virtual
= var
->xres
;
437 if (var
->accel_flags
& FB_ACCELF_TEXT
)
438 var
->yres_virtual
= fbi
->fb
.fix
.smem_len
/ line_length
;
440 var
->yres_virtual
= max(var
->yres_virtual
, var
->yres
);
442 /* check for limits */
443 if (var
->xres
> MAX_XRES
|| var
->yres
> MAX_YRES
)
446 if (var
->yres
> var
->yres_virtual
)
454 * Get the video params out of 'var'. If a value doesn't fit, round it up,
455 * if it's too big, return -EINVAL.
457 * Round up in the following order: bits_per_pixel, xres,
458 * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
459 * bitfields, horizontal timing, vertical timing.
461 static int pxafb_check_var(struct fb_var_screeninfo
*var
, struct fb_info
*info
)
463 struct pxafb_info
*fbi
= container_of(info
, struct pxafb_info
, fb
);
464 struct pxafb_mach_info
*inf
= fbi
->inf
;
467 if (inf
->fixed_modes
) {
468 struct pxafb_mode_info
*mode
;
470 mode
= pxafb_getmode(inf
, var
);
473 pxafb_setmode(var
, mode
);
476 /* do a test conversion to BPP fields to check the color formats */
477 err
= pxafb_var_to_bpp(var
);
481 pxafb_set_pixfmt(var
, var_to_depth(var
));
483 err
= pxafb_adjust_timing(fbi
, var
);
487 #ifdef CONFIG_CPU_FREQ
488 pr_debug("pxafb: dma period = %d ps\n",
489 pxafb_display_dma_period(var
));
497 * Set the user defined part of the display for the specified console
499 static int pxafb_set_par(struct fb_info
*info
)
501 struct pxafb_info
*fbi
= container_of(info
, struct pxafb_info
, fb
);
502 struct fb_var_screeninfo
*var
= &info
->var
;
504 if (var
->bits_per_pixel
>= 16)
505 fbi
->fb
.fix
.visual
= FB_VISUAL_TRUECOLOR
;
506 else if (!fbi
->cmap_static
)
507 fbi
->fb
.fix
.visual
= FB_VISUAL_PSEUDOCOLOR
;
510 * Some people have weird ideas about wanting static
511 * pseudocolor maps. I suspect their user space
512 * applications are broken.
514 fbi
->fb
.fix
.visual
= FB_VISUAL_STATIC_PSEUDOCOLOR
;
517 fbi
->fb
.fix
.line_length
= var
->xres_virtual
*
518 var
->bits_per_pixel
/ 8;
519 if (var
->bits_per_pixel
>= 16)
520 fbi
->palette_size
= 0;
522 fbi
->palette_size
= var
->bits_per_pixel
== 1 ?
523 4 : 1 << var
->bits_per_pixel
;
525 fbi
->palette_cpu
= (u16
*)&fbi
->dma_buff
->palette
[0];
527 if (fbi
->fb
.var
.bits_per_pixel
>= 16)
528 fb_dealloc_cmap(&fbi
->fb
.cmap
);
530 fb_alloc_cmap(&fbi
->fb
.cmap
, 1<<fbi
->fb
.var
.bits_per_pixel
, 0);
532 pxafb_activate_var(var
, fbi
);
537 static int pxafb_pan_display(struct fb_var_screeninfo
*var
,
538 struct fb_info
*info
)
540 struct pxafb_info
*fbi
= container_of(info
, struct pxafb_info
, fb
);
541 struct fb_var_screeninfo newvar
;
542 int dma
= DMA_MAX
+ DMA_BASE
;
544 if (fbi
->state
!= C_ENABLE
)
547 /* Only take .xoffset, .yoffset and .vmode & FB_VMODE_YWRAP from what
548 * was passed in and copy the rest from the old screeninfo.
550 memcpy(&newvar
, &fbi
->fb
.var
, sizeof(newvar
));
551 newvar
.xoffset
= var
->xoffset
;
552 newvar
.yoffset
= var
->yoffset
;
553 newvar
.vmode
&= ~FB_VMODE_YWRAP
;
554 newvar
.vmode
|= var
->vmode
& FB_VMODE_YWRAP
;
556 setup_base_frame(fbi
, &newvar
, 1);
558 if (fbi
->lccr0
& LCCR0_SDS
)
559 lcd_writel(fbi
, FBR1
, fbi
->fdadr
[dma
+ 1] | 0x1);
561 lcd_writel(fbi
, FBR0
, fbi
->fdadr
[dma
] | 0x1);
567 * Blank the display by setting all palette values to zero. Note, the
568 * 16 bpp mode does not really use the palette, so this will not
569 * blank the display in all modes.
571 static int pxafb_blank(int blank
, struct fb_info
*info
)
573 struct pxafb_info
*fbi
= container_of(info
, struct pxafb_info
, fb
);
577 case FB_BLANK_POWERDOWN
:
578 case FB_BLANK_VSYNC_SUSPEND
:
579 case FB_BLANK_HSYNC_SUSPEND
:
580 case FB_BLANK_NORMAL
:
581 if (fbi
->fb
.fix
.visual
== FB_VISUAL_PSEUDOCOLOR
||
582 fbi
->fb
.fix
.visual
== FB_VISUAL_STATIC_PSEUDOCOLOR
)
583 for (i
= 0; i
< fbi
->palette_size
; i
++)
584 pxafb_setpalettereg(i
, 0, 0, 0, 0, info
);
586 pxafb_schedule_work(fbi
, C_DISABLE
);
587 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
590 case FB_BLANK_UNBLANK
:
591 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
592 if (fbi
->fb
.fix
.visual
== FB_VISUAL_PSEUDOCOLOR
||
593 fbi
->fb
.fix
.visual
== FB_VISUAL_STATIC_PSEUDOCOLOR
)
594 fb_set_cmap(&fbi
->fb
.cmap
, info
);
595 pxafb_schedule_work(fbi
, C_ENABLE
);
600 static const struct fb_ops pxafb_ops
= {
601 .owner
= THIS_MODULE
,
602 .fb_check_var
= pxafb_check_var
,
603 .fb_set_par
= pxafb_set_par
,
604 .fb_pan_display
= pxafb_pan_display
,
605 .fb_setcolreg
= pxafb_setcolreg
,
606 .fb_fillrect
= cfb_fillrect
,
607 .fb_copyarea
= cfb_copyarea
,
608 .fb_imageblit
= cfb_imageblit
,
609 .fb_blank
= pxafb_blank
,
612 #ifdef CONFIG_FB_PXA_OVERLAY
613 static void overlay1fb_setup(struct pxafb_layer
*ofb
)
615 int size
= ofb
->fb
.fix
.line_length
* ofb
->fb
.var
.yres_virtual
;
616 unsigned long start
= ofb
->video_mem_phys
;
617 setup_frame_dma(ofb
->fbi
, DMA_OV1
, PAL_NONE
, start
, size
);
620 /* Depending on the enable status of overlay1/2, the DMA should be
621 * updated from FDADRx (when disabled) or FBRx (when enabled).
623 static void overlay1fb_enable(struct pxafb_layer
*ofb
)
625 int enabled
= lcd_readl(ofb
->fbi
, OVL1C1
) & OVLxC1_OEN
;
626 uint32_t fdadr1
= ofb
->fbi
->fdadr
[DMA_OV1
] | (enabled
? 0x1 : 0);
628 lcd_writel(ofb
->fbi
, enabled
? FBR1
: FDADR1
, fdadr1
);
629 lcd_writel(ofb
->fbi
, OVL1C2
, ofb
->control
[1]);
630 lcd_writel(ofb
->fbi
, OVL1C1
, ofb
->control
[0] | OVLxC1_OEN
);
633 static void overlay1fb_disable(struct pxafb_layer
*ofb
)
637 if (!(lcd_readl(ofb
->fbi
, OVL1C1
) & OVLxC1_OEN
))
640 lccr5
= lcd_readl(ofb
->fbi
, LCCR5
);
642 lcd_writel(ofb
->fbi
, OVL1C1
, ofb
->control
[0] & ~OVLxC1_OEN
);
644 lcd_writel(ofb
->fbi
, LCSR1
, LCSR1_BS(1));
645 lcd_writel(ofb
->fbi
, LCCR5
, lccr5
& ~LCSR1_BS(1));
646 lcd_writel(ofb
->fbi
, FBR1
, ofb
->fbi
->fdadr
[DMA_OV1
] | 0x3);
648 if (wait_for_completion_timeout(&ofb
->branch_done
, 1 * HZ
) == 0)
649 pr_warn("%s: timeout disabling overlay1\n", __func__
);
651 lcd_writel(ofb
->fbi
, LCCR5
, lccr5
);
654 static void overlay2fb_setup(struct pxafb_layer
*ofb
)
656 int size
, div
= 1, pfor
= NONSTD_TO_PFOR(ofb
->fb
.var
.nonstd
);
657 unsigned long start
[3] = { ofb
->video_mem_phys
, 0, 0 };
659 if (pfor
== OVERLAY_FORMAT_RGB
|| pfor
== OVERLAY_FORMAT_YUV444_PACKED
) {
660 size
= ofb
->fb
.fix
.line_length
* ofb
->fb
.var
.yres_virtual
;
661 setup_frame_dma(ofb
->fbi
, DMA_OV2_Y
, -1, start
[0], size
);
663 size
= ofb
->fb
.var
.xres_virtual
* ofb
->fb
.var
.yres_virtual
;
665 case OVERLAY_FORMAT_YUV444_PLANAR
: div
= 1; break;
666 case OVERLAY_FORMAT_YUV422_PLANAR
: div
= 2; break;
667 case OVERLAY_FORMAT_YUV420_PLANAR
: div
= 4; break;
669 start
[1] = start
[0] + size
;
670 start
[2] = start
[1] + size
/ div
;
671 setup_frame_dma(ofb
->fbi
, DMA_OV2_Y
, -1, start
[0], size
);
672 setup_frame_dma(ofb
->fbi
, DMA_OV2_Cb
, -1, start
[1], size
/ div
);
673 setup_frame_dma(ofb
->fbi
, DMA_OV2_Cr
, -1, start
[2], size
/ div
);
677 static void overlay2fb_enable(struct pxafb_layer
*ofb
)
679 int pfor
= NONSTD_TO_PFOR(ofb
->fb
.var
.nonstd
);
680 int enabled
= lcd_readl(ofb
->fbi
, OVL2C1
) & OVLxC1_OEN
;
681 uint32_t fdadr2
= ofb
->fbi
->fdadr
[DMA_OV2_Y
] | (enabled
? 0x1 : 0);
682 uint32_t fdadr3
= ofb
->fbi
->fdadr
[DMA_OV2_Cb
] | (enabled
? 0x1 : 0);
683 uint32_t fdadr4
= ofb
->fbi
->fdadr
[DMA_OV2_Cr
] | (enabled
? 0x1 : 0);
685 if (pfor
== OVERLAY_FORMAT_RGB
|| pfor
== OVERLAY_FORMAT_YUV444_PACKED
)
686 lcd_writel(ofb
->fbi
, enabled
? FBR2
: FDADR2
, fdadr2
);
688 lcd_writel(ofb
->fbi
, enabled
? FBR2
: FDADR2
, fdadr2
);
689 lcd_writel(ofb
->fbi
, enabled
? FBR3
: FDADR3
, fdadr3
);
690 lcd_writel(ofb
->fbi
, enabled
? FBR4
: FDADR4
, fdadr4
);
692 lcd_writel(ofb
->fbi
, OVL2C2
, ofb
->control
[1]);
693 lcd_writel(ofb
->fbi
, OVL2C1
, ofb
->control
[0] | OVLxC1_OEN
);
696 static void overlay2fb_disable(struct pxafb_layer
*ofb
)
700 if (!(lcd_readl(ofb
->fbi
, OVL2C1
) & OVLxC1_OEN
))
703 lccr5
= lcd_readl(ofb
->fbi
, LCCR5
);
705 lcd_writel(ofb
->fbi
, OVL2C1
, ofb
->control
[0] & ~OVLxC1_OEN
);
707 lcd_writel(ofb
->fbi
, LCSR1
, LCSR1_BS(2));
708 lcd_writel(ofb
->fbi
, LCCR5
, lccr5
& ~LCSR1_BS(2));
709 lcd_writel(ofb
->fbi
, FBR2
, ofb
->fbi
->fdadr
[DMA_OV2_Y
] | 0x3);
710 lcd_writel(ofb
->fbi
, FBR3
, ofb
->fbi
->fdadr
[DMA_OV2_Cb
] | 0x3);
711 lcd_writel(ofb
->fbi
, FBR4
, ofb
->fbi
->fdadr
[DMA_OV2_Cr
] | 0x3);
713 if (wait_for_completion_timeout(&ofb
->branch_done
, 1 * HZ
) == 0)
714 pr_warn("%s: timeout disabling overlay2\n", __func__
);
717 static struct pxafb_layer_ops ofb_ops
[] = {
719 .enable
= overlay1fb_enable
,
720 .disable
= overlay1fb_disable
,
721 .setup
= overlay1fb_setup
,
724 .enable
= overlay2fb_enable
,
725 .disable
= overlay2fb_disable
,
726 .setup
= overlay2fb_setup
,
730 static int overlayfb_open(struct fb_info
*info
, int user
)
732 struct pxafb_layer
*ofb
= container_of(info
, struct pxafb_layer
, fb
);
734 /* no support for framebuffer console on overlay */
738 if (ofb
->usage
++ == 0) {
739 /* unblank the base framebuffer */
741 fb_blank(&ofb
->fbi
->fb
, FB_BLANK_UNBLANK
);
748 static int overlayfb_release(struct fb_info
*info
, int user
)
750 struct pxafb_layer
*ofb
= container_of(info
, struct pxafb_layer
, fb
);
752 if (ofb
->usage
== 1) {
753 ofb
->ops
->disable(ofb
);
754 ofb
->fb
.var
.height
= -1;
755 ofb
->fb
.var
.width
= -1;
756 ofb
->fb
.var
.xres
= ofb
->fb
.var
.xres_virtual
= 0;
757 ofb
->fb
.var
.yres
= ofb
->fb
.var
.yres_virtual
= 0;
764 static int overlayfb_check_var(struct fb_var_screeninfo
*var
,
765 struct fb_info
*info
)
767 struct pxafb_layer
*ofb
= container_of(info
, struct pxafb_layer
, fb
);
768 struct fb_var_screeninfo
*base_var
= &ofb
->fbi
->fb
.var
;
769 int xpos
, ypos
, pfor
, bpp
;
771 xpos
= NONSTD_TO_XPOS(var
->nonstd
);
772 ypos
= NONSTD_TO_YPOS(var
->nonstd
);
773 pfor
= NONSTD_TO_PFOR(var
->nonstd
);
775 bpp
= pxafb_var_to_bpp(var
);
779 /* no support for YUV format on overlay1 */
780 if (ofb
->id
== OVERLAY1
&& pfor
!= 0)
783 /* for YUV packed formats, bpp = 'minimum bpp of YUV components' */
785 case OVERLAY_FORMAT_RGB
:
786 bpp
= pxafb_var_to_bpp(var
);
790 pxafb_set_pixfmt(var
, var_to_depth(var
));
792 case OVERLAY_FORMAT_YUV444_PACKED
: bpp
= 24; break;
793 case OVERLAY_FORMAT_YUV444_PLANAR
: bpp
= 8; break;
794 case OVERLAY_FORMAT_YUV422_PLANAR
: bpp
= 4; break;
795 case OVERLAY_FORMAT_YUV420_PLANAR
: bpp
= 2; break;
800 /* each line must start at a 32-bit word boundary */
801 if ((xpos
* bpp
) % 32)
804 /* xres must align on 32-bit word boundary */
805 var
->xres
= roundup(var
->xres
* bpp
, 32) / bpp
;
807 if ((xpos
+ var
->xres
> base_var
->xres
) ||
808 (ypos
+ var
->yres
> base_var
->yres
))
811 var
->xres_virtual
= var
->xres
;
812 var
->yres_virtual
= max(var
->yres
, var
->yres_virtual
);
816 static int overlayfb_check_video_memory(struct pxafb_layer
*ofb
)
818 struct fb_var_screeninfo
*var
= &ofb
->fb
.var
;
819 int pfor
= NONSTD_TO_PFOR(var
->nonstd
);
823 case OVERLAY_FORMAT_RGB
: bpp
= var
->bits_per_pixel
; break;
824 case OVERLAY_FORMAT_YUV444_PACKED
: bpp
= 24; break;
825 case OVERLAY_FORMAT_YUV444_PLANAR
: bpp
= 24; break;
826 case OVERLAY_FORMAT_YUV422_PLANAR
: bpp
= 16; break;
827 case OVERLAY_FORMAT_YUV420_PLANAR
: bpp
= 12; break;
830 ofb
->fb
.fix
.line_length
= var
->xres_virtual
* bpp
/ 8;
832 size
= PAGE_ALIGN(ofb
->fb
.fix
.line_length
* var
->yres_virtual
);
834 if (ofb
->video_mem
) {
835 if (ofb
->video_mem_size
>= size
)
841 static int overlayfb_set_par(struct fb_info
*info
)
843 struct pxafb_layer
*ofb
= container_of(info
, struct pxafb_layer
, fb
);
844 struct fb_var_screeninfo
*var
= &info
->var
;
845 int xpos
, ypos
, pfor
, bpp
, ret
;
847 ret
= overlayfb_check_video_memory(ofb
);
851 bpp
= pxafb_var_to_bpp(var
);
852 xpos
= NONSTD_TO_XPOS(var
->nonstd
);
853 ypos
= NONSTD_TO_YPOS(var
->nonstd
);
854 pfor
= NONSTD_TO_PFOR(var
->nonstd
);
856 ofb
->control
[0] = OVLxC1_PPL(var
->xres
) | OVLxC1_LPO(var
->yres
) |
858 ofb
->control
[1] = OVLxC2_XPOS(xpos
) | OVLxC2_YPOS(ypos
);
860 if (ofb
->id
== OVERLAY2
)
861 ofb
->control
[1] |= OVL2C2_PFOR(pfor
);
863 ofb
->ops
->setup(ofb
);
864 ofb
->ops
->enable(ofb
);
868 static const struct fb_ops overlay_fb_ops
= {
869 .owner
= THIS_MODULE
,
870 .fb_open
= overlayfb_open
,
871 .fb_release
= overlayfb_release
,
872 .fb_check_var
= overlayfb_check_var
,
873 .fb_set_par
= overlayfb_set_par
,
876 static void init_pxafb_overlay(struct pxafb_info
*fbi
, struct pxafb_layer
*ofb
,
879 sprintf(ofb
->fb
.fix
.id
, "overlay%d", id
+ 1);
881 ofb
->fb
.fix
.type
= FB_TYPE_PACKED_PIXELS
;
882 ofb
->fb
.fix
.xpanstep
= 0;
883 ofb
->fb
.fix
.ypanstep
= 1;
885 ofb
->fb
.var
.activate
= FB_ACTIVATE_NOW
;
886 ofb
->fb
.var
.height
= -1;
887 ofb
->fb
.var
.width
= -1;
888 ofb
->fb
.var
.vmode
= FB_VMODE_NONINTERLACED
;
890 ofb
->fb
.fbops
= &overlay_fb_ops
;
891 ofb
->fb
.flags
= FBINFO_FLAG_DEFAULT
;
893 ofb
->fb
.pseudo_palette
= NULL
;
896 ofb
->ops
= &ofb_ops
[id
];
899 init_completion(&ofb
->branch_done
);
902 static inline int pxafb_overlay_supported(void)
904 if (cpu_is_pxa27x() || cpu_is_pxa3xx())
910 static int pxafb_overlay_map_video_memory(struct pxafb_info
*pxafb
,
911 struct pxafb_layer
*ofb
)
913 /* We assume that user will use at most video_mem_size for overlay fb,
914 * anyway, it's useless to use 16bpp main plane and 24bpp overlay
916 ofb
->video_mem
= alloc_pages_exact(PAGE_ALIGN(pxafb
->video_mem_size
),
917 GFP_KERNEL
| __GFP_ZERO
);
918 if (ofb
->video_mem
== NULL
)
921 ofb
->video_mem_phys
= virt_to_phys(ofb
->video_mem
);
922 ofb
->video_mem_size
= PAGE_ALIGN(pxafb
->video_mem_size
);
924 mutex_lock(&ofb
->fb
.mm_lock
);
925 ofb
->fb
.fix
.smem_start
= ofb
->video_mem_phys
;
926 ofb
->fb
.fix
.smem_len
= pxafb
->video_mem_size
;
927 mutex_unlock(&ofb
->fb
.mm_lock
);
929 ofb
->fb
.screen_base
= ofb
->video_mem
;
934 static void pxafb_overlay_init(struct pxafb_info
*fbi
)
938 if (!pxafb_overlay_supported())
941 for (i
= 0; i
< 2; i
++) {
942 struct pxafb_layer
*ofb
= &fbi
->overlay
[i
];
943 init_pxafb_overlay(fbi
, ofb
, i
);
944 ret
= register_framebuffer(&ofb
->fb
);
946 dev_err(fbi
->dev
, "failed to register overlay %d\n", i
);
949 ret
= pxafb_overlay_map_video_memory(fbi
, ofb
);
952 "failed to map video memory for overlay %d\n",
954 unregister_framebuffer(&ofb
->fb
);
960 /* mask all IU/BS/EOF/SOF interrupts */
961 lcd_writel(fbi
, LCCR5
, ~0);
963 pr_info("PXA Overlay driver loaded successfully!\n");
966 static void pxafb_overlay_exit(struct pxafb_info
*fbi
)
970 if (!pxafb_overlay_supported())
973 for (i
= 0; i
< 2; i
++) {
974 struct pxafb_layer
*ofb
= &fbi
->overlay
[i
];
975 if (ofb
->registered
) {
977 free_pages_exact(ofb
->video_mem
,
978 ofb
->video_mem_size
);
979 unregister_framebuffer(&ofb
->fb
);
984 static inline void pxafb_overlay_init(struct pxafb_info
*fbi
) {}
985 static inline void pxafb_overlay_exit(struct pxafb_info
*fbi
) {}
986 #endif /* CONFIG_FB_PXA_OVERLAY */
989 * Calculate the PCD value from the clock rate (in picoseconds).
990 * We take account of the PPCR clock setting.
991 * From PXA Developer's Manual:
1002 * LCLK = LCD/Memory Clock
1005 * PixelClock here is in Hz while the pixclock argument given is the
1006 * period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 )
1008 * The function get_lclk_frequency_10khz returns LCLK in units of
1009 * 10khz. Calling the result of this function lclk gives us the
1012 * PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 )
1013 * -------------------------------------- - 1
1016 * Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below.
1018 static inline unsigned int get_pcd(struct pxafb_info
*fbi
,
1019 unsigned int pixclock
)
1021 unsigned long long pcd
;
1023 /* FIXME: Need to take into account Double Pixel Clock mode
1024 * (DPC) bit? or perhaps set it based on the various clock
1026 pcd
= (unsigned long long)(clk_get_rate(fbi
->clk
) / 10000);
1028 do_div(pcd
, 100000000 * 2);
1029 /* no need for this, since we should subtract 1 anyway. they cancel */
1030 /* pcd += 1; */ /* make up for integer math truncations */
1031 return (unsigned int)pcd
;
1035 * Some touchscreens need hsync information from the video driver to
1036 * function correctly. We export it here. Note that 'hsync_time' and
1037 * the value returned from pxafb_get_hsync_time() is the *reciprocal*
1038 * of the hsync period in seconds.
1040 static inline void set_hsync_time(struct pxafb_info
*fbi
, unsigned int pcd
)
1042 unsigned long htime
;
1044 if ((pcd
== 0) || (fbi
->fb
.var
.hsync_len
== 0)) {
1045 fbi
->hsync_time
= 0;
1049 htime
= clk_get_rate(fbi
->clk
) / (pcd
* fbi
->fb
.var
.hsync_len
);
1051 fbi
->hsync_time
= htime
;
1054 unsigned long pxafb_get_hsync_time(struct device
*dev
)
1056 struct pxafb_info
*fbi
= dev_get_drvdata(dev
);
1058 /* If display is blanked/suspended, hsync isn't active */
1059 if (!fbi
|| (fbi
->state
!= C_ENABLE
))
1062 return fbi
->hsync_time
;
1064 EXPORT_SYMBOL(pxafb_get_hsync_time
);
1066 static int setup_frame_dma(struct pxafb_info
*fbi
, int dma
, int pal
,
1067 unsigned long start
, size_t size
)
1069 struct pxafb_dma_descriptor
*dma_desc
, *pal_desc
;
1070 unsigned int dma_desc_off
, pal_desc_off
;
1072 if (dma
< 0 || dma
>= DMA_MAX
* 2)
1075 dma_desc
= &fbi
->dma_buff
->dma_desc
[dma
];
1076 dma_desc_off
= offsetof(struct pxafb_dma_buff
, dma_desc
[dma
]);
1078 dma_desc
->fsadr
= start
;
1080 dma_desc
->ldcmd
= size
;
1082 if (pal
< 0 || pal
>= PAL_MAX
* 2) {
1083 dma_desc
->fdadr
= fbi
->dma_buff_phys
+ dma_desc_off
;
1084 fbi
->fdadr
[dma
] = fbi
->dma_buff_phys
+ dma_desc_off
;
1086 pal_desc
= &fbi
->dma_buff
->pal_desc
[pal
];
1087 pal_desc_off
= offsetof(struct pxafb_dma_buff
, pal_desc
[pal
]);
1089 pal_desc
->fsadr
= fbi
->dma_buff_phys
+ pal
* PALETTE_SIZE
;
1092 if ((fbi
->lccr4
& LCCR4_PAL_FOR_MASK
) == LCCR4_PAL_FOR_0
)
1093 pal_desc
->ldcmd
= fbi
->palette_size
* sizeof(u16
);
1095 pal_desc
->ldcmd
= fbi
->palette_size
* sizeof(u32
);
1097 pal_desc
->ldcmd
|= LDCMD_PAL
;
1099 /* flip back and forth between palette and frame buffer */
1100 pal_desc
->fdadr
= fbi
->dma_buff_phys
+ dma_desc_off
;
1101 dma_desc
->fdadr
= fbi
->dma_buff_phys
+ pal_desc_off
;
1102 fbi
->fdadr
[dma
] = fbi
->dma_buff_phys
+ dma_desc_off
;
1108 static void setup_base_frame(struct pxafb_info
*fbi
,
1109 struct fb_var_screeninfo
*var
,
1112 struct fb_fix_screeninfo
*fix
= &fbi
->fb
.fix
;
1113 int nbytes
, dma
, pal
, bpp
= var
->bits_per_pixel
;
1114 unsigned long offset
;
1116 dma
= DMA_BASE
+ (branch
? DMA_MAX
: 0);
1117 pal
= (bpp
>= 16) ? PAL_NONE
: PAL_BASE
+ (branch
? PAL_MAX
: 0);
1119 nbytes
= fix
->line_length
* var
->yres
;
1120 offset
= fix
->line_length
* var
->yoffset
+ fbi
->video_mem_phys
;
1122 if (fbi
->lccr0
& LCCR0_SDS
) {
1123 nbytes
= nbytes
/ 2;
1124 setup_frame_dma(fbi
, dma
+ 1, PAL_NONE
, offset
+ nbytes
, nbytes
);
1127 setup_frame_dma(fbi
, dma
, pal
, offset
, nbytes
);
1130 #ifdef CONFIG_FB_PXA_SMARTPANEL
1131 static int setup_smart_dma(struct pxafb_info
*fbi
)
1133 struct pxafb_dma_descriptor
*dma_desc
;
1134 unsigned long dma_desc_off
, cmd_buff_off
;
1136 dma_desc
= &fbi
->dma_buff
->dma_desc
[DMA_CMD
];
1137 dma_desc_off
= offsetof(struct pxafb_dma_buff
, dma_desc
[DMA_CMD
]);
1138 cmd_buff_off
= offsetof(struct pxafb_dma_buff
, cmd_buff
);
1140 dma_desc
->fdadr
= fbi
->dma_buff_phys
+ dma_desc_off
;
1141 dma_desc
->fsadr
= fbi
->dma_buff_phys
+ cmd_buff_off
;
1143 dma_desc
->ldcmd
= fbi
->n_smart_cmds
* sizeof(uint16_t);
1145 fbi
->fdadr
[DMA_CMD
] = dma_desc
->fdadr
;
1149 int pxafb_smart_flush(struct fb_info
*info
)
1151 struct pxafb_info
*fbi
= container_of(info
, struct pxafb_info
, fb
);
1155 /* disable controller until all registers are set up */
1156 lcd_writel(fbi
, LCCR0
, fbi
->reg_lccr0
& ~LCCR0_ENB
);
1158 /* 1. make it an even number of commands to align on 32-bit boundary
1159 * 2. add the interrupt command to the end of the chain so we can
1160 * keep track of the end of the transfer
1163 while (fbi
->n_smart_cmds
& 1)
1164 fbi
->smart_cmds
[fbi
->n_smart_cmds
++] = SMART_CMD_NOOP
;
1166 fbi
->smart_cmds
[fbi
->n_smart_cmds
++] = SMART_CMD_INTERRUPT
;
1167 fbi
->smart_cmds
[fbi
->n_smart_cmds
++] = SMART_CMD_WAIT_FOR_VSYNC
;
1168 setup_smart_dma(fbi
);
1170 /* continue to execute next command */
1171 prsr
= lcd_readl(fbi
, PRSR
) | PRSR_ST_OK
| PRSR_CON_NT
;
1172 lcd_writel(fbi
, PRSR
, prsr
);
1174 /* stop the processor in case it executed "wait for sync" cmd */
1175 lcd_writel(fbi
, CMDCR
, 0x0001);
1177 /* don't send interrupts for fifo underruns on channel 6 */
1178 lcd_writel(fbi
, LCCR5
, LCCR5_IUM(6));
1180 lcd_writel(fbi
, LCCR1
, fbi
->reg_lccr1
);
1181 lcd_writel(fbi
, LCCR2
, fbi
->reg_lccr2
);
1182 lcd_writel(fbi
, LCCR3
, fbi
->reg_lccr3
);
1183 lcd_writel(fbi
, LCCR4
, fbi
->reg_lccr4
);
1184 lcd_writel(fbi
, FDADR0
, fbi
->fdadr
[0]);
1185 lcd_writel(fbi
, FDADR6
, fbi
->fdadr
[6]);
1188 lcd_writel(fbi
, LCCR0
, fbi
->reg_lccr0
| LCCR0_ENB
);
1190 if (wait_for_completion_timeout(&fbi
->command_done
, HZ
/2) == 0) {
1191 pr_warn("%s: timeout waiting for command done\n", __func__
);
1196 prsr
= lcd_readl(fbi
, PRSR
) & ~(PRSR_ST_OK
| PRSR_CON_NT
);
1197 lcd_writel(fbi
, PRSR
, prsr
);
1198 lcd_writel(fbi
, LCCR0
, fbi
->reg_lccr0
& ~LCCR0_ENB
);
1199 lcd_writel(fbi
, FDADR6
, 0);
1200 fbi
->n_smart_cmds
= 0;
1204 int pxafb_smart_queue(struct fb_info
*info
, uint16_t *cmds
, int n_cmds
)
1207 struct pxafb_info
*fbi
= container_of(info
, struct pxafb_info
, fb
);
1209 for (i
= 0; i
< n_cmds
; i
++, cmds
++) {
1210 /* if it is a software delay, flush and delay */
1211 if ((*cmds
& 0xff00) == SMART_CMD_DELAY
) {
1212 pxafb_smart_flush(info
);
1213 mdelay(*cmds
& 0xff);
1217 /* leave 2 commands for INTERRUPT and WAIT_FOR_SYNC */
1218 if (fbi
->n_smart_cmds
== CMD_BUFF_SIZE
- 8)
1219 pxafb_smart_flush(info
);
1221 fbi
->smart_cmds
[fbi
->n_smart_cmds
++] = *cmds
;
1227 static unsigned int __smart_timing(unsigned time_ns
, unsigned long lcd_clk
)
1229 unsigned int t
= (time_ns
* (lcd_clk
/ 1000000) / 1000);
1230 return (t
== 0) ? 1 : t
;
1233 static void setup_smart_timing(struct pxafb_info
*fbi
,
1234 struct fb_var_screeninfo
*var
)
1236 struct pxafb_mach_info
*inf
= fbi
->inf
;
1237 struct pxafb_mode_info
*mode
= &inf
->modes
[0];
1238 unsigned long lclk
= clk_get_rate(fbi
->clk
);
1239 unsigned t1
, t2
, t3
, t4
;
1241 t1
= max(mode
->a0csrd_set_hld
, mode
->a0cswr_set_hld
);
1242 t2
= max(mode
->rd_pulse_width
, mode
->wr_pulse_width
);
1243 t3
= mode
->op_hold_time
;
1244 t4
= mode
->cmd_inh_time
;
1247 LCCR1_DisWdth(var
->xres
) |
1248 LCCR1_BegLnDel(__smart_timing(t1
, lclk
)) |
1249 LCCR1_EndLnDel(__smart_timing(t2
, lclk
)) |
1250 LCCR1_HorSnchWdth(__smart_timing(t3
, lclk
));
1252 fbi
->reg_lccr2
= LCCR2_DisHght(var
->yres
);
1253 fbi
->reg_lccr3
= fbi
->lccr3
| LCCR3_PixClkDiv(__smart_timing(t4
, lclk
));
1254 fbi
->reg_lccr3
|= (var
->sync
& FB_SYNC_HOR_HIGH_ACT
) ? LCCR3_HSP
: 0;
1255 fbi
->reg_lccr3
|= (var
->sync
& FB_SYNC_VERT_HIGH_ACT
) ? LCCR3_VSP
: 0;
1257 /* FIXME: make this configurable */
1261 static int pxafb_smart_thread(void *arg
)
1263 struct pxafb_info
*fbi
= arg
;
1264 struct pxafb_mach_info
*inf
= fbi
->inf
;
1266 if (!inf
->smart_update
) {
1267 pr_err("%s: not properly initialized, thread terminated\n",
1272 pr_debug("%s(): task starting\n", __func__
);
1275 while (!kthread_should_stop()) {
1277 if (try_to_freeze())
1280 mutex_lock(&fbi
->ctrlr_lock
);
1282 if (fbi
->state
== C_ENABLE
) {
1283 inf
->smart_update(&fbi
->fb
);
1284 complete(&fbi
->refresh_done
);
1287 mutex_unlock(&fbi
->ctrlr_lock
);
1289 set_current_state(TASK_INTERRUPTIBLE
);
1290 schedule_timeout(msecs_to_jiffies(30));
1293 pr_debug("%s(): task ending\n", __func__
);
1297 static int pxafb_smart_init(struct pxafb_info
*fbi
)
1299 if (!(fbi
->lccr0
& LCCR0_LCDT
))
1302 fbi
->smart_cmds
= (uint16_t *) fbi
->dma_buff
->cmd_buff
;
1303 fbi
->n_smart_cmds
= 0;
1305 init_completion(&fbi
->command_done
);
1306 init_completion(&fbi
->refresh_done
);
1308 fbi
->smart_thread
= kthread_run(pxafb_smart_thread
, fbi
,
1310 if (IS_ERR(fbi
->smart_thread
)) {
1311 pr_err("%s: unable to create kernel thread\n", __func__
);
1312 return PTR_ERR(fbi
->smart_thread
);
1318 static inline int pxafb_smart_init(struct pxafb_info
*fbi
) { return 0; }
1319 #endif /* CONFIG_FB_PXA_SMARTPANEL */
1321 static void setup_parallel_timing(struct pxafb_info
*fbi
,
1322 struct fb_var_screeninfo
*var
)
1324 unsigned int lines_per_panel
, pcd
= get_pcd(fbi
, var
->pixclock
);
1327 LCCR1_DisWdth(var
->xres
) +
1328 LCCR1_HorSnchWdth(var
->hsync_len
) +
1329 LCCR1_BegLnDel(var
->left_margin
) +
1330 LCCR1_EndLnDel(var
->right_margin
);
1333 * If we have a dual scan LCD, we need to halve
1334 * the YRES parameter.
1336 lines_per_panel
= var
->yres
;
1337 if ((fbi
->lccr0
& LCCR0_SDS
) == LCCR0_Dual
)
1338 lines_per_panel
/= 2;
1341 LCCR2_DisHght(lines_per_panel
) +
1342 LCCR2_VrtSnchWdth(var
->vsync_len
) +
1343 LCCR2_BegFrmDel(var
->upper_margin
) +
1344 LCCR2_EndFrmDel(var
->lower_margin
);
1346 fbi
->reg_lccr3
= fbi
->lccr3
|
1347 (var
->sync
& FB_SYNC_HOR_HIGH_ACT
?
1348 LCCR3_HorSnchH
: LCCR3_HorSnchL
) |
1349 (var
->sync
& FB_SYNC_VERT_HIGH_ACT
?
1350 LCCR3_VrtSnchH
: LCCR3_VrtSnchL
);
1353 fbi
->reg_lccr3
|= LCCR3_PixClkDiv(pcd
);
1354 set_hsync_time(fbi
, pcd
);
1359 * pxafb_activate_var():
1360 * Configures LCD Controller based on entries in var parameter.
1361 * Settings are only written to the controller if changes were made.
1363 static int pxafb_activate_var(struct fb_var_screeninfo
*var
,
1364 struct pxafb_info
*fbi
)
1368 /* Update shadow copy atomically */
1369 local_irq_save(flags
);
1371 #ifdef CONFIG_FB_PXA_SMARTPANEL
1372 if (fbi
->lccr0
& LCCR0_LCDT
)
1373 setup_smart_timing(fbi
, var
);
1376 setup_parallel_timing(fbi
, var
);
1378 setup_base_frame(fbi
, var
, 0);
1380 fbi
->reg_lccr0
= fbi
->lccr0
|
1381 (LCCR0_LDM
| LCCR0_SFM
| LCCR0_IUM
| LCCR0_EFM
|
1382 LCCR0_QDM
| LCCR0_BM
| LCCR0_OUM
);
1384 fbi
->reg_lccr3
|= pxafb_var_to_lccr3(var
);
1386 fbi
->reg_lccr4
= lcd_readl(fbi
, LCCR4
) & ~LCCR4_PAL_FOR_MASK
;
1387 fbi
->reg_lccr4
|= (fbi
->lccr4
& LCCR4_PAL_FOR_MASK
);
1388 local_irq_restore(flags
);
1391 * Only update the registers if the controller is enabled
1392 * and something has changed.
1394 if ((lcd_readl(fbi
, LCCR0
) != fbi
->reg_lccr0
) ||
1395 (lcd_readl(fbi
, LCCR1
) != fbi
->reg_lccr1
) ||
1396 (lcd_readl(fbi
, LCCR2
) != fbi
->reg_lccr2
) ||
1397 (lcd_readl(fbi
, LCCR3
) != fbi
->reg_lccr3
) ||
1398 (lcd_readl(fbi
, LCCR4
) != fbi
->reg_lccr4
) ||
1399 (lcd_readl(fbi
, FDADR0
) != fbi
->fdadr
[0]) ||
1400 ((fbi
->lccr0
& LCCR0_SDS
) &&
1401 (lcd_readl(fbi
, FDADR1
) != fbi
->fdadr
[1])))
1402 pxafb_schedule_work(fbi
, C_REENABLE
);
1408 * NOTE! The following functions are purely helpers for set_ctrlr_state.
1409 * Do not call them directly; set_ctrlr_state does the correct serialisation
1410 * to ensure that things happen in the right way 100% of time time.
1413 static inline void __pxafb_backlight_power(struct pxafb_info
*fbi
, int on
)
1415 pr_debug("pxafb: backlight o%s\n", on
? "n" : "ff");
1417 if (fbi
->backlight_power
)
1418 fbi
->backlight_power(on
);
1421 static inline void __pxafb_lcd_power(struct pxafb_info
*fbi
, int on
)
1423 pr_debug("pxafb: LCD power o%s\n", on
? "n" : "ff");
1426 fbi
->lcd_power(on
, &fbi
->fb
.var
);
1428 if (fbi
->lcd_supply
&& fbi
->lcd_supply_enabled
!= on
) {
1432 ret
= regulator_enable(fbi
->lcd_supply
);
1434 ret
= regulator_disable(fbi
->lcd_supply
);
1437 pr_warn("Unable to %s LCD supply regulator: %d\n",
1438 on
? "enable" : "disable", ret
);
1440 fbi
->lcd_supply_enabled
= on
;
1444 static void pxafb_enable_controller(struct pxafb_info
*fbi
)
1446 pr_debug("pxafb: Enabling LCD controller\n");
1447 pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi
->fdadr
[0]);
1448 pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi
->fdadr
[1]);
1449 pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi
->reg_lccr0
);
1450 pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi
->reg_lccr1
);
1451 pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi
->reg_lccr2
);
1452 pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi
->reg_lccr3
);
1454 /* enable LCD controller clock */
1455 if (clk_prepare_enable(fbi
->clk
)) {
1456 pr_err("%s: Failed to prepare clock\n", __func__
);
1460 if (fbi
->lccr0
& LCCR0_LCDT
)
1463 /* Sequence from 11.7.10 */
1464 lcd_writel(fbi
, LCCR4
, fbi
->reg_lccr4
);
1465 lcd_writel(fbi
, LCCR3
, fbi
->reg_lccr3
);
1466 lcd_writel(fbi
, LCCR2
, fbi
->reg_lccr2
);
1467 lcd_writel(fbi
, LCCR1
, fbi
->reg_lccr1
);
1468 lcd_writel(fbi
, LCCR0
, fbi
->reg_lccr0
& ~LCCR0_ENB
);
1470 lcd_writel(fbi
, FDADR0
, fbi
->fdadr
[0]);
1471 if (fbi
->lccr0
& LCCR0_SDS
)
1472 lcd_writel(fbi
, FDADR1
, fbi
->fdadr
[1]);
1473 lcd_writel(fbi
, LCCR0
, fbi
->reg_lccr0
| LCCR0_ENB
);
1476 static void pxafb_disable_controller(struct pxafb_info
*fbi
)
1480 #ifdef CONFIG_FB_PXA_SMARTPANEL
1481 if (fbi
->lccr0
& LCCR0_LCDT
) {
1482 wait_for_completion_timeout(&fbi
->refresh_done
,
1483 msecs_to_jiffies(200));
1488 /* Clear LCD Status Register */
1489 lcd_writel(fbi
, LCSR
, 0xffffffff);
1491 lccr0
= lcd_readl(fbi
, LCCR0
) & ~LCCR0_LDM
;
1492 lcd_writel(fbi
, LCCR0
, lccr0
);
1493 lcd_writel(fbi
, LCCR0
, lccr0
| LCCR0_DIS
);
1495 wait_for_completion_timeout(&fbi
->disable_done
, msecs_to_jiffies(200));
1497 /* disable LCD controller clock */
1498 clk_disable_unprepare(fbi
->clk
);
1502 * pxafb_handle_irq: Handle 'LCD DONE' interrupts.
1504 static irqreturn_t
pxafb_handle_irq(int irq
, void *dev_id
)
1506 struct pxafb_info
*fbi
= dev_id
;
1507 unsigned int lccr0
, lcsr
;
1509 lcsr
= lcd_readl(fbi
, LCSR
);
1510 if (lcsr
& LCSR_LDD
) {
1511 lccr0
= lcd_readl(fbi
, LCCR0
);
1512 lcd_writel(fbi
, LCCR0
, lccr0
| LCCR0_LDM
);
1513 complete(&fbi
->disable_done
);
1516 #ifdef CONFIG_FB_PXA_SMARTPANEL
1517 if (lcsr
& LCSR_CMD_INT
)
1518 complete(&fbi
->command_done
);
1520 lcd_writel(fbi
, LCSR
, lcsr
);
1522 #ifdef CONFIG_FB_PXA_OVERLAY
1524 unsigned int lcsr1
= lcd_readl(fbi
, LCSR1
);
1525 if (lcsr1
& LCSR1_BS(1))
1526 complete(&fbi
->overlay
[0].branch_done
);
1528 if (lcsr1
& LCSR1_BS(2))
1529 complete(&fbi
->overlay
[1].branch_done
);
1531 lcd_writel(fbi
, LCSR1
, lcsr1
);
1538 * This function must be called from task context only, since it will
1539 * sleep when disabling the LCD controller, or if we get two contending
1540 * processes trying to alter state.
1542 static void set_ctrlr_state(struct pxafb_info
*fbi
, u_int state
)
1546 mutex_lock(&fbi
->ctrlr_lock
);
1548 old_state
= fbi
->state
;
1551 * Hack around fbcon initialisation.
1553 if (old_state
== C_STARTUP
&& state
== C_REENABLE
)
1557 case C_DISABLE_CLKCHANGE
:
1559 * Disable controller for clock change. If the
1560 * controller is already disabled, then do nothing.
1562 if (old_state
!= C_DISABLE
&& old_state
!= C_DISABLE_PM
) {
1564 /* TODO __pxafb_lcd_power(fbi, 0); */
1565 pxafb_disable_controller(fbi
);
1572 * Disable controller
1574 if (old_state
!= C_DISABLE
) {
1576 __pxafb_backlight_power(fbi
, 0);
1577 __pxafb_lcd_power(fbi
, 0);
1578 if (old_state
!= C_DISABLE_CLKCHANGE
)
1579 pxafb_disable_controller(fbi
);
1583 case C_ENABLE_CLKCHANGE
:
1585 * Enable the controller after clock change. Only
1586 * do this if we were disabled for the clock change.
1588 if (old_state
== C_DISABLE_CLKCHANGE
) {
1589 fbi
->state
= C_ENABLE
;
1590 pxafb_enable_controller(fbi
);
1591 /* TODO __pxafb_lcd_power(fbi, 1); */
1597 * Re-enable the controller only if it was already
1598 * enabled. This is so we reprogram the control
1601 if (old_state
== C_ENABLE
) {
1602 __pxafb_lcd_power(fbi
, 0);
1603 pxafb_disable_controller(fbi
);
1604 pxafb_enable_controller(fbi
);
1605 __pxafb_lcd_power(fbi
, 1);
1611 * Re-enable the controller after PM. This is not
1612 * perfect - think about the case where we were doing
1613 * a clock change, and we suspended half-way through.
1615 if (old_state
!= C_DISABLE_PM
)
1621 * Power up the LCD screen, enable controller, and
1622 * turn on the backlight.
1624 if (old_state
!= C_ENABLE
) {
1625 fbi
->state
= C_ENABLE
;
1626 pxafb_enable_controller(fbi
);
1627 __pxafb_lcd_power(fbi
, 1);
1628 __pxafb_backlight_power(fbi
, 1);
1632 mutex_unlock(&fbi
->ctrlr_lock
);
1636 * Our LCD controller task (which is called when we blank or unblank)
1639 static void pxafb_task(struct work_struct
*work
)
1641 struct pxafb_info
*fbi
=
1642 container_of(work
, struct pxafb_info
, task
);
1643 u_int state
= xchg(&fbi
->task_state
, -1);
1645 set_ctrlr_state(fbi
, state
);
1648 #ifdef CONFIG_CPU_FREQ
1650 * CPU clock speed change handler. We need to adjust the LCD timing
1651 * parameters when the CPU clock is adjusted by the power management
1654 * TODO: Determine why f->new != 10*get_lclk_frequency_10khz()
1657 pxafb_freq_transition(struct notifier_block
*nb
, unsigned long val
, void *data
)
1659 struct pxafb_info
*fbi
= TO_INF(nb
, freq_transition
);
1660 /* TODO struct cpufreq_freqs *f = data; */
1664 case CPUFREQ_PRECHANGE
:
1665 #ifdef CONFIG_FB_PXA_OVERLAY
1666 if (!(fbi
->overlay
[0].usage
|| fbi
->overlay
[1].usage
))
1668 set_ctrlr_state(fbi
, C_DISABLE_CLKCHANGE
);
1671 case CPUFREQ_POSTCHANGE
:
1672 pcd
= get_pcd(fbi
, fbi
->fb
.var
.pixclock
);
1673 set_hsync_time(fbi
, pcd
);
1674 fbi
->reg_lccr3
= (fbi
->reg_lccr3
& ~0xff) |
1675 LCCR3_PixClkDiv(pcd
);
1676 set_ctrlr_state(fbi
, C_ENABLE_CLKCHANGE
);
1685 * Power management hooks. Note that we won't be called from IRQ context,
1686 * unlike the blank functions above, so we may sleep.
1688 static int pxafb_suspend(struct device
*dev
)
1690 struct pxafb_info
*fbi
= dev_get_drvdata(dev
);
1692 set_ctrlr_state(fbi
, C_DISABLE_PM
);
1696 static int pxafb_resume(struct device
*dev
)
1698 struct pxafb_info
*fbi
= dev_get_drvdata(dev
);
1700 set_ctrlr_state(fbi
, C_ENABLE_PM
);
1704 static const struct dev_pm_ops pxafb_pm_ops
= {
1705 .suspend
= pxafb_suspend
,
1706 .resume
= pxafb_resume
,
1710 static int pxafb_init_video_memory(struct pxafb_info
*fbi
)
1712 int size
= PAGE_ALIGN(fbi
->video_mem_size
);
1714 fbi
->video_mem
= alloc_pages_exact(size
, GFP_KERNEL
| __GFP_ZERO
);
1715 if (fbi
->video_mem
== NULL
)
1718 fbi
->video_mem_phys
= virt_to_phys(fbi
->video_mem
);
1719 fbi
->video_mem_size
= size
;
1721 fbi
->fb
.fix
.smem_start
= fbi
->video_mem_phys
;
1722 fbi
->fb
.fix
.smem_len
= fbi
->video_mem_size
;
1723 fbi
->fb
.screen_base
= fbi
->video_mem
;
1725 return fbi
->video_mem
? 0 : -ENOMEM
;
1728 static void pxafb_decode_mach_info(struct pxafb_info
*fbi
,
1729 struct pxafb_mach_info
*inf
)
1731 unsigned int lcd_conn
= inf
->lcd_conn
;
1732 struct pxafb_mode_info
*m
;
1735 fbi
->cmap_inverse
= inf
->cmap_inverse
;
1736 fbi
->cmap_static
= inf
->cmap_static
;
1737 fbi
->lccr4
= inf
->lccr4
;
1739 switch (lcd_conn
& LCD_TYPE_MASK
) {
1740 case LCD_TYPE_MONO_STN
:
1741 fbi
->lccr0
= LCCR0_CMS
;
1743 case LCD_TYPE_MONO_DSTN
:
1744 fbi
->lccr0
= LCCR0_CMS
| LCCR0_SDS
;
1746 case LCD_TYPE_COLOR_STN
:
1749 case LCD_TYPE_COLOR_DSTN
:
1750 fbi
->lccr0
= LCCR0_SDS
;
1752 case LCD_TYPE_COLOR_TFT
:
1753 fbi
->lccr0
= LCCR0_PAS
;
1755 case LCD_TYPE_SMART_PANEL
:
1756 fbi
->lccr0
= LCCR0_LCDT
| LCCR0_PAS
;
1759 /* fall back to backward compatibility way */
1760 fbi
->lccr0
= inf
->lccr0
;
1761 fbi
->lccr3
= inf
->lccr3
;
1765 if (lcd_conn
== LCD_MONO_STN_8BPP
)
1766 fbi
->lccr0
|= LCCR0_DPD
;
1768 fbi
->lccr0
|= (lcd_conn
& LCD_ALTERNATE_MAPPING
) ? LCCR0_LDDALT
: 0;
1770 fbi
->lccr3
= LCCR3_Acb((inf
->lcd_conn
>> 10) & 0xff);
1771 fbi
->lccr3
|= (lcd_conn
& LCD_BIAS_ACTIVE_LOW
) ? LCCR3_OEP
: 0;
1772 fbi
->lccr3
|= (lcd_conn
& LCD_PCLK_EDGE_FALL
) ? LCCR3_PCP
: 0;
1775 pxafb_setmode(&fbi
->fb
.var
, &inf
->modes
[0]);
1777 /* decide video memory size as follows:
1778 * 1. default to mode of maximum resolution
1779 * 2. allow platform to override
1780 * 3. allow module parameter to override
1782 for (i
= 0, m
= &inf
->modes
[0]; i
< inf
->num_modes
; i
++, m
++)
1783 fbi
->video_mem_size
= max_t(size_t, fbi
->video_mem_size
,
1784 m
->xres
* m
->yres
* m
->bpp
/ 8);
1786 if (inf
->video_mem_size
> fbi
->video_mem_size
)
1787 fbi
->video_mem_size
= inf
->video_mem_size
;
1789 if (video_mem_size
> fbi
->video_mem_size
)
1790 fbi
->video_mem_size
= video_mem_size
;
1793 static struct pxafb_info
*pxafb_init_fbinfo(struct device
*dev
,
1794 struct pxafb_mach_info
*inf
)
1796 struct pxafb_info
*fbi
;
1799 /* Alloc the pxafb_info and pseudo_palette in one step */
1800 fbi
= devm_kzalloc(dev
, sizeof(struct pxafb_info
) + sizeof(u32
) * 16,
1803 return ERR_PTR(-ENOMEM
);
1808 fbi
->clk
= devm_clk_get(dev
, NULL
);
1809 if (IS_ERR(fbi
->clk
))
1810 return ERR_CAST(fbi
->clk
);
1812 strcpy(fbi
->fb
.fix
.id
, PXA_NAME
);
1814 fbi
->fb
.fix
.type
= FB_TYPE_PACKED_PIXELS
;
1815 fbi
->fb
.fix
.type_aux
= 0;
1816 fbi
->fb
.fix
.xpanstep
= 0;
1817 fbi
->fb
.fix
.ypanstep
= 1;
1818 fbi
->fb
.fix
.ywrapstep
= 0;
1819 fbi
->fb
.fix
.accel
= FB_ACCEL_NONE
;
1821 fbi
->fb
.var
.nonstd
= 0;
1822 fbi
->fb
.var
.activate
= FB_ACTIVATE_NOW
;
1823 fbi
->fb
.var
.height
= -1;
1824 fbi
->fb
.var
.width
= -1;
1825 fbi
->fb
.var
.accel_flags
= FB_ACCELF_TEXT
;
1826 fbi
->fb
.var
.vmode
= FB_VMODE_NONINTERLACED
;
1828 fbi
->fb
.fbops
= &pxafb_ops
;
1829 fbi
->fb
.flags
= FBINFO_DEFAULT
;
1833 addr
= addr
+ sizeof(struct pxafb_info
);
1834 fbi
->fb
.pseudo_palette
= addr
;
1836 fbi
->state
= C_STARTUP
;
1837 fbi
->task_state
= (u_char
)-1;
1839 pxafb_decode_mach_info(fbi
, inf
);
1841 #ifdef CONFIG_FB_PXA_OVERLAY
1842 /* place overlay(s) on top of base */
1843 if (pxafb_overlay_supported())
1844 fbi
->lccr0
|= LCCR0_OUC
;
1847 init_waitqueue_head(&fbi
->ctrlr_wait
);
1848 INIT_WORK(&fbi
->task
, pxafb_task
);
1849 mutex_init(&fbi
->ctrlr_lock
);
1850 init_completion(&fbi
->disable_done
);
1855 #ifdef CONFIG_FB_PXA_PARAMETERS
1856 static int parse_opt_mode(struct device
*dev
, const char *this_opt
,
1857 struct pxafb_mach_info
*inf
)
1859 const char *name
= this_opt
+5;
1860 unsigned int namelen
= strlen(name
);
1861 int res_specified
= 0, bpp_specified
= 0;
1862 unsigned int xres
= 0, yres
= 0, bpp
= 0;
1863 int yres_specified
= 0;
1865 for (i
= namelen
-1; i
>= 0; i
--) {
1869 if (!bpp_specified
&& !yres_specified
) {
1870 bpp
= simple_strtoul(&name
[i
+1], NULL
, 0);
1876 if (!yres_specified
) {
1877 yres
= simple_strtoul(&name
[i
+1], NULL
, 0);
1888 if (i
< 0 && yres_specified
) {
1889 xres
= simple_strtoul(name
, NULL
, 0);
1893 if (res_specified
) {
1894 dev_info(dev
, "overriding resolution: %dx%d\n", xres
, yres
);
1895 inf
->modes
[0].xres
= xres
; inf
->modes
[0].yres
= yres
;
1904 inf
->modes
[0].bpp
= bpp
;
1905 dev_info(dev
, "overriding bit depth: %d\n", bpp
);
1908 dev_err(dev
, "Depth %d is not valid\n", bpp
);
1914 static int parse_opt(struct device
*dev
, char *this_opt
,
1915 struct pxafb_mach_info
*inf
)
1917 struct pxafb_mode_info
*mode
= &inf
->modes
[0];
1922 if (!strncmp(this_opt
, "vmem:", 5)) {
1923 video_mem_size
= memparse(this_opt
+ 5, NULL
);
1924 } else if (!strncmp(this_opt
, "mode:", 5)) {
1925 return parse_opt_mode(dev
, this_opt
, inf
);
1926 } else if (!strncmp(this_opt
, "pixclock:", 9)) {
1927 mode
->pixclock
= simple_strtoul(this_opt
+9, NULL
, 0);
1928 sprintf(s
, "pixclock: %ld\n", mode
->pixclock
);
1929 } else if (!strncmp(this_opt
, "left:", 5)) {
1930 mode
->left_margin
= simple_strtoul(this_opt
+5, NULL
, 0);
1931 sprintf(s
, "left: %u\n", mode
->left_margin
);
1932 } else if (!strncmp(this_opt
, "right:", 6)) {
1933 mode
->right_margin
= simple_strtoul(this_opt
+6, NULL
, 0);
1934 sprintf(s
, "right: %u\n", mode
->right_margin
);
1935 } else if (!strncmp(this_opt
, "upper:", 6)) {
1936 mode
->upper_margin
= simple_strtoul(this_opt
+6, NULL
, 0);
1937 sprintf(s
, "upper: %u\n", mode
->upper_margin
);
1938 } else if (!strncmp(this_opt
, "lower:", 6)) {
1939 mode
->lower_margin
= simple_strtoul(this_opt
+6, NULL
, 0);
1940 sprintf(s
, "lower: %u\n", mode
->lower_margin
);
1941 } else if (!strncmp(this_opt
, "hsynclen:", 9)) {
1942 mode
->hsync_len
= simple_strtoul(this_opt
+9, NULL
, 0);
1943 sprintf(s
, "hsynclen: %u\n", mode
->hsync_len
);
1944 } else if (!strncmp(this_opt
, "vsynclen:", 9)) {
1945 mode
->vsync_len
= simple_strtoul(this_opt
+9, NULL
, 0);
1946 sprintf(s
, "vsynclen: %u\n", mode
->vsync_len
);
1947 } else if (!strncmp(this_opt
, "hsync:", 6)) {
1948 if (simple_strtoul(this_opt
+6, NULL
, 0) == 0) {
1949 sprintf(s
, "hsync: Active Low\n");
1950 mode
->sync
&= ~FB_SYNC_HOR_HIGH_ACT
;
1952 sprintf(s
, "hsync: Active High\n");
1953 mode
->sync
|= FB_SYNC_HOR_HIGH_ACT
;
1955 } else if (!strncmp(this_opt
, "vsync:", 6)) {
1956 if (simple_strtoul(this_opt
+6, NULL
, 0) == 0) {
1957 sprintf(s
, "vsync: Active Low\n");
1958 mode
->sync
&= ~FB_SYNC_VERT_HIGH_ACT
;
1960 sprintf(s
, "vsync: Active High\n");
1961 mode
->sync
|= FB_SYNC_VERT_HIGH_ACT
;
1963 } else if (!strncmp(this_opt
, "dpc:", 4)) {
1964 if (simple_strtoul(this_opt
+4, NULL
, 0) == 0) {
1965 sprintf(s
, "double pixel clock: false\n");
1966 inf
->lccr3
&= ~LCCR3_DPC
;
1968 sprintf(s
, "double pixel clock: true\n");
1969 inf
->lccr3
|= LCCR3_DPC
;
1971 } else if (!strncmp(this_opt
, "outputen:", 9)) {
1972 if (simple_strtoul(this_opt
+9, NULL
, 0) == 0) {
1973 sprintf(s
, "output enable: active low\n");
1974 inf
->lccr3
= (inf
->lccr3
& ~LCCR3_OEP
) | LCCR3_OutEnL
;
1976 sprintf(s
, "output enable: active high\n");
1977 inf
->lccr3
= (inf
->lccr3
& ~LCCR3_OEP
) | LCCR3_OutEnH
;
1979 } else if (!strncmp(this_opt
, "pixclockpol:", 12)) {
1980 if (simple_strtoul(this_opt
+12, NULL
, 0) == 0) {
1981 sprintf(s
, "pixel clock polarity: falling edge\n");
1982 inf
->lccr3
= (inf
->lccr3
& ~LCCR3_PCP
) | LCCR3_PixFlEdg
;
1984 sprintf(s
, "pixel clock polarity: rising edge\n");
1985 inf
->lccr3
= (inf
->lccr3
& ~LCCR3_PCP
) | LCCR3_PixRsEdg
;
1987 } else if (!strncmp(this_opt
, "color", 5)) {
1988 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_CMS
) | LCCR0_Color
;
1989 } else if (!strncmp(this_opt
, "mono", 4)) {
1990 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_CMS
) | LCCR0_Mono
;
1991 } else if (!strncmp(this_opt
, "active", 6)) {
1992 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_PAS
) | LCCR0_Act
;
1993 } else if (!strncmp(this_opt
, "passive", 7)) {
1994 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_PAS
) | LCCR0_Pas
;
1995 } else if (!strncmp(this_opt
, "single", 6)) {
1996 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_SDS
) | LCCR0_Sngl
;
1997 } else if (!strncmp(this_opt
, "dual", 4)) {
1998 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_SDS
) | LCCR0_Dual
;
1999 } else if (!strncmp(this_opt
, "4pix", 4)) {
2000 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_DPD
) | LCCR0_4PixMono
;
2001 } else if (!strncmp(this_opt
, "8pix", 4)) {
2002 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_DPD
) | LCCR0_8PixMono
;
2004 dev_err(dev
, "unknown option: %s\n", this_opt
);
2009 dev_info(dev
, "override %s", s
);
2014 static int pxafb_parse_options(struct device
*dev
, char *options
,
2015 struct pxafb_mach_info
*inf
)
2020 if (!options
|| !*options
)
2023 dev_dbg(dev
, "options are \"%s\"\n", options
? options
: "null");
2025 /* could be made table driven or similar?... */
2026 while ((this_opt
= strsep(&options
, ",")) != NULL
) {
2027 ret
= parse_opt(dev
, this_opt
, inf
);
2034 static char g_options
[256] = "";
2037 static int __init
pxafb_setup_options(void)
2039 char *options
= NULL
;
2041 if (fb_get_options("pxafb", &options
))
2045 strlcpy(g_options
, options
, sizeof(g_options
));
2050 #define pxafb_setup_options() (0)
2052 module_param_string(options
, g_options
, sizeof(g_options
), 0);
2053 MODULE_PARM_DESC(options
, "LCD parameters (see Documentation/fb/pxafb.rst)");
2057 #define pxafb_parse_options(...) (0)
2058 #define pxafb_setup_options() (0)
2062 /* Check for various illegal bit-combinations. Currently only
2063 * a warning is given. */
2064 static void pxafb_check_options(struct device
*dev
, struct pxafb_mach_info
*inf
)
2069 if (inf
->lccr0
& LCCR0_INVALID_CONFIG_MASK
)
2070 dev_warn(dev
, "machine LCCR0 setting contains "
2071 "illegal bits: %08x\n",
2072 inf
->lccr0
& LCCR0_INVALID_CONFIG_MASK
);
2073 if (inf
->lccr3
& LCCR3_INVALID_CONFIG_MASK
)
2074 dev_warn(dev
, "machine LCCR3 setting contains "
2075 "illegal bits: %08x\n",
2076 inf
->lccr3
& LCCR3_INVALID_CONFIG_MASK
);
2077 if (inf
->lccr0
& LCCR0_DPD
&&
2078 ((inf
->lccr0
& LCCR0_PAS
) != LCCR0_Pas
||
2079 (inf
->lccr0
& LCCR0_SDS
) != LCCR0_Sngl
||
2080 (inf
->lccr0
& LCCR0_CMS
) != LCCR0_Mono
))
2081 dev_warn(dev
, "Double Pixel Data (DPD) mode is "
2082 "only valid in passive mono"
2083 " single panel mode\n");
2084 if ((inf
->lccr0
& LCCR0_PAS
) == LCCR0_Act
&&
2085 (inf
->lccr0
& LCCR0_SDS
) == LCCR0_Dual
)
2086 dev_warn(dev
, "Dual panel only valid in passive mode\n");
2087 if ((inf
->lccr0
& LCCR0_PAS
) == LCCR0_Pas
&&
2088 (inf
->modes
->upper_margin
|| inf
->modes
->lower_margin
))
2089 dev_warn(dev
, "Upper and lower margins must be 0 in "
2093 #define pxafb_check_options(...) do {} while (0)
2096 #if defined(CONFIG_OF)
2097 static const char * const lcd_types
[] = {
2098 "unknown", "mono-stn", "mono-dstn", "color-stn", "color-dstn",
2099 "color-tft", "smart-panel", NULL
2102 static int of_get_pxafb_display(struct device
*dev
, struct device_node
*disp
,
2103 struct pxafb_mach_info
*info
, u32 bus_width
)
2105 struct display_timings
*timings
;
2106 struct videomode vm
;
2107 int i
, ret
= -EINVAL
;
2110 ret
= of_property_read_string(disp
, "lcd-type", &s
);
2114 i
= match_string(lcd_types
, -1, s
);
2116 dev_err(dev
, "lcd-type %s is unknown\n", s
);
2119 info
->lcd_conn
|= LCD_CONN_TYPE(i
);
2120 info
->lcd_conn
|= LCD_CONN_WIDTH(bus_width
);
2122 timings
= of_get_display_timings(disp
);
2127 info
->modes
= devm_kcalloc(dev
, timings
->num_timings
,
2128 sizeof(info
->modes
[0]),
2132 info
->num_modes
= timings
->num_timings
;
2134 for (i
= 0; i
< timings
->num_timings
; i
++) {
2135 ret
= videomode_from_timings(timings
, &vm
, i
);
2137 dev_err(dev
, "videomode_from_timings %d failed: %d\n",
2141 if (vm
.flags
& DISPLAY_FLAGS_PIXDATA_POSEDGE
)
2142 info
->lcd_conn
|= LCD_PCLK_EDGE_RISE
;
2143 if (vm
.flags
& DISPLAY_FLAGS_PIXDATA_NEGEDGE
)
2144 info
->lcd_conn
|= LCD_PCLK_EDGE_FALL
;
2145 if (vm
.flags
& DISPLAY_FLAGS_DE_HIGH
)
2146 info
->lcd_conn
|= LCD_BIAS_ACTIVE_HIGH
;
2147 if (vm
.flags
& DISPLAY_FLAGS_DE_LOW
)
2148 info
->lcd_conn
|= LCD_BIAS_ACTIVE_LOW
;
2149 if (vm
.flags
& DISPLAY_FLAGS_HSYNC_HIGH
)
2150 info
->modes
[i
].sync
|= FB_SYNC_HOR_HIGH_ACT
;
2151 if (vm
.flags
& DISPLAY_FLAGS_VSYNC_HIGH
)
2152 info
->modes
[i
].sync
|= FB_SYNC_VERT_HIGH_ACT
;
2154 info
->modes
[i
].pixclock
= 1000000000UL / (vm
.pixelclock
/ 1000);
2155 info
->modes
[i
].xres
= vm
.hactive
;
2156 info
->modes
[i
].yres
= vm
.vactive
;
2157 info
->modes
[i
].hsync_len
= vm
.hsync_len
;
2158 info
->modes
[i
].left_margin
= vm
.hback_porch
;
2159 info
->modes
[i
].right_margin
= vm
.hfront_porch
;
2160 info
->modes
[i
].vsync_len
= vm
.vsync_len
;
2161 info
->modes
[i
].upper_margin
= vm
.vback_porch
;
2162 info
->modes
[i
].lower_margin
= vm
.vfront_porch
;
2167 display_timings_release(timings
);
2171 static int of_get_pxafb_mode_info(struct device
*dev
,
2172 struct pxafb_mach_info
*info
)
2174 struct device_node
*display
, *np
;
2178 np
= of_graph_get_next_endpoint(dev
->of_node
, NULL
);
2180 dev_err(dev
, "could not find endpoint\n");
2183 ret
= of_property_read_u32(np
, "bus-width", &bus_width
);
2185 dev_err(dev
, "no bus-width specified: %d\n", ret
);
2190 display
= of_graph_get_remote_port_parent(np
);
2193 dev_err(dev
, "no display defined\n");
2197 ret
= of_get_pxafb_display(dev
, display
, info
, bus_width
);
2198 of_node_put(display
);
2202 for (i
= 0; i
< info
->num_modes
; i
++)
2203 info
->modes
[i
].bpp
= bus_width
;
2208 static struct pxafb_mach_info
*of_pxafb_of_mach_info(struct device
*dev
)
2211 struct pxafb_mach_info
*info
;
2215 info
= devm_kzalloc(dev
, sizeof(*info
), GFP_KERNEL
);
2217 return ERR_PTR(-ENOMEM
);
2218 ret
= of_get_pxafb_mode_info(dev
, info
);
2220 return ERR_PTR(ret
);
2223 * On purpose, neither lccrX registers nor video memory size can be
2224 * specified through device-tree, they are considered more a debug hack
2225 * available through command line.
2230 static struct pxafb_mach_info
*of_pxafb_of_mach_info(struct device
*dev
)
2236 static int pxafb_probe(struct platform_device
*dev
)
2238 struct pxafb_info
*fbi
;
2239 struct pxafb_mach_info
*inf
, *pdata
;
2242 dev_dbg(&dev
->dev
, "pxafb_probe\n");
2245 pdata
= dev_get_platdata(&dev
->dev
);
2246 inf
= devm_kmalloc(&dev
->dev
, sizeof(*inf
), GFP_KERNEL
);
2253 devm_kmalloc_array(&dev
->dev
, pdata
->num_modes
,
2254 sizeof(inf
->modes
[0]), GFP_KERNEL
);
2257 for (i
= 0; i
< inf
->num_modes
; i
++)
2258 inf
->modes
[i
] = pdata
->modes
[i
];
2262 inf
= of_pxafb_of_mach_info(&dev
->dev
);
2263 if (IS_ERR_OR_NULL(inf
))
2266 ret
= pxafb_parse_options(&dev
->dev
, g_options
, inf
);
2270 pxafb_check_options(&dev
->dev
, inf
);
2272 dev_dbg(&dev
->dev
, "got a %dx%dx%d LCD\n",
2276 if (inf
->modes
->xres
== 0 ||
2277 inf
->modes
->yres
== 0 ||
2278 inf
->modes
->bpp
== 0) {
2279 dev_err(&dev
->dev
, "Invalid resolution or bit depth\n");
2284 fbi
= pxafb_init_fbinfo(&dev
->dev
, inf
);
2286 dev_err(&dev
->dev
, "Failed to initialize framebuffer device\n");
2291 if (cpu_is_pxa3xx() && inf
->acceleration_enabled
)
2292 fbi
->fb
.fix
.accel
= FB_ACCEL_PXA3XX
;
2294 fbi
->backlight_power
= inf
->pxafb_backlight_power
;
2295 fbi
->lcd_power
= inf
->pxafb_lcd_power
;
2297 fbi
->lcd_supply
= devm_regulator_get_optional(&dev
->dev
, "lcd");
2298 if (IS_ERR(fbi
->lcd_supply
)) {
2299 if (PTR_ERR(fbi
->lcd_supply
) == -EPROBE_DEFER
)
2300 return -EPROBE_DEFER
;
2302 fbi
->lcd_supply
= NULL
;
2305 fbi
->mmio_base
= devm_platform_ioremap_resource(dev
, 0);
2306 if (IS_ERR(fbi
->mmio_base
)) {
2307 dev_err(&dev
->dev
, "failed to get I/O memory\n");
2312 fbi
->dma_buff_size
= PAGE_ALIGN(sizeof(struct pxafb_dma_buff
));
2313 fbi
->dma_buff
= dma_alloc_coherent(fbi
->dev
, fbi
->dma_buff_size
,
2314 &fbi
->dma_buff_phys
, GFP_KERNEL
);
2315 if (fbi
->dma_buff
== NULL
) {
2316 dev_err(&dev
->dev
, "failed to allocate memory for DMA\n");
2321 ret
= pxafb_init_video_memory(fbi
);
2323 dev_err(&dev
->dev
, "Failed to allocate video RAM: %d\n", ret
);
2325 goto failed_free_dma
;
2328 irq
= platform_get_irq(dev
, 0);
2330 dev_err(&dev
->dev
, "no IRQ defined\n");
2332 goto failed_free_mem
;
2335 ret
= devm_request_irq(&dev
->dev
, irq
, pxafb_handle_irq
, 0, "LCD", fbi
);
2337 dev_err(&dev
->dev
, "request_irq failed: %d\n", ret
);
2339 goto failed_free_mem
;
2342 ret
= pxafb_smart_init(fbi
);
2344 dev_err(&dev
->dev
, "failed to initialize smartpanel\n");
2345 goto failed_free_mem
;
2349 * This makes sure that our colour bitfield
2350 * descriptors are correctly initialised.
2352 ret
= pxafb_check_var(&fbi
->fb
.var
, &fbi
->fb
);
2354 dev_err(&dev
->dev
, "failed to get suitable mode\n");
2355 goto failed_free_mem
;
2358 ret
= pxafb_set_par(&fbi
->fb
);
2360 dev_err(&dev
->dev
, "Failed to set parameters\n");
2361 goto failed_free_mem
;
2364 platform_set_drvdata(dev
, fbi
);
2366 ret
= register_framebuffer(&fbi
->fb
);
2369 "Failed to register framebuffer device: %d\n", ret
);
2370 goto failed_free_cmap
;
2373 pxafb_overlay_init(fbi
);
2375 #ifdef CONFIG_CPU_FREQ
2376 fbi
->freq_transition
.notifier_call
= pxafb_freq_transition
;
2377 cpufreq_register_notifier(&fbi
->freq_transition
,
2378 CPUFREQ_TRANSITION_NOTIFIER
);
2382 * Ok, now enable the LCD controller
2384 set_ctrlr_state(fbi
, C_ENABLE
);
2389 if (fbi
->fb
.cmap
.len
)
2390 fb_dealloc_cmap(&fbi
->fb
.cmap
);
2392 free_pages_exact(fbi
->video_mem
, fbi
->video_mem_size
);
2394 dma_free_coherent(&dev
->dev
, fbi
->dma_buff_size
,
2395 fbi
->dma_buff
, fbi
->dma_buff_phys
);
2400 static int pxafb_remove(struct platform_device
*dev
)
2402 struct pxafb_info
*fbi
= platform_get_drvdata(dev
);
2403 struct fb_info
*info
;
2410 pxafb_overlay_exit(fbi
);
2411 unregister_framebuffer(info
);
2413 pxafb_disable_controller(fbi
);
2415 if (fbi
->fb
.cmap
.len
)
2416 fb_dealloc_cmap(&fbi
->fb
.cmap
);
2418 free_pages_exact(fbi
->video_mem
, fbi
->video_mem_size
);
2420 dma_free_wc(&dev
->dev
, fbi
->dma_buff_size
, fbi
->dma_buff
,
2421 fbi
->dma_buff_phys
);
2426 static const struct of_device_id pxafb_of_dev_id
[] = {
2427 { .compatible
= "marvell,pxa270-lcdc", },
2428 { .compatible
= "marvell,pxa300-lcdc", },
2429 { .compatible
= "marvell,pxa2xx-lcdc", },
2432 MODULE_DEVICE_TABLE(of
, pxafb_of_dev_id
);
2434 static struct platform_driver pxafb_driver
= {
2435 .probe
= pxafb_probe
,
2436 .remove
= pxafb_remove
,
2438 .name
= "pxa2xx-fb",
2439 .of_match_table
= pxafb_of_dev_id
,
2441 .pm
= &pxafb_pm_ops
,
2446 static int __init
pxafb_init(void)
2448 if (pxafb_setup_options())
2451 return platform_driver_register(&pxafb_driver
);
2454 static void __exit
pxafb_exit(void)
2456 platform_driver_unregister(&pxafb_driver
);
2459 module_init(pxafb_init
);
2460 module_exit(pxafb_exit
);
2462 MODULE_DESCRIPTION("loadable framebuffer driver for PXA");
2463 MODULE_LICENSE("GPL");