gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / fs / btrfs / ioctl.c
blob40b729dce91cd74f58ed8fa9ac1fd73e89dc2953
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "export.h"
32 #include "transaction.h"
33 #include "btrfs_inode.h"
34 #include "print-tree.h"
35 #include "volumes.h"
36 #include "locking.h"
37 #include "inode-map.h"
38 #include "backref.h"
39 #include "rcu-string.h"
40 #include "send.h"
41 #include "dev-replace.h"
42 #include "props.h"
43 #include "sysfs.h"
44 #include "qgroup.h"
45 #include "tree-log.h"
46 #include "compression.h"
47 #include "space-info.h"
48 #include "delalloc-space.h"
49 #include "block-group.h"
51 #ifdef CONFIG_64BIT
52 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
53 * structures are incorrect, as the timespec structure from userspace
54 * is 4 bytes too small. We define these alternatives here to teach
55 * the kernel about the 32-bit struct packing.
57 struct btrfs_ioctl_timespec_32 {
58 __u64 sec;
59 __u32 nsec;
60 } __attribute__ ((__packed__));
62 struct btrfs_ioctl_received_subvol_args_32 {
63 char uuid[BTRFS_UUID_SIZE]; /* in */
64 __u64 stransid; /* in */
65 __u64 rtransid; /* out */
66 struct btrfs_ioctl_timespec_32 stime; /* in */
67 struct btrfs_ioctl_timespec_32 rtime; /* out */
68 __u64 flags; /* in */
69 __u64 reserved[16]; /* in */
70 } __attribute__ ((__packed__));
72 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
73 struct btrfs_ioctl_received_subvol_args_32)
74 #endif
76 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
77 struct btrfs_ioctl_send_args_32 {
78 __s64 send_fd; /* in */
79 __u64 clone_sources_count; /* in */
80 compat_uptr_t clone_sources; /* in */
81 __u64 parent_root; /* in */
82 __u64 flags; /* in */
83 __u64 reserved[4]; /* in */
84 } __attribute__ ((__packed__));
86 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
87 struct btrfs_ioctl_send_args_32)
88 #endif
90 /* Mask out flags that are inappropriate for the given type of inode. */
91 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
92 unsigned int flags)
94 if (S_ISDIR(inode->i_mode))
95 return flags;
96 else if (S_ISREG(inode->i_mode))
97 return flags & ~FS_DIRSYNC_FL;
98 else
99 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
103 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
104 * ioctl.
106 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags)
108 unsigned int iflags = 0;
110 if (flags & BTRFS_INODE_SYNC)
111 iflags |= FS_SYNC_FL;
112 if (flags & BTRFS_INODE_IMMUTABLE)
113 iflags |= FS_IMMUTABLE_FL;
114 if (flags & BTRFS_INODE_APPEND)
115 iflags |= FS_APPEND_FL;
116 if (flags & BTRFS_INODE_NODUMP)
117 iflags |= FS_NODUMP_FL;
118 if (flags & BTRFS_INODE_NOATIME)
119 iflags |= FS_NOATIME_FL;
120 if (flags & BTRFS_INODE_DIRSYNC)
121 iflags |= FS_DIRSYNC_FL;
122 if (flags & BTRFS_INODE_NODATACOW)
123 iflags |= FS_NOCOW_FL;
125 if (flags & BTRFS_INODE_NOCOMPRESS)
126 iflags |= FS_NOCOMP_FL;
127 else if (flags & BTRFS_INODE_COMPRESS)
128 iflags |= FS_COMPR_FL;
130 return iflags;
134 * Update inode->i_flags based on the btrfs internal flags.
136 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
138 struct btrfs_inode *binode = BTRFS_I(inode);
139 unsigned int new_fl = 0;
141 if (binode->flags & BTRFS_INODE_SYNC)
142 new_fl |= S_SYNC;
143 if (binode->flags & BTRFS_INODE_IMMUTABLE)
144 new_fl |= S_IMMUTABLE;
145 if (binode->flags & BTRFS_INODE_APPEND)
146 new_fl |= S_APPEND;
147 if (binode->flags & BTRFS_INODE_NOATIME)
148 new_fl |= S_NOATIME;
149 if (binode->flags & BTRFS_INODE_DIRSYNC)
150 new_fl |= S_DIRSYNC;
152 set_mask_bits(&inode->i_flags,
153 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
154 new_fl);
157 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
159 struct btrfs_inode *binode = BTRFS_I(file_inode(file));
160 unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags);
162 if (copy_to_user(arg, &flags, sizeof(flags)))
163 return -EFAULT;
164 return 0;
167 /* Check if @flags are a supported and valid set of FS_*_FL flags */
168 static int check_fsflags(unsigned int flags)
170 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
171 FS_NOATIME_FL | FS_NODUMP_FL | \
172 FS_SYNC_FL | FS_DIRSYNC_FL | \
173 FS_NOCOMP_FL | FS_COMPR_FL |
174 FS_NOCOW_FL))
175 return -EOPNOTSUPP;
177 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
178 return -EINVAL;
180 return 0;
183 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
185 struct inode *inode = file_inode(file);
186 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
187 struct btrfs_inode *binode = BTRFS_I(inode);
188 struct btrfs_root *root = binode->root;
189 struct btrfs_trans_handle *trans;
190 unsigned int fsflags, old_fsflags;
191 int ret;
192 const char *comp = NULL;
193 u32 binode_flags = binode->flags;
195 if (!inode_owner_or_capable(inode))
196 return -EPERM;
198 if (btrfs_root_readonly(root))
199 return -EROFS;
201 if (copy_from_user(&fsflags, arg, sizeof(fsflags)))
202 return -EFAULT;
204 ret = check_fsflags(fsflags);
205 if (ret)
206 return ret;
208 ret = mnt_want_write_file(file);
209 if (ret)
210 return ret;
212 inode_lock(inode);
214 fsflags = btrfs_mask_fsflags_for_type(inode, fsflags);
215 old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags);
216 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags);
217 if (ret)
218 goto out_unlock;
220 if (fsflags & FS_SYNC_FL)
221 binode_flags |= BTRFS_INODE_SYNC;
222 else
223 binode_flags &= ~BTRFS_INODE_SYNC;
224 if (fsflags & FS_IMMUTABLE_FL)
225 binode_flags |= BTRFS_INODE_IMMUTABLE;
226 else
227 binode_flags &= ~BTRFS_INODE_IMMUTABLE;
228 if (fsflags & FS_APPEND_FL)
229 binode_flags |= BTRFS_INODE_APPEND;
230 else
231 binode_flags &= ~BTRFS_INODE_APPEND;
232 if (fsflags & FS_NODUMP_FL)
233 binode_flags |= BTRFS_INODE_NODUMP;
234 else
235 binode_flags &= ~BTRFS_INODE_NODUMP;
236 if (fsflags & FS_NOATIME_FL)
237 binode_flags |= BTRFS_INODE_NOATIME;
238 else
239 binode_flags &= ~BTRFS_INODE_NOATIME;
240 if (fsflags & FS_DIRSYNC_FL)
241 binode_flags |= BTRFS_INODE_DIRSYNC;
242 else
243 binode_flags &= ~BTRFS_INODE_DIRSYNC;
244 if (fsflags & FS_NOCOW_FL) {
245 if (S_ISREG(inode->i_mode)) {
247 * It's safe to turn csums off here, no extents exist.
248 * Otherwise we want the flag to reflect the real COW
249 * status of the file and will not set it.
251 if (inode->i_size == 0)
252 binode_flags |= BTRFS_INODE_NODATACOW |
253 BTRFS_INODE_NODATASUM;
254 } else {
255 binode_flags |= BTRFS_INODE_NODATACOW;
257 } else {
259 * Revert back under same assumptions as above
261 if (S_ISREG(inode->i_mode)) {
262 if (inode->i_size == 0)
263 binode_flags &= ~(BTRFS_INODE_NODATACOW |
264 BTRFS_INODE_NODATASUM);
265 } else {
266 binode_flags &= ~BTRFS_INODE_NODATACOW;
271 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
272 * flag may be changed automatically if compression code won't make
273 * things smaller.
275 if (fsflags & FS_NOCOMP_FL) {
276 binode_flags &= ~BTRFS_INODE_COMPRESS;
277 binode_flags |= BTRFS_INODE_NOCOMPRESS;
278 } else if (fsflags & FS_COMPR_FL) {
280 if (IS_SWAPFILE(inode)) {
281 ret = -ETXTBSY;
282 goto out_unlock;
285 binode_flags |= BTRFS_INODE_COMPRESS;
286 binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
288 comp = btrfs_compress_type2str(fs_info->compress_type);
289 if (!comp || comp[0] == 0)
290 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
291 } else {
292 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
296 * 1 for inode item
297 * 2 for properties
299 trans = btrfs_start_transaction(root, 3);
300 if (IS_ERR(trans)) {
301 ret = PTR_ERR(trans);
302 goto out_unlock;
305 if (comp) {
306 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
307 strlen(comp), 0);
308 if (ret) {
309 btrfs_abort_transaction(trans, ret);
310 goto out_end_trans;
312 } else {
313 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
314 0, 0);
315 if (ret && ret != -ENODATA) {
316 btrfs_abort_transaction(trans, ret);
317 goto out_end_trans;
321 binode->flags = binode_flags;
322 btrfs_sync_inode_flags_to_i_flags(inode);
323 inode_inc_iversion(inode);
324 inode->i_ctime = current_time(inode);
325 ret = btrfs_update_inode(trans, root, inode);
327 out_end_trans:
328 btrfs_end_transaction(trans);
329 out_unlock:
330 inode_unlock(inode);
331 mnt_drop_write_file(file);
332 return ret;
336 * Translate btrfs internal inode flags to xflags as expected by the
337 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are
338 * silently dropped.
340 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags)
342 unsigned int xflags = 0;
344 if (flags & BTRFS_INODE_APPEND)
345 xflags |= FS_XFLAG_APPEND;
346 if (flags & BTRFS_INODE_IMMUTABLE)
347 xflags |= FS_XFLAG_IMMUTABLE;
348 if (flags & BTRFS_INODE_NOATIME)
349 xflags |= FS_XFLAG_NOATIME;
350 if (flags & BTRFS_INODE_NODUMP)
351 xflags |= FS_XFLAG_NODUMP;
352 if (flags & BTRFS_INODE_SYNC)
353 xflags |= FS_XFLAG_SYNC;
355 return xflags;
358 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */
359 static int check_xflags(unsigned int flags)
361 if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME |
362 FS_XFLAG_NODUMP | FS_XFLAG_SYNC))
363 return -EOPNOTSUPP;
364 return 0;
368 * Set the xflags from the internal inode flags. The remaining items of fsxattr
369 * are zeroed.
371 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg)
373 struct btrfs_inode *binode = BTRFS_I(file_inode(file));
374 struct fsxattr fa;
376 simple_fill_fsxattr(&fa, btrfs_inode_flags_to_xflags(binode->flags));
377 if (copy_to_user(arg, &fa, sizeof(fa)))
378 return -EFAULT;
380 return 0;
383 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg)
385 struct inode *inode = file_inode(file);
386 struct btrfs_inode *binode = BTRFS_I(inode);
387 struct btrfs_root *root = binode->root;
388 struct btrfs_trans_handle *trans;
389 struct fsxattr fa, old_fa;
390 unsigned old_flags;
391 unsigned old_i_flags;
392 int ret = 0;
394 if (!inode_owner_or_capable(inode))
395 return -EPERM;
397 if (btrfs_root_readonly(root))
398 return -EROFS;
400 if (copy_from_user(&fa, arg, sizeof(fa)))
401 return -EFAULT;
403 ret = check_xflags(fa.fsx_xflags);
404 if (ret)
405 return ret;
407 if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0)
408 return -EOPNOTSUPP;
410 ret = mnt_want_write_file(file);
411 if (ret)
412 return ret;
414 inode_lock(inode);
416 old_flags = binode->flags;
417 old_i_flags = inode->i_flags;
419 simple_fill_fsxattr(&old_fa,
420 btrfs_inode_flags_to_xflags(binode->flags));
421 ret = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa);
422 if (ret)
423 goto out_unlock;
425 if (fa.fsx_xflags & FS_XFLAG_SYNC)
426 binode->flags |= BTRFS_INODE_SYNC;
427 else
428 binode->flags &= ~BTRFS_INODE_SYNC;
429 if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE)
430 binode->flags |= BTRFS_INODE_IMMUTABLE;
431 else
432 binode->flags &= ~BTRFS_INODE_IMMUTABLE;
433 if (fa.fsx_xflags & FS_XFLAG_APPEND)
434 binode->flags |= BTRFS_INODE_APPEND;
435 else
436 binode->flags &= ~BTRFS_INODE_APPEND;
437 if (fa.fsx_xflags & FS_XFLAG_NODUMP)
438 binode->flags |= BTRFS_INODE_NODUMP;
439 else
440 binode->flags &= ~BTRFS_INODE_NODUMP;
441 if (fa.fsx_xflags & FS_XFLAG_NOATIME)
442 binode->flags |= BTRFS_INODE_NOATIME;
443 else
444 binode->flags &= ~BTRFS_INODE_NOATIME;
446 /* 1 item for the inode */
447 trans = btrfs_start_transaction(root, 1);
448 if (IS_ERR(trans)) {
449 ret = PTR_ERR(trans);
450 goto out_unlock;
453 btrfs_sync_inode_flags_to_i_flags(inode);
454 inode_inc_iversion(inode);
455 inode->i_ctime = current_time(inode);
456 ret = btrfs_update_inode(trans, root, inode);
458 btrfs_end_transaction(trans);
460 out_unlock:
461 if (ret) {
462 binode->flags = old_flags;
463 inode->i_flags = old_i_flags;
466 inode_unlock(inode);
467 mnt_drop_write_file(file);
469 return ret;
472 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
474 struct inode *inode = file_inode(file);
476 return put_user(inode->i_generation, arg);
479 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
480 void __user *arg)
482 struct btrfs_device *device;
483 struct request_queue *q;
484 struct fstrim_range range;
485 u64 minlen = ULLONG_MAX;
486 u64 num_devices = 0;
487 int ret;
489 if (!capable(CAP_SYS_ADMIN))
490 return -EPERM;
493 * If the fs is mounted with nologreplay, which requires it to be
494 * mounted in RO mode as well, we can not allow discard on free space
495 * inside block groups, because log trees refer to extents that are not
496 * pinned in a block group's free space cache (pinning the extents is
497 * precisely the first phase of replaying a log tree).
499 if (btrfs_test_opt(fs_info, NOLOGREPLAY))
500 return -EROFS;
502 rcu_read_lock();
503 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
504 dev_list) {
505 if (!device->bdev)
506 continue;
507 q = bdev_get_queue(device->bdev);
508 if (blk_queue_discard(q)) {
509 num_devices++;
510 minlen = min_t(u64, q->limits.discard_granularity,
511 minlen);
514 rcu_read_unlock();
516 if (!num_devices)
517 return -EOPNOTSUPP;
518 if (copy_from_user(&range, arg, sizeof(range)))
519 return -EFAULT;
522 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
523 * block group is in the logical address space, which can be any
524 * sectorsize aligned bytenr in the range [0, U64_MAX].
526 if (range.len < fs_info->sb->s_blocksize)
527 return -EINVAL;
529 range.minlen = max(range.minlen, minlen);
530 ret = btrfs_trim_fs(fs_info, &range);
531 if (ret < 0)
532 return ret;
534 if (copy_to_user(arg, &range, sizeof(range)))
535 return -EFAULT;
537 return 0;
540 int __pure btrfs_is_empty_uuid(u8 *uuid)
542 int i;
544 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
545 if (uuid[i])
546 return 0;
548 return 1;
551 static noinline int create_subvol(struct inode *dir,
552 struct dentry *dentry,
553 const char *name, int namelen,
554 struct btrfs_qgroup_inherit *inherit)
556 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
557 struct btrfs_trans_handle *trans;
558 struct btrfs_key key;
559 struct btrfs_root_item *root_item;
560 struct btrfs_inode_item *inode_item;
561 struct extent_buffer *leaf;
562 struct btrfs_root *root = BTRFS_I(dir)->root;
563 struct btrfs_root *new_root;
564 struct btrfs_block_rsv block_rsv;
565 struct timespec64 cur_time = current_time(dir);
566 struct inode *inode;
567 int ret;
568 int err;
569 u64 objectid;
570 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
571 u64 index = 0;
573 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
574 if (!root_item)
575 return -ENOMEM;
577 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
578 if (ret)
579 goto fail_free;
582 * Don't create subvolume whose level is not zero. Or qgroup will be
583 * screwed up since it assumes subvolume qgroup's level to be 0.
585 if (btrfs_qgroup_level(objectid)) {
586 ret = -ENOSPC;
587 goto fail_free;
590 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
592 * The same as the snapshot creation, please see the comment
593 * of create_snapshot().
595 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
596 if (ret)
597 goto fail_free;
599 trans = btrfs_start_transaction(root, 0);
600 if (IS_ERR(trans)) {
601 ret = PTR_ERR(trans);
602 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
603 goto fail_free;
605 trans->block_rsv = &block_rsv;
606 trans->bytes_reserved = block_rsv.size;
608 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
609 if (ret)
610 goto fail;
612 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
613 if (IS_ERR(leaf)) {
614 ret = PTR_ERR(leaf);
615 goto fail;
618 btrfs_mark_buffer_dirty(leaf);
620 inode_item = &root_item->inode;
621 btrfs_set_stack_inode_generation(inode_item, 1);
622 btrfs_set_stack_inode_size(inode_item, 3);
623 btrfs_set_stack_inode_nlink(inode_item, 1);
624 btrfs_set_stack_inode_nbytes(inode_item,
625 fs_info->nodesize);
626 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
628 btrfs_set_root_flags(root_item, 0);
629 btrfs_set_root_limit(root_item, 0);
630 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
632 btrfs_set_root_bytenr(root_item, leaf->start);
633 btrfs_set_root_generation(root_item, trans->transid);
634 btrfs_set_root_level(root_item, 0);
635 btrfs_set_root_refs(root_item, 1);
636 btrfs_set_root_used(root_item, leaf->len);
637 btrfs_set_root_last_snapshot(root_item, 0);
639 btrfs_set_root_generation_v2(root_item,
640 btrfs_root_generation(root_item));
641 generate_random_guid(root_item->uuid);
642 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
643 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
644 root_item->ctime = root_item->otime;
645 btrfs_set_root_ctransid(root_item, trans->transid);
646 btrfs_set_root_otransid(root_item, trans->transid);
648 btrfs_tree_unlock(leaf);
649 free_extent_buffer(leaf);
650 leaf = NULL;
652 btrfs_set_root_dirid(root_item, new_dirid);
654 key.objectid = objectid;
655 key.offset = 0;
656 key.type = BTRFS_ROOT_ITEM_KEY;
657 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
658 root_item);
659 if (ret)
660 goto fail;
662 key.offset = (u64)-1;
663 new_root = btrfs_get_fs_root(fs_info, &key, true);
664 if (IS_ERR(new_root)) {
665 ret = PTR_ERR(new_root);
666 btrfs_abort_transaction(trans, ret);
667 goto fail;
670 btrfs_record_root_in_trans(trans, new_root);
672 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
673 btrfs_put_root(new_root);
674 if (ret) {
675 /* We potentially lose an unused inode item here */
676 btrfs_abort_transaction(trans, ret);
677 goto fail;
680 mutex_lock(&new_root->objectid_mutex);
681 new_root->highest_objectid = new_dirid;
682 mutex_unlock(&new_root->objectid_mutex);
685 * insert the directory item
687 ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
688 if (ret) {
689 btrfs_abort_transaction(trans, ret);
690 goto fail;
693 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
694 BTRFS_FT_DIR, index);
695 if (ret) {
696 btrfs_abort_transaction(trans, ret);
697 goto fail;
700 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
701 ret = btrfs_update_inode(trans, root, dir);
702 if (ret) {
703 btrfs_abort_transaction(trans, ret);
704 goto fail;
707 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
708 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
709 if (ret) {
710 btrfs_abort_transaction(trans, ret);
711 goto fail;
714 ret = btrfs_uuid_tree_add(trans, root_item->uuid,
715 BTRFS_UUID_KEY_SUBVOL, objectid);
716 if (ret)
717 btrfs_abort_transaction(trans, ret);
719 fail:
720 kfree(root_item);
721 trans->block_rsv = NULL;
722 trans->bytes_reserved = 0;
723 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
725 err = btrfs_commit_transaction(trans);
726 if (err && !ret)
727 ret = err;
729 if (!ret) {
730 inode = btrfs_lookup_dentry(dir, dentry);
731 if (IS_ERR(inode))
732 return PTR_ERR(inode);
733 d_instantiate(dentry, inode);
735 return ret;
737 fail_free:
738 kfree(root_item);
739 return ret;
742 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
743 struct dentry *dentry, bool readonly,
744 struct btrfs_qgroup_inherit *inherit)
746 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
747 struct inode *inode;
748 struct btrfs_pending_snapshot *pending_snapshot;
749 struct btrfs_trans_handle *trans;
750 int ret;
751 bool snapshot_force_cow = false;
753 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
754 return -EINVAL;
756 if (atomic_read(&root->nr_swapfiles)) {
757 btrfs_warn(fs_info,
758 "cannot snapshot subvolume with active swapfile");
759 return -ETXTBSY;
762 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
763 if (!pending_snapshot)
764 return -ENOMEM;
766 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
767 GFP_KERNEL);
768 pending_snapshot->path = btrfs_alloc_path();
769 if (!pending_snapshot->root_item || !pending_snapshot->path) {
770 ret = -ENOMEM;
771 goto free_pending;
775 * Force new buffered writes to reserve space even when NOCOW is
776 * possible. This is to avoid later writeback (running dealloc) to
777 * fallback to COW mode and unexpectedly fail with ENOSPC.
779 btrfs_drew_read_lock(&root->snapshot_lock);
781 ret = btrfs_start_delalloc_snapshot(root);
782 if (ret)
783 goto dec_and_free;
786 * All previous writes have started writeback in NOCOW mode, so now
787 * we force future writes to fallback to COW mode during snapshot
788 * creation.
790 atomic_inc(&root->snapshot_force_cow);
791 snapshot_force_cow = true;
793 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
795 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
796 BTRFS_BLOCK_RSV_TEMP);
798 * 1 - parent dir inode
799 * 2 - dir entries
800 * 1 - root item
801 * 2 - root ref/backref
802 * 1 - root of snapshot
803 * 1 - UUID item
805 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
806 &pending_snapshot->block_rsv, 8,
807 false);
808 if (ret)
809 goto dec_and_free;
811 pending_snapshot->dentry = dentry;
812 pending_snapshot->root = root;
813 pending_snapshot->readonly = readonly;
814 pending_snapshot->dir = dir;
815 pending_snapshot->inherit = inherit;
817 trans = btrfs_start_transaction(root, 0);
818 if (IS_ERR(trans)) {
819 ret = PTR_ERR(trans);
820 goto fail;
823 spin_lock(&fs_info->trans_lock);
824 list_add(&pending_snapshot->list,
825 &trans->transaction->pending_snapshots);
826 spin_unlock(&fs_info->trans_lock);
828 ret = btrfs_commit_transaction(trans);
829 if (ret)
830 goto fail;
832 ret = pending_snapshot->error;
833 if (ret)
834 goto fail;
836 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
837 if (ret)
838 goto fail;
840 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
841 if (IS_ERR(inode)) {
842 ret = PTR_ERR(inode);
843 goto fail;
846 d_instantiate(dentry, inode);
847 ret = 0;
848 fail:
849 btrfs_put_root(pending_snapshot->snap);
850 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv);
851 dec_and_free:
852 if (snapshot_force_cow)
853 atomic_dec(&root->snapshot_force_cow);
854 btrfs_drew_read_unlock(&root->snapshot_lock);
856 free_pending:
857 kfree(pending_snapshot->root_item);
858 btrfs_free_path(pending_snapshot->path);
859 kfree(pending_snapshot);
861 return ret;
864 /* copy of may_delete in fs/namei.c()
865 * Check whether we can remove a link victim from directory dir, check
866 * whether the type of victim is right.
867 * 1. We can't do it if dir is read-only (done in permission())
868 * 2. We should have write and exec permissions on dir
869 * 3. We can't remove anything from append-only dir
870 * 4. We can't do anything with immutable dir (done in permission())
871 * 5. If the sticky bit on dir is set we should either
872 * a. be owner of dir, or
873 * b. be owner of victim, or
874 * c. have CAP_FOWNER capability
875 * 6. If the victim is append-only or immutable we can't do anything with
876 * links pointing to it.
877 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
878 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
879 * 9. We can't remove a root or mountpoint.
880 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
881 * nfs_async_unlink().
884 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
886 int error;
888 if (d_really_is_negative(victim))
889 return -ENOENT;
891 BUG_ON(d_inode(victim->d_parent) != dir);
892 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
894 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
895 if (error)
896 return error;
897 if (IS_APPEND(dir))
898 return -EPERM;
899 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
900 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
901 return -EPERM;
902 if (isdir) {
903 if (!d_is_dir(victim))
904 return -ENOTDIR;
905 if (IS_ROOT(victim))
906 return -EBUSY;
907 } else if (d_is_dir(victim))
908 return -EISDIR;
909 if (IS_DEADDIR(dir))
910 return -ENOENT;
911 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
912 return -EBUSY;
913 return 0;
916 /* copy of may_create in fs/namei.c() */
917 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
919 if (d_really_is_positive(child))
920 return -EEXIST;
921 if (IS_DEADDIR(dir))
922 return -ENOENT;
923 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
927 * Create a new subvolume below @parent. This is largely modeled after
928 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
929 * inside this filesystem so it's quite a bit simpler.
931 static noinline int btrfs_mksubvol(const struct path *parent,
932 const char *name, int namelen,
933 struct btrfs_root *snap_src,
934 bool readonly,
935 struct btrfs_qgroup_inherit *inherit)
937 struct inode *dir = d_inode(parent->dentry);
938 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
939 struct dentry *dentry;
940 int error;
942 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
943 if (error == -EINTR)
944 return error;
946 dentry = lookup_one_len(name, parent->dentry, namelen);
947 error = PTR_ERR(dentry);
948 if (IS_ERR(dentry))
949 goto out_unlock;
951 error = btrfs_may_create(dir, dentry);
952 if (error)
953 goto out_dput;
956 * even if this name doesn't exist, we may get hash collisions.
957 * check for them now when we can safely fail
959 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
960 dir->i_ino, name,
961 namelen);
962 if (error)
963 goto out_dput;
965 down_read(&fs_info->subvol_sem);
967 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
968 goto out_up_read;
970 if (snap_src)
971 error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
972 else
973 error = create_subvol(dir, dentry, name, namelen, inherit);
975 if (!error)
976 fsnotify_mkdir(dir, dentry);
977 out_up_read:
978 up_read(&fs_info->subvol_sem);
979 out_dput:
980 dput(dentry);
981 out_unlock:
982 inode_unlock(dir);
983 return error;
987 * When we're defragging a range, we don't want to kick it off again
988 * if it is really just waiting for delalloc to send it down.
989 * If we find a nice big extent or delalloc range for the bytes in the
990 * file you want to defrag, we return 0 to let you know to skip this
991 * part of the file
993 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
995 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
996 struct extent_map *em = NULL;
997 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
998 u64 end;
1000 read_lock(&em_tree->lock);
1001 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
1002 read_unlock(&em_tree->lock);
1004 if (em) {
1005 end = extent_map_end(em);
1006 free_extent_map(em);
1007 if (end - offset > thresh)
1008 return 0;
1010 /* if we already have a nice delalloc here, just stop */
1011 thresh /= 2;
1012 end = count_range_bits(io_tree, &offset, offset + thresh,
1013 thresh, EXTENT_DELALLOC, 1);
1014 if (end >= thresh)
1015 return 0;
1016 return 1;
1020 * helper function to walk through a file and find extents
1021 * newer than a specific transid, and smaller than thresh.
1023 * This is used by the defragging code to find new and small
1024 * extents
1026 static int find_new_extents(struct btrfs_root *root,
1027 struct inode *inode, u64 newer_than,
1028 u64 *off, u32 thresh)
1030 struct btrfs_path *path;
1031 struct btrfs_key min_key;
1032 struct extent_buffer *leaf;
1033 struct btrfs_file_extent_item *extent;
1034 int type;
1035 int ret;
1036 u64 ino = btrfs_ino(BTRFS_I(inode));
1038 path = btrfs_alloc_path();
1039 if (!path)
1040 return -ENOMEM;
1042 min_key.objectid = ino;
1043 min_key.type = BTRFS_EXTENT_DATA_KEY;
1044 min_key.offset = *off;
1046 while (1) {
1047 ret = btrfs_search_forward(root, &min_key, path, newer_than);
1048 if (ret != 0)
1049 goto none;
1050 process_slot:
1051 if (min_key.objectid != ino)
1052 goto none;
1053 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
1054 goto none;
1056 leaf = path->nodes[0];
1057 extent = btrfs_item_ptr(leaf, path->slots[0],
1058 struct btrfs_file_extent_item);
1060 type = btrfs_file_extent_type(leaf, extent);
1061 if (type == BTRFS_FILE_EXTENT_REG &&
1062 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
1063 check_defrag_in_cache(inode, min_key.offset, thresh)) {
1064 *off = min_key.offset;
1065 btrfs_free_path(path);
1066 return 0;
1069 path->slots[0]++;
1070 if (path->slots[0] < btrfs_header_nritems(leaf)) {
1071 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1072 goto process_slot;
1075 if (min_key.offset == (u64)-1)
1076 goto none;
1078 min_key.offset++;
1079 btrfs_release_path(path);
1081 none:
1082 btrfs_free_path(path);
1083 return -ENOENT;
1086 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1088 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1089 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1090 struct extent_map *em;
1091 u64 len = PAGE_SIZE;
1094 * hopefully we have this extent in the tree already, try without
1095 * the full extent lock
1097 read_lock(&em_tree->lock);
1098 em = lookup_extent_mapping(em_tree, start, len);
1099 read_unlock(&em_tree->lock);
1101 if (!em) {
1102 struct extent_state *cached = NULL;
1103 u64 end = start + len - 1;
1105 /* get the big lock and read metadata off disk */
1106 lock_extent_bits(io_tree, start, end, &cached);
1107 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
1108 unlock_extent_cached(io_tree, start, end, &cached);
1110 if (IS_ERR(em))
1111 return NULL;
1114 return em;
1117 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1119 struct extent_map *next;
1120 bool ret = true;
1122 /* this is the last extent */
1123 if (em->start + em->len >= i_size_read(inode))
1124 return false;
1126 next = defrag_lookup_extent(inode, em->start + em->len);
1127 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1128 ret = false;
1129 else if ((em->block_start + em->block_len == next->block_start) &&
1130 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1131 ret = false;
1133 free_extent_map(next);
1134 return ret;
1137 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1138 u64 *last_len, u64 *skip, u64 *defrag_end,
1139 int compress)
1141 struct extent_map *em;
1142 int ret = 1;
1143 bool next_mergeable = true;
1144 bool prev_mergeable = true;
1147 * make sure that once we start defragging an extent, we keep on
1148 * defragging it
1150 if (start < *defrag_end)
1151 return 1;
1153 *skip = 0;
1155 em = defrag_lookup_extent(inode, start);
1156 if (!em)
1157 return 0;
1159 /* this will cover holes, and inline extents */
1160 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1161 ret = 0;
1162 goto out;
1165 if (!*defrag_end)
1166 prev_mergeable = false;
1168 next_mergeable = defrag_check_next_extent(inode, em);
1170 * we hit a real extent, if it is big or the next extent is not a
1171 * real extent, don't bother defragging it
1173 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1174 (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1175 ret = 0;
1176 out:
1178 * last_len ends up being a counter of how many bytes we've defragged.
1179 * every time we choose not to defrag an extent, we reset *last_len
1180 * so that the next tiny extent will force a defrag.
1182 * The end result of this is that tiny extents before a single big
1183 * extent will force at least part of that big extent to be defragged.
1185 if (ret) {
1186 *defrag_end = extent_map_end(em);
1187 } else {
1188 *last_len = 0;
1189 *skip = extent_map_end(em);
1190 *defrag_end = 0;
1193 free_extent_map(em);
1194 return ret;
1198 * it doesn't do much good to defrag one or two pages
1199 * at a time. This pulls in a nice chunk of pages
1200 * to COW and defrag.
1202 * It also makes sure the delalloc code has enough
1203 * dirty data to avoid making new small extents as part
1204 * of the defrag
1206 * It's a good idea to start RA on this range
1207 * before calling this.
1209 static int cluster_pages_for_defrag(struct inode *inode,
1210 struct page **pages,
1211 unsigned long start_index,
1212 unsigned long num_pages)
1214 unsigned long file_end;
1215 u64 isize = i_size_read(inode);
1216 u64 page_start;
1217 u64 page_end;
1218 u64 page_cnt;
1219 int ret;
1220 int i;
1221 int i_done;
1222 struct btrfs_ordered_extent *ordered;
1223 struct extent_state *cached_state = NULL;
1224 struct extent_io_tree *tree;
1225 struct extent_changeset *data_reserved = NULL;
1226 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1228 file_end = (isize - 1) >> PAGE_SHIFT;
1229 if (!isize || start_index > file_end)
1230 return 0;
1232 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1234 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
1235 start_index << PAGE_SHIFT,
1236 page_cnt << PAGE_SHIFT);
1237 if (ret)
1238 return ret;
1239 i_done = 0;
1240 tree = &BTRFS_I(inode)->io_tree;
1242 /* step one, lock all the pages */
1243 for (i = 0; i < page_cnt; i++) {
1244 struct page *page;
1245 again:
1246 page = find_or_create_page(inode->i_mapping,
1247 start_index + i, mask);
1248 if (!page)
1249 break;
1251 page_start = page_offset(page);
1252 page_end = page_start + PAGE_SIZE - 1;
1253 while (1) {
1254 lock_extent_bits(tree, page_start, page_end,
1255 &cached_state);
1256 ordered = btrfs_lookup_ordered_extent(inode,
1257 page_start);
1258 unlock_extent_cached(tree, page_start, page_end,
1259 &cached_state);
1260 if (!ordered)
1261 break;
1263 unlock_page(page);
1264 btrfs_start_ordered_extent(inode, ordered, 1);
1265 btrfs_put_ordered_extent(ordered);
1266 lock_page(page);
1268 * we unlocked the page above, so we need check if
1269 * it was released or not.
1271 if (page->mapping != inode->i_mapping) {
1272 unlock_page(page);
1273 put_page(page);
1274 goto again;
1278 if (!PageUptodate(page)) {
1279 btrfs_readpage(NULL, page);
1280 lock_page(page);
1281 if (!PageUptodate(page)) {
1282 unlock_page(page);
1283 put_page(page);
1284 ret = -EIO;
1285 break;
1289 if (page->mapping != inode->i_mapping) {
1290 unlock_page(page);
1291 put_page(page);
1292 goto again;
1295 pages[i] = page;
1296 i_done++;
1298 if (!i_done || ret)
1299 goto out;
1301 if (!(inode->i_sb->s_flags & SB_ACTIVE))
1302 goto out;
1305 * so now we have a nice long stream of locked
1306 * and up to date pages, lets wait on them
1308 for (i = 0; i < i_done; i++)
1309 wait_on_page_writeback(pages[i]);
1311 page_start = page_offset(pages[0]);
1312 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1314 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1315 page_start, page_end - 1, &cached_state);
1316 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1317 page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1318 EXTENT_DEFRAG, 0, 0, &cached_state);
1320 if (i_done != page_cnt) {
1321 spin_lock(&BTRFS_I(inode)->lock);
1322 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1323 spin_unlock(&BTRFS_I(inode)->lock);
1324 btrfs_delalloc_release_space(inode, data_reserved,
1325 start_index << PAGE_SHIFT,
1326 (page_cnt - i_done) << PAGE_SHIFT, true);
1330 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1331 &cached_state);
1333 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1334 page_start, page_end - 1, &cached_state);
1336 for (i = 0; i < i_done; i++) {
1337 clear_page_dirty_for_io(pages[i]);
1338 ClearPageChecked(pages[i]);
1339 set_page_extent_mapped(pages[i]);
1340 set_page_dirty(pages[i]);
1341 unlock_page(pages[i]);
1342 put_page(pages[i]);
1344 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1345 extent_changeset_free(data_reserved);
1346 return i_done;
1347 out:
1348 for (i = 0; i < i_done; i++) {
1349 unlock_page(pages[i]);
1350 put_page(pages[i]);
1352 btrfs_delalloc_release_space(inode, data_reserved,
1353 start_index << PAGE_SHIFT,
1354 page_cnt << PAGE_SHIFT, true);
1355 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1356 extent_changeset_free(data_reserved);
1357 return ret;
1361 int btrfs_defrag_file(struct inode *inode, struct file *file,
1362 struct btrfs_ioctl_defrag_range_args *range,
1363 u64 newer_than, unsigned long max_to_defrag)
1365 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1366 struct btrfs_root *root = BTRFS_I(inode)->root;
1367 struct file_ra_state *ra = NULL;
1368 unsigned long last_index;
1369 u64 isize = i_size_read(inode);
1370 u64 last_len = 0;
1371 u64 skip = 0;
1372 u64 defrag_end = 0;
1373 u64 newer_off = range->start;
1374 unsigned long i;
1375 unsigned long ra_index = 0;
1376 int ret;
1377 int defrag_count = 0;
1378 int compress_type = BTRFS_COMPRESS_ZLIB;
1379 u32 extent_thresh = range->extent_thresh;
1380 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1381 unsigned long cluster = max_cluster;
1382 u64 new_align = ~((u64)SZ_128K - 1);
1383 struct page **pages = NULL;
1384 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1386 if (isize == 0)
1387 return 0;
1389 if (range->start >= isize)
1390 return -EINVAL;
1392 if (do_compress) {
1393 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1394 return -EINVAL;
1395 if (range->compress_type)
1396 compress_type = range->compress_type;
1399 if (extent_thresh == 0)
1400 extent_thresh = SZ_256K;
1403 * If we were not given a file, allocate a readahead context. As
1404 * readahead is just an optimization, defrag will work without it so
1405 * we don't error out.
1407 if (!file) {
1408 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1409 if (ra)
1410 file_ra_state_init(ra, inode->i_mapping);
1411 } else {
1412 ra = &file->f_ra;
1415 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1416 if (!pages) {
1417 ret = -ENOMEM;
1418 goto out_ra;
1421 /* find the last page to defrag */
1422 if (range->start + range->len > range->start) {
1423 last_index = min_t(u64, isize - 1,
1424 range->start + range->len - 1) >> PAGE_SHIFT;
1425 } else {
1426 last_index = (isize - 1) >> PAGE_SHIFT;
1429 if (newer_than) {
1430 ret = find_new_extents(root, inode, newer_than,
1431 &newer_off, SZ_64K);
1432 if (!ret) {
1433 range->start = newer_off;
1435 * we always align our defrag to help keep
1436 * the extents in the file evenly spaced
1438 i = (newer_off & new_align) >> PAGE_SHIFT;
1439 } else
1440 goto out_ra;
1441 } else {
1442 i = range->start >> PAGE_SHIFT;
1444 if (!max_to_defrag)
1445 max_to_defrag = last_index - i + 1;
1448 * make writeback starts from i, so the defrag range can be
1449 * written sequentially.
1451 if (i < inode->i_mapping->writeback_index)
1452 inode->i_mapping->writeback_index = i;
1454 while (i <= last_index && defrag_count < max_to_defrag &&
1455 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1457 * make sure we stop running if someone unmounts
1458 * the FS
1460 if (!(inode->i_sb->s_flags & SB_ACTIVE))
1461 break;
1463 if (btrfs_defrag_cancelled(fs_info)) {
1464 btrfs_debug(fs_info, "defrag_file cancelled");
1465 ret = -EAGAIN;
1466 break;
1469 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1470 extent_thresh, &last_len, &skip,
1471 &defrag_end, do_compress)){
1472 unsigned long next;
1474 * the should_defrag function tells us how much to skip
1475 * bump our counter by the suggested amount
1477 next = DIV_ROUND_UP(skip, PAGE_SIZE);
1478 i = max(i + 1, next);
1479 continue;
1482 if (!newer_than) {
1483 cluster = (PAGE_ALIGN(defrag_end) >>
1484 PAGE_SHIFT) - i;
1485 cluster = min(cluster, max_cluster);
1486 } else {
1487 cluster = max_cluster;
1490 if (i + cluster > ra_index) {
1491 ra_index = max(i, ra_index);
1492 if (ra)
1493 page_cache_sync_readahead(inode->i_mapping, ra,
1494 file, ra_index, cluster);
1495 ra_index += cluster;
1498 inode_lock(inode);
1499 if (IS_SWAPFILE(inode)) {
1500 ret = -ETXTBSY;
1501 } else {
1502 if (do_compress)
1503 BTRFS_I(inode)->defrag_compress = compress_type;
1504 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1506 if (ret < 0) {
1507 inode_unlock(inode);
1508 goto out_ra;
1511 defrag_count += ret;
1512 balance_dirty_pages_ratelimited(inode->i_mapping);
1513 inode_unlock(inode);
1515 if (newer_than) {
1516 if (newer_off == (u64)-1)
1517 break;
1519 if (ret > 0)
1520 i += ret;
1522 newer_off = max(newer_off + 1,
1523 (u64)i << PAGE_SHIFT);
1525 ret = find_new_extents(root, inode, newer_than,
1526 &newer_off, SZ_64K);
1527 if (!ret) {
1528 range->start = newer_off;
1529 i = (newer_off & new_align) >> PAGE_SHIFT;
1530 } else {
1531 break;
1533 } else {
1534 if (ret > 0) {
1535 i += ret;
1536 last_len += ret << PAGE_SHIFT;
1537 } else {
1538 i++;
1539 last_len = 0;
1544 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1545 filemap_flush(inode->i_mapping);
1546 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1547 &BTRFS_I(inode)->runtime_flags))
1548 filemap_flush(inode->i_mapping);
1551 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1552 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1553 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1554 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1557 ret = defrag_count;
1559 out_ra:
1560 if (do_compress) {
1561 inode_lock(inode);
1562 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1563 inode_unlock(inode);
1565 if (!file)
1566 kfree(ra);
1567 kfree(pages);
1568 return ret;
1571 static noinline int btrfs_ioctl_resize(struct file *file,
1572 void __user *arg)
1574 struct inode *inode = file_inode(file);
1575 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1576 u64 new_size;
1577 u64 old_size;
1578 u64 devid = 1;
1579 struct btrfs_root *root = BTRFS_I(inode)->root;
1580 struct btrfs_ioctl_vol_args *vol_args;
1581 struct btrfs_trans_handle *trans;
1582 struct btrfs_device *device = NULL;
1583 char *sizestr;
1584 char *retptr;
1585 char *devstr = NULL;
1586 int ret = 0;
1587 int mod = 0;
1589 if (!capable(CAP_SYS_ADMIN))
1590 return -EPERM;
1592 ret = mnt_want_write_file(file);
1593 if (ret)
1594 return ret;
1596 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
1597 mnt_drop_write_file(file);
1598 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1601 vol_args = memdup_user(arg, sizeof(*vol_args));
1602 if (IS_ERR(vol_args)) {
1603 ret = PTR_ERR(vol_args);
1604 goto out;
1607 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1609 sizestr = vol_args->name;
1610 devstr = strchr(sizestr, ':');
1611 if (devstr) {
1612 sizestr = devstr + 1;
1613 *devstr = '\0';
1614 devstr = vol_args->name;
1615 ret = kstrtoull(devstr, 10, &devid);
1616 if (ret)
1617 goto out_free;
1618 if (!devid) {
1619 ret = -EINVAL;
1620 goto out_free;
1622 btrfs_info(fs_info, "resizing devid %llu", devid);
1625 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
1626 if (!device) {
1627 btrfs_info(fs_info, "resizer unable to find device %llu",
1628 devid);
1629 ret = -ENODEV;
1630 goto out_free;
1633 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1634 btrfs_info(fs_info,
1635 "resizer unable to apply on readonly device %llu",
1636 devid);
1637 ret = -EPERM;
1638 goto out_free;
1641 if (!strcmp(sizestr, "max"))
1642 new_size = device->bdev->bd_inode->i_size;
1643 else {
1644 if (sizestr[0] == '-') {
1645 mod = -1;
1646 sizestr++;
1647 } else if (sizestr[0] == '+') {
1648 mod = 1;
1649 sizestr++;
1651 new_size = memparse(sizestr, &retptr);
1652 if (*retptr != '\0' || new_size == 0) {
1653 ret = -EINVAL;
1654 goto out_free;
1658 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1659 ret = -EPERM;
1660 goto out_free;
1663 old_size = btrfs_device_get_total_bytes(device);
1665 if (mod < 0) {
1666 if (new_size > old_size) {
1667 ret = -EINVAL;
1668 goto out_free;
1670 new_size = old_size - new_size;
1671 } else if (mod > 0) {
1672 if (new_size > ULLONG_MAX - old_size) {
1673 ret = -ERANGE;
1674 goto out_free;
1676 new_size = old_size + new_size;
1679 if (new_size < SZ_256M) {
1680 ret = -EINVAL;
1681 goto out_free;
1683 if (new_size > device->bdev->bd_inode->i_size) {
1684 ret = -EFBIG;
1685 goto out_free;
1688 new_size = round_down(new_size, fs_info->sectorsize);
1690 if (new_size > old_size) {
1691 trans = btrfs_start_transaction(root, 0);
1692 if (IS_ERR(trans)) {
1693 ret = PTR_ERR(trans);
1694 goto out_free;
1696 ret = btrfs_grow_device(trans, device, new_size);
1697 btrfs_commit_transaction(trans);
1698 } else if (new_size < old_size) {
1699 ret = btrfs_shrink_device(device, new_size);
1700 } /* equal, nothing need to do */
1702 if (ret == 0 && new_size != old_size)
1703 btrfs_info_in_rcu(fs_info,
1704 "resize device %s (devid %llu) from %llu to %llu",
1705 rcu_str_deref(device->name), device->devid,
1706 old_size, new_size);
1707 out_free:
1708 kfree(vol_args);
1709 out:
1710 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
1711 mnt_drop_write_file(file);
1712 return ret;
1715 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1716 const char *name, unsigned long fd, int subvol,
1717 bool readonly,
1718 struct btrfs_qgroup_inherit *inherit)
1720 int namelen;
1721 int ret = 0;
1723 if (!S_ISDIR(file_inode(file)->i_mode))
1724 return -ENOTDIR;
1726 ret = mnt_want_write_file(file);
1727 if (ret)
1728 goto out;
1730 namelen = strlen(name);
1731 if (strchr(name, '/')) {
1732 ret = -EINVAL;
1733 goto out_drop_write;
1736 if (name[0] == '.' &&
1737 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1738 ret = -EEXIST;
1739 goto out_drop_write;
1742 if (subvol) {
1743 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1744 NULL, readonly, inherit);
1745 } else {
1746 struct fd src = fdget(fd);
1747 struct inode *src_inode;
1748 if (!src.file) {
1749 ret = -EINVAL;
1750 goto out_drop_write;
1753 src_inode = file_inode(src.file);
1754 if (src_inode->i_sb != file_inode(file)->i_sb) {
1755 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1756 "Snapshot src from another FS");
1757 ret = -EXDEV;
1758 } else if (!inode_owner_or_capable(src_inode)) {
1760 * Subvolume creation is not restricted, but snapshots
1761 * are limited to own subvolumes only
1763 ret = -EPERM;
1764 } else {
1765 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1766 BTRFS_I(src_inode)->root,
1767 readonly, inherit);
1769 fdput(src);
1771 out_drop_write:
1772 mnt_drop_write_file(file);
1773 out:
1774 return ret;
1777 static noinline int btrfs_ioctl_snap_create(struct file *file,
1778 void __user *arg, int subvol)
1780 struct btrfs_ioctl_vol_args *vol_args;
1781 int ret;
1783 if (!S_ISDIR(file_inode(file)->i_mode))
1784 return -ENOTDIR;
1786 vol_args = memdup_user(arg, sizeof(*vol_args));
1787 if (IS_ERR(vol_args))
1788 return PTR_ERR(vol_args);
1789 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1791 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1792 subvol, false, NULL);
1794 kfree(vol_args);
1795 return ret;
1798 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1799 void __user *arg, int subvol)
1801 struct btrfs_ioctl_vol_args_v2 *vol_args;
1802 int ret;
1803 bool readonly = false;
1804 struct btrfs_qgroup_inherit *inherit = NULL;
1806 if (!S_ISDIR(file_inode(file)->i_mode))
1807 return -ENOTDIR;
1809 vol_args = memdup_user(arg, sizeof(*vol_args));
1810 if (IS_ERR(vol_args))
1811 return PTR_ERR(vol_args);
1812 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1814 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1815 ret = -EOPNOTSUPP;
1816 goto free_args;
1819 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1820 readonly = true;
1821 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1822 if (vol_args->size > PAGE_SIZE) {
1823 ret = -EINVAL;
1824 goto free_args;
1826 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1827 if (IS_ERR(inherit)) {
1828 ret = PTR_ERR(inherit);
1829 goto free_args;
1833 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1834 subvol, readonly, inherit);
1835 if (ret)
1836 goto free_inherit;
1837 free_inherit:
1838 kfree(inherit);
1839 free_args:
1840 kfree(vol_args);
1841 return ret;
1844 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1845 void __user *arg)
1847 struct inode *inode = file_inode(file);
1848 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1849 struct btrfs_root *root = BTRFS_I(inode)->root;
1850 int ret = 0;
1851 u64 flags = 0;
1853 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1854 return -EINVAL;
1856 down_read(&fs_info->subvol_sem);
1857 if (btrfs_root_readonly(root))
1858 flags |= BTRFS_SUBVOL_RDONLY;
1859 up_read(&fs_info->subvol_sem);
1861 if (copy_to_user(arg, &flags, sizeof(flags)))
1862 ret = -EFAULT;
1864 return ret;
1867 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1868 void __user *arg)
1870 struct inode *inode = file_inode(file);
1871 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1872 struct btrfs_root *root = BTRFS_I(inode)->root;
1873 struct btrfs_trans_handle *trans;
1874 u64 root_flags;
1875 u64 flags;
1876 int ret = 0;
1878 if (!inode_owner_or_capable(inode))
1879 return -EPERM;
1881 ret = mnt_want_write_file(file);
1882 if (ret)
1883 goto out;
1885 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1886 ret = -EINVAL;
1887 goto out_drop_write;
1890 if (copy_from_user(&flags, arg, sizeof(flags))) {
1891 ret = -EFAULT;
1892 goto out_drop_write;
1895 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1896 ret = -EOPNOTSUPP;
1897 goto out_drop_write;
1900 down_write(&fs_info->subvol_sem);
1902 /* nothing to do */
1903 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1904 goto out_drop_sem;
1906 root_flags = btrfs_root_flags(&root->root_item);
1907 if (flags & BTRFS_SUBVOL_RDONLY) {
1908 btrfs_set_root_flags(&root->root_item,
1909 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1910 } else {
1912 * Block RO -> RW transition if this subvolume is involved in
1913 * send
1915 spin_lock(&root->root_item_lock);
1916 if (root->send_in_progress == 0) {
1917 btrfs_set_root_flags(&root->root_item,
1918 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1919 spin_unlock(&root->root_item_lock);
1920 } else {
1921 spin_unlock(&root->root_item_lock);
1922 btrfs_warn(fs_info,
1923 "Attempt to set subvolume %llu read-write during send",
1924 root->root_key.objectid);
1925 ret = -EPERM;
1926 goto out_drop_sem;
1930 trans = btrfs_start_transaction(root, 1);
1931 if (IS_ERR(trans)) {
1932 ret = PTR_ERR(trans);
1933 goto out_reset;
1936 ret = btrfs_update_root(trans, fs_info->tree_root,
1937 &root->root_key, &root->root_item);
1938 if (ret < 0) {
1939 btrfs_end_transaction(trans);
1940 goto out_reset;
1943 ret = btrfs_commit_transaction(trans);
1945 out_reset:
1946 if (ret)
1947 btrfs_set_root_flags(&root->root_item, root_flags);
1948 out_drop_sem:
1949 up_write(&fs_info->subvol_sem);
1950 out_drop_write:
1951 mnt_drop_write_file(file);
1952 out:
1953 return ret;
1956 static noinline int key_in_sk(struct btrfs_key *key,
1957 struct btrfs_ioctl_search_key *sk)
1959 struct btrfs_key test;
1960 int ret;
1962 test.objectid = sk->min_objectid;
1963 test.type = sk->min_type;
1964 test.offset = sk->min_offset;
1966 ret = btrfs_comp_cpu_keys(key, &test);
1967 if (ret < 0)
1968 return 0;
1970 test.objectid = sk->max_objectid;
1971 test.type = sk->max_type;
1972 test.offset = sk->max_offset;
1974 ret = btrfs_comp_cpu_keys(key, &test);
1975 if (ret > 0)
1976 return 0;
1977 return 1;
1980 static noinline int copy_to_sk(struct btrfs_path *path,
1981 struct btrfs_key *key,
1982 struct btrfs_ioctl_search_key *sk,
1983 size_t *buf_size,
1984 char __user *ubuf,
1985 unsigned long *sk_offset,
1986 int *num_found)
1988 u64 found_transid;
1989 struct extent_buffer *leaf;
1990 struct btrfs_ioctl_search_header sh;
1991 struct btrfs_key test;
1992 unsigned long item_off;
1993 unsigned long item_len;
1994 int nritems;
1995 int i;
1996 int slot;
1997 int ret = 0;
1999 leaf = path->nodes[0];
2000 slot = path->slots[0];
2001 nritems = btrfs_header_nritems(leaf);
2003 if (btrfs_header_generation(leaf) > sk->max_transid) {
2004 i = nritems;
2005 goto advance_key;
2007 found_transid = btrfs_header_generation(leaf);
2009 for (i = slot; i < nritems; i++) {
2010 item_off = btrfs_item_ptr_offset(leaf, i);
2011 item_len = btrfs_item_size_nr(leaf, i);
2013 btrfs_item_key_to_cpu(leaf, key, i);
2014 if (!key_in_sk(key, sk))
2015 continue;
2017 if (sizeof(sh) + item_len > *buf_size) {
2018 if (*num_found) {
2019 ret = 1;
2020 goto out;
2024 * return one empty item back for v1, which does not
2025 * handle -EOVERFLOW
2028 *buf_size = sizeof(sh) + item_len;
2029 item_len = 0;
2030 ret = -EOVERFLOW;
2033 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2034 ret = 1;
2035 goto out;
2038 sh.objectid = key->objectid;
2039 sh.offset = key->offset;
2040 sh.type = key->type;
2041 sh.len = item_len;
2042 sh.transid = found_transid;
2044 /* copy search result header */
2045 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
2046 ret = -EFAULT;
2047 goto out;
2050 *sk_offset += sizeof(sh);
2052 if (item_len) {
2053 char __user *up = ubuf + *sk_offset;
2054 /* copy the item */
2055 if (read_extent_buffer_to_user(leaf, up,
2056 item_off, item_len)) {
2057 ret = -EFAULT;
2058 goto out;
2061 *sk_offset += item_len;
2063 (*num_found)++;
2065 if (ret) /* -EOVERFLOW from above */
2066 goto out;
2068 if (*num_found >= sk->nr_items) {
2069 ret = 1;
2070 goto out;
2073 advance_key:
2074 ret = 0;
2075 test.objectid = sk->max_objectid;
2076 test.type = sk->max_type;
2077 test.offset = sk->max_offset;
2078 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2079 ret = 1;
2080 else if (key->offset < (u64)-1)
2081 key->offset++;
2082 else if (key->type < (u8)-1) {
2083 key->offset = 0;
2084 key->type++;
2085 } else if (key->objectid < (u64)-1) {
2086 key->offset = 0;
2087 key->type = 0;
2088 key->objectid++;
2089 } else
2090 ret = 1;
2091 out:
2093 * 0: all items from this leaf copied, continue with next
2094 * 1: * more items can be copied, but unused buffer is too small
2095 * * all items were found
2096 * Either way, it will stops the loop which iterates to the next
2097 * leaf
2098 * -EOVERFLOW: item was to large for buffer
2099 * -EFAULT: could not copy extent buffer back to userspace
2101 return ret;
2104 static noinline int search_ioctl(struct inode *inode,
2105 struct btrfs_ioctl_search_key *sk,
2106 size_t *buf_size,
2107 char __user *ubuf)
2109 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2110 struct btrfs_root *root;
2111 struct btrfs_key key;
2112 struct btrfs_path *path;
2113 int ret;
2114 int num_found = 0;
2115 unsigned long sk_offset = 0;
2117 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2118 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2119 return -EOVERFLOW;
2122 path = btrfs_alloc_path();
2123 if (!path)
2124 return -ENOMEM;
2126 if (sk->tree_id == 0) {
2127 /* search the root of the inode that was passed */
2128 root = btrfs_grab_root(BTRFS_I(inode)->root);
2129 } else {
2130 key.objectid = sk->tree_id;
2131 key.type = BTRFS_ROOT_ITEM_KEY;
2132 key.offset = (u64)-1;
2133 root = btrfs_get_fs_root(info, &key, true);
2134 if (IS_ERR(root)) {
2135 btrfs_free_path(path);
2136 return PTR_ERR(root);
2140 key.objectid = sk->min_objectid;
2141 key.type = sk->min_type;
2142 key.offset = sk->min_offset;
2144 while (1) {
2145 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2146 if (ret != 0) {
2147 if (ret > 0)
2148 ret = 0;
2149 goto err;
2151 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2152 &sk_offset, &num_found);
2153 btrfs_release_path(path);
2154 if (ret)
2155 break;
2158 if (ret > 0)
2159 ret = 0;
2160 err:
2161 sk->nr_items = num_found;
2162 btrfs_put_root(root);
2163 btrfs_free_path(path);
2164 return ret;
2167 static noinline int btrfs_ioctl_tree_search(struct file *file,
2168 void __user *argp)
2170 struct btrfs_ioctl_search_args __user *uargs;
2171 struct btrfs_ioctl_search_key sk;
2172 struct inode *inode;
2173 int ret;
2174 size_t buf_size;
2176 if (!capable(CAP_SYS_ADMIN))
2177 return -EPERM;
2179 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2181 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2182 return -EFAULT;
2184 buf_size = sizeof(uargs->buf);
2186 inode = file_inode(file);
2187 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2190 * In the origin implementation an overflow is handled by returning a
2191 * search header with a len of zero, so reset ret.
2193 if (ret == -EOVERFLOW)
2194 ret = 0;
2196 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2197 ret = -EFAULT;
2198 return ret;
2201 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2202 void __user *argp)
2204 struct btrfs_ioctl_search_args_v2 __user *uarg;
2205 struct btrfs_ioctl_search_args_v2 args;
2206 struct inode *inode;
2207 int ret;
2208 size_t buf_size;
2209 const size_t buf_limit = SZ_16M;
2211 if (!capable(CAP_SYS_ADMIN))
2212 return -EPERM;
2214 /* copy search header and buffer size */
2215 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2216 if (copy_from_user(&args, uarg, sizeof(args)))
2217 return -EFAULT;
2219 buf_size = args.buf_size;
2221 /* limit result size to 16MB */
2222 if (buf_size > buf_limit)
2223 buf_size = buf_limit;
2225 inode = file_inode(file);
2226 ret = search_ioctl(inode, &args.key, &buf_size,
2227 (char __user *)(&uarg->buf[0]));
2228 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2229 ret = -EFAULT;
2230 else if (ret == -EOVERFLOW &&
2231 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2232 ret = -EFAULT;
2234 return ret;
2238 * Search INODE_REFs to identify path name of 'dirid' directory
2239 * in a 'tree_id' tree. and sets path name to 'name'.
2241 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2242 u64 tree_id, u64 dirid, char *name)
2244 struct btrfs_root *root;
2245 struct btrfs_key key;
2246 char *ptr;
2247 int ret = -1;
2248 int slot;
2249 int len;
2250 int total_len = 0;
2251 struct btrfs_inode_ref *iref;
2252 struct extent_buffer *l;
2253 struct btrfs_path *path;
2255 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2256 name[0]='\0';
2257 return 0;
2260 path = btrfs_alloc_path();
2261 if (!path)
2262 return -ENOMEM;
2264 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2266 key.objectid = tree_id;
2267 key.type = BTRFS_ROOT_ITEM_KEY;
2268 key.offset = (u64)-1;
2269 root = btrfs_get_fs_root(info, &key, true);
2270 if (IS_ERR(root)) {
2271 ret = PTR_ERR(root);
2272 root = NULL;
2273 goto out;
2276 key.objectid = dirid;
2277 key.type = BTRFS_INODE_REF_KEY;
2278 key.offset = (u64)-1;
2280 while (1) {
2281 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2282 if (ret < 0)
2283 goto out;
2284 else if (ret > 0) {
2285 ret = btrfs_previous_item(root, path, dirid,
2286 BTRFS_INODE_REF_KEY);
2287 if (ret < 0)
2288 goto out;
2289 else if (ret > 0) {
2290 ret = -ENOENT;
2291 goto out;
2295 l = path->nodes[0];
2296 slot = path->slots[0];
2297 btrfs_item_key_to_cpu(l, &key, slot);
2299 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2300 len = btrfs_inode_ref_name_len(l, iref);
2301 ptr -= len + 1;
2302 total_len += len + 1;
2303 if (ptr < name) {
2304 ret = -ENAMETOOLONG;
2305 goto out;
2308 *(ptr + len) = '/';
2309 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2311 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2312 break;
2314 btrfs_release_path(path);
2315 key.objectid = key.offset;
2316 key.offset = (u64)-1;
2317 dirid = key.objectid;
2319 memmove(name, ptr, total_len);
2320 name[total_len] = '\0';
2321 ret = 0;
2322 out:
2323 btrfs_put_root(root);
2324 btrfs_free_path(path);
2325 return ret;
2328 static int btrfs_search_path_in_tree_user(struct inode *inode,
2329 struct btrfs_ioctl_ino_lookup_user_args *args)
2331 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2332 struct super_block *sb = inode->i_sb;
2333 struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2334 u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2335 u64 dirid = args->dirid;
2336 unsigned long item_off;
2337 unsigned long item_len;
2338 struct btrfs_inode_ref *iref;
2339 struct btrfs_root_ref *rref;
2340 struct btrfs_root *root = NULL;
2341 struct btrfs_path *path;
2342 struct btrfs_key key, key2;
2343 struct extent_buffer *leaf;
2344 struct inode *temp_inode;
2345 char *ptr;
2346 int slot;
2347 int len;
2348 int total_len = 0;
2349 int ret;
2351 path = btrfs_alloc_path();
2352 if (!path)
2353 return -ENOMEM;
2356 * If the bottom subvolume does not exist directly under upper_limit,
2357 * construct the path in from the bottom up.
2359 if (dirid != upper_limit.objectid) {
2360 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2362 key.objectid = treeid;
2363 key.type = BTRFS_ROOT_ITEM_KEY;
2364 key.offset = (u64)-1;
2365 root = btrfs_get_fs_root(fs_info, &key, true);
2366 if (IS_ERR(root)) {
2367 ret = PTR_ERR(root);
2368 goto out;
2371 key.objectid = dirid;
2372 key.type = BTRFS_INODE_REF_KEY;
2373 key.offset = (u64)-1;
2374 while (1) {
2375 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2376 if (ret < 0) {
2377 goto out_put;
2378 } else if (ret > 0) {
2379 ret = btrfs_previous_item(root, path, dirid,
2380 BTRFS_INODE_REF_KEY);
2381 if (ret < 0) {
2382 goto out_put;
2383 } else if (ret > 0) {
2384 ret = -ENOENT;
2385 goto out_put;
2389 leaf = path->nodes[0];
2390 slot = path->slots[0];
2391 btrfs_item_key_to_cpu(leaf, &key, slot);
2393 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2394 len = btrfs_inode_ref_name_len(leaf, iref);
2395 ptr -= len + 1;
2396 total_len += len + 1;
2397 if (ptr < args->path) {
2398 ret = -ENAMETOOLONG;
2399 goto out_put;
2402 *(ptr + len) = '/';
2403 read_extent_buffer(leaf, ptr,
2404 (unsigned long)(iref + 1), len);
2406 /* Check the read+exec permission of this directory */
2407 ret = btrfs_previous_item(root, path, dirid,
2408 BTRFS_INODE_ITEM_KEY);
2409 if (ret < 0) {
2410 goto out_put;
2411 } else if (ret > 0) {
2412 ret = -ENOENT;
2413 goto out_put;
2416 leaf = path->nodes[0];
2417 slot = path->slots[0];
2418 btrfs_item_key_to_cpu(leaf, &key2, slot);
2419 if (key2.objectid != dirid) {
2420 ret = -ENOENT;
2421 goto out_put;
2424 temp_inode = btrfs_iget(sb, &key2, root);
2425 if (IS_ERR(temp_inode)) {
2426 ret = PTR_ERR(temp_inode);
2427 goto out_put;
2429 ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC);
2430 iput(temp_inode);
2431 if (ret) {
2432 ret = -EACCES;
2433 goto out_put;
2436 if (key.offset == upper_limit.objectid)
2437 break;
2438 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2439 ret = -EACCES;
2440 goto out_put;
2443 btrfs_release_path(path);
2444 key.objectid = key.offset;
2445 key.offset = (u64)-1;
2446 dirid = key.objectid;
2449 memmove(args->path, ptr, total_len);
2450 args->path[total_len] = '\0';
2451 btrfs_put_root(root);
2452 root = NULL;
2453 btrfs_release_path(path);
2456 /* Get the bottom subvolume's name from ROOT_REF */
2457 key.objectid = treeid;
2458 key.type = BTRFS_ROOT_REF_KEY;
2459 key.offset = args->treeid;
2460 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2461 if (ret < 0) {
2462 goto out;
2463 } else if (ret > 0) {
2464 ret = -ENOENT;
2465 goto out;
2468 leaf = path->nodes[0];
2469 slot = path->slots[0];
2470 btrfs_item_key_to_cpu(leaf, &key, slot);
2472 item_off = btrfs_item_ptr_offset(leaf, slot);
2473 item_len = btrfs_item_size_nr(leaf, slot);
2474 /* Check if dirid in ROOT_REF corresponds to passed dirid */
2475 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2476 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2477 ret = -EINVAL;
2478 goto out;
2481 /* Copy subvolume's name */
2482 item_off += sizeof(struct btrfs_root_ref);
2483 item_len -= sizeof(struct btrfs_root_ref);
2484 read_extent_buffer(leaf, args->name, item_off, item_len);
2485 args->name[item_len] = 0;
2487 out_put:
2488 btrfs_put_root(root);
2489 out:
2490 btrfs_free_path(path);
2491 return ret;
2494 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2495 void __user *argp)
2497 struct btrfs_ioctl_ino_lookup_args *args;
2498 struct inode *inode;
2499 int ret = 0;
2501 args = memdup_user(argp, sizeof(*args));
2502 if (IS_ERR(args))
2503 return PTR_ERR(args);
2505 inode = file_inode(file);
2508 * Unprivileged query to obtain the containing subvolume root id. The
2509 * path is reset so it's consistent with btrfs_search_path_in_tree.
2511 if (args->treeid == 0)
2512 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2514 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2515 args->name[0] = 0;
2516 goto out;
2519 if (!capable(CAP_SYS_ADMIN)) {
2520 ret = -EPERM;
2521 goto out;
2524 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2525 args->treeid, args->objectid,
2526 args->name);
2528 out:
2529 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2530 ret = -EFAULT;
2532 kfree(args);
2533 return ret;
2537 * Version of ino_lookup ioctl (unprivileged)
2539 * The main differences from ino_lookup ioctl are:
2541 * 1. Read + Exec permission will be checked using inode_permission() during
2542 * path construction. -EACCES will be returned in case of failure.
2543 * 2. Path construction will be stopped at the inode number which corresponds
2544 * to the fd with which this ioctl is called. If constructed path does not
2545 * exist under fd's inode, -EACCES will be returned.
2546 * 3. The name of bottom subvolume is also searched and filled.
2548 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2550 struct btrfs_ioctl_ino_lookup_user_args *args;
2551 struct inode *inode;
2552 int ret;
2554 args = memdup_user(argp, sizeof(*args));
2555 if (IS_ERR(args))
2556 return PTR_ERR(args);
2558 inode = file_inode(file);
2560 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2561 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2563 * The subvolume does not exist under fd with which this is
2564 * called
2566 kfree(args);
2567 return -EACCES;
2570 ret = btrfs_search_path_in_tree_user(inode, args);
2572 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2573 ret = -EFAULT;
2575 kfree(args);
2576 return ret;
2579 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2580 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2582 struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2583 struct btrfs_fs_info *fs_info;
2584 struct btrfs_root *root;
2585 struct btrfs_path *path;
2586 struct btrfs_key key;
2587 struct btrfs_root_item *root_item;
2588 struct btrfs_root_ref *rref;
2589 struct extent_buffer *leaf;
2590 unsigned long item_off;
2591 unsigned long item_len;
2592 struct inode *inode;
2593 int slot;
2594 int ret = 0;
2596 path = btrfs_alloc_path();
2597 if (!path)
2598 return -ENOMEM;
2600 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2601 if (!subvol_info) {
2602 btrfs_free_path(path);
2603 return -ENOMEM;
2606 inode = file_inode(file);
2607 fs_info = BTRFS_I(inode)->root->fs_info;
2609 /* Get root_item of inode's subvolume */
2610 key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2611 key.type = BTRFS_ROOT_ITEM_KEY;
2612 key.offset = (u64)-1;
2613 root = btrfs_get_fs_root(fs_info, &key, true);
2614 if (IS_ERR(root)) {
2615 ret = PTR_ERR(root);
2616 goto out_free;
2618 root_item = &root->root_item;
2620 subvol_info->treeid = key.objectid;
2622 subvol_info->generation = btrfs_root_generation(root_item);
2623 subvol_info->flags = btrfs_root_flags(root_item);
2625 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2626 memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2627 BTRFS_UUID_SIZE);
2628 memcpy(subvol_info->received_uuid, root_item->received_uuid,
2629 BTRFS_UUID_SIZE);
2631 subvol_info->ctransid = btrfs_root_ctransid(root_item);
2632 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2633 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2635 subvol_info->otransid = btrfs_root_otransid(root_item);
2636 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2637 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2639 subvol_info->stransid = btrfs_root_stransid(root_item);
2640 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2641 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2643 subvol_info->rtransid = btrfs_root_rtransid(root_item);
2644 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2645 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2647 if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2648 /* Search root tree for ROOT_BACKREF of this subvolume */
2649 key.type = BTRFS_ROOT_BACKREF_KEY;
2650 key.offset = 0;
2651 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2652 if (ret < 0) {
2653 goto out;
2654 } else if (path->slots[0] >=
2655 btrfs_header_nritems(path->nodes[0])) {
2656 ret = btrfs_next_leaf(fs_info->tree_root, path);
2657 if (ret < 0) {
2658 goto out;
2659 } else if (ret > 0) {
2660 ret = -EUCLEAN;
2661 goto out;
2665 leaf = path->nodes[0];
2666 slot = path->slots[0];
2667 btrfs_item_key_to_cpu(leaf, &key, slot);
2668 if (key.objectid == subvol_info->treeid &&
2669 key.type == BTRFS_ROOT_BACKREF_KEY) {
2670 subvol_info->parent_id = key.offset;
2672 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2673 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2675 item_off = btrfs_item_ptr_offset(leaf, slot)
2676 + sizeof(struct btrfs_root_ref);
2677 item_len = btrfs_item_size_nr(leaf, slot)
2678 - sizeof(struct btrfs_root_ref);
2679 read_extent_buffer(leaf, subvol_info->name,
2680 item_off, item_len);
2681 } else {
2682 ret = -ENOENT;
2683 goto out;
2687 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2688 ret = -EFAULT;
2690 out:
2691 btrfs_put_root(root);
2692 out_free:
2693 btrfs_free_path(path);
2694 kzfree(subvol_info);
2695 return ret;
2699 * Return ROOT_REF information of the subvolume containing this inode
2700 * except the subvolume name.
2702 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2704 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2705 struct btrfs_root_ref *rref;
2706 struct btrfs_root *root;
2707 struct btrfs_path *path;
2708 struct btrfs_key key;
2709 struct extent_buffer *leaf;
2710 struct inode *inode;
2711 u64 objectid;
2712 int slot;
2713 int ret;
2714 u8 found;
2716 path = btrfs_alloc_path();
2717 if (!path)
2718 return -ENOMEM;
2720 rootrefs = memdup_user(argp, sizeof(*rootrefs));
2721 if (IS_ERR(rootrefs)) {
2722 btrfs_free_path(path);
2723 return PTR_ERR(rootrefs);
2726 inode = file_inode(file);
2727 root = BTRFS_I(inode)->root->fs_info->tree_root;
2728 objectid = BTRFS_I(inode)->root->root_key.objectid;
2730 key.objectid = objectid;
2731 key.type = BTRFS_ROOT_REF_KEY;
2732 key.offset = rootrefs->min_treeid;
2733 found = 0;
2735 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2736 if (ret < 0) {
2737 goto out;
2738 } else if (path->slots[0] >=
2739 btrfs_header_nritems(path->nodes[0])) {
2740 ret = btrfs_next_leaf(root, path);
2741 if (ret < 0) {
2742 goto out;
2743 } else if (ret > 0) {
2744 ret = -EUCLEAN;
2745 goto out;
2748 while (1) {
2749 leaf = path->nodes[0];
2750 slot = path->slots[0];
2752 btrfs_item_key_to_cpu(leaf, &key, slot);
2753 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2754 ret = 0;
2755 goto out;
2758 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2759 ret = -EOVERFLOW;
2760 goto out;
2763 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2764 rootrefs->rootref[found].treeid = key.offset;
2765 rootrefs->rootref[found].dirid =
2766 btrfs_root_ref_dirid(leaf, rref);
2767 found++;
2769 ret = btrfs_next_item(root, path);
2770 if (ret < 0) {
2771 goto out;
2772 } else if (ret > 0) {
2773 ret = -EUCLEAN;
2774 goto out;
2778 out:
2779 if (!ret || ret == -EOVERFLOW) {
2780 rootrefs->num_items = found;
2781 /* update min_treeid for next search */
2782 if (found)
2783 rootrefs->min_treeid =
2784 rootrefs->rootref[found - 1].treeid + 1;
2785 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2786 ret = -EFAULT;
2789 kfree(rootrefs);
2790 btrfs_free_path(path);
2792 return ret;
2795 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2796 void __user *arg,
2797 bool destroy_v2)
2799 struct dentry *parent = file->f_path.dentry;
2800 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2801 struct dentry *dentry;
2802 struct inode *dir = d_inode(parent);
2803 struct inode *inode;
2804 struct btrfs_root *root = BTRFS_I(dir)->root;
2805 struct btrfs_root *dest = NULL;
2806 struct btrfs_ioctl_vol_args *vol_args = NULL;
2807 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2808 char *subvol_name, *subvol_name_ptr = NULL;
2809 int subvol_namelen;
2810 int err = 0;
2811 bool destroy_parent = false;
2813 if (destroy_v2) {
2814 vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2815 if (IS_ERR(vol_args2))
2816 return PTR_ERR(vol_args2);
2818 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2819 err = -EOPNOTSUPP;
2820 goto out;
2824 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2825 * name, same as v1 currently does.
2827 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2828 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2829 subvol_name = vol_args2->name;
2831 err = mnt_want_write_file(file);
2832 if (err)
2833 goto out;
2834 } else {
2835 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2836 err = -EINVAL;
2837 goto out;
2840 err = mnt_want_write_file(file);
2841 if (err)
2842 goto out;
2844 dentry = btrfs_get_dentry(fs_info->sb,
2845 BTRFS_FIRST_FREE_OBJECTID,
2846 vol_args2->subvolid, 0, 0);
2847 if (IS_ERR(dentry)) {
2848 err = PTR_ERR(dentry);
2849 goto out_drop_write;
2853 * Change the default parent since the subvolume being
2854 * deleted can be outside of the current mount point.
2856 parent = btrfs_get_parent(dentry);
2859 * At this point dentry->d_name can point to '/' if the
2860 * subvolume we want to destroy is outsite of the
2861 * current mount point, so we need to release the
2862 * current dentry and execute the lookup to return a new
2863 * one with ->d_name pointing to the
2864 * <mount point>/subvol_name.
2866 dput(dentry);
2867 if (IS_ERR(parent)) {
2868 err = PTR_ERR(parent);
2869 goto out_drop_write;
2871 dir = d_inode(parent);
2874 * If v2 was used with SPEC_BY_ID, a new parent was
2875 * allocated since the subvolume can be outside of the
2876 * current mount point. Later on we need to release this
2877 * new parent dentry.
2879 destroy_parent = true;
2881 subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2882 fs_info, vol_args2->subvolid);
2883 if (IS_ERR(subvol_name_ptr)) {
2884 err = PTR_ERR(subvol_name_ptr);
2885 goto free_parent;
2887 /* subvol_name_ptr is already NULL termined */
2888 subvol_name = (char *)kbasename(subvol_name_ptr);
2890 } else {
2891 vol_args = memdup_user(arg, sizeof(*vol_args));
2892 if (IS_ERR(vol_args))
2893 return PTR_ERR(vol_args);
2895 vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
2896 subvol_name = vol_args->name;
2898 err = mnt_want_write_file(file);
2899 if (err)
2900 goto out;
2903 subvol_namelen = strlen(subvol_name);
2905 if (strchr(subvol_name, '/') ||
2906 strncmp(subvol_name, "..", subvol_namelen) == 0) {
2907 err = -EINVAL;
2908 goto free_subvol_name;
2911 if (!S_ISDIR(dir->i_mode)) {
2912 err = -ENOTDIR;
2913 goto free_subvol_name;
2916 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2917 if (err == -EINTR)
2918 goto free_subvol_name;
2919 dentry = lookup_one_len(subvol_name, parent, subvol_namelen);
2920 if (IS_ERR(dentry)) {
2921 err = PTR_ERR(dentry);
2922 goto out_unlock_dir;
2925 if (d_really_is_negative(dentry)) {
2926 err = -ENOENT;
2927 goto out_dput;
2930 inode = d_inode(dentry);
2931 dest = BTRFS_I(inode)->root;
2932 if (!capable(CAP_SYS_ADMIN)) {
2934 * Regular user. Only allow this with a special mount
2935 * option, when the user has write+exec access to the
2936 * subvol root, and when rmdir(2) would have been
2937 * allowed.
2939 * Note that this is _not_ check that the subvol is
2940 * empty or doesn't contain data that we wouldn't
2941 * otherwise be able to delete.
2943 * Users who want to delete empty subvols should try
2944 * rmdir(2).
2946 err = -EPERM;
2947 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2948 goto out_dput;
2951 * Do not allow deletion if the parent dir is the same
2952 * as the dir to be deleted. That means the ioctl
2953 * must be called on the dentry referencing the root
2954 * of the subvol, not a random directory contained
2955 * within it.
2957 err = -EINVAL;
2958 if (root == dest)
2959 goto out_dput;
2961 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2962 if (err)
2963 goto out_dput;
2966 /* check if subvolume may be deleted by a user */
2967 err = btrfs_may_delete(dir, dentry, 1);
2968 if (err)
2969 goto out_dput;
2971 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2972 err = -EINVAL;
2973 goto out_dput;
2976 inode_lock(inode);
2977 err = btrfs_delete_subvolume(dir, dentry);
2978 inode_unlock(inode);
2979 if (!err) {
2980 fsnotify_rmdir(dir, dentry);
2981 d_delete(dentry);
2984 out_dput:
2985 dput(dentry);
2986 out_unlock_dir:
2987 inode_unlock(dir);
2988 free_subvol_name:
2989 kfree(subvol_name_ptr);
2990 free_parent:
2991 if (destroy_parent)
2992 dput(parent);
2993 out_drop_write:
2994 mnt_drop_write_file(file);
2995 out:
2996 kfree(vol_args2);
2997 kfree(vol_args);
2998 return err;
3001 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3003 struct inode *inode = file_inode(file);
3004 struct btrfs_root *root = BTRFS_I(inode)->root;
3005 struct btrfs_ioctl_defrag_range_args *range;
3006 int ret;
3008 ret = mnt_want_write_file(file);
3009 if (ret)
3010 return ret;
3012 if (btrfs_root_readonly(root)) {
3013 ret = -EROFS;
3014 goto out;
3017 switch (inode->i_mode & S_IFMT) {
3018 case S_IFDIR:
3019 if (!capable(CAP_SYS_ADMIN)) {
3020 ret = -EPERM;
3021 goto out;
3023 ret = btrfs_defrag_root(root);
3024 break;
3025 case S_IFREG:
3027 * Note that this does not check the file descriptor for write
3028 * access. This prevents defragmenting executables that are
3029 * running and allows defrag on files open in read-only mode.
3031 if (!capable(CAP_SYS_ADMIN) &&
3032 inode_permission(inode, MAY_WRITE)) {
3033 ret = -EPERM;
3034 goto out;
3037 range = kzalloc(sizeof(*range), GFP_KERNEL);
3038 if (!range) {
3039 ret = -ENOMEM;
3040 goto out;
3043 if (argp) {
3044 if (copy_from_user(range, argp,
3045 sizeof(*range))) {
3046 ret = -EFAULT;
3047 kfree(range);
3048 goto out;
3050 /* compression requires us to start the IO */
3051 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3052 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
3053 range->extent_thresh = (u32)-1;
3055 } else {
3056 /* the rest are all set to zero by kzalloc */
3057 range->len = (u64)-1;
3059 ret = btrfs_defrag_file(file_inode(file), file,
3060 range, BTRFS_OLDEST_GENERATION, 0);
3061 if (ret > 0)
3062 ret = 0;
3063 kfree(range);
3064 break;
3065 default:
3066 ret = -EINVAL;
3068 out:
3069 mnt_drop_write_file(file);
3070 return ret;
3073 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3075 struct btrfs_ioctl_vol_args *vol_args;
3076 int ret;
3078 if (!capable(CAP_SYS_ADMIN))
3079 return -EPERM;
3081 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
3082 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3084 vol_args = memdup_user(arg, sizeof(*vol_args));
3085 if (IS_ERR(vol_args)) {
3086 ret = PTR_ERR(vol_args);
3087 goto out;
3090 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3091 ret = btrfs_init_new_device(fs_info, vol_args->name);
3093 if (!ret)
3094 btrfs_info(fs_info, "disk added %s", vol_args->name);
3096 kfree(vol_args);
3097 out:
3098 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3099 return ret;
3102 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3104 struct inode *inode = file_inode(file);
3105 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3106 struct btrfs_ioctl_vol_args_v2 *vol_args;
3107 int ret;
3109 if (!capable(CAP_SYS_ADMIN))
3110 return -EPERM;
3112 ret = mnt_want_write_file(file);
3113 if (ret)
3114 return ret;
3116 vol_args = memdup_user(arg, sizeof(*vol_args));
3117 if (IS_ERR(vol_args)) {
3118 ret = PTR_ERR(vol_args);
3119 goto err_drop;
3122 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3123 ret = -EOPNOTSUPP;
3124 goto out;
3127 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
3128 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3129 goto out;
3132 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3133 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
3134 } else {
3135 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3136 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3138 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3140 if (!ret) {
3141 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3142 btrfs_info(fs_info, "device deleted: id %llu",
3143 vol_args->devid);
3144 else
3145 btrfs_info(fs_info, "device deleted: %s",
3146 vol_args->name);
3148 out:
3149 kfree(vol_args);
3150 err_drop:
3151 mnt_drop_write_file(file);
3152 return ret;
3155 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3157 struct inode *inode = file_inode(file);
3158 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3159 struct btrfs_ioctl_vol_args *vol_args;
3160 int ret;
3162 if (!capable(CAP_SYS_ADMIN))
3163 return -EPERM;
3165 ret = mnt_want_write_file(file);
3166 if (ret)
3167 return ret;
3169 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
3170 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3171 goto out_drop_write;
3174 vol_args = memdup_user(arg, sizeof(*vol_args));
3175 if (IS_ERR(vol_args)) {
3176 ret = PTR_ERR(vol_args);
3177 goto out;
3180 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3181 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3183 if (!ret)
3184 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3185 kfree(vol_args);
3186 out:
3187 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3188 out_drop_write:
3189 mnt_drop_write_file(file);
3191 return ret;
3194 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3195 void __user *arg)
3197 struct btrfs_ioctl_fs_info_args *fi_args;
3198 struct btrfs_device *device;
3199 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3200 int ret = 0;
3202 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
3203 if (!fi_args)
3204 return -ENOMEM;
3206 rcu_read_lock();
3207 fi_args->num_devices = fs_devices->num_devices;
3209 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3210 if (device->devid > fi_args->max_id)
3211 fi_args->max_id = device->devid;
3213 rcu_read_unlock();
3215 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3216 fi_args->nodesize = fs_info->nodesize;
3217 fi_args->sectorsize = fs_info->sectorsize;
3218 fi_args->clone_alignment = fs_info->sectorsize;
3220 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3221 ret = -EFAULT;
3223 kfree(fi_args);
3224 return ret;
3227 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3228 void __user *arg)
3230 struct btrfs_ioctl_dev_info_args *di_args;
3231 struct btrfs_device *dev;
3232 int ret = 0;
3233 char *s_uuid = NULL;
3235 di_args = memdup_user(arg, sizeof(*di_args));
3236 if (IS_ERR(di_args))
3237 return PTR_ERR(di_args);
3239 if (!btrfs_is_empty_uuid(di_args->uuid))
3240 s_uuid = di_args->uuid;
3242 rcu_read_lock();
3243 dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid,
3244 NULL, true);
3246 if (!dev) {
3247 ret = -ENODEV;
3248 goto out;
3251 di_args->devid = dev->devid;
3252 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3253 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3254 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3255 if (dev->name) {
3256 strncpy(di_args->path, rcu_str_deref(dev->name),
3257 sizeof(di_args->path) - 1);
3258 di_args->path[sizeof(di_args->path) - 1] = 0;
3259 } else {
3260 di_args->path[0] = '\0';
3263 out:
3264 rcu_read_unlock();
3265 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3266 ret = -EFAULT;
3268 kfree(di_args);
3269 return ret;
3272 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3274 struct inode *inode = file_inode(file);
3275 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3276 struct btrfs_root *root = BTRFS_I(inode)->root;
3277 struct btrfs_root *new_root;
3278 struct btrfs_dir_item *di;
3279 struct btrfs_trans_handle *trans;
3280 struct btrfs_path *path = NULL;
3281 struct btrfs_key location;
3282 struct btrfs_disk_key disk_key;
3283 u64 objectid = 0;
3284 u64 dir_id;
3285 int ret;
3287 if (!capable(CAP_SYS_ADMIN))
3288 return -EPERM;
3290 ret = mnt_want_write_file(file);
3291 if (ret)
3292 return ret;
3294 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3295 ret = -EFAULT;
3296 goto out;
3299 if (!objectid)
3300 objectid = BTRFS_FS_TREE_OBJECTID;
3302 location.objectid = objectid;
3303 location.type = BTRFS_ROOT_ITEM_KEY;
3304 location.offset = (u64)-1;
3306 new_root = btrfs_get_fs_root(fs_info, &location, true);
3307 if (IS_ERR(new_root)) {
3308 ret = PTR_ERR(new_root);
3309 goto out;
3311 if (!is_fstree(new_root->root_key.objectid)) {
3312 ret = -ENOENT;
3313 goto out_free;
3316 path = btrfs_alloc_path();
3317 if (!path) {
3318 ret = -ENOMEM;
3319 goto out_free;
3321 path->leave_spinning = 1;
3323 trans = btrfs_start_transaction(root, 1);
3324 if (IS_ERR(trans)) {
3325 ret = PTR_ERR(trans);
3326 goto out_free;
3329 dir_id = btrfs_super_root_dir(fs_info->super_copy);
3330 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3331 dir_id, "default", 7, 1);
3332 if (IS_ERR_OR_NULL(di)) {
3333 btrfs_release_path(path);
3334 btrfs_end_transaction(trans);
3335 btrfs_err(fs_info,
3336 "Umm, you don't have the default diritem, this isn't going to work");
3337 ret = -ENOENT;
3338 goto out_free;
3341 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3342 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3343 btrfs_mark_buffer_dirty(path->nodes[0]);
3344 btrfs_release_path(path);
3346 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3347 btrfs_end_transaction(trans);
3348 out_free:
3349 btrfs_put_root(new_root);
3350 btrfs_free_path(path);
3351 out:
3352 mnt_drop_write_file(file);
3353 return ret;
3356 static void get_block_group_info(struct list_head *groups_list,
3357 struct btrfs_ioctl_space_info *space)
3359 struct btrfs_block_group *block_group;
3361 space->total_bytes = 0;
3362 space->used_bytes = 0;
3363 space->flags = 0;
3364 list_for_each_entry(block_group, groups_list, list) {
3365 space->flags = block_group->flags;
3366 space->total_bytes += block_group->length;
3367 space->used_bytes += block_group->used;
3371 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3372 void __user *arg)
3374 struct btrfs_ioctl_space_args space_args;
3375 struct btrfs_ioctl_space_info space;
3376 struct btrfs_ioctl_space_info *dest;
3377 struct btrfs_ioctl_space_info *dest_orig;
3378 struct btrfs_ioctl_space_info __user *user_dest;
3379 struct btrfs_space_info *info;
3380 static const u64 types[] = {
3381 BTRFS_BLOCK_GROUP_DATA,
3382 BTRFS_BLOCK_GROUP_SYSTEM,
3383 BTRFS_BLOCK_GROUP_METADATA,
3384 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3386 int num_types = 4;
3387 int alloc_size;
3388 int ret = 0;
3389 u64 slot_count = 0;
3390 int i, c;
3392 if (copy_from_user(&space_args,
3393 (struct btrfs_ioctl_space_args __user *)arg,
3394 sizeof(space_args)))
3395 return -EFAULT;
3397 for (i = 0; i < num_types; i++) {
3398 struct btrfs_space_info *tmp;
3400 info = NULL;
3401 rcu_read_lock();
3402 list_for_each_entry_rcu(tmp, &fs_info->space_info,
3403 list) {
3404 if (tmp->flags == types[i]) {
3405 info = tmp;
3406 break;
3409 rcu_read_unlock();
3411 if (!info)
3412 continue;
3414 down_read(&info->groups_sem);
3415 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3416 if (!list_empty(&info->block_groups[c]))
3417 slot_count++;
3419 up_read(&info->groups_sem);
3423 * Global block reserve, exported as a space_info
3425 slot_count++;
3427 /* space_slots == 0 means they are asking for a count */
3428 if (space_args.space_slots == 0) {
3429 space_args.total_spaces = slot_count;
3430 goto out;
3433 slot_count = min_t(u64, space_args.space_slots, slot_count);
3435 alloc_size = sizeof(*dest) * slot_count;
3437 /* we generally have at most 6 or so space infos, one for each raid
3438 * level. So, a whole page should be more than enough for everyone
3440 if (alloc_size > PAGE_SIZE)
3441 return -ENOMEM;
3443 space_args.total_spaces = 0;
3444 dest = kmalloc(alloc_size, GFP_KERNEL);
3445 if (!dest)
3446 return -ENOMEM;
3447 dest_orig = dest;
3449 /* now we have a buffer to copy into */
3450 for (i = 0; i < num_types; i++) {
3451 struct btrfs_space_info *tmp;
3453 if (!slot_count)
3454 break;
3456 info = NULL;
3457 rcu_read_lock();
3458 list_for_each_entry_rcu(tmp, &fs_info->space_info,
3459 list) {
3460 if (tmp->flags == types[i]) {
3461 info = tmp;
3462 break;
3465 rcu_read_unlock();
3467 if (!info)
3468 continue;
3469 down_read(&info->groups_sem);
3470 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3471 if (!list_empty(&info->block_groups[c])) {
3472 get_block_group_info(&info->block_groups[c],
3473 &space);
3474 memcpy(dest, &space, sizeof(space));
3475 dest++;
3476 space_args.total_spaces++;
3477 slot_count--;
3479 if (!slot_count)
3480 break;
3482 up_read(&info->groups_sem);
3486 * Add global block reserve
3488 if (slot_count) {
3489 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3491 spin_lock(&block_rsv->lock);
3492 space.total_bytes = block_rsv->size;
3493 space.used_bytes = block_rsv->size - block_rsv->reserved;
3494 spin_unlock(&block_rsv->lock);
3495 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3496 memcpy(dest, &space, sizeof(space));
3497 space_args.total_spaces++;
3500 user_dest = (struct btrfs_ioctl_space_info __user *)
3501 (arg + sizeof(struct btrfs_ioctl_space_args));
3503 if (copy_to_user(user_dest, dest_orig, alloc_size))
3504 ret = -EFAULT;
3506 kfree(dest_orig);
3507 out:
3508 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3509 ret = -EFAULT;
3511 return ret;
3514 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3515 void __user *argp)
3517 struct btrfs_trans_handle *trans;
3518 u64 transid;
3519 int ret;
3521 trans = btrfs_attach_transaction_barrier(root);
3522 if (IS_ERR(trans)) {
3523 if (PTR_ERR(trans) != -ENOENT)
3524 return PTR_ERR(trans);
3526 /* No running transaction, don't bother */
3527 transid = root->fs_info->last_trans_committed;
3528 goto out;
3530 transid = trans->transid;
3531 ret = btrfs_commit_transaction_async(trans, 0);
3532 if (ret) {
3533 btrfs_end_transaction(trans);
3534 return ret;
3536 out:
3537 if (argp)
3538 if (copy_to_user(argp, &transid, sizeof(transid)))
3539 return -EFAULT;
3540 return 0;
3543 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3544 void __user *argp)
3546 u64 transid;
3548 if (argp) {
3549 if (copy_from_user(&transid, argp, sizeof(transid)))
3550 return -EFAULT;
3551 } else {
3552 transid = 0; /* current trans */
3554 return btrfs_wait_for_commit(fs_info, transid);
3557 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3559 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3560 struct btrfs_ioctl_scrub_args *sa;
3561 int ret;
3563 if (!capable(CAP_SYS_ADMIN))
3564 return -EPERM;
3566 sa = memdup_user(arg, sizeof(*sa));
3567 if (IS_ERR(sa))
3568 return PTR_ERR(sa);
3570 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3571 ret = mnt_want_write_file(file);
3572 if (ret)
3573 goto out;
3576 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3577 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3581 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3582 * error. This is important as it allows user space to know how much
3583 * progress scrub has done. For example, if scrub is canceled we get
3584 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3585 * space. Later user space can inspect the progress from the structure
3586 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3587 * previously (btrfs-progs does this).
3588 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3589 * then return -EFAULT to signal the structure was not copied or it may
3590 * be corrupt and unreliable due to a partial copy.
3592 if (copy_to_user(arg, sa, sizeof(*sa)))
3593 ret = -EFAULT;
3595 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3596 mnt_drop_write_file(file);
3597 out:
3598 kfree(sa);
3599 return ret;
3602 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3604 if (!capable(CAP_SYS_ADMIN))
3605 return -EPERM;
3607 return btrfs_scrub_cancel(fs_info);
3610 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3611 void __user *arg)
3613 struct btrfs_ioctl_scrub_args *sa;
3614 int ret;
3616 if (!capable(CAP_SYS_ADMIN))
3617 return -EPERM;
3619 sa = memdup_user(arg, sizeof(*sa));
3620 if (IS_ERR(sa))
3621 return PTR_ERR(sa);
3623 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3625 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3626 ret = -EFAULT;
3628 kfree(sa);
3629 return ret;
3632 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3633 void __user *arg)
3635 struct btrfs_ioctl_get_dev_stats *sa;
3636 int ret;
3638 sa = memdup_user(arg, sizeof(*sa));
3639 if (IS_ERR(sa))
3640 return PTR_ERR(sa);
3642 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3643 kfree(sa);
3644 return -EPERM;
3647 ret = btrfs_get_dev_stats(fs_info, sa);
3649 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3650 ret = -EFAULT;
3652 kfree(sa);
3653 return ret;
3656 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3657 void __user *arg)
3659 struct btrfs_ioctl_dev_replace_args *p;
3660 int ret;
3662 if (!capable(CAP_SYS_ADMIN))
3663 return -EPERM;
3665 p = memdup_user(arg, sizeof(*p));
3666 if (IS_ERR(p))
3667 return PTR_ERR(p);
3669 switch (p->cmd) {
3670 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3671 if (sb_rdonly(fs_info->sb)) {
3672 ret = -EROFS;
3673 goto out;
3675 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
3676 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3677 } else {
3678 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3679 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3681 break;
3682 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3683 btrfs_dev_replace_status(fs_info, p);
3684 ret = 0;
3685 break;
3686 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3687 p->result = btrfs_dev_replace_cancel(fs_info);
3688 ret = 0;
3689 break;
3690 default:
3691 ret = -EINVAL;
3692 break;
3695 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3696 ret = -EFAULT;
3697 out:
3698 kfree(p);
3699 return ret;
3702 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3704 int ret = 0;
3705 int i;
3706 u64 rel_ptr;
3707 int size;
3708 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3709 struct inode_fs_paths *ipath = NULL;
3710 struct btrfs_path *path;
3712 if (!capable(CAP_DAC_READ_SEARCH))
3713 return -EPERM;
3715 path = btrfs_alloc_path();
3716 if (!path) {
3717 ret = -ENOMEM;
3718 goto out;
3721 ipa = memdup_user(arg, sizeof(*ipa));
3722 if (IS_ERR(ipa)) {
3723 ret = PTR_ERR(ipa);
3724 ipa = NULL;
3725 goto out;
3728 size = min_t(u32, ipa->size, 4096);
3729 ipath = init_ipath(size, root, path);
3730 if (IS_ERR(ipath)) {
3731 ret = PTR_ERR(ipath);
3732 ipath = NULL;
3733 goto out;
3736 ret = paths_from_inode(ipa->inum, ipath);
3737 if (ret < 0)
3738 goto out;
3740 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3741 rel_ptr = ipath->fspath->val[i] -
3742 (u64)(unsigned long)ipath->fspath->val;
3743 ipath->fspath->val[i] = rel_ptr;
3746 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3747 ipath->fspath, size);
3748 if (ret) {
3749 ret = -EFAULT;
3750 goto out;
3753 out:
3754 btrfs_free_path(path);
3755 free_ipath(ipath);
3756 kfree(ipa);
3758 return ret;
3761 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3763 struct btrfs_data_container *inodes = ctx;
3764 const size_t c = 3 * sizeof(u64);
3766 if (inodes->bytes_left >= c) {
3767 inodes->bytes_left -= c;
3768 inodes->val[inodes->elem_cnt] = inum;
3769 inodes->val[inodes->elem_cnt + 1] = offset;
3770 inodes->val[inodes->elem_cnt + 2] = root;
3771 inodes->elem_cnt += 3;
3772 } else {
3773 inodes->bytes_missing += c - inodes->bytes_left;
3774 inodes->bytes_left = 0;
3775 inodes->elem_missed += 3;
3778 return 0;
3781 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3782 void __user *arg, int version)
3784 int ret = 0;
3785 int size;
3786 struct btrfs_ioctl_logical_ino_args *loi;
3787 struct btrfs_data_container *inodes = NULL;
3788 struct btrfs_path *path = NULL;
3789 bool ignore_offset;
3791 if (!capable(CAP_SYS_ADMIN))
3792 return -EPERM;
3794 loi = memdup_user(arg, sizeof(*loi));
3795 if (IS_ERR(loi))
3796 return PTR_ERR(loi);
3798 if (version == 1) {
3799 ignore_offset = false;
3800 size = min_t(u32, loi->size, SZ_64K);
3801 } else {
3802 /* All reserved bits must be 0 for now */
3803 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3804 ret = -EINVAL;
3805 goto out_loi;
3807 /* Only accept flags we have defined so far */
3808 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3809 ret = -EINVAL;
3810 goto out_loi;
3812 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3813 size = min_t(u32, loi->size, SZ_16M);
3816 path = btrfs_alloc_path();
3817 if (!path) {
3818 ret = -ENOMEM;
3819 goto out;
3822 inodes = init_data_container(size);
3823 if (IS_ERR(inodes)) {
3824 ret = PTR_ERR(inodes);
3825 inodes = NULL;
3826 goto out;
3829 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3830 build_ino_list, inodes, ignore_offset);
3831 if (ret == -EINVAL)
3832 ret = -ENOENT;
3833 if (ret < 0)
3834 goto out;
3836 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3837 size);
3838 if (ret)
3839 ret = -EFAULT;
3841 out:
3842 btrfs_free_path(path);
3843 kvfree(inodes);
3844 out_loi:
3845 kfree(loi);
3847 return ret;
3850 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3851 struct btrfs_ioctl_balance_args *bargs)
3853 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3855 bargs->flags = bctl->flags;
3857 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3858 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3859 if (atomic_read(&fs_info->balance_pause_req))
3860 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3861 if (atomic_read(&fs_info->balance_cancel_req))
3862 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3864 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3865 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3866 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3868 spin_lock(&fs_info->balance_lock);
3869 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3870 spin_unlock(&fs_info->balance_lock);
3873 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3875 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3876 struct btrfs_fs_info *fs_info = root->fs_info;
3877 struct btrfs_ioctl_balance_args *bargs;
3878 struct btrfs_balance_control *bctl;
3879 bool need_unlock; /* for mut. excl. ops lock */
3880 int ret;
3882 if (!capable(CAP_SYS_ADMIN))
3883 return -EPERM;
3885 ret = mnt_want_write_file(file);
3886 if (ret)
3887 return ret;
3889 again:
3890 if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
3891 mutex_lock(&fs_info->balance_mutex);
3892 need_unlock = true;
3893 goto locked;
3897 * mut. excl. ops lock is locked. Three possibilities:
3898 * (1) some other op is running
3899 * (2) balance is running
3900 * (3) balance is paused -- special case (think resume)
3902 mutex_lock(&fs_info->balance_mutex);
3903 if (fs_info->balance_ctl) {
3904 /* this is either (2) or (3) */
3905 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3906 mutex_unlock(&fs_info->balance_mutex);
3908 * Lock released to allow other waiters to continue,
3909 * we'll reexamine the status again.
3911 mutex_lock(&fs_info->balance_mutex);
3913 if (fs_info->balance_ctl &&
3914 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3915 /* this is (3) */
3916 need_unlock = false;
3917 goto locked;
3920 mutex_unlock(&fs_info->balance_mutex);
3921 goto again;
3922 } else {
3923 /* this is (2) */
3924 mutex_unlock(&fs_info->balance_mutex);
3925 ret = -EINPROGRESS;
3926 goto out;
3928 } else {
3929 /* this is (1) */
3930 mutex_unlock(&fs_info->balance_mutex);
3931 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3932 goto out;
3935 locked:
3936 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
3938 if (arg) {
3939 bargs = memdup_user(arg, sizeof(*bargs));
3940 if (IS_ERR(bargs)) {
3941 ret = PTR_ERR(bargs);
3942 goto out_unlock;
3945 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3946 if (!fs_info->balance_ctl) {
3947 ret = -ENOTCONN;
3948 goto out_bargs;
3951 bctl = fs_info->balance_ctl;
3952 spin_lock(&fs_info->balance_lock);
3953 bctl->flags |= BTRFS_BALANCE_RESUME;
3954 spin_unlock(&fs_info->balance_lock);
3956 goto do_balance;
3958 } else {
3959 bargs = NULL;
3962 if (fs_info->balance_ctl) {
3963 ret = -EINPROGRESS;
3964 goto out_bargs;
3967 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3968 if (!bctl) {
3969 ret = -ENOMEM;
3970 goto out_bargs;
3973 if (arg) {
3974 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3975 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3976 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3978 bctl->flags = bargs->flags;
3979 } else {
3980 /* balance everything - no filters */
3981 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
3984 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3985 ret = -EINVAL;
3986 goto out_bctl;
3989 do_balance:
3991 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP goes to
3992 * btrfs_balance. bctl is freed in reset_balance_state, or, if
3993 * restriper was paused all the way until unmount, in free_fs_info.
3994 * The flag should be cleared after reset_balance_state.
3996 need_unlock = false;
3998 ret = btrfs_balance(fs_info, bctl, bargs);
3999 bctl = NULL;
4001 if ((ret == 0 || ret == -ECANCELED) && arg) {
4002 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4003 ret = -EFAULT;
4006 out_bctl:
4007 kfree(bctl);
4008 out_bargs:
4009 kfree(bargs);
4010 out_unlock:
4011 mutex_unlock(&fs_info->balance_mutex);
4012 if (need_unlock)
4013 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4014 out:
4015 mnt_drop_write_file(file);
4016 return ret;
4019 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4021 if (!capable(CAP_SYS_ADMIN))
4022 return -EPERM;
4024 switch (cmd) {
4025 case BTRFS_BALANCE_CTL_PAUSE:
4026 return btrfs_pause_balance(fs_info);
4027 case BTRFS_BALANCE_CTL_CANCEL:
4028 return btrfs_cancel_balance(fs_info);
4031 return -EINVAL;
4034 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4035 void __user *arg)
4037 struct btrfs_ioctl_balance_args *bargs;
4038 int ret = 0;
4040 if (!capable(CAP_SYS_ADMIN))
4041 return -EPERM;
4043 mutex_lock(&fs_info->balance_mutex);
4044 if (!fs_info->balance_ctl) {
4045 ret = -ENOTCONN;
4046 goto out;
4049 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4050 if (!bargs) {
4051 ret = -ENOMEM;
4052 goto out;
4055 btrfs_update_ioctl_balance_args(fs_info, bargs);
4057 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4058 ret = -EFAULT;
4060 kfree(bargs);
4061 out:
4062 mutex_unlock(&fs_info->balance_mutex);
4063 return ret;
4066 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4068 struct inode *inode = file_inode(file);
4069 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4070 struct btrfs_ioctl_quota_ctl_args *sa;
4071 int ret;
4073 if (!capable(CAP_SYS_ADMIN))
4074 return -EPERM;
4076 ret = mnt_want_write_file(file);
4077 if (ret)
4078 return ret;
4080 sa = memdup_user(arg, sizeof(*sa));
4081 if (IS_ERR(sa)) {
4082 ret = PTR_ERR(sa);
4083 goto drop_write;
4086 down_write(&fs_info->subvol_sem);
4088 switch (sa->cmd) {
4089 case BTRFS_QUOTA_CTL_ENABLE:
4090 ret = btrfs_quota_enable(fs_info);
4091 break;
4092 case BTRFS_QUOTA_CTL_DISABLE:
4093 ret = btrfs_quota_disable(fs_info);
4094 break;
4095 default:
4096 ret = -EINVAL;
4097 break;
4100 kfree(sa);
4101 up_write(&fs_info->subvol_sem);
4102 drop_write:
4103 mnt_drop_write_file(file);
4104 return ret;
4107 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4109 struct inode *inode = file_inode(file);
4110 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4111 struct btrfs_root *root = BTRFS_I(inode)->root;
4112 struct btrfs_ioctl_qgroup_assign_args *sa;
4113 struct btrfs_trans_handle *trans;
4114 int ret;
4115 int err;
4117 if (!capable(CAP_SYS_ADMIN))
4118 return -EPERM;
4120 ret = mnt_want_write_file(file);
4121 if (ret)
4122 return ret;
4124 sa = memdup_user(arg, sizeof(*sa));
4125 if (IS_ERR(sa)) {
4126 ret = PTR_ERR(sa);
4127 goto drop_write;
4130 trans = btrfs_join_transaction(root);
4131 if (IS_ERR(trans)) {
4132 ret = PTR_ERR(trans);
4133 goto out;
4136 if (sa->assign) {
4137 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4138 } else {
4139 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4142 /* update qgroup status and info */
4143 err = btrfs_run_qgroups(trans);
4144 if (err < 0)
4145 btrfs_handle_fs_error(fs_info, err,
4146 "failed to update qgroup status and info");
4147 err = btrfs_end_transaction(trans);
4148 if (err && !ret)
4149 ret = err;
4151 out:
4152 kfree(sa);
4153 drop_write:
4154 mnt_drop_write_file(file);
4155 return ret;
4158 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4160 struct inode *inode = file_inode(file);
4161 struct btrfs_root *root = BTRFS_I(inode)->root;
4162 struct btrfs_ioctl_qgroup_create_args *sa;
4163 struct btrfs_trans_handle *trans;
4164 int ret;
4165 int err;
4167 if (!capable(CAP_SYS_ADMIN))
4168 return -EPERM;
4170 ret = mnt_want_write_file(file);
4171 if (ret)
4172 return ret;
4174 sa = memdup_user(arg, sizeof(*sa));
4175 if (IS_ERR(sa)) {
4176 ret = PTR_ERR(sa);
4177 goto drop_write;
4180 if (!sa->qgroupid) {
4181 ret = -EINVAL;
4182 goto out;
4185 trans = btrfs_join_transaction(root);
4186 if (IS_ERR(trans)) {
4187 ret = PTR_ERR(trans);
4188 goto out;
4191 if (sa->create) {
4192 ret = btrfs_create_qgroup(trans, sa->qgroupid);
4193 } else {
4194 ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4197 err = btrfs_end_transaction(trans);
4198 if (err && !ret)
4199 ret = err;
4201 out:
4202 kfree(sa);
4203 drop_write:
4204 mnt_drop_write_file(file);
4205 return ret;
4208 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4210 struct inode *inode = file_inode(file);
4211 struct btrfs_root *root = BTRFS_I(inode)->root;
4212 struct btrfs_ioctl_qgroup_limit_args *sa;
4213 struct btrfs_trans_handle *trans;
4214 int ret;
4215 int err;
4216 u64 qgroupid;
4218 if (!capable(CAP_SYS_ADMIN))
4219 return -EPERM;
4221 ret = mnt_want_write_file(file);
4222 if (ret)
4223 return ret;
4225 sa = memdup_user(arg, sizeof(*sa));
4226 if (IS_ERR(sa)) {
4227 ret = PTR_ERR(sa);
4228 goto drop_write;
4231 trans = btrfs_join_transaction(root);
4232 if (IS_ERR(trans)) {
4233 ret = PTR_ERR(trans);
4234 goto out;
4237 qgroupid = sa->qgroupid;
4238 if (!qgroupid) {
4239 /* take the current subvol as qgroup */
4240 qgroupid = root->root_key.objectid;
4243 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4245 err = btrfs_end_transaction(trans);
4246 if (err && !ret)
4247 ret = err;
4249 out:
4250 kfree(sa);
4251 drop_write:
4252 mnt_drop_write_file(file);
4253 return ret;
4256 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4258 struct inode *inode = file_inode(file);
4259 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4260 struct btrfs_ioctl_quota_rescan_args *qsa;
4261 int ret;
4263 if (!capable(CAP_SYS_ADMIN))
4264 return -EPERM;
4266 ret = mnt_want_write_file(file);
4267 if (ret)
4268 return ret;
4270 qsa = memdup_user(arg, sizeof(*qsa));
4271 if (IS_ERR(qsa)) {
4272 ret = PTR_ERR(qsa);
4273 goto drop_write;
4276 if (qsa->flags) {
4277 ret = -EINVAL;
4278 goto out;
4281 ret = btrfs_qgroup_rescan(fs_info);
4283 out:
4284 kfree(qsa);
4285 drop_write:
4286 mnt_drop_write_file(file);
4287 return ret;
4290 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4291 void __user *arg)
4293 struct btrfs_ioctl_quota_rescan_args *qsa;
4294 int ret = 0;
4296 if (!capable(CAP_SYS_ADMIN))
4297 return -EPERM;
4299 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
4300 if (!qsa)
4301 return -ENOMEM;
4303 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4304 qsa->flags = 1;
4305 qsa->progress = fs_info->qgroup_rescan_progress.objectid;
4308 if (copy_to_user(arg, qsa, sizeof(*qsa)))
4309 ret = -EFAULT;
4311 kfree(qsa);
4312 return ret;
4315 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4316 void __user *arg)
4318 if (!capable(CAP_SYS_ADMIN))
4319 return -EPERM;
4321 return btrfs_qgroup_wait_for_completion(fs_info, true);
4324 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4325 struct btrfs_ioctl_received_subvol_args *sa)
4327 struct inode *inode = file_inode(file);
4328 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4329 struct btrfs_root *root = BTRFS_I(inode)->root;
4330 struct btrfs_root_item *root_item = &root->root_item;
4331 struct btrfs_trans_handle *trans;
4332 struct timespec64 ct = current_time(inode);
4333 int ret = 0;
4334 int received_uuid_changed;
4336 if (!inode_owner_or_capable(inode))
4337 return -EPERM;
4339 ret = mnt_want_write_file(file);
4340 if (ret < 0)
4341 return ret;
4343 down_write(&fs_info->subvol_sem);
4345 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4346 ret = -EINVAL;
4347 goto out;
4350 if (btrfs_root_readonly(root)) {
4351 ret = -EROFS;
4352 goto out;
4356 * 1 - root item
4357 * 2 - uuid items (received uuid + subvol uuid)
4359 trans = btrfs_start_transaction(root, 3);
4360 if (IS_ERR(trans)) {
4361 ret = PTR_ERR(trans);
4362 trans = NULL;
4363 goto out;
4366 sa->rtransid = trans->transid;
4367 sa->rtime.sec = ct.tv_sec;
4368 sa->rtime.nsec = ct.tv_nsec;
4370 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4371 BTRFS_UUID_SIZE);
4372 if (received_uuid_changed &&
4373 !btrfs_is_empty_uuid(root_item->received_uuid)) {
4374 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4375 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4376 root->root_key.objectid);
4377 if (ret && ret != -ENOENT) {
4378 btrfs_abort_transaction(trans, ret);
4379 btrfs_end_transaction(trans);
4380 goto out;
4383 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4384 btrfs_set_root_stransid(root_item, sa->stransid);
4385 btrfs_set_root_rtransid(root_item, sa->rtransid);
4386 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4387 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4388 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4389 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4391 ret = btrfs_update_root(trans, fs_info->tree_root,
4392 &root->root_key, &root->root_item);
4393 if (ret < 0) {
4394 btrfs_end_transaction(trans);
4395 goto out;
4397 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4398 ret = btrfs_uuid_tree_add(trans, sa->uuid,
4399 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4400 root->root_key.objectid);
4401 if (ret < 0 && ret != -EEXIST) {
4402 btrfs_abort_transaction(trans, ret);
4403 btrfs_end_transaction(trans);
4404 goto out;
4407 ret = btrfs_commit_transaction(trans);
4408 out:
4409 up_write(&fs_info->subvol_sem);
4410 mnt_drop_write_file(file);
4411 return ret;
4414 #ifdef CONFIG_64BIT
4415 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4416 void __user *arg)
4418 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4419 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4420 int ret = 0;
4422 args32 = memdup_user(arg, sizeof(*args32));
4423 if (IS_ERR(args32))
4424 return PTR_ERR(args32);
4426 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4427 if (!args64) {
4428 ret = -ENOMEM;
4429 goto out;
4432 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4433 args64->stransid = args32->stransid;
4434 args64->rtransid = args32->rtransid;
4435 args64->stime.sec = args32->stime.sec;
4436 args64->stime.nsec = args32->stime.nsec;
4437 args64->rtime.sec = args32->rtime.sec;
4438 args64->rtime.nsec = args32->rtime.nsec;
4439 args64->flags = args32->flags;
4441 ret = _btrfs_ioctl_set_received_subvol(file, args64);
4442 if (ret)
4443 goto out;
4445 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4446 args32->stransid = args64->stransid;
4447 args32->rtransid = args64->rtransid;
4448 args32->stime.sec = args64->stime.sec;
4449 args32->stime.nsec = args64->stime.nsec;
4450 args32->rtime.sec = args64->rtime.sec;
4451 args32->rtime.nsec = args64->rtime.nsec;
4452 args32->flags = args64->flags;
4454 ret = copy_to_user(arg, args32, sizeof(*args32));
4455 if (ret)
4456 ret = -EFAULT;
4458 out:
4459 kfree(args32);
4460 kfree(args64);
4461 return ret;
4463 #endif
4465 static long btrfs_ioctl_set_received_subvol(struct file *file,
4466 void __user *arg)
4468 struct btrfs_ioctl_received_subvol_args *sa = NULL;
4469 int ret = 0;
4471 sa = memdup_user(arg, sizeof(*sa));
4472 if (IS_ERR(sa))
4473 return PTR_ERR(sa);
4475 ret = _btrfs_ioctl_set_received_subvol(file, sa);
4477 if (ret)
4478 goto out;
4480 ret = copy_to_user(arg, sa, sizeof(*sa));
4481 if (ret)
4482 ret = -EFAULT;
4484 out:
4485 kfree(sa);
4486 return ret;
4489 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4490 void __user *arg)
4492 size_t len;
4493 int ret;
4494 char label[BTRFS_LABEL_SIZE];
4496 spin_lock(&fs_info->super_lock);
4497 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4498 spin_unlock(&fs_info->super_lock);
4500 len = strnlen(label, BTRFS_LABEL_SIZE);
4502 if (len == BTRFS_LABEL_SIZE) {
4503 btrfs_warn(fs_info,
4504 "label is too long, return the first %zu bytes",
4505 --len);
4508 ret = copy_to_user(arg, label, len);
4510 return ret ? -EFAULT : 0;
4513 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4515 struct inode *inode = file_inode(file);
4516 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4517 struct btrfs_root *root = BTRFS_I(inode)->root;
4518 struct btrfs_super_block *super_block = fs_info->super_copy;
4519 struct btrfs_trans_handle *trans;
4520 char label[BTRFS_LABEL_SIZE];
4521 int ret;
4523 if (!capable(CAP_SYS_ADMIN))
4524 return -EPERM;
4526 if (copy_from_user(label, arg, sizeof(label)))
4527 return -EFAULT;
4529 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4530 btrfs_err(fs_info,
4531 "unable to set label with more than %d bytes",
4532 BTRFS_LABEL_SIZE - 1);
4533 return -EINVAL;
4536 ret = mnt_want_write_file(file);
4537 if (ret)
4538 return ret;
4540 trans = btrfs_start_transaction(root, 0);
4541 if (IS_ERR(trans)) {
4542 ret = PTR_ERR(trans);
4543 goto out_unlock;
4546 spin_lock(&fs_info->super_lock);
4547 strcpy(super_block->label, label);
4548 spin_unlock(&fs_info->super_lock);
4549 ret = btrfs_commit_transaction(trans);
4551 out_unlock:
4552 mnt_drop_write_file(file);
4553 return ret;
4556 #define INIT_FEATURE_FLAGS(suffix) \
4557 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4558 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4559 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4561 int btrfs_ioctl_get_supported_features(void __user *arg)
4563 static const struct btrfs_ioctl_feature_flags features[3] = {
4564 INIT_FEATURE_FLAGS(SUPP),
4565 INIT_FEATURE_FLAGS(SAFE_SET),
4566 INIT_FEATURE_FLAGS(SAFE_CLEAR)
4569 if (copy_to_user(arg, &features, sizeof(features)))
4570 return -EFAULT;
4572 return 0;
4575 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4576 void __user *arg)
4578 struct btrfs_super_block *super_block = fs_info->super_copy;
4579 struct btrfs_ioctl_feature_flags features;
4581 features.compat_flags = btrfs_super_compat_flags(super_block);
4582 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4583 features.incompat_flags = btrfs_super_incompat_flags(super_block);
4585 if (copy_to_user(arg, &features, sizeof(features)))
4586 return -EFAULT;
4588 return 0;
4591 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4592 enum btrfs_feature_set set,
4593 u64 change_mask, u64 flags, u64 supported_flags,
4594 u64 safe_set, u64 safe_clear)
4596 const char *type = btrfs_feature_set_name(set);
4597 char *names;
4598 u64 disallowed, unsupported;
4599 u64 set_mask = flags & change_mask;
4600 u64 clear_mask = ~flags & change_mask;
4602 unsupported = set_mask & ~supported_flags;
4603 if (unsupported) {
4604 names = btrfs_printable_features(set, unsupported);
4605 if (names) {
4606 btrfs_warn(fs_info,
4607 "this kernel does not support the %s feature bit%s",
4608 names, strchr(names, ',') ? "s" : "");
4609 kfree(names);
4610 } else
4611 btrfs_warn(fs_info,
4612 "this kernel does not support %s bits 0x%llx",
4613 type, unsupported);
4614 return -EOPNOTSUPP;
4617 disallowed = set_mask & ~safe_set;
4618 if (disallowed) {
4619 names = btrfs_printable_features(set, disallowed);
4620 if (names) {
4621 btrfs_warn(fs_info,
4622 "can't set the %s feature bit%s while mounted",
4623 names, strchr(names, ',') ? "s" : "");
4624 kfree(names);
4625 } else
4626 btrfs_warn(fs_info,
4627 "can't set %s bits 0x%llx while mounted",
4628 type, disallowed);
4629 return -EPERM;
4632 disallowed = clear_mask & ~safe_clear;
4633 if (disallowed) {
4634 names = btrfs_printable_features(set, disallowed);
4635 if (names) {
4636 btrfs_warn(fs_info,
4637 "can't clear the %s feature bit%s while mounted",
4638 names, strchr(names, ',') ? "s" : "");
4639 kfree(names);
4640 } else
4641 btrfs_warn(fs_info,
4642 "can't clear %s bits 0x%llx while mounted",
4643 type, disallowed);
4644 return -EPERM;
4647 return 0;
4650 #define check_feature(fs_info, change_mask, flags, mask_base) \
4651 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
4652 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
4653 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
4654 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4656 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4658 struct inode *inode = file_inode(file);
4659 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4660 struct btrfs_root *root = BTRFS_I(inode)->root;
4661 struct btrfs_super_block *super_block = fs_info->super_copy;
4662 struct btrfs_ioctl_feature_flags flags[2];
4663 struct btrfs_trans_handle *trans;
4664 u64 newflags;
4665 int ret;
4667 if (!capable(CAP_SYS_ADMIN))
4668 return -EPERM;
4670 if (copy_from_user(flags, arg, sizeof(flags)))
4671 return -EFAULT;
4673 /* Nothing to do */
4674 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4675 !flags[0].incompat_flags)
4676 return 0;
4678 ret = check_feature(fs_info, flags[0].compat_flags,
4679 flags[1].compat_flags, COMPAT);
4680 if (ret)
4681 return ret;
4683 ret = check_feature(fs_info, flags[0].compat_ro_flags,
4684 flags[1].compat_ro_flags, COMPAT_RO);
4685 if (ret)
4686 return ret;
4688 ret = check_feature(fs_info, flags[0].incompat_flags,
4689 flags[1].incompat_flags, INCOMPAT);
4690 if (ret)
4691 return ret;
4693 ret = mnt_want_write_file(file);
4694 if (ret)
4695 return ret;
4697 trans = btrfs_start_transaction(root, 0);
4698 if (IS_ERR(trans)) {
4699 ret = PTR_ERR(trans);
4700 goto out_drop_write;
4703 spin_lock(&fs_info->super_lock);
4704 newflags = btrfs_super_compat_flags(super_block);
4705 newflags |= flags[0].compat_flags & flags[1].compat_flags;
4706 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4707 btrfs_set_super_compat_flags(super_block, newflags);
4709 newflags = btrfs_super_compat_ro_flags(super_block);
4710 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4711 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4712 btrfs_set_super_compat_ro_flags(super_block, newflags);
4714 newflags = btrfs_super_incompat_flags(super_block);
4715 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4716 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4717 btrfs_set_super_incompat_flags(super_block, newflags);
4718 spin_unlock(&fs_info->super_lock);
4720 ret = btrfs_commit_transaction(trans);
4721 out_drop_write:
4722 mnt_drop_write_file(file);
4724 return ret;
4727 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
4729 struct btrfs_ioctl_send_args *arg;
4730 int ret;
4732 if (compat) {
4733 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4734 struct btrfs_ioctl_send_args_32 args32;
4736 ret = copy_from_user(&args32, argp, sizeof(args32));
4737 if (ret)
4738 return -EFAULT;
4739 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4740 if (!arg)
4741 return -ENOMEM;
4742 arg->send_fd = args32.send_fd;
4743 arg->clone_sources_count = args32.clone_sources_count;
4744 arg->clone_sources = compat_ptr(args32.clone_sources);
4745 arg->parent_root = args32.parent_root;
4746 arg->flags = args32.flags;
4747 memcpy(arg->reserved, args32.reserved,
4748 sizeof(args32.reserved));
4749 #else
4750 return -ENOTTY;
4751 #endif
4752 } else {
4753 arg = memdup_user(argp, sizeof(*arg));
4754 if (IS_ERR(arg))
4755 return PTR_ERR(arg);
4757 ret = btrfs_ioctl_send(file, arg);
4758 kfree(arg);
4759 return ret;
4762 long btrfs_ioctl(struct file *file, unsigned int
4763 cmd, unsigned long arg)
4765 struct inode *inode = file_inode(file);
4766 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4767 struct btrfs_root *root = BTRFS_I(inode)->root;
4768 void __user *argp = (void __user *)arg;
4770 switch (cmd) {
4771 case FS_IOC_GETFLAGS:
4772 return btrfs_ioctl_getflags(file, argp);
4773 case FS_IOC_SETFLAGS:
4774 return btrfs_ioctl_setflags(file, argp);
4775 case FS_IOC_GETVERSION:
4776 return btrfs_ioctl_getversion(file, argp);
4777 case FS_IOC_GETFSLABEL:
4778 return btrfs_ioctl_get_fslabel(fs_info, argp);
4779 case FS_IOC_SETFSLABEL:
4780 return btrfs_ioctl_set_fslabel(file, argp);
4781 case FITRIM:
4782 return btrfs_ioctl_fitrim(fs_info, argp);
4783 case BTRFS_IOC_SNAP_CREATE:
4784 return btrfs_ioctl_snap_create(file, argp, 0);
4785 case BTRFS_IOC_SNAP_CREATE_V2:
4786 return btrfs_ioctl_snap_create_v2(file, argp, 0);
4787 case BTRFS_IOC_SUBVOL_CREATE:
4788 return btrfs_ioctl_snap_create(file, argp, 1);
4789 case BTRFS_IOC_SUBVOL_CREATE_V2:
4790 return btrfs_ioctl_snap_create_v2(file, argp, 1);
4791 case BTRFS_IOC_SNAP_DESTROY:
4792 return btrfs_ioctl_snap_destroy(file, argp, false);
4793 case BTRFS_IOC_SNAP_DESTROY_V2:
4794 return btrfs_ioctl_snap_destroy(file, argp, true);
4795 case BTRFS_IOC_SUBVOL_GETFLAGS:
4796 return btrfs_ioctl_subvol_getflags(file, argp);
4797 case BTRFS_IOC_SUBVOL_SETFLAGS:
4798 return btrfs_ioctl_subvol_setflags(file, argp);
4799 case BTRFS_IOC_DEFAULT_SUBVOL:
4800 return btrfs_ioctl_default_subvol(file, argp);
4801 case BTRFS_IOC_DEFRAG:
4802 return btrfs_ioctl_defrag(file, NULL);
4803 case BTRFS_IOC_DEFRAG_RANGE:
4804 return btrfs_ioctl_defrag(file, argp);
4805 case BTRFS_IOC_RESIZE:
4806 return btrfs_ioctl_resize(file, argp);
4807 case BTRFS_IOC_ADD_DEV:
4808 return btrfs_ioctl_add_dev(fs_info, argp);
4809 case BTRFS_IOC_RM_DEV:
4810 return btrfs_ioctl_rm_dev(file, argp);
4811 case BTRFS_IOC_RM_DEV_V2:
4812 return btrfs_ioctl_rm_dev_v2(file, argp);
4813 case BTRFS_IOC_FS_INFO:
4814 return btrfs_ioctl_fs_info(fs_info, argp);
4815 case BTRFS_IOC_DEV_INFO:
4816 return btrfs_ioctl_dev_info(fs_info, argp);
4817 case BTRFS_IOC_BALANCE:
4818 return btrfs_ioctl_balance(file, NULL);
4819 case BTRFS_IOC_TREE_SEARCH:
4820 return btrfs_ioctl_tree_search(file, argp);
4821 case BTRFS_IOC_TREE_SEARCH_V2:
4822 return btrfs_ioctl_tree_search_v2(file, argp);
4823 case BTRFS_IOC_INO_LOOKUP:
4824 return btrfs_ioctl_ino_lookup(file, argp);
4825 case BTRFS_IOC_INO_PATHS:
4826 return btrfs_ioctl_ino_to_path(root, argp);
4827 case BTRFS_IOC_LOGICAL_INO:
4828 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4829 case BTRFS_IOC_LOGICAL_INO_V2:
4830 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4831 case BTRFS_IOC_SPACE_INFO:
4832 return btrfs_ioctl_space_info(fs_info, argp);
4833 case BTRFS_IOC_SYNC: {
4834 int ret;
4836 ret = btrfs_start_delalloc_roots(fs_info, -1);
4837 if (ret)
4838 return ret;
4839 ret = btrfs_sync_fs(inode->i_sb, 1);
4841 * The transaction thread may want to do more work,
4842 * namely it pokes the cleaner kthread that will start
4843 * processing uncleaned subvols.
4845 wake_up_process(fs_info->transaction_kthread);
4846 return ret;
4848 case BTRFS_IOC_START_SYNC:
4849 return btrfs_ioctl_start_sync(root, argp);
4850 case BTRFS_IOC_WAIT_SYNC:
4851 return btrfs_ioctl_wait_sync(fs_info, argp);
4852 case BTRFS_IOC_SCRUB:
4853 return btrfs_ioctl_scrub(file, argp);
4854 case BTRFS_IOC_SCRUB_CANCEL:
4855 return btrfs_ioctl_scrub_cancel(fs_info);
4856 case BTRFS_IOC_SCRUB_PROGRESS:
4857 return btrfs_ioctl_scrub_progress(fs_info, argp);
4858 case BTRFS_IOC_BALANCE_V2:
4859 return btrfs_ioctl_balance(file, argp);
4860 case BTRFS_IOC_BALANCE_CTL:
4861 return btrfs_ioctl_balance_ctl(fs_info, arg);
4862 case BTRFS_IOC_BALANCE_PROGRESS:
4863 return btrfs_ioctl_balance_progress(fs_info, argp);
4864 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4865 return btrfs_ioctl_set_received_subvol(file, argp);
4866 #ifdef CONFIG_64BIT
4867 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4868 return btrfs_ioctl_set_received_subvol_32(file, argp);
4869 #endif
4870 case BTRFS_IOC_SEND:
4871 return _btrfs_ioctl_send(file, argp, false);
4872 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4873 case BTRFS_IOC_SEND_32:
4874 return _btrfs_ioctl_send(file, argp, true);
4875 #endif
4876 case BTRFS_IOC_GET_DEV_STATS:
4877 return btrfs_ioctl_get_dev_stats(fs_info, argp);
4878 case BTRFS_IOC_QUOTA_CTL:
4879 return btrfs_ioctl_quota_ctl(file, argp);
4880 case BTRFS_IOC_QGROUP_ASSIGN:
4881 return btrfs_ioctl_qgroup_assign(file, argp);
4882 case BTRFS_IOC_QGROUP_CREATE:
4883 return btrfs_ioctl_qgroup_create(file, argp);
4884 case BTRFS_IOC_QGROUP_LIMIT:
4885 return btrfs_ioctl_qgroup_limit(file, argp);
4886 case BTRFS_IOC_QUOTA_RESCAN:
4887 return btrfs_ioctl_quota_rescan(file, argp);
4888 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4889 return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4890 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4891 return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
4892 case BTRFS_IOC_DEV_REPLACE:
4893 return btrfs_ioctl_dev_replace(fs_info, argp);
4894 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4895 return btrfs_ioctl_get_supported_features(argp);
4896 case BTRFS_IOC_GET_FEATURES:
4897 return btrfs_ioctl_get_features(fs_info, argp);
4898 case BTRFS_IOC_SET_FEATURES:
4899 return btrfs_ioctl_set_features(file, argp);
4900 case FS_IOC_FSGETXATTR:
4901 return btrfs_ioctl_fsgetxattr(file, argp);
4902 case FS_IOC_FSSETXATTR:
4903 return btrfs_ioctl_fssetxattr(file, argp);
4904 case BTRFS_IOC_GET_SUBVOL_INFO:
4905 return btrfs_ioctl_get_subvol_info(file, argp);
4906 case BTRFS_IOC_GET_SUBVOL_ROOTREF:
4907 return btrfs_ioctl_get_subvol_rootref(file, argp);
4908 case BTRFS_IOC_INO_LOOKUP_USER:
4909 return btrfs_ioctl_ino_lookup_user(file, argp);
4912 return -ENOTTY;
4915 #ifdef CONFIG_COMPAT
4916 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4919 * These all access 32-bit values anyway so no further
4920 * handling is necessary.
4922 switch (cmd) {
4923 case FS_IOC32_GETFLAGS:
4924 cmd = FS_IOC_GETFLAGS;
4925 break;
4926 case FS_IOC32_SETFLAGS:
4927 cmd = FS_IOC_SETFLAGS;
4928 break;
4929 case FS_IOC32_GETVERSION:
4930 cmd = FS_IOC_GETVERSION;
4931 break;
4934 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4936 #endif