1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/kernel.h>
8 #include <linux/file.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
32 #include "transaction.h"
33 #include "btrfs_inode.h"
34 #include "print-tree.h"
37 #include "inode-map.h"
39 #include "rcu-string.h"
41 #include "dev-replace.h"
46 #include "compression.h"
47 #include "space-info.h"
48 #include "delalloc-space.h"
49 #include "block-group.h"
52 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
53 * structures are incorrect, as the timespec structure from userspace
54 * is 4 bytes too small. We define these alternatives here to teach
55 * the kernel about the 32-bit struct packing.
57 struct btrfs_ioctl_timespec_32
{
60 } __attribute__ ((__packed__
));
62 struct btrfs_ioctl_received_subvol_args_32
{
63 char uuid
[BTRFS_UUID_SIZE
]; /* in */
64 __u64 stransid
; /* in */
65 __u64 rtransid
; /* out */
66 struct btrfs_ioctl_timespec_32 stime
; /* in */
67 struct btrfs_ioctl_timespec_32 rtime
; /* out */
69 __u64 reserved
[16]; /* in */
70 } __attribute__ ((__packed__
));
72 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
73 struct btrfs_ioctl_received_subvol_args_32)
76 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
77 struct btrfs_ioctl_send_args_32
{
78 __s64 send_fd
; /* in */
79 __u64 clone_sources_count
; /* in */
80 compat_uptr_t clone_sources
; /* in */
81 __u64 parent_root
; /* in */
83 __u64 reserved
[4]; /* in */
84 } __attribute__ ((__packed__
));
86 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
87 struct btrfs_ioctl_send_args_32)
90 /* Mask out flags that are inappropriate for the given type of inode. */
91 static unsigned int btrfs_mask_fsflags_for_type(struct inode
*inode
,
94 if (S_ISDIR(inode
->i_mode
))
96 else if (S_ISREG(inode
->i_mode
))
97 return flags
& ~FS_DIRSYNC_FL
;
99 return flags
& (FS_NODUMP_FL
| FS_NOATIME_FL
);
103 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
106 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags
)
108 unsigned int iflags
= 0;
110 if (flags
& BTRFS_INODE_SYNC
)
111 iflags
|= FS_SYNC_FL
;
112 if (flags
& BTRFS_INODE_IMMUTABLE
)
113 iflags
|= FS_IMMUTABLE_FL
;
114 if (flags
& BTRFS_INODE_APPEND
)
115 iflags
|= FS_APPEND_FL
;
116 if (flags
& BTRFS_INODE_NODUMP
)
117 iflags
|= FS_NODUMP_FL
;
118 if (flags
& BTRFS_INODE_NOATIME
)
119 iflags
|= FS_NOATIME_FL
;
120 if (flags
& BTRFS_INODE_DIRSYNC
)
121 iflags
|= FS_DIRSYNC_FL
;
122 if (flags
& BTRFS_INODE_NODATACOW
)
123 iflags
|= FS_NOCOW_FL
;
125 if (flags
& BTRFS_INODE_NOCOMPRESS
)
126 iflags
|= FS_NOCOMP_FL
;
127 else if (flags
& BTRFS_INODE_COMPRESS
)
128 iflags
|= FS_COMPR_FL
;
134 * Update inode->i_flags based on the btrfs internal flags.
136 void btrfs_sync_inode_flags_to_i_flags(struct inode
*inode
)
138 struct btrfs_inode
*binode
= BTRFS_I(inode
);
139 unsigned int new_fl
= 0;
141 if (binode
->flags
& BTRFS_INODE_SYNC
)
143 if (binode
->flags
& BTRFS_INODE_IMMUTABLE
)
144 new_fl
|= S_IMMUTABLE
;
145 if (binode
->flags
& BTRFS_INODE_APPEND
)
147 if (binode
->flags
& BTRFS_INODE_NOATIME
)
149 if (binode
->flags
& BTRFS_INODE_DIRSYNC
)
152 set_mask_bits(&inode
->i_flags
,
153 S_SYNC
| S_APPEND
| S_IMMUTABLE
| S_NOATIME
| S_DIRSYNC
,
157 static int btrfs_ioctl_getflags(struct file
*file
, void __user
*arg
)
159 struct btrfs_inode
*binode
= BTRFS_I(file_inode(file
));
160 unsigned int flags
= btrfs_inode_flags_to_fsflags(binode
->flags
);
162 if (copy_to_user(arg
, &flags
, sizeof(flags
)))
167 /* Check if @flags are a supported and valid set of FS_*_FL flags */
168 static int check_fsflags(unsigned int flags
)
170 if (flags
& ~(FS_IMMUTABLE_FL
| FS_APPEND_FL
| \
171 FS_NOATIME_FL
| FS_NODUMP_FL
| \
172 FS_SYNC_FL
| FS_DIRSYNC_FL
| \
173 FS_NOCOMP_FL
| FS_COMPR_FL
|
177 if ((flags
& FS_NOCOMP_FL
) && (flags
& FS_COMPR_FL
))
183 static int btrfs_ioctl_setflags(struct file
*file
, void __user
*arg
)
185 struct inode
*inode
= file_inode(file
);
186 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
187 struct btrfs_inode
*binode
= BTRFS_I(inode
);
188 struct btrfs_root
*root
= binode
->root
;
189 struct btrfs_trans_handle
*trans
;
190 unsigned int fsflags
, old_fsflags
;
192 const char *comp
= NULL
;
193 u32 binode_flags
= binode
->flags
;
195 if (!inode_owner_or_capable(inode
))
198 if (btrfs_root_readonly(root
))
201 if (copy_from_user(&fsflags
, arg
, sizeof(fsflags
)))
204 ret
= check_fsflags(fsflags
);
208 ret
= mnt_want_write_file(file
);
214 fsflags
= btrfs_mask_fsflags_for_type(inode
, fsflags
);
215 old_fsflags
= btrfs_inode_flags_to_fsflags(binode
->flags
);
216 ret
= vfs_ioc_setflags_prepare(inode
, old_fsflags
, fsflags
);
220 if (fsflags
& FS_SYNC_FL
)
221 binode_flags
|= BTRFS_INODE_SYNC
;
223 binode_flags
&= ~BTRFS_INODE_SYNC
;
224 if (fsflags
& FS_IMMUTABLE_FL
)
225 binode_flags
|= BTRFS_INODE_IMMUTABLE
;
227 binode_flags
&= ~BTRFS_INODE_IMMUTABLE
;
228 if (fsflags
& FS_APPEND_FL
)
229 binode_flags
|= BTRFS_INODE_APPEND
;
231 binode_flags
&= ~BTRFS_INODE_APPEND
;
232 if (fsflags
& FS_NODUMP_FL
)
233 binode_flags
|= BTRFS_INODE_NODUMP
;
235 binode_flags
&= ~BTRFS_INODE_NODUMP
;
236 if (fsflags
& FS_NOATIME_FL
)
237 binode_flags
|= BTRFS_INODE_NOATIME
;
239 binode_flags
&= ~BTRFS_INODE_NOATIME
;
240 if (fsflags
& FS_DIRSYNC_FL
)
241 binode_flags
|= BTRFS_INODE_DIRSYNC
;
243 binode_flags
&= ~BTRFS_INODE_DIRSYNC
;
244 if (fsflags
& FS_NOCOW_FL
) {
245 if (S_ISREG(inode
->i_mode
)) {
247 * It's safe to turn csums off here, no extents exist.
248 * Otherwise we want the flag to reflect the real COW
249 * status of the file and will not set it.
251 if (inode
->i_size
== 0)
252 binode_flags
|= BTRFS_INODE_NODATACOW
|
253 BTRFS_INODE_NODATASUM
;
255 binode_flags
|= BTRFS_INODE_NODATACOW
;
259 * Revert back under same assumptions as above
261 if (S_ISREG(inode
->i_mode
)) {
262 if (inode
->i_size
== 0)
263 binode_flags
&= ~(BTRFS_INODE_NODATACOW
|
264 BTRFS_INODE_NODATASUM
);
266 binode_flags
&= ~BTRFS_INODE_NODATACOW
;
271 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
272 * flag may be changed automatically if compression code won't make
275 if (fsflags
& FS_NOCOMP_FL
) {
276 binode_flags
&= ~BTRFS_INODE_COMPRESS
;
277 binode_flags
|= BTRFS_INODE_NOCOMPRESS
;
278 } else if (fsflags
& FS_COMPR_FL
) {
280 if (IS_SWAPFILE(inode
)) {
285 binode_flags
|= BTRFS_INODE_COMPRESS
;
286 binode_flags
&= ~BTRFS_INODE_NOCOMPRESS
;
288 comp
= btrfs_compress_type2str(fs_info
->compress_type
);
289 if (!comp
|| comp
[0] == 0)
290 comp
= btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB
);
292 binode_flags
&= ~(BTRFS_INODE_COMPRESS
| BTRFS_INODE_NOCOMPRESS
);
299 trans
= btrfs_start_transaction(root
, 3);
301 ret
= PTR_ERR(trans
);
306 ret
= btrfs_set_prop(trans
, inode
, "btrfs.compression", comp
,
309 btrfs_abort_transaction(trans
, ret
);
313 ret
= btrfs_set_prop(trans
, inode
, "btrfs.compression", NULL
,
315 if (ret
&& ret
!= -ENODATA
) {
316 btrfs_abort_transaction(trans
, ret
);
321 binode
->flags
= binode_flags
;
322 btrfs_sync_inode_flags_to_i_flags(inode
);
323 inode_inc_iversion(inode
);
324 inode
->i_ctime
= current_time(inode
);
325 ret
= btrfs_update_inode(trans
, root
, inode
);
328 btrfs_end_transaction(trans
);
331 mnt_drop_write_file(file
);
336 * Translate btrfs internal inode flags to xflags as expected by the
337 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are
340 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags
)
342 unsigned int xflags
= 0;
344 if (flags
& BTRFS_INODE_APPEND
)
345 xflags
|= FS_XFLAG_APPEND
;
346 if (flags
& BTRFS_INODE_IMMUTABLE
)
347 xflags
|= FS_XFLAG_IMMUTABLE
;
348 if (flags
& BTRFS_INODE_NOATIME
)
349 xflags
|= FS_XFLAG_NOATIME
;
350 if (flags
& BTRFS_INODE_NODUMP
)
351 xflags
|= FS_XFLAG_NODUMP
;
352 if (flags
& BTRFS_INODE_SYNC
)
353 xflags
|= FS_XFLAG_SYNC
;
358 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */
359 static int check_xflags(unsigned int flags
)
361 if (flags
& ~(FS_XFLAG_APPEND
| FS_XFLAG_IMMUTABLE
| FS_XFLAG_NOATIME
|
362 FS_XFLAG_NODUMP
| FS_XFLAG_SYNC
))
368 * Set the xflags from the internal inode flags. The remaining items of fsxattr
371 static int btrfs_ioctl_fsgetxattr(struct file
*file
, void __user
*arg
)
373 struct btrfs_inode
*binode
= BTRFS_I(file_inode(file
));
376 simple_fill_fsxattr(&fa
, btrfs_inode_flags_to_xflags(binode
->flags
));
377 if (copy_to_user(arg
, &fa
, sizeof(fa
)))
383 static int btrfs_ioctl_fssetxattr(struct file
*file
, void __user
*arg
)
385 struct inode
*inode
= file_inode(file
);
386 struct btrfs_inode
*binode
= BTRFS_I(inode
);
387 struct btrfs_root
*root
= binode
->root
;
388 struct btrfs_trans_handle
*trans
;
389 struct fsxattr fa
, old_fa
;
391 unsigned old_i_flags
;
394 if (!inode_owner_or_capable(inode
))
397 if (btrfs_root_readonly(root
))
400 if (copy_from_user(&fa
, arg
, sizeof(fa
)))
403 ret
= check_xflags(fa
.fsx_xflags
);
407 if (fa
.fsx_extsize
!= 0 || fa
.fsx_projid
!= 0 || fa
.fsx_cowextsize
!= 0)
410 ret
= mnt_want_write_file(file
);
416 old_flags
= binode
->flags
;
417 old_i_flags
= inode
->i_flags
;
419 simple_fill_fsxattr(&old_fa
,
420 btrfs_inode_flags_to_xflags(binode
->flags
));
421 ret
= vfs_ioc_fssetxattr_check(inode
, &old_fa
, &fa
);
425 if (fa
.fsx_xflags
& FS_XFLAG_SYNC
)
426 binode
->flags
|= BTRFS_INODE_SYNC
;
428 binode
->flags
&= ~BTRFS_INODE_SYNC
;
429 if (fa
.fsx_xflags
& FS_XFLAG_IMMUTABLE
)
430 binode
->flags
|= BTRFS_INODE_IMMUTABLE
;
432 binode
->flags
&= ~BTRFS_INODE_IMMUTABLE
;
433 if (fa
.fsx_xflags
& FS_XFLAG_APPEND
)
434 binode
->flags
|= BTRFS_INODE_APPEND
;
436 binode
->flags
&= ~BTRFS_INODE_APPEND
;
437 if (fa
.fsx_xflags
& FS_XFLAG_NODUMP
)
438 binode
->flags
|= BTRFS_INODE_NODUMP
;
440 binode
->flags
&= ~BTRFS_INODE_NODUMP
;
441 if (fa
.fsx_xflags
& FS_XFLAG_NOATIME
)
442 binode
->flags
|= BTRFS_INODE_NOATIME
;
444 binode
->flags
&= ~BTRFS_INODE_NOATIME
;
446 /* 1 item for the inode */
447 trans
= btrfs_start_transaction(root
, 1);
449 ret
= PTR_ERR(trans
);
453 btrfs_sync_inode_flags_to_i_flags(inode
);
454 inode_inc_iversion(inode
);
455 inode
->i_ctime
= current_time(inode
);
456 ret
= btrfs_update_inode(trans
, root
, inode
);
458 btrfs_end_transaction(trans
);
462 binode
->flags
= old_flags
;
463 inode
->i_flags
= old_i_flags
;
467 mnt_drop_write_file(file
);
472 static int btrfs_ioctl_getversion(struct file
*file
, int __user
*arg
)
474 struct inode
*inode
= file_inode(file
);
476 return put_user(inode
->i_generation
, arg
);
479 static noinline
int btrfs_ioctl_fitrim(struct btrfs_fs_info
*fs_info
,
482 struct btrfs_device
*device
;
483 struct request_queue
*q
;
484 struct fstrim_range range
;
485 u64 minlen
= ULLONG_MAX
;
489 if (!capable(CAP_SYS_ADMIN
))
493 * If the fs is mounted with nologreplay, which requires it to be
494 * mounted in RO mode as well, we can not allow discard on free space
495 * inside block groups, because log trees refer to extents that are not
496 * pinned in a block group's free space cache (pinning the extents is
497 * precisely the first phase of replaying a log tree).
499 if (btrfs_test_opt(fs_info
, NOLOGREPLAY
))
503 list_for_each_entry_rcu(device
, &fs_info
->fs_devices
->devices
,
507 q
= bdev_get_queue(device
->bdev
);
508 if (blk_queue_discard(q
)) {
510 minlen
= min_t(u64
, q
->limits
.discard_granularity
,
518 if (copy_from_user(&range
, arg
, sizeof(range
)))
522 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
523 * block group is in the logical address space, which can be any
524 * sectorsize aligned bytenr in the range [0, U64_MAX].
526 if (range
.len
< fs_info
->sb
->s_blocksize
)
529 range
.minlen
= max(range
.minlen
, minlen
);
530 ret
= btrfs_trim_fs(fs_info
, &range
);
534 if (copy_to_user(arg
, &range
, sizeof(range
)))
540 int __pure
btrfs_is_empty_uuid(u8
*uuid
)
544 for (i
= 0; i
< BTRFS_UUID_SIZE
; i
++) {
551 static noinline
int create_subvol(struct inode
*dir
,
552 struct dentry
*dentry
,
553 const char *name
, int namelen
,
554 struct btrfs_qgroup_inherit
*inherit
)
556 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
557 struct btrfs_trans_handle
*trans
;
558 struct btrfs_key key
;
559 struct btrfs_root_item
*root_item
;
560 struct btrfs_inode_item
*inode_item
;
561 struct extent_buffer
*leaf
;
562 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
563 struct btrfs_root
*new_root
;
564 struct btrfs_block_rsv block_rsv
;
565 struct timespec64 cur_time
= current_time(dir
);
570 u64 new_dirid
= BTRFS_FIRST_FREE_OBJECTID
;
573 root_item
= kzalloc(sizeof(*root_item
), GFP_KERNEL
);
577 ret
= btrfs_find_free_objectid(fs_info
->tree_root
, &objectid
);
582 * Don't create subvolume whose level is not zero. Or qgroup will be
583 * screwed up since it assumes subvolume qgroup's level to be 0.
585 if (btrfs_qgroup_level(objectid
)) {
590 btrfs_init_block_rsv(&block_rsv
, BTRFS_BLOCK_RSV_TEMP
);
592 * The same as the snapshot creation, please see the comment
593 * of create_snapshot().
595 ret
= btrfs_subvolume_reserve_metadata(root
, &block_rsv
, 8, false);
599 trans
= btrfs_start_transaction(root
, 0);
601 ret
= PTR_ERR(trans
);
602 btrfs_subvolume_release_metadata(fs_info
, &block_rsv
);
605 trans
->block_rsv
= &block_rsv
;
606 trans
->bytes_reserved
= block_rsv
.size
;
608 ret
= btrfs_qgroup_inherit(trans
, 0, objectid
, inherit
);
612 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, objectid
, NULL
, 0, 0, 0);
618 btrfs_mark_buffer_dirty(leaf
);
620 inode_item
= &root_item
->inode
;
621 btrfs_set_stack_inode_generation(inode_item
, 1);
622 btrfs_set_stack_inode_size(inode_item
, 3);
623 btrfs_set_stack_inode_nlink(inode_item
, 1);
624 btrfs_set_stack_inode_nbytes(inode_item
,
626 btrfs_set_stack_inode_mode(inode_item
, S_IFDIR
| 0755);
628 btrfs_set_root_flags(root_item
, 0);
629 btrfs_set_root_limit(root_item
, 0);
630 btrfs_set_stack_inode_flags(inode_item
, BTRFS_INODE_ROOT_ITEM_INIT
);
632 btrfs_set_root_bytenr(root_item
, leaf
->start
);
633 btrfs_set_root_generation(root_item
, trans
->transid
);
634 btrfs_set_root_level(root_item
, 0);
635 btrfs_set_root_refs(root_item
, 1);
636 btrfs_set_root_used(root_item
, leaf
->len
);
637 btrfs_set_root_last_snapshot(root_item
, 0);
639 btrfs_set_root_generation_v2(root_item
,
640 btrfs_root_generation(root_item
));
641 generate_random_guid(root_item
->uuid
);
642 btrfs_set_stack_timespec_sec(&root_item
->otime
, cur_time
.tv_sec
);
643 btrfs_set_stack_timespec_nsec(&root_item
->otime
, cur_time
.tv_nsec
);
644 root_item
->ctime
= root_item
->otime
;
645 btrfs_set_root_ctransid(root_item
, trans
->transid
);
646 btrfs_set_root_otransid(root_item
, trans
->transid
);
648 btrfs_tree_unlock(leaf
);
649 free_extent_buffer(leaf
);
652 btrfs_set_root_dirid(root_item
, new_dirid
);
654 key
.objectid
= objectid
;
656 key
.type
= BTRFS_ROOT_ITEM_KEY
;
657 ret
= btrfs_insert_root(trans
, fs_info
->tree_root
, &key
,
662 key
.offset
= (u64
)-1;
663 new_root
= btrfs_get_fs_root(fs_info
, &key
, true);
664 if (IS_ERR(new_root
)) {
665 ret
= PTR_ERR(new_root
);
666 btrfs_abort_transaction(trans
, ret
);
670 btrfs_record_root_in_trans(trans
, new_root
);
672 ret
= btrfs_create_subvol_root(trans
, new_root
, root
, new_dirid
);
673 btrfs_put_root(new_root
);
675 /* We potentially lose an unused inode item here */
676 btrfs_abort_transaction(trans
, ret
);
680 mutex_lock(&new_root
->objectid_mutex
);
681 new_root
->highest_objectid
= new_dirid
;
682 mutex_unlock(&new_root
->objectid_mutex
);
685 * insert the directory item
687 ret
= btrfs_set_inode_index(BTRFS_I(dir
), &index
);
689 btrfs_abort_transaction(trans
, ret
);
693 ret
= btrfs_insert_dir_item(trans
, name
, namelen
, BTRFS_I(dir
), &key
,
694 BTRFS_FT_DIR
, index
);
696 btrfs_abort_transaction(trans
, ret
);
700 btrfs_i_size_write(BTRFS_I(dir
), dir
->i_size
+ namelen
* 2);
701 ret
= btrfs_update_inode(trans
, root
, dir
);
703 btrfs_abort_transaction(trans
, ret
);
707 ret
= btrfs_add_root_ref(trans
, objectid
, root
->root_key
.objectid
,
708 btrfs_ino(BTRFS_I(dir
)), index
, name
, namelen
);
710 btrfs_abort_transaction(trans
, ret
);
714 ret
= btrfs_uuid_tree_add(trans
, root_item
->uuid
,
715 BTRFS_UUID_KEY_SUBVOL
, objectid
);
717 btrfs_abort_transaction(trans
, ret
);
721 trans
->block_rsv
= NULL
;
722 trans
->bytes_reserved
= 0;
723 btrfs_subvolume_release_metadata(fs_info
, &block_rsv
);
725 err
= btrfs_commit_transaction(trans
);
730 inode
= btrfs_lookup_dentry(dir
, dentry
);
732 return PTR_ERR(inode
);
733 d_instantiate(dentry
, inode
);
742 static int create_snapshot(struct btrfs_root
*root
, struct inode
*dir
,
743 struct dentry
*dentry
, bool readonly
,
744 struct btrfs_qgroup_inherit
*inherit
)
746 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
748 struct btrfs_pending_snapshot
*pending_snapshot
;
749 struct btrfs_trans_handle
*trans
;
751 bool snapshot_force_cow
= false;
753 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
756 if (atomic_read(&root
->nr_swapfiles
)) {
758 "cannot snapshot subvolume with active swapfile");
762 pending_snapshot
= kzalloc(sizeof(*pending_snapshot
), GFP_KERNEL
);
763 if (!pending_snapshot
)
766 pending_snapshot
->root_item
= kzalloc(sizeof(struct btrfs_root_item
),
768 pending_snapshot
->path
= btrfs_alloc_path();
769 if (!pending_snapshot
->root_item
|| !pending_snapshot
->path
) {
775 * Force new buffered writes to reserve space even when NOCOW is
776 * possible. This is to avoid later writeback (running dealloc) to
777 * fallback to COW mode and unexpectedly fail with ENOSPC.
779 btrfs_drew_read_lock(&root
->snapshot_lock
);
781 ret
= btrfs_start_delalloc_snapshot(root
);
786 * All previous writes have started writeback in NOCOW mode, so now
787 * we force future writes to fallback to COW mode during snapshot
790 atomic_inc(&root
->snapshot_force_cow
);
791 snapshot_force_cow
= true;
793 btrfs_wait_ordered_extents(root
, U64_MAX
, 0, (u64
)-1);
795 btrfs_init_block_rsv(&pending_snapshot
->block_rsv
,
796 BTRFS_BLOCK_RSV_TEMP
);
798 * 1 - parent dir inode
801 * 2 - root ref/backref
802 * 1 - root of snapshot
805 ret
= btrfs_subvolume_reserve_metadata(BTRFS_I(dir
)->root
,
806 &pending_snapshot
->block_rsv
, 8,
811 pending_snapshot
->dentry
= dentry
;
812 pending_snapshot
->root
= root
;
813 pending_snapshot
->readonly
= readonly
;
814 pending_snapshot
->dir
= dir
;
815 pending_snapshot
->inherit
= inherit
;
817 trans
= btrfs_start_transaction(root
, 0);
819 ret
= PTR_ERR(trans
);
823 spin_lock(&fs_info
->trans_lock
);
824 list_add(&pending_snapshot
->list
,
825 &trans
->transaction
->pending_snapshots
);
826 spin_unlock(&fs_info
->trans_lock
);
828 ret
= btrfs_commit_transaction(trans
);
832 ret
= pending_snapshot
->error
;
836 ret
= btrfs_orphan_cleanup(pending_snapshot
->snap
);
840 inode
= btrfs_lookup_dentry(d_inode(dentry
->d_parent
), dentry
);
842 ret
= PTR_ERR(inode
);
846 d_instantiate(dentry
, inode
);
849 btrfs_put_root(pending_snapshot
->snap
);
850 btrfs_subvolume_release_metadata(fs_info
, &pending_snapshot
->block_rsv
);
852 if (snapshot_force_cow
)
853 atomic_dec(&root
->snapshot_force_cow
);
854 btrfs_drew_read_unlock(&root
->snapshot_lock
);
857 kfree(pending_snapshot
->root_item
);
858 btrfs_free_path(pending_snapshot
->path
);
859 kfree(pending_snapshot
);
864 /* copy of may_delete in fs/namei.c()
865 * Check whether we can remove a link victim from directory dir, check
866 * whether the type of victim is right.
867 * 1. We can't do it if dir is read-only (done in permission())
868 * 2. We should have write and exec permissions on dir
869 * 3. We can't remove anything from append-only dir
870 * 4. We can't do anything with immutable dir (done in permission())
871 * 5. If the sticky bit on dir is set we should either
872 * a. be owner of dir, or
873 * b. be owner of victim, or
874 * c. have CAP_FOWNER capability
875 * 6. If the victim is append-only or immutable we can't do anything with
876 * links pointing to it.
877 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
878 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
879 * 9. We can't remove a root or mountpoint.
880 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
881 * nfs_async_unlink().
884 static int btrfs_may_delete(struct inode
*dir
, struct dentry
*victim
, int isdir
)
888 if (d_really_is_negative(victim
))
891 BUG_ON(d_inode(victim
->d_parent
) != dir
);
892 audit_inode_child(dir
, victim
, AUDIT_TYPE_CHILD_DELETE
);
894 error
= inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
899 if (check_sticky(dir
, d_inode(victim
)) || IS_APPEND(d_inode(victim
)) ||
900 IS_IMMUTABLE(d_inode(victim
)) || IS_SWAPFILE(d_inode(victim
)))
903 if (!d_is_dir(victim
))
907 } else if (d_is_dir(victim
))
911 if (victim
->d_flags
& DCACHE_NFSFS_RENAMED
)
916 /* copy of may_create in fs/namei.c() */
917 static inline int btrfs_may_create(struct inode
*dir
, struct dentry
*child
)
919 if (d_really_is_positive(child
))
923 return inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
927 * Create a new subvolume below @parent. This is largely modeled after
928 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
929 * inside this filesystem so it's quite a bit simpler.
931 static noinline
int btrfs_mksubvol(const struct path
*parent
,
932 const char *name
, int namelen
,
933 struct btrfs_root
*snap_src
,
935 struct btrfs_qgroup_inherit
*inherit
)
937 struct inode
*dir
= d_inode(parent
->dentry
);
938 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
939 struct dentry
*dentry
;
942 error
= down_write_killable_nested(&dir
->i_rwsem
, I_MUTEX_PARENT
);
946 dentry
= lookup_one_len(name
, parent
->dentry
, namelen
);
947 error
= PTR_ERR(dentry
);
951 error
= btrfs_may_create(dir
, dentry
);
956 * even if this name doesn't exist, we may get hash collisions.
957 * check for them now when we can safely fail
959 error
= btrfs_check_dir_item_collision(BTRFS_I(dir
)->root
,
965 down_read(&fs_info
->subvol_sem
);
967 if (btrfs_root_refs(&BTRFS_I(dir
)->root
->root_item
) == 0)
971 error
= create_snapshot(snap_src
, dir
, dentry
, readonly
, inherit
);
973 error
= create_subvol(dir
, dentry
, name
, namelen
, inherit
);
976 fsnotify_mkdir(dir
, dentry
);
978 up_read(&fs_info
->subvol_sem
);
987 * When we're defragging a range, we don't want to kick it off again
988 * if it is really just waiting for delalloc to send it down.
989 * If we find a nice big extent or delalloc range for the bytes in the
990 * file you want to defrag, we return 0 to let you know to skip this
993 static int check_defrag_in_cache(struct inode
*inode
, u64 offset
, u32 thresh
)
995 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
996 struct extent_map
*em
= NULL
;
997 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
1000 read_lock(&em_tree
->lock
);
1001 em
= lookup_extent_mapping(em_tree
, offset
, PAGE_SIZE
);
1002 read_unlock(&em_tree
->lock
);
1005 end
= extent_map_end(em
);
1006 free_extent_map(em
);
1007 if (end
- offset
> thresh
)
1010 /* if we already have a nice delalloc here, just stop */
1012 end
= count_range_bits(io_tree
, &offset
, offset
+ thresh
,
1013 thresh
, EXTENT_DELALLOC
, 1);
1020 * helper function to walk through a file and find extents
1021 * newer than a specific transid, and smaller than thresh.
1023 * This is used by the defragging code to find new and small
1026 static int find_new_extents(struct btrfs_root
*root
,
1027 struct inode
*inode
, u64 newer_than
,
1028 u64
*off
, u32 thresh
)
1030 struct btrfs_path
*path
;
1031 struct btrfs_key min_key
;
1032 struct extent_buffer
*leaf
;
1033 struct btrfs_file_extent_item
*extent
;
1036 u64 ino
= btrfs_ino(BTRFS_I(inode
));
1038 path
= btrfs_alloc_path();
1042 min_key
.objectid
= ino
;
1043 min_key
.type
= BTRFS_EXTENT_DATA_KEY
;
1044 min_key
.offset
= *off
;
1047 ret
= btrfs_search_forward(root
, &min_key
, path
, newer_than
);
1051 if (min_key
.objectid
!= ino
)
1053 if (min_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
1056 leaf
= path
->nodes
[0];
1057 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1058 struct btrfs_file_extent_item
);
1060 type
= btrfs_file_extent_type(leaf
, extent
);
1061 if (type
== BTRFS_FILE_EXTENT_REG
&&
1062 btrfs_file_extent_num_bytes(leaf
, extent
) < thresh
&&
1063 check_defrag_in_cache(inode
, min_key
.offset
, thresh
)) {
1064 *off
= min_key
.offset
;
1065 btrfs_free_path(path
);
1070 if (path
->slots
[0] < btrfs_header_nritems(leaf
)) {
1071 btrfs_item_key_to_cpu(leaf
, &min_key
, path
->slots
[0]);
1075 if (min_key
.offset
== (u64
)-1)
1079 btrfs_release_path(path
);
1082 btrfs_free_path(path
);
1086 static struct extent_map
*defrag_lookup_extent(struct inode
*inode
, u64 start
)
1088 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
1089 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1090 struct extent_map
*em
;
1091 u64 len
= PAGE_SIZE
;
1094 * hopefully we have this extent in the tree already, try without
1095 * the full extent lock
1097 read_lock(&em_tree
->lock
);
1098 em
= lookup_extent_mapping(em_tree
, start
, len
);
1099 read_unlock(&em_tree
->lock
);
1102 struct extent_state
*cached
= NULL
;
1103 u64 end
= start
+ len
- 1;
1105 /* get the big lock and read metadata off disk */
1106 lock_extent_bits(io_tree
, start
, end
, &cached
);
1107 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, start
, len
);
1108 unlock_extent_cached(io_tree
, start
, end
, &cached
);
1117 static bool defrag_check_next_extent(struct inode
*inode
, struct extent_map
*em
)
1119 struct extent_map
*next
;
1122 /* this is the last extent */
1123 if (em
->start
+ em
->len
>= i_size_read(inode
))
1126 next
= defrag_lookup_extent(inode
, em
->start
+ em
->len
);
1127 if (!next
|| next
->block_start
>= EXTENT_MAP_LAST_BYTE
)
1129 else if ((em
->block_start
+ em
->block_len
== next
->block_start
) &&
1130 (em
->block_len
> SZ_128K
&& next
->block_len
> SZ_128K
))
1133 free_extent_map(next
);
1137 static int should_defrag_range(struct inode
*inode
, u64 start
, u32 thresh
,
1138 u64
*last_len
, u64
*skip
, u64
*defrag_end
,
1141 struct extent_map
*em
;
1143 bool next_mergeable
= true;
1144 bool prev_mergeable
= true;
1147 * make sure that once we start defragging an extent, we keep on
1150 if (start
< *defrag_end
)
1155 em
= defrag_lookup_extent(inode
, start
);
1159 /* this will cover holes, and inline extents */
1160 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
1166 prev_mergeable
= false;
1168 next_mergeable
= defrag_check_next_extent(inode
, em
);
1170 * we hit a real extent, if it is big or the next extent is not a
1171 * real extent, don't bother defragging it
1173 if (!compress
&& (*last_len
== 0 || *last_len
>= thresh
) &&
1174 (em
->len
>= thresh
|| (!next_mergeable
&& !prev_mergeable
)))
1178 * last_len ends up being a counter of how many bytes we've defragged.
1179 * every time we choose not to defrag an extent, we reset *last_len
1180 * so that the next tiny extent will force a defrag.
1182 * The end result of this is that tiny extents before a single big
1183 * extent will force at least part of that big extent to be defragged.
1186 *defrag_end
= extent_map_end(em
);
1189 *skip
= extent_map_end(em
);
1193 free_extent_map(em
);
1198 * it doesn't do much good to defrag one or two pages
1199 * at a time. This pulls in a nice chunk of pages
1200 * to COW and defrag.
1202 * It also makes sure the delalloc code has enough
1203 * dirty data to avoid making new small extents as part
1206 * It's a good idea to start RA on this range
1207 * before calling this.
1209 static int cluster_pages_for_defrag(struct inode
*inode
,
1210 struct page
**pages
,
1211 unsigned long start_index
,
1212 unsigned long num_pages
)
1214 unsigned long file_end
;
1215 u64 isize
= i_size_read(inode
);
1222 struct btrfs_ordered_extent
*ordered
;
1223 struct extent_state
*cached_state
= NULL
;
1224 struct extent_io_tree
*tree
;
1225 struct extent_changeset
*data_reserved
= NULL
;
1226 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
1228 file_end
= (isize
- 1) >> PAGE_SHIFT
;
1229 if (!isize
|| start_index
> file_end
)
1232 page_cnt
= min_t(u64
, (u64
)num_pages
, (u64
)file_end
- start_index
+ 1);
1234 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
,
1235 start_index
<< PAGE_SHIFT
,
1236 page_cnt
<< PAGE_SHIFT
);
1240 tree
= &BTRFS_I(inode
)->io_tree
;
1242 /* step one, lock all the pages */
1243 for (i
= 0; i
< page_cnt
; i
++) {
1246 page
= find_or_create_page(inode
->i_mapping
,
1247 start_index
+ i
, mask
);
1251 page_start
= page_offset(page
);
1252 page_end
= page_start
+ PAGE_SIZE
- 1;
1254 lock_extent_bits(tree
, page_start
, page_end
,
1256 ordered
= btrfs_lookup_ordered_extent(inode
,
1258 unlock_extent_cached(tree
, page_start
, page_end
,
1264 btrfs_start_ordered_extent(inode
, ordered
, 1);
1265 btrfs_put_ordered_extent(ordered
);
1268 * we unlocked the page above, so we need check if
1269 * it was released or not.
1271 if (page
->mapping
!= inode
->i_mapping
) {
1278 if (!PageUptodate(page
)) {
1279 btrfs_readpage(NULL
, page
);
1281 if (!PageUptodate(page
)) {
1289 if (page
->mapping
!= inode
->i_mapping
) {
1301 if (!(inode
->i_sb
->s_flags
& SB_ACTIVE
))
1305 * so now we have a nice long stream of locked
1306 * and up to date pages, lets wait on them
1308 for (i
= 0; i
< i_done
; i
++)
1309 wait_on_page_writeback(pages
[i
]);
1311 page_start
= page_offset(pages
[0]);
1312 page_end
= page_offset(pages
[i_done
- 1]) + PAGE_SIZE
;
1314 lock_extent_bits(&BTRFS_I(inode
)->io_tree
,
1315 page_start
, page_end
- 1, &cached_state
);
1316 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
,
1317 page_end
- 1, EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
|
1318 EXTENT_DEFRAG
, 0, 0, &cached_state
);
1320 if (i_done
!= page_cnt
) {
1321 spin_lock(&BTRFS_I(inode
)->lock
);
1322 btrfs_mod_outstanding_extents(BTRFS_I(inode
), 1);
1323 spin_unlock(&BTRFS_I(inode
)->lock
);
1324 btrfs_delalloc_release_space(inode
, data_reserved
,
1325 start_index
<< PAGE_SHIFT
,
1326 (page_cnt
- i_done
) << PAGE_SHIFT
, true);
1330 set_extent_defrag(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
- 1,
1333 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
1334 page_start
, page_end
- 1, &cached_state
);
1336 for (i
= 0; i
< i_done
; i
++) {
1337 clear_page_dirty_for_io(pages
[i
]);
1338 ClearPageChecked(pages
[i
]);
1339 set_page_extent_mapped(pages
[i
]);
1340 set_page_dirty(pages
[i
]);
1341 unlock_page(pages
[i
]);
1344 btrfs_delalloc_release_extents(BTRFS_I(inode
), page_cnt
<< PAGE_SHIFT
);
1345 extent_changeset_free(data_reserved
);
1348 for (i
= 0; i
< i_done
; i
++) {
1349 unlock_page(pages
[i
]);
1352 btrfs_delalloc_release_space(inode
, data_reserved
,
1353 start_index
<< PAGE_SHIFT
,
1354 page_cnt
<< PAGE_SHIFT
, true);
1355 btrfs_delalloc_release_extents(BTRFS_I(inode
), page_cnt
<< PAGE_SHIFT
);
1356 extent_changeset_free(data_reserved
);
1361 int btrfs_defrag_file(struct inode
*inode
, struct file
*file
,
1362 struct btrfs_ioctl_defrag_range_args
*range
,
1363 u64 newer_than
, unsigned long max_to_defrag
)
1365 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1366 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1367 struct file_ra_state
*ra
= NULL
;
1368 unsigned long last_index
;
1369 u64 isize
= i_size_read(inode
);
1373 u64 newer_off
= range
->start
;
1375 unsigned long ra_index
= 0;
1377 int defrag_count
= 0;
1378 int compress_type
= BTRFS_COMPRESS_ZLIB
;
1379 u32 extent_thresh
= range
->extent_thresh
;
1380 unsigned long max_cluster
= SZ_256K
>> PAGE_SHIFT
;
1381 unsigned long cluster
= max_cluster
;
1382 u64 new_align
= ~((u64
)SZ_128K
- 1);
1383 struct page
**pages
= NULL
;
1384 bool do_compress
= range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
;
1389 if (range
->start
>= isize
)
1393 if (range
->compress_type
>= BTRFS_NR_COMPRESS_TYPES
)
1395 if (range
->compress_type
)
1396 compress_type
= range
->compress_type
;
1399 if (extent_thresh
== 0)
1400 extent_thresh
= SZ_256K
;
1403 * If we were not given a file, allocate a readahead context. As
1404 * readahead is just an optimization, defrag will work without it so
1405 * we don't error out.
1408 ra
= kzalloc(sizeof(*ra
), GFP_KERNEL
);
1410 file_ra_state_init(ra
, inode
->i_mapping
);
1415 pages
= kmalloc_array(max_cluster
, sizeof(struct page
*), GFP_KERNEL
);
1421 /* find the last page to defrag */
1422 if (range
->start
+ range
->len
> range
->start
) {
1423 last_index
= min_t(u64
, isize
- 1,
1424 range
->start
+ range
->len
- 1) >> PAGE_SHIFT
;
1426 last_index
= (isize
- 1) >> PAGE_SHIFT
;
1430 ret
= find_new_extents(root
, inode
, newer_than
,
1431 &newer_off
, SZ_64K
);
1433 range
->start
= newer_off
;
1435 * we always align our defrag to help keep
1436 * the extents in the file evenly spaced
1438 i
= (newer_off
& new_align
) >> PAGE_SHIFT
;
1442 i
= range
->start
>> PAGE_SHIFT
;
1445 max_to_defrag
= last_index
- i
+ 1;
1448 * make writeback starts from i, so the defrag range can be
1449 * written sequentially.
1451 if (i
< inode
->i_mapping
->writeback_index
)
1452 inode
->i_mapping
->writeback_index
= i
;
1454 while (i
<= last_index
&& defrag_count
< max_to_defrag
&&
1455 (i
< DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
))) {
1457 * make sure we stop running if someone unmounts
1460 if (!(inode
->i_sb
->s_flags
& SB_ACTIVE
))
1463 if (btrfs_defrag_cancelled(fs_info
)) {
1464 btrfs_debug(fs_info
, "defrag_file cancelled");
1469 if (!should_defrag_range(inode
, (u64
)i
<< PAGE_SHIFT
,
1470 extent_thresh
, &last_len
, &skip
,
1471 &defrag_end
, do_compress
)){
1474 * the should_defrag function tells us how much to skip
1475 * bump our counter by the suggested amount
1477 next
= DIV_ROUND_UP(skip
, PAGE_SIZE
);
1478 i
= max(i
+ 1, next
);
1483 cluster
= (PAGE_ALIGN(defrag_end
) >>
1485 cluster
= min(cluster
, max_cluster
);
1487 cluster
= max_cluster
;
1490 if (i
+ cluster
> ra_index
) {
1491 ra_index
= max(i
, ra_index
);
1493 page_cache_sync_readahead(inode
->i_mapping
, ra
,
1494 file
, ra_index
, cluster
);
1495 ra_index
+= cluster
;
1499 if (IS_SWAPFILE(inode
)) {
1503 BTRFS_I(inode
)->defrag_compress
= compress_type
;
1504 ret
= cluster_pages_for_defrag(inode
, pages
, i
, cluster
);
1507 inode_unlock(inode
);
1511 defrag_count
+= ret
;
1512 balance_dirty_pages_ratelimited(inode
->i_mapping
);
1513 inode_unlock(inode
);
1516 if (newer_off
== (u64
)-1)
1522 newer_off
= max(newer_off
+ 1,
1523 (u64
)i
<< PAGE_SHIFT
);
1525 ret
= find_new_extents(root
, inode
, newer_than
,
1526 &newer_off
, SZ_64K
);
1528 range
->start
= newer_off
;
1529 i
= (newer_off
& new_align
) >> PAGE_SHIFT
;
1536 last_len
+= ret
<< PAGE_SHIFT
;
1544 if ((range
->flags
& BTRFS_DEFRAG_RANGE_START_IO
)) {
1545 filemap_flush(inode
->i_mapping
);
1546 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
1547 &BTRFS_I(inode
)->runtime_flags
))
1548 filemap_flush(inode
->i_mapping
);
1551 if (range
->compress_type
== BTRFS_COMPRESS_LZO
) {
1552 btrfs_set_fs_incompat(fs_info
, COMPRESS_LZO
);
1553 } else if (range
->compress_type
== BTRFS_COMPRESS_ZSTD
) {
1554 btrfs_set_fs_incompat(fs_info
, COMPRESS_ZSTD
);
1562 BTRFS_I(inode
)->defrag_compress
= BTRFS_COMPRESS_NONE
;
1563 inode_unlock(inode
);
1571 static noinline
int btrfs_ioctl_resize(struct file
*file
,
1574 struct inode
*inode
= file_inode(file
);
1575 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1579 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1580 struct btrfs_ioctl_vol_args
*vol_args
;
1581 struct btrfs_trans_handle
*trans
;
1582 struct btrfs_device
*device
= NULL
;
1585 char *devstr
= NULL
;
1589 if (!capable(CAP_SYS_ADMIN
))
1592 ret
= mnt_want_write_file(file
);
1596 if (test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
)) {
1597 mnt_drop_write_file(file
);
1598 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
1601 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1602 if (IS_ERR(vol_args
)) {
1603 ret
= PTR_ERR(vol_args
);
1607 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1609 sizestr
= vol_args
->name
;
1610 devstr
= strchr(sizestr
, ':');
1612 sizestr
= devstr
+ 1;
1614 devstr
= vol_args
->name
;
1615 ret
= kstrtoull(devstr
, 10, &devid
);
1622 btrfs_info(fs_info
, "resizing devid %llu", devid
);
1625 device
= btrfs_find_device(fs_info
->fs_devices
, devid
, NULL
, NULL
, true);
1627 btrfs_info(fs_info
, "resizer unable to find device %llu",
1633 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
1635 "resizer unable to apply on readonly device %llu",
1641 if (!strcmp(sizestr
, "max"))
1642 new_size
= device
->bdev
->bd_inode
->i_size
;
1644 if (sizestr
[0] == '-') {
1647 } else if (sizestr
[0] == '+') {
1651 new_size
= memparse(sizestr
, &retptr
);
1652 if (*retptr
!= '\0' || new_size
== 0) {
1658 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
1663 old_size
= btrfs_device_get_total_bytes(device
);
1666 if (new_size
> old_size
) {
1670 new_size
= old_size
- new_size
;
1671 } else if (mod
> 0) {
1672 if (new_size
> ULLONG_MAX
- old_size
) {
1676 new_size
= old_size
+ new_size
;
1679 if (new_size
< SZ_256M
) {
1683 if (new_size
> device
->bdev
->bd_inode
->i_size
) {
1688 new_size
= round_down(new_size
, fs_info
->sectorsize
);
1690 if (new_size
> old_size
) {
1691 trans
= btrfs_start_transaction(root
, 0);
1692 if (IS_ERR(trans
)) {
1693 ret
= PTR_ERR(trans
);
1696 ret
= btrfs_grow_device(trans
, device
, new_size
);
1697 btrfs_commit_transaction(trans
);
1698 } else if (new_size
< old_size
) {
1699 ret
= btrfs_shrink_device(device
, new_size
);
1700 } /* equal, nothing need to do */
1702 if (ret
== 0 && new_size
!= old_size
)
1703 btrfs_info_in_rcu(fs_info
,
1704 "resize device %s (devid %llu) from %llu to %llu",
1705 rcu_str_deref(device
->name
), device
->devid
,
1706 old_size
, new_size
);
1710 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
1711 mnt_drop_write_file(file
);
1715 static noinline
int __btrfs_ioctl_snap_create(struct file
*file
,
1716 const char *name
, unsigned long fd
, int subvol
,
1718 struct btrfs_qgroup_inherit
*inherit
)
1723 if (!S_ISDIR(file_inode(file
)->i_mode
))
1726 ret
= mnt_want_write_file(file
);
1730 namelen
= strlen(name
);
1731 if (strchr(name
, '/')) {
1733 goto out_drop_write
;
1736 if (name
[0] == '.' &&
1737 (namelen
== 1 || (name
[1] == '.' && namelen
== 2))) {
1739 goto out_drop_write
;
1743 ret
= btrfs_mksubvol(&file
->f_path
, name
, namelen
,
1744 NULL
, readonly
, inherit
);
1746 struct fd src
= fdget(fd
);
1747 struct inode
*src_inode
;
1750 goto out_drop_write
;
1753 src_inode
= file_inode(src
.file
);
1754 if (src_inode
->i_sb
!= file_inode(file
)->i_sb
) {
1755 btrfs_info(BTRFS_I(file_inode(file
))->root
->fs_info
,
1756 "Snapshot src from another FS");
1758 } else if (!inode_owner_or_capable(src_inode
)) {
1760 * Subvolume creation is not restricted, but snapshots
1761 * are limited to own subvolumes only
1765 ret
= btrfs_mksubvol(&file
->f_path
, name
, namelen
,
1766 BTRFS_I(src_inode
)->root
,
1772 mnt_drop_write_file(file
);
1777 static noinline
int btrfs_ioctl_snap_create(struct file
*file
,
1778 void __user
*arg
, int subvol
)
1780 struct btrfs_ioctl_vol_args
*vol_args
;
1783 if (!S_ISDIR(file_inode(file
)->i_mode
))
1786 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1787 if (IS_ERR(vol_args
))
1788 return PTR_ERR(vol_args
);
1789 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1791 ret
= __btrfs_ioctl_snap_create(file
, vol_args
->name
, vol_args
->fd
,
1792 subvol
, false, NULL
);
1798 static noinline
int btrfs_ioctl_snap_create_v2(struct file
*file
,
1799 void __user
*arg
, int subvol
)
1801 struct btrfs_ioctl_vol_args_v2
*vol_args
;
1803 bool readonly
= false;
1804 struct btrfs_qgroup_inherit
*inherit
= NULL
;
1806 if (!S_ISDIR(file_inode(file
)->i_mode
))
1809 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1810 if (IS_ERR(vol_args
))
1811 return PTR_ERR(vol_args
);
1812 vol_args
->name
[BTRFS_SUBVOL_NAME_MAX
] = '\0';
1814 if (vol_args
->flags
& ~BTRFS_SUBVOL_CREATE_ARGS_MASK
) {
1819 if (vol_args
->flags
& BTRFS_SUBVOL_RDONLY
)
1821 if (vol_args
->flags
& BTRFS_SUBVOL_QGROUP_INHERIT
) {
1822 if (vol_args
->size
> PAGE_SIZE
) {
1826 inherit
= memdup_user(vol_args
->qgroup_inherit
, vol_args
->size
);
1827 if (IS_ERR(inherit
)) {
1828 ret
= PTR_ERR(inherit
);
1833 ret
= __btrfs_ioctl_snap_create(file
, vol_args
->name
, vol_args
->fd
,
1834 subvol
, readonly
, inherit
);
1844 static noinline
int btrfs_ioctl_subvol_getflags(struct file
*file
,
1847 struct inode
*inode
= file_inode(file
);
1848 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1849 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1853 if (btrfs_ino(BTRFS_I(inode
)) != BTRFS_FIRST_FREE_OBJECTID
)
1856 down_read(&fs_info
->subvol_sem
);
1857 if (btrfs_root_readonly(root
))
1858 flags
|= BTRFS_SUBVOL_RDONLY
;
1859 up_read(&fs_info
->subvol_sem
);
1861 if (copy_to_user(arg
, &flags
, sizeof(flags
)))
1867 static noinline
int btrfs_ioctl_subvol_setflags(struct file
*file
,
1870 struct inode
*inode
= file_inode(file
);
1871 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1872 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1873 struct btrfs_trans_handle
*trans
;
1878 if (!inode_owner_or_capable(inode
))
1881 ret
= mnt_want_write_file(file
);
1885 if (btrfs_ino(BTRFS_I(inode
)) != BTRFS_FIRST_FREE_OBJECTID
) {
1887 goto out_drop_write
;
1890 if (copy_from_user(&flags
, arg
, sizeof(flags
))) {
1892 goto out_drop_write
;
1895 if (flags
& ~BTRFS_SUBVOL_RDONLY
) {
1897 goto out_drop_write
;
1900 down_write(&fs_info
->subvol_sem
);
1903 if (!!(flags
& BTRFS_SUBVOL_RDONLY
) == btrfs_root_readonly(root
))
1906 root_flags
= btrfs_root_flags(&root
->root_item
);
1907 if (flags
& BTRFS_SUBVOL_RDONLY
) {
1908 btrfs_set_root_flags(&root
->root_item
,
1909 root_flags
| BTRFS_ROOT_SUBVOL_RDONLY
);
1912 * Block RO -> RW transition if this subvolume is involved in
1915 spin_lock(&root
->root_item_lock
);
1916 if (root
->send_in_progress
== 0) {
1917 btrfs_set_root_flags(&root
->root_item
,
1918 root_flags
& ~BTRFS_ROOT_SUBVOL_RDONLY
);
1919 spin_unlock(&root
->root_item_lock
);
1921 spin_unlock(&root
->root_item_lock
);
1923 "Attempt to set subvolume %llu read-write during send",
1924 root
->root_key
.objectid
);
1930 trans
= btrfs_start_transaction(root
, 1);
1931 if (IS_ERR(trans
)) {
1932 ret
= PTR_ERR(trans
);
1936 ret
= btrfs_update_root(trans
, fs_info
->tree_root
,
1937 &root
->root_key
, &root
->root_item
);
1939 btrfs_end_transaction(trans
);
1943 ret
= btrfs_commit_transaction(trans
);
1947 btrfs_set_root_flags(&root
->root_item
, root_flags
);
1949 up_write(&fs_info
->subvol_sem
);
1951 mnt_drop_write_file(file
);
1956 static noinline
int key_in_sk(struct btrfs_key
*key
,
1957 struct btrfs_ioctl_search_key
*sk
)
1959 struct btrfs_key test
;
1962 test
.objectid
= sk
->min_objectid
;
1963 test
.type
= sk
->min_type
;
1964 test
.offset
= sk
->min_offset
;
1966 ret
= btrfs_comp_cpu_keys(key
, &test
);
1970 test
.objectid
= sk
->max_objectid
;
1971 test
.type
= sk
->max_type
;
1972 test
.offset
= sk
->max_offset
;
1974 ret
= btrfs_comp_cpu_keys(key
, &test
);
1980 static noinline
int copy_to_sk(struct btrfs_path
*path
,
1981 struct btrfs_key
*key
,
1982 struct btrfs_ioctl_search_key
*sk
,
1985 unsigned long *sk_offset
,
1989 struct extent_buffer
*leaf
;
1990 struct btrfs_ioctl_search_header sh
;
1991 struct btrfs_key test
;
1992 unsigned long item_off
;
1993 unsigned long item_len
;
1999 leaf
= path
->nodes
[0];
2000 slot
= path
->slots
[0];
2001 nritems
= btrfs_header_nritems(leaf
);
2003 if (btrfs_header_generation(leaf
) > sk
->max_transid
) {
2007 found_transid
= btrfs_header_generation(leaf
);
2009 for (i
= slot
; i
< nritems
; i
++) {
2010 item_off
= btrfs_item_ptr_offset(leaf
, i
);
2011 item_len
= btrfs_item_size_nr(leaf
, i
);
2013 btrfs_item_key_to_cpu(leaf
, key
, i
);
2014 if (!key_in_sk(key
, sk
))
2017 if (sizeof(sh
) + item_len
> *buf_size
) {
2024 * return one empty item back for v1, which does not
2028 *buf_size
= sizeof(sh
) + item_len
;
2033 if (sizeof(sh
) + item_len
+ *sk_offset
> *buf_size
) {
2038 sh
.objectid
= key
->objectid
;
2039 sh
.offset
= key
->offset
;
2040 sh
.type
= key
->type
;
2042 sh
.transid
= found_transid
;
2044 /* copy search result header */
2045 if (copy_to_user(ubuf
+ *sk_offset
, &sh
, sizeof(sh
))) {
2050 *sk_offset
+= sizeof(sh
);
2053 char __user
*up
= ubuf
+ *sk_offset
;
2055 if (read_extent_buffer_to_user(leaf
, up
,
2056 item_off
, item_len
)) {
2061 *sk_offset
+= item_len
;
2065 if (ret
) /* -EOVERFLOW from above */
2068 if (*num_found
>= sk
->nr_items
) {
2075 test
.objectid
= sk
->max_objectid
;
2076 test
.type
= sk
->max_type
;
2077 test
.offset
= sk
->max_offset
;
2078 if (btrfs_comp_cpu_keys(key
, &test
) >= 0)
2080 else if (key
->offset
< (u64
)-1)
2082 else if (key
->type
< (u8
)-1) {
2085 } else if (key
->objectid
< (u64
)-1) {
2093 * 0: all items from this leaf copied, continue with next
2094 * 1: * more items can be copied, but unused buffer is too small
2095 * * all items were found
2096 * Either way, it will stops the loop which iterates to the next
2098 * -EOVERFLOW: item was to large for buffer
2099 * -EFAULT: could not copy extent buffer back to userspace
2104 static noinline
int search_ioctl(struct inode
*inode
,
2105 struct btrfs_ioctl_search_key
*sk
,
2109 struct btrfs_fs_info
*info
= btrfs_sb(inode
->i_sb
);
2110 struct btrfs_root
*root
;
2111 struct btrfs_key key
;
2112 struct btrfs_path
*path
;
2115 unsigned long sk_offset
= 0;
2117 if (*buf_size
< sizeof(struct btrfs_ioctl_search_header
)) {
2118 *buf_size
= sizeof(struct btrfs_ioctl_search_header
);
2122 path
= btrfs_alloc_path();
2126 if (sk
->tree_id
== 0) {
2127 /* search the root of the inode that was passed */
2128 root
= btrfs_grab_root(BTRFS_I(inode
)->root
);
2130 key
.objectid
= sk
->tree_id
;
2131 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2132 key
.offset
= (u64
)-1;
2133 root
= btrfs_get_fs_root(info
, &key
, true);
2135 btrfs_free_path(path
);
2136 return PTR_ERR(root
);
2140 key
.objectid
= sk
->min_objectid
;
2141 key
.type
= sk
->min_type
;
2142 key
.offset
= sk
->min_offset
;
2145 ret
= btrfs_search_forward(root
, &key
, path
, sk
->min_transid
);
2151 ret
= copy_to_sk(path
, &key
, sk
, buf_size
, ubuf
,
2152 &sk_offset
, &num_found
);
2153 btrfs_release_path(path
);
2161 sk
->nr_items
= num_found
;
2162 btrfs_put_root(root
);
2163 btrfs_free_path(path
);
2167 static noinline
int btrfs_ioctl_tree_search(struct file
*file
,
2170 struct btrfs_ioctl_search_args __user
*uargs
;
2171 struct btrfs_ioctl_search_key sk
;
2172 struct inode
*inode
;
2176 if (!capable(CAP_SYS_ADMIN
))
2179 uargs
= (struct btrfs_ioctl_search_args __user
*)argp
;
2181 if (copy_from_user(&sk
, &uargs
->key
, sizeof(sk
)))
2184 buf_size
= sizeof(uargs
->buf
);
2186 inode
= file_inode(file
);
2187 ret
= search_ioctl(inode
, &sk
, &buf_size
, uargs
->buf
);
2190 * In the origin implementation an overflow is handled by returning a
2191 * search header with a len of zero, so reset ret.
2193 if (ret
== -EOVERFLOW
)
2196 if (ret
== 0 && copy_to_user(&uargs
->key
, &sk
, sizeof(sk
)))
2201 static noinline
int btrfs_ioctl_tree_search_v2(struct file
*file
,
2204 struct btrfs_ioctl_search_args_v2 __user
*uarg
;
2205 struct btrfs_ioctl_search_args_v2 args
;
2206 struct inode
*inode
;
2209 const size_t buf_limit
= SZ_16M
;
2211 if (!capable(CAP_SYS_ADMIN
))
2214 /* copy search header and buffer size */
2215 uarg
= (struct btrfs_ioctl_search_args_v2 __user
*)argp
;
2216 if (copy_from_user(&args
, uarg
, sizeof(args
)))
2219 buf_size
= args
.buf_size
;
2221 /* limit result size to 16MB */
2222 if (buf_size
> buf_limit
)
2223 buf_size
= buf_limit
;
2225 inode
= file_inode(file
);
2226 ret
= search_ioctl(inode
, &args
.key
, &buf_size
,
2227 (char __user
*)(&uarg
->buf
[0]));
2228 if (ret
== 0 && copy_to_user(&uarg
->key
, &args
.key
, sizeof(args
.key
)))
2230 else if (ret
== -EOVERFLOW
&&
2231 copy_to_user(&uarg
->buf_size
, &buf_size
, sizeof(buf_size
)))
2238 * Search INODE_REFs to identify path name of 'dirid' directory
2239 * in a 'tree_id' tree. and sets path name to 'name'.
2241 static noinline
int btrfs_search_path_in_tree(struct btrfs_fs_info
*info
,
2242 u64 tree_id
, u64 dirid
, char *name
)
2244 struct btrfs_root
*root
;
2245 struct btrfs_key key
;
2251 struct btrfs_inode_ref
*iref
;
2252 struct extent_buffer
*l
;
2253 struct btrfs_path
*path
;
2255 if (dirid
== BTRFS_FIRST_FREE_OBJECTID
) {
2260 path
= btrfs_alloc_path();
2264 ptr
= &name
[BTRFS_INO_LOOKUP_PATH_MAX
- 1];
2266 key
.objectid
= tree_id
;
2267 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2268 key
.offset
= (u64
)-1;
2269 root
= btrfs_get_fs_root(info
, &key
, true);
2271 ret
= PTR_ERR(root
);
2276 key
.objectid
= dirid
;
2277 key
.type
= BTRFS_INODE_REF_KEY
;
2278 key
.offset
= (u64
)-1;
2281 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2285 ret
= btrfs_previous_item(root
, path
, dirid
,
2286 BTRFS_INODE_REF_KEY
);
2296 slot
= path
->slots
[0];
2297 btrfs_item_key_to_cpu(l
, &key
, slot
);
2299 iref
= btrfs_item_ptr(l
, slot
, struct btrfs_inode_ref
);
2300 len
= btrfs_inode_ref_name_len(l
, iref
);
2302 total_len
+= len
+ 1;
2304 ret
= -ENAMETOOLONG
;
2309 read_extent_buffer(l
, ptr
, (unsigned long)(iref
+ 1), len
);
2311 if (key
.offset
== BTRFS_FIRST_FREE_OBJECTID
)
2314 btrfs_release_path(path
);
2315 key
.objectid
= key
.offset
;
2316 key
.offset
= (u64
)-1;
2317 dirid
= key
.objectid
;
2319 memmove(name
, ptr
, total_len
);
2320 name
[total_len
] = '\0';
2323 btrfs_put_root(root
);
2324 btrfs_free_path(path
);
2328 static int btrfs_search_path_in_tree_user(struct inode
*inode
,
2329 struct btrfs_ioctl_ino_lookup_user_args
*args
)
2331 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2332 struct super_block
*sb
= inode
->i_sb
;
2333 struct btrfs_key upper_limit
= BTRFS_I(inode
)->location
;
2334 u64 treeid
= BTRFS_I(inode
)->root
->root_key
.objectid
;
2335 u64 dirid
= args
->dirid
;
2336 unsigned long item_off
;
2337 unsigned long item_len
;
2338 struct btrfs_inode_ref
*iref
;
2339 struct btrfs_root_ref
*rref
;
2340 struct btrfs_root
*root
= NULL
;
2341 struct btrfs_path
*path
;
2342 struct btrfs_key key
, key2
;
2343 struct extent_buffer
*leaf
;
2344 struct inode
*temp_inode
;
2351 path
= btrfs_alloc_path();
2356 * If the bottom subvolume does not exist directly under upper_limit,
2357 * construct the path in from the bottom up.
2359 if (dirid
!= upper_limit
.objectid
) {
2360 ptr
= &args
->path
[BTRFS_INO_LOOKUP_USER_PATH_MAX
- 1];
2362 key
.objectid
= treeid
;
2363 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2364 key
.offset
= (u64
)-1;
2365 root
= btrfs_get_fs_root(fs_info
, &key
, true);
2367 ret
= PTR_ERR(root
);
2371 key
.objectid
= dirid
;
2372 key
.type
= BTRFS_INODE_REF_KEY
;
2373 key
.offset
= (u64
)-1;
2375 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2378 } else if (ret
> 0) {
2379 ret
= btrfs_previous_item(root
, path
, dirid
,
2380 BTRFS_INODE_REF_KEY
);
2383 } else if (ret
> 0) {
2389 leaf
= path
->nodes
[0];
2390 slot
= path
->slots
[0];
2391 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2393 iref
= btrfs_item_ptr(leaf
, slot
, struct btrfs_inode_ref
);
2394 len
= btrfs_inode_ref_name_len(leaf
, iref
);
2396 total_len
+= len
+ 1;
2397 if (ptr
< args
->path
) {
2398 ret
= -ENAMETOOLONG
;
2403 read_extent_buffer(leaf
, ptr
,
2404 (unsigned long)(iref
+ 1), len
);
2406 /* Check the read+exec permission of this directory */
2407 ret
= btrfs_previous_item(root
, path
, dirid
,
2408 BTRFS_INODE_ITEM_KEY
);
2411 } else if (ret
> 0) {
2416 leaf
= path
->nodes
[0];
2417 slot
= path
->slots
[0];
2418 btrfs_item_key_to_cpu(leaf
, &key2
, slot
);
2419 if (key2
.objectid
!= dirid
) {
2424 temp_inode
= btrfs_iget(sb
, &key2
, root
);
2425 if (IS_ERR(temp_inode
)) {
2426 ret
= PTR_ERR(temp_inode
);
2429 ret
= inode_permission(temp_inode
, MAY_READ
| MAY_EXEC
);
2436 if (key
.offset
== upper_limit
.objectid
)
2438 if (key
.objectid
== BTRFS_FIRST_FREE_OBJECTID
) {
2443 btrfs_release_path(path
);
2444 key
.objectid
= key
.offset
;
2445 key
.offset
= (u64
)-1;
2446 dirid
= key
.objectid
;
2449 memmove(args
->path
, ptr
, total_len
);
2450 args
->path
[total_len
] = '\0';
2451 btrfs_put_root(root
);
2453 btrfs_release_path(path
);
2456 /* Get the bottom subvolume's name from ROOT_REF */
2457 key
.objectid
= treeid
;
2458 key
.type
= BTRFS_ROOT_REF_KEY
;
2459 key
.offset
= args
->treeid
;
2460 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
2463 } else if (ret
> 0) {
2468 leaf
= path
->nodes
[0];
2469 slot
= path
->slots
[0];
2470 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2472 item_off
= btrfs_item_ptr_offset(leaf
, slot
);
2473 item_len
= btrfs_item_size_nr(leaf
, slot
);
2474 /* Check if dirid in ROOT_REF corresponds to passed dirid */
2475 rref
= btrfs_item_ptr(leaf
, slot
, struct btrfs_root_ref
);
2476 if (args
->dirid
!= btrfs_root_ref_dirid(leaf
, rref
)) {
2481 /* Copy subvolume's name */
2482 item_off
+= sizeof(struct btrfs_root_ref
);
2483 item_len
-= sizeof(struct btrfs_root_ref
);
2484 read_extent_buffer(leaf
, args
->name
, item_off
, item_len
);
2485 args
->name
[item_len
] = 0;
2488 btrfs_put_root(root
);
2490 btrfs_free_path(path
);
2494 static noinline
int btrfs_ioctl_ino_lookup(struct file
*file
,
2497 struct btrfs_ioctl_ino_lookup_args
*args
;
2498 struct inode
*inode
;
2501 args
= memdup_user(argp
, sizeof(*args
));
2503 return PTR_ERR(args
);
2505 inode
= file_inode(file
);
2508 * Unprivileged query to obtain the containing subvolume root id. The
2509 * path is reset so it's consistent with btrfs_search_path_in_tree.
2511 if (args
->treeid
== 0)
2512 args
->treeid
= BTRFS_I(inode
)->root
->root_key
.objectid
;
2514 if (args
->objectid
== BTRFS_FIRST_FREE_OBJECTID
) {
2519 if (!capable(CAP_SYS_ADMIN
)) {
2524 ret
= btrfs_search_path_in_tree(BTRFS_I(inode
)->root
->fs_info
,
2525 args
->treeid
, args
->objectid
,
2529 if (ret
== 0 && copy_to_user(argp
, args
, sizeof(*args
)))
2537 * Version of ino_lookup ioctl (unprivileged)
2539 * The main differences from ino_lookup ioctl are:
2541 * 1. Read + Exec permission will be checked using inode_permission() during
2542 * path construction. -EACCES will be returned in case of failure.
2543 * 2. Path construction will be stopped at the inode number which corresponds
2544 * to the fd with which this ioctl is called. If constructed path does not
2545 * exist under fd's inode, -EACCES will be returned.
2546 * 3. The name of bottom subvolume is also searched and filled.
2548 static int btrfs_ioctl_ino_lookup_user(struct file
*file
, void __user
*argp
)
2550 struct btrfs_ioctl_ino_lookup_user_args
*args
;
2551 struct inode
*inode
;
2554 args
= memdup_user(argp
, sizeof(*args
));
2556 return PTR_ERR(args
);
2558 inode
= file_inode(file
);
2560 if (args
->dirid
== BTRFS_FIRST_FREE_OBJECTID
&&
2561 BTRFS_I(inode
)->location
.objectid
!= BTRFS_FIRST_FREE_OBJECTID
) {
2563 * The subvolume does not exist under fd with which this is
2570 ret
= btrfs_search_path_in_tree_user(inode
, args
);
2572 if (ret
== 0 && copy_to_user(argp
, args
, sizeof(*args
)))
2579 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2580 static int btrfs_ioctl_get_subvol_info(struct file
*file
, void __user
*argp
)
2582 struct btrfs_ioctl_get_subvol_info_args
*subvol_info
;
2583 struct btrfs_fs_info
*fs_info
;
2584 struct btrfs_root
*root
;
2585 struct btrfs_path
*path
;
2586 struct btrfs_key key
;
2587 struct btrfs_root_item
*root_item
;
2588 struct btrfs_root_ref
*rref
;
2589 struct extent_buffer
*leaf
;
2590 unsigned long item_off
;
2591 unsigned long item_len
;
2592 struct inode
*inode
;
2596 path
= btrfs_alloc_path();
2600 subvol_info
= kzalloc(sizeof(*subvol_info
), GFP_KERNEL
);
2602 btrfs_free_path(path
);
2606 inode
= file_inode(file
);
2607 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2609 /* Get root_item of inode's subvolume */
2610 key
.objectid
= BTRFS_I(inode
)->root
->root_key
.objectid
;
2611 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2612 key
.offset
= (u64
)-1;
2613 root
= btrfs_get_fs_root(fs_info
, &key
, true);
2615 ret
= PTR_ERR(root
);
2618 root_item
= &root
->root_item
;
2620 subvol_info
->treeid
= key
.objectid
;
2622 subvol_info
->generation
= btrfs_root_generation(root_item
);
2623 subvol_info
->flags
= btrfs_root_flags(root_item
);
2625 memcpy(subvol_info
->uuid
, root_item
->uuid
, BTRFS_UUID_SIZE
);
2626 memcpy(subvol_info
->parent_uuid
, root_item
->parent_uuid
,
2628 memcpy(subvol_info
->received_uuid
, root_item
->received_uuid
,
2631 subvol_info
->ctransid
= btrfs_root_ctransid(root_item
);
2632 subvol_info
->ctime
.sec
= btrfs_stack_timespec_sec(&root_item
->ctime
);
2633 subvol_info
->ctime
.nsec
= btrfs_stack_timespec_nsec(&root_item
->ctime
);
2635 subvol_info
->otransid
= btrfs_root_otransid(root_item
);
2636 subvol_info
->otime
.sec
= btrfs_stack_timespec_sec(&root_item
->otime
);
2637 subvol_info
->otime
.nsec
= btrfs_stack_timespec_nsec(&root_item
->otime
);
2639 subvol_info
->stransid
= btrfs_root_stransid(root_item
);
2640 subvol_info
->stime
.sec
= btrfs_stack_timespec_sec(&root_item
->stime
);
2641 subvol_info
->stime
.nsec
= btrfs_stack_timespec_nsec(&root_item
->stime
);
2643 subvol_info
->rtransid
= btrfs_root_rtransid(root_item
);
2644 subvol_info
->rtime
.sec
= btrfs_stack_timespec_sec(&root_item
->rtime
);
2645 subvol_info
->rtime
.nsec
= btrfs_stack_timespec_nsec(&root_item
->rtime
);
2647 if (key
.objectid
!= BTRFS_FS_TREE_OBJECTID
) {
2648 /* Search root tree for ROOT_BACKREF of this subvolume */
2649 key
.type
= BTRFS_ROOT_BACKREF_KEY
;
2651 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
2654 } else if (path
->slots
[0] >=
2655 btrfs_header_nritems(path
->nodes
[0])) {
2656 ret
= btrfs_next_leaf(fs_info
->tree_root
, path
);
2659 } else if (ret
> 0) {
2665 leaf
= path
->nodes
[0];
2666 slot
= path
->slots
[0];
2667 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2668 if (key
.objectid
== subvol_info
->treeid
&&
2669 key
.type
== BTRFS_ROOT_BACKREF_KEY
) {
2670 subvol_info
->parent_id
= key
.offset
;
2672 rref
= btrfs_item_ptr(leaf
, slot
, struct btrfs_root_ref
);
2673 subvol_info
->dirid
= btrfs_root_ref_dirid(leaf
, rref
);
2675 item_off
= btrfs_item_ptr_offset(leaf
, slot
)
2676 + sizeof(struct btrfs_root_ref
);
2677 item_len
= btrfs_item_size_nr(leaf
, slot
)
2678 - sizeof(struct btrfs_root_ref
);
2679 read_extent_buffer(leaf
, subvol_info
->name
,
2680 item_off
, item_len
);
2687 if (copy_to_user(argp
, subvol_info
, sizeof(*subvol_info
)))
2691 btrfs_put_root(root
);
2693 btrfs_free_path(path
);
2694 kzfree(subvol_info
);
2699 * Return ROOT_REF information of the subvolume containing this inode
2700 * except the subvolume name.
2702 static int btrfs_ioctl_get_subvol_rootref(struct file
*file
, void __user
*argp
)
2704 struct btrfs_ioctl_get_subvol_rootref_args
*rootrefs
;
2705 struct btrfs_root_ref
*rref
;
2706 struct btrfs_root
*root
;
2707 struct btrfs_path
*path
;
2708 struct btrfs_key key
;
2709 struct extent_buffer
*leaf
;
2710 struct inode
*inode
;
2716 path
= btrfs_alloc_path();
2720 rootrefs
= memdup_user(argp
, sizeof(*rootrefs
));
2721 if (IS_ERR(rootrefs
)) {
2722 btrfs_free_path(path
);
2723 return PTR_ERR(rootrefs
);
2726 inode
= file_inode(file
);
2727 root
= BTRFS_I(inode
)->root
->fs_info
->tree_root
;
2728 objectid
= BTRFS_I(inode
)->root
->root_key
.objectid
;
2730 key
.objectid
= objectid
;
2731 key
.type
= BTRFS_ROOT_REF_KEY
;
2732 key
.offset
= rootrefs
->min_treeid
;
2735 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2738 } else if (path
->slots
[0] >=
2739 btrfs_header_nritems(path
->nodes
[0])) {
2740 ret
= btrfs_next_leaf(root
, path
);
2743 } else if (ret
> 0) {
2749 leaf
= path
->nodes
[0];
2750 slot
= path
->slots
[0];
2752 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2753 if (key
.objectid
!= objectid
|| key
.type
!= BTRFS_ROOT_REF_KEY
) {
2758 if (found
== BTRFS_MAX_ROOTREF_BUFFER_NUM
) {
2763 rref
= btrfs_item_ptr(leaf
, slot
, struct btrfs_root_ref
);
2764 rootrefs
->rootref
[found
].treeid
= key
.offset
;
2765 rootrefs
->rootref
[found
].dirid
=
2766 btrfs_root_ref_dirid(leaf
, rref
);
2769 ret
= btrfs_next_item(root
, path
);
2772 } else if (ret
> 0) {
2779 if (!ret
|| ret
== -EOVERFLOW
) {
2780 rootrefs
->num_items
= found
;
2781 /* update min_treeid for next search */
2783 rootrefs
->min_treeid
=
2784 rootrefs
->rootref
[found
- 1].treeid
+ 1;
2785 if (copy_to_user(argp
, rootrefs
, sizeof(*rootrefs
)))
2790 btrfs_free_path(path
);
2795 static noinline
int btrfs_ioctl_snap_destroy(struct file
*file
,
2799 struct dentry
*parent
= file
->f_path
.dentry
;
2800 struct btrfs_fs_info
*fs_info
= btrfs_sb(parent
->d_sb
);
2801 struct dentry
*dentry
;
2802 struct inode
*dir
= d_inode(parent
);
2803 struct inode
*inode
;
2804 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2805 struct btrfs_root
*dest
= NULL
;
2806 struct btrfs_ioctl_vol_args
*vol_args
= NULL
;
2807 struct btrfs_ioctl_vol_args_v2
*vol_args2
= NULL
;
2808 char *subvol_name
, *subvol_name_ptr
= NULL
;
2811 bool destroy_parent
= false;
2814 vol_args2
= memdup_user(arg
, sizeof(*vol_args2
));
2815 if (IS_ERR(vol_args2
))
2816 return PTR_ERR(vol_args2
);
2818 if (vol_args2
->flags
& ~BTRFS_SUBVOL_DELETE_ARGS_MASK
) {
2824 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2825 * name, same as v1 currently does.
2827 if (!(vol_args2
->flags
& BTRFS_SUBVOL_SPEC_BY_ID
)) {
2828 vol_args2
->name
[BTRFS_SUBVOL_NAME_MAX
] = 0;
2829 subvol_name
= vol_args2
->name
;
2831 err
= mnt_want_write_file(file
);
2835 if (vol_args2
->subvolid
< BTRFS_FIRST_FREE_OBJECTID
) {
2840 err
= mnt_want_write_file(file
);
2844 dentry
= btrfs_get_dentry(fs_info
->sb
,
2845 BTRFS_FIRST_FREE_OBJECTID
,
2846 vol_args2
->subvolid
, 0, 0);
2847 if (IS_ERR(dentry
)) {
2848 err
= PTR_ERR(dentry
);
2849 goto out_drop_write
;
2853 * Change the default parent since the subvolume being
2854 * deleted can be outside of the current mount point.
2856 parent
= btrfs_get_parent(dentry
);
2859 * At this point dentry->d_name can point to '/' if the
2860 * subvolume we want to destroy is outsite of the
2861 * current mount point, so we need to release the
2862 * current dentry and execute the lookup to return a new
2863 * one with ->d_name pointing to the
2864 * <mount point>/subvol_name.
2867 if (IS_ERR(parent
)) {
2868 err
= PTR_ERR(parent
);
2869 goto out_drop_write
;
2871 dir
= d_inode(parent
);
2874 * If v2 was used with SPEC_BY_ID, a new parent was
2875 * allocated since the subvolume can be outside of the
2876 * current mount point. Later on we need to release this
2877 * new parent dentry.
2879 destroy_parent
= true;
2881 subvol_name_ptr
= btrfs_get_subvol_name_from_objectid(
2882 fs_info
, vol_args2
->subvolid
);
2883 if (IS_ERR(subvol_name_ptr
)) {
2884 err
= PTR_ERR(subvol_name_ptr
);
2887 /* subvol_name_ptr is already NULL termined */
2888 subvol_name
= (char *)kbasename(subvol_name_ptr
);
2891 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2892 if (IS_ERR(vol_args
))
2893 return PTR_ERR(vol_args
);
2895 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = 0;
2896 subvol_name
= vol_args
->name
;
2898 err
= mnt_want_write_file(file
);
2903 subvol_namelen
= strlen(subvol_name
);
2905 if (strchr(subvol_name
, '/') ||
2906 strncmp(subvol_name
, "..", subvol_namelen
) == 0) {
2908 goto free_subvol_name
;
2911 if (!S_ISDIR(dir
->i_mode
)) {
2913 goto free_subvol_name
;
2916 err
= down_write_killable_nested(&dir
->i_rwsem
, I_MUTEX_PARENT
);
2918 goto free_subvol_name
;
2919 dentry
= lookup_one_len(subvol_name
, parent
, subvol_namelen
);
2920 if (IS_ERR(dentry
)) {
2921 err
= PTR_ERR(dentry
);
2922 goto out_unlock_dir
;
2925 if (d_really_is_negative(dentry
)) {
2930 inode
= d_inode(dentry
);
2931 dest
= BTRFS_I(inode
)->root
;
2932 if (!capable(CAP_SYS_ADMIN
)) {
2934 * Regular user. Only allow this with a special mount
2935 * option, when the user has write+exec access to the
2936 * subvol root, and when rmdir(2) would have been
2939 * Note that this is _not_ check that the subvol is
2940 * empty or doesn't contain data that we wouldn't
2941 * otherwise be able to delete.
2943 * Users who want to delete empty subvols should try
2947 if (!btrfs_test_opt(fs_info
, USER_SUBVOL_RM_ALLOWED
))
2951 * Do not allow deletion if the parent dir is the same
2952 * as the dir to be deleted. That means the ioctl
2953 * must be called on the dentry referencing the root
2954 * of the subvol, not a random directory contained
2961 err
= inode_permission(inode
, MAY_WRITE
| MAY_EXEC
);
2966 /* check if subvolume may be deleted by a user */
2967 err
= btrfs_may_delete(dir
, dentry
, 1);
2971 if (btrfs_ino(BTRFS_I(inode
)) != BTRFS_FIRST_FREE_OBJECTID
) {
2977 err
= btrfs_delete_subvolume(dir
, dentry
);
2978 inode_unlock(inode
);
2980 fsnotify_rmdir(dir
, dentry
);
2989 kfree(subvol_name_ptr
);
2994 mnt_drop_write_file(file
);
3001 static int btrfs_ioctl_defrag(struct file
*file
, void __user
*argp
)
3003 struct inode
*inode
= file_inode(file
);
3004 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3005 struct btrfs_ioctl_defrag_range_args
*range
;
3008 ret
= mnt_want_write_file(file
);
3012 if (btrfs_root_readonly(root
)) {
3017 switch (inode
->i_mode
& S_IFMT
) {
3019 if (!capable(CAP_SYS_ADMIN
)) {
3023 ret
= btrfs_defrag_root(root
);
3027 * Note that this does not check the file descriptor for write
3028 * access. This prevents defragmenting executables that are
3029 * running and allows defrag on files open in read-only mode.
3031 if (!capable(CAP_SYS_ADMIN
) &&
3032 inode_permission(inode
, MAY_WRITE
)) {
3037 range
= kzalloc(sizeof(*range
), GFP_KERNEL
);
3044 if (copy_from_user(range
, argp
,
3050 /* compression requires us to start the IO */
3051 if ((range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)) {
3052 range
->flags
|= BTRFS_DEFRAG_RANGE_START_IO
;
3053 range
->extent_thresh
= (u32
)-1;
3056 /* the rest are all set to zero by kzalloc */
3057 range
->len
= (u64
)-1;
3059 ret
= btrfs_defrag_file(file_inode(file
), file
,
3060 range
, BTRFS_OLDEST_GENERATION
, 0);
3069 mnt_drop_write_file(file
);
3073 static long btrfs_ioctl_add_dev(struct btrfs_fs_info
*fs_info
, void __user
*arg
)
3075 struct btrfs_ioctl_vol_args
*vol_args
;
3078 if (!capable(CAP_SYS_ADMIN
))
3081 if (test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
))
3082 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
3084 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
3085 if (IS_ERR(vol_args
)) {
3086 ret
= PTR_ERR(vol_args
);
3090 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
3091 ret
= btrfs_init_new_device(fs_info
, vol_args
->name
);
3094 btrfs_info(fs_info
, "disk added %s", vol_args
->name
);
3098 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
3102 static long btrfs_ioctl_rm_dev_v2(struct file
*file
, void __user
*arg
)
3104 struct inode
*inode
= file_inode(file
);
3105 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3106 struct btrfs_ioctl_vol_args_v2
*vol_args
;
3109 if (!capable(CAP_SYS_ADMIN
))
3112 ret
= mnt_want_write_file(file
);
3116 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
3117 if (IS_ERR(vol_args
)) {
3118 ret
= PTR_ERR(vol_args
);
3122 if (vol_args
->flags
& ~BTRFS_DEVICE_REMOVE_ARGS_MASK
) {
3127 if (test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
)) {
3128 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
3132 if (vol_args
->flags
& BTRFS_DEVICE_SPEC_BY_ID
) {
3133 ret
= btrfs_rm_device(fs_info
, NULL
, vol_args
->devid
);
3135 vol_args
->name
[BTRFS_SUBVOL_NAME_MAX
] = '\0';
3136 ret
= btrfs_rm_device(fs_info
, vol_args
->name
, 0);
3138 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
3141 if (vol_args
->flags
& BTRFS_DEVICE_SPEC_BY_ID
)
3142 btrfs_info(fs_info
, "device deleted: id %llu",
3145 btrfs_info(fs_info
, "device deleted: %s",
3151 mnt_drop_write_file(file
);
3155 static long btrfs_ioctl_rm_dev(struct file
*file
, void __user
*arg
)
3157 struct inode
*inode
= file_inode(file
);
3158 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3159 struct btrfs_ioctl_vol_args
*vol_args
;
3162 if (!capable(CAP_SYS_ADMIN
))
3165 ret
= mnt_want_write_file(file
);
3169 if (test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
)) {
3170 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
3171 goto out_drop_write
;
3174 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
3175 if (IS_ERR(vol_args
)) {
3176 ret
= PTR_ERR(vol_args
);
3180 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
3181 ret
= btrfs_rm_device(fs_info
, vol_args
->name
, 0);
3184 btrfs_info(fs_info
, "disk deleted %s", vol_args
->name
);
3187 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
3189 mnt_drop_write_file(file
);
3194 static long btrfs_ioctl_fs_info(struct btrfs_fs_info
*fs_info
,
3197 struct btrfs_ioctl_fs_info_args
*fi_args
;
3198 struct btrfs_device
*device
;
3199 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
3202 fi_args
= kzalloc(sizeof(*fi_args
), GFP_KERNEL
);
3207 fi_args
->num_devices
= fs_devices
->num_devices
;
3209 list_for_each_entry_rcu(device
, &fs_devices
->devices
, dev_list
) {
3210 if (device
->devid
> fi_args
->max_id
)
3211 fi_args
->max_id
= device
->devid
;
3215 memcpy(&fi_args
->fsid
, fs_devices
->fsid
, sizeof(fi_args
->fsid
));
3216 fi_args
->nodesize
= fs_info
->nodesize
;
3217 fi_args
->sectorsize
= fs_info
->sectorsize
;
3218 fi_args
->clone_alignment
= fs_info
->sectorsize
;
3220 if (copy_to_user(arg
, fi_args
, sizeof(*fi_args
)))
3227 static long btrfs_ioctl_dev_info(struct btrfs_fs_info
*fs_info
,
3230 struct btrfs_ioctl_dev_info_args
*di_args
;
3231 struct btrfs_device
*dev
;
3233 char *s_uuid
= NULL
;
3235 di_args
= memdup_user(arg
, sizeof(*di_args
));
3236 if (IS_ERR(di_args
))
3237 return PTR_ERR(di_args
);
3239 if (!btrfs_is_empty_uuid(di_args
->uuid
))
3240 s_uuid
= di_args
->uuid
;
3243 dev
= btrfs_find_device(fs_info
->fs_devices
, di_args
->devid
, s_uuid
,
3251 di_args
->devid
= dev
->devid
;
3252 di_args
->bytes_used
= btrfs_device_get_bytes_used(dev
);
3253 di_args
->total_bytes
= btrfs_device_get_total_bytes(dev
);
3254 memcpy(di_args
->uuid
, dev
->uuid
, sizeof(di_args
->uuid
));
3256 strncpy(di_args
->path
, rcu_str_deref(dev
->name
),
3257 sizeof(di_args
->path
) - 1);
3258 di_args
->path
[sizeof(di_args
->path
) - 1] = 0;
3260 di_args
->path
[0] = '\0';
3265 if (ret
== 0 && copy_to_user(arg
, di_args
, sizeof(*di_args
)))
3272 static long btrfs_ioctl_default_subvol(struct file
*file
, void __user
*argp
)
3274 struct inode
*inode
= file_inode(file
);
3275 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3276 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3277 struct btrfs_root
*new_root
;
3278 struct btrfs_dir_item
*di
;
3279 struct btrfs_trans_handle
*trans
;
3280 struct btrfs_path
*path
= NULL
;
3281 struct btrfs_key location
;
3282 struct btrfs_disk_key disk_key
;
3287 if (!capable(CAP_SYS_ADMIN
))
3290 ret
= mnt_want_write_file(file
);
3294 if (copy_from_user(&objectid
, argp
, sizeof(objectid
))) {
3300 objectid
= BTRFS_FS_TREE_OBJECTID
;
3302 location
.objectid
= objectid
;
3303 location
.type
= BTRFS_ROOT_ITEM_KEY
;
3304 location
.offset
= (u64
)-1;
3306 new_root
= btrfs_get_fs_root(fs_info
, &location
, true);
3307 if (IS_ERR(new_root
)) {
3308 ret
= PTR_ERR(new_root
);
3311 if (!is_fstree(new_root
->root_key
.objectid
)) {
3316 path
= btrfs_alloc_path();
3321 path
->leave_spinning
= 1;
3323 trans
= btrfs_start_transaction(root
, 1);
3324 if (IS_ERR(trans
)) {
3325 ret
= PTR_ERR(trans
);
3329 dir_id
= btrfs_super_root_dir(fs_info
->super_copy
);
3330 di
= btrfs_lookup_dir_item(trans
, fs_info
->tree_root
, path
,
3331 dir_id
, "default", 7, 1);
3332 if (IS_ERR_OR_NULL(di
)) {
3333 btrfs_release_path(path
);
3334 btrfs_end_transaction(trans
);
3336 "Umm, you don't have the default diritem, this isn't going to work");
3341 btrfs_cpu_key_to_disk(&disk_key
, &new_root
->root_key
);
3342 btrfs_set_dir_item_key(path
->nodes
[0], di
, &disk_key
);
3343 btrfs_mark_buffer_dirty(path
->nodes
[0]);
3344 btrfs_release_path(path
);
3346 btrfs_set_fs_incompat(fs_info
, DEFAULT_SUBVOL
);
3347 btrfs_end_transaction(trans
);
3349 btrfs_put_root(new_root
);
3350 btrfs_free_path(path
);
3352 mnt_drop_write_file(file
);
3356 static void get_block_group_info(struct list_head
*groups_list
,
3357 struct btrfs_ioctl_space_info
*space
)
3359 struct btrfs_block_group
*block_group
;
3361 space
->total_bytes
= 0;
3362 space
->used_bytes
= 0;
3364 list_for_each_entry(block_group
, groups_list
, list
) {
3365 space
->flags
= block_group
->flags
;
3366 space
->total_bytes
+= block_group
->length
;
3367 space
->used_bytes
+= block_group
->used
;
3371 static long btrfs_ioctl_space_info(struct btrfs_fs_info
*fs_info
,
3374 struct btrfs_ioctl_space_args space_args
;
3375 struct btrfs_ioctl_space_info space
;
3376 struct btrfs_ioctl_space_info
*dest
;
3377 struct btrfs_ioctl_space_info
*dest_orig
;
3378 struct btrfs_ioctl_space_info __user
*user_dest
;
3379 struct btrfs_space_info
*info
;
3380 static const u64 types
[] = {
3381 BTRFS_BLOCK_GROUP_DATA
,
3382 BTRFS_BLOCK_GROUP_SYSTEM
,
3383 BTRFS_BLOCK_GROUP_METADATA
,
3384 BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
3392 if (copy_from_user(&space_args
,
3393 (struct btrfs_ioctl_space_args __user
*)arg
,
3394 sizeof(space_args
)))
3397 for (i
= 0; i
< num_types
; i
++) {
3398 struct btrfs_space_info
*tmp
;
3402 list_for_each_entry_rcu(tmp
, &fs_info
->space_info
,
3404 if (tmp
->flags
== types
[i
]) {
3414 down_read(&info
->groups_sem
);
3415 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
3416 if (!list_empty(&info
->block_groups
[c
]))
3419 up_read(&info
->groups_sem
);
3423 * Global block reserve, exported as a space_info
3427 /* space_slots == 0 means they are asking for a count */
3428 if (space_args
.space_slots
== 0) {
3429 space_args
.total_spaces
= slot_count
;
3433 slot_count
= min_t(u64
, space_args
.space_slots
, slot_count
);
3435 alloc_size
= sizeof(*dest
) * slot_count
;
3437 /* we generally have at most 6 or so space infos, one for each raid
3438 * level. So, a whole page should be more than enough for everyone
3440 if (alloc_size
> PAGE_SIZE
)
3443 space_args
.total_spaces
= 0;
3444 dest
= kmalloc(alloc_size
, GFP_KERNEL
);
3449 /* now we have a buffer to copy into */
3450 for (i
= 0; i
< num_types
; i
++) {
3451 struct btrfs_space_info
*tmp
;
3458 list_for_each_entry_rcu(tmp
, &fs_info
->space_info
,
3460 if (tmp
->flags
== types
[i
]) {
3469 down_read(&info
->groups_sem
);
3470 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
3471 if (!list_empty(&info
->block_groups
[c
])) {
3472 get_block_group_info(&info
->block_groups
[c
],
3474 memcpy(dest
, &space
, sizeof(space
));
3476 space_args
.total_spaces
++;
3482 up_read(&info
->groups_sem
);
3486 * Add global block reserve
3489 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
3491 spin_lock(&block_rsv
->lock
);
3492 space
.total_bytes
= block_rsv
->size
;
3493 space
.used_bytes
= block_rsv
->size
- block_rsv
->reserved
;
3494 spin_unlock(&block_rsv
->lock
);
3495 space
.flags
= BTRFS_SPACE_INFO_GLOBAL_RSV
;
3496 memcpy(dest
, &space
, sizeof(space
));
3497 space_args
.total_spaces
++;
3500 user_dest
= (struct btrfs_ioctl_space_info __user
*)
3501 (arg
+ sizeof(struct btrfs_ioctl_space_args
));
3503 if (copy_to_user(user_dest
, dest_orig
, alloc_size
))
3508 if (ret
== 0 && copy_to_user(arg
, &space_args
, sizeof(space_args
)))
3514 static noinline
long btrfs_ioctl_start_sync(struct btrfs_root
*root
,
3517 struct btrfs_trans_handle
*trans
;
3521 trans
= btrfs_attach_transaction_barrier(root
);
3522 if (IS_ERR(trans
)) {
3523 if (PTR_ERR(trans
) != -ENOENT
)
3524 return PTR_ERR(trans
);
3526 /* No running transaction, don't bother */
3527 transid
= root
->fs_info
->last_trans_committed
;
3530 transid
= trans
->transid
;
3531 ret
= btrfs_commit_transaction_async(trans
, 0);
3533 btrfs_end_transaction(trans
);
3538 if (copy_to_user(argp
, &transid
, sizeof(transid
)))
3543 static noinline
long btrfs_ioctl_wait_sync(struct btrfs_fs_info
*fs_info
,
3549 if (copy_from_user(&transid
, argp
, sizeof(transid
)))
3552 transid
= 0; /* current trans */
3554 return btrfs_wait_for_commit(fs_info
, transid
);
3557 static long btrfs_ioctl_scrub(struct file
*file
, void __user
*arg
)
3559 struct btrfs_fs_info
*fs_info
= btrfs_sb(file_inode(file
)->i_sb
);
3560 struct btrfs_ioctl_scrub_args
*sa
;
3563 if (!capable(CAP_SYS_ADMIN
))
3566 sa
= memdup_user(arg
, sizeof(*sa
));
3570 if (!(sa
->flags
& BTRFS_SCRUB_READONLY
)) {
3571 ret
= mnt_want_write_file(file
);
3576 ret
= btrfs_scrub_dev(fs_info
, sa
->devid
, sa
->start
, sa
->end
,
3577 &sa
->progress
, sa
->flags
& BTRFS_SCRUB_READONLY
,
3581 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3582 * error. This is important as it allows user space to know how much
3583 * progress scrub has done. For example, if scrub is canceled we get
3584 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3585 * space. Later user space can inspect the progress from the structure
3586 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3587 * previously (btrfs-progs does this).
3588 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3589 * then return -EFAULT to signal the structure was not copied or it may
3590 * be corrupt and unreliable due to a partial copy.
3592 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
3595 if (!(sa
->flags
& BTRFS_SCRUB_READONLY
))
3596 mnt_drop_write_file(file
);
3602 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info
*fs_info
)
3604 if (!capable(CAP_SYS_ADMIN
))
3607 return btrfs_scrub_cancel(fs_info
);
3610 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info
*fs_info
,
3613 struct btrfs_ioctl_scrub_args
*sa
;
3616 if (!capable(CAP_SYS_ADMIN
))
3619 sa
= memdup_user(arg
, sizeof(*sa
));
3623 ret
= btrfs_scrub_progress(fs_info
, sa
->devid
, &sa
->progress
);
3625 if (ret
== 0 && copy_to_user(arg
, sa
, sizeof(*sa
)))
3632 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info
*fs_info
,
3635 struct btrfs_ioctl_get_dev_stats
*sa
;
3638 sa
= memdup_user(arg
, sizeof(*sa
));
3642 if ((sa
->flags
& BTRFS_DEV_STATS_RESET
) && !capable(CAP_SYS_ADMIN
)) {
3647 ret
= btrfs_get_dev_stats(fs_info
, sa
);
3649 if (ret
== 0 && copy_to_user(arg
, sa
, sizeof(*sa
)))
3656 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info
*fs_info
,
3659 struct btrfs_ioctl_dev_replace_args
*p
;
3662 if (!capable(CAP_SYS_ADMIN
))
3665 p
= memdup_user(arg
, sizeof(*p
));
3670 case BTRFS_IOCTL_DEV_REPLACE_CMD_START
:
3671 if (sb_rdonly(fs_info
->sb
)) {
3675 if (test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
)) {
3676 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
3678 ret
= btrfs_dev_replace_by_ioctl(fs_info
, p
);
3679 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
3682 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS
:
3683 btrfs_dev_replace_status(fs_info
, p
);
3686 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL
:
3687 p
->result
= btrfs_dev_replace_cancel(fs_info
);
3695 if ((ret
== 0 || ret
== -ECANCELED
) && copy_to_user(arg
, p
, sizeof(*p
)))
3702 static long btrfs_ioctl_ino_to_path(struct btrfs_root
*root
, void __user
*arg
)
3708 struct btrfs_ioctl_ino_path_args
*ipa
= NULL
;
3709 struct inode_fs_paths
*ipath
= NULL
;
3710 struct btrfs_path
*path
;
3712 if (!capable(CAP_DAC_READ_SEARCH
))
3715 path
= btrfs_alloc_path();
3721 ipa
= memdup_user(arg
, sizeof(*ipa
));
3728 size
= min_t(u32
, ipa
->size
, 4096);
3729 ipath
= init_ipath(size
, root
, path
);
3730 if (IS_ERR(ipath
)) {
3731 ret
= PTR_ERR(ipath
);
3736 ret
= paths_from_inode(ipa
->inum
, ipath
);
3740 for (i
= 0; i
< ipath
->fspath
->elem_cnt
; ++i
) {
3741 rel_ptr
= ipath
->fspath
->val
[i
] -
3742 (u64
)(unsigned long)ipath
->fspath
->val
;
3743 ipath
->fspath
->val
[i
] = rel_ptr
;
3746 ret
= copy_to_user((void __user
*)(unsigned long)ipa
->fspath
,
3747 ipath
->fspath
, size
);
3754 btrfs_free_path(path
);
3761 static int build_ino_list(u64 inum
, u64 offset
, u64 root
, void *ctx
)
3763 struct btrfs_data_container
*inodes
= ctx
;
3764 const size_t c
= 3 * sizeof(u64
);
3766 if (inodes
->bytes_left
>= c
) {
3767 inodes
->bytes_left
-= c
;
3768 inodes
->val
[inodes
->elem_cnt
] = inum
;
3769 inodes
->val
[inodes
->elem_cnt
+ 1] = offset
;
3770 inodes
->val
[inodes
->elem_cnt
+ 2] = root
;
3771 inodes
->elem_cnt
+= 3;
3773 inodes
->bytes_missing
+= c
- inodes
->bytes_left
;
3774 inodes
->bytes_left
= 0;
3775 inodes
->elem_missed
+= 3;
3781 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info
*fs_info
,
3782 void __user
*arg
, int version
)
3786 struct btrfs_ioctl_logical_ino_args
*loi
;
3787 struct btrfs_data_container
*inodes
= NULL
;
3788 struct btrfs_path
*path
= NULL
;
3791 if (!capable(CAP_SYS_ADMIN
))
3794 loi
= memdup_user(arg
, sizeof(*loi
));
3796 return PTR_ERR(loi
);
3799 ignore_offset
= false;
3800 size
= min_t(u32
, loi
->size
, SZ_64K
);
3802 /* All reserved bits must be 0 for now */
3803 if (memchr_inv(loi
->reserved
, 0, sizeof(loi
->reserved
))) {
3807 /* Only accept flags we have defined so far */
3808 if (loi
->flags
& ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET
)) {
3812 ignore_offset
= loi
->flags
& BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET
;
3813 size
= min_t(u32
, loi
->size
, SZ_16M
);
3816 path
= btrfs_alloc_path();
3822 inodes
= init_data_container(size
);
3823 if (IS_ERR(inodes
)) {
3824 ret
= PTR_ERR(inodes
);
3829 ret
= iterate_inodes_from_logical(loi
->logical
, fs_info
, path
,
3830 build_ino_list
, inodes
, ignore_offset
);
3836 ret
= copy_to_user((void __user
*)(unsigned long)loi
->inodes
, inodes
,
3842 btrfs_free_path(path
);
3850 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info
*fs_info
,
3851 struct btrfs_ioctl_balance_args
*bargs
)
3853 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3855 bargs
->flags
= bctl
->flags
;
3857 if (test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
))
3858 bargs
->state
|= BTRFS_BALANCE_STATE_RUNNING
;
3859 if (atomic_read(&fs_info
->balance_pause_req
))
3860 bargs
->state
|= BTRFS_BALANCE_STATE_PAUSE_REQ
;
3861 if (atomic_read(&fs_info
->balance_cancel_req
))
3862 bargs
->state
|= BTRFS_BALANCE_STATE_CANCEL_REQ
;
3864 memcpy(&bargs
->data
, &bctl
->data
, sizeof(bargs
->data
));
3865 memcpy(&bargs
->meta
, &bctl
->meta
, sizeof(bargs
->meta
));
3866 memcpy(&bargs
->sys
, &bctl
->sys
, sizeof(bargs
->sys
));
3868 spin_lock(&fs_info
->balance_lock
);
3869 memcpy(&bargs
->stat
, &bctl
->stat
, sizeof(bargs
->stat
));
3870 spin_unlock(&fs_info
->balance_lock
);
3873 static long btrfs_ioctl_balance(struct file
*file
, void __user
*arg
)
3875 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
3876 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3877 struct btrfs_ioctl_balance_args
*bargs
;
3878 struct btrfs_balance_control
*bctl
;
3879 bool need_unlock
; /* for mut. excl. ops lock */
3882 if (!capable(CAP_SYS_ADMIN
))
3885 ret
= mnt_want_write_file(file
);
3890 if (!test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
)) {
3891 mutex_lock(&fs_info
->balance_mutex
);
3897 * mut. excl. ops lock is locked. Three possibilities:
3898 * (1) some other op is running
3899 * (2) balance is running
3900 * (3) balance is paused -- special case (think resume)
3902 mutex_lock(&fs_info
->balance_mutex
);
3903 if (fs_info
->balance_ctl
) {
3904 /* this is either (2) or (3) */
3905 if (!test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
)) {
3906 mutex_unlock(&fs_info
->balance_mutex
);
3908 * Lock released to allow other waiters to continue,
3909 * we'll reexamine the status again.
3911 mutex_lock(&fs_info
->balance_mutex
);
3913 if (fs_info
->balance_ctl
&&
3914 !test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
)) {
3916 need_unlock
= false;
3920 mutex_unlock(&fs_info
->balance_mutex
);
3924 mutex_unlock(&fs_info
->balance_mutex
);
3930 mutex_unlock(&fs_info
->balance_mutex
);
3931 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
3936 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
));
3939 bargs
= memdup_user(arg
, sizeof(*bargs
));
3940 if (IS_ERR(bargs
)) {
3941 ret
= PTR_ERR(bargs
);
3945 if (bargs
->flags
& BTRFS_BALANCE_RESUME
) {
3946 if (!fs_info
->balance_ctl
) {
3951 bctl
= fs_info
->balance_ctl
;
3952 spin_lock(&fs_info
->balance_lock
);
3953 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
3954 spin_unlock(&fs_info
->balance_lock
);
3962 if (fs_info
->balance_ctl
) {
3967 bctl
= kzalloc(sizeof(*bctl
), GFP_KERNEL
);
3974 memcpy(&bctl
->data
, &bargs
->data
, sizeof(bctl
->data
));
3975 memcpy(&bctl
->meta
, &bargs
->meta
, sizeof(bctl
->meta
));
3976 memcpy(&bctl
->sys
, &bargs
->sys
, sizeof(bctl
->sys
));
3978 bctl
->flags
= bargs
->flags
;
3980 /* balance everything - no filters */
3981 bctl
->flags
|= BTRFS_BALANCE_TYPE_MASK
;
3984 if (bctl
->flags
& ~(BTRFS_BALANCE_ARGS_MASK
| BTRFS_BALANCE_TYPE_MASK
)) {
3991 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP goes to
3992 * btrfs_balance. bctl is freed in reset_balance_state, or, if
3993 * restriper was paused all the way until unmount, in free_fs_info.
3994 * The flag should be cleared after reset_balance_state.
3996 need_unlock
= false;
3998 ret
= btrfs_balance(fs_info
, bctl
, bargs
);
4001 if ((ret
== 0 || ret
== -ECANCELED
) && arg
) {
4002 if (copy_to_user(arg
, bargs
, sizeof(*bargs
)))
4011 mutex_unlock(&fs_info
->balance_mutex
);
4013 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
4015 mnt_drop_write_file(file
);
4019 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info
*fs_info
, int cmd
)
4021 if (!capable(CAP_SYS_ADMIN
))
4025 case BTRFS_BALANCE_CTL_PAUSE
:
4026 return btrfs_pause_balance(fs_info
);
4027 case BTRFS_BALANCE_CTL_CANCEL
:
4028 return btrfs_cancel_balance(fs_info
);
4034 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info
*fs_info
,
4037 struct btrfs_ioctl_balance_args
*bargs
;
4040 if (!capable(CAP_SYS_ADMIN
))
4043 mutex_lock(&fs_info
->balance_mutex
);
4044 if (!fs_info
->balance_ctl
) {
4049 bargs
= kzalloc(sizeof(*bargs
), GFP_KERNEL
);
4055 btrfs_update_ioctl_balance_args(fs_info
, bargs
);
4057 if (copy_to_user(arg
, bargs
, sizeof(*bargs
)))
4062 mutex_unlock(&fs_info
->balance_mutex
);
4066 static long btrfs_ioctl_quota_ctl(struct file
*file
, void __user
*arg
)
4068 struct inode
*inode
= file_inode(file
);
4069 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4070 struct btrfs_ioctl_quota_ctl_args
*sa
;
4073 if (!capable(CAP_SYS_ADMIN
))
4076 ret
= mnt_want_write_file(file
);
4080 sa
= memdup_user(arg
, sizeof(*sa
));
4086 down_write(&fs_info
->subvol_sem
);
4089 case BTRFS_QUOTA_CTL_ENABLE
:
4090 ret
= btrfs_quota_enable(fs_info
);
4092 case BTRFS_QUOTA_CTL_DISABLE
:
4093 ret
= btrfs_quota_disable(fs_info
);
4101 up_write(&fs_info
->subvol_sem
);
4103 mnt_drop_write_file(file
);
4107 static long btrfs_ioctl_qgroup_assign(struct file
*file
, void __user
*arg
)
4109 struct inode
*inode
= file_inode(file
);
4110 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4111 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4112 struct btrfs_ioctl_qgroup_assign_args
*sa
;
4113 struct btrfs_trans_handle
*trans
;
4117 if (!capable(CAP_SYS_ADMIN
))
4120 ret
= mnt_want_write_file(file
);
4124 sa
= memdup_user(arg
, sizeof(*sa
));
4130 trans
= btrfs_join_transaction(root
);
4131 if (IS_ERR(trans
)) {
4132 ret
= PTR_ERR(trans
);
4137 ret
= btrfs_add_qgroup_relation(trans
, sa
->src
, sa
->dst
);
4139 ret
= btrfs_del_qgroup_relation(trans
, sa
->src
, sa
->dst
);
4142 /* update qgroup status and info */
4143 err
= btrfs_run_qgroups(trans
);
4145 btrfs_handle_fs_error(fs_info
, err
,
4146 "failed to update qgroup status and info");
4147 err
= btrfs_end_transaction(trans
);
4154 mnt_drop_write_file(file
);
4158 static long btrfs_ioctl_qgroup_create(struct file
*file
, void __user
*arg
)
4160 struct inode
*inode
= file_inode(file
);
4161 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4162 struct btrfs_ioctl_qgroup_create_args
*sa
;
4163 struct btrfs_trans_handle
*trans
;
4167 if (!capable(CAP_SYS_ADMIN
))
4170 ret
= mnt_want_write_file(file
);
4174 sa
= memdup_user(arg
, sizeof(*sa
));
4180 if (!sa
->qgroupid
) {
4185 trans
= btrfs_join_transaction(root
);
4186 if (IS_ERR(trans
)) {
4187 ret
= PTR_ERR(trans
);
4192 ret
= btrfs_create_qgroup(trans
, sa
->qgroupid
);
4194 ret
= btrfs_remove_qgroup(trans
, sa
->qgroupid
);
4197 err
= btrfs_end_transaction(trans
);
4204 mnt_drop_write_file(file
);
4208 static long btrfs_ioctl_qgroup_limit(struct file
*file
, void __user
*arg
)
4210 struct inode
*inode
= file_inode(file
);
4211 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4212 struct btrfs_ioctl_qgroup_limit_args
*sa
;
4213 struct btrfs_trans_handle
*trans
;
4218 if (!capable(CAP_SYS_ADMIN
))
4221 ret
= mnt_want_write_file(file
);
4225 sa
= memdup_user(arg
, sizeof(*sa
));
4231 trans
= btrfs_join_transaction(root
);
4232 if (IS_ERR(trans
)) {
4233 ret
= PTR_ERR(trans
);
4237 qgroupid
= sa
->qgroupid
;
4239 /* take the current subvol as qgroup */
4240 qgroupid
= root
->root_key
.objectid
;
4243 ret
= btrfs_limit_qgroup(trans
, qgroupid
, &sa
->lim
);
4245 err
= btrfs_end_transaction(trans
);
4252 mnt_drop_write_file(file
);
4256 static long btrfs_ioctl_quota_rescan(struct file
*file
, void __user
*arg
)
4258 struct inode
*inode
= file_inode(file
);
4259 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4260 struct btrfs_ioctl_quota_rescan_args
*qsa
;
4263 if (!capable(CAP_SYS_ADMIN
))
4266 ret
= mnt_want_write_file(file
);
4270 qsa
= memdup_user(arg
, sizeof(*qsa
));
4281 ret
= btrfs_qgroup_rescan(fs_info
);
4286 mnt_drop_write_file(file
);
4290 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info
*fs_info
,
4293 struct btrfs_ioctl_quota_rescan_args
*qsa
;
4296 if (!capable(CAP_SYS_ADMIN
))
4299 qsa
= kzalloc(sizeof(*qsa
), GFP_KERNEL
);
4303 if (fs_info
->qgroup_flags
& BTRFS_QGROUP_STATUS_FLAG_RESCAN
) {
4305 qsa
->progress
= fs_info
->qgroup_rescan_progress
.objectid
;
4308 if (copy_to_user(arg
, qsa
, sizeof(*qsa
)))
4315 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info
*fs_info
,
4318 if (!capable(CAP_SYS_ADMIN
))
4321 return btrfs_qgroup_wait_for_completion(fs_info
, true);
4324 static long _btrfs_ioctl_set_received_subvol(struct file
*file
,
4325 struct btrfs_ioctl_received_subvol_args
*sa
)
4327 struct inode
*inode
= file_inode(file
);
4328 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4329 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4330 struct btrfs_root_item
*root_item
= &root
->root_item
;
4331 struct btrfs_trans_handle
*trans
;
4332 struct timespec64 ct
= current_time(inode
);
4334 int received_uuid_changed
;
4336 if (!inode_owner_or_capable(inode
))
4339 ret
= mnt_want_write_file(file
);
4343 down_write(&fs_info
->subvol_sem
);
4345 if (btrfs_ino(BTRFS_I(inode
)) != BTRFS_FIRST_FREE_OBJECTID
) {
4350 if (btrfs_root_readonly(root
)) {
4357 * 2 - uuid items (received uuid + subvol uuid)
4359 trans
= btrfs_start_transaction(root
, 3);
4360 if (IS_ERR(trans
)) {
4361 ret
= PTR_ERR(trans
);
4366 sa
->rtransid
= trans
->transid
;
4367 sa
->rtime
.sec
= ct
.tv_sec
;
4368 sa
->rtime
.nsec
= ct
.tv_nsec
;
4370 received_uuid_changed
= memcmp(root_item
->received_uuid
, sa
->uuid
,
4372 if (received_uuid_changed
&&
4373 !btrfs_is_empty_uuid(root_item
->received_uuid
)) {
4374 ret
= btrfs_uuid_tree_remove(trans
, root_item
->received_uuid
,
4375 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
4376 root
->root_key
.objectid
);
4377 if (ret
&& ret
!= -ENOENT
) {
4378 btrfs_abort_transaction(trans
, ret
);
4379 btrfs_end_transaction(trans
);
4383 memcpy(root_item
->received_uuid
, sa
->uuid
, BTRFS_UUID_SIZE
);
4384 btrfs_set_root_stransid(root_item
, sa
->stransid
);
4385 btrfs_set_root_rtransid(root_item
, sa
->rtransid
);
4386 btrfs_set_stack_timespec_sec(&root_item
->stime
, sa
->stime
.sec
);
4387 btrfs_set_stack_timespec_nsec(&root_item
->stime
, sa
->stime
.nsec
);
4388 btrfs_set_stack_timespec_sec(&root_item
->rtime
, sa
->rtime
.sec
);
4389 btrfs_set_stack_timespec_nsec(&root_item
->rtime
, sa
->rtime
.nsec
);
4391 ret
= btrfs_update_root(trans
, fs_info
->tree_root
,
4392 &root
->root_key
, &root
->root_item
);
4394 btrfs_end_transaction(trans
);
4397 if (received_uuid_changed
&& !btrfs_is_empty_uuid(sa
->uuid
)) {
4398 ret
= btrfs_uuid_tree_add(trans
, sa
->uuid
,
4399 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
4400 root
->root_key
.objectid
);
4401 if (ret
< 0 && ret
!= -EEXIST
) {
4402 btrfs_abort_transaction(trans
, ret
);
4403 btrfs_end_transaction(trans
);
4407 ret
= btrfs_commit_transaction(trans
);
4409 up_write(&fs_info
->subvol_sem
);
4410 mnt_drop_write_file(file
);
4415 static long btrfs_ioctl_set_received_subvol_32(struct file
*file
,
4418 struct btrfs_ioctl_received_subvol_args_32
*args32
= NULL
;
4419 struct btrfs_ioctl_received_subvol_args
*args64
= NULL
;
4422 args32
= memdup_user(arg
, sizeof(*args32
));
4424 return PTR_ERR(args32
);
4426 args64
= kmalloc(sizeof(*args64
), GFP_KERNEL
);
4432 memcpy(args64
->uuid
, args32
->uuid
, BTRFS_UUID_SIZE
);
4433 args64
->stransid
= args32
->stransid
;
4434 args64
->rtransid
= args32
->rtransid
;
4435 args64
->stime
.sec
= args32
->stime
.sec
;
4436 args64
->stime
.nsec
= args32
->stime
.nsec
;
4437 args64
->rtime
.sec
= args32
->rtime
.sec
;
4438 args64
->rtime
.nsec
= args32
->rtime
.nsec
;
4439 args64
->flags
= args32
->flags
;
4441 ret
= _btrfs_ioctl_set_received_subvol(file
, args64
);
4445 memcpy(args32
->uuid
, args64
->uuid
, BTRFS_UUID_SIZE
);
4446 args32
->stransid
= args64
->stransid
;
4447 args32
->rtransid
= args64
->rtransid
;
4448 args32
->stime
.sec
= args64
->stime
.sec
;
4449 args32
->stime
.nsec
= args64
->stime
.nsec
;
4450 args32
->rtime
.sec
= args64
->rtime
.sec
;
4451 args32
->rtime
.nsec
= args64
->rtime
.nsec
;
4452 args32
->flags
= args64
->flags
;
4454 ret
= copy_to_user(arg
, args32
, sizeof(*args32
));
4465 static long btrfs_ioctl_set_received_subvol(struct file
*file
,
4468 struct btrfs_ioctl_received_subvol_args
*sa
= NULL
;
4471 sa
= memdup_user(arg
, sizeof(*sa
));
4475 ret
= _btrfs_ioctl_set_received_subvol(file
, sa
);
4480 ret
= copy_to_user(arg
, sa
, sizeof(*sa
));
4489 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info
*fs_info
,
4494 char label
[BTRFS_LABEL_SIZE
];
4496 spin_lock(&fs_info
->super_lock
);
4497 memcpy(label
, fs_info
->super_copy
->label
, BTRFS_LABEL_SIZE
);
4498 spin_unlock(&fs_info
->super_lock
);
4500 len
= strnlen(label
, BTRFS_LABEL_SIZE
);
4502 if (len
== BTRFS_LABEL_SIZE
) {
4504 "label is too long, return the first %zu bytes",
4508 ret
= copy_to_user(arg
, label
, len
);
4510 return ret
? -EFAULT
: 0;
4513 static int btrfs_ioctl_set_fslabel(struct file
*file
, void __user
*arg
)
4515 struct inode
*inode
= file_inode(file
);
4516 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4517 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4518 struct btrfs_super_block
*super_block
= fs_info
->super_copy
;
4519 struct btrfs_trans_handle
*trans
;
4520 char label
[BTRFS_LABEL_SIZE
];
4523 if (!capable(CAP_SYS_ADMIN
))
4526 if (copy_from_user(label
, arg
, sizeof(label
)))
4529 if (strnlen(label
, BTRFS_LABEL_SIZE
) == BTRFS_LABEL_SIZE
) {
4531 "unable to set label with more than %d bytes",
4532 BTRFS_LABEL_SIZE
- 1);
4536 ret
= mnt_want_write_file(file
);
4540 trans
= btrfs_start_transaction(root
, 0);
4541 if (IS_ERR(trans
)) {
4542 ret
= PTR_ERR(trans
);
4546 spin_lock(&fs_info
->super_lock
);
4547 strcpy(super_block
->label
, label
);
4548 spin_unlock(&fs_info
->super_lock
);
4549 ret
= btrfs_commit_transaction(trans
);
4552 mnt_drop_write_file(file
);
4556 #define INIT_FEATURE_FLAGS(suffix) \
4557 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4558 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4559 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4561 int btrfs_ioctl_get_supported_features(void __user
*arg
)
4563 static const struct btrfs_ioctl_feature_flags features
[3] = {
4564 INIT_FEATURE_FLAGS(SUPP
),
4565 INIT_FEATURE_FLAGS(SAFE_SET
),
4566 INIT_FEATURE_FLAGS(SAFE_CLEAR
)
4569 if (copy_to_user(arg
, &features
, sizeof(features
)))
4575 static int btrfs_ioctl_get_features(struct btrfs_fs_info
*fs_info
,
4578 struct btrfs_super_block
*super_block
= fs_info
->super_copy
;
4579 struct btrfs_ioctl_feature_flags features
;
4581 features
.compat_flags
= btrfs_super_compat_flags(super_block
);
4582 features
.compat_ro_flags
= btrfs_super_compat_ro_flags(super_block
);
4583 features
.incompat_flags
= btrfs_super_incompat_flags(super_block
);
4585 if (copy_to_user(arg
, &features
, sizeof(features
)))
4591 static int check_feature_bits(struct btrfs_fs_info
*fs_info
,
4592 enum btrfs_feature_set set
,
4593 u64 change_mask
, u64 flags
, u64 supported_flags
,
4594 u64 safe_set
, u64 safe_clear
)
4596 const char *type
= btrfs_feature_set_name(set
);
4598 u64 disallowed
, unsupported
;
4599 u64 set_mask
= flags
& change_mask
;
4600 u64 clear_mask
= ~flags
& change_mask
;
4602 unsupported
= set_mask
& ~supported_flags
;
4604 names
= btrfs_printable_features(set
, unsupported
);
4607 "this kernel does not support the %s feature bit%s",
4608 names
, strchr(names
, ',') ? "s" : "");
4612 "this kernel does not support %s bits 0x%llx",
4617 disallowed
= set_mask
& ~safe_set
;
4619 names
= btrfs_printable_features(set
, disallowed
);
4622 "can't set the %s feature bit%s while mounted",
4623 names
, strchr(names
, ',') ? "s" : "");
4627 "can't set %s bits 0x%llx while mounted",
4632 disallowed
= clear_mask
& ~safe_clear
;
4634 names
= btrfs_printable_features(set
, disallowed
);
4637 "can't clear the %s feature bit%s while mounted",
4638 names
, strchr(names
, ',') ? "s" : "");
4642 "can't clear %s bits 0x%llx while mounted",
4650 #define check_feature(fs_info, change_mask, flags, mask_base) \
4651 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
4652 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
4653 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
4654 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4656 static int btrfs_ioctl_set_features(struct file
*file
, void __user
*arg
)
4658 struct inode
*inode
= file_inode(file
);
4659 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4660 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4661 struct btrfs_super_block
*super_block
= fs_info
->super_copy
;
4662 struct btrfs_ioctl_feature_flags flags
[2];
4663 struct btrfs_trans_handle
*trans
;
4667 if (!capable(CAP_SYS_ADMIN
))
4670 if (copy_from_user(flags
, arg
, sizeof(flags
)))
4674 if (!flags
[0].compat_flags
&& !flags
[0].compat_ro_flags
&&
4675 !flags
[0].incompat_flags
)
4678 ret
= check_feature(fs_info
, flags
[0].compat_flags
,
4679 flags
[1].compat_flags
, COMPAT
);
4683 ret
= check_feature(fs_info
, flags
[0].compat_ro_flags
,
4684 flags
[1].compat_ro_flags
, COMPAT_RO
);
4688 ret
= check_feature(fs_info
, flags
[0].incompat_flags
,
4689 flags
[1].incompat_flags
, INCOMPAT
);
4693 ret
= mnt_want_write_file(file
);
4697 trans
= btrfs_start_transaction(root
, 0);
4698 if (IS_ERR(trans
)) {
4699 ret
= PTR_ERR(trans
);
4700 goto out_drop_write
;
4703 spin_lock(&fs_info
->super_lock
);
4704 newflags
= btrfs_super_compat_flags(super_block
);
4705 newflags
|= flags
[0].compat_flags
& flags
[1].compat_flags
;
4706 newflags
&= ~(flags
[0].compat_flags
& ~flags
[1].compat_flags
);
4707 btrfs_set_super_compat_flags(super_block
, newflags
);
4709 newflags
= btrfs_super_compat_ro_flags(super_block
);
4710 newflags
|= flags
[0].compat_ro_flags
& flags
[1].compat_ro_flags
;
4711 newflags
&= ~(flags
[0].compat_ro_flags
& ~flags
[1].compat_ro_flags
);
4712 btrfs_set_super_compat_ro_flags(super_block
, newflags
);
4714 newflags
= btrfs_super_incompat_flags(super_block
);
4715 newflags
|= flags
[0].incompat_flags
& flags
[1].incompat_flags
;
4716 newflags
&= ~(flags
[0].incompat_flags
& ~flags
[1].incompat_flags
);
4717 btrfs_set_super_incompat_flags(super_block
, newflags
);
4718 spin_unlock(&fs_info
->super_lock
);
4720 ret
= btrfs_commit_transaction(trans
);
4722 mnt_drop_write_file(file
);
4727 static int _btrfs_ioctl_send(struct file
*file
, void __user
*argp
, bool compat
)
4729 struct btrfs_ioctl_send_args
*arg
;
4733 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4734 struct btrfs_ioctl_send_args_32 args32
;
4736 ret
= copy_from_user(&args32
, argp
, sizeof(args32
));
4739 arg
= kzalloc(sizeof(*arg
), GFP_KERNEL
);
4742 arg
->send_fd
= args32
.send_fd
;
4743 arg
->clone_sources_count
= args32
.clone_sources_count
;
4744 arg
->clone_sources
= compat_ptr(args32
.clone_sources
);
4745 arg
->parent_root
= args32
.parent_root
;
4746 arg
->flags
= args32
.flags
;
4747 memcpy(arg
->reserved
, args32
.reserved
,
4748 sizeof(args32
.reserved
));
4753 arg
= memdup_user(argp
, sizeof(*arg
));
4755 return PTR_ERR(arg
);
4757 ret
= btrfs_ioctl_send(file
, arg
);
4762 long btrfs_ioctl(struct file
*file
, unsigned int
4763 cmd
, unsigned long arg
)
4765 struct inode
*inode
= file_inode(file
);
4766 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4767 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4768 void __user
*argp
= (void __user
*)arg
;
4771 case FS_IOC_GETFLAGS
:
4772 return btrfs_ioctl_getflags(file
, argp
);
4773 case FS_IOC_SETFLAGS
:
4774 return btrfs_ioctl_setflags(file
, argp
);
4775 case FS_IOC_GETVERSION
:
4776 return btrfs_ioctl_getversion(file
, argp
);
4777 case FS_IOC_GETFSLABEL
:
4778 return btrfs_ioctl_get_fslabel(fs_info
, argp
);
4779 case FS_IOC_SETFSLABEL
:
4780 return btrfs_ioctl_set_fslabel(file
, argp
);
4782 return btrfs_ioctl_fitrim(fs_info
, argp
);
4783 case BTRFS_IOC_SNAP_CREATE
:
4784 return btrfs_ioctl_snap_create(file
, argp
, 0);
4785 case BTRFS_IOC_SNAP_CREATE_V2
:
4786 return btrfs_ioctl_snap_create_v2(file
, argp
, 0);
4787 case BTRFS_IOC_SUBVOL_CREATE
:
4788 return btrfs_ioctl_snap_create(file
, argp
, 1);
4789 case BTRFS_IOC_SUBVOL_CREATE_V2
:
4790 return btrfs_ioctl_snap_create_v2(file
, argp
, 1);
4791 case BTRFS_IOC_SNAP_DESTROY
:
4792 return btrfs_ioctl_snap_destroy(file
, argp
, false);
4793 case BTRFS_IOC_SNAP_DESTROY_V2
:
4794 return btrfs_ioctl_snap_destroy(file
, argp
, true);
4795 case BTRFS_IOC_SUBVOL_GETFLAGS
:
4796 return btrfs_ioctl_subvol_getflags(file
, argp
);
4797 case BTRFS_IOC_SUBVOL_SETFLAGS
:
4798 return btrfs_ioctl_subvol_setflags(file
, argp
);
4799 case BTRFS_IOC_DEFAULT_SUBVOL
:
4800 return btrfs_ioctl_default_subvol(file
, argp
);
4801 case BTRFS_IOC_DEFRAG
:
4802 return btrfs_ioctl_defrag(file
, NULL
);
4803 case BTRFS_IOC_DEFRAG_RANGE
:
4804 return btrfs_ioctl_defrag(file
, argp
);
4805 case BTRFS_IOC_RESIZE
:
4806 return btrfs_ioctl_resize(file
, argp
);
4807 case BTRFS_IOC_ADD_DEV
:
4808 return btrfs_ioctl_add_dev(fs_info
, argp
);
4809 case BTRFS_IOC_RM_DEV
:
4810 return btrfs_ioctl_rm_dev(file
, argp
);
4811 case BTRFS_IOC_RM_DEV_V2
:
4812 return btrfs_ioctl_rm_dev_v2(file
, argp
);
4813 case BTRFS_IOC_FS_INFO
:
4814 return btrfs_ioctl_fs_info(fs_info
, argp
);
4815 case BTRFS_IOC_DEV_INFO
:
4816 return btrfs_ioctl_dev_info(fs_info
, argp
);
4817 case BTRFS_IOC_BALANCE
:
4818 return btrfs_ioctl_balance(file
, NULL
);
4819 case BTRFS_IOC_TREE_SEARCH
:
4820 return btrfs_ioctl_tree_search(file
, argp
);
4821 case BTRFS_IOC_TREE_SEARCH_V2
:
4822 return btrfs_ioctl_tree_search_v2(file
, argp
);
4823 case BTRFS_IOC_INO_LOOKUP
:
4824 return btrfs_ioctl_ino_lookup(file
, argp
);
4825 case BTRFS_IOC_INO_PATHS
:
4826 return btrfs_ioctl_ino_to_path(root
, argp
);
4827 case BTRFS_IOC_LOGICAL_INO
:
4828 return btrfs_ioctl_logical_to_ino(fs_info
, argp
, 1);
4829 case BTRFS_IOC_LOGICAL_INO_V2
:
4830 return btrfs_ioctl_logical_to_ino(fs_info
, argp
, 2);
4831 case BTRFS_IOC_SPACE_INFO
:
4832 return btrfs_ioctl_space_info(fs_info
, argp
);
4833 case BTRFS_IOC_SYNC
: {
4836 ret
= btrfs_start_delalloc_roots(fs_info
, -1);
4839 ret
= btrfs_sync_fs(inode
->i_sb
, 1);
4841 * The transaction thread may want to do more work,
4842 * namely it pokes the cleaner kthread that will start
4843 * processing uncleaned subvols.
4845 wake_up_process(fs_info
->transaction_kthread
);
4848 case BTRFS_IOC_START_SYNC
:
4849 return btrfs_ioctl_start_sync(root
, argp
);
4850 case BTRFS_IOC_WAIT_SYNC
:
4851 return btrfs_ioctl_wait_sync(fs_info
, argp
);
4852 case BTRFS_IOC_SCRUB
:
4853 return btrfs_ioctl_scrub(file
, argp
);
4854 case BTRFS_IOC_SCRUB_CANCEL
:
4855 return btrfs_ioctl_scrub_cancel(fs_info
);
4856 case BTRFS_IOC_SCRUB_PROGRESS
:
4857 return btrfs_ioctl_scrub_progress(fs_info
, argp
);
4858 case BTRFS_IOC_BALANCE_V2
:
4859 return btrfs_ioctl_balance(file
, argp
);
4860 case BTRFS_IOC_BALANCE_CTL
:
4861 return btrfs_ioctl_balance_ctl(fs_info
, arg
);
4862 case BTRFS_IOC_BALANCE_PROGRESS
:
4863 return btrfs_ioctl_balance_progress(fs_info
, argp
);
4864 case BTRFS_IOC_SET_RECEIVED_SUBVOL
:
4865 return btrfs_ioctl_set_received_subvol(file
, argp
);
4867 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32
:
4868 return btrfs_ioctl_set_received_subvol_32(file
, argp
);
4870 case BTRFS_IOC_SEND
:
4871 return _btrfs_ioctl_send(file
, argp
, false);
4872 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4873 case BTRFS_IOC_SEND_32
:
4874 return _btrfs_ioctl_send(file
, argp
, true);
4876 case BTRFS_IOC_GET_DEV_STATS
:
4877 return btrfs_ioctl_get_dev_stats(fs_info
, argp
);
4878 case BTRFS_IOC_QUOTA_CTL
:
4879 return btrfs_ioctl_quota_ctl(file
, argp
);
4880 case BTRFS_IOC_QGROUP_ASSIGN
:
4881 return btrfs_ioctl_qgroup_assign(file
, argp
);
4882 case BTRFS_IOC_QGROUP_CREATE
:
4883 return btrfs_ioctl_qgroup_create(file
, argp
);
4884 case BTRFS_IOC_QGROUP_LIMIT
:
4885 return btrfs_ioctl_qgroup_limit(file
, argp
);
4886 case BTRFS_IOC_QUOTA_RESCAN
:
4887 return btrfs_ioctl_quota_rescan(file
, argp
);
4888 case BTRFS_IOC_QUOTA_RESCAN_STATUS
:
4889 return btrfs_ioctl_quota_rescan_status(fs_info
, argp
);
4890 case BTRFS_IOC_QUOTA_RESCAN_WAIT
:
4891 return btrfs_ioctl_quota_rescan_wait(fs_info
, argp
);
4892 case BTRFS_IOC_DEV_REPLACE
:
4893 return btrfs_ioctl_dev_replace(fs_info
, argp
);
4894 case BTRFS_IOC_GET_SUPPORTED_FEATURES
:
4895 return btrfs_ioctl_get_supported_features(argp
);
4896 case BTRFS_IOC_GET_FEATURES
:
4897 return btrfs_ioctl_get_features(fs_info
, argp
);
4898 case BTRFS_IOC_SET_FEATURES
:
4899 return btrfs_ioctl_set_features(file
, argp
);
4900 case FS_IOC_FSGETXATTR
:
4901 return btrfs_ioctl_fsgetxattr(file
, argp
);
4902 case FS_IOC_FSSETXATTR
:
4903 return btrfs_ioctl_fssetxattr(file
, argp
);
4904 case BTRFS_IOC_GET_SUBVOL_INFO
:
4905 return btrfs_ioctl_get_subvol_info(file
, argp
);
4906 case BTRFS_IOC_GET_SUBVOL_ROOTREF
:
4907 return btrfs_ioctl_get_subvol_rootref(file
, argp
);
4908 case BTRFS_IOC_INO_LOOKUP_USER
:
4909 return btrfs_ioctl_ino_lookup_user(file
, argp
);
4915 #ifdef CONFIG_COMPAT
4916 long btrfs_compat_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
4919 * These all access 32-bit values anyway so no further
4920 * handling is necessary.
4923 case FS_IOC32_GETFLAGS
:
4924 cmd
= FS_IOC_GETFLAGS
;
4926 case FS_IOC32_SETFLAGS
:
4927 cmd
= FS_IOC_SETFLAGS
;
4929 case FS_IOC32_GETVERSION
:
4930 cmd
= FS_IOC_GETVERSION
;
4934 return btrfs_ioctl(file
, cmd
, (unsigned long) compat_ptr(arg
));