1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
24 #include "transaction.h"
25 #include "btrfs_inode.h"
27 #include "print-tree.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "inode-map.h"
33 #include "check-integrity.h"
34 #include "rcu-string.h"
35 #include "dev-replace.h"
39 #include "compression.h"
40 #include "tree-checker.h"
41 #include "ref-verify.h"
42 #include "block-group.h"
44 #include "space-info.h"
46 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
53 static const struct extent_io_ops btree_extent_io_ops
;
54 static void end_workqueue_fn(struct btrfs_work
*work
);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
57 struct btrfs_fs_info
*fs_info
);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info
*fs_info
,
60 struct extent_io_tree
*dirty_pages
,
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info
*fs_info
,
63 struct extent_io_tree
*pinned_extents
);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info
*fs_info
);
65 static void btrfs_error_commit_super(struct btrfs_fs_info
*fs_info
);
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
70 * by writes to insert metadata for new file extents after IO is complete.
72 struct btrfs_end_io_wq
{
76 struct btrfs_fs_info
*info
;
78 enum btrfs_wq_endio_type metadata
;
79 struct btrfs_work work
;
82 static struct kmem_cache
*btrfs_end_io_wq_cache
;
84 int __init
btrfs_end_io_wq_init(void)
86 btrfs_end_io_wq_cache
= kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq
),
91 if (!btrfs_end_io_wq_cache
)
96 void __cold
btrfs_end_io_wq_exit(void)
98 kmem_cache_destroy(btrfs_end_io_wq_cache
);
101 static void btrfs_free_csum_hash(struct btrfs_fs_info
*fs_info
)
103 if (fs_info
->csum_shash
)
104 crypto_free_shash(fs_info
->csum_shash
);
108 * async submit bios are used to offload expensive checksumming
109 * onto the worker threads. They checksum file and metadata bios
110 * just before they are sent down the IO stack.
112 struct async_submit_bio
{
115 extent_submit_bio_start_t
*submit_bio_start
;
118 * bio_offset is optional, can be used if the pages in the bio
119 * can't tell us where in the file the bio should go
122 struct btrfs_work work
;
127 * Lockdep class keys for extent_buffer->lock's in this root. For a given
128 * eb, the lockdep key is determined by the btrfs_root it belongs to and
129 * the level the eb occupies in the tree.
131 * Different roots are used for different purposes and may nest inside each
132 * other and they require separate keysets. As lockdep keys should be
133 * static, assign keysets according to the purpose of the root as indicated
134 * by btrfs_root->root_key.objectid. This ensures that all special purpose
135 * roots have separate keysets.
137 * Lock-nesting across peer nodes is always done with the immediate parent
138 * node locked thus preventing deadlock. As lockdep doesn't know this, use
139 * subclass to avoid triggering lockdep warning in such cases.
141 * The key is set by the readpage_end_io_hook after the buffer has passed
142 * csum validation but before the pages are unlocked. It is also set by
143 * btrfs_init_new_buffer on freshly allocated blocks.
145 * We also add a check to make sure the highest level of the tree is the
146 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
147 * needs update as well.
149 #ifdef CONFIG_DEBUG_LOCK_ALLOC
150 # if BTRFS_MAX_LEVEL != 8
154 static struct btrfs_lockdep_keyset
{
155 u64 id
; /* root objectid */
156 const char *name_stem
; /* lock name stem */
157 char names
[BTRFS_MAX_LEVEL
+ 1][20];
158 struct lock_class_key keys
[BTRFS_MAX_LEVEL
+ 1];
159 } btrfs_lockdep_keysets
[] = {
160 { .id
= BTRFS_ROOT_TREE_OBJECTID
, .name_stem
= "root" },
161 { .id
= BTRFS_EXTENT_TREE_OBJECTID
, .name_stem
= "extent" },
162 { .id
= BTRFS_CHUNK_TREE_OBJECTID
, .name_stem
= "chunk" },
163 { .id
= BTRFS_DEV_TREE_OBJECTID
, .name_stem
= "dev" },
164 { .id
= BTRFS_FS_TREE_OBJECTID
, .name_stem
= "fs" },
165 { .id
= BTRFS_CSUM_TREE_OBJECTID
, .name_stem
= "csum" },
166 { .id
= BTRFS_QUOTA_TREE_OBJECTID
, .name_stem
= "quota" },
167 { .id
= BTRFS_TREE_LOG_OBJECTID
, .name_stem
= "log" },
168 { .id
= BTRFS_TREE_RELOC_OBJECTID
, .name_stem
= "treloc" },
169 { .id
= BTRFS_DATA_RELOC_TREE_OBJECTID
, .name_stem
= "dreloc" },
170 { .id
= BTRFS_UUID_TREE_OBJECTID
, .name_stem
= "uuid" },
171 { .id
= BTRFS_FREE_SPACE_TREE_OBJECTID
, .name_stem
= "free-space" },
172 { .id
= 0, .name_stem
= "tree" },
175 void __init
btrfs_init_lockdep(void)
179 /* initialize lockdep class names */
180 for (i
= 0; i
< ARRAY_SIZE(btrfs_lockdep_keysets
); i
++) {
181 struct btrfs_lockdep_keyset
*ks
= &btrfs_lockdep_keysets
[i
];
183 for (j
= 0; j
< ARRAY_SIZE(ks
->names
); j
++)
184 snprintf(ks
->names
[j
], sizeof(ks
->names
[j
]),
185 "btrfs-%s-%02d", ks
->name_stem
, j
);
189 void btrfs_set_buffer_lockdep_class(u64 objectid
, struct extent_buffer
*eb
,
192 struct btrfs_lockdep_keyset
*ks
;
194 BUG_ON(level
>= ARRAY_SIZE(ks
->keys
));
196 /* find the matching keyset, id 0 is the default entry */
197 for (ks
= btrfs_lockdep_keysets
; ks
->id
; ks
++)
198 if (ks
->id
== objectid
)
201 lockdep_set_class_and_name(&eb
->lock
,
202 &ks
->keys
[level
], ks
->names
[level
]);
208 * extents on the btree inode are pretty simple, there's one extent
209 * that covers the entire device
211 struct extent_map
*btree_get_extent(struct btrfs_inode
*inode
,
212 struct page
*page
, size_t pg_offset
,
215 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
216 struct extent_map
*em
;
219 read_lock(&em_tree
->lock
);
220 em
= lookup_extent_mapping(em_tree
, start
, len
);
222 read_unlock(&em_tree
->lock
);
225 read_unlock(&em_tree
->lock
);
227 em
= alloc_extent_map();
229 em
= ERR_PTR(-ENOMEM
);
234 em
->block_len
= (u64
)-1;
237 write_lock(&em_tree
->lock
);
238 ret
= add_extent_mapping(em_tree
, em
, 0);
239 if (ret
== -EEXIST
) {
241 em
= lookup_extent_mapping(em_tree
, start
, len
);
248 write_unlock(&em_tree
->lock
);
255 * Compute the csum of a btree block and store the result to provided buffer.
257 static void csum_tree_block(struct extent_buffer
*buf
, u8
*result
)
259 struct btrfs_fs_info
*fs_info
= buf
->fs_info
;
260 const int num_pages
= fs_info
->nodesize
>> PAGE_SHIFT
;
261 SHASH_DESC_ON_STACK(shash
, fs_info
->csum_shash
);
265 shash
->tfm
= fs_info
->csum_shash
;
266 crypto_shash_init(shash
);
267 kaddr
= page_address(buf
->pages
[0]);
268 crypto_shash_update(shash
, kaddr
+ BTRFS_CSUM_SIZE
,
269 PAGE_SIZE
- BTRFS_CSUM_SIZE
);
271 for (i
= 1; i
< num_pages
; i
++) {
272 kaddr
= page_address(buf
->pages
[i
]);
273 crypto_shash_update(shash
, kaddr
, PAGE_SIZE
);
275 memset(result
, 0, BTRFS_CSUM_SIZE
);
276 crypto_shash_final(shash
, result
);
280 * we can't consider a given block up to date unless the transid of the
281 * block matches the transid in the parent node's pointer. This is how we
282 * detect blocks that either didn't get written at all or got written
283 * in the wrong place.
285 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
286 struct extent_buffer
*eb
, u64 parent_transid
,
289 struct extent_state
*cached_state
= NULL
;
291 bool need_lock
= (current
->journal_info
== BTRFS_SEND_TRANS_STUB
);
293 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
300 btrfs_tree_read_lock(eb
);
301 btrfs_set_lock_blocking_read(eb
);
304 lock_extent_bits(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
306 if (extent_buffer_uptodate(eb
) &&
307 btrfs_header_generation(eb
) == parent_transid
) {
311 btrfs_err_rl(eb
->fs_info
,
312 "parent transid verify failed on %llu wanted %llu found %llu",
314 parent_transid
, btrfs_header_generation(eb
));
318 * Things reading via commit roots that don't have normal protection,
319 * like send, can have a really old block in cache that may point at a
320 * block that has been freed and re-allocated. So don't clear uptodate
321 * if we find an eb that is under IO (dirty/writeback) because we could
322 * end up reading in the stale data and then writing it back out and
323 * making everybody very sad.
325 if (!extent_buffer_under_io(eb
))
326 clear_extent_buffer_uptodate(eb
);
328 unlock_extent_cached(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
331 btrfs_tree_read_unlock_blocking(eb
);
335 static bool btrfs_supported_super_csum(u16 csum_type
)
338 case BTRFS_CSUM_TYPE_CRC32
:
339 case BTRFS_CSUM_TYPE_XXHASH
:
340 case BTRFS_CSUM_TYPE_SHA256
:
341 case BTRFS_CSUM_TYPE_BLAKE2
:
349 * Return 0 if the superblock checksum type matches the checksum value of that
350 * algorithm. Pass the raw disk superblock data.
352 static int btrfs_check_super_csum(struct btrfs_fs_info
*fs_info
,
355 struct btrfs_super_block
*disk_sb
=
356 (struct btrfs_super_block
*)raw_disk_sb
;
357 char result
[BTRFS_CSUM_SIZE
];
358 SHASH_DESC_ON_STACK(shash
, fs_info
->csum_shash
);
360 shash
->tfm
= fs_info
->csum_shash
;
361 crypto_shash_init(shash
);
364 * The super_block structure does not span the whole
365 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
366 * filled with zeros and is included in the checksum.
368 crypto_shash_update(shash
, raw_disk_sb
+ BTRFS_CSUM_SIZE
,
369 BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
);
370 crypto_shash_final(shash
, result
);
372 if (memcmp(disk_sb
->csum
, result
, btrfs_super_csum_size(disk_sb
)))
378 int btrfs_verify_level_key(struct extent_buffer
*eb
, int level
,
379 struct btrfs_key
*first_key
, u64 parent_transid
)
381 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
383 struct btrfs_key found_key
;
386 found_level
= btrfs_header_level(eb
);
387 if (found_level
!= level
) {
388 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG
),
389 KERN_ERR
"BTRFS: tree level check failed\n");
391 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
392 eb
->start
, level
, found_level
);
400 * For live tree block (new tree blocks in current transaction),
401 * we need proper lock context to avoid race, which is impossible here.
402 * So we only checks tree blocks which is read from disk, whose
403 * generation <= fs_info->last_trans_committed.
405 if (btrfs_header_generation(eb
) > fs_info
->last_trans_committed
)
408 /* We have @first_key, so this @eb must have at least one item */
409 if (btrfs_header_nritems(eb
) == 0) {
411 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
413 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG
));
418 btrfs_node_key_to_cpu(eb
, &found_key
, 0);
420 btrfs_item_key_to_cpu(eb
, &found_key
, 0);
421 ret
= btrfs_comp_cpu_keys(first_key
, &found_key
);
424 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG
),
425 KERN_ERR
"BTRFS: tree first key check failed\n");
427 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
428 eb
->start
, parent_transid
, first_key
->objectid
,
429 first_key
->type
, first_key
->offset
,
430 found_key
.objectid
, found_key
.type
,
437 * helper to read a given tree block, doing retries as required when
438 * the checksums don't match and we have alternate mirrors to try.
440 * @parent_transid: expected transid, skip check if 0
441 * @level: expected level, mandatory check
442 * @first_key: expected key of first slot, skip check if NULL
444 static int btree_read_extent_buffer_pages(struct extent_buffer
*eb
,
445 u64 parent_transid
, int level
,
446 struct btrfs_key
*first_key
)
448 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
449 struct extent_io_tree
*io_tree
;
454 int failed_mirror
= 0;
456 io_tree
= &BTRFS_I(fs_info
->btree_inode
)->io_tree
;
458 clear_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
459 ret
= read_extent_buffer_pages(eb
, WAIT_COMPLETE
, mirror_num
);
461 if (verify_parent_transid(io_tree
, eb
,
464 else if (btrfs_verify_level_key(eb
, level
,
465 first_key
, parent_transid
))
471 num_copies
= btrfs_num_copies(fs_info
,
476 if (!failed_mirror
) {
478 failed_mirror
= eb
->read_mirror
;
482 if (mirror_num
== failed_mirror
)
485 if (mirror_num
> num_copies
)
489 if (failed
&& !ret
&& failed_mirror
)
490 btrfs_repair_eb_io_failure(eb
, failed_mirror
);
496 * checksum a dirty tree block before IO. This has extra checks to make sure
497 * we only fill in the checksum field in the first page of a multi-page block
500 static int csum_dirty_buffer(struct btrfs_fs_info
*fs_info
, struct page
*page
)
502 u64 start
= page_offset(page
);
504 u8 result
[BTRFS_CSUM_SIZE
];
505 u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
506 struct extent_buffer
*eb
;
509 eb
= (struct extent_buffer
*)page
->private;
510 if (page
!= eb
->pages
[0])
513 found_start
= btrfs_header_bytenr(eb
);
515 * Please do not consolidate these warnings into a single if.
516 * It is useful to know what went wrong.
518 if (WARN_ON(found_start
!= start
))
520 if (WARN_ON(!PageUptodate(page
)))
523 ASSERT(memcmp_extent_buffer(eb
, fs_info
->fs_devices
->metadata_uuid
,
524 offsetof(struct btrfs_header
, fsid
),
525 BTRFS_FSID_SIZE
) == 0);
527 csum_tree_block(eb
, result
);
529 if (btrfs_header_level(eb
))
530 ret
= btrfs_check_node(eb
);
532 ret
= btrfs_check_leaf_full(eb
);
535 btrfs_print_tree(eb
, 0);
537 "block=%llu write time tree block corruption detected",
539 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG
));
542 write_extent_buffer(eb
, result
, 0, csum_size
);
547 static int check_tree_block_fsid(struct extent_buffer
*eb
)
549 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
550 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
551 u8 fsid
[BTRFS_FSID_SIZE
];
554 read_extent_buffer(eb
, fsid
, offsetof(struct btrfs_header
, fsid
),
560 * Checking the incompat flag is only valid for the current
561 * fs. For seed devices it's forbidden to have their uuid
562 * changed so reading ->fsid in this case is fine
564 if (fs_devices
== fs_info
->fs_devices
&&
565 btrfs_fs_incompat(fs_info
, METADATA_UUID
))
566 metadata_uuid
= fs_devices
->metadata_uuid
;
568 metadata_uuid
= fs_devices
->fsid
;
570 if (!memcmp(fsid
, metadata_uuid
, BTRFS_FSID_SIZE
)) {
574 fs_devices
= fs_devices
->seed
;
579 static int btree_readpage_end_io_hook(struct btrfs_io_bio
*io_bio
,
580 u64 phy_offset
, struct page
*page
,
581 u64 start
, u64 end
, int mirror
)
585 struct extent_buffer
*eb
;
586 struct btrfs_fs_info
*fs_info
;
589 u8 result
[BTRFS_CSUM_SIZE
];
595 eb
= (struct extent_buffer
*)page
->private;
596 fs_info
= eb
->fs_info
;
597 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
599 /* the pending IO might have been the only thing that kept this buffer
600 * in memory. Make sure we have a ref for all this other checks
602 atomic_inc(&eb
->refs
);
604 reads_done
= atomic_dec_and_test(&eb
->io_pages
);
608 eb
->read_mirror
= mirror
;
609 if (test_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
)) {
614 found_start
= btrfs_header_bytenr(eb
);
615 if (found_start
!= eb
->start
) {
616 btrfs_err_rl(fs_info
, "bad tree block start, want %llu have %llu",
617 eb
->start
, found_start
);
621 if (check_tree_block_fsid(eb
)) {
622 btrfs_err_rl(fs_info
, "bad fsid on block %llu",
627 found_level
= btrfs_header_level(eb
);
628 if (found_level
>= BTRFS_MAX_LEVEL
) {
629 btrfs_err(fs_info
, "bad tree block level %d on %llu",
630 (int)btrfs_header_level(eb
), eb
->start
);
635 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb
),
638 csum_tree_block(eb
, result
);
640 if (memcmp_extent_buffer(eb
, result
, 0, csum_size
)) {
644 memcpy(&found
, result
, csum_size
);
646 read_extent_buffer(eb
, &val
, 0, csum_size
);
647 btrfs_warn_rl(fs_info
,
648 "%s checksum verify failed on %llu wanted %x found %x level %d",
649 fs_info
->sb
->s_id
, eb
->start
,
650 val
, found
, btrfs_header_level(eb
));
656 * If this is a leaf block and it is corrupt, set the corrupt bit so
657 * that we don't try and read the other copies of this block, just
660 if (found_level
== 0 && btrfs_check_leaf_full(eb
)) {
661 set_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
665 if (found_level
> 0 && btrfs_check_node(eb
))
669 set_extent_buffer_uptodate(eb
);
672 "block=%llu read time tree block corruption detected",
676 test_and_clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
))
677 btree_readahead_hook(eb
, ret
);
681 * our io error hook is going to dec the io pages
682 * again, we have to make sure it has something
685 atomic_inc(&eb
->io_pages
);
686 clear_extent_buffer_uptodate(eb
);
688 free_extent_buffer(eb
);
693 static void end_workqueue_bio(struct bio
*bio
)
695 struct btrfs_end_io_wq
*end_io_wq
= bio
->bi_private
;
696 struct btrfs_fs_info
*fs_info
;
697 struct btrfs_workqueue
*wq
;
699 fs_info
= end_io_wq
->info
;
700 end_io_wq
->status
= bio
->bi_status
;
702 if (bio_op(bio
) == REQ_OP_WRITE
) {
703 if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_METADATA
)
704 wq
= fs_info
->endio_meta_write_workers
;
705 else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_FREE_SPACE
)
706 wq
= fs_info
->endio_freespace_worker
;
707 else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
)
708 wq
= fs_info
->endio_raid56_workers
;
710 wq
= fs_info
->endio_write_workers
;
712 if (unlikely(end_io_wq
->metadata
== BTRFS_WQ_ENDIO_DIO_REPAIR
))
713 wq
= fs_info
->endio_repair_workers
;
714 else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
)
715 wq
= fs_info
->endio_raid56_workers
;
716 else if (end_io_wq
->metadata
)
717 wq
= fs_info
->endio_meta_workers
;
719 wq
= fs_info
->endio_workers
;
722 btrfs_init_work(&end_io_wq
->work
, end_workqueue_fn
, NULL
, NULL
);
723 btrfs_queue_work(wq
, &end_io_wq
->work
);
726 blk_status_t
btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
727 enum btrfs_wq_endio_type metadata
)
729 struct btrfs_end_io_wq
*end_io_wq
;
731 end_io_wq
= kmem_cache_alloc(btrfs_end_io_wq_cache
, GFP_NOFS
);
733 return BLK_STS_RESOURCE
;
735 end_io_wq
->private = bio
->bi_private
;
736 end_io_wq
->end_io
= bio
->bi_end_io
;
737 end_io_wq
->info
= info
;
738 end_io_wq
->status
= 0;
739 end_io_wq
->bio
= bio
;
740 end_io_wq
->metadata
= metadata
;
742 bio
->bi_private
= end_io_wq
;
743 bio
->bi_end_io
= end_workqueue_bio
;
747 static void run_one_async_start(struct btrfs_work
*work
)
749 struct async_submit_bio
*async
;
752 async
= container_of(work
, struct async_submit_bio
, work
);
753 ret
= async
->submit_bio_start(async
->private_data
, async
->bio
,
760 * In order to insert checksums into the metadata in large chunks, we wait
761 * until bio submission time. All the pages in the bio are checksummed and
762 * sums are attached onto the ordered extent record.
764 * At IO completion time the csums attached on the ordered extent record are
765 * inserted into the tree.
767 static void run_one_async_done(struct btrfs_work
*work
)
769 struct async_submit_bio
*async
;
773 async
= container_of(work
, struct async_submit_bio
, work
);
774 inode
= async
->private_data
;
776 /* If an error occurred we just want to clean up the bio and move on */
778 async
->bio
->bi_status
= async
->status
;
779 bio_endio(async
->bio
);
784 * All of the bios that pass through here are from async helpers.
785 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
786 * This changes nothing when cgroups aren't in use.
788 async
->bio
->bi_opf
|= REQ_CGROUP_PUNT
;
789 ret
= btrfs_map_bio(btrfs_sb(inode
->i_sb
), async
->bio
, async
->mirror_num
);
791 async
->bio
->bi_status
= ret
;
792 bio_endio(async
->bio
);
796 static void run_one_async_free(struct btrfs_work
*work
)
798 struct async_submit_bio
*async
;
800 async
= container_of(work
, struct async_submit_bio
, work
);
804 blk_status_t
btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct bio
*bio
,
805 int mirror_num
, unsigned long bio_flags
,
806 u64 bio_offset
, void *private_data
,
807 extent_submit_bio_start_t
*submit_bio_start
)
809 struct async_submit_bio
*async
;
811 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
813 return BLK_STS_RESOURCE
;
815 async
->private_data
= private_data
;
817 async
->mirror_num
= mirror_num
;
818 async
->submit_bio_start
= submit_bio_start
;
820 btrfs_init_work(&async
->work
, run_one_async_start
, run_one_async_done
,
823 async
->bio_offset
= bio_offset
;
827 if (op_is_sync(bio
->bi_opf
))
828 btrfs_set_work_high_priority(&async
->work
);
830 btrfs_queue_work(fs_info
->workers
, &async
->work
);
834 static blk_status_t
btree_csum_one_bio(struct bio
*bio
)
836 struct bio_vec
*bvec
;
837 struct btrfs_root
*root
;
839 struct bvec_iter_all iter_all
;
841 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
842 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
843 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
844 ret
= csum_dirty_buffer(root
->fs_info
, bvec
->bv_page
);
849 return errno_to_blk_status(ret
);
852 static blk_status_t
btree_submit_bio_start(void *private_data
, struct bio
*bio
,
856 * when we're called for a write, we're already in the async
857 * submission context. Just jump into btrfs_map_bio
859 return btree_csum_one_bio(bio
);
862 static int check_async_write(struct btrfs_fs_info
*fs_info
,
863 struct btrfs_inode
*bi
)
865 if (atomic_read(&bi
->sync_writers
))
867 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST
, &fs_info
->flags
))
872 static blk_status_t
btree_submit_bio_hook(struct inode
*inode
, struct bio
*bio
,
874 unsigned long bio_flags
)
876 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
877 int async
= check_async_write(fs_info
, BTRFS_I(inode
));
880 if (bio_op(bio
) != REQ_OP_WRITE
) {
882 * called for a read, do the setup so that checksum validation
883 * can happen in the async kernel threads
885 ret
= btrfs_bio_wq_end_io(fs_info
, bio
,
886 BTRFS_WQ_ENDIO_METADATA
);
889 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
);
891 ret
= btree_csum_one_bio(bio
);
894 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
);
897 * kthread helpers are used to submit writes so that
898 * checksumming can happen in parallel across all CPUs
900 ret
= btrfs_wq_submit_bio(fs_info
, bio
, mirror_num
, 0,
901 0, inode
, btree_submit_bio_start
);
909 bio
->bi_status
= ret
;
914 #ifdef CONFIG_MIGRATION
915 static int btree_migratepage(struct address_space
*mapping
,
916 struct page
*newpage
, struct page
*page
,
917 enum migrate_mode mode
)
920 * we can't safely write a btree page from here,
921 * we haven't done the locking hook
926 * Buffers may be managed in a filesystem specific way.
927 * We must have no buffers or drop them.
929 if (page_has_private(page
) &&
930 !try_to_release_page(page
, GFP_KERNEL
))
932 return migrate_page(mapping
, newpage
, page
, mode
);
937 static int btree_writepages(struct address_space
*mapping
,
938 struct writeback_control
*wbc
)
940 struct btrfs_fs_info
*fs_info
;
943 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
945 if (wbc
->for_kupdate
)
948 fs_info
= BTRFS_I(mapping
->host
)->root
->fs_info
;
949 /* this is a bit racy, but that's ok */
950 ret
= __percpu_counter_compare(&fs_info
->dirty_metadata_bytes
,
951 BTRFS_DIRTY_METADATA_THRESH
,
952 fs_info
->dirty_metadata_batch
);
956 return btree_write_cache_pages(mapping
, wbc
);
959 static int btree_readpage(struct file
*file
, struct page
*page
)
961 return extent_read_full_page(page
, btree_get_extent
, 0);
964 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
966 if (PageWriteback(page
) || PageDirty(page
))
969 return try_release_extent_buffer(page
);
972 static void btree_invalidatepage(struct page
*page
, unsigned int offset
,
975 struct extent_io_tree
*tree
;
976 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
977 extent_invalidatepage(tree
, page
, offset
);
978 btree_releasepage(page
, GFP_NOFS
);
979 if (PagePrivate(page
)) {
980 btrfs_warn(BTRFS_I(page
->mapping
->host
)->root
->fs_info
,
981 "page private not zero on page %llu",
982 (unsigned long long)page_offset(page
));
983 ClearPagePrivate(page
);
984 set_page_private(page
, 0);
989 static int btree_set_page_dirty(struct page
*page
)
992 struct extent_buffer
*eb
;
994 BUG_ON(!PagePrivate(page
));
995 eb
= (struct extent_buffer
*)page
->private;
997 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
998 BUG_ON(!atomic_read(&eb
->refs
));
999 btrfs_assert_tree_locked(eb
);
1001 return __set_page_dirty_nobuffers(page
);
1004 static const struct address_space_operations btree_aops
= {
1005 .readpage
= btree_readpage
,
1006 .writepages
= btree_writepages
,
1007 .releasepage
= btree_releasepage
,
1008 .invalidatepage
= btree_invalidatepage
,
1009 #ifdef CONFIG_MIGRATION
1010 .migratepage
= btree_migratepage
,
1012 .set_page_dirty
= btree_set_page_dirty
,
1015 void readahead_tree_block(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
1017 struct extent_buffer
*buf
= NULL
;
1020 buf
= btrfs_find_create_tree_block(fs_info
, bytenr
);
1024 ret
= read_extent_buffer_pages(buf
, WAIT_NONE
, 0);
1026 free_extent_buffer_stale(buf
);
1028 free_extent_buffer(buf
);
1031 struct extent_buffer
*btrfs_find_create_tree_block(
1032 struct btrfs_fs_info
*fs_info
,
1035 if (btrfs_is_testing(fs_info
))
1036 return alloc_test_extent_buffer(fs_info
, bytenr
);
1037 return alloc_extent_buffer(fs_info
, bytenr
);
1041 * Read tree block at logical address @bytenr and do variant basic but critical
1044 * @parent_transid: expected transid of this tree block, skip check if 0
1045 * @level: expected level, mandatory check
1046 * @first_key: expected key in slot 0, skip check if NULL
1048 struct extent_buffer
*read_tree_block(struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1049 u64 parent_transid
, int level
,
1050 struct btrfs_key
*first_key
)
1052 struct extent_buffer
*buf
= NULL
;
1055 buf
= btrfs_find_create_tree_block(fs_info
, bytenr
);
1059 ret
= btree_read_extent_buffer_pages(buf
, parent_transid
,
1062 free_extent_buffer_stale(buf
);
1063 return ERR_PTR(ret
);
1069 void btrfs_clean_tree_block(struct extent_buffer
*buf
)
1071 struct btrfs_fs_info
*fs_info
= buf
->fs_info
;
1072 if (btrfs_header_generation(buf
) ==
1073 fs_info
->running_transaction
->transid
) {
1074 btrfs_assert_tree_locked(buf
);
1076 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
1077 percpu_counter_add_batch(&fs_info
->dirty_metadata_bytes
,
1079 fs_info
->dirty_metadata_batch
);
1080 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1081 btrfs_set_lock_blocking_write(buf
);
1082 clear_extent_buffer_dirty(buf
);
1087 static void __setup_root(struct btrfs_root
*root
, struct btrfs_fs_info
*fs_info
,
1090 bool dummy
= test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO
, &fs_info
->fs_state
);
1091 root
->fs_info
= fs_info
;
1093 root
->commit_root
= NULL
;
1095 root
->orphan_cleanup_state
= 0;
1097 root
->last_trans
= 0;
1098 root
->highest_objectid
= 0;
1099 root
->nr_delalloc_inodes
= 0;
1100 root
->nr_ordered_extents
= 0;
1101 root
->inode_tree
= RB_ROOT
;
1102 INIT_RADIX_TREE(&root
->delayed_nodes_tree
, GFP_ATOMIC
);
1103 root
->block_rsv
= NULL
;
1105 INIT_LIST_HEAD(&root
->dirty_list
);
1106 INIT_LIST_HEAD(&root
->root_list
);
1107 INIT_LIST_HEAD(&root
->delalloc_inodes
);
1108 INIT_LIST_HEAD(&root
->delalloc_root
);
1109 INIT_LIST_HEAD(&root
->ordered_extents
);
1110 INIT_LIST_HEAD(&root
->ordered_root
);
1111 INIT_LIST_HEAD(&root
->reloc_dirty_list
);
1112 INIT_LIST_HEAD(&root
->logged_list
[0]);
1113 INIT_LIST_HEAD(&root
->logged_list
[1]);
1114 spin_lock_init(&root
->inode_lock
);
1115 spin_lock_init(&root
->delalloc_lock
);
1116 spin_lock_init(&root
->ordered_extent_lock
);
1117 spin_lock_init(&root
->accounting_lock
);
1118 spin_lock_init(&root
->log_extents_lock
[0]);
1119 spin_lock_init(&root
->log_extents_lock
[1]);
1120 spin_lock_init(&root
->qgroup_meta_rsv_lock
);
1121 mutex_init(&root
->objectid_mutex
);
1122 mutex_init(&root
->log_mutex
);
1123 mutex_init(&root
->ordered_extent_mutex
);
1124 mutex_init(&root
->delalloc_mutex
);
1125 init_waitqueue_head(&root
->log_writer_wait
);
1126 init_waitqueue_head(&root
->log_commit_wait
[0]);
1127 init_waitqueue_head(&root
->log_commit_wait
[1]);
1128 INIT_LIST_HEAD(&root
->log_ctxs
[0]);
1129 INIT_LIST_HEAD(&root
->log_ctxs
[1]);
1130 atomic_set(&root
->log_commit
[0], 0);
1131 atomic_set(&root
->log_commit
[1], 0);
1132 atomic_set(&root
->log_writers
, 0);
1133 atomic_set(&root
->log_batch
, 0);
1134 refcount_set(&root
->refs
, 1);
1135 atomic_set(&root
->snapshot_force_cow
, 0);
1136 atomic_set(&root
->nr_swapfiles
, 0);
1137 root
->log_transid
= 0;
1138 root
->log_transid_committed
= -1;
1139 root
->last_log_commit
= 0;
1141 extent_io_tree_init(fs_info
, &root
->dirty_log_pages
,
1142 IO_TREE_ROOT_DIRTY_LOG_PAGES
, NULL
);
1144 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
1145 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
1146 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
1148 root
->defrag_trans_start
= fs_info
->generation
;
1150 root
->defrag_trans_start
= 0;
1151 root
->root_key
.objectid
= objectid
;
1154 spin_lock_init(&root
->root_item_lock
);
1155 btrfs_qgroup_init_swapped_blocks(&root
->swapped_blocks
);
1156 #ifdef CONFIG_BTRFS_DEBUG
1157 INIT_LIST_HEAD(&root
->leak_list
);
1158 spin_lock(&fs_info
->fs_roots_radix_lock
);
1159 list_add_tail(&root
->leak_list
, &fs_info
->allocated_roots
);
1160 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1164 static struct btrfs_root
*btrfs_alloc_root(struct btrfs_fs_info
*fs_info
,
1165 u64 objectid
, gfp_t flags
)
1167 struct btrfs_root
*root
= kzalloc(sizeof(*root
), flags
);
1169 __setup_root(root
, fs_info
, objectid
);
1173 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1174 /* Should only be used by the testing infrastructure */
1175 struct btrfs_root
*btrfs_alloc_dummy_root(struct btrfs_fs_info
*fs_info
)
1177 struct btrfs_root
*root
;
1180 return ERR_PTR(-EINVAL
);
1182 root
= btrfs_alloc_root(fs_info
, BTRFS_ROOT_TREE_OBJECTID
, GFP_KERNEL
);
1184 return ERR_PTR(-ENOMEM
);
1186 /* We don't use the stripesize in selftest, set it as sectorsize */
1187 root
->alloc_bytenr
= 0;
1193 struct btrfs_root
*btrfs_create_tree(struct btrfs_trans_handle
*trans
,
1196 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1197 struct extent_buffer
*leaf
;
1198 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1199 struct btrfs_root
*root
;
1200 struct btrfs_key key
;
1201 unsigned int nofs_flag
;
1205 * We're holding a transaction handle, so use a NOFS memory allocation
1206 * context to avoid deadlock if reclaim happens.
1208 nofs_flag
= memalloc_nofs_save();
1209 root
= btrfs_alloc_root(fs_info
, objectid
, GFP_KERNEL
);
1210 memalloc_nofs_restore(nofs_flag
);
1212 return ERR_PTR(-ENOMEM
);
1214 root
->root_key
.objectid
= objectid
;
1215 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1216 root
->root_key
.offset
= 0;
1218 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, objectid
, NULL
, 0, 0, 0);
1220 ret
= PTR_ERR(leaf
);
1226 btrfs_mark_buffer_dirty(leaf
);
1228 root
->commit_root
= btrfs_root_node(root
);
1229 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
1231 root
->root_item
.flags
= 0;
1232 root
->root_item
.byte_limit
= 0;
1233 btrfs_set_root_bytenr(&root
->root_item
, leaf
->start
);
1234 btrfs_set_root_generation(&root
->root_item
, trans
->transid
);
1235 btrfs_set_root_level(&root
->root_item
, 0);
1236 btrfs_set_root_refs(&root
->root_item
, 1);
1237 btrfs_set_root_used(&root
->root_item
, leaf
->len
);
1238 btrfs_set_root_last_snapshot(&root
->root_item
, 0);
1239 btrfs_set_root_dirid(&root
->root_item
, 0);
1240 if (is_fstree(objectid
))
1241 generate_random_guid(root
->root_item
.uuid
);
1243 export_guid(root
->root_item
.uuid
, &guid_null
);
1244 root
->root_item
.drop_level
= 0;
1246 key
.objectid
= objectid
;
1247 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1249 ret
= btrfs_insert_root(trans
, tree_root
, &key
, &root
->root_item
);
1253 btrfs_tree_unlock(leaf
);
1259 btrfs_tree_unlock(leaf
);
1260 btrfs_put_root(root
);
1262 return ERR_PTR(ret
);
1265 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1266 struct btrfs_fs_info
*fs_info
)
1268 struct btrfs_root
*root
;
1269 struct extent_buffer
*leaf
;
1271 root
= btrfs_alloc_root(fs_info
, BTRFS_TREE_LOG_OBJECTID
, GFP_NOFS
);
1273 return ERR_PTR(-ENOMEM
);
1275 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1276 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1277 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1280 * DON'T set REF_COWS for log trees
1282 * log trees do not get reference counted because they go away
1283 * before a real commit is actually done. They do store pointers
1284 * to file data extents, and those reference counts still get
1285 * updated (along with back refs to the log tree).
1288 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, BTRFS_TREE_LOG_OBJECTID
,
1291 btrfs_put_root(root
);
1292 return ERR_CAST(leaf
);
1297 btrfs_mark_buffer_dirty(root
->node
);
1298 btrfs_tree_unlock(root
->node
);
1302 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1303 struct btrfs_fs_info
*fs_info
)
1305 struct btrfs_root
*log_root
;
1307 log_root
= alloc_log_tree(trans
, fs_info
);
1308 if (IS_ERR(log_root
))
1309 return PTR_ERR(log_root
);
1310 WARN_ON(fs_info
->log_root_tree
);
1311 fs_info
->log_root_tree
= log_root
;
1315 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1316 struct btrfs_root
*root
)
1318 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1319 struct btrfs_root
*log_root
;
1320 struct btrfs_inode_item
*inode_item
;
1322 log_root
= alloc_log_tree(trans
, fs_info
);
1323 if (IS_ERR(log_root
))
1324 return PTR_ERR(log_root
);
1326 log_root
->last_trans
= trans
->transid
;
1327 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1329 inode_item
= &log_root
->root_item
.inode
;
1330 btrfs_set_stack_inode_generation(inode_item
, 1);
1331 btrfs_set_stack_inode_size(inode_item
, 3);
1332 btrfs_set_stack_inode_nlink(inode_item
, 1);
1333 btrfs_set_stack_inode_nbytes(inode_item
,
1335 btrfs_set_stack_inode_mode(inode_item
, S_IFDIR
| 0755);
1337 btrfs_set_root_node(&log_root
->root_item
, log_root
->node
);
1339 WARN_ON(root
->log_root
);
1340 root
->log_root
= log_root
;
1341 root
->log_transid
= 0;
1342 root
->log_transid_committed
= -1;
1343 root
->last_log_commit
= 0;
1347 struct btrfs_root
*btrfs_read_tree_root(struct btrfs_root
*tree_root
,
1348 struct btrfs_key
*key
)
1350 struct btrfs_root
*root
;
1351 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1352 struct btrfs_path
*path
;
1357 path
= btrfs_alloc_path();
1359 return ERR_PTR(-ENOMEM
);
1361 root
= btrfs_alloc_root(fs_info
, key
->objectid
, GFP_NOFS
);
1367 ret
= btrfs_find_root(tree_root
, key
, path
,
1368 &root
->root_item
, &root
->root_key
);
1375 generation
= btrfs_root_generation(&root
->root_item
);
1376 level
= btrfs_root_level(&root
->root_item
);
1377 root
->node
= read_tree_block(fs_info
,
1378 btrfs_root_bytenr(&root
->root_item
),
1379 generation
, level
, NULL
);
1380 if (IS_ERR(root
->node
)) {
1381 ret
= PTR_ERR(root
->node
);
1384 } else if (!btrfs_buffer_uptodate(root
->node
, generation
, 0)) {
1388 root
->commit_root
= btrfs_root_node(root
);
1390 btrfs_free_path(path
);
1394 btrfs_put_root(root
);
1396 root
= ERR_PTR(ret
);
1400 static int btrfs_init_fs_root(struct btrfs_root
*root
)
1403 unsigned int nofs_flag
;
1405 root
->free_ino_ctl
= kzalloc(sizeof(*root
->free_ino_ctl
), GFP_NOFS
);
1406 root
->free_ino_pinned
= kzalloc(sizeof(*root
->free_ino_pinned
),
1408 if (!root
->free_ino_pinned
|| !root
->free_ino_ctl
) {
1414 * We might be called under a transaction (e.g. indirect backref
1415 * resolution) which could deadlock if it triggers memory reclaim
1417 nofs_flag
= memalloc_nofs_save();
1418 ret
= btrfs_drew_lock_init(&root
->snapshot_lock
);
1419 memalloc_nofs_restore(nofs_flag
);
1423 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
1424 set_bit(BTRFS_ROOT_REF_COWS
, &root
->state
);
1425 btrfs_check_and_init_root_item(&root
->root_item
);
1428 btrfs_init_free_ino_ctl(root
);
1429 spin_lock_init(&root
->ino_cache_lock
);
1430 init_waitqueue_head(&root
->ino_cache_wait
);
1432 ret
= get_anon_bdev(&root
->anon_dev
);
1436 mutex_lock(&root
->objectid_mutex
);
1437 ret
= btrfs_find_highest_objectid(root
,
1438 &root
->highest_objectid
);
1440 mutex_unlock(&root
->objectid_mutex
);
1444 ASSERT(root
->highest_objectid
<= BTRFS_LAST_FREE_OBJECTID
);
1446 mutex_unlock(&root
->objectid_mutex
);
1450 /* The caller is responsible to call btrfs_free_fs_root */
1454 static struct btrfs_root
*btrfs_lookup_fs_root(struct btrfs_fs_info
*fs_info
,
1457 struct btrfs_root
*root
;
1459 spin_lock(&fs_info
->fs_roots_radix_lock
);
1460 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1461 (unsigned long)root_id
);
1463 root
= btrfs_grab_root(root
);
1464 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1468 int btrfs_insert_fs_root(struct btrfs_fs_info
*fs_info
,
1469 struct btrfs_root
*root
)
1473 ret
= radix_tree_preload(GFP_NOFS
);
1477 spin_lock(&fs_info
->fs_roots_radix_lock
);
1478 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1479 (unsigned long)root
->root_key
.objectid
,
1482 btrfs_grab_root(root
);
1483 set_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
);
1485 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1486 radix_tree_preload_end();
1491 void btrfs_check_leaked_roots(struct btrfs_fs_info
*fs_info
)
1493 #ifdef CONFIG_BTRFS_DEBUG
1494 struct btrfs_root
*root
;
1496 while (!list_empty(&fs_info
->allocated_roots
)) {
1497 root
= list_first_entry(&fs_info
->allocated_roots
,
1498 struct btrfs_root
, leak_list
);
1499 btrfs_err(fs_info
, "leaked root %llu-%llu refcount %d",
1500 root
->root_key
.objectid
, root
->root_key
.offset
,
1501 refcount_read(&root
->refs
));
1502 while (refcount_read(&root
->refs
) > 1)
1503 btrfs_put_root(root
);
1504 btrfs_put_root(root
);
1509 void btrfs_free_fs_info(struct btrfs_fs_info
*fs_info
)
1511 percpu_counter_destroy(&fs_info
->dirty_metadata_bytes
);
1512 percpu_counter_destroy(&fs_info
->delalloc_bytes
);
1513 percpu_counter_destroy(&fs_info
->dio_bytes
);
1514 percpu_counter_destroy(&fs_info
->dev_replace
.bio_counter
);
1515 btrfs_free_csum_hash(fs_info
);
1516 btrfs_free_stripe_hash_table(fs_info
);
1517 btrfs_free_ref_cache(fs_info
);
1518 kfree(fs_info
->balance_ctl
);
1519 kfree(fs_info
->delayed_root
);
1520 btrfs_put_root(fs_info
->extent_root
);
1521 btrfs_put_root(fs_info
->tree_root
);
1522 btrfs_put_root(fs_info
->chunk_root
);
1523 btrfs_put_root(fs_info
->dev_root
);
1524 btrfs_put_root(fs_info
->csum_root
);
1525 btrfs_put_root(fs_info
->quota_root
);
1526 btrfs_put_root(fs_info
->uuid_root
);
1527 btrfs_put_root(fs_info
->free_space_root
);
1528 btrfs_put_root(fs_info
->fs_root
);
1529 btrfs_check_leaked_roots(fs_info
);
1530 btrfs_extent_buffer_leak_debug_check(fs_info
);
1531 kfree(fs_info
->super_copy
);
1532 kfree(fs_info
->super_for_commit
);
1537 struct btrfs_root
*btrfs_get_fs_root(struct btrfs_fs_info
*fs_info
,
1538 struct btrfs_key
*location
,
1541 struct btrfs_root
*root
;
1542 struct btrfs_path
*path
;
1543 struct btrfs_key key
;
1546 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1547 return btrfs_grab_root(fs_info
->tree_root
);
1548 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1549 return btrfs_grab_root(fs_info
->extent_root
);
1550 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1551 return btrfs_grab_root(fs_info
->chunk_root
);
1552 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1553 return btrfs_grab_root(fs_info
->dev_root
);
1554 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1555 return btrfs_grab_root(fs_info
->csum_root
);
1556 if (location
->objectid
== BTRFS_QUOTA_TREE_OBJECTID
)
1557 return btrfs_grab_root(fs_info
->quota_root
) ?
1558 fs_info
->quota_root
: ERR_PTR(-ENOENT
);
1559 if (location
->objectid
== BTRFS_UUID_TREE_OBJECTID
)
1560 return btrfs_grab_root(fs_info
->uuid_root
) ?
1561 fs_info
->uuid_root
: ERR_PTR(-ENOENT
);
1562 if (location
->objectid
== BTRFS_FREE_SPACE_TREE_OBJECTID
)
1563 return btrfs_grab_root(fs_info
->free_space_root
) ?
1564 fs_info
->free_space_root
: ERR_PTR(-ENOENT
);
1566 root
= btrfs_lookup_fs_root(fs_info
, location
->objectid
);
1568 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0) {
1569 btrfs_put_root(root
);
1570 return ERR_PTR(-ENOENT
);
1575 root
= btrfs_read_tree_root(fs_info
->tree_root
, location
);
1579 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0) {
1584 ret
= btrfs_init_fs_root(root
);
1588 path
= btrfs_alloc_path();
1593 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
1594 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1595 key
.offset
= location
->objectid
;
1597 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
1598 btrfs_free_path(path
);
1602 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
);
1604 ret
= btrfs_insert_fs_root(fs_info
, root
);
1606 btrfs_put_root(root
);
1613 btrfs_put_root(root
);
1614 return ERR_PTR(ret
);
1617 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1619 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1621 struct btrfs_device
*device
;
1622 struct backing_dev_info
*bdi
;
1625 list_for_each_entry_rcu(device
, &info
->fs_devices
->devices
, dev_list
) {
1628 bdi
= device
->bdev
->bd_bdi
;
1629 if (bdi_congested(bdi
, bdi_bits
)) {
1639 * called by the kthread helper functions to finally call the bio end_io
1640 * functions. This is where read checksum verification actually happens
1642 static void end_workqueue_fn(struct btrfs_work
*work
)
1645 struct btrfs_end_io_wq
*end_io_wq
;
1647 end_io_wq
= container_of(work
, struct btrfs_end_io_wq
, work
);
1648 bio
= end_io_wq
->bio
;
1650 bio
->bi_status
= end_io_wq
->status
;
1651 bio
->bi_private
= end_io_wq
->private;
1652 bio
->bi_end_io
= end_io_wq
->end_io
;
1654 kmem_cache_free(btrfs_end_io_wq_cache
, end_io_wq
);
1657 static int cleaner_kthread(void *arg
)
1659 struct btrfs_root
*root
= arg
;
1660 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1666 set_bit(BTRFS_FS_CLEANER_RUNNING
, &fs_info
->flags
);
1668 /* Make the cleaner go to sleep early. */
1669 if (btrfs_need_cleaner_sleep(fs_info
))
1673 * Do not do anything if we might cause open_ctree() to block
1674 * before we have finished mounting the filesystem.
1676 if (!test_bit(BTRFS_FS_OPEN
, &fs_info
->flags
))
1679 if (!mutex_trylock(&fs_info
->cleaner_mutex
))
1683 * Avoid the problem that we change the status of the fs
1684 * during the above check and trylock.
1686 if (btrfs_need_cleaner_sleep(fs_info
)) {
1687 mutex_unlock(&fs_info
->cleaner_mutex
);
1691 btrfs_run_delayed_iputs(fs_info
);
1693 again
= btrfs_clean_one_deleted_snapshot(root
);
1694 mutex_unlock(&fs_info
->cleaner_mutex
);
1697 * The defragger has dealt with the R/O remount and umount,
1698 * needn't do anything special here.
1700 btrfs_run_defrag_inodes(fs_info
);
1703 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1704 * with relocation (btrfs_relocate_chunk) and relocation
1705 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1706 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1707 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1708 * unused block groups.
1710 btrfs_delete_unused_bgs(fs_info
);
1712 clear_bit(BTRFS_FS_CLEANER_RUNNING
, &fs_info
->flags
);
1713 if (kthread_should_park())
1715 if (kthread_should_stop())
1718 set_current_state(TASK_INTERRUPTIBLE
);
1720 __set_current_state(TASK_RUNNING
);
1725 static int transaction_kthread(void *arg
)
1727 struct btrfs_root
*root
= arg
;
1728 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1729 struct btrfs_trans_handle
*trans
;
1730 struct btrfs_transaction
*cur
;
1733 unsigned long delay
;
1737 cannot_commit
= false;
1738 delay
= HZ
* fs_info
->commit_interval
;
1739 mutex_lock(&fs_info
->transaction_kthread_mutex
);
1741 spin_lock(&fs_info
->trans_lock
);
1742 cur
= fs_info
->running_transaction
;
1744 spin_unlock(&fs_info
->trans_lock
);
1748 now
= ktime_get_seconds();
1749 if (cur
->state
< TRANS_STATE_COMMIT_START
&&
1750 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT
, &fs_info
->flags
) &&
1751 (now
< cur
->start_time
||
1752 now
- cur
->start_time
< fs_info
->commit_interval
)) {
1753 spin_unlock(&fs_info
->trans_lock
);
1757 transid
= cur
->transid
;
1758 spin_unlock(&fs_info
->trans_lock
);
1760 /* If the file system is aborted, this will always fail. */
1761 trans
= btrfs_attach_transaction(root
);
1762 if (IS_ERR(trans
)) {
1763 if (PTR_ERR(trans
) != -ENOENT
)
1764 cannot_commit
= true;
1767 if (transid
== trans
->transid
) {
1768 btrfs_commit_transaction(trans
);
1770 btrfs_end_transaction(trans
);
1773 wake_up_process(fs_info
->cleaner_kthread
);
1774 mutex_unlock(&fs_info
->transaction_kthread_mutex
);
1776 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR
,
1777 &fs_info
->fs_state
)))
1778 btrfs_cleanup_transaction(fs_info
);
1779 if (!kthread_should_stop() &&
1780 (!btrfs_transaction_blocked(fs_info
) ||
1782 schedule_timeout_interruptible(delay
);
1783 } while (!kthread_should_stop());
1788 * This will find the highest generation in the array of root backups. The
1789 * index of the highest array is returned, or -EINVAL if we can't find
1792 * We check to make sure the array is valid by comparing the
1793 * generation of the latest root in the array with the generation
1794 * in the super block. If they don't match we pitch it.
1796 static int find_newest_super_backup(struct btrfs_fs_info
*info
)
1798 const u64 newest_gen
= btrfs_super_generation(info
->super_copy
);
1800 struct btrfs_root_backup
*root_backup
;
1803 for (i
= 0; i
< BTRFS_NUM_BACKUP_ROOTS
; i
++) {
1804 root_backup
= info
->super_copy
->super_roots
+ i
;
1805 cur
= btrfs_backup_tree_root_gen(root_backup
);
1806 if (cur
== newest_gen
)
1814 * copy all the root pointers into the super backup array.
1815 * this will bump the backup pointer by one when it is
1818 static void backup_super_roots(struct btrfs_fs_info
*info
)
1820 const int next_backup
= info
->backup_root_index
;
1821 struct btrfs_root_backup
*root_backup
;
1823 root_backup
= info
->super_for_commit
->super_roots
+ next_backup
;
1826 * make sure all of our padding and empty slots get zero filled
1827 * regardless of which ones we use today
1829 memset(root_backup
, 0, sizeof(*root_backup
));
1831 info
->backup_root_index
= (next_backup
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1833 btrfs_set_backup_tree_root(root_backup
, info
->tree_root
->node
->start
);
1834 btrfs_set_backup_tree_root_gen(root_backup
,
1835 btrfs_header_generation(info
->tree_root
->node
));
1837 btrfs_set_backup_tree_root_level(root_backup
,
1838 btrfs_header_level(info
->tree_root
->node
));
1840 btrfs_set_backup_chunk_root(root_backup
, info
->chunk_root
->node
->start
);
1841 btrfs_set_backup_chunk_root_gen(root_backup
,
1842 btrfs_header_generation(info
->chunk_root
->node
));
1843 btrfs_set_backup_chunk_root_level(root_backup
,
1844 btrfs_header_level(info
->chunk_root
->node
));
1846 btrfs_set_backup_extent_root(root_backup
, info
->extent_root
->node
->start
);
1847 btrfs_set_backup_extent_root_gen(root_backup
,
1848 btrfs_header_generation(info
->extent_root
->node
));
1849 btrfs_set_backup_extent_root_level(root_backup
,
1850 btrfs_header_level(info
->extent_root
->node
));
1853 * we might commit during log recovery, which happens before we set
1854 * the fs_root. Make sure it is valid before we fill it in.
1856 if (info
->fs_root
&& info
->fs_root
->node
) {
1857 btrfs_set_backup_fs_root(root_backup
,
1858 info
->fs_root
->node
->start
);
1859 btrfs_set_backup_fs_root_gen(root_backup
,
1860 btrfs_header_generation(info
->fs_root
->node
));
1861 btrfs_set_backup_fs_root_level(root_backup
,
1862 btrfs_header_level(info
->fs_root
->node
));
1865 btrfs_set_backup_dev_root(root_backup
, info
->dev_root
->node
->start
);
1866 btrfs_set_backup_dev_root_gen(root_backup
,
1867 btrfs_header_generation(info
->dev_root
->node
));
1868 btrfs_set_backup_dev_root_level(root_backup
,
1869 btrfs_header_level(info
->dev_root
->node
));
1871 btrfs_set_backup_csum_root(root_backup
, info
->csum_root
->node
->start
);
1872 btrfs_set_backup_csum_root_gen(root_backup
,
1873 btrfs_header_generation(info
->csum_root
->node
));
1874 btrfs_set_backup_csum_root_level(root_backup
,
1875 btrfs_header_level(info
->csum_root
->node
));
1877 btrfs_set_backup_total_bytes(root_backup
,
1878 btrfs_super_total_bytes(info
->super_copy
));
1879 btrfs_set_backup_bytes_used(root_backup
,
1880 btrfs_super_bytes_used(info
->super_copy
));
1881 btrfs_set_backup_num_devices(root_backup
,
1882 btrfs_super_num_devices(info
->super_copy
));
1885 * if we don't copy this out to the super_copy, it won't get remembered
1886 * for the next commit
1888 memcpy(&info
->super_copy
->super_roots
,
1889 &info
->super_for_commit
->super_roots
,
1890 sizeof(*root_backup
) * BTRFS_NUM_BACKUP_ROOTS
);
1894 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1895 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1897 * fs_info - filesystem whose backup roots need to be read
1898 * priority - priority of backup root required
1900 * Returns backup root index on success and -EINVAL otherwise.
1902 static int read_backup_root(struct btrfs_fs_info
*fs_info
, u8 priority
)
1904 int backup_index
= find_newest_super_backup(fs_info
);
1905 struct btrfs_super_block
*super
= fs_info
->super_copy
;
1906 struct btrfs_root_backup
*root_backup
;
1908 if (priority
< BTRFS_NUM_BACKUP_ROOTS
&& backup_index
>= 0) {
1910 return backup_index
;
1912 backup_index
= backup_index
+ BTRFS_NUM_BACKUP_ROOTS
- priority
;
1913 backup_index
%= BTRFS_NUM_BACKUP_ROOTS
;
1918 root_backup
= super
->super_roots
+ backup_index
;
1920 btrfs_set_super_generation(super
,
1921 btrfs_backup_tree_root_gen(root_backup
));
1922 btrfs_set_super_root(super
, btrfs_backup_tree_root(root_backup
));
1923 btrfs_set_super_root_level(super
,
1924 btrfs_backup_tree_root_level(root_backup
));
1925 btrfs_set_super_bytes_used(super
, btrfs_backup_bytes_used(root_backup
));
1928 * Fixme: the total bytes and num_devices need to match or we should
1931 btrfs_set_super_total_bytes(super
, btrfs_backup_total_bytes(root_backup
));
1932 btrfs_set_super_num_devices(super
, btrfs_backup_num_devices(root_backup
));
1934 return backup_index
;
1937 /* helper to cleanup workers */
1938 static void btrfs_stop_all_workers(struct btrfs_fs_info
*fs_info
)
1940 btrfs_destroy_workqueue(fs_info
->fixup_workers
);
1941 btrfs_destroy_workqueue(fs_info
->delalloc_workers
);
1942 btrfs_destroy_workqueue(fs_info
->workers
);
1943 btrfs_destroy_workqueue(fs_info
->endio_workers
);
1944 btrfs_destroy_workqueue(fs_info
->endio_raid56_workers
);
1945 btrfs_destroy_workqueue(fs_info
->endio_repair_workers
);
1946 btrfs_destroy_workqueue(fs_info
->rmw_workers
);
1947 btrfs_destroy_workqueue(fs_info
->endio_write_workers
);
1948 btrfs_destroy_workqueue(fs_info
->endio_freespace_worker
);
1949 btrfs_destroy_workqueue(fs_info
->delayed_workers
);
1950 btrfs_destroy_workqueue(fs_info
->caching_workers
);
1951 btrfs_destroy_workqueue(fs_info
->readahead_workers
);
1952 btrfs_destroy_workqueue(fs_info
->flush_workers
);
1953 btrfs_destroy_workqueue(fs_info
->qgroup_rescan_workers
);
1954 if (fs_info
->discard_ctl
.discard_workers
)
1955 destroy_workqueue(fs_info
->discard_ctl
.discard_workers
);
1957 * Now that all other work queues are destroyed, we can safely destroy
1958 * the queues used for metadata I/O, since tasks from those other work
1959 * queues can do metadata I/O operations.
1961 btrfs_destroy_workqueue(fs_info
->endio_meta_workers
);
1962 btrfs_destroy_workqueue(fs_info
->endio_meta_write_workers
);
1965 static void free_root_extent_buffers(struct btrfs_root
*root
)
1968 free_extent_buffer(root
->node
);
1969 free_extent_buffer(root
->commit_root
);
1971 root
->commit_root
= NULL
;
1975 /* helper to cleanup tree roots */
1976 static void free_root_pointers(struct btrfs_fs_info
*info
, bool free_chunk_root
)
1978 free_root_extent_buffers(info
->tree_root
);
1980 free_root_extent_buffers(info
->dev_root
);
1981 free_root_extent_buffers(info
->extent_root
);
1982 free_root_extent_buffers(info
->csum_root
);
1983 free_root_extent_buffers(info
->quota_root
);
1984 free_root_extent_buffers(info
->uuid_root
);
1985 free_root_extent_buffers(info
->fs_root
);
1986 if (free_chunk_root
)
1987 free_root_extent_buffers(info
->chunk_root
);
1988 free_root_extent_buffers(info
->free_space_root
);
1991 void btrfs_put_root(struct btrfs_root
*root
)
1996 if (refcount_dec_and_test(&root
->refs
)) {
1997 WARN_ON(!RB_EMPTY_ROOT(&root
->inode_tree
));
1999 free_anon_bdev(root
->anon_dev
);
2000 btrfs_drew_lock_destroy(&root
->snapshot_lock
);
2001 free_extent_buffer(root
->node
);
2002 free_extent_buffer(root
->commit_root
);
2003 kfree(root
->free_ino_ctl
);
2004 kfree(root
->free_ino_pinned
);
2005 #ifdef CONFIG_BTRFS_DEBUG
2006 spin_lock(&root
->fs_info
->fs_roots_radix_lock
);
2007 list_del_init(&root
->leak_list
);
2008 spin_unlock(&root
->fs_info
->fs_roots_radix_lock
);
2014 void btrfs_free_fs_roots(struct btrfs_fs_info
*fs_info
)
2017 struct btrfs_root
*gang
[8];
2020 while (!list_empty(&fs_info
->dead_roots
)) {
2021 gang
[0] = list_entry(fs_info
->dead_roots
.next
,
2022 struct btrfs_root
, root_list
);
2023 list_del(&gang
[0]->root_list
);
2025 if (test_bit(BTRFS_ROOT_IN_RADIX
, &gang
[0]->state
))
2026 btrfs_drop_and_free_fs_root(fs_info
, gang
[0]);
2027 btrfs_put_root(gang
[0]);
2031 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2036 for (i
= 0; i
< ret
; i
++)
2037 btrfs_drop_and_free_fs_root(fs_info
, gang
[i
]);
2040 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
2041 btrfs_free_log_root_tree(NULL
, fs_info
);
2044 static void btrfs_init_scrub(struct btrfs_fs_info
*fs_info
)
2046 mutex_init(&fs_info
->scrub_lock
);
2047 atomic_set(&fs_info
->scrubs_running
, 0);
2048 atomic_set(&fs_info
->scrub_pause_req
, 0);
2049 atomic_set(&fs_info
->scrubs_paused
, 0);
2050 atomic_set(&fs_info
->scrub_cancel_req
, 0);
2051 init_waitqueue_head(&fs_info
->scrub_pause_wait
);
2052 refcount_set(&fs_info
->scrub_workers_refcnt
, 0);
2055 static void btrfs_init_balance(struct btrfs_fs_info
*fs_info
)
2057 spin_lock_init(&fs_info
->balance_lock
);
2058 mutex_init(&fs_info
->balance_mutex
);
2059 atomic_set(&fs_info
->balance_pause_req
, 0);
2060 atomic_set(&fs_info
->balance_cancel_req
, 0);
2061 fs_info
->balance_ctl
= NULL
;
2062 init_waitqueue_head(&fs_info
->balance_wait_q
);
2065 static void btrfs_init_btree_inode(struct btrfs_fs_info
*fs_info
)
2067 struct inode
*inode
= fs_info
->btree_inode
;
2069 inode
->i_ino
= BTRFS_BTREE_INODE_OBJECTID
;
2070 set_nlink(inode
, 1);
2072 * we set the i_size on the btree inode to the max possible int.
2073 * the real end of the address space is determined by all of
2074 * the devices in the system
2076 inode
->i_size
= OFFSET_MAX
;
2077 inode
->i_mapping
->a_ops
= &btree_aops
;
2079 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
2080 extent_io_tree_init(fs_info
, &BTRFS_I(inode
)->io_tree
,
2081 IO_TREE_INODE_IO
, inode
);
2082 BTRFS_I(inode
)->io_tree
.track_uptodate
= false;
2083 extent_map_tree_init(&BTRFS_I(inode
)->extent_tree
);
2085 BTRFS_I(inode
)->io_tree
.ops
= &btree_extent_io_ops
;
2087 BTRFS_I(inode
)->root
= btrfs_grab_root(fs_info
->tree_root
);
2088 memset(&BTRFS_I(inode
)->location
, 0, sizeof(struct btrfs_key
));
2089 set_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
);
2090 btrfs_insert_inode_hash(inode
);
2093 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info
*fs_info
)
2095 mutex_init(&fs_info
->dev_replace
.lock_finishing_cancel_unmount
);
2096 init_rwsem(&fs_info
->dev_replace
.rwsem
);
2097 init_waitqueue_head(&fs_info
->dev_replace
.replace_wait
);
2100 static void btrfs_init_qgroup(struct btrfs_fs_info
*fs_info
)
2102 spin_lock_init(&fs_info
->qgroup_lock
);
2103 mutex_init(&fs_info
->qgroup_ioctl_lock
);
2104 fs_info
->qgroup_tree
= RB_ROOT
;
2105 INIT_LIST_HEAD(&fs_info
->dirty_qgroups
);
2106 fs_info
->qgroup_seq
= 1;
2107 fs_info
->qgroup_ulist
= NULL
;
2108 fs_info
->qgroup_rescan_running
= false;
2109 mutex_init(&fs_info
->qgroup_rescan_lock
);
2112 static int btrfs_init_workqueues(struct btrfs_fs_info
*fs_info
,
2113 struct btrfs_fs_devices
*fs_devices
)
2115 u32 max_active
= fs_info
->thread_pool_size
;
2116 unsigned int flags
= WQ_MEM_RECLAIM
| WQ_FREEZABLE
| WQ_UNBOUND
;
2119 btrfs_alloc_workqueue(fs_info
, "worker",
2120 flags
| WQ_HIGHPRI
, max_active
, 16);
2122 fs_info
->delalloc_workers
=
2123 btrfs_alloc_workqueue(fs_info
, "delalloc",
2124 flags
, max_active
, 2);
2126 fs_info
->flush_workers
=
2127 btrfs_alloc_workqueue(fs_info
, "flush_delalloc",
2128 flags
, max_active
, 0);
2130 fs_info
->caching_workers
=
2131 btrfs_alloc_workqueue(fs_info
, "cache", flags
, max_active
, 0);
2133 fs_info
->fixup_workers
=
2134 btrfs_alloc_workqueue(fs_info
, "fixup", flags
, 1, 0);
2137 * endios are largely parallel and should have a very
2140 fs_info
->endio_workers
=
2141 btrfs_alloc_workqueue(fs_info
, "endio", flags
, max_active
, 4);
2142 fs_info
->endio_meta_workers
=
2143 btrfs_alloc_workqueue(fs_info
, "endio-meta", flags
,
2145 fs_info
->endio_meta_write_workers
=
2146 btrfs_alloc_workqueue(fs_info
, "endio-meta-write", flags
,
2148 fs_info
->endio_raid56_workers
=
2149 btrfs_alloc_workqueue(fs_info
, "endio-raid56", flags
,
2151 fs_info
->endio_repair_workers
=
2152 btrfs_alloc_workqueue(fs_info
, "endio-repair", flags
, 1, 0);
2153 fs_info
->rmw_workers
=
2154 btrfs_alloc_workqueue(fs_info
, "rmw", flags
, max_active
, 2);
2155 fs_info
->endio_write_workers
=
2156 btrfs_alloc_workqueue(fs_info
, "endio-write", flags
,
2158 fs_info
->endio_freespace_worker
=
2159 btrfs_alloc_workqueue(fs_info
, "freespace-write", flags
,
2161 fs_info
->delayed_workers
=
2162 btrfs_alloc_workqueue(fs_info
, "delayed-meta", flags
,
2164 fs_info
->readahead_workers
=
2165 btrfs_alloc_workqueue(fs_info
, "readahead", flags
,
2167 fs_info
->qgroup_rescan_workers
=
2168 btrfs_alloc_workqueue(fs_info
, "qgroup-rescan", flags
, 1, 0);
2169 fs_info
->discard_ctl
.discard_workers
=
2170 alloc_workqueue("btrfs_discard", WQ_UNBOUND
| WQ_FREEZABLE
, 1);
2172 if (!(fs_info
->workers
&& fs_info
->delalloc_workers
&&
2173 fs_info
->flush_workers
&&
2174 fs_info
->endio_workers
&& fs_info
->endio_meta_workers
&&
2175 fs_info
->endio_meta_write_workers
&&
2176 fs_info
->endio_repair_workers
&&
2177 fs_info
->endio_write_workers
&& fs_info
->endio_raid56_workers
&&
2178 fs_info
->endio_freespace_worker
&& fs_info
->rmw_workers
&&
2179 fs_info
->caching_workers
&& fs_info
->readahead_workers
&&
2180 fs_info
->fixup_workers
&& fs_info
->delayed_workers
&&
2181 fs_info
->qgroup_rescan_workers
&&
2182 fs_info
->discard_ctl
.discard_workers
)) {
2189 static int btrfs_init_csum_hash(struct btrfs_fs_info
*fs_info
, u16 csum_type
)
2191 struct crypto_shash
*csum_shash
;
2192 const char *csum_driver
= btrfs_super_csum_driver(csum_type
);
2194 csum_shash
= crypto_alloc_shash(csum_driver
, 0, 0);
2196 if (IS_ERR(csum_shash
)) {
2197 btrfs_err(fs_info
, "error allocating %s hash for checksum",
2199 return PTR_ERR(csum_shash
);
2202 fs_info
->csum_shash
= csum_shash
;
2207 static int btrfs_replay_log(struct btrfs_fs_info
*fs_info
,
2208 struct btrfs_fs_devices
*fs_devices
)
2211 struct btrfs_root
*log_tree_root
;
2212 struct btrfs_super_block
*disk_super
= fs_info
->super_copy
;
2213 u64 bytenr
= btrfs_super_log_root(disk_super
);
2214 int level
= btrfs_super_log_root_level(disk_super
);
2216 if (fs_devices
->rw_devices
== 0) {
2217 btrfs_warn(fs_info
, "log replay required on RO media");
2221 log_tree_root
= btrfs_alloc_root(fs_info
, BTRFS_TREE_LOG_OBJECTID
,
2226 log_tree_root
->node
= read_tree_block(fs_info
, bytenr
,
2227 fs_info
->generation
+ 1,
2229 if (IS_ERR(log_tree_root
->node
)) {
2230 btrfs_warn(fs_info
, "failed to read log tree");
2231 ret
= PTR_ERR(log_tree_root
->node
);
2232 log_tree_root
->node
= NULL
;
2233 btrfs_put_root(log_tree_root
);
2235 } else if (!extent_buffer_uptodate(log_tree_root
->node
)) {
2236 btrfs_err(fs_info
, "failed to read log tree");
2237 btrfs_put_root(log_tree_root
);
2240 /* returns with log_tree_root freed on success */
2241 ret
= btrfs_recover_log_trees(log_tree_root
);
2243 btrfs_handle_fs_error(fs_info
, ret
,
2244 "Failed to recover log tree");
2245 btrfs_put_root(log_tree_root
);
2249 if (sb_rdonly(fs_info
->sb
)) {
2250 ret
= btrfs_commit_super(fs_info
);
2258 static int btrfs_read_roots(struct btrfs_fs_info
*fs_info
)
2260 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
2261 struct btrfs_root
*root
;
2262 struct btrfs_key location
;
2265 BUG_ON(!fs_info
->tree_root
);
2267 location
.objectid
= BTRFS_EXTENT_TREE_OBJECTID
;
2268 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2269 location
.offset
= 0;
2271 root
= btrfs_read_tree_root(tree_root
, &location
);
2273 ret
= PTR_ERR(root
);
2276 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2277 fs_info
->extent_root
= root
;
2279 location
.objectid
= BTRFS_DEV_TREE_OBJECTID
;
2280 root
= btrfs_read_tree_root(tree_root
, &location
);
2282 ret
= PTR_ERR(root
);
2285 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2286 fs_info
->dev_root
= root
;
2287 btrfs_init_devices_late(fs_info
);
2289 location
.objectid
= BTRFS_CSUM_TREE_OBJECTID
;
2290 root
= btrfs_read_tree_root(tree_root
, &location
);
2292 ret
= PTR_ERR(root
);
2295 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2296 fs_info
->csum_root
= root
;
2298 location
.objectid
= BTRFS_QUOTA_TREE_OBJECTID
;
2299 root
= btrfs_read_tree_root(tree_root
, &location
);
2300 if (!IS_ERR(root
)) {
2301 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2302 set_bit(BTRFS_FS_QUOTA_ENABLED
, &fs_info
->flags
);
2303 fs_info
->quota_root
= root
;
2306 location
.objectid
= BTRFS_UUID_TREE_OBJECTID
;
2307 root
= btrfs_read_tree_root(tree_root
, &location
);
2309 ret
= PTR_ERR(root
);
2313 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2314 fs_info
->uuid_root
= root
;
2317 if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
2318 location
.objectid
= BTRFS_FREE_SPACE_TREE_OBJECTID
;
2319 root
= btrfs_read_tree_root(tree_root
, &location
);
2321 ret
= PTR_ERR(root
);
2324 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2325 fs_info
->free_space_root
= root
;
2330 btrfs_warn(fs_info
, "failed to read root (objectid=%llu): %d",
2331 location
.objectid
, ret
);
2336 * Real super block validation
2337 * NOTE: super csum type and incompat features will not be checked here.
2339 * @sb: super block to check
2340 * @mirror_num: the super block number to check its bytenr:
2341 * 0 the primary (1st) sb
2342 * 1, 2 2nd and 3rd backup copy
2343 * -1 skip bytenr check
2345 static int validate_super(struct btrfs_fs_info
*fs_info
,
2346 struct btrfs_super_block
*sb
, int mirror_num
)
2348 u64 nodesize
= btrfs_super_nodesize(sb
);
2349 u64 sectorsize
= btrfs_super_sectorsize(sb
);
2352 if (btrfs_super_magic(sb
) != BTRFS_MAGIC
) {
2353 btrfs_err(fs_info
, "no valid FS found");
2356 if (btrfs_super_flags(sb
) & ~BTRFS_SUPER_FLAG_SUPP
) {
2357 btrfs_err(fs_info
, "unrecognized or unsupported super flag: %llu",
2358 btrfs_super_flags(sb
) & ~BTRFS_SUPER_FLAG_SUPP
);
2361 if (btrfs_super_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
2362 btrfs_err(fs_info
, "tree_root level too big: %d >= %d",
2363 btrfs_super_root_level(sb
), BTRFS_MAX_LEVEL
);
2366 if (btrfs_super_chunk_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
2367 btrfs_err(fs_info
, "chunk_root level too big: %d >= %d",
2368 btrfs_super_chunk_root_level(sb
), BTRFS_MAX_LEVEL
);
2371 if (btrfs_super_log_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
2372 btrfs_err(fs_info
, "log_root level too big: %d >= %d",
2373 btrfs_super_log_root_level(sb
), BTRFS_MAX_LEVEL
);
2378 * Check sectorsize and nodesize first, other check will need it.
2379 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2381 if (!is_power_of_2(sectorsize
) || sectorsize
< 4096 ||
2382 sectorsize
> BTRFS_MAX_METADATA_BLOCKSIZE
) {
2383 btrfs_err(fs_info
, "invalid sectorsize %llu", sectorsize
);
2386 /* Only PAGE SIZE is supported yet */
2387 if (sectorsize
!= PAGE_SIZE
) {
2389 "sectorsize %llu not supported yet, only support %lu",
2390 sectorsize
, PAGE_SIZE
);
2393 if (!is_power_of_2(nodesize
) || nodesize
< sectorsize
||
2394 nodesize
> BTRFS_MAX_METADATA_BLOCKSIZE
) {
2395 btrfs_err(fs_info
, "invalid nodesize %llu", nodesize
);
2398 if (nodesize
!= le32_to_cpu(sb
->__unused_leafsize
)) {
2399 btrfs_err(fs_info
, "invalid leafsize %u, should be %llu",
2400 le32_to_cpu(sb
->__unused_leafsize
), nodesize
);
2404 /* Root alignment check */
2405 if (!IS_ALIGNED(btrfs_super_root(sb
), sectorsize
)) {
2406 btrfs_warn(fs_info
, "tree_root block unaligned: %llu",
2407 btrfs_super_root(sb
));
2410 if (!IS_ALIGNED(btrfs_super_chunk_root(sb
), sectorsize
)) {
2411 btrfs_warn(fs_info
, "chunk_root block unaligned: %llu",
2412 btrfs_super_chunk_root(sb
));
2415 if (!IS_ALIGNED(btrfs_super_log_root(sb
), sectorsize
)) {
2416 btrfs_warn(fs_info
, "log_root block unaligned: %llu",
2417 btrfs_super_log_root(sb
));
2421 if (memcmp(fs_info
->fs_devices
->metadata_uuid
, sb
->dev_item
.fsid
,
2422 BTRFS_FSID_SIZE
) != 0) {
2424 "dev_item UUID does not match metadata fsid: %pU != %pU",
2425 fs_info
->fs_devices
->metadata_uuid
, sb
->dev_item
.fsid
);
2430 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2433 if (btrfs_super_bytes_used(sb
) < 6 * btrfs_super_nodesize(sb
)) {
2434 btrfs_err(fs_info
, "bytes_used is too small %llu",
2435 btrfs_super_bytes_used(sb
));
2438 if (!is_power_of_2(btrfs_super_stripesize(sb
))) {
2439 btrfs_err(fs_info
, "invalid stripesize %u",
2440 btrfs_super_stripesize(sb
));
2443 if (btrfs_super_num_devices(sb
) > (1UL << 31))
2444 btrfs_warn(fs_info
, "suspicious number of devices: %llu",
2445 btrfs_super_num_devices(sb
));
2446 if (btrfs_super_num_devices(sb
) == 0) {
2447 btrfs_err(fs_info
, "number of devices is 0");
2451 if (mirror_num
>= 0 &&
2452 btrfs_super_bytenr(sb
) != btrfs_sb_offset(mirror_num
)) {
2453 btrfs_err(fs_info
, "super offset mismatch %llu != %u",
2454 btrfs_super_bytenr(sb
), BTRFS_SUPER_INFO_OFFSET
);
2459 * Obvious sys_chunk_array corruptions, it must hold at least one key
2462 if (btrfs_super_sys_array_size(sb
) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
) {
2463 btrfs_err(fs_info
, "system chunk array too big %u > %u",
2464 btrfs_super_sys_array_size(sb
),
2465 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
);
2468 if (btrfs_super_sys_array_size(sb
) < sizeof(struct btrfs_disk_key
)
2469 + sizeof(struct btrfs_chunk
)) {
2470 btrfs_err(fs_info
, "system chunk array too small %u < %zu",
2471 btrfs_super_sys_array_size(sb
),
2472 sizeof(struct btrfs_disk_key
)
2473 + sizeof(struct btrfs_chunk
));
2478 * The generation is a global counter, we'll trust it more than the others
2479 * but it's still possible that it's the one that's wrong.
2481 if (btrfs_super_generation(sb
) < btrfs_super_chunk_root_generation(sb
))
2483 "suspicious: generation < chunk_root_generation: %llu < %llu",
2484 btrfs_super_generation(sb
),
2485 btrfs_super_chunk_root_generation(sb
));
2486 if (btrfs_super_generation(sb
) < btrfs_super_cache_generation(sb
)
2487 && btrfs_super_cache_generation(sb
) != (u64
)-1)
2489 "suspicious: generation < cache_generation: %llu < %llu",
2490 btrfs_super_generation(sb
),
2491 btrfs_super_cache_generation(sb
));
2497 * Validation of super block at mount time.
2498 * Some checks already done early at mount time, like csum type and incompat
2499 * flags will be skipped.
2501 static int btrfs_validate_mount_super(struct btrfs_fs_info
*fs_info
)
2503 return validate_super(fs_info
, fs_info
->super_copy
, 0);
2507 * Validation of super block at write time.
2508 * Some checks like bytenr check will be skipped as their values will be
2510 * Extra checks like csum type and incompat flags will be done here.
2512 static int btrfs_validate_write_super(struct btrfs_fs_info
*fs_info
,
2513 struct btrfs_super_block
*sb
)
2517 ret
= validate_super(fs_info
, sb
, -1);
2520 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb
))) {
2522 btrfs_err(fs_info
, "invalid csum type, has %u want %u",
2523 btrfs_super_csum_type(sb
), BTRFS_CSUM_TYPE_CRC32
);
2526 if (btrfs_super_incompat_flags(sb
) & ~BTRFS_FEATURE_INCOMPAT_SUPP
) {
2529 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2530 btrfs_super_incompat_flags(sb
),
2531 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP
);
2537 "super block corruption detected before writing it to disk");
2541 static int __cold
init_tree_roots(struct btrfs_fs_info
*fs_info
)
2543 int backup_index
= find_newest_super_backup(fs_info
);
2544 struct btrfs_super_block
*sb
= fs_info
->super_copy
;
2545 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
2546 bool handle_error
= false;
2550 for (i
= 0; i
< BTRFS_NUM_BACKUP_ROOTS
; i
++) {
2555 if (!IS_ERR(tree_root
->node
))
2556 free_extent_buffer(tree_root
->node
);
2557 tree_root
->node
= NULL
;
2559 if (!btrfs_test_opt(fs_info
, USEBACKUPROOT
))
2562 free_root_pointers(fs_info
, 0);
2565 * Don't use the log in recovery mode, it won't be
2568 btrfs_set_super_log_root(sb
, 0);
2570 /* We can't trust the free space cache either */
2571 btrfs_set_opt(fs_info
->mount_opt
, CLEAR_CACHE
);
2573 ret
= read_backup_root(fs_info
, i
);
2578 generation
= btrfs_super_generation(sb
);
2579 level
= btrfs_super_root_level(sb
);
2580 tree_root
->node
= read_tree_block(fs_info
, btrfs_super_root(sb
),
2581 generation
, level
, NULL
);
2582 if (IS_ERR(tree_root
->node
) ||
2583 !extent_buffer_uptodate(tree_root
->node
)) {
2584 handle_error
= true;
2586 if (IS_ERR(tree_root
->node
))
2587 ret
= PTR_ERR(tree_root
->node
);
2588 else if (!extent_buffer_uptodate(tree_root
->node
))
2591 btrfs_warn(fs_info
, "failed to read tree root");
2595 btrfs_set_root_node(&tree_root
->root_item
, tree_root
->node
);
2596 tree_root
->commit_root
= btrfs_root_node(tree_root
);
2597 btrfs_set_root_refs(&tree_root
->root_item
, 1);
2600 * No need to hold btrfs_root::objectid_mutex since the fs
2601 * hasn't been fully initialised and we are the only user
2603 ret
= btrfs_find_highest_objectid(tree_root
,
2604 &tree_root
->highest_objectid
);
2606 handle_error
= true;
2610 ASSERT(tree_root
->highest_objectid
<= BTRFS_LAST_FREE_OBJECTID
);
2612 ret
= btrfs_read_roots(fs_info
);
2614 handle_error
= true;
2618 /* All successful */
2619 fs_info
->generation
= generation
;
2620 fs_info
->last_trans_committed
= generation
;
2622 /* Always begin writing backup roots after the one being used */
2623 if (backup_index
< 0) {
2624 fs_info
->backup_root_index
= 0;
2626 fs_info
->backup_root_index
= backup_index
+ 1;
2627 fs_info
->backup_root_index
%= BTRFS_NUM_BACKUP_ROOTS
;
2635 void btrfs_init_fs_info(struct btrfs_fs_info
*fs_info
)
2637 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_ATOMIC
);
2638 INIT_RADIX_TREE(&fs_info
->buffer_radix
, GFP_ATOMIC
);
2639 INIT_LIST_HEAD(&fs_info
->trans_list
);
2640 INIT_LIST_HEAD(&fs_info
->dead_roots
);
2641 INIT_LIST_HEAD(&fs_info
->delayed_iputs
);
2642 INIT_LIST_HEAD(&fs_info
->delalloc_roots
);
2643 INIT_LIST_HEAD(&fs_info
->caching_block_groups
);
2644 spin_lock_init(&fs_info
->delalloc_root_lock
);
2645 spin_lock_init(&fs_info
->trans_lock
);
2646 spin_lock_init(&fs_info
->fs_roots_radix_lock
);
2647 spin_lock_init(&fs_info
->delayed_iput_lock
);
2648 spin_lock_init(&fs_info
->defrag_inodes_lock
);
2649 spin_lock_init(&fs_info
->super_lock
);
2650 spin_lock_init(&fs_info
->buffer_lock
);
2651 spin_lock_init(&fs_info
->unused_bgs_lock
);
2652 rwlock_init(&fs_info
->tree_mod_log_lock
);
2653 mutex_init(&fs_info
->unused_bg_unpin_mutex
);
2654 mutex_init(&fs_info
->delete_unused_bgs_mutex
);
2655 mutex_init(&fs_info
->reloc_mutex
);
2656 mutex_init(&fs_info
->delalloc_root_mutex
);
2657 seqlock_init(&fs_info
->profiles_lock
);
2659 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
2660 INIT_LIST_HEAD(&fs_info
->space_info
);
2661 INIT_LIST_HEAD(&fs_info
->tree_mod_seq_list
);
2662 INIT_LIST_HEAD(&fs_info
->unused_bgs
);
2663 #ifdef CONFIG_BTRFS_DEBUG
2664 INIT_LIST_HEAD(&fs_info
->allocated_roots
);
2665 INIT_LIST_HEAD(&fs_info
->allocated_ebs
);
2666 spin_lock_init(&fs_info
->eb_leak_lock
);
2668 extent_map_tree_init(&fs_info
->mapping_tree
);
2669 btrfs_init_block_rsv(&fs_info
->global_block_rsv
,
2670 BTRFS_BLOCK_RSV_GLOBAL
);
2671 btrfs_init_block_rsv(&fs_info
->trans_block_rsv
, BTRFS_BLOCK_RSV_TRANS
);
2672 btrfs_init_block_rsv(&fs_info
->chunk_block_rsv
, BTRFS_BLOCK_RSV_CHUNK
);
2673 btrfs_init_block_rsv(&fs_info
->empty_block_rsv
, BTRFS_BLOCK_RSV_EMPTY
);
2674 btrfs_init_block_rsv(&fs_info
->delayed_block_rsv
,
2675 BTRFS_BLOCK_RSV_DELOPS
);
2676 btrfs_init_block_rsv(&fs_info
->delayed_refs_rsv
,
2677 BTRFS_BLOCK_RSV_DELREFS
);
2679 atomic_set(&fs_info
->async_delalloc_pages
, 0);
2680 atomic_set(&fs_info
->defrag_running
, 0);
2681 atomic_set(&fs_info
->reada_works_cnt
, 0);
2682 atomic_set(&fs_info
->nr_delayed_iputs
, 0);
2683 atomic64_set(&fs_info
->tree_mod_seq
, 0);
2684 fs_info
->max_inline
= BTRFS_DEFAULT_MAX_INLINE
;
2685 fs_info
->metadata_ratio
= 0;
2686 fs_info
->defrag_inodes
= RB_ROOT
;
2687 atomic64_set(&fs_info
->free_chunk_space
, 0);
2688 fs_info
->tree_mod_log
= RB_ROOT
;
2689 fs_info
->commit_interval
= BTRFS_DEFAULT_COMMIT_INTERVAL
;
2690 fs_info
->avg_delayed_ref_runtime
= NSEC_PER_SEC
>> 6; /* div by 64 */
2691 /* readahead state */
2692 INIT_RADIX_TREE(&fs_info
->reada_tree
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
2693 spin_lock_init(&fs_info
->reada_lock
);
2694 btrfs_init_ref_verify(fs_info
);
2696 fs_info
->thread_pool_size
= min_t(unsigned long,
2697 num_online_cpus() + 2, 8);
2699 INIT_LIST_HEAD(&fs_info
->ordered_roots
);
2700 spin_lock_init(&fs_info
->ordered_root_lock
);
2702 btrfs_init_scrub(fs_info
);
2703 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2704 fs_info
->check_integrity_print_mask
= 0;
2706 btrfs_init_balance(fs_info
);
2707 btrfs_init_async_reclaim_work(&fs_info
->async_reclaim_work
);
2709 spin_lock_init(&fs_info
->block_group_cache_lock
);
2710 fs_info
->block_group_cache_tree
= RB_ROOT
;
2711 fs_info
->first_logical_byte
= (u64
)-1;
2713 extent_io_tree_init(fs_info
, &fs_info
->excluded_extents
,
2714 IO_TREE_FS_EXCLUDED_EXTENTS
, NULL
);
2715 set_bit(BTRFS_FS_BARRIER
, &fs_info
->flags
);
2717 mutex_init(&fs_info
->ordered_operations_mutex
);
2718 mutex_init(&fs_info
->tree_log_mutex
);
2719 mutex_init(&fs_info
->chunk_mutex
);
2720 mutex_init(&fs_info
->transaction_kthread_mutex
);
2721 mutex_init(&fs_info
->cleaner_mutex
);
2722 mutex_init(&fs_info
->ro_block_group_mutex
);
2723 init_rwsem(&fs_info
->commit_root_sem
);
2724 init_rwsem(&fs_info
->cleanup_work_sem
);
2725 init_rwsem(&fs_info
->subvol_sem
);
2726 sema_init(&fs_info
->uuid_tree_rescan_sem
, 1);
2728 btrfs_init_dev_replace_locks(fs_info
);
2729 btrfs_init_qgroup(fs_info
);
2730 btrfs_discard_init(fs_info
);
2732 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
2733 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
2735 init_waitqueue_head(&fs_info
->transaction_throttle
);
2736 init_waitqueue_head(&fs_info
->transaction_wait
);
2737 init_waitqueue_head(&fs_info
->transaction_blocked_wait
);
2738 init_waitqueue_head(&fs_info
->async_submit_wait
);
2739 init_waitqueue_head(&fs_info
->delayed_iputs_wait
);
2741 /* Usable values until the real ones are cached from the superblock */
2742 fs_info
->nodesize
= 4096;
2743 fs_info
->sectorsize
= 4096;
2744 fs_info
->stripesize
= 4096;
2746 spin_lock_init(&fs_info
->swapfile_pins_lock
);
2747 fs_info
->swapfile_pins
= RB_ROOT
;
2749 fs_info
->send_in_progress
= 0;
2752 static int init_mount_fs_info(struct btrfs_fs_info
*fs_info
, struct super_block
*sb
)
2757 sb
->s_blocksize
= BTRFS_BDEV_BLOCKSIZE
;
2758 sb
->s_blocksize_bits
= blksize_bits(BTRFS_BDEV_BLOCKSIZE
);
2760 ret
= percpu_counter_init(&fs_info
->dio_bytes
, 0, GFP_KERNEL
);
2764 ret
= percpu_counter_init(&fs_info
->dirty_metadata_bytes
, 0, GFP_KERNEL
);
2768 fs_info
->dirty_metadata_batch
= PAGE_SIZE
*
2769 (1 + ilog2(nr_cpu_ids
));
2771 ret
= percpu_counter_init(&fs_info
->delalloc_bytes
, 0, GFP_KERNEL
);
2775 ret
= percpu_counter_init(&fs_info
->dev_replace
.bio_counter
, 0,
2780 fs_info
->delayed_root
= kmalloc(sizeof(struct btrfs_delayed_root
),
2782 if (!fs_info
->delayed_root
)
2784 btrfs_init_delayed_root(fs_info
->delayed_root
);
2786 return btrfs_alloc_stripe_hash_table(fs_info
);
2789 static int btrfs_uuid_rescan_kthread(void *data
)
2791 struct btrfs_fs_info
*fs_info
= (struct btrfs_fs_info
*)data
;
2795 * 1st step is to iterate through the existing UUID tree and
2796 * to delete all entries that contain outdated data.
2797 * 2nd step is to add all missing entries to the UUID tree.
2799 ret
= btrfs_uuid_tree_iterate(fs_info
);
2802 btrfs_warn(fs_info
, "iterating uuid_tree failed %d",
2804 up(&fs_info
->uuid_tree_rescan_sem
);
2807 return btrfs_uuid_scan_kthread(data
);
2810 static int btrfs_check_uuid_tree(struct btrfs_fs_info
*fs_info
)
2812 struct task_struct
*task
;
2814 down(&fs_info
->uuid_tree_rescan_sem
);
2815 task
= kthread_run(btrfs_uuid_rescan_kthread
, fs_info
, "btrfs-uuid");
2817 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2818 btrfs_warn(fs_info
, "failed to start uuid_rescan task");
2819 up(&fs_info
->uuid_tree_rescan_sem
);
2820 return PTR_ERR(task
);
2826 int __cold
open_ctree(struct super_block
*sb
, struct btrfs_fs_devices
*fs_devices
,
2835 struct btrfs_key location
;
2836 struct btrfs_super_block
*disk_super
;
2837 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
2838 struct btrfs_root
*tree_root
;
2839 struct btrfs_root
*chunk_root
;
2842 int clear_free_space_tree
= 0;
2845 ret
= init_mount_fs_info(fs_info
, sb
);
2851 /* These need to be init'ed before we start creating inodes and such. */
2852 tree_root
= btrfs_alloc_root(fs_info
, BTRFS_ROOT_TREE_OBJECTID
,
2854 fs_info
->tree_root
= tree_root
;
2855 chunk_root
= btrfs_alloc_root(fs_info
, BTRFS_CHUNK_TREE_OBJECTID
,
2857 fs_info
->chunk_root
= chunk_root
;
2858 if (!tree_root
|| !chunk_root
) {
2863 fs_info
->btree_inode
= new_inode(sb
);
2864 if (!fs_info
->btree_inode
) {
2868 mapping_set_gfp_mask(fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
2869 btrfs_init_btree_inode(fs_info
);
2871 invalidate_bdev(fs_devices
->latest_bdev
);
2874 * Read super block and check the signature bytes only
2876 disk_super
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
2877 if (IS_ERR(disk_super
)) {
2878 err
= PTR_ERR(disk_super
);
2883 * Verify the type first, if that or the the checksum value are
2884 * corrupted, we'll find out
2886 csum_type
= btrfs_super_csum_type(disk_super
);
2887 if (!btrfs_supported_super_csum(csum_type
)) {
2888 btrfs_err(fs_info
, "unsupported checksum algorithm: %u",
2891 btrfs_release_disk_super(disk_super
);
2895 ret
= btrfs_init_csum_hash(fs_info
, csum_type
);
2898 btrfs_release_disk_super(disk_super
);
2903 * We want to check superblock checksum, the type is stored inside.
2904 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2906 if (btrfs_check_super_csum(fs_info
, (u8
*)disk_super
)) {
2907 btrfs_err(fs_info
, "superblock checksum mismatch");
2909 btrfs_release_disk_super(disk_super
);
2914 * super_copy is zeroed at allocation time and we never touch the
2915 * following bytes up to INFO_SIZE, the checksum is calculated from
2916 * the whole block of INFO_SIZE
2918 memcpy(fs_info
->super_copy
, disk_super
, sizeof(*fs_info
->super_copy
));
2919 btrfs_release_disk_super(disk_super
);
2921 disk_super
= fs_info
->super_copy
;
2923 ASSERT(!memcmp(fs_info
->fs_devices
->fsid
, fs_info
->super_copy
->fsid
,
2926 if (btrfs_fs_incompat(fs_info
, METADATA_UUID
)) {
2927 ASSERT(!memcmp(fs_info
->fs_devices
->metadata_uuid
,
2928 fs_info
->super_copy
->metadata_uuid
,
2932 features
= btrfs_super_flags(disk_super
);
2933 if (features
& BTRFS_SUPER_FLAG_CHANGING_FSID_V2
) {
2934 features
&= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2
;
2935 btrfs_set_super_flags(disk_super
, features
);
2937 "found metadata UUID change in progress flag, clearing");
2940 memcpy(fs_info
->super_for_commit
, fs_info
->super_copy
,
2941 sizeof(*fs_info
->super_for_commit
));
2943 ret
= btrfs_validate_mount_super(fs_info
);
2945 btrfs_err(fs_info
, "superblock contains fatal errors");
2950 if (!btrfs_super_root(disk_super
))
2953 /* check FS state, whether FS is broken. */
2954 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_ERROR
)
2955 set_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
);
2958 * In the long term, we'll store the compression type in the super
2959 * block, and it'll be used for per file compression control.
2961 fs_info
->compress_type
= BTRFS_COMPRESS_ZLIB
;
2963 ret
= btrfs_parse_options(fs_info
, options
, sb
->s_flags
);
2969 features
= btrfs_super_incompat_flags(disk_super
) &
2970 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
2973 "cannot mount because of unsupported optional features (%llx)",
2979 features
= btrfs_super_incompat_flags(disk_super
);
2980 features
|= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
;
2981 if (fs_info
->compress_type
== BTRFS_COMPRESS_LZO
)
2982 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO
;
2983 else if (fs_info
->compress_type
== BTRFS_COMPRESS_ZSTD
)
2984 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD
;
2986 if (features
& BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA
)
2987 btrfs_info(fs_info
, "has skinny extents");
2990 * flag our filesystem as having big metadata blocks if
2991 * they are bigger than the page size
2993 if (btrfs_super_nodesize(disk_super
) > PAGE_SIZE
) {
2994 if (!(features
& BTRFS_FEATURE_INCOMPAT_BIG_METADATA
))
2996 "flagging fs with big metadata feature");
2997 features
|= BTRFS_FEATURE_INCOMPAT_BIG_METADATA
;
3000 nodesize
= btrfs_super_nodesize(disk_super
);
3001 sectorsize
= btrfs_super_sectorsize(disk_super
);
3002 stripesize
= sectorsize
;
3003 fs_info
->dirty_metadata_batch
= nodesize
* (1 + ilog2(nr_cpu_ids
));
3004 fs_info
->delalloc_batch
= sectorsize
* 512 * (1 + ilog2(nr_cpu_ids
));
3006 /* Cache block sizes */
3007 fs_info
->nodesize
= nodesize
;
3008 fs_info
->sectorsize
= sectorsize
;
3009 fs_info
->stripesize
= stripesize
;
3012 * mixed block groups end up with duplicate but slightly offset
3013 * extent buffers for the same range. It leads to corruptions
3015 if ((features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
) &&
3016 (sectorsize
!= nodesize
)) {
3018 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3019 nodesize
, sectorsize
);
3024 * Needn't use the lock because there is no other task which will
3027 btrfs_set_super_incompat_flags(disk_super
, features
);
3029 features
= btrfs_super_compat_ro_flags(disk_super
) &
3030 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
3031 if (!sb_rdonly(sb
) && features
) {
3033 "cannot mount read-write because of unsupported optional features (%llx)",
3039 ret
= btrfs_init_workqueues(fs_info
, fs_devices
);
3042 goto fail_sb_buffer
;
3045 sb
->s_bdi
->congested_fn
= btrfs_congested_fn
;
3046 sb
->s_bdi
->congested_data
= fs_info
;
3047 sb
->s_bdi
->capabilities
|= BDI_CAP_CGROUP_WRITEBACK
;
3048 sb
->s_bdi
->ra_pages
= VM_READAHEAD_PAGES
;
3049 sb
->s_bdi
->ra_pages
*= btrfs_super_num_devices(disk_super
);
3050 sb
->s_bdi
->ra_pages
= max(sb
->s_bdi
->ra_pages
, SZ_4M
/ PAGE_SIZE
);
3052 sb
->s_blocksize
= sectorsize
;
3053 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
3054 memcpy(&sb
->s_uuid
, fs_info
->fs_devices
->fsid
, BTRFS_FSID_SIZE
);
3056 mutex_lock(&fs_info
->chunk_mutex
);
3057 ret
= btrfs_read_sys_array(fs_info
);
3058 mutex_unlock(&fs_info
->chunk_mutex
);
3060 btrfs_err(fs_info
, "failed to read the system array: %d", ret
);
3061 goto fail_sb_buffer
;
3064 generation
= btrfs_super_chunk_root_generation(disk_super
);
3065 level
= btrfs_super_chunk_root_level(disk_super
);
3067 chunk_root
->node
= read_tree_block(fs_info
,
3068 btrfs_super_chunk_root(disk_super
),
3069 generation
, level
, NULL
);
3070 if (IS_ERR(chunk_root
->node
) ||
3071 !extent_buffer_uptodate(chunk_root
->node
)) {
3072 btrfs_err(fs_info
, "failed to read chunk root");
3073 if (!IS_ERR(chunk_root
->node
))
3074 free_extent_buffer(chunk_root
->node
);
3075 chunk_root
->node
= NULL
;
3076 goto fail_tree_roots
;
3078 btrfs_set_root_node(&chunk_root
->root_item
, chunk_root
->node
);
3079 chunk_root
->commit_root
= btrfs_root_node(chunk_root
);
3081 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
3082 offsetof(struct btrfs_header
, chunk_tree_uuid
),
3085 ret
= btrfs_read_chunk_tree(fs_info
);
3087 btrfs_err(fs_info
, "failed to read chunk tree: %d", ret
);
3088 goto fail_tree_roots
;
3092 * Keep the devid that is marked to be the target device for the
3093 * device replace procedure
3095 btrfs_free_extra_devids(fs_devices
, 0);
3097 if (!fs_devices
->latest_bdev
) {
3098 btrfs_err(fs_info
, "failed to read devices");
3099 goto fail_tree_roots
;
3102 ret
= init_tree_roots(fs_info
);
3104 goto fail_tree_roots
;
3107 * If we have a uuid root and we're not being told to rescan we need to
3108 * check the generation here so we can set the
3109 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3110 * transaction during a balance or the log replay without updating the
3111 * uuid generation, and then if we crash we would rescan the uuid tree,
3112 * even though it was perfectly fine.
3114 if (fs_info
->uuid_root
&& !btrfs_test_opt(fs_info
, RESCAN_UUID_TREE
) &&
3115 fs_info
->generation
== btrfs_super_uuid_tree_generation(disk_super
))
3116 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN
, &fs_info
->flags
);
3118 ret
= btrfs_verify_dev_extents(fs_info
);
3121 "failed to verify dev extents against chunks: %d",
3123 goto fail_block_groups
;
3125 ret
= btrfs_recover_balance(fs_info
);
3127 btrfs_err(fs_info
, "failed to recover balance: %d", ret
);
3128 goto fail_block_groups
;
3131 ret
= btrfs_init_dev_stats(fs_info
);
3133 btrfs_err(fs_info
, "failed to init dev_stats: %d", ret
);
3134 goto fail_block_groups
;
3137 ret
= btrfs_init_dev_replace(fs_info
);
3139 btrfs_err(fs_info
, "failed to init dev_replace: %d", ret
);
3140 goto fail_block_groups
;
3143 btrfs_free_extra_devids(fs_devices
, 1);
3145 ret
= btrfs_sysfs_add_fsid(fs_devices
);
3147 btrfs_err(fs_info
, "failed to init sysfs fsid interface: %d",
3149 goto fail_block_groups
;
3152 ret
= btrfs_sysfs_add_mounted(fs_info
);
3154 btrfs_err(fs_info
, "failed to init sysfs interface: %d", ret
);
3155 goto fail_fsdev_sysfs
;
3158 ret
= btrfs_init_space_info(fs_info
);
3160 btrfs_err(fs_info
, "failed to initialize space info: %d", ret
);
3164 ret
= btrfs_read_block_groups(fs_info
);
3166 btrfs_err(fs_info
, "failed to read block groups: %d", ret
);
3170 if (!sb_rdonly(sb
) && !btrfs_check_rw_degradable(fs_info
, NULL
)) {
3172 "writable mount is not allowed due to too many missing devices");
3176 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
3178 if (IS_ERR(fs_info
->cleaner_kthread
))
3181 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
3183 "btrfs-transaction");
3184 if (IS_ERR(fs_info
->transaction_kthread
))
3187 if (!btrfs_test_opt(fs_info
, NOSSD
) &&
3188 !fs_info
->fs_devices
->rotating
) {
3189 btrfs_set_and_info(fs_info
, SSD
, "enabling ssd optimizations");
3193 * Mount does not set all options immediately, we can do it now and do
3194 * not have to wait for transaction commit
3196 btrfs_apply_pending_changes(fs_info
);
3198 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3199 if (btrfs_test_opt(fs_info
, CHECK_INTEGRITY
)) {
3200 ret
= btrfsic_mount(fs_info
, fs_devices
,
3201 btrfs_test_opt(fs_info
,
3202 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA
) ?
3204 fs_info
->check_integrity_print_mask
);
3207 "failed to initialize integrity check module: %d",
3211 ret
= btrfs_read_qgroup_config(fs_info
);
3213 goto fail_trans_kthread
;
3215 if (btrfs_build_ref_tree(fs_info
))
3216 btrfs_err(fs_info
, "couldn't build ref tree");
3218 /* do not make disk changes in broken FS or nologreplay is given */
3219 if (btrfs_super_log_root(disk_super
) != 0 &&
3220 !btrfs_test_opt(fs_info
, NOLOGREPLAY
)) {
3221 btrfs_info(fs_info
, "start tree-log replay");
3222 ret
= btrfs_replay_log(fs_info
, fs_devices
);
3229 ret
= btrfs_find_orphan_roots(fs_info
);
3233 if (!sb_rdonly(sb
)) {
3234 ret
= btrfs_cleanup_fs_roots(fs_info
);
3238 mutex_lock(&fs_info
->cleaner_mutex
);
3239 ret
= btrfs_recover_relocation(tree_root
);
3240 mutex_unlock(&fs_info
->cleaner_mutex
);
3242 btrfs_warn(fs_info
, "failed to recover relocation: %d",
3249 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
3250 location
.type
= BTRFS_ROOT_ITEM_KEY
;
3251 location
.offset
= 0;
3253 fs_info
->fs_root
= btrfs_get_fs_root(fs_info
, &location
, true);
3254 if (IS_ERR(fs_info
->fs_root
)) {
3255 err
= PTR_ERR(fs_info
->fs_root
);
3256 btrfs_warn(fs_info
, "failed to read fs tree: %d", err
);
3257 fs_info
->fs_root
= NULL
;
3264 if (btrfs_test_opt(fs_info
, CLEAR_CACHE
) &&
3265 btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
3266 clear_free_space_tree
= 1;
3267 } else if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
) &&
3268 !btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE_VALID
)) {
3269 btrfs_warn(fs_info
, "free space tree is invalid");
3270 clear_free_space_tree
= 1;
3273 if (clear_free_space_tree
) {
3274 btrfs_info(fs_info
, "clearing free space tree");
3275 ret
= btrfs_clear_free_space_tree(fs_info
);
3278 "failed to clear free space tree: %d", ret
);
3279 close_ctree(fs_info
);
3284 if (btrfs_test_opt(fs_info
, FREE_SPACE_TREE
) &&
3285 !btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
3286 btrfs_info(fs_info
, "creating free space tree");
3287 ret
= btrfs_create_free_space_tree(fs_info
);
3290 "failed to create free space tree: %d", ret
);
3291 close_ctree(fs_info
);
3296 down_read(&fs_info
->cleanup_work_sem
);
3297 if ((ret
= btrfs_orphan_cleanup(fs_info
->fs_root
)) ||
3298 (ret
= btrfs_orphan_cleanup(fs_info
->tree_root
))) {
3299 up_read(&fs_info
->cleanup_work_sem
);
3300 close_ctree(fs_info
);
3303 up_read(&fs_info
->cleanup_work_sem
);
3305 ret
= btrfs_resume_balance_async(fs_info
);
3307 btrfs_warn(fs_info
, "failed to resume balance: %d", ret
);
3308 close_ctree(fs_info
);
3312 ret
= btrfs_resume_dev_replace_async(fs_info
);
3314 btrfs_warn(fs_info
, "failed to resume device replace: %d", ret
);
3315 close_ctree(fs_info
);
3319 btrfs_qgroup_rescan_resume(fs_info
);
3320 btrfs_discard_resume(fs_info
);
3322 if (!fs_info
->uuid_root
) {
3323 btrfs_info(fs_info
, "creating UUID tree");
3324 ret
= btrfs_create_uuid_tree(fs_info
);
3327 "failed to create the UUID tree: %d", ret
);
3328 close_ctree(fs_info
);
3331 } else if (btrfs_test_opt(fs_info
, RESCAN_UUID_TREE
) ||
3332 fs_info
->generation
!=
3333 btrfs_super_uuid_tree_generation(disk_super
)) {
3334 btrfs_info(fs_info
, "checking UUID tree");
3335 ret
= btrfs_check_uuid_tree(fs_info
);
3338 "failed to check the UUID tree: %d", ret
);
3339 close_ctree(fs_info
);
3343 set_bit(BTRFS_FS_OPEN
, &fs_info
->flags
);
3346 * backuproot only affect mount behavior, and if open_ctree succeeded,
3347 * no need to keep the flag
3349 btrfs_clear_opt(fs_info
->mount_opt
, USEBACKUPROOT
);
3354 btrfs_free_qgroup_config(fs_info
);
3356 kthread_stop(fs_info
->transaction_kthread
);
3357 btrfs_cleanup_transaction(fs_info
);
3358 btrfs_free_fs_roots(fs_info
);
3360 kthread_stop(fs_info
->cleaner_kthread
);
3363 * make sure we're done with the btree inode before we stop our
3366 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
3369 btrfs_sysfs_remove_mounted(fs_info
);
3372 btrfs_sysfs_remove_fsid(fs_info
->fs_devices
);
3375 btrfs_put_block_group_cache(fs_info
);
3378 free_root_pointers(fs_info
, true);
3379 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
3382 btrfs_stop_all_workers(fs_info
);
3383 btrfs_free_block_groups(fs_info
);
3385 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
3387 iput(fs_info
->btree_inode
);
3389 btrfs_close_devices(fs_info
->fs_devices
);
3392 ALLOW_ERROR_INJECTION(open_ctree
, ERRNO
);
3394 static void btrfs_end_super_write(struct bio
*bio
)
3396 struct btrfs_device
*device
= bio
->bi_private
;
3397 struct bio_vec
*bvec
;
3398 struct bvec_iter_all iter_all
;
3401 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
3402 page
= bvec
->bv_page
;
3404 if (bio
->bi_status
) {
3405 btrfs_warn_rl_in_rcu(device
->fs_info
,
3406 "lost page write due to IO error on %s (%d)",
3407 rcu_str_deref(device
->name
),
3408 blk_status_to_errno(bio
->bi_status
));
3409 ClearPageUptodate(page
);
3411 btrfs_dev_stat_inc_and_print(device
,
3412 BTRFS_DEV_STAT_WRITE_ERRS
);
3414 SetPageUptodate(page
);
3424 struct btrfs_super_block
*btrfs_read_dev_one_super(struct block_device
*bdev
,
3427 struct btrfs_super_block
*super
;
3430 struct address_space
*mapping
= bdev
->bd_inode
->i_mapping
;
3432 bytenr
= btrfs_sb_offset(copy_num
);
3433 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= i_size_read(bdev
->bd_inode
))
3434 return ERR_PTR(-EINVAL
);
3436 page
= read_cache_page_gfp(mapping
, bytenr
>> PAGE_SHIFT
, GFP_NOFS
);
3438 return ERR_CAST(page
);
3440 super
= page_address(page
);
3441 if (btrfs_super_bytenr(super
) != bytenr
||
3442 btrfs_super_magic(super
) != BTRFS_MAGIC
) {
3443 btrfs_release_disk_super(super
);
3444 return ERR_PTR(-EINVAL
);
3451 struct btrfs_super_block
*btrfs_read_dev_super(struct block_device
*bdev
)
3453 struct btrfs_super_block
*super
, *latest
= NULL
;
3457 /* we would like to check all the supers, but that would make
3458 * a btrfs mount succeed after a mkfs from a different FS.
3459 * So, we need to add a special mount option to scan for
3460 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3462 for (i
= 0; i
< 1; i
++) {
3463 super
= btrfs_read_dev_one_super(bdev
, i
);
3467 if (!latest
|| btrfs_super_generation(super
) > transid
) {
3469 btrfs_release_disk_super(super
);
3472 transid
= btrfs_super_generation(super
);
3480 * Write superblock @sb to the @device. Do not wait for completion, all the
3481 * pages we use for writing are locked.
3483 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3484 * the expected device size at commit time. Note that max_mirrors must be
3485 * same for write and wait phases.
3487 * Return number of errors when page is not found or submission fails.
3489 static int write_dev_supers(struct btrfs_device
*device
,
3490 struct btrfs_super_block
*sb
, int max_mirrors
)
3492 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
3493 struct address_space
*mapping
= device
->bdev
->bd_inode
->i_mapping
;
3494 SHASH_DESC_ON_STACK(shash
, fs_info
->csum_shash
);
3499 if (max_mirrors
== 0)
3500 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
3502 shash
->tfm
= fs_info
->csum_shash
;
3504 for (i
= 0; i
< max_mirrors
; i
++) {
3507 struct btrfs_super_block
*disk_super
;
3509 bytenr
= btrfs_sb_offset(i
);
3510 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
3511 device
->commit_total_bytes
)
3514 btrfs_set_super_bytenr(sb
, bytenr
);
3516 crypto_shash_init(shash
);
3517 crypto_shash_update(shash
, (const char *)sb
+ BTRFS_CSUM_SIZE
,
3518 BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
);
3519 crypto_shash_final(shash
, sb
->csum
);
3521 page
= find_or_create_page(mapping
, bytenr
>> PAGE_SHIFT
,
3524 btrfs_err(device
->fs_info
,
3525 "couldn't get super block page for bytenr %llu",
3531 /* Bump the refcount for wait_dev_supers() */
3534 disk_super
= page_address(page
);
3535 memcpy(disk_super
, sb
, BTRFS_SUPER_INFO_SIZE
);
3538 * Directly use bios here instead of relying on the page cache
3539 * to do I/O, so we don't lose the ability to do integrity
3542 bio
= bio_alloc(GFP_NOFS
, 1);
3543 bio_set_dev(bio
, device
->bdev
);
3544 bio
->bi_iter
.bi_sector
= bytenr
>> SECTOR_SHIFT
;
3545 bio
->bi_private
= device
;
3546 bio
->bi_end_io
= btrfs_end_super_write
;
3547 __bio_add_page(bio
, page
, BTRFS_SUPER_INFO_SIZE
,
3548 offset_in_page(bytenr
));
3551 * We FUA only the first super block. The others we allow to
3552 * go down lazy and there's a short window where the on-disk
3553 * copies might still contain the older version.
3555 bio
->bi_opf
= REQ_OP_WRITE
| REQ_SYNC
| REQ_META
| REQ_PRIO
;
3556 if (i
== 0 && !btrfs_test_opt(device
->fs_info
, NOBARRIER
))
3557 bio
->bi_opf
|= REQ_FUA
;
3559 btrfsic_submit_bio(bio
);
3561 return errors
< i
? 0 : -1;
3565 * Wait for write completion of superblocks done by write_dev_supers,
3566 * @max_mirrors same for write and wait phases.
3568 * Return number of errors when page is not found or not marked up to
3571 static int wait_dev_supers(struct btrfs_device
*device
, int max_mirrors
)
3575 bool primary_failed
= false;
3578 if (max_mirrors
== 0)
3579 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
3581 for (i
= 0; i
< max_mirrors
; i
++) {
3584 bytenr
= btrfs_sb_offset(i
);
3585 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
3586 device
->commit_total_bytes
)
3589 page
= find_get_page(device
->bdev
->bd_inode
->i_mapping
,
3590 bytenr
>> PAGE_SHIFT
);
3594 primary_failed
= true;
3597 /* Page is submitted locked and unlocked once the IO completes */
3598 wait_on_page_locked(page
);
3599 if (PageError(page
)) {
3602 primary_failed
= true;
3605 /* Drop our reference */
3608 /* Drop the reference from the writing run */
3612 /* log error, force error return */
3613 if (primary_failed
) {
3614 btrfs_err(device
->fs_info
, "error writing primary super block to device %llu",
3619 return errors
< i
? 0 : -1;
3623 * endio for the write_dev_flush, this will wake anyone waiting
3624 * for the barrier when it is done
3626 static void btrfs_end_empty_barrier(struct bio
*bio
)
3628 complete(bio
->bi_private
);
3632 * Submit a flush request to the device if it supports it. Error handling is
3633 * done in the waiting counterpart.
3635 static void write_dev_flush(struct btrfs_device
*device
)
3637 struct request_queue
*q
= bdev_get_queue(device
->bdev
);
3638 struct bio
*bio
= device
->flush_bio
;
3640 if (!test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
))
3644 bio
->bi_end_io
= btrfs_end_empty_barrier
;
3645 bio_set_dev(bio
, device
->bdev
);
3646 bio
->bi_opf
= REQ_OP_WRITE
| REQ_SYNC
| REQ_PREFLUSH
;
3647 init_completion(&device
->flush_wait
);
3648 bio
->bi_private
= &device
->flush_wait
;
3650 btrfsic_submit_bio(bio
);
3651 set_bit(BTRFS_DEV_STATE_FLUSH_SENT
, &device
->dev_state
);
3655 * If the flush bio has been submitted by write_dev_flush, wait for it.
3657 static blk_status_t
wait_dev_flush(struct btrfs_device
*device
)
3659 struct bio
*bio
= device
->flush_bio
;
3661 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT
, &device
->dev_state
))
3664 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT
, &device
->dev_state
);
3665 wait_for_completion_io(&device
->flush_wait
);
3667 return bio
->bi_status
;
3670 static int check_barrier_error(struct btrfs_fs_info
*fs_info
)
3672 if (!btrfs_check_rw_degradable(fs_info
, NULL
))
3678 * send an empty flush down to each device in parallel,
3679 * then wait for them
3681 static int barrier_all_devices(struct btrfs_fs_info
*info
)
3683 struct list_head
*head
;
3684 struct btrfs_device
*dev
;
3685 int errors_wait
= 0;
3688 lockdep_assert_held(&info
->fs_devices
->device_list_mutex
);
3689 /* send down all the barriers */
3690 head
= &info
->fs_devices
->devices
;
3691 list_for_each_entry(dev
, head
, dev_list
) {
3692 if (test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
))
3696 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
3697 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
3700 write_dev_flush(dev
);
3701 dev
->last_flush_error
= BLK_STS_OK
;
3704 /* wait for all the barriers */
3705 list_for_each_entry(dev
, head
, dev_list
) {
3706 if (test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
))
3712 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
3713 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
3716 ret
= wait_dev_flush(dev
);
3718 dev
->last_flush_error
= ret
;
3719 btrfs_dev_stat_inc_and_print(dev
,
3720 BTRFS_DEV_STAT_FLUSH_ERRS
);
3727 * At some point we need the status of all disks
3728 * to arrive at the volume status. So error checking
3729 * is being pushed to a separate loop.
3731 return check_barrier_error(info
);
3736 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags
)
3739 int min_tolerated
= INT_MAX
;
3741 if ((flags
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) == 0 ||
3742 (flags
& BTRFS_AVAIL_ALLOC_BIT_SINGLE
))
3743 min_tolerated
= min_t(int, min_tolerated
,
3744 btrfs_raid_array
[BTRFS_RAID_SINGLE
].
3745 tolerated_failures
);
3747 for (raid_type
= 0; raid_type
< BTRFS_NR_RAID_TYPES
; raid_type
++) {
3748 if (raid_type
== BTRFS_RAID_SINGLE
)
3750 if (!(flags
& btrfs_raid_array
[raid_type
].bg_flag
))
3752 min_tolerated
= min_t(int, min_tolerated
,
3753 btrfs_raid_array
[raid_type
].
3754 tolerated_failures
);
3757 if (min_tolerated
== INT_MAX
) {
3758 pr_warn("BTRFS: unknown raid flag: %llu", flags
);
3762 return min_tolerated
;
3765 int write_all_supers(struct btrfs_fs_info
*fs_info
, int max_mirrors
)
3767 struct list_head
*head
;
3768 struct btrfs_device
*dev
;
3769 struct btrfs_super_block
*sb
;
3770 struct btrfs_dev_item
*dev_item
;
3774 int total_errors
= 0;
3777 do_barriers
= !btrfs_test_opt(fs_info
, NOBARRIER
);
3780 * max_mirrors == 0 indicates we're from commit_transaction,
3781 * not from fsync where the tree roots in fs_info have not
3782 * been consistent on disk.
3784 if (max_mirrors
== 0)
3785 backup_super_roots(fs_info
);
3787 sb
= fs_info
->super_for_commit
;
3788 dev_item
= &sb
->dev_item
;
3790 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
3791 head
= &fs_info
->fs_devices
->devices
;
3792 max_errors
= btrfs_super_num_devices(fs_info
->super_copy
) - 1;
3795 ret
= barrier_all_devices(fs_info
);
3798 &fs_info
->fs_devices
->device_list_mutex
);
3799 btrfs_handle_fs_error(fs_info
, ret
,
3800 "errors while submitting device barriers.");
3805 list_for_each_entry(dev
, head
, dev_list
) {
3810 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
3811 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
3814 btrfs_set_stack_device_generation(dev_item
, 0);
3815 btrfs_set_stack_device_type(dev_item
, dev
->type
);
3816 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
3817 btrfs_set_stack_device_total_bytes(dev_item
,
3818 dev
->commit_total_bytes
);
3819 btrfs_set_stack_device_bytes_used(dev_item
,
3820 dev
->commit_bytes_used
);
3821 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
3822 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
3823 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
3824 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
3825 memcpy(dev_item
->fsid
, dev
->fs_devices
->metadata_uuid
,
3828 flags
= btrfs_super_flags(sb
);
3829 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
3831 ret
= btrfs_validate_write_super(fs_info
, sb
);
3833 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3834 btrfs_handle_fs_error(fs_info
, -EUCLEAN
,
3835 "unexpected superblock corruption detected");
3839 ret
= write_dev_supers(dev
, sb
, max_mirrors
);
3843 if (total_errors
> max_errors
) {
3844 btrfs_err(fs_info
, "%d errors while writing supers",
3846 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3848 /* FUA is masked off if unsupported and can't be the reason */
3849 btrfs_handle_fs_error(fs_info
, -EIO
,
3850 "%d errors while writing supers",
3856 list_for_each_entry(dev
, head
, dev_list
) {
3859 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
3860 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
3863 ret
= wait_dev_supers(dev
, max_mirrors
);
3867 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3868 if (total_errors
> max_errors
) {
3869 btrfs_handle_fs_error(fs_info
, -EIO
,
3870 "%d errors while writing supers",
3877 /* Drop a fs root from the radix tree and free it. */
3878 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info
*fs_info
,
3879 struct btrfs_root
*root
)
3881 bool drop_ref
= false;
3883 spin_lock(&fs_info
->fs_roots_radix_lock
);
3884 radix_tree_delete(&fs_info
->fs_roots_radix
,
3885 (unsigned long)root
->root_key
.objectid
);
3886 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
))
3888 spin_unlock(&fs_info
->fs_roots_radix_lock
);
3890 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
3891 btrfs_free_log(NULL
, root
);
3892 if (root
->reloc_root
) {
3893 btrfs_put_root(root
->reloc_root
);
3894 root
->reloc_root
= NULL
;
3898 if (root
->free_ino_pinned
)
3899 __btrfs_remove_free_space_cache(root
->free_ino_pinned
);
3900 if (root
->free_ino_ctl
)
3901 __btrfs_remove_free_space_cache(root
->free_ino_ctl
);
3902 if (root
->ino_cache_inode
) {
3903 iput(root
->ino_cache_inode
);
3904 root
->ino_cache_inode
= NULL
;
3907 btrfs_put_root(root
);
3910 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
3912 u64 root_objectid
= 0;
3913 struct btrfs_root
*gang
[8];
3916 unsigned int ret
= 0;
3919 spin_lock(&fs_info
->fs_roots_radix_lock
);
3920 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
3921 (void **)gang
, root_objectid
,
3924 spin_unlock(&fs_info
->fs_roots_radix_lock
);
3927 root_objectid
= gang
[ret
- 1]->root_key
.objectid
+ 1;
3929 for (i
= 0; i
< ret
; i
++) {
3930 /* Avoid to grab roots in dead_roots */
3931 if (btrfs_root_refs(&gang
[i
]->root_item
) == 0) {
3935 /* grab all the search result for later use */
3936 gang
[i
] = btrfs_grab_root(gang
[i
]);
3938 spin_unlock(&fs_info
->fs_roots_radix_lock
);
3940 for (i
= 0; i
< ret
; i
++) {
3943 root_objectid
= gang
[i
]->root_key
.objectid
;
3944 err
= btrfs_orphan_cleanup(gang
[i
]);
3947 btrfs_put_root(gang
[i
]);
3952 /* release the uncleaned roots due to error */
3953 for (; i
< ret
; i
++) {
3955 btrfs_put_root(gang
[i
]);
3960 int btrfs_commit_super(struct btrfs_fs_info
*fs_info
)
3962 struct btrfs_root
*root
= fs_info
->tree_root
;
3963 struct btrfs_trans_handle
*trans
;
3965 mutex_lock(&fs_info
->cleaner_mutex
);
3966 btrfs_run_delayed_iputs(fs_info
);
3967 mutex_unlock(&fs_info
->cleaner_mutex
);
3968 wake_up_process(fs_info
->cleaner_kthread
);
3970 /* wait until ongoing cleanup work done */
3971 down_write(&fs_info
->cleanup_work_sem
);
3972 up_write(&fs_info
->cleanup_work_sem
);
3974 trans
= btrfs_join_transaction(root
);
3976 return PTR_ERR(trans
);
3977 return btrfs_commit_transaction(trans
);
3980 void __cold
close_ctree(struct btrfs_fs_info
*fs_info
)
3984 set_bit(BTRFS_FS_CLOSING_START
, &fs_info
->flags
);
3986 * We don't want the cleaner to start new transactions, add more delayed
3987 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3988 * because that frees the task_struct, and the transaction kthread might
3989 * still try to wake up the cleaner.
3991 kthread_park(fs_info
->cleaner_kthread
);
3993 /* wait for the qgroup rescan worker to stop */
3994 btrfs_qgroup_wait_for_completion(fs_info
, false);
3996 /* wait for the uuid_scan task to finish */
3997 down(&fs_info
->uuid_tree_rescan_sem
);
3998 /* avoid complains from lockdep et al., set sem back to initial state */
3999 up(&fs_info
->uuid_tree_rescan_sem
);
4001 /* pause restriper - we want to resume on mount */
4002 btrfs_pause_balance(fs_info
);
4004 btrfs_dev_replace_suspend_for_unmount(fs_info
);
4006 btrfs_scrub_cancel(fs_info
);
4008 /* wait for any defraggers to finish */
4009 wait_event(fs_info
->transaction_wait
,
4010 (atomic_read(&fs_info
->defrag_running
) == 0));
4012 /* clear out the rbtree of defraggable inodes */
4013 btrfs_cleanup_defrag_inodes(fs_info
);
4015 cancel_work_sync(&fs_info
->async_reclaim_work
);
4017 /* Cancel or finish ongoing discard work */
4018 btrfs_discard_cleanup(fs_info
);
4020 if (!sb_rdonly(fs_info
->sb
)) {
4022 * The cleaner kthread is stopped, so do one final pass over
4023 * unused block groups.
4025 btrfs_delete_unused_bgs(fs_info
);
4028 * There might be existing delayed inode workers still running
4029 * and holding an empty delayed inode item. We must wait for
4030 * them to complete first because they can create a transaction.
4031 * This happens when someone calls btrfs_balance_delayed_items()
4032 * and then a transaction commit runs the same delayed nodes
4033 * before any delayed worker has done something with the nodes.
4034 * We must wait for any worker here and not at transaction
4035 * commit time since that could cause a deadlock.
4036 * This is a very rare case.
4038 btrfs_flush_workqueue(fs_info
->delayed_workers
);
4040 ret
= btrfs_commit_super(fs_info
);
4042 btrfs_err(fs_info
, "commit super ret %d", ret
);
4045 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
) ||
4046 test_bit(BTRFS_FS_STATE_TRANS_ABORTED
, &fs_info
->fs_state
))
4047 btrfs_error_commit_super(fs_info
);
4049 kthread_stop(fs_info
->transaction_kthread
);
4050 kthread_stop(fs_info
->cleaner_kthread
);
4052 ASSERT(list_empty(&fs_info
->delayed_iputs
));
4053 set_bit(BTRFS_FS_CLOSING_DONE
, &fs_info
->flags
);
4055 btrfs_free_qgroup_config(fs_info
);
4056 ASSERT(list_empty(&fs_info
->delalloc_roots
));
4058 if (percpu_counter_sum(&fs_info
->delalloc_bytes
)) {
4059 btrfs_info(fs_info
, "at unmount delalloc count %lld",
4060 percpu_counter_sum(&fs_info
->delalloc_bytes
));
4063 if (percpu_counter_sum(&fs_info
->dio_bytes
))
4064 btrfs_info(fs_info
, "at unmount dio bytes count %lld",
4065 percpu_counter_sum(&fs_info
->dio_bytes
));
4067 btrfs_sysfs_remove_mounted(fs_info
);
4068 btrfs_sysfs_remove_fsid(fs_info
->fs_devices
);
4070 btrfs_put_block_group_cache(fs_info
);
4073 * we must make sure there is not any read request to
4074 * submit after we stopping all workers.
4076 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
4077 btrfs_stop_all_workers(fs_info
);
4079 clear_bit(BTRFS_FS_OPEN
, &fs_info
->flags
);
4080 free_root_pointers(fs_info
, true);
4081 btrfs_free_fs_roots(fs_info
);
4084 * We must free the block groups after dropping the fs_roots as we could
4085 * have had an IO error and have left over tree log blocks that aren't
4086 * cleaned up until the fs roots are freed. This makes the block group
4087 * accounting appear to be wrong because there's pending reserved bytes,
4088 * so make sure we do the block group cleanup afterwards.
4090 btrfs_free_block_groups(fs_info
);
4092 iput(fs_info
->btree_inode
);
4094 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4095 if (btrfs_test_opt(fs_info
, CHECK_INTEGRITY
))
4096 btrfsic_unmount(fs_info
->fs_devices
);
4099 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
4100 btrfs_close_devices(fs_info
->fs_devices
);
4103 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
,
4107 struct inode
*btree_inode
= buf
->pages
[0]->mapping
->host
;
4109 ret
= extent_buffer_uptodate(buf
);
4113 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
4114 parent_transid
, atomic
);
4120 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
4122 struct btrfs_fs_info
*fs_info
;
4123 struct btrfs_root
*root
;
4124 u64 transid
= btrfs_header_generation(buf
);
4127 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4129 * This is a fast path so only do this check if we have sanity tests
4130 * enabled. Normal people shouldn't be using unmapped buffers as dirty
4131 * outside of the sanity tests.
4133 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED
, &buf
->bflags
)))
4136 root
= BTRFS_I(buf
->pages
[0]->mapping
->host
)->root
;
4137 fs_info
= root
->fs_info
;
4138 btrfs_assert_tree_locked(buf
);
4139 if (transid
!= fs_info
->generation
)
4140 WARN(1, KERN_CRIT
"btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4141 buf
->start
, transid
, fs_info
->generation
);
4142 was_dirty
= set_extent_buffer_dirty(buf
);
4144 percpu_counter_add_batch(&fs_info
->dirty_metadata_bytes
,
4146 fs_info
->dirty_metadata_batch
);
4147 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4149 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4150 * but item data not updated.
4151 * So here we should only check item pointers, not item data.
4153 if (btrfs_header_level(buf
) == 0 &&
4154 btrfs_check_leaf_relaxed(buf
)) {
4155 btrfs_print_leaf(buf
);
4161 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info
*fs_info
,
4165 * looks as though older kernels can get into trouble with
4166 * this code, they end up stuck in balance_dirty_pages forever
4170 if (current
->flags
& PF_MEMALLOC
)
4174 btrfs_balance_delayed_items(fs_info
);
4176 ret
= __percpu_counter_compare(&fs_info
->dirty_metadata_bytes
,
4177 BTRFS_DIRTY_METADATA_THRESH
,
4178 fs_info
->dirty_metadata_batch
);
4180 balance_dirty_pages_ratelimited(fs_info
->btree_inode
->i_mapping
);
4184 void btrfs_btree_balance_dirty(struct btrfs_fs_info
*fs_info
)
4186 __btrfs_btree_balance_dirty(fs_info
, 1);
4189 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info
*fs_info
)
4191 __btrfs_btree_balance_dirty(fs_info
, 0);
4194 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
, int level
,
4195 struct btrfs_key
*first_key
)
4197 return btree_read_extent_buffer_pages(buf
, parent_transid
,
4201 static void btrfs_error_commit_super(struct btrfs_fs_info
*fs_info
)
4203 /* cleanup FS via transaction */
4204 btrfs_cleanup_transaction(fs_info
);
4206 mutex_lock(&fs_info
->cleaner_mutex
);
4207 btrfs_run_delayed_iputs(fs_info
);
4208 mutex_unlock(&fs_info
->cleaner_mutex
);
4210 down_write(&fs_info
->cleanup_work_sem
);
4211 up_write(&fs_info
->cleanup_work_sem
);
4214 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
)
4216 struct btrfs_ordered_extent
*ordered
;
4218 spin_lock(&root
->ordered_extent_lock
);
4220 * This will just short circuit the ordered completion stuff which will
4221 * make sure the ordered extent gets properly cleaned up.
4223 list_for_each_entry(ordered
, &root
->ordered_extents
,
4225 set_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
);
4226 spin_unlock(&root
->ordered_extent_lock
);
4229 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info
*fs_info
)
4231 struct btrfs_root
*root
;
4232 struct list_head splice
;
4234 INIT_LIST_HEAD(&splice
);
4236 spin_lock(&fs_info
->ordered_root_lock
);
4237 list_splice_init(&fs_info
->ordered_roots
, &splice
);
4238 while (!list_empty(&splice
)) {
4239 root
= list_first_entry(&splice
, struct btrfs_root
,
4241 list_move_tail(&root
->ordered_root
,
4242 &fs_info
->ordered_roots
);
4244 spin_unlock(&fs_info
->ordered_root_lock
);
4245 btrfs_destroy_ordered_extents(root
);
4248 spin_lock(&fs_info
->ordered_root_lock
);
4250 spin_unlock(&fs_info
->ordered_root_lock
);
4253 * We need this here because if we've been flipped read-only we won't
4254 * get sync() from the umount, so we need to make sure any ordered
4255 * extents that haven't had their dirty pages IO start writeout yet
4256 * actually get run and error out properly.
4258 btrfs_wait_ordered_roots(fs_info
, U64_MAX
, 0, (u64
)-1);
4261 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
4262 struct btrfs_fs_info
*fs_info
)
4264 struct rb_node
*node
;
4265 struct btrfs_delayed_ref_root
*delayed_refs
;
4266 struct btrfs_delayed_ref_node
*ref
;
4269 delayed_refs
= &trans
->delayed_refs
;
4271 spin_lock(&delayed_refs
->lock
);
4272 if (atomic_read(&delayed_refs
->num_entries
) == 0) {
4273 spin_unlock(&delayed_refs
->lock
);
4274 btrfs_debug(fs_info
, "delayed_refs has NO entry");
4278 while ((node
= rb_first_cached(&delayed_refs
->href_root
)) != NULL
) {
4279 struct btrfs_delayed_ref_head
*head
;
4281 bool pin_bytes
= false;
4283 head
= rb_entry(node
, struct btrfs_delayed_ref_head
,
4285 if (btrfs_delayed_ref_lock(delayed_refs
, head
))
4288 spin_lock(&head
->lock
);
4289 while ((n
= rb_first_cached(&head
->ref_tree
)) != NULL
) {
4290 ref
= rb_entry(n
, struct btrfs_delayed_ref_node
,
4293 rb_erase_cached(&ref
->ref_node
, &head
->ref_tree
);
4294 RB_CLEAR_NODE(&ref
->ref_node
);
4295 if (!list_empty(&ref
->add_list
))
4296 list_del(&ref
->add_list
);
4297 atomic_dec(&delayed_refs
->num_entries
);
4298 btrfs_put_delayed_ref(ref
);
4300 if (head
->must_insert_reserved
)
4302 btrfs_free_delayed_extent_op(head
->extent_op
);
4303 btrfs_delete_ref_head(delayed_refs
, head
);
4304 spin_unlock(&head
->lock
);
4305 spin_unlock(&delayed_refs
->lock
);
4306 mutex_unlock(&head
->mutex
);
4309 struct btrfs_block_group
*cache
;
4311 cache
= btrfs_lookup_block_group(fs_info
, head
->bytenr
);
4314 spin_lock(&cache
->space_info
->lock
);
4315 spin_lock(&cache
->lock
);
4316 cache
->pinned
+= head
->num_bytes
;
4317 btrfs_space_info_update_bytes_pinned(fs_info
,
4318 cache
->space_info
, head
->num_bytes
);
4319 cache
->reserved
-= head
->num_bytes
;
4320 cache
->space_info
->bytes_reserved
-= head
->num_bytes
;
4321 spin_unlock(&cache
->lock
);
4322 spin_unlock(&cache
->space_info
->lock
);
4323 percpu_counter_add_batch(
4324 &cache
->space_info
->total_bytes_pinned
,
4325 head
->num_bytes
, BTRFS_TOTAL_BYTES_PINNED_BATCH
);
4327 btrfs_put_block_group(cache
);
4329 btrfs_error_unpin_extent_range(fs_info
, head
->bytenr
,
4330 head
->bytenr
+ head
->num_bytes
- 1);
4332 btrfs_cleanup_ref_head_accounting(fs_info
, delayed_refs
, head
);
4333 btrfs_put_delayed_ref_head(head
);
4335 spin_lock(&delayed_refs
->lock
);
4337 btrfs_qgroup_destroy_extent_records(trans
);
4339 spin_unlock(&delayed_refs
->lock
);
4344 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
)
4346 struct btrfs_inode
*btrfs_inode
;
4347 struct list_head splice
;
4349 INIT_LIST_HEAD(&splice
);
4351 spin_lock(&root
->delalloc_lock
);
4352 list_splice_init(&root
->delalloc_inodes
, &splice
);
4354 while (!list_empty(&splice
)) {
4355 struct inode
*inode
= NULL
;
4356 btrfs_inode
= list_first_entry(&splice
, struct btrfs_inode
,
4358 __btrfs_del_delalloc_inode(root
, btrfs_inode
);
4359 spin_unlock(&root
->delalloc_lock
);
4362 * Make sure we get a live inode and that it'll not disappear
4365 inode
= igrab(&btrfs_inode
->vfs_inode
);
4367 invalidate_inode_pages2(inode
->i_mapping
);
4370 spin_lock(&root
->delalloc_lock
);
4372 spin_unlock(&root
->delalloc_lock
);
4375 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info
*fs_info
)
4377 struct btrfs_root
*root
;
4378 struct list_head splice
;
4380 INIT_LIST_HEAD(&splice
);
4382 spin_lock(&fs_info
->delalloc_root_lock
);
4383 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
4384 while (!list_empty(&splice
)) {
4385 root
= list_first_entry(&splice
, struct btrfs_root
,
4387 root
= btrfs_grab_root(root
);
4389 spin_unlock(&fs_info
->delalloc_root_lock
);
4391 btrfs_destroy_delalloc_inodes(root
);
4392 btrfs_put_root(root
);
4394 spin_lock(&fs_info
->delalloc_root_lock
);
4396 spin_unlock(&fs_info
->delalloc_root_lock
);
4399 static int btrfs_destroy_marked_extents(struct btrfs_fs_info
*fs_info
,
4400 struct extent_io_tree
*dirty_pages
,
4404 struct extent_buffer
*eb
;
4409 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
4414 clear_extent_bits(dirty_pages
, start
, end
, mark
);
4415 while (start
<= end
) {
4416 eb
= find_extent_buffer(fs_info
, start
);
4417 start
+= fs_info
->nodesize
;
4420 wait_on_extent_buffer_writeback(eb
);
4422 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
,
4424 clear_extent_buffer_dirty(eb
);
4425 free_extent_buffer_stale(eb
);
4432 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info
*fs_info
,
4433 struct extent_io_tree
*unpin
)
4440 struct extent_state
*cached_state
= NULL
;
4443 * The btrfs_finish_extent_commit() may get the same range as
4444 * ours between find_first_extent_bit and clear_extent_dirty.
4445 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4446 * the same extent range.
4448 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
4449 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
4450 EXTENT_DIRTY
, &cached_state
);
4452 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
4456 clear_extent_dirty(unpin
, start
, end
, &cached_state
);
4457 free_extent_state(cached_state
);
4458 btrfs_error_unpin_extent_range(fs_info
, start
, end
);
4459 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
4466 static void btrfs_cleanup_bg_io(struct btrfs_block_group
*cache
)
4468 struct inode
*inode
;
4470 inode
= cache
->io_ctl
.inode
;
4472 invalidate_inode_pages2(inode
->i_mapping
);
4473 BTRFS_I(inode
)->generation
= 0;
4474 cache
->io_ctl
.inode
= NULL
;
4477 btrfs_put_block_group(cache
);
4480 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction
*cur_trans
,
4481 struct btrfs_fs_info
*fs_info
)
4483 struct btrfs_block_group
*cache
;
4485 spin_lock(&cur_trans
->dirty_bgs_lock
);
4486 while (!list_empty(&cur_trans
->dirty_bgs
)) {
4487 cache
= list_first_entry(&cur_trans
->dirty_bgs
,
4488 struct btrfs_block_group
,
4491 if (!list_empty(&cache
->io_list
)) {
4492 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4493 list_del_init(&cache
->io_list
);
4494 btrfs_cleanup_bg_io(cache
);
4495 spin_lock(&cur_trans
->dirty_bgs_lock
);
4498 list_del_init(&cache
->dirty_list
);
4499 spin_lock(&cache
->lock
);
4500 cache
->disk_cache_state
= BTRFS_DC_ERROR
;
4501 spin_unlock(&cache
->lock
);
4503 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4504 btrfs_put_block_group(cache
);
4505 btrfs_delayed_refs_rsv_release(fs_info
, 1);
4506 spin_lock(&cur_trans
->dirty_bgs_lock
);
4508 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4511 * Refer to the definition of io_bgs member for details why it's safe
4512 * to use it without any locking
4514 while (!list_empty(&cur_trans
->io_bgs
)) {
4515 cache
= list_first_entry(&cur_trans
->io_bgs
,
4516 struct btrfs_block_group
,
4519 list_del_init(&cache
->io_list
);
4520 spin_lock(&cache
->lock
);
4521 cache
->disk_cache_state
= BTRFS_DC_ERROR
;
4522 spin_unlock(&cache
->lock
);
4523 btrfs_cleanup_bg_io(cache
);
4527 void btrfs_cleanup_one_transaction(struct btrfs_transaction
*cur_trans
,
4528 struct btrfs_fs_info
*fs_info
)
4530 struct btrfs_device
*dev
, *tmp
;
4532 btrfs_cleanup_dirty_bgs(cur_trans
, fs_info
);
4533 ASSERT(list_empty(&cur_trans
->dirty_bgs
));
4534 ASSERT(list_empty(&cur_trans
->io_bgs
));
4536 list_for_each_entry_safe(dev
, tmp
, &cur_trans
->dev_update_list
,
4538 list_del_init(&dev
->post_commit_list
);
4541 btrfs_destroy_delayed_refs(cur_trans
, fs_info
);
4543 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
4544 wake_up(&fs_info
->transaction_blocked_wait
);
4546 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
4547 wake_up(&fs_info
->transaction_wait
);
4549 btrfs_destroy_delayed_inodes(fs_info
);
4551 btrfs_destroy_marked_extents(fs_info
, &cur_trans
->dirty_pages
,
4553 btrfs_destroy_pinned_extent(fs_info
, &cur_trans
->pinned_extents
);
4555 cur_trans
->state
=TRANS_STATE_COMPLETED
;
4556 wake_up(&cur_trans
->commit_wait
);
4559 static int btrfs_cleanup_transaction(struct btrfs_fs_info
*fs_info
)
4561 struct btrfs_transaction
*t
;
4563 mutex_lock(&fs_info
->transaction_kthread_mutex
);
4565 spin_lock(&fs_info
->trans_lock
);
4566 while (!list_empty(&fs_info
->trans_list
)) {
4567 t
= list_first_entry(&fs_info
->trans_list
,
4568 struct btrfs_transaction
, list
);
4569 if (t
->state
>= TRANS_STATE_COMMIT_START
) {
4570 refcount_inc(&t
->use_count
);
4571 spin_unlock(&fs_info
->trans_lock
);
4572 btrfs_wait_for_commit(fs_info
, t
->transid
);
4573 btrfs_put_transaction(t
);
4574 spin_lock(&fs_info
->trans_lock
);
4577 if (t
== fs_info
->running_transaction
) {
4578 t
->state
= TRANS_STATE_COMMIT_DOING
;
4579 spin_unlock(&fs_info
->trans_lock
);
4581 * We wait for 0 num_writers since we don't hold a trans
4582 * handle open currently for this transaction.
4584 wait_event(t
->writer_wait
,
4585 atomic_read(&t
->num_writers
) == 0);
4587 spin_unlock(&fs_info
->trans_lock
);
4589 btrfs_cleanup_one_transaction(t
, fs_info
);
4591 spin_lock(&fs_info
->trans_lock
);
4592 if (t
== fs_info
->running_transaction
)
4593 fs_info
->running_transaction
= NULL
;
4594 list_del_init(&t
->list
);
4595 spin_unlock(&fs_info
->trans_lock
);
4597 btrfs_put_transaction(t
);
4598 trace_btrfs_transaction_commit(fs_info
->tree_root
);
4599 spin_lock(&fs_info
->trans_lock
);
4601 spin_unlock(&fs_info
->trans_lock
);
4602 btrfs_destroy_all_ordered_extents(fs_info
);
4603 btrfs_destroy_delayed_inodes(fs_info
);
4604 btrfs_assert_delayed_root_empty(fs_info
);
4605 btrfs_destroy_all_delalloc_inodes(fs_info
);
4606 mutex_unlock(&fs_info
->transaction_kthread_mutex
);
4611 static const struct extent_io_ops btree_extent_io_ops
= {
4612 /* mandatory callbacks */
4613 .submit_bio_hook
= btree_submit_bio_hook
,
4614 .readpage_end_io_hook
= btree_readpage_end_io_hook
,