1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2008 Red Hat. All rights reserved.
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include <linux/sched/mm.h>
15 #include "free-space-cache.h"
16 #include "transaction.h"
18 #include "extent_io.h"
19 #include "inode-map.h"
21 #include "space-info.h"
22 #include "delalloc-space.h"
23 #include "block-group.h"
26 #define BITS_PER_BITMAP (PAGE_SIZE * 8UL)
27 #define MAX_CACHE_BYTES_PER_GIG SZ_64K
28 #define FORCE_EXTENT_THRESHOLD SZ_1M
30 struct btrfs_trim_range
{
33 struct list_head list
;
36 static int count_bitmap_extents(struct btrfs_free_space_ctl
*ctl
,
37 struct btrfs_free_space
*bitmap_info
);
38 static int link_free_space(struct btrfs_free_space_ctl
*ctl
,
39 struct btrfs_free_space
*info
);
40 static void unlink_free_space(struct btrfs_free_space_ctl
*ctl
,
41 struct btrfs_free_space
*info
);
42 static int btrfs_wait_cache_io_root(struct btrfs_root
*root
,
43 struct btrfs_trans_handle
*trans
,
44 struct btrfs_io_ctl
*io_ctl
,
45 struct btrfs_path
*path
);
47 static struct inode
*__lookup_free_space_inode(struct btrfs_root
*root
,
48 struct btrfs_path
*path
,
51 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
53 struct btrfs_key location
;
54 struct btrfs_disk_key disk_key
;
55 struct btrfs_free_space_header
*header
;
56 struct extent_buffer
*leaf
;
57 struct inode
*inode
= NULL
;
61 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
65 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
69 btrfs_release_path(path
);
70 return ERR_PTR(-ENOENT
);
73 leaf
= path
->nodes
[0];
74 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
75 struct btrfs_free_space_header
);
76 btrfs_free_space_key(leaf
, header
, &disk_key
);
77 btrfs_disk_key_to_cpu(&location
, &disk_key
);
78 btrfs_release_path(path
);
81 * We are often under a trans handle at this point, so we need to make
82 * sure NOFS is set to keep us from deadlocking.
84 nofs_flag
= memalloc_nofs_save();
85 inode
= btrfs_iget_path(fs_info
->sb
, &location
, root
, path
);
86 btrfs_release_path(path
);
87 memalloc_nofs_restore(nofs_flag
);
91 mapping_set_gfp_mask(inode
->i_mapping
,
92 mapping_gfp_constraint(inode
->i_mapping
,
93 ~(__GFP_FS
| __GFP_HIGHMEM
)));
98 struct inode
*lookup_free_space_inode(struct btrfs_block_group
*block_group
,
99 struct btrfs_path
*path
)
101 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
102 struct inode
*inode
= NULL
;
103 u32 flags
= BTRFS_INODE_NODATASUM
| BTRFS_INODE_NODATACOW
;
105 spin_lock(&block_group
->lock
);
106 if (block_group
->inode
)
107 inode
= igrab(block_group
->inode
);
108 spin_unlock(&block_group
->lock
);
112 inode
= __lookup_free_space_inode(fs_info
->tree_root
, path
,
117 spin_lock(&block_group
->lock
);
118 if (!((BTRFS_I(inode
)->flags
& flags
) == flags
)) {
119 btrfs_info(fs_info
, "Old style space inode found, converting.");
120 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
|
121 BTRFS_INODE_NODATACOW
;
122 block_group
->disk_cache_state
= BTRFS_DC_CLEAR
;
125 if (!block_group
->iref
) {
126 block_group
->inode
= igrab(inode
);
127 block_group
->iref
= 1;
129 spin_unlock(&block_group
->lock
);
134 static int __create_free_space_inode(struct btrfs_root
*root
,
135 struct btrfs_trans_handle
*trans
,
136 struct btrfs_path
*path
,
139 struct btrfs_key key
;
140 struct btrfs_disk_key disk_key
;
141 struct btrfs_free_space_header
*header
;
142 struct btrfs_inode_item
*inode_item
;
143 struct extent_buffer
*leaf
;
144 u64 flags
= BTRFS_INODE_NOCOMPRESS
| BTRFS_INODE_PREALLOC
;
147 ret
= btrfs_insert_empty_inode(trans
, root
, path
, ino
);
151 /* We inline crc's for the free disk space cache */
152 if (ino
!= BTRFS_FREE_INO_OBJECTID
)
153 flags
|= BTRFS_INODE_NODATASUM
| BTRFS_INODE_NODATACOW
;
155 leaf
= path
->nodes
[0];
156 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
157 struct btrfs_inode_item
);
158 btrfs_item_key(leaf
, &disk_key
, path
->slots
[0]);
159 memzero_extent_buffer(leaf
, (unsigned long)inode_item
,
160 sizeof(*inode_item
));
161 btrfs_set_inode_generation(leaf
, inode_item
, trans
->transid
);
162 btrfs_set_inode_size(leaf
, inode_item
, 0);
163 btrfs_set_inode_nbytes(leaf
, inode_item
, 0);
164 btrfs_set_inode_uid(leaf
, inode_item
, 0);
165 btrfs_set_inode_gid(leaf
, inode_item
, 0);
166 btrfs_set_inode_mode(leaf
, inode_item
, S_IFREG
| 0600);
167 btrfs_set_inode_flags(leaf
, inode_item
, flags
);
168 btrfs_set_inode_nlink(leaf
, inode_item
, 1);
169 btrfs_set_inode_transid(leaf
, inode_item
, trans
->transid
);
170 btrfs_set_inode_block_group(leaf
, inode_item
, offset
);
171 btrfs_mark_buffer_dirty(leaf
);
172 btrfs_release_path(path
);
174 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
177 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
178 sizeof(struct btrfs_free_space_header
));
180 btrfs_release_path(path
);
184 leaf
= path
->nodes
[0];
185 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
186 struct btrfs_free_space_header
);
187 memzero_extent_buffer(leaf
, (unsigned long)header
, sizeof(*header
));
188 btrfs_set_free_space_key(leaf
, header
, &disk_key
);
189 btrfs_mark_buffer_dirty(leaf
);
190 btrfs_release_path(path
);
195 int create_free_space_inode(struct btrfs_trans_handle
*trans
,
196 struct btrfs_block_group
*block_group
,
197 struct btrfs_path
*path
)
202 ret
= btrfs_find_free_objectid(trans
->fs_info
->tree_root
, &ino
);
206 return __create_free_space_inode(trans
->fs_info
->tree_root
, trans
, path
,
207 ino
, block_group
->start
);
210 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info
*fs_info
,
211 struct btrfs_block_rsv
*rsv
)
216 /* 1 for slack space, 1 for updating the inode */
217 needed_bytes
= btrfs_calc_insert_metadata_size(fs_info
, 1) +
218 btrfs_calc_metadata_size(fs_info
, 1);
220 spin_lock(&rsv
->lock
);
221 if (rsv
->reserved
< needed_bytes
)
225 spin_unlock(&rsv
->lock
);
229 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle
*trans
,
230 struct btrfs_block_group
*block_group
,
233 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
238 struct btrfs_path
*path
= btrfs_alloc_path();
245 mutex_lock(&trans
->transaction
->cache_write_mutex
);
246 if (!list_empty(&block_group
->io_list
)) {
247 list_del_init(&block_group
->io_list
);
249 btrfs_wait_cache_io(trans
, block_group
, path
);
250 btrfs_put_block_group(block_group
);
254 * now that we've truncated the cache away, its no longer
257 spin_lock(&block_group
->lock
);
258 block_group
->disk_cache_state
= BTRFS_DC_CLEAR
;
259 spin_unlock(&block_group
->lock
);
260 btrfs_free_path(path
);
263 btrfs_i_size_write(BTRFS_I(inode
), 0);
264 truncate_pagecache(inode
, 0);
267 * We skip the throttling logic for free space cache inodes, so we don't
268 * need to check for -EAGAIN.
270 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
271 0, BTRFS_EXTENT_DATA_KEY
);
275 ret
= btrfs_update_inode(trans
, root
, inode
);
279 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
281 btrfs_abort_transaction(trans
, ret
);
286 static void readahead_cache(struct inode
*inode
)
288 struct file_ra_state
*ra
;
289 unsigned long last_index
;
291 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
295 file_ra_state_init(ra
, inode
->i_mapping
);
296 last_index
= (i_size_read(inode
) - 1) >> PAGE_SHIFT
;
298 page_cache_sync_readahead(inode
->i_mapping
, ra
, NULL
, 0, last_index
);
303 static int io_ctl_init(struct btrfs_io_ctl
*io_ctl
, struct inode
*inode
,
309 num_pages
= DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
);
311 if (btrfs_ino(BTRFS_I(inode
)) != BTRFS_FREE_INO_OBJECTID
)
314 /* Make sure we can fit our crcs and generation into the first page */
315 if (write
&& check_crcs
&&
316 (num_pages
* sizeof(u32
) + sizeof(u64
)) > PAGE_SIZE
)
319 memset(io_ctl
, 0, sizeof(struct btrfs_io_ctl
));
321 io_ctl
->pages
= kcalloc(num_pages
, sizeof(struct page
*), GFP_NOFS
);
325 io_ctl
->num_pages
= num_pages
;
326 io_ctl
->fs_info
= btrfs_sb(inode
->i_sb
);
327 io_ctl
->check_crcs
= check_crcs
;
328 io_ctl
->inode
= inode
;
332 ALLOW_ERROR_INJECTION(io_ctl_init
, ERRNO
);
334 static void io_ctl_free(struct btrfs_io_ctl
*io_ctl
)
336 kfree(io_ctl
->pages
);
337 io_ctl
->pages
= NULL
;
340 static void io_ctl_unmap_page(struct btrfs_io_ctl
*io_ctl
)
348 static void io_ctl_map_page(struct btrfs_io_ctl
*io_ctl
, int clear
)
350 ASSERT(io_ctl
->index
< io_ctl
->num_pages
);
351 io_ctl
->page
= io_ctl
->pages
[io_ctl
->index
++];
352 io_ctl
->cur
= page_address(io_ctl
->page
);
353 io_ctl
->orig
= io_ctl
->cur
;
354 io_ctl
->size
= PAGE_SIZE
;
356 clear_page(io_ctl
->cur
);
359 static void io_ctl_drop_pages(struct btrfs_io_ctl
*io_ctl
)
363 io_ctl_unmap_page(io_ctl
);
365 for (i
= 0; i
< io_ctl
->num_pages
; i
++) {
366 if (io_ctl
->pages
[i
]) {
367 ClearPageChecked(io_ctl
->pages
[i
]);
368 unlock_page(io_ctl
->pages
[i
]);
369 put_page(io_ctl
->pages
[i
]);
374 static int io_ctl_prepare_pages(struct btrfs_io_ctl
*io_ctl
, bool uptodate
)
377 struct inode
*inode
= io_ctl
->inode
;
378 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
381 for (i
= 0; i
< io_ctl
->num_pages
; i
++) {
382 page
= find_or_create_page(inode
->i_mapping
, i
, mask
);
384 io_ctl_drop_pages(io_ctl
);
387 io_ctl
->pages
[i
] = page
;
388 if (uptodate
&& !PageUptodate(page
)) {
389 btrfs_readpage(NULL
, page
);
391 if (page
->mapping
!= inode
->i_mapping
) {
392 btrfs_err(BTRFS_I(inode
)->root
->fs_info
,
393 "free space cache page truncated");
394 io_ctl_drop_pages(io_ctl
);
397 if (!PageUptodate(page
)) {
398 btrfs_err(BTRFS_I(inode
)->root
->fs_info
,
399 "error reading free space cache");
400 io_ctl_drop_pages(io_ctl
);
406 for (i
= 0; i
< io_ctl
->num_pages
; i
++) {
407 clear_page_dirty_for_io(io_ctl
->pages
[i
]);
408 set_page_extent_mapped(io_ctl
->pages
[i
]);
414 static void io_ctl_set_generation(struct btrfs_io_ctl
*io_ctl
, u64 generation
)
418 io_ctl_map_page(io_ctl
, 1);
421 * Skip the csum areas. If we don't check crcs then we just have a
422 * 64bit chunk at the front of the first page.
424 if (io_ctl
->check_crcs
) {
425 io_ctl
->cur
+= (sizeof(u32
) * io_ctl
->num_pages
);
426 io_ctl
->size
-= sizeof(u64
) + (sizeof(u32
) * io_ctl
->num_pages
);
428 io_ctl
->cur
+= sizeof(u64
);
429 io_ctl
->size
-= sizeof(u64
) * 2;
433 *val
= cpu_to_le64(generation
);
434 io_ctl
->cur
+= sizeof(u64
);
437 static int io_ctl_check_generation(struct btrfs_io_ctl
*io_ctl
, u64 generation
)
442 * Skip the crc area. If we don't check crcs then we just have a 64bit
443 * chunk at the front of the first page.
445 if (io_ctl
->check_crcs
) {
446 io_ctl
->cur
+= sizeof(u32
) * io_ctl
->num_pages
;
447 io_ctl
->size
-= sizeof(u64
) +
448 (sizeof(u32
) * io_ctl
->num_pages
);
450 io_ctl
->cur
+= sizeof(u64
);
451 io_ctl
->size
-= sizeof(u64
) * 2;
455 if (le64_to_cpu(*gen
) != generation
) {
456 btrfs_err_rl(io_ctl
->fs_info
,
457 "space cache generation (%llu) does not match inode (%llu)",
459 io_ctl_unmap_page(io_ctl
);
462 io_ctl
->cur
+= sizeof(u64
);
466 static void io_ctl_set_crc(struct btrfs_io_ctl
*io_ctl
, int index
)
472 if (!io_ctl
->check_crcs
) {
473 io_ctl_unmap_page(io_ctl
);
478 offset
= sizeof(u32
) * io_ctl
->num_pages
;
480 crc
= btrfs_crc32c(crc
, io_ctl
->orig
+ offset
, PAGE_SIZE
- offset
);
481 btrfs_crc32c_final(crc
, (u8
*)&crc
);
482 io_ctl_unmap_page(io_ctl
);
483 tmp
= page_address(io_ctl
->pages
[0]);
488 static int io_ctl_check_crc(struct btrfs_io_ctl
*io_ctl
, int index
)
494 if (!io_ctl
->check_crcs
) {
495 io_ctl_map_page(io_ctl
, 0);
500 offset
= sizeof(u32
) * io_ctl
->num_pages
;
502 tmp
= page_address(io_ctl
->pages
[0]);
506 io_ctl_map_page(io_ctl
, 0);
507 crc
= btrfs_crc32c(crc
, io_ctl
->orig
+ offset
, PAGE_SIZE
- offset
);
508 btrfs_crc32c_final(crc
, (u8
*)&crc
);
510 btrfs_err_rl(io_ctl
->fs_info
,
511 "csum mismatch on free space cache");
512 io_ctl_unmap_page(io_ctl
);
519 static int io_ctl_add_entry(struct btrfs_io_ctl
*io_ctl
, u64 offset
, u64 bytes
,
522 struct btrfs_free_space_entry
*entry
;
528 entry
->offset
= cpu_to_le64(offset
);
529 entry
->bytes
= cpu_to_le64(bytes
);
530 entry
->type
= (bitmap
) ? BTRFS_FREE_SPACE_BITMAP
:
531 BTRFS_FREE_SPACE_EXTENT
;
532 io_ctl
->cur
+= sizeof(struct btrfs_free_space_entry
);
533 io_ctl
->size
-= sizeof(struct btrfs_free_space_entry
);
535 if (io_ctl
->size
>= sizeof(struct btrfs_free_space_entry
))
538 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
540 /* No more pages to map */
541 if (io_ctl
->index
>= io_ctl
->num_pages
)
544 /* map the next page */
545 io_ctl_map_page(io_ctl
, 1);
549 static int io_ctl_add_bitmap(struct btrfs_io_ctl
*io_ctl
, void *bitmap
)
555 * If we aren't at the start of the current page, unmap this one and
556 * map the next one if there is any left.
558 if (io_ctl
->cur
!= io_ctl
->orig
) {
559 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
560 if (io_ctl
->index
>= io_ctl
->num_pages
)
562 io_ctl_map_page(io_ctl
, 0);
565 copy_page(io_ctl
->cur
, bitmap
);
566 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
567 if (io_ctl
->index
< io_ctl
->num_pages
)
568 io_ctl_map_page(io_ctl
, 0);
572 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl
*io_ctl
)
575 * If we're not on the boundary we know we've modified the page and we
576 * need to crc the page.
578 if (io_ctl
->cur
!= io_ctl
->orig
)
579 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
581 io_ctl_unmap_page(io_ctl
);
583 while (io_ctl
->index
< io_ctl
->num_pages
) {
584 io_ctl_map_page(io_ctl
, 1);
585 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
589 static int io_ctl_read_entry(struct btrfs_io_ctl
*io_ctl
,
590 struct btrfs_free_space
*entry
, u8
*type
)
592 struct btrfs_free_space_entry
*e
;
596 ret
= io_ctl_check_crc(io_ctl
, io_ctl
->index
);
602 entry
->offset
= le64_to_cpu(e
->offset
);
603 entry
->bytes
= le64_to_cpu(e
->bytes
);
605 io_ctl
->cur
+= sizeof(struct btrfs_free_space_entry
);
606 io_ctl
->size
-= sizeof(struct btrfs_free_space_entry
);
608 if (io_ctl
->size
>= sizeof(struct btrfs_free_space_entry
))
611 io_ctl_unmap_page(io_ctl
);
616 static int io_ctl_read_bitmap(struct btrfs_io_ctl
*io_ctl
,
617 struct btrfs_free_space
*entry
)
621 ret
= io_ctl_check_crc(io_ctl
, io_ctl
->index
);
625 copy_page(entry
->bitmap
, io_ctl
->cur
);
626 io_ctl_unmap_page(io_ctl
);
632 * Since we attach pinned extents after the fact we can have contiguous sections
633 * of free space that are split up in entries. This poses a problem with the
634 * tree logging stuff since it could have allocated across what appears to be 2
635 * entries since we would have merged the entries when adding the pinned extents
636 * back to the free space cache. So run through the space cache that we just
637 * loaded and merge contiguous entries. This will make the log replay stuff not
638 * blow up and it will make for nicer allocator behavior.
640 static void merge_space_tree(struct btrfs_free_space_ctl
*ctl
)
642 struct btrfs_free_space
*e
, *prev
= NULL
;
646 spin_lock(&ctl
->tree_lock
);
647 for (n
= rb_first(&ctl
->free_space_offset
); n
; n
= rb_next(n
)) {
648 e
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
651 if (e
->bitmap
|| prev
->bitmap
)
653 if (prev
->offset
+ prev
->bytes
== e
->offset
) {
654 unlink_free_space(ctl
, prev
);
655 unlink_free_space(ctl
, e
);
656 prev
->bytes
+= e
->bytes
;
657 kmem_cache_free(btrfs_free_space_cachep
, e
);
658 link_free_space(ctl
, prev
);
660 spin_unlock(&ctl
->tree_lock
);
666 spin_unlock(&ctl
->tree_lock
);
669 static int __load_free_space_cache(struct btrfs_root
*root
, struct inode
*inode
,
670 struct btrfs_free_space_ctl
*ctl
,
671 struct btrfs_path
*path
, u64 offset
)
673 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
674 struct btrfs_free_space_header
*header
;
675 struct extent_buffer
*leaf
;
676 struct btrfs_io_ctl io_ctl
;
677 struct btrfs_key key
;
678 struct btrfs_free_space
*e
, *n
;
686 /* Nothing in the space cache, goodbye */
687 if (!i_size_read(inode
))
690 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
694 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
698 btrfs_release_path(path
);
704 leaf
= path
->nodes
[0];
705 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
706 struct btrfs_free_space_header
);
707 num_entries
= btrfs_free_space_entries(leaf
, header
);
708 num_bitmaps
= btrfs_free_space_bitmaps(leaf
, header
);
709 generation
= btrfs_free_space_generation(leaf
, header
);
710 btrfs_release_path(path
);
712 if (!BTRFS_I(inode
)->generation
) {
714 "the free space cache file (%llu) is invalid, skip it",
719 if (BTRFS_I(inode
)->generation
!= generation
) {
721 "free space inode generation (%llu) did not match free space cache generation (%llu)",
722 BTRFS_I(inode
)->generation
, generation
);
729 ret
= io_ctl_init(&io_ctl
, inode
, 0);
733 readahead_cache(inode
);
735 ret
= io_ctl_prepare_pages(&io_ctl
, true);
739 ret
= io_ctl_check_crc(&io_ctl
, 0);
743 ret
= io_ctl_check_generation(&io_ctl
, generation
);
747 while (num_entries
) {
748 e
= kmem_cache_zalloc(btrfs_free_space_cachep
,
753 ret
= io_ctl_read_entry(&io_ctl
, e
, &type
);
755 kmem_cache_free(btrfs_free_space_cachep
, e
);
760 * Sync discard ensures that the free space cache is always
761 * trimmed. So when reading this in, the state should reflect
762 * that. We also do this for async as a stop gap for lack of
765 if (btrfs_test_opt(fs_info
, DISCARD_SYNC
) ||
766 btrfs_test_opt(fs_info
, DISCARD_ASYNC
))
767 e
->trim_state
= BTRFS_TRIM_STATE_TRIMMED
;
770 kmem_cache_free(btrfs_free_space_cachep
, e
);
774 if (type
== BTRFS_FREE_SPACE_EXTENT
) {
775 spin_lock(&ctl
->tree_lock
);
776 ret
= link_free_space(ctl
, e
);
777 spin_unlock(&ctl
->tree_lock
);
780 "Duplicate entries in free space cache, dumping");
781 kmem_cache_free(btrfs_free_space_cachep
, e
);
787 e
->bitmap
= kmem_cache_zalloc(
788 btrfs_free_space_bitmap_cachep
, GFP_NOFS
);
791 btrfs_free_space_cachep
, e
);
794 spin_lock(&ctl
->tree_lock
);
795 ret
= link_free_space(ctl
, e
);
796 ctl
->total_bitmaps
++;
797 ctl
->op
->recalc_thresholds(ctl
);
798 spin_unlock(&ctl
->tree_lock
);
801 "Duplicate entries in free space cache, dumping");
802 kmem_cache_free(btrfs_free_space_cachep
, e
);
805 list_add_tail(&e
->list
, &bitmaps
);
811 io_ctl_unmap_page(&io_ctl
);
814 * We add the bitmaps at the end of the entries in order that
815 * the bitmap entries are added to the cache.
817 list_for_each_entry_safe(e
, n
, &bitmaps
, list
) {
818 list_del_init(&e
->list
);
819 ret
= io_ctl_read_bitmap(&io_ctl
, e
);
822 e
->bitmap_extents
= count_bitmap_extents(ctl
, e
);
823 if (!btrfs_free_space_trimmed(e
)) {
824 ctl
->discardable_extents
[BTRFS_STAT_CURR
] +=
826 ctl
->discardable_bytes
[BTRFS_STAT_CURR
] += e
->bytes
;
830 io_ctl_drop_pages(&io_ctl
);
831 merge_space_tree(ctl
);
834 btrfs_discard_update_discardable(ctl
->private, ctl
);
835 io_ctl_free(&io_ctl
);
838 io_ctl_drop_pages(&io_ctl
);
839 __btrfs_remove_free_space_cache(ctl
);
843 int load_free_space_cache(struct btrfs_block_group
*block_group
)
845 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
846 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
848 struct btrfs_path
*path
;
851 u64 used
= block_group
->used
;
854 * If this block group has been marked to be cleared for one reason or
855 * another then we can't trust the on disk cache, so just return.
857 spin_lock(&block_group
->lock
);
858 if (block_group
->disk_cache_state
!= BTRFS_DC_WRITTEN
) {
859 spin_unlock(&block_group
->lock
);
862 spin_unlock(&block_group
->lock
);
864 path
= btrfs_alloc_path();
867 path
->search_commit_root
= 1;
868 path
->skip_locking
= 1;
871 * We must pass a path with search_commit_root set to btrfs_iget in
872 * order to avoid a deadlock when allocating extents for the tree root.
874 * When we are COWing an extent buffer from the tree root, when looking
875 * for a free extent, at extent-tree.c:find_free_extent(), we can find
876 * block group without its free space cache loaded. When we find one
877 * we must load its space cache which requires reading its free space
878 * cache's inode item from the root tree. If this inode item is located
879 * in the same leaf that we started COWing before, then we end up in
880 * deadlock on the extent buffer (trying to read lock it when we
881 * previously write locked it).
883 * It's safe to read the inode item using the commit root because
884 * block groups, once loaded, stay in memory forever (until they are
885 * removed) as well as their space caches once loaded. New block groups
886 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
887 * we will never try to read their inode item while the fs is mounted.
889 inode
= lookup_free_space_inode(block_group
, path
);
891 btrfs_free_path(path
);
895 /* We may have converted the inode and made the cache invalid. */
896 spin_lock(&block_group
->lock
);
897 if (block_group
->disk_cache_state
!= BTRFS_DC_WRITTEN
) {
898 spin_unlock(&block_group
->lock
);
899 btrfs_free_path(path
);
902 spin_unlock(&block_group
->lock
);
904 ret
= __load_free_space_cache(fs_info
->tree_root
, inode
, ctl
,
905 path
, block_group
->start
);
906 btrfs_free_path(path
);
910 spin_lock(&ctl
->tree_lock
);
911 matched
= (ctl
->free_space
== (block_group
->length
- used
-
912 block_group
->bytes_super
));
913 spin_unlock(&ctl
->tree_lock
);
916 __btrfs_remove_free_space_cache(ctl
);
918 "block group %llu has wrong amount of free space",
924 /* This cache is bogus, make sure it gets cleared */
925 spin_lock(&block_group
->lock
);
926 block_group
->disk_cache_state
= BTRFS_DC_CLEAR
;
927 spin_unlock(&block_group
->lock
);
931 "failed to load free space cache for block group %llu, rebuilding it now",
939 static noinline_for_stack
940 int write_cache_extent_entries(struct btrfs_io_ctl
*io_ctl
,
941 struct btrfs_free_space_ctl
*ctl
,
942 struct btrfs_block_group
*block_group
,
943 int *entries
, int *bitmaps
,
944 struct list_head
*bitmap_list
)
947 struct btrfs_free_cluster
*cluster
= NULL
;
948 struct btrfs_free_cluster
*cluster_locked
= NULL
;
949 struct rb_node
*node
= rb_first(&ctl
->free_space_offset
);
950 struct btrfs_trim_range
*trim_entry
;
952 /* Get the cluster for this block_group if it exists */
953 if (block_group
&& !list_empty(&block_group
->cluster_list
)) {
954 cluster
= list_entry(block_group
->cluster_list
.next
,
955 struct btrfs_free_cluster
,
959 if (!node
&& cluster
) {
960 cluster_locked
= cluster
;
961 spin_lock(&cluster_locked
->lock
);
962 node
= rb_first(&cluster
->root
);
966 /* Write out the extent entries */
968 struct btrfs_free_space
*e
;
970 e
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
973 ret
= io_ctl_add_entry(io_ctl
, e
->offset
, e
->bytes
,
979 list_add_tail(&e
->list
, bitmap_list
);
982 node
= rb_next(node
);
983 if (!node
&& cluster
) {
984 node
= rb_first(&cluster
->root
);
985 cluster_locked
= cluster
;
986 spin_lock(&cluster_locked
->lock
);
990 if (cluster_locked
) {
991 spin_unlock(&cluster_locked
->lock
);
992 cluster_locked
= NULL
;
996 * Make sure we don't miss any range that was removed from our rbtree
997 * because trimming is running. Otherwise after a umount+mount (or crash
998 * after committing the transaction) we would leak free space and get
999 * an inconsistent free space cache report from fsck.
1001 list_for_each_entry(trim_entry
, &ctl
->trimming_ranges
, list
) {
1002 ret
= io_ctl_add_entry(io_ctl
, trim_entry
->start
,
1003 trim_entry
->bytes
, NULL
);
1012 spin_unlock(&cluster_locked
->lock
);
1016 static noinline_for_stack
int
1017 update_cache_item(struct btrfs_trans_handle
*trans
,
1018 struct btrfs_root
*root
,
1019 struct inode
*inode
,
1020 struct btrfs_path
*path
, u64 offset
,
1021 int entries
, int bitmaps
)
1023 struct btrfs_key key
;
1024 struct btrfs_free_space_header
*header
;
1025 struct extent_buffer
*leaf
;
1028 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
1029 key
.offset
= offset
;
1032 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
1034 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, 0, inode
->i_size
- 1,
1035 EXTENT_DELALLOC
, 0, 0, NULL
);
1038 leaf
= path
->nodes
[0];
1040 struct btrfs_key found_key
;
1041 ASSERT(path
->slots
[0]);
1043 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1044 if (found_key
.objectid
!= BTRFS_FREE_SPACE_OBJECTID
||
1045 found_key
.offset
!= offset
) {
1046 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, 0,
1047 inode
->i_size
- 1, EXTENT_DELALLOC
, 0,
1049 btrfs_release_path(path
);
1054 BTRFS_I(inode
)->generation
= trans
->transid
;
1055 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
1056 struct btrfs_free_space_header
);
1057 btrfs_set_free_space_entries(leaf
, header
, entries
);
1058 btrfs_set_free_space_bitmaps(leaf
, header
, bitmaps
);
1059 btrfs_set_free_space_generation(leaf
, header
, trans
->transid
);
1060 btrfs_mark_buffer_dirty(leaf
);
1061 btrfs_release_path(path
);
1069 static noinline_for_stack
int write_pinned_extent_entries(
1070 struct btrfs_trans_handle
*trans
,
1071 struct btrfs_block_group
*block_group
,
1072 struct btrfs_io_ctl
*io_ctl
,
1075 u64 start
, extent_start
, extent_end
, len
;
1076 struct extent_io_tree
*unpin
= NULL
;
1083 * We want to add any pinned extents to our free space cache
1084 * so we don't leak the space
1086 * We shouldn't have switched the pinned extents yet so this is the
1089 unpin
= &trans
->transaction
->pinned_extents
;
1091 start
= block_group
->start
;
1093 while (start
< block_group
->start
+ block_group
->length
) {
1094 ret
= find_first_extent_bit(unpin
, start
,
1095 &extent_start
, &extent_end
,
1096 EXTENT_DIRTY
, NULL
);
1100 /* This pinned extent is out of our range */
1101 if (extent_start
>= block_group
->start
+ block_group
->length
)
1104 extent_start
= max(extent_start
, start
);
1105 extent_end
= min(block_group
->start
+ block_group
->length
,
1107 len
= extent_end
- extent_start
;
1110 ret
= io_ctl_add_entry(io_ctl
, extent_start
, len
, NULL
);
1120 static noinline_for_stack
int
1121 write_bitmap_entries(struct btrfs_io_ctl
*io_ctl
, struct list_head
*bitmap_list
)
1123 struct btrfs_free_space
*entry
, *next
;
1126 /* Write out the bitmaps */
1127 list_for_each_entry_safe(entry
, next
, bitmap_list
, list
) {
1128 ret
= io_ctl_add_bitmap(io_ctl
, entry
->bitmap
);
1131 list_del_init(&entry
->list
);
1137 static int flush_dirty_cache(struct inode
*inode
)
1141 ret
= btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
1143 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, 0, inode
->i_size
- 1,
1144 EXTENT_DELALLOC
, 0, 0, NULL
);
1149 static void noinline_for_stack
1150 cleanup_bitmap_list(struct list_head
*bitmap_list
)
1152 struct btrfs_free_space
*entry
, *next
;
1154 list_for_each_entry_safe(entry
, next
, bitmap_list
, list
)
1155 list_del_init(&entry
->list
);
1158 static void noinline_for_stack
1159 cleanup_write_cache_enospc(struct inode
*inode
,
1160 struct btrfs_io_ctl
*io_ctl
,
1161 struct extent_state
**cached_state
)
1163 io_ctl_drop_pages(io_ctl
);
1164 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, 0,
1165 i_size_read(inode
) - 1, cached_state
);
1168 static int __btrfs_wait_cache_io(struct btrfs_root
*root
,
1169 struct btrfs_trans_handle
*trans
,
1170 struct btrfs_block_group
*block_group
,
1171 struct btrfs_io_ctl
*io_ctl
,
1172 struct btrfs_path
*path
, u64 offset
)
1175 struct inode
*inode
= io_ctl
->inode
;
1180 /* Flush the dirty pages in the cache file. */
1181 ret
= flush_dirty_cache(inode
);
1185 /* Update the cache item to tell everyone this cache file is valid. */
1186 ret
= update_cache_item(trans
, root
, inode
, path
, offset
,
1187 io_ctl
->entries
, io_ctl
->bitmaps
);
1189 io_ctl_free(io_ctl
);
1191 invalidate_inode_pages2(inode
->i_mapping
);
1192 BTRFS_I(inode
)->generation
= 0;
1194 #ifdef CONFIG_BTRFS_DEBUG
1195 btrfs_err(root
->fs_info
,
1196 "failed to write free space cache for block group %llu",
1197 block_group
->start
);
1201 btrfs_update_inode(trans
, root
, inode
);
1204 /* the dirty list is protected by the dirty_bgs_lock */
1205 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
1207 /* the disk_cache_state is protected by the block group lock */
1208 spin_lock(&block_group
->lock
);
1211 * only mark this as written if we didn't get put back on
1212 * the dirty list while waiting for IO. Otherwise our
1213 * cache state won't be right, and we won't get written again
1215 if (!ret
&& list_empty(&block_group
->dirty_list
))
1216 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
1218 block_group
->disk_cache_state
= BTRFS_DC_ERROR
;
1220 spin_unlock(&block_group
->lock
);
1221 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
1222 io_ctl
->inode
= NULL
;
1230 static int btrfs_wait_cache_io_root(struct btrfs_root
*root
,
1231 struct btrfs_trans_handle
*trans
,
1232 struct btrfs_io_ctl
*io_ctl
,
1233 struct btrfs_path
*path
)
1235 return __btrfs_wait_cache_io(root
, trans
, NULL
, io_ctl
, path
, 0);
1238 int btrfs_wait_cache_io(struct btrfs_trans_handle
*trans
,
1239 struct btrfs_block_group
*block_group
,
1240 struct btrfs_path
*path
)
1242 return __btrfs_wait_cache_io(block_group
->fs_info
->tree_root
, trans
,
1243 block_group
, &block_group
->io_ctl
,
1244 path
, block_group
->start
);
1248 * __btrfs_write_out_cache - write out cached info to an inode
1249 * @root - the root the inode belongs to
1250 * @ctl - the free space cache we are going to write out
1251 * @block_group - the block_group for this cache if it belongs to a block_group
1252 * @trans - the trans handle
1254 * This function writes out a free space cache struct to disk for quick recovery
1255 * on mount. This will return 0 if it was successful in writing the cache out,
1256 * or an errno if it was not.
1258 static int __btrfs_write_out_cache(struct btrfs_root
*root
, struct inode
*inode
,
1259 struct btrfs_free_space_ctl
*ctl
,
1260 struct btrfs_block_group
*block_group
,
1261 struct btrfs_io_ctl
*io_ctl
,
1262 struct btrfs_trans_handle
*trans
)
1264 struct extent_state
*cached_state
= NULL
;
1265 LIST_HEAD(bitmap_list
);
1271 if (!i_size_read(inode
))
1274 WARN_ON(io_ctl
->pages
);
1275 ret
= io_ctl_init(io_ctl
, inode
, 1);
1279 if (block_group
&& (block_group
->flags
& BTRFS_BLOCK_GROUP_DATA
)) {
1280 down_write(&block_group
->data_rwsem
);
1281 spin_lock(&block_group
->lock
);
1282 if (block_group
->delalloc_bytes
) {
1283 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
1284 spin_unlock(&block_group
->lock
);
1285 up_write(&block_group
->data_rwsem
);
1286 BTRFS_I(inode
)->generation
= 0;
1291 spin_unlock(&block_group
->lock
);
1294 /* Lock all pages first so we can lock the extent safely. */
1295 ret
= io_ctl_prepare_pages(io_ctl
, false);
1299 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, 0, i_size_read(inode
) - 1,
1302 io_ctl_set_generation(io_ctl
, trans
->transid
);
1304 mutex_lock(&ctl
->cache_writeout_mutex
);
1305 /* Write out the extent entries in the free space cache */
1306 spin_lock(&ctl
->tree_lock
);
1307 ret
= write_cache_extent_entries(io_ctl
, ctl
,
1308 block_group
, &entries
, &bitmaps
,
1311 goto out_nospc_locked
;
1314 * Some spaces that are freed in the current transaction are pinned,
1315 * they will be added into free space cache after the transaction is
1316 * committed, we shouldn't lose them.
1318 * If this changes while we are working we'll get added back to
1319 * the dirty list and redo it. No locking needed
1321 ret
= write_pinned_extent_entries(trans
, block_group
, io_ctl
, &entries
);
1323 goto out_nospc_locked
;
1326 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1327 * locked while doing it because a concurrent trim can be manipulating
1328 * or freeing the bitmap.
1330 ret
= write_bitmap_entries(io_ctl
, &bitmap_list
);
1331 spin_unlock(&ctl
->tree_lock
);
1332 mutex_unlock(&ctl
->cache_writeout_mutex
);
1336 /* Zero out the rest of the pages just to make sure */
1337 io_ctl_zero_remaining_pages(io_ctl
);
1339 /* Everything is written out, now we dirty the pages in the file. */
1340 ret
= btrfs_dirty_pages(inode
, io_ctl
->pages
, io_ctl
->num_pages
, 0,
1341 i_size_read(inode
), &cached_state
);
1345 if (block_group
&& (block_group
->flags
& BTRFS_BLOCK_GROUP_DATA
))
1346 up_write(&block_group
->data_rwsem
);
1348 * Release the pages and unlock the extent, we will flush
1351 io_ctl_drop_pages(io_ctl
);
1353 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, 0,
1354 i_size_read(inode
) - 1, &cached_state
);
1357 * at this point the pages are under IO and we're happy,
1358 * The caller is responsible for waiting on them and updating the
1359 * the cache and the inode
1361 io_ctl
->entries
= entries
;
1362 io_ctl
->bitmaps
= bitmaps
;
1364 ret
= btrfs_fdatawrite_range(inode
, 0, (u64
)-1);
1371 cleanup_bitmap_list(&bitmap_list
);
1372 spin_unlock(&ctl
->tree_lock
);
1373 mutex_unlock(&ctl
->cache_writeout_mutex
);
1376 cleanup_write_cache_enospc(inode
, io_ctl
, &cached_state
);
1379 if (block_group
&& (block_group
->flags
& BTRFS_BLOCK_GROUP_DATA
))
1380 up_write(&block_group
->data_rwsem
);
1383 io_ctl
->inode
= NULL
;
1384 io_ctl_free(io_ctl
);
1386 invalidate_inode_pages2(inode
->i_mapping
);
1387 BTRFS_I(inode
)->generation
= 0;
1389 btrfs_update_inode(trans
, root
, inode
);
1395 int btrfs_write_out_cache(struct btrfs_trans_handle
*trans
,
1396 struct btrfs_block_group
*block_group
,
1397 struct btrfs_path
*path
)
1399 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1400 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1401 struct inode
*inode
;
1404 spin_lock(&block_group
->lock
);
1405 if (block_group
->disk_cache_state
< BTRFS_DC_SETUP
) {
1406 spin_unlock(&block_group
->lock
);
1409 spin_unlock(&block_group
->lock
);
1411 inode
= lookup_free_space_inode(block_group
, path
);
1415 ret
= __btrfs_write_out_cache(fs_info
->tree_root
, inode
, ctl
,
1416 block_group
, &block_group
->io_ctl
, trans
);
1418 #ifdef CONFIG_BTRFS_DEBUG
1420 "failed to write free space cache for block group %llu",
1421 block_group
->start
);
1423 spin_lock(&block_group
->lock
);
1424 block_group
->disk_cache_state
= BTRFS_DC_ERROR
;
1425 spin_unlock(&block_group
->lock
);
1427 block_group
->io_ctl
.inode
= NULL
;
1432 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1433 * to wait for IO and put the inode
1439 static inline unsigned long offset_to_bit(u64 bitmap_start
, u32 unit
,
1442 ASSERT(offset
>= bitmap_start
);
1443 offset
-= bitmap_start
;
1444 return (unsigned long)(div_u64(offset
, unit
));
1447 static inline unsigned long bytes_to_bits(u64 bytes
, u32 unit
)
1449 return (unsigned long)(div_u64(bytes
, unit
));
1452 static inline u64
offset_to_bitmap(struct btrfs_free_space_ctl
*ctl
,
1456 u64 bytes_per_bitmap
;
1458 bytes_per_bitmap
= BITS_PER_BITMAP
* ctl
->unit
;
1459 bitmap_start
= offset
- ctl
->start
;
1460 bitmap_start
= div64_u64(bitmap_start
, bytes_per_bitmap
);
1461 bitmap_start
*= bytes_per_bitmap
;
1462 bitmap_start
+= ctl
->start
;
1464 return bitmap_start
;
1467 static int tree_insert_offset(struct rb_root
*root
, u64 offset
,
1468 struct rb_node
*node
, int bitmap
)
1470 struct rb_node
**p
= &root
->rb_node
;
1471 struct rb_node
*parent
= NULL
;
1472 struct btrfs_free_space
*info
;
1476 info
= rb_entry(parent
, struct btrfs_free_space
, offset_index
);
1478 if (offset
< info
->offset
) {
1480 } else if (offset
> info
->offset
) {
1481 p
= &(*p
)->rb_right
;
1484 * we could have a bitmap entry and an extent entry
1485 * share the same offset. If this is the case, we want
1486 * the extent entry to always be found first if we do a
1487 * linear search through the tree, since we want to have
1488 * the quickest allocation time, and allocating from an
1489 * extent is faster than allocating from a bitmap. So
1490 * if we're inserting a bitmap and we find an entry at
1491 * this offset, we want to go right, or after this entry
1492 * logically. If we are inserting an extent and we've
1493 * found a bitmap, we want to go left, or before
1501 p
= &(*p
)->rb_right
;
1503 if (!info
->bitmap
) {
1512 rb_link_node(node
, parent
, p
);
1513 rb_insert_color(node
, root
);
1519 * searches the tree for the given offset.
1521 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1522 * want a section that has at least bytes size and comes at or after the given
1525 static struct btrfs_free_space
*
1526 tree_search_offset(struct btrfs_free_space_ctl
*ctl
,
1527 u64 offset
, int bitmap_only
, int fuzzy
)
1529 struct rb_node
*n
= ctl
->free_space_offset
.rb_node
;
1530 struct btrfs_free_space
*entry
, *prev
= NULL
;
1532 /* find entry that is closest to the 'offset' */
1539 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1542 if (offset
< entry
->offset
)
1544 else if (offset
> entry
->offset
)
1557 * bitmap entry and extent entry may share same offset,
1558 * in that case, bitmap entry comes after extent entry.
1563 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1564 if (entry
->offset
!= offset
)
1567 WARN_ON(!entry
->bitmap
);
1570 if (entry
->bitmap
) {
1572 * if previous extent entry covers the offset,
1573 * we should return it instead of the bitmap entry
1575 n
= rb_prev(&entry
->offset_index
);
1577 prev
= rb_entry(n
, struct btrfs_free_space
,
1579 if (!prev
->bitmap
&&
1580 prev
->offset
+ prev
->bytes
> offset
)
1590 /* find last entry before the 'offset' */
1592 if (entry
->offset
> offset
) {
1593 n
= rb_prev(&entry
->offset_index
);
1595 entry
= rb_entry(n
, struct btrfs_free_space
,
1597 ASSERT(entry
->offset
<= offset
);
1606 if (entry
->bitmap
) {
1607 n
= rb_prev(&entry
->offset_index
);
1609 prev
= rb_entry(n
, struct btrfs_free_space
,
1611 if (!prev
->bitmap
&&
1612 prev
->offset
+ prev
->bytes
> offset
)
1615 if (entry
->offset
+ BITS_PER_BITMAP
* ctl
->unit
> offset
)
1617 } else if (entry
->offset
+ entry
->bytes
> offset
)
1624 if (entry
->bitmap
) {
1625 if (entry
->offset
+ BITS_PER_BITMAP
*
1629 if (entry
->offset
+ entry
->bytes
> offset
)
1633 n
= rb_next(&entry
->offset_index
);
1636 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1642 __unlink_free_space(struct btrfs_free_space_ctl
*ctl
,
1643 struct btrfs_free_space
*info
)
1645 rb_erase(&info
->offset_index
, &ctl
->free_space_offset
);
1646 ctl
->free_extents
--;
1648 if (!info
->bitmap
&& !btrfs_free_space_trimmed(info
)) {
1649 ctl
->discardable_extents
[BTRFS_STAT_CURR
]--;
1650 ctl
->discardable_bytes
[BTRFS_STAT_CURR
] -= info
->bytes
;
1654 static void unlink_free_space(struct btrfs_free_space_ctl
*ctl
,
1655 struct btrfs_free_space
*info
)
1657 __unlink_free_space(ctl
, info
);
1658 ctl
->free_space
-= info
->bytes
;
1661 static int link_free_space(struct btrfs_free_space_ctl
*ctl
,
1662 struct btrfs_free_space
*info
)
1666 ASSERT(info
->bytes
|| info
->bitmap
);
1667 ret
= tree_insert_offset(&ctl
->free_space_offset
, info
->offset
,
1668 &info
->offset_index
, (info
->bitmap
!= NULL
));
1672 if (!info
->bitmap
&& !btrfs_free_space_trimmed(info
)) {
1673 ctl
->discardable_extents
[BTRFS_STAT_CURR
]++;
1674 ctl
->discardable_bytes
[BTRFS_STAT_CURR
] += info
->bytes
;
1677 ctl
->free_space
+= info
->bytes
;
1678 ctl
->free_extents
++;
1682 static void recalculate_thresholds(struct btrfs_free_space_ctl
*ctl
)
1684 struct btrfs_block_group
*block_group
= ctl
->private;
1688 u64 size
= block_group
->length
;
1689 u64 bytes_per_bg
= BITS_PER_BITMAP
* ctl
->unit
;
1690 u64 max_bitmaps
= div64_u64(size
+ bytes_per_bg
- 1, bytes_per_bg
);
1692 max_bitmaps
= max_t(u64
, max_bitmaps
, 1);
1694 ASSERT(ctl
->total_bitmaps
<= max_bitmaps
);
1697 * We are trying to keep the total amount of memory used per 1GiB of
1698 * space to be MAX_CACHE_BYTES_PER_GIG. However, with a reclamation
1699 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
1700 * bitmaps, we may end up using more memory than this.
1703 max_bytes
= MAX_CACHE_BYTES_PER_GIG
;
1705 max_bytes
= MAX_CACHE_BYTES_PER_GIG
* div_u64(size
, SZ_1G
);
1707 bitmap_bytes
= ctl
->total_bitmaps
* ctl
->unit
;
1710 * we want the extent entry threshold to always be at most 1/2 the max
1711 * bytes we can have, or whatever is less than that.
1713 extent_bytes
= max_bytes
- bitmap_bytes
;
1714 extent_bytes
= min_t(u64
, extent_bytes
, max_bytes
>> 1);
1716 ctl
->extents_thresh
=
1717 div_u64(extent_bytes
, sizeof(struct btrfs_free_space
));
1720 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl
*ctl
,
1721 struct btrfs_free_space
*info
,
1722 u64 offset
, u64 bytes
)
1724 unsigned long start
, count
, end
;
1725 int extent_delta
= -1;
1727 start
= offset_to_bit(info
->offset
, ctl
->unit
, offset
);
1728 count
= bytes_to_bits(bytes
, ctl
->unit
);
1729 end
= start
+ count
;
1730 ASSERT(end
<= BITS_PER_BITMAP
);
1732 bitmap_clear(info
->bitmap
, start
, count
);
1734 info
->bytes
-= bytes
;
1735 if (info
->max_extent_size
> ctl
->unit
)
1736 info
->max_extent_size
= 0;
1738 if (start
&& test_bit(start
- 1, info
->bitmap
))
1741 if (end
< BITS_PER_BITMAP
&& test_bit(end
, info
->bitmap
))
1744 info
->bitmap_extents
+= extent_delta
;
1745 if (!btrfs_free_space_trimmed(info
)) {
1746 ctl
->discardable_extents
[BTRFS_STAT_CURR
] += extent_delta
;
1747 ctl
->discardable_bytes
[BTRFS_STAT_CURR
] -= bytes
;
1751 static void bitmap_clear_bits(struct btrfs_free_space_ctl
*ctl
,
1752 struct btrfs_free_space
*info
, u64 offset
,
1755 __bitmap_clear_bits(ctl
, info
, offset
, bytes
);
1756 ctl
->free_space
-= bytes
;
1759 static void bitmap_set_bits(struct btrfs_free_space_ctl
*ctl
,
1760 struct btrfs_free_space
*info
, u64 offset
,
1763 unsigned long start
, count
, end
;
1764 int extent_delta
= 1;
1766 start
= offset_to_bit(info
->offset
, ctl
->unit
, offset
);
1767 count
= bytes_to_bits(bytes
, ctl
->unit
);
1768 end
= start
+ count
;
1769 ASSERT(end
<= BITS_PER_BITMAP
);
1771 bitmap_set(info
->bitmap
, start
, count
);
1773 info
->bytes
+= bytes
;
1774 ctl
->free_space
+= bytes
;
1776 if (start
&& test_bit(start
- 1, info
->bitmap
))
1779 if (end
< BITS_PER_BITMAP
&& test_bit(end
, info
->bitmap
))
1782 info
->bitmap_extents
+= extent_delta
;
1783 if (!btrfs_free_space_trimmed(info
)) {
1784 ctl
->discardable_extents
[BTRFS_STAT_CURR
] += extent_delta
;
1785 ctl
->discardable_bytes
[BTRFS_STAT_CURR
] += bytes
;
1790 * If we can not find suitable extent, we will use bytes to record
1791 * the size of the max extent.
1793 static int search_bitmap(struct btrfs_free_space_ctl
*ctl
,
1794 struct btrfs_free_space
*bitmap_info
, u64
*offset
,
1795 u64
*bytes
, bool for_alloc
)
1797 unsigned long found_bits
= 0;
1798 unsigned long max_bits
= 0;
1799 unsigned long bits
, i
;
1800 unsigned long next_zero
;
1801 unsigned long extent_bits
;
1804 * Skip searching the bitmap if we don't have a contiguous section that
1805 * is large enough for this allocation.
1808 bitmap_info
->max_extent_size
&&
1809 bitmap_info
->max_extent_size
< *bytes
) {
1810 *bytes
= bitmap_info
->max_extent_size
;
1814 i
= offset_to_bit(bitmap_info
->offset
, ctl
->unit
,
1815 max_t(u64
, *offset
, bitmap_info
->offset
));
1816 bits
= bytes_to_bits(*bytes
, ctl
->unit
);
1818 for_each_set_bit_from(i
, bitmap_info
->bitmap
, BITS_PER_BITMAP
) {
1819 if (for_alloc
&& bits
== 1) {
1823 next_zero
= find_next_zero_bit(bitmap_info
->bitmap
,
1824 BITS_PER_BITMAP
, i
);
1825 extent_bits
= next_zero
- i
;
1826 if (extent_bits
>= bits
) {
1827 found_bits
= extent_bits
;
1829 } else if (extent_bits
> max_bits
) {
1830 max_bits
= extent_bits
;
1836 *offset
= (u64
)(i
* ctl
->unit
) + bitmap_info
->offset
;
1837 *bytes
= (u64
)(found_bits
) * ctl
->unit
;
1841 *bytes
= (u64
)(max_bits
) * ctl
->unit
;
1842 bitmap_info
->max_extent_size
= *bytes
;
1846 static inline u64
get_max_extent_size(struct btrfs_free_space
*entry
)
1849 return entry
->max_extent_size
;
1850 return entry
->bytes
;
1853 /* Cache the size of the max extent in bytes */
1854 static struct btrfs_free_space
*
1855 find_free_space(struct btrfs_free_space_ctl
*ctl
, u64
*offset
, u64
*bytes
,
1856 unsigned long align
, u64
*max_extent_size
)
1858 struct btrfs_free_space
*entry
;
1859 struct rb_node
*node
;
1864 if (!ctl
->free_space_offset
.rb_node
)
1867 entry
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, *offset
), 0, 1);
1871 for (node
= &entry
->offset_index
; node
; node
= rb_next(node
)) {
1872 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
1873 if (entry
->bytes
< *bytes
) {
1874 *max_extent_size
= max(get_max_extent_size(entry
),
1879 /* make sure the space returned is big enough
1880 * to match our requested alignment
1882 if (*bytes
>= align
) {
1883 tmp
= entry
->offset
- ctl
->start
+ align
- 1;
1884 tmp
= div64_u64(tmp
, align
);
1885 tmp
= tmp
* align
+ ctl
->start
;
1886 align_off
= tmp
- entry
->offset
;
1889 tmp
= entry
->offset
;
1892 if (entry
->bytes
< *bytes
+ align_off
) {
1893 *max_extent_size
= max(get_max_extent_size(entry
),
1898 if (entry
->bitmap
) {
1901 ret
= search_bitmap(ctl
, entry
, &tmp
, &size
, true);
1908 max(get_max_extent_size(entry
),
1915 *bytes
= entry
->bytes
- align_off
;
1922 static int count_bitmap_extents(struct btrfs_free_space_ctl
*ctl
,
1923 struct btrfs_free_space
*bitmap_info
)
1925 struct btrfs_block_group
*block_group
= ctl
->private;
1926 u64 bytes
= bitmap_info
->bytes
;
1927 unsigned int rs
, re
;
1930 if (!block_group
|| !bytes
)
1933 bitmap_for_each_set_region(bitmap_info
->bitmap
, rs
, re
, 0,
1935 bytes
-= (rs
- re
) * ctl
->unit
;
1945 static void add_new_bitmap(struct btrfs_free_space_ctl
*ctl
,
1946 struct btrfs_free_space
*info
, u64 offset
)
1948 info
->offset
= offset_to_bitmap(ctl
, offset
);
1950 info
->bitmap_extents
= 0;
1951 INIT_LIST_HEAD(&info
->list
);
1952 link_free_space(ctl
, info
);
1953 ctl
->total_bitmaps
++;
1955 ctl
->op
->recalc_thresholds(ctl
);
1958 static void free_bitmap(struct btrfs_free_space_ctl
*ctl
,
1959 struct btrfs_free_space
*bitmap_info
)
1962 * Normally when this is called, the bitmap is completely empty. However,
1963 * if we are blowing up the free space cache for one reason or another
1964 * via __btrfs_remove_free_space_cache(), then it may not be freed and
1965 * we may leave stats on the table.
1967 if (bitmap_info
->bytes
&& !btrfs_free_space_trimmed(bitmap_info
)) {
1968 ctl
->discardable_extents
[BTRFS_STAT_CURR
] -=
1969 bitmap_info
->bitmap_extents
;
1970 ctl
->discardable_bytes
[BTRFS_STAT_CURR
] -= bitmap_info
->bytes
;
1973 unlink_free_space(ctl
, bitmap_info
);
1974 kmem_cache_free(btrfs_free_space_bitmap_cachep
, bitmap_info
->bitmap
);
1975 kmem_cache_free(btrfs_free_space_cachep
, bitmap_info
);
1976 ctl
->total_bitmaps
--;
1977 ctl
->op
->recalc_thresholds(ctl
);
1980 static noinline
int remove_from_bitmap(struct btrfs_free_space_ctl
*ctl
,
1981 struct btrfs_free_space
*bitmap_info
,
1982 u64
*offset
, u64
*bytes
)
1985 u64 search_start
, search_bytes
;
1989 end
= bitmap_info
->offset
+ (u64
)(BITS_PER_BITMAP
* ctl
->unit
) - 1;
1992 * We need to search for bits in this bitmap. We could only cover some
1993 * of the extent in this bitmap thanks to how we add space, so we need
1994 * to search for as much as it as we can and clear that amount, and then
1995 * go searching for the next bit.
1997 search_start
= *offset
;
1998 search_bytes
= ctl
->unit
;
1999 search_bytes
= min(search_bytes
, end
- search_start
+ 1);
2000 ret
= search_bitmap(ctl
, bitmap_info
, &search_start
, &search_bytes
,
2002 if (ret
< 0 || search_start
!= *offset
)
2005 /* We may have found more bits than what we need */
2006 search_bytes
= min(search_bytes
, *bytes
);
2008 /* Cannot clear past the end of the bitmap */
2009 search_bytes
= min(search_bytes
, end
- search_start
+ 1);
2011 bitmap_clear_bits(ctl
, bitmap_info
, search_start
, search_bytes
);
2012 *offset
+= search_bytes
;
2013 *bytes
-= search_bytes
;
2016 struct rb_node
*next
= rb_next(&bitmap_info
->offset_index
);
2017 if (!bitmap_info
->bytes
)
2018 free_bitmap(ctl
, bitmap_info
);
2021 * no entry after this bitmap, but we still have bytes to
2022 * remove, so something has gone wrong.
2027 bitmap_info
= rb_entry(next
, struct btrfs_free_space
,
2031 * if the next entry isn't a bitmap we need to return to let the
2032 * extent stuff do its work.
2034 if (!bitmap_info
->bitmap
)
2038 * Ok the next item is a bitmap, but it may not actually hold
2039 * the information for the rest of this free space stuff, so
2040 * look for it, and if we don't find it return so we can try
2041 * everything over again.
2043 search_start
= *offset
;
2044 search_bytes
= ctl
->unit
;
2045 ret
= search_bitmap(ctl
, bitmap_info
, &search_start
,
2046 &search_bytes
, false);
2047 if (ret
< 0 || search_start
!= *offset
)
2051 } else if (!bitmap_info
->bytes
)
2052 free_bitmap(ctl
, bitmap_info
);
2057 static u64
add_bytes_to_bitmap(struct btrfs_free_space_ctl
*ctl
,
2058 struct btrfs_free_space
*info
, u64 offset
,
2059 u64 bytes
, enum btrfs_trim_state trim_state
)
2061 u64 bytes_to_set
= 0;
2065 * This is a tradeoff to make bitmap trim state minimal. We mark the
2066 * whole bitmap untrimmed if at any point we add untrimmed regions.
2068 if (trim_state
== BTRFS_TRIM_STATE_UNTRIMMED
) {
2069 if (btrfs_free_space_trimmed(info
)) {
2070 ctl
->discardable_extents
[BTRFS_STAT_CURR
] +=
2071 info
->bitmap_extents
;
2072 ctl
->discardable_bytes
[BTRFS_STAT_CURR
] += info
->bytes
;
2074 info
->trim_state
= BTRFS_TRIM_STATE_UNTRIMMED
;
2077 end
= info
->offset
+ (u64
)(BITS_PER_BITMAP
* ctl
->unit
);
2079 bytes_to_set
= min(end
- offset
, bytes
);
2081 bitmap_set_bits(ctl
, info
, offset
, bytes_to_set
);
2084 * We set some bytes, we have no idea what the max extent size is
2087 info
->max_extent_size
= 0;
2089 return bytes_to_set
;
2093 static bool use_bitmap(struct btrfs_free_space_ctl
*ctl
,
2094 struct btrfs_free_space
*info
)
2096 struct btrfs_block_group
*block_group
= ctl
->private;
2097 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
2098 bool forced
= false;
2100 #ifdef CONFIG_BTRFS_DEBUG
2101 if (btrfs_should_fragment_free_space(block_group
))
2105 /* This is a way to reclaim large regions from the bitmaps. */
2106 if (!forced
&& info
->bytes
>= FORCE_EXTENT_THRESHOLD
)
2110 * If we are below the extents threshold then we can add this as an
2111 * extent, and don't have to deal with the bitmap
2113 if (!forced
&& ctl
->free_extents
< ctl
->extents_thresh
) {
2115 * If this block group has some small extents we don't want to
2116 * use up all of our free slots in the cache with them, we want
2117 * to reserve them to larger extents, however if we have plenty
2118 * of cache left then go ahead an dadd them, no sense in adding
2119 * the overhead of a bitmap if we don't have to.
2121 if (info
->bytes
<= fs_info
->sectorsize
* 8) {
2122 if (ctl
->free_extents
* 3 <= ctl
->extents_thresh
)
2130 * The original block groups from mkfs can be really small, like 8
2131 * megabytes, so don't bother with a bitmap for those entries. However
2132 * some block groups can be smaller than what a bitmap would cover but
2133 * are still large enough that they could overflow the 32k memory limit,
2134 * so allow those block groups to still be allowed to have a bitmap
2137 if (((BITS_PER_BITMAP
* ctl
->unit
) >> 1) > block_group
->length
)
2143 static const struct btrfs_free_space_op free_space_op
= {
2144 .recalc_thresholds
= recalculate_thresholds
,
2145 .use_bitmap
= use_bitmap
,
2148 static int insert_into_bitmap(struct btrfs_free_space_ctl
*ctl
,
2149 struct btrfs_free_space
*info
)
2151 struct btrfs_free_space
*bitmap_info
;
2152 struct btrfs_block_group
*block_group
= NULL
;
2154 u64 bytes
, offset
, bytes_added
;
2155 enum btrfs_trim_state trim_state
;
2158 bytes
= info
->bytes
;
2159 offset
= info
->offset
;
2160 trim_state
= info
->trim_state
;
2162 if (!ctl
->op
->use_bitmap(ctl
, info
))
2165 if (ctl
->op
== &free_space_op
)
2166 block_group
= ctl
->private;
2169 * Since we link bitmaps right into the cluster we need to see if we
2170 * have a cluster here, and if so and it has our bitmap we need to add
2171 * the free space to that bitmap.
2173 if (block_group
&& !list_empty(&block_group
->cluster_list
)) {
2174 struct btrfs_free_cluster
*cluster
;
2175 struct rb_node
*node
;
2176 struct btrfs_free_space
*entry
;
2178 cluster
= list_entry(block_group
->cluster_list
.next
,
2179 struct btrfs_free_cluster
,
2181 spin_lock(&cluster
->lock
);
2182 node
= rb_first(&cluster
->root
);
2184 spin_unlock(&cluster
->lock
);
2185 goto no_cluster_bitmap
;
2188 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2189 if (!entry
->bitmap
) {
2190 spin_unlock(&cluster
->lock
);
2191 goto no_cluster_bitmap
;
2194 if (entry
->offset
== offset_to_bitmap(ctl
, offset
)) {
2195 bytes_added
= add_bytes_to_bitmap(ctl
, entry
, offset
,
2197 bytes
-= bytes_added
;
2198 offset
+= bytes_added
;
2200 spin_unlock(&cluster
->lock
);
2208 bitmap_info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
2215 bytes_added
= add_bytes_to_bitmap(ctl
, bitmap_info
, offset
, bytes
,
2217 bytes
-= bytes_added
;
2218 offset
+= bytes_added
;
2228 if (info
&& info
->bitmap
) {
2229 add_new_bitmap(ctl
, info
, offset
);
2234 spin_unlock(&ctl
->tree_lock
);
2236 /* no pre-allocated info, allocate a new one */
2238 info
= kmem_cache_zalloc(btrfs_free_space_cachep
,
2241 spin_lock(&ctl
->tree_lock
);
2247 /* allocate the bitmap */
2248 info
->bitmap
= kmem_cache_zalloc(btrfs_free_space_bitmap_cachep
,
2250 info
->trim_state
= BTRFS_TRIM_STATE_TRIMMED
;
2251 spin_lock(&ctl
->tree_lock
);
2252 if (!info
->bitmap
) {
2262 kmem_cache_free(btrfs_free_space_bitmap_cachep
,
2264 kmem_cache_free(btrfs_free_space_cachep
, info
);
2271 * Free space merging rules:
2272 * 1) Merge trimmed areas together
2273 * 2) Let untrimmed areas coalesce with trimmed areas
2274 * 3) Always pull neighboring regions from bitmaps
2276 * The above rules are for when we merge free space based on btrfs_trim_state.
2277 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2278 * same reason: to promote larger extent regions which makes life easier for
2279 * find_free_extent(). Rule 2 enables coalescing based on the common path
2280 * being returning free space from btrfs_finish_extent_commit(). So when free
2281 * space is trimmed, it will prevent aggregating trimmed new region and
2282 * untrimmed regions in the rb_tree. Rule 3 is purely to obtain larger extents
2283 * and provide find_free_extent() with the largest extents possible hoping for
2286 static bool try_merge_free_space(struct btrfs_free_space_ctl
*ctl
,
2287 struct btrfs_free_space
*info
, bool update_stat
)
2289 struct btrfs_free_space
*left_info
;
2290 struct btrfs_free_space
*right_info
;
2291 bool merged
= false;
2292 u64 offset
= info
->offset
;
2293 u64 bytes
= info
->bytes
;
2294 const bool is_trimmed
= btrfs_free_space_trimmed(info
);
2297 * first we want to see if there is free space adjacent to the range we
2298 * are adding, if there is remove that struct and add a new one to
2299 * cover the entire range
2301 right_info
= tree_search_offset(ctl
, offset
+ bytes
, 0, 0);
2302 if (right_info
&& rb_prev(&right_info
->offset_index
))
2303 left_info
= rb_entry(rb_prev(&right_info
->offset_index
),
2304 struct btrfs_free_space
, offset_index
);
2306 left_info
= tree_search_offset(ctl
, offset
- 1, 0, 0);
2308 /* See try_merge_free_space() comment. */
2309 if (right_info
&& !right_info
->bitmap
&&
2310 (!is_trimmed
|| btrfs_free_space_trimmed(right_info
))) {
2312 unlink_free_space(ctl
, right_info
);
2314 __unlink_free_space(ctl
, right_info
);
2315 info
->bytes
+= right_info
->bytes
;
2316 kmem_cache_free(btrfs_free_space_cachep
, right_info
);
2320 /* See try_merge_free_space() comment. */
2321 if (left_info
&& !left_info
->bitmap
&&
2322 left_info
->offset
+ left_info
->bytes
== offset
&&
2323 (!is_trimmed
|| btrfs_free_space_trimmed(left_info
))) {
2325 unlink_free_space(ctl
, left_info
);
2327 __unlink_free_space(ctl
, left_info
);
2328 info
->offset
= left_info
->offset
;
2329 info
->bytes
+= left_info
->bytes
;
2330 kmem_cache_free(btrfs_free_space_cachep
, left_info
);
2337 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl
*ctl
,
2338 struct btrfs_free_space
*info
,
2341 struct btrfs_free_space
*bitmap
;
2344 const u64 end
= info
->offset
+ info
->bytes
;
2345 const u64 bitmap_offset
= offset_to_bitmap(ctl
, end
);
2348 bitmap
= tree_search_offset(ctl
, bitmap_offset
, 1, 0);
2352 i
= offset_to_bit(bitmap
->offset
, ctl
->unit
, end
);
2353 j
= find_next_zero_bit(bitmap
->bitmap
, BITS_PER_BITMAP
, i
);
2356 bytes
= (j
- i
) * ctl
->unit
;
2357 info
->bytes
+= bytes
;
2359 /* See try_merge_free_space() comment. */
2360 if (!btrfs_free_space_trimmed(bitmap
))
2361 info
->trim_state
= BTRFS_TRIM_STATE_UNTRIMMED
;
2364 bitmap_clear_bits(ctl
, bitmap
, end
, bytes
);
2366 __bitmap_clear_bits(ctl
, bitmap
, end
, bytes
);
2369 free_bitmap(ctl
, bitmap
);
2374 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl
*ctl
,
2375 struct btrfs_free_space
*info
,
2378 struct btrfs_free_space
*bitmap
;
2382 unsigned long prev_j
;
2385 bitmap_offset
= offset_to_bitmap(ctl
, info
->offset
);
2386 /* If we're on a boundary, try the previous logical bitmap. */
2387 if (bitmap_offset
== info
->offset
) {
2388 if (info
->offset
== 0)
2390 bitmap_offset
= offset_to_bitmap(ctl
, info
->offset
- 1);
2393 bitmap
= tree_search_offset(ctl
, bitmap_offset
, 1, 0);
2397 i
= offset_to_bit(bitmap
->offset
, ctl
->unit
, info
->offset
) - 1;
2399 prev_j
= (unsigned long)-1;
2400 for_each_clear_bit_from(j
, bitmap
->bitmap
, BITS_PER_BITMAP
) {
2408 if (prev_j
== (unsigned long)-1)
2409 bytes
= (i
+ 1) * ctl
->unit
;
2411 bytes
= (i
- prev_j
) * ctl
->unit
;
2413 info
->offset
-= bytes
;
2414 info
->bytes
+= bytes
;
2416 /* See try_merge_free_space() comment. */
2417 if (!btrfs_free_space_trimmed(bitmap
))
2418 info
->trim_state
= BTRFS_TRIM_STATE_UNTRIMMED
;
2421 bitmap_clear_bits(ctl
, bitmap
, info
->offset
, bytes
);
2423 __bitmap_clear_bits(ctl
, bitmap
, info
->offset
, bytes
);
2426 free_bitmap(ctl
, bitmap
);
2432 * We prefer always to allocate from extent entries, both for clustered and
2433 * non-clustered allocation requests. So when attempting to add a new extent
2434 * entry, try to see if there's adjacent free space in bitmap entries, and if
2435 * there is, migrate that space from the bitmaps to the extent.
2436 * Like this we get better chances of satisfying space allocation requests
2437 * because we attempt to satisfy them based on a single cache entry, and never
2438 * on 2 or more entries - even if the entries represent a contiguous free space
2439 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2442 static void steal_from_bitmap(struct btrfs_free_space_ctl
*ctl
,
2443 struct btrfs_free_space
*info
,
2447 * Only work with disconnected entries, as we can change their offset,
2448 * and must be extent entries.
2450 ASSERT(!info
->bitmap
);
2451 ASSERT(RB_EMPTY_NODE(&info
->offset_index
));
2453 if (ctl
->total_bitmaps
> 0) {
2455 bool stole_front
= false;
2457 stole_end
= steal_from_bitmap_to_end(ctl
, info
, update_stat
);
2458 if (ctl
->total_bitmaps
> 0)
2459 stole_front
= steal_from_bitmap_to_front(ctl
, info
,
2462 if (stole_end
|| stole_front
)
2463 try_merge_free_space(ctl
, info
, update_stat
);
2467 int __btrfs_add_free_space(struct btrfs_fs_info
*fs_info
,
2468 struct btrfs_free_space_ctl
*ctl
,
2469 u64 offset
, u64 bytes
,
2470 enum btrfs_trim_state trim_state
)
2472 struct btrfs_block_group
*block_group
= ctl
->private;
2473 struct btrfs_free_space
*info
;
2475 u64 filter_bytes
= bytes
;
2477 info
= kmem_cache_zalloc(btrfs_free_space_cachep
, GFP_NOFS
);
2481 info
->offset
= offset
;
2482 info
->bytes
= bytes
;
2483 info
->trim_state
= trim_state
;
2484 RB_CLEAR_NODE(&info
->offset_index
);
2486 spin_lock(&ctl
->tree_lock
);
2488 if (try_merge_free_space(ctl
, info
, true))
2492 * There was no extent directly to the left or right of this new
2493 * extent then we know we're going to have to allocate a new extent, so
2494 * before we do that see if we need to drop this into a bitmap
2496 ret
= insert_into_bitmap(ctl
, info
);
2505 * Only steal free space from adjacent bitmaps if we're sure we're not
2506 * going to add the new free space to existing bitmap entries - because
2507 * that would mean unnecessary work that would be reverted. Therefore
2508 * attempt to steal space from bitmaps if we're adding an extent entry.
2510 steal_from_bitmap(ctl
, info
, true);
2512 filter_bytes
= max(filter_bytes
, info
->bytes
);
2514 ret
= link_free_space(ctl
, info
);
2516 kmem_cache_free(btrfs_free_space_cachep
, info
);
2518 btrfs_discard_update_discardable(block_group
, ctl
);
2519 spin_unlock(&ctl
->tree_lock
);
2522 btrfs_crit(fs_info
, "unable to add free space :%d", ret
);
2523 ASSERT(ret
!= -EEXIST
);
2526 if (trim_state
!= BTRFS_TRIM_STATE_TRIMMED
) {
2527 btrfs_discard_check_filter(block_group
, filter_bytes
);
2528 btrfs_discard_queue_work(&fs_info
->discard_ctl
, block_group
);
2534 int btrfs_add_free_space(struct btrfs_block_group
*block_group
,
2535 u64 bytenr
, u64 size
)
2537 enum btrfs_trim_state trim_state
= BTRFS_TRIM_STATE_UNTRIMMED
;
2539 if (btrfs_test_opt(block_group
->fs_info
, DISCARD_SYNC
))
2540 trim_state
= BTRFS_TRIM_STATE_TRIMMED
;
2542 return __btrfs_add_free_space(block_group
->fs_info
,
2543 block_group
->free_space_ctl
,
2544 bytenr
, size
, trim_state
);
2548 * This is a subtle distinction because when adding free space back in general,
2549 * we want it to be added as untrimmed for async. But in the case where we add
2550 * it on loading of a block group, we want to consider it trimmed.
2552 int btrfs_add_free_space_async_trimmed(struct btrfs_block_group
*block_group
,
2553 u64 bytenr
, u64 size
)
2555 enum btrfs_trim_state trim_state
= BTRFS_TRIM_STATE_UNTRIMMED
;
2557 if (btrfs_test_opt(block_group
->fs_info
, DISCARD_SYNC
) ||
2558 btrfs_test_opt(block_group
->fs_info
, DISCARD_ASYNC
))
2559 trim_state
= BTRFS_TRIM_STATE_TRIMMED
;
2561 return __btrfs_add_free_space(block_group
->fs_info
,
2562 block_group
->free_space_ctl
,
2563 bytenr
, size
, trim_state
);
2566 int btrfs_remove_free_space(struct btrfs_block_group
*block_group
,
2567 u64 offset
, u64 bytes
)
2569 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2570 struct btrfs_free_space
*info
;
2572 bool re_search
= false;
2574 spin_lock(&ctl
->tree_lock
);
2581 info
= tree_search_offset(ctl
, offset
, 0, 0);
2584 * oops didn't find an extent that matched the space we wanted
2585 * to remove, look for a bitmap instead
2587 info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
2591 * If we found a partial bit of our free space in a
2592 * bitmap but then couldn't find the other part this may
2593 * be a problem, so WARN about it.
2601 if (!info
->bitmap
) {
2602 unlink_free_space(ctl
, info
);
2603 if (offset
== info
->offset
) {
2604 u64 to_free
= min(bytes
, info
->bytes
);
2606 info
->bytes
-= to_free
;
2607 info
->offset
+= to_free
;
2609 ret
= link_free_space(ctl
, info
);
2612 kmem_cache_free(btrfs_free_space_cachep
, info
);
2619 u64 old_end
= info
->bytes
+ info
->offset
;
2621 info
->bytes
= offset
- info
->offset
;
2622 ret
= link_free_space(ctl
, info
);
2627 /* Not enough bytes in this entry to satisfy us */
2628 if (old_end
< offset
+ bytes
) {
2629 bytes
-= old_end
- offset
;
2632 } else if (old_end
== offset
+ bytes
) {
2636 spin_unlock(&ctl
->tree_lock
);
2638 ret
= __btrfs_add_free_space(block_group
->fs_info
, ctl
,
2640 old_end
- (offset
+ bytes
),
2647 ret
= remove_from_bitmap(ctl
, info
, &offset
, &bytes
);
2648 if (ret
== -EAGAIN
) {
2653 btrfs_discard_update_discardable(block_group
, ctl
);
2654 spin_unlock(&ctl
->tree_lock
);
2659 void btrfs_dump_free_space(struct btrfs_block_group
*block_group
,
2662 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
2663 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2664 struct btrfs_free_space
*info
;
2668 spin_lock(&ctl
->tree_lock
);
2669 for (n
= rb_first(&ctl
->free_space_offset
); n
; n
= rb_next(n
)) {
2670 info
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
2671 if (info
->bytes
>= bytes
&& !block_group
->ro
)
2673 btrfs_crit(fs_info
, "entry offset %llu, bytes %llu, bitmap %s",
2674 info
->offset
, info
->bytes
,
2675 (info
->bitmap
) ? "yes" : "no");
2677 spin_unlock(&ctl
->tree_lock
);
2678 btrfs_info(fs_info
, "block group has cluster?: %s",
2679 list_empty(&block_group
->cluster_list
) ? "no" : "yes");
2681 "%d blocks of free space at or bigger than bytes is", count
);
2684 void btrfs_init_free_space_ctl(struct btrfs_block_group
*block_group
)
2686 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
2687 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2689 spin_lock_init(&ctl
->tree_lock
);
2690 ctl
->unit
= fs_info
->sectorsize
;
2691 ctl
->start
= block_group
->start
;
2692 ctl
->private = block_group
;
2693 ctl
->op
= &free_space_op
;
2694 INIT_LIST_HEAD(&ctl
->trimming_ranges
);
2695 mutex_init(&ctl
->cache_writeout_mutex
);
2698 * we only want to have 32k of ram per block group for keeping
2699 * track of free space, and if we pass 1/2 of that we want to
2700 * start converting things over to using bitmaps
2702 ctl
->extents_thresh
= (SZ_32K
/ 2) / sizeof(struct btrfs_free_space
);
2706 * for a given cluster, put all of its extents back into the free
2707 * space cache. If the block group passed doesn't match the block group
2708 * pointed to by the cluster, someone else raced in and freed the
2709 * cluster already. In that case, we just return without changing anything
2712 __btrfs_return_cluster_to_free_space(
2713 struct btrfs_block_group
*block_group
,
2714 struct btrfs_free_cluster
*cluster
)
2716 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2717 struct btrfs_free_space
*entry
;
2718 struct rb_node
*node
;
2720 spin_lock(&cluster
->lock
);
2721 if (cluster
->block_group
!= block_group
)
2724 cluster
->block_group
= NULL
;
2725 cluster
->window_start
= 0;
2726 list_del_init(&cluster
->block_group_list
);
2728 node
= rb_first(&cluster
->root
);
2732 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2733 node
= rb_next(&entry
->offset_index
);
2734 rb_erase(&entry
->offset_index
, &cluster
->root
);
2735 RB_CLEAR_NODE(&entry
->offset_index
);
2737 bitmap
= (entry
->bitmap
!= NULL
);
2739 /* Merging treats extents as if they were new */
2740 if (!btrfs_free_space_trimmed(entry
)) {
2741 ctl
->discardable_extents
[BTRFS_STAT_CURR
]--;
2742 ctl
->discardable_bytes
[BTRFS_STAT_CURR
] -=
2746 try_merge_free_space(ctl
, entry
, false);
2747 steal_from_bitmap(ctl
, entry
, false);
2749 /* As we insert directly, update these statistics */
2750 if (!btrfs_free_space_trimmed(entry
)) {
2751 ctl
->discardable_extents
[BTRFS_STAT_CURR
]++;
2752 ctl
->discardable_bytes
[BTRFS_STAT_CURR
] +=
2756 tree_insert_offset(&ctl
->free_space_offset
,
2757 entry
->offset
, &entry
->offset_index
, bitmap
);
2759 cluster
->root
= RB_ROOT
;
2762 spin_unlock(&cluster
->lock
);
2763 btrfs_put_block_group(block_group
);
2767 static void __btrfs_remove_free_space_cache_locked(
2768 struct btrfs_free_space_ctl
*ctl
)
2770 struct btrfs_free_space
*info
;
2771 struct rb_node
*node
;
2773 while ((node
= rb_last(&ctl
->free_space_offset
)) != NULL
) {
2774 info
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2775 if (!info
->bitmap
) {
2776 unlink_free_space(ctl
, info
);
2777 kmem_cache_free(btrfs_free_space_cachep
, info
);
2779 free_bitmap(ctl
, info
);
2782 cond_resched_lock(&ctl
->tree_lock
);
2786 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl
*ctl
)
2788 spin_lock(&ctl
->tree_lock
);
2789 __btrfs_remove_free_space_cache_locked(ctl
);
2791 btrfs_discard_update_discardable(ctl
->private, ctl
);
2792 spin_unlock(&ctl
->tree_lock
);
2795 void btrfs_remove_free_space_cache(struct btrfs_block_group
*block_group
)
2797 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2798 struct btrfs_free_cluster
*cluster
;
2799 struct list_head
*head
;
2801 spin_lock(&ctl
->tree_lock
);
2802 while ((head
= block_group
->cluster_list
.next
) !=
2803 &block_group
->cluster_list
) {
2804 cluster
= list_entry(head
, struct btrfs_free_cluster
,
2807 WARN_ON(cluster
->block_group
!= block_group
);
2808 __btrfs_return_cluster_to_free_space(block_group
, cluster
);
2810 cond_resched_lock(&ctl
->tree_lock
);
2812 __btrfs_remove_free_space_cache_locked(ctl
);
2813 btrfs_discard_update_discardable(block_group
, ctl
);
2814 spin_unlock(&ctl
->tree_lock
);
2819 * btrfs_is_free_space_trimmed - see if everything is trimmed
2820 * @block_group: block_group of interest
2822 * Walk @block_group's free space rb_tree to determine if everything is trimmed.
2824 bool btrfs_is_free_space_trimmed(struct btrfs_block_group
*block_group
)
2826 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2827 struct btrfs_free_space
*info
;
2828 struct rb_node
*node
;
2831 spin_lock(&ctl
->tree_lock
);
2832 node
= rb_first(&ctl
->free_space_offset
);
2835 info
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2837 if (!btrfs_free_space_trimmed(info
)) {
2842 node
= rb_next(node
);
2845 spin_unlock(&ctl
->tree_lock
);
2849 u64
btrfs_find_space_for_alloc(struct btrfs_block_group
*block_group
,
2850 u64 offset
, u64 bytes
, u64 empty_size
,
2851 u64
*max_extent_size
)
2853 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2854 struct btrfs_discard_ctl
*discard_ctl
=
2855 &block_group
->fs_info
->discard_ctl
;
2856 struct btrfs_free_space
*entry
= NULL
;
2857 u64 bytes_search
= bytes
+ empty_size
;
2860 u64 align_gap_len
= 0;
2861 enum btrfs_trim_state align_gap_trim_state
= BTRFS_TRIM_STATE_UNTRIMMED
;
2863 spin_lock(&ctl
->tree_lock
);
2864 entry
= find_free_space(ctl
, &offset
, &bytes_search
,
2865 block_group
->full_stripe_len
, max_extent_size
);
2870 if (entry
->bitmap
) {
2871 bitmap_clear_bits(ctl
, entry
, offset
, bytes
);
2873 if (!btrfs_free_space_trimmed(entry
))
2874 atomic64_add(bytes
, &discard_ctl
->discard_bytes_saved
);
2877 free_bitmap(ctl
, entry
);
2879 unlink_free_space(ctl
, entry
);
2880 align_gap_len
= offset
- entry
->offset
;
2881 align_gap
= entry
->offset
;
2882 align_gap_trim_state
= entry
->trim_state
;
2884 if (!btrfs_free_space_trimmed(entry
))
2885 atomic64_add(bytes
, &discard_ctl
->discard_bytes_saved
);
2887 entry
->offset
= offset
+ bytes
;
2888 WARN_ON(entry
->bytes
< bytes
+ align_gap_len
);
2890 entry
->bytes
-= bytes
+ align_gap_len
;
2892 kmem_cache_free(btrfs_free_space_cachep
, entry
);
2894 link_free_space(ctl
, entry
);
2897 btrfs_discard_update_discardable(block_group
, ctl
);
2898 spin_unlock(&ctl
->tree_lock
);
2901 __btrfs_add_free_space(block_group
->fs_info
, ctl
,
2902 align_gap
, align_gap_len
,
2903 align_gap_trim_state
);
2908 * given a cluster, put all of its extents back into the free space
2909 * cache. If a block group is passed, this function will only free
2910 * a cluster that belongs to the passed block group.
2912 * Otherwise, it'll get a reference on the block group pointed to by the
2913 * cluster and remove the cluster from it.
2915 int btrfs_return_cluster_to_free_space(
2916 struct btrfs_block_group
*block_group
,
2917 struct btrfs_free_cluster
*cluster
)
2919 struct btrfs_free_space_ctl
*ctl
;
2922 /* first, get a safe pointer to the block group */
2923 spin_lock(&cluster
->lock
);
2925 block_group
= cluster
->block_group
;
2927 spin_unlock(&cluster
->lock
);
2930 } else if (cluster
->block_group
!= block_group
) {
2931 /* someone else has already freed it don't redo their work */
2932 spin_unlock(&cluster
->lock
);
2935 atomic_inc(&block_group
->count
);
2936 spin_unlock(&cluster
->lock
);
2938 ctl
= block_group
->free_space_ctl
;
2940 /* now return any extents the cluster had on it */
2941 spin_lock(&ctl
->tree_lock
);
2942 ret
= __btrfs_return_cluster_to_free_space(block_group
, cluster
);
2943 spin_unlock(&ctl
->tree_lock
);
2945 btrfs_discard_queue_work(&block_group
->fs_info
->discard_ctl
, block_group
);
2947 /* finally drop our ref */
2948 btrfs_put_block_group(block_group
);
2952 static u64
btrfs_alloc_from_bitmap(struct btrfs_block_group
*block_group
,
2953 struct btrfs_free_cluster
*cluster
,
2954 struct btrfs_free_space
*entry
,
2955 u64 bytes
, u64 min_start
,
2956 u64
*max_extent_size
)
2958 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2960 u64 search_start
= cluster
->window_start
;
2961 u64 search_bytes
= bytes
;
2964 search_start
= min_start
;
2965 search_bytes
= bytes
;
2967 err
= search_bitmap(ctl
, entry
, &search_start
, &search_bytes
, true);
2969 *max_extent_size
= max(get_max_extent_size(entry
),
2975 __bitmap_clear_bits(ctl
, entry
, ret
, bytes
);
2981 * given a cluster, try to allocate 'bytes' from it, returns 0
2982 * if it couldn't find anything suitably large, or a logical disk offset
2983 * if things worked out
2985 u64
btrfs_alloc_from_cluster(struct btrfs_block_group
*block_group
,
2986 struct btrfs_free_cluster
*cluster
, u64 bytes
,
2987 u64 min_start
, u64
*max_extent_size
)
2989 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2990 struct btrfs_discard_ctl
*discard_ctl
=
2991 &block_group
->fs_info
->discard_ctl
;
2992 struct btrfs_free_space
*entry
= NULL
;
2993 struct rb_node
*node
;
2996 spin_lock(&cluster
->lock
);
2997 if (bytes
> cluster
->max_size
)
3000 if (cluster
->block_group
!= block_group
)
3003 node
= rb_first(&cluster
->root
);
3007 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
3009 if (entry
->bytes
< bytes
)
3010 *max_extent_size
= max(get_max_extent_size(entry
),
3013 if (entry
->bytes
< bytes
||
3014 (!entry
->bitmap
&& entry
->offset
< min_start
)) {
3015 node
= rb_next(&entry
->offset_index
);
3018 entry
= rb_entry(node
, struct btrfs_free_space
,
3023 if (entry
->bitmap
) {
3024 ret
= btrfs_alloc_from_bitmap(block_group
,
3025 cluster
, entry
, bytes
,
3026 cluster
->window_start
,
3029 node
= rb_next(&entry
->offset_index
);
3032 entry
= rb_entry(node
, struct btrfs_free_space
,
3036 cluster
->window_start
+= bytes
;
3038 ret
= entry
->offset
;
3040 entry
->offset
+= bytes
;
3041 entry
->bytes
-= bytes
;
3044 if (entry
->bytes
== 0)
3045 rb_erase(&entry
->offset_index
, &cluster
->root
);
3049 spin_unlock(&cluster
->lock
);
3054 spin_lock(&ctl
->tree_lock
);
3056 if (!btrfs_free_space_trimmed(entry
))
3057 atomic64_add(bytes
, &discard_ctl
->discard_bytes_saved
);
3059 ctl
->free_space
-= bytes
;
3060 if (!entry
->bitmap
&& !btrfs_free_space_trimmed(entry
))
3061 ctl
->discardable_bytes
[BTRFS_STAT_CURR
] -= bytes
;
3062 if (entry
->bytes
== 0) {
3063 ctl
->free_extents
--;
3064 if (entry
->bitmap
) {
3065 kmem_cache_free(btrfs_free_space_bitmap_cachep
,
3067 ctl
->total_bitmaps
--;
3068 ctl
->op
->recalc_thresholds(ctl
);
3069 } else if (!btrfs_free_space_trimmed(entry
)) {
3070 ctl
->discardable_extents
[BTRFS_STAT_CURR
]--;
3072 kmem_cache_free(btrfs_free_space_cachep
, entry
);
3075 spin_unlock(&ctl
->tree_lock
);
3080 static int btrfs_bitmap_cluster(struct btrfs_block_group
*block_group
,
3081 struct btrfs_free_space
*entry
,
3082 struct btrfs_free_cluster
*cluster
,
3083 u64 offset
, u64 bytes
,
3084 u64 cont1_bytes
, u64 min_bytes
)
3086 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
3087 unsigned long next_zero
;
3089 unsigned long want_bits
;
3090 unsigned long min_bits
;
3091 unsigned long found_bits
;
3092 unsigned long max_bits
= 0;
3093 unsigned long start
= 0;
3094 unsigned long total_found
= 0;
3097 i
= offset_to_bit(entry
->offset
, ctl
->unit
,
3098 max_t(u64
, offset
, entry
->offset
));
3099 want_bits
= bytes_to_bits(bytes
, ctl
->unit
);
3100 min_bits
= bytes_to_bits(min_bytes
, ctl
->unit
);
3103 * Don't bother looking for a cluster in this bitmap if it's heavily
3106 if (entry
->max_extent_size
&&
3107 entry
->max_extent_size
< cont1_bytes
)
3111 for_each_set_bit_from(i
, entry
->bitmap
, BITS_PER_BITMAP
) {
3112 next_zero
= find_next_zero_bit(entry
->bitmap
,
3113 BITS_PER_BITMAP
, i
);
3114 if (next_zero
- i
>= min_bits
) {
3115 found_bits
= next_zero
- i
;
3116 if (found_bits
> max_bits
)
3117 max_bits
= found_bits
;
3120 if (next_zero
- i
> max_bits
)
3121 max_bits
= next_zero
- i
;
3126 entry
->max_extent_size
= (u64
)max_bits
* ctl
->unit
;
3132 cluster
->max_size
= 0;
3135 total_found
+= found_bits
;
3137 if (cluster
->max_size
< found_bits
* ctl
->unit
)
3138 cluster
->max_size
= found_bits
* ctl
->unit
;
3140 if (total_found
< want_bits
|| cluster
->max_size
< cont1_bytes
) {
3145 cluster
->window_start
= start
* ctl
->unit
+ entry
->offset
;
3146 rb_erase(&entry
->offset_index
, &ctl
->free_space_offset
);
3147 ret
= tree_insert_offset(&cluster
->root
, entry
->offset
,
3148 &entry
->offset_index
, 1);
3149 ASSERT(!ret
); /* -EEXIST; Logic error */
3151 trace_btrfs_setup_cluster(block_group
, cluster
,
3152 total_found
* ctl
->unit
, 1);
3157 * This searches the block group for just extents to fill the cluster with.
3158 * Try to find a cluster with at least bytes total bytes, at least one
3159 * extent of cont1_bytes, and other clusters of at least min_bytes.
3162 setup_cluster_no_bitmap(struct btrfs_block_group
*block_group
,
3163 struct btrfs_free_cluster
*cluster
,
3164 struct list_head
*bitmaps
, u64 offset
, u64 bytes
,
3165 u64 cont1_bytes
, u64 min_bytes
)
3167 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
3168 struct btrfs_free_space
*first
= NULL
;
3169 struct btrfs_free_space
*entry
= NULL
;
3170 struct btrfs_free_space
*last
;
3171 struct rb_node
*node
;
3176 entry
= tree_search_offset(ctl
, offset
, 0, 1);
3181 * We don't want bitmaps, so just move along until we find a normal
3184 while (entry
->bitmap
|| entry
->bytes
< min_bytes
) {
3185 if (entry
->bitmap
&& list_empty(&entry
->list
))
3186 list_add_tail(&entry
->list
, bitmaps
);
3187 node
= rb_next(&entry
->offset_index
);
3190 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
3193 window_free
= entry
->bytes
;
3194 max_extent
= entry
->bytes
;
3198 for (node
= rb_next(&entry
->offset_index
); node
;
3199 node
= rb_next(&entry
->offset_index
)) {
3200 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
3202 if (entry
->bitmap
) {
3203 if (list_empty(&entry
->list
))
3204 list_add_tail(&entry
->list
, bitmaps
);
3208 if (entry
->bytes
< min_bytes
)
3212 window_free
+= entry
->bytes
;
3213 if (entry
->bytes
> max_extent
)
3214 max_extent
= entry
->bytes
;
3217 if (window_free
< bytes
|| max_extent
< cont1_bytes
)
3220 cluster
->window_start
= first
->offset
;
3222 node
= &first
->offset_index
;
3225 * now we've found our entries, pull them out of the free space
3226 * cache and put them into the cluster rbtree
3231 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
3232 node
= rb_next(&entry
->offset_index
);
3233 if (entry
->bitmap
|| entry
->bytes
< min_bytes
)
3236 rb_erase(&entry
->offset_index
, &ctl
->free_space_offset
);
3237 ret
= tree_insert_offset(&cluster
->root
, entry
->offset
,
3238 &entry
->offset_index
, 0);
3239 total_size
+= entry
->bytes
;
3240 ASSERT(!ret
); /* -EEXIST; Logic error */
3241 } while (node
&& entry
!= last
);
3243 cluster
->max_size
= max_extent
;
3244 trace_btrfs_setup_cluster(block_group
, cluster
, total_size
, 0);
3249 * This specifically looks for bitmaps that may work in the cluster, we assume
3250 * that we have already failed to find extents that will work.
3253 setup_cluster_bitmap(struct btrfs_block_group
*block_group
,
3254 struct btrfs_free_cluster
*cluster
,
3255 struct list_head
*bitmaps
, u64 offset
, u64 bytes
,
3256 u64 cont1_bytes
, u64 min_bytes
)
3258 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
3259 struct btrfs_free_space
*entry
= NULL
;
3261 u64 bitmap_offset
= offset_to_bitmap(ctl
, offset
);
3263 if (ctl
->total_bitmaps
== 0)
3267 * The bitmap that covers offset won't be in the list unless offset
3268 * is just its start offset.
3270 if (!list_empty(bitmaps
))
3271 entry
= list_first_entry(bitmaps
, struct btrfs_free_space
, list
);
3273 if (!entry
|| entry
->offset
!= bitmap_offset
) {
3274 entry
= tree_search_offset(ctl
, bitmap_offset
, 1, 0);
3275 if (entry
&& list_empty(&entry
->list
))
3276 list_add(&entry
->list
, bitmaps
);
3279 list_for_each_entry(entry
, bitmaps
, list
) {
3280 if (entry
->bytes
< bytes
)
3282 ret
= btrfs_bitmap_cluster(block_group
, entry
, cluster
, offset
,
3283 bytes
, cont1_bytes
, min_bytes
);
3289 * The bitmaps list has all the bitmaps that record free space
3290 * starting after offset, so no more search is required.
3296 * here we try to find a cluster of blocks in a block group. The goal
3297 * is to find at least bytes+empty_size.
3298 * We might not find them all in one contiguous area.
3300 * returns zero and sets up cluster if things worked out, otherwise
3301 * it returns -enospc
3303 int btrfs_find_space_cluster(struct btrfs_block_group
*block_group
,
3304 struct btrfs_free_cluster
*cluster
,
3305 u64 offset
, u64 bytes
, u64 empty_size
)
3307 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
3308 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
3309 struct btrfs_free_space
*entry
, *tmp
;
3316 * Choose the minimum extent size we'll require for this
3317 * cluster. For SSD_SPREAD, don't allow any fragmentation.
3318 * For metadata, allow allocates with smaller extents. For
3319 * data, keep it dense.
3321 if (btrfs_test_opt(fs_info
, SSD_SPREAD
)) {
3322 cont1_bytes
= min_bytes
= bytes
+ empty_size
;
3323 } else if (block_group
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
3324 cont1_bytes
= bytes
;
3325 min_bytes
= fs_info
->sectorsize
;
3327 cont1_bytes
= max(bytes
, (bytes
+ empty_size
) >> 2);
3328 min_bytes
= fs_info
->sectorsize
;
3331 spin_lock(&ctl
->tree_lock
);
3334 * If we know we don't have enough space to make a cluster don't even
3335 * bother doing all the work to try and find one.
3337 if (ctl
->free_space
< bytes
) {
3338 spin_unlock(&ctl
->tree_lock
);
3342 spin_lock(&cluster
->lock
);
3344 /* someone already found a cluster, hooray */
3345 if (cluster
->block_group
) {
3350 trace_btrfs_find_cluster(block_group
, offset
, bytes
, empty_size
,
3353 ret
= setup_cluster_no_bitmap(block_group
, cluster
, &bitmaps
, offset
,
3355 cont1_bytes
, min_bytes
);
3357 ret
= setup_cluster_bitmap(block_group
, cluster
, &bitmaps
,
3358 offset
, bytes
+ empty_size
,
3359 cont1_bytes
, min_bytes
);
3361 /* Clear our temporary list */
3362 list_for_each_entry_safe(entry
, tmp
, &bitmaps
, list
)
3363 list_del_init(&entry
->list
);
3366 atomic_inc(&block_group
->count
);
3367 list_add_tail(&cluster
->block_group_list
,
3368 &block_group
->cluster_list
);
3369 cluster
->block_group
= block_group
;
3371 trace_btrfs_failed_cluster_setup(block_group
);
3374 spin_unlock(&cluster
->lock
);
3375 spin_unlock(&ctl
->tree_lock
);
3381 * simple code to zero out a cluster
3383 void btrfs_init_free_cluster(struct btrfs_free_cluster
*cluster
)
3385 spin_lock_init(&cluster
->lock
);
3386 spin_lock_init(&cluster
->refill_lock
);
3387 cluster
->root
= RB_ROOT
;
3388 cluster
->max_size
= 0;
3389 cluster
->fragmented
= false;
3390 INIT_LIST_HEAD(&cluster
->block_group_list
);
3391 cluster
->block_group
= NULL
;
3394 static int do_trimming(struct btrfs_block_group
*block_group
,
3395 u64
*total_trimmed
, u64 start
, u64 bytes
,
3396 u64 reserved_start
, u64 reserved_bytes
,
3397 enum btrfs_trim_state reserved_trim_state
,
3398 struct btrfs_trim_range
*trim_entry
)
3400 struct btrfs_space_info
*space_info
= block_group
->space_info
;
3401 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
3402 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
3405 const u64 end
= start
+ bytes
;
3406 const u64 reserved_end
= reserved_start
+ reserved_bytes
;
3407 enum btrfs_trim_state trim_state
= BTRFS_TRIM_STATE_UNTRIMMED
;
3410 spin_lock(&space_info
->lock
);
3411 spin_lock(&block_group
->lock
);
3412 if (!block_group
->ro
) {
3413 block_group
->reserved
+= reserved_bytes
;
3414 space_info
->bytes_reserved
+= reserved_bytes
;
3417 spin_unlock(&block_group
->lock
);
3418 spin_unlock(&space_info
->lock
);
3420 ret
= btrfs_discard_extent(fs_info
, start
, bytes
, &trimmed
);
3422 *total_trimmed
+= trimmed
;
3423 trim_state
= BTRFS_TRIM_STATE_TRIMMED
;
3426 mutex_lock(&ctl
->cache_writeout_mutex
);
3427 if (reserved_start
< start
)
3428 __btrfs_add_free_space(fs_info
, ctl
, reserved_start
,
3429 start
- reserved_start
,
3430 reserved_trim_state
);
3431 if (start
+ bytes
< reserved_start
+ reserved_bytes
)
3432 __btrfs_add_free_space(fs_info
, ctl
, end
, reserved_end
- end
,
3433 reserved_trim_state
);
3434 __btrfs_add_free_space(fs_info
, ctl
, start
, bytes
, trim_state
);
3435 list_del(&trim_entry
->list
);
3436 mutex_unlock(&ctl
->cache_writeout_mutex
);
3439 spin_lock(&space_info
->lock
);
3440 spin_lock(&block_group
->lock
);
3441 if (block_group
->ro
)
3442 space_info
->bytes_readonly
+= reserved_bytes
;
3443 block_group
->reserved
-= reserved_bytes
;
3444 space_info
->bytes_reserved
-= reserved_bytes
;
3445 spin_unlock(&block_group
->lock
);
3446 spin_unlock(&space_info
->lock
);
3453 * If @async is set, then we will trim 1 region and return.
3455 static int trim_no_bitmap(struct btrfs_block_group
*block_group
,
3456 u64
*total_trimmed
, u64 start
, u64 end
, u64 minlen
,
3459 struct btrfs_discard_ctl
*discard_ctl
=
3460 &block_group
->fs_info
->discard_ctl
;
3461 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
3462 struct btrfs_free_space
*entry
;
3463 struct rb_node
*node
;
3467 enum btrfs_trim_state extent_trim_state
;
3469 const u64 max_discard_size
= READ_ONCE(discard_ctl
->max_discard_size
);
3471 while (start
< end
) {
3472 struct btrfs_trim_range trim_entry
;
3474 mutex_lock(&ctl
->cache_writeout_mutex
);
3475 spin_lock(&ctl
->tree_lock
);
3477 if (ctl
->free_space
< minlen
)
3480 entry
= tree_search_offset(ctl
, start
, 0, 1);
3484 /* Skip bitmaps and if async, already trimmed entries */
3485 while (entry
->bitmap
||
3486 (async
&& btrfs_free_space_trimmed(entry
))) {
3487 node
= rb_next(&entry
->offset_index
);
3490 entry
= rb_entry(node
, struct btrfs_free_space
,
3494 if (entry
->offset
>= end
)
3497 extent_start
= entry
->offset
;
3498 extent_bytes
= entry
->bytes
;
3499 extent_trim_state
= entry
->trim_state
;
3501 start
= entry
->offset
;
3502 bytes
= entry
->bytes
;
3503 if (bytes
< minlen
) {
3504 spin_unlock(&ctl
->tree_lock
);
3505 mutex_unlock(&ctl
->cache_writeout_mutex
);
3508 unlink_free_space(ctl
, entry
);
3510 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3511 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3512 * X when we come back around. So trim it now.
3514 if (max_discard_size
&&
3515 bytes
>= (max_discard_size
+
3516 BTRFS_ASYNC_DISCARD_MIN_FILTER
)) {
3517 bytes
= max_discard_size
;
3518 extent_bytes
= max_discard_size
;
3519 entry
->offset
+= max_discard_size
;
3520 entry
->bytes
-= max_discard_size
;
3521 link_free_space(ctl
, entry
);
3523 kmem_cache_free(btrfs_free_space_cachep
, entry
);
3526 start
= max(start
, extent_start
);
3527 bytes
= min(extent_start
+ extent_bytes
, end
) - start
;
3528 if (bytes
< minlen
) {
3529 spin_unlock(&ctl
->tree_lock
);
3530 mutex_unlock(&ctl
->cache_writeout_mutex
);
3534 unlink_free_space(ctl
, entry
);
3535 kmem_cache_free(btrfs_free_space_cachep
, entry
);
3538 spin_unlock(&ctl
->tree_lock
);
3539 trim_entry
.start
= extent_start
;
3540 trim_entry
.bytes
= extent_bytes
;
3541 list_add_tail(&trim_entry
.list
, &ctl
->trimming_ranges
);
3542 mutex_unlock(&ctl
->cache_writeout_mutex
);
3544 ret
= do_trimming(block_group
, total_trimmed
, start
, bytes
,
3545 extent_start
, extent_bytes
, extent_trim_state
,
3548 block_group
->discard_cursor
= start
+ bytes
;
3553 block_group
->discard_cursor
= start
;
3554 if (async
&& *total_trimmed
)
3557 if (fatal_signal_pending(current
)) {
3568 block_group
->discard_cursor
= btrfs_block_group_end(block_group
);
3569 spin_unlock(&ctl
->tree_lock
);
3570 mutex_unlock(&ctl
->cache_writeout_mutex
);
3576 * If we break out of trimming a bitmap prematurely, we should reset the
3577 * trimming bit. In a rather contrieved case, it's possible to race here so
3578 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3580 * start = start of bitmap
3581 * end = near end of bitmap
3583 * Thread 1: Thread 2:
3584 * trim_bitmaps(start)
3586 * end_trimming_bitmap()
3587 * reset_trimming_bitmap()
3589 static void reset_trimming_bitmap(struct btrfs_free_space_ctl
*ctl
, u64 offset
)
3591 struct btrfs_free_space
*entry
;
3593 spin_lock(&ctl
->tree_lock
);
3594 entry
= tree_search_offset(ctl
, offset
, 1, 0);
3596 if (btrfs_free_space_trimmed(entry
)) {
3597 ctl
->discardable_extents
[BTRFS_STAT_CURR
] +=
3598 entry
->bitmap_extents
;
3599 ctl
->discardable_bytes
[BTRFS_STAT_CURR
] += entry
->bytes
;
3601 entry
->trim_state
= BTRFS_TRIM_STATE_UNTRIMMED
;
3604 spin_unlock(&ctl
->tree_lock
);
3607 static void end_trimming_bitmap(struct btrfs_free_space_ctl
*ctl
,
3608 struct btrfs_free_space
*entry
)
3610 if (btrfs_free_space_trimming_bitmap(entry
)) {
3611 entry
->trim_state
= BTRFS_TRIM_STATE_TRIMMED
;
3612 ctl
->discardable_extents
[BTRFS_STAT_CURR
] -=
3613 entry
->bitmap_extents
;
3614 ctl
->discardable_bytes
[BTRFS_STAT_CURR
] -= entry
->bytes
;
3619 * If @async is set, then we will trim 1 region and return.
3621 static int trim_bitmaps(struct btrfs_block_group
*block_group
,
3622 u64
*total_trimmed
, u64 start
, u64 end
, u64 minlen
,
3623 u64 maxlen
, bool async
)
3625 struct btrfs_discard_ctl
*discard_ctl
=
3626 &block_group
->fs_info
->discard_ctl
;
3627 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
3628 struct btrfs_free_space
*entry
;
3632 u64 offset
= offset_to_bitmap(ctl
, start
);
3633 const u64 max_discard_size
= READ_ONCE(discard_ctl
->max_discard_size
);
3635 while (offset
< end
) {
3636 bool next_bitmap
= false;
3637 struct btrfs_trim_range trim_entry
;
3639 mutex_lock(&ctl
->cache_writeout_mutex
);
3640 spin_lock(&ctl
->tree_lock
);
3642 if (ctl
->free_space
< minlen
) {
3643 block_group
->discard_cursor
=
3644 btrfs_block_group_end(block_group
);
3645 spin_unlock(&ctl
->tree_lock
);
3646 mutex_unlock(&ctl
->cache_writeout_mutex
);
3650 entry
= tree_search_offset(ctl
, offset
, 1, 0);
3652 * Bitmaps are marked trimmed lossily now to prevent constant
3653 * discarding of the same bitmap (the reason why we are bound
3654 * by the filters). So, retrim the block group bitmaps when we
3655 * are preparing to punt to the unused_bgs list. This uses
3656 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3657 * which is the only discard index which sets minlen to 0.
3659 if (!entry
|| (async
&& minlen
&& start
== offset
&&
3660 btrfs_free_space_trimmed(entry
))) {
3661 spin_unlock(&ctl
->tree_lock
);
3662 mutex_unlock(&ctl
->cache_writeout_mutex
);
3668 * Async discard bitmap trimming begins at by setting the start
3669 * to be key.objectid and the offset_to_bitmap() aligns to the
3670 * start of the bitmap. This lets us know we are fully
3671 * scanning the bitmap rather than only some portion of it.
3673 if (start
== offset
)
3674 entry
->trim_state
= BTRFS_TRIM_STATE_TRIMMING
;
3677 ret2
= search_bitmap(ctl
, entry
, &start
, &bytes
, false);
3678 if (ret2
|| start
>= end
) {
3680 * We lossily consider a bitmap trimmed if we only skip
3681 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3683 if (ret2
&& minlen
<= BTRFS_ASYNC_DISCARD_MIN_FILTER
)
3684 end_trimming_bitmap(ctl
, entry
);
3686 entry
->trim_state
= BTRFS_TRIM_STATE_UNTRIMMED
;
3687 spin_unlock(&ctl
->tree_lock
);
3688 mutex_unlock(&ctl
->cache_writeout_mutex
);
3694 * We already trimmed a region, but are using the locking above
3695 * to reset the trim_state.
3697 if (async
&& *total_trimmed
) {
3698 spin_unlock(&ctl
->tree_lock
);
3699 mutex_unlock(&ctl
->cache_writeout_mutex
);
3703 bytes
= min(bytes
, end
- start
);
3704 if (bytes
< minlen
|| (async
&& maxlen
&& bytes
> maxlen
)) {
3705 spin_unlock(&ctl
->tree_lock
);
3706 mutex_unlock(&ctl
->cache_writeout_mutex
);
3711 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3712 * If X < @minlen, we won't trim X when we come back around.
3713 * So trim it now. We differ here from trimming extents as we
3714 * don't keep individual state per bit.
3718 bytes
> (max_discard_size
+ minlen
))
3719 bytes
= max_discard_size
;
3721 bitmap_clear_bits(ctl
, entry
, start
, bytes
);
3722 if (entry
->bytes
== 0)
3723 free_bitmap(ctl
, entry
);
3725 spin_unlock(&ctl
->tree_lock
);
3726 trim_entry
.start
= start
;
3727 trim_entry
.bytes
= bytes
;
3728 list_add_tail(&trim_entry
.list
, &ctl
->trimming_ranges
);
3729 mutex_unlock(&ctl
->cache_writeout_mutex
);
3731 ret
= do_trimming(block_group
, total_trimmed
, start
, bytes
,
3732 start
, bytes
, 0, &trim_entry
);
3734 reset_trimming_bitmap(ctl
, offset
);
3735 block_group
->discard_cursor
=
3736 btrfs_block_group_end(block_group
);
3741 offset
+= BITS_PER_BITMAP
* ctl
->unit
;
3746 block_group
->discard_cursor
= start
;
3748 if (fatal_signal_pending(current
)) {
3749 if (start
!= offset
)
3750 reset_trimming_bitmap(ctl
, offset
);
3759 block_group
->discard_cursor
= end
;
3765 void btrfs_get_block_group_trimming(struct btrfs_block_group
*cache
)
3767 atomic_inc(&cache
->trimming
);
3770 void btrfs_put_block_group_trimming(struct btrfs_block_group
*block_group
)
3772 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
3773 struct extent_map_tree
*em_tree
;
3774 struct extent_map
*em
;
3777 spin_lock(&block_group
->lock
);
3778 cleanup
= (atomic_dec_and_test(&block_group
->trimming
) &&
3779 block_group
->removed
);
3780 spin_unlock(&block_group
->lock
);
3783 mutex_lock(&fs_info
->chunk_mutex
);
3784 em_tree
= &fs_info
->mapping_tree
;
3785 write_lock(&em_tree
->lock
);
3786 em
= lookup_extent_mapping(em_tree
, block_group
->start
,
3788 BUG_ON(!em
); /* logic error, can't happen */
3789 remove_extent_mapping(em_tree
, em
);
3790 write_unlock(&em_tree
->lock
);
3791 mutex_unlock(&fs_info
->chunk_mutex
);
3793 /* once for us and once for the tree */
3794 free_extent_map(em
);
3795 free_extent_map(em
);
3798 * We've left one free space entry and other tasks trimming
3799 * this block group have left 1 entry each one. Free them.
3801 __btrfs_remove_free_space_cache(block_group
->free_space_ctl
);
3805 int btrfs_trim_block_group(struct btrfs_block_group
*block_group
,
3806 u64
*trimmed
, u64 start
, u64 end
, u64 minlen
)
3808 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
3814 spin_lock(&block_group
->lock
);
3815 if (block_group
->removed
) {
3816 spin_unlock(&block_group
->lock
);
3819 btrfs_get_block_group_trimming(block_group
);
3820 spin_unlock(&block_group
->lock
);
3822 ret
= trim_no_bitmap(block_group
, trimmed
, start
, end
, minlen
, false);
3826 ret
= trim_bitmaps(block_group
, trimmed
, start
, end
, minlen
, 0, false);
3827 div64_u64_rem(end
, BITS_PER_BITMAP
* ctl
->unit
, &rem
);
3828 /* If we ended in the middle of a bitmap, reset the trimming flag */
3830 reset_trimming_bitmap(ctl
, offset_to_bitmap(ctl
, end
));
3832 btrfs_put_block_group_trimming(block_group
);
3836 int btrfs_trim_block_group_extents(struct btrfs_block_group
*block_group
,
3837 u64
*trimmed
, u64 start
, u64 end
, u64 minlen
,
3844 spin_lock(&block_group
->lock
);
3845 if (block_group
->removed
) {
3846 spin_unlock(&block_group
->lock
);
3849 btrfs_get_block_group_trimming(block_group
);
3850 spin_unlock(&block_group
->lock
);
3852 ret
= trim_no_bitmap(block_group
, trimmed
, start
, end
, minlen
, async
);
3853 btrfs_put_block_group_trimming(block_group
);
3858 int btrfs_trim_block_group_bitmaps(struct btrfs_block_group
*block_group
,
3859 u64
*trimmed
, u64 start
, u64 end
, u64 minlen
,
3860 u64 maxlen
, bool async
)
3866 spin_lock(&block_group
->lock
);
3867 if (block_group
->removed
) {
3868 spin_unlock(&block_group
->lock
);
3871 btrfs_get_block_group_trimming(block_group
);
3872 spin_unlock(&block_group
->lock
);
3874 ret
= trim_bitmaps(block_group
, trimmed
, start
, end
, minlen
, maxlen
,
3877 btrfs_put_block_group_trimming(block_group
);
3883 * Find the left-most item in the cache tree, and then return the
3884 * smallest inode number in the item.
3886 * Note: the returned inode number may not be the smallest one in
3887 * the tree, if the left-most item is a bitmap.
3889 u64
btrfs_find_ino_for_alloc(struct btrfs_root
*fs_root
)
3891 struct btrfs_free_space_ctl
*ctl
= fs_root
->free_ino_ctl
;
3892 struct btrfs_free_space
*entry
= NULL
;
3895 spin_lock(&ctl
->tree_lock
);
3897 if (RB_EMPTY_ROOT(&ctl
->free_space_offset
))
3900 entry
= rb_entry(rb_first(&ctl
->free_space_offset
),
3901 struct btrfs_free_space
, offset_index
);
3903 if (!entry
->bitmap
) {
3904 ino
= entry
->offset
;
3906 unlink_free_space(ctl
, entry
);
3910 kmem_cache_free(btrfs_free_space_cachep
, entry
);
3912 link_free_space(ctl
, entry
);
3918 ret
= search_bitmap(ctl
, entry
, &offset
, &count
, true);
3919 /* Logic error; Should be empty if it can't find anything */
3923 bitmap_clear_bits(ctl
, entry
, offset
, 1);
3924 if (entry
->bytes
== 0)
3925 free_bitmap(ctl
, entry
);
3928 spin_unlock(&ctl
->tree_lock
);
3933 struct inode
*lookup_free_ino_inode(struct btrfs_root
*root
,
3934 struct btrfs_path
*path
)
3936 struct inode
*inode
= NULL
;
3938 spin_lock(&root
->ino_cache_lock
);
3939 if (root
->ino_cache_inode
)
3940 inode
= igrab(root
->ino_cache_inode
);
3941 spin_unlock(&root
->ino_cache_lock
);
3945 inode
= __lookup_free_space_inode(root
, path
, 0);
3949 spin_lock(&root
->ino_cache_lock
);
3950 if (!btrfs_fs_closing(root
->fs_info
))
3951 root
->ino_cache_inode
= igrab(inode
);
3952 spin_unlock(&root
->ino_cache_lock
);
3957 int create_free_ino_inode(struct btrfs_root
*root
,
3958 struct btrfs_trans_handle
*trans
,
3959 struct btrfs_path
*path
)
3961 return __create_free_space_inode(root
, trans
, path
,
3962 BTRFS_FREE_INO_OBJECTID
, 0);
3965 int load_free_ino_cache(struct btrfs_fs_info
*fs_info
, struct btrfs_root
*root
)
3967 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
3968 struct btrfs_path
*path
;
3969 struct inode
*inode
;
3971 u64 root_gen
= btrfs_root_generation(&root
->root_item
);
3973 if (!btrfs_test_opt(fs_info
, INODE_MAP_CACHE
))
3977 * If we're unmounting then just return, since this does a search on the
3978 * normal root and not the commit root and we could deadlock.
3980 if (btrfs_fs_closing(fs_info
))
3983 path
= btrfs_alloc_path();
3987 inode
= lookup_free_ino_inode(root
, path
);
3991 if (root_gen
!= BTRFS_I(inode
)->generation
)
3994 ret
= __load_free_space_cache(root
, inode
, ctl
, path
, 0);
3998 "failed to load free ino cache for root %llu",
3999 root
->root_key
.objectid
);
4003 btrfs_free_path(path
);
4007 int btrfs_write_out_ino_cache(struct btrfs_root
*root
,
4008 struct btrfs_trans_handle
*trans
,
4009 struct btrfs_path
*path
,
4010 struct inode
*inode
)
4012 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4013 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
4015 struct btrfs_io_ctl io_ctl
;
4016 bool release_metadata
= true;
4018 if (!btrfs_test_opt(fs_info
, INODE_MAP_CACHE
))
4021 memset(&io_ctl
, 0, sizeof(io_ctl
));
4022 ret
= __btrfs_write_out_cache(root
, inode
, ctl
, NULL
, &io_ctl
, trans
);
4025 * At this point writepages() didn't error out, so our metadata
4026 * reservation is released when the writeback finishes, at
4027 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
4028 * with or without an error.
4030 release_metadata
= false;
4031 ret
= btrfs_wait_cache_io_root(root
, trans
, &io_ctl
, path
);
4035 if (release_metadata
)
4036 btrfs_delalloc_release_metadata(BTRFS_I(inode
),
4037 inode
->i_size
, true);
4038 #ifdef CONFIG_BTRFS_DEBUG
4040 "failed to write free ino cache for root %llu",
4041 root
->root_key
.objectid
);
4048 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4050 * Use this if you need to make a bitmap or extent entry specifically, it
4051 * doesn't do any of the merging that add_free_space does, this acts a lot like
4052 * how the free space cache loading stuff works, so you can get really weird
4055 int test_add_free_space_entry(struct btrfs_block_group
*cache
,
4056 u64 offset
, u64 bytes
, bool bitmap
)
4058 struct btrfs_free_space_ctl
*ctl
= cache
->free_space_ctl
;
4059 struct btrfs_free_space
*info
= NULL
, *bitmap_info
;
4061 enum btrfs_trim_state trim_state
= BTRFS_TRIM_STATE_TRIMMED
;
4067 info
= kmem_cache_zalloc(btrfs_free_space_cachep
, GFP_NOFS
);
4073 spin_lock(&ctl
->tree_lock
);
4074 info
->offset
= offset
;
4075 info
->bytes
= bytes
;
4076 info
->max_extent_size
= 0;
4077 ret
= link_free_space(ctl
, info
);
4078 spin_unlock(&ctl
->tree_lock
);
4080 kmem_cache_free(btrfs_free_space_cachep
, info
);
4085 map
= kmem_cache_zalloc(btrfs_free_space_bitmap_cachep
, GFP_NOFS
);
4087 kmem_cache_free(btrfs_free_space_cachep
, info
);
4092 spin_lock(&ctl
->tree_lock
);
4093 bitmap_info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
4098 add_new_bitmap(ctl
, info
, offset
);
4103 bytes_added
= add_bytes_to_bitmap(ctl
, bitmap_info
, offset
, bytes
,
4106 bytes
-= bytes_added
;
4107 offset
+= bytes_added
;
4108 spin_unlock(&ctl
->tree_lock
);
4114 kmem_cache_free(btrfs_free_space_cachep
, info
);
4116 kmem_cache_free(btrfs_free_space_bitmap_cachep
, map
);
4121 * Checks to see if the given range is in the free space cache. This is really
4122 * just used to check the absence of space, so if there is free space in the
4123 * range at all we will return 1.
4125 int test_check_exists(struct btrfs_block_group
*cache
,
4126 u64 offset
, u64 bytes
)
4128 struct btrfs_free_space_ctl
*ctl
= cache
->free_space_ctl
;
4129 struct btrfs_free_space
*info
;
4132 spin_lock(&ctl
->tree_lock
);
4133 info
= tree_search_offset(ctl
, offset
, 0, 0);
4135 info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
4143 u64 bit_off
, bit_bytes
;
4145 struct btrfs_free_space
*tmp
;
4148 bit_bytes
= ctl
->unit
;
4149 ret
= search_bitmap(ctl
, info
, &bit_off
, &bit_bytes
, false);
4151 if (bit_off
== offset
) {
4154 } else if (bit_off
> offset
&&
4155 offset
+ bytes
> bit_off
) {
4161 n
= rb_prev(&info
->offset_index
);
4163 tmp
= rb_entry(n
, struct btrfs_free_space
,
4165 if (tmp
->offset
+ tmp
->bytes
< offset
)
4167 if (offset
+ bytes
< tmp
->offset
) {
4168 n
= rb_prev(&tmp
->offset_index
);
4175 n
= rb_next(&info
->offset_index
);
4177 tmp
= rb_entry(n
, struct btrfs_free_space
,
4179 if (offset
+ bytes
< tmp
->offset
)
4181 if (tmp
->offset
+ tmp
->bytes
< offset
) {
4182 n
= rb_next(&tmp
->offset_index
);
4193 if (info
->offset
== offset
) {
4198 if (offset
> info
->offset
&& offset
< info
->offset
+ info
->bytes
)
4201 spin_unlock(&ctl
->tree_lock
);
4204 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */