gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / fs / btrfs / raid56.c
blobc870ef70f8179ec0b389796db0f06ec4e4f6d0cc
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2012 Fusion-io All rights reserved.
4 * Copyright (C) 2012 Intel Corp. All rights reserved.
5 */
7 #include <linux/sched.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/raid/pq.h>
12 #include <linux/hash.h>
13 #include <linux/list_sort.h>
14 #include <linux/raid/xor.h>
15 #include <linux/mm.h>
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "volumes.h"
19 #include "raid56.h"
20 #include "async-thread.h"
22 /* set when additional merges to this rbio are not allowed */
23 #define RBIO_RMW_LOCKED_BIT 1
26 * set when this rbio is sitting in the hash, but it is just a cache
27 * of past RMW
29 #define RBIO_CACHE_BIT 2
32 * set when it is safe to trust the stripe_pages for caching
34 #define RBIO_CACHE_READY_BIT 3
36 #define RBIO_CACHE_SIZE 1024
38 #define BTRFS_STRIPE_HASH_TABLE_BITS 11
40 /* Used by the raid56 code to lock stripes for read/modify/write */
41 struct btrfs_stripe_hash {
42 struct list_head hash_list;
43 spinlock_t lock;
46 /* Used by the raid56 code to lock stripes for read/modify/write */
47 struct btrfs_stripe_hash_table {
48 struct list_head stripe_cache;
49 spinlock_t cache_lock;
50 int cache_size;
51 struct btrfs_stripe_hash table[];
54 enum btrfs_rbio_ops {
55 BTRFS_RBIO_WRITE,
56 BTRFS_RBIO_READ_REBUILD,
57 BTRFS_RBIO_PARITY_SCRUB,
58 BTRFS_RBIO_REBUILD_MISSING,
61 struct btrfs_raid_bio {
62 struct btrfs_fs_info *fs_info;
63 struct btrfs_bio *bbio;
65 /* while we're doing rmw on a stripe
66 * we put it into a hash table so we can
67 * lock the stripe and merge more rbios
68 * into it.
70 struct list_head hash_list;
73 * LRU list for the stripe cache
75 struct list_head stripe_cache;
78 * for scheduling work in the helper threads
80 struct btrfs_work work;
83 * bio list and bio_list_lock are used
84 * to add more bios into the stripe
85 * in hopes of avoiding the full rmw
87 struct bio_list bio_list;
88 spinlock_t bio_list_lock;
90 /* also protected by the bio_list_lock, the
91 * plug list is used by the plugging code
92 * to collect partial bios while plugged. The
93 * stripe locking code also uses it to hand off
94 * the stripe lock to the next pending IO
96 struct list_head plug_list;
99 * flags that tell us if it is safe to
100 * merge with this bio
102 unsigned long flags;
104 /* size of each individual stripe on disk */
105 int stripe_len;
107 /* number of data stripes (no p/q) */
108 int nr_data;
110 int real_stripes;
112 int stripe_npages;
114 * set if we're doing a parity rebuild
115 * for a read from higher up, which is handled
116 * differently from a parity rebuild as part of
117 * rmw
119 enum btrfs_rbio_ops operation;
121 /* first bad stripe */
122 int faila;
124 /* second bad stripe (for raid6 use) */
125 int failb;
127 int scrubp;
129 * number of pages needed to represent the full
130 * stripe
132 int nr_pages;
135 * size of all the bios in the bio_list. This
136 * helps us decide if the rbio maps to a full
137 * stripe or not
139 int bio_list_bytes;
141 int generic_bio_cnt;
143 refcount_t refs;
145 atomic_t stripes_pending;
147 atomic_t error;
149 * these are two arrays of pointers. We allocate the
150 * rbio big enough to hold them both and setup their
151 * locations when the rbio is allocated
154 /* pointers to pages that we allocated for
155 * reading/writing stripes directly from the disk (including P/Q)
157 struct page **stripe_pages;
160 * pointers to the pages in the bio_list. Stored
161 * here for faster lookup
163 struct page **bio_pages;
166 * bitmap to record which horizontal stripe has data
168 unsigned long *dbitmap;
170 /* allocated with real_stripes-many pointers for finish_*() calls */
171 void **finish_pointers;
173 /* allocated with stripe_npages-many bits for finish_*() calls */
174 unsigned long *finish_pbitmap;
177 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
178 static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
179 static void rmw_work(struct btrfs_work *work);
180 static void read_rebuild_work(struct btrfs_work *work);
181 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
182 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
183 static void __free_raid_bio(struct btrfs_raid_bio *rbio);
184 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
185 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
187 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
188 int need_check);
189 static void scrub_parity_work(struct btrfs_work *work);
191 static void start_async_work(struct btrfs_raid_bio *rbio, btrfs_func_t work_func)
193 btrfs_init_work(&rbio->work, work_func, NULL, NULL);
194 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
198 * the stripe hash table is used for locking, and to collect
199 * bios in hopes of making a full stripe
201 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
203 struct btrfs_stripe_hash_table *table;
204 struct btrfs_stripe_hash_table *x;
205 struct btrfs_stripe_hash *cur;
206 struct btrfs_stripe_hash *h;
207 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
208 int i;
210 if (info->stripe_hash_table)
211 return 0;
214 * The table is large, starting with order 4 and can go as high as
215 * order 7 in case lock debugging is turned on.
217 * Try harder to allocate and fallback to vmalloc to lower the chance
218 * of a failing mount.
220 table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
221 if (!table)
222 return -ENOMEM;
224 spin_lock_init(&table->cache_lock);
225 INIT_LIST_HEAD(&table->stripe_cache);
227 h = table->table;
229 for (i = 0; i < num_entries; i++) {
230 cur = h + i;
231 INIT_LIST_HEAD(&cur->hash_list);
232 spin_lock_init(&cur->lock);
235 x = cmpxchg(&info->stripe_hash_table, NULL, table);
236 if (x)
237 kvfree(x);
238 return 0;
242 * caching an rbio means to copy anything from the
243 * bio_pages array into the stripe_pages array. We
244 * use the page uptodate bit in the stripe cache array
245 * to indicate if it has valid data
247 * once the caching is done, we set the cache ready
248 * bit.
250 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
252 int i;
253 char *s;
254 char *d;
255 int ret;
257 ret = alloc_rbio_pages(rbio);
258 if (ret)
259 return;
261 for (i = 0; i < rbio->nr_pages; i++) {
262 if (!rbio->bio_pages[i])
263 continue;
265 s = kmap(rbio->bio_pages[i]);
266 d = kmap(rbio->stripe_pages[i]);
268 copy_page(d, s);
270 kunmap(rbio->bio_pages[i]);
271 kunmap(rbio->stripe_pages[i]);
272 SetPageUptodate(rbio->stripe_pages[i]);
274 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
278 * we hash on the first logical address of the stripe
280 static int rbio_bucket(struct btrfs_raid_bio *rbio)
282 u64 num = rbio->bbio->raid_map[0];
285 * we shift down quite a bit. We're using byte
286 * addressing, and most of the lower bits are zeros.
287 * This tends to upset hash_64, and it consistently
288 * returns just one or two different values.
290 * shifting off the lower bits fixes things.
292 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
296 * stealing an rbio means taking all the uptodate pages from the stripe
297 * array in the source rbio and putting them into the destination rbio
299 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
301 int i;
302 struct page *s;
303 struct page *d;
305 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
306 return;
308 for (i = 0; i < dest->nr_pages; i++) {
309 s = src->stripe_pages[i];
310 if (!s || !PageUptodate(s)) {
311 continue;
314 d = dest->stripe_pages[i];
315 if (d)
316 __free_page(d);
318 dest->stripe_pages[i] = s;
319 src->stripe_pages[i] = NULL;
324 * merging means we take the bio_list from the victim and
325 * splice it into the destination. The victim should
326 * be discarded afterwards.
328 * must be called with dest->rbio_list_lock held
330 static void merge_rbio(struct btrfs_raid_bio *dest,
331 struct btrfs_raid_bio *victim)
333 bio_list_merge(&dest->bio_list, &victim->bio_list);
334 dest->bio_list_bytes += victim->bio_list_bytes;
335 dest->generic_bio_cnt += victim->generic_bio_cnt;
336 bio_list_init(&victim->bio_list);
340 * used to prune items that are in the cache. The caller
341 * must hold the hash table lock.
343 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
345 int bucket = rbio_bucket(rbio);
346 struct btrfs_stripe_hash_table *table;
347 struct btrfs_stripe_hash *h;
348 int freeit = 0;
351 * check the bit again under the hash table lock.
353 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
354 return;
356 table = rbio->fs_info->stripe_hash_table;
357 h = table->table + bucket;
359 /* hold the lock for the bucket because we may be
360 * removing it from the hash table
362 spin_lock(&h->lock);
365 * hold the lock for the bio list because we need
366 * to make sure the bio list is empty
368 spin_lock(&rbio->bio_list_lock);
370 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
371 list_del_init(&rbio->stripe_cache);
372 table->cache_size -= 1;
373 freeit = 1;
375 /* if the bio list isn't empty, this rbio is
376 * still involved in an IO. We take it out
377 * of the cache list, and drop the ref that
378 * was held for the list.
380 * If the bio_list was empty, we also remove
381 * the rbio from the hash_table, and drop
382 * the corresponding ref
384 if (bio_list_empty(&rbio->bio_list)) {
385 if (!list_empty(&rbio->hash_list)) {
386 list_del_init(&rbio->hash_list);
387 refcount_dec(&rbio->refs);
388 BUG_ON(!list_empty(&rbio->plug_list));
393 spin_unlock(&rbio->bio_list_lock);
394 spin_unlock(&h->lock);
396 if (freeit)
397 __free_raid_bio(rbio);
401 * prune a given rbio from the cache
403 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
405 struct btrfs_stripe_hash_table *table;
406 unsigned long flags;
408 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
409 return;
411 table = rbio->fs_info->stripe_hash_table;
413 spin_lock_irqsave(&table->cache_lock, flags);
414 __remove_rbio_from_cache(rbio);
415 spin_unlock_irqrestore(&table->cache_lock, flags);
419 * remove everything in the cache
421 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
423 struct btrfs_stripe_hash_table *table;
424 unsigned long flags;
425 struct btrfs_raid_bio *rbio;
427 table = info->stripe_hash_table;
429 spin_lock_irqsave(&table->cache_lock, flags);
430 while (!list_empty(&table->stripe_cache)) {
431 rbio = list_entry(table->stripe_cache.next,
432 struct btrfs_raid_bio,
433 stripe_cache);
434 __remove_rbio_from_cache(rbio);
436 spin_unlock_irqrestore(&table->cache_lock, flags);
440 * remove all cached entries and free the hash table
441 * used by unmount
443 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
445 if (!info->stripe_hash_table)
446 return;
447 btrfs_clear_rbio_cache(info);
448 kvfree(info->stripe_hash_table);
449 info->stripe_hash_table = NULL;
453 * insert an rbio into the stripe cache. It
454 * must have already been prepared by calling
455 * cache_rbio_pages
457 * If this rbio was already cached, it gets
458 * moved to the front of the lru.
460 * If the size of the rbio cache is too big, we
461 * prune an item.
463 static void cache_rbio(struct btrfs_raid_bio *rbio)
465 struct btrfs_stripe_hash_table *table;
466 unsigned long flags;
468 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
469 return;
471 table = rbio->fs_info->stripe_hash_table;
473 spin_lock_irqsave(&table->cache_lock, flags);
474 spin_lock(&rbio->bio_list_lock);
476 /* bump our ref if we were not in the list before */
477 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
478 refcount_inc(&rbio->refs);
480 if (!list_empty(&rbio->stripe_cache)){
481 list_move(&rbio->stripe_cache, &table->stripe_cache);
482 } else {
483 list_add(&rbio->stripe_cache, &table->stripe_cache);
484 table->cache_size += 1;
487 spin_unlock(&rbio->bio_list_lock);
489 if (table->cache_size > RBIO_CACHE_SIZE) {
490 struct btrfs_raid_bio *found;
492 found = list_entry(table->stripe_cache.prev,
493 struct btrfs_raid_bio,
494 stripe_cache);
496 if (found != rbio)
497 __remove_rbio_from_cache(found);
500 spin_unlock_irqrestore(&table->cache_lock, flags);
504 * helper function to run the xor_blocks api. It is only
505 * able to do MAX_XOR_BLOCKS at a time, so we need to
506 * loop through.
508 static void run_xor(void **pages, int src_cnt, ssize_t len)
510 int src_off = 0;
511 int xor_src_cnt = 0;
512 void *dest = pages[src_cnt];
514 while(src_cnt > 0) {
515 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
516 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
518 src_cnt -= xor_src_cnt;
519 src_off += xor_src_cnt;
524 * Returns true if the bio list inside this rbio covers an entire stripe (no
525 * rmw required).
527 static int rbio_is_full(struct btrfs_raid_bio *rbio)
529 unsigned long flags;
530 unsigned long size = rbio->bio_list_bytes;
531 int ret = 1;
533 spin_lock_irqsave(&rbio->bio_list_lock, flags);
534 if (size != rbio->nr_data * rbio->stripe_len)
535 ret = 0;
536 BUG_ON(size > rbio->nr_data * rbio->stripe_len);
537 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
539 return ret;
543 * returns 1 if it is safe to merge two rbios together.
544 * The merging is safe if the two rbios correspond to
545 * the same stripe and if they are both going in the same
546 * direction (read vs write), and if neither one is
547 * locked for final IO
549 * The caller is responsible for locking such that
550 * rmw_locked is safe to test
552 static int rbio_can_merge(struct btrfs_raid_bio *last,
553 struct btrfs_raid_bio *cur)
555 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
556 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
557 return 0;
560 * we can't merge with cached rbios, since the
561 * idea is that when we merge the destination
562 * rbio is going to run our IO for us. We can
563 * steal from cached rbios though, other functions
564 * handle that.
566 if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
567 test_bit(RBIO_CACHE_BIT, &cur->flags))
568 return 0;
570 if (last->bbio->raid_map[0] !=
571 cur->bbio->raid_map[0])
572 return 0;
574 /* we can't merge with different operations */
575 if (last->operation != cur->operation)
576 return 0;
578 * We've need read the full stripe from the drive.
579 * check and repair the parity and write the new results.
581 * We're not allowed to add any new bios to the
582 * bio list here, anyone else that wants to
583 * change this stripe needs to do their own rmw.
585 if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
586 return 0;
588 if (last->operation == BTRFS_RBIO_REBUILD_MISSING)
589 return 0;
591 if (last->operation == BTRFS_RBIO_READ_REBUILD) {
592 int fa = last->faila;
593 int fb = last->failb;
594 int cur_fa = cur->faila;
595 int cur_fb = cur->failb;
597 if (last->faila >= last->failb) {
598 fa = last->failb;
599 fb = last->faila;
602 if (cur->faila >= cur->failb) {
603 cur_fa = cur->failb;
604 cur_fb = cur->faila;
607 if (fa != cur_fa || fb != cur_fb)
608 return 0;
610 return 1;
613 static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
614 int index)
616 return stripe * rbio->stripe_npages + index;
620 * these are just the pages from the rbio array, not from anything
621 * the FS sent down to us
623 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
624 int index)
626 return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
630 * helper to index into the pstripe
632 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
634 return rbio_stripe_page(rbio, rbio->nr_data, index);
638 * helper to index into the qstripe, returns null
639 * if there is no qstripe
641 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
643 if (rbio->nr_data + 1 == rbio->real_stripes)
644 return NULL;
645 return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
649 * The first stripe in the table for a logical address
650 * has the lock. rbios are added in one of three ways:
652 * 1) Nobody has the stripe locked yet. The rbio is given
653 * the lock and 0 is returned. The caller must start the IO
654 * themselves.
656 * 2) Someone has the stripe locked, but we're able to merge
657 * with the lock owner. The rbio is freed and the IO will
658 * start automatically along with the existing rbio. 1 is returned.
660 * 3) Someone has the stripe locked, but we're not able to merge.
661 * The rbio is added to the lock owner's plug list, or merged into
662 * an rbio already on the plug list. When the lock owner unlocks,
663 * the next rbio on the list is run and the IO is started automatically.
664 * 1 is returned
666 * If we return 0, the caller still owns the rbio and must continue with
667 * IO submission. If we return 1, the caller must assume the rbio has
668 * already been freed.
670 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
672 struct btrfs_stripe_hash *h;
673 struct btrfs_raid_bio *cur;
674 struct btrfs_raid_bio *pending;
675 unsigned long flags;
676 struct btrfs_raid_bio *freeit = NULL;
677 struct btrfs_raid_bio *cache_drop = NULL;
678 int ret = 0;
680 h = rbio->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
682 spin_lock_irqsave(&h->lock, flags);
683 list_for_each_entry(cur, &h->hash_list, hash_list) {
684 if (cur->bbio->raid_map[0] != rbio->bbio->raid_map[0])
685 continue;
687 spin_lock(&cur->bio_list_lock);
689 /* Can we steal this cached rbio's pages? */
690 if (bio_list_empty(&cur->bio_list) &&
691 list_empty(&cur->plug_list) &&
692 test_bit(RBIO_CACHE_BIT, &cur->flags) &&
693 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
694 list_del_init(&cur->hash_list);
695 refcount_dec(&cur->refs);
697 steal_rbio(cur, rbio);
698 cache_drop = cur;
699 spin_unlock(&cur->bio_list_lock);
701 goto lockit;
704 /* Can we merge into the lock owner? */
705 if (rbio_can_merge(cur, rbio)) {
706 merge_rbio(cur, rbio);
707 spin_unlock(&cur->bio_list_lock);
708 freeit = rbio;
709 ret = 1;
710 goto out;
715 * We couldn't merge with the running rbio, see if we can merge
716 * with the pending ones. We don't have to check for rmw_locked
717 * because there is no way they are inside finish_rmw right now
719 list_for_each_entry(pending, &cur->plug_list, plug_list) {
720 if (rbio_can_merge(pending, rbio)) {
721 merge_rbio(pending, rbio);
722 spin_unlock(&cur->bio_list_lock);
723 freeit = rbio;
724 ret = 1;
725 goto out;
730 * No merging, put us on the tail of the plug list, our rbio
731 * will be started with the currently running rbio unlocks
733 list_add_tail(&rbio->plug_list, &cur->plug_list);
734 spin_unlock(&cur->bio_list_lock);
735 ret = 1;
736 goto out;
738 lockit:
739 refcount_inc(&rbio->refs);
740 list_add(&rbio->hash_list, &h->hash_list);
741 out:
742 spin_unlock_irqrestore(&h->lock, flags);
743 if (cache_drop)
744 remove_rbio_from_cache(cache_drop);
745 if (freeit)
746 __free_raid_bio(freeit);
747 return ret;
751 * called as rmw or parity rebuild is completed. If the plug list has more
752 * rbios waiting for this stripe, the next one on the list will be started
754 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
756 int bucket;
757 struct btrfs_stripe_hash *h;
758 unsigned long flags;
759 int keep_cache = 0;
761 bucket = rbio_bucket(rbio);
762 h = rbio->fs_info->stripe_hash_table->table + bucket;
764 if (list_empty(&rbio->plug_list))
765 cache_rbio(rbio);
767 spin_lock_irqsave(&h->lock, flags);
768 spin_lock(&rbio->bio_list_lock);
770 if (!list_empty(&rbio->hash_list)) {
772 * if we're still cached and there is no other IO
773 * to perform, just leave this rbio here for others
774 * to steal from later
776 if (list_empty(&rbio->plug_list) &&
777 test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
778 keep_cache = 1;
779 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
780 BUG_ON(!bio_list_empty(&rbio->bio_list));
781 goto done;
784 list_del_init(&rbio->hash_list);
785 refcount_dec(&rbio->refs);
788 * we use the plug list to hold all the rbios
789 * waiting for the chance to lock this stripe.
790 * hand the lock over to one of them.
792 if (!list_empty(&rbio->plug_list)) {
793 struct btrfs_raid_bio *next;
794 struct list_head *head = rbio->plug_list.next;
796 next = list_entry(head, struct btrfs_raid_bio,
797 plug_list);
799 list_del_init(&rbio->plug_list);
801 list_add(&next->hash_list, &h->hash_list);
802 refcount_inc(&next->refs);
803 spin_unlock(&rbio->bio_list_lock);
804 spin_unlock_irqrestore(&h->lock, flags);
806 if (next->operation == BTRFS_RBIO_READ_REBUILD)
807 start_async_work(next, read_rebuild_work);
808 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
809 steal_rbio(rbio, next);
810 start_async_work(next, read_rebuild_work);
811 } else if (next->operation == BTRFS_RBIO_WRITE) {
812 steal_rbio(rbio, next);
813 start_async_work(next, rmw_work);
814 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
815 steal_rbio(rbio, next);
816 start_async_work(next, scrub_parity_work);
819 goto done_nolock;
822 done:
823 spin_unlock(&rbio->bio_list_lock);
824 spin_unlock_irqrestore(&h->lock, flags);
826 done_nolock:
827 if (!keep_cache)
828 remove_rbio_from_cache(rbio);
831 static void __free_raid_bio(struct btrfs_raid_bio *rbio)
833 int i;
835 if (!refcount_dec_and_test(&rbio->refs))
836 return;
838 WARN_ON(!list_empty(&rbio->stripe_cache));
839 WARN_ON(!list_empty(&rbio->hash_list));
840 WARN_ON(!bio_list_empty(&rbio->bio_list));
842 for (i = 0; i < rbio->nr_pages; i++) {
843 if (rbio->stripe_pages[i]) {
844 __free_page(rbio->stripe_pages[i]);
845 rbio->stripe_pages[i] = NULL;
849 btrfs_put_bbio(rbio->bbio);
850 kfree(rbio);
853 static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
855 struct bio *next;
857 while (cur) {
858 next = cur->bi_next;
859 cur->bi_next = NULL;
860 cur->bi_status = err;
861 bio_endio(cur);
862 cur = next;
867 * this frees the rbio and runs through all the bios in the
868 * bio_list and calls end_io on them
870 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
872 struct bio *cur = bio_list_get(&rbio->bio_list);
873 struct bio *extra;
875 if (rbio->generic_bio_cnt)
876 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
879 * At this moment, rbio->bio_list is empty, however since rbio does not
880 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
881 * hash list, rbio may be merged with others so that rbio->bio_list
882 * becomes non-empty.
883 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
884 * more and we can call bio_endio() on all queued bios.
886 unlock_stripe(rbio);
887 extra = bio_list_get(&rbio->bio_list);
888 __free_raid_bio(rbio);
890 rbio_endio_bio_list(cur, err);
891 if (extra)
892 rbio_endio_bio_list(extra, err);
896 * end io function used by finish_rmw. When we finally
897 * get here, we've written a full stripe
899 static void raid_write_end_io(struct bio *bio)
901 struct btrfs_raid_bio *rbio = bio->bi_private;
902 blk_status_t err = bio->bi_status;
903 int max_errors;
905 if (err)
906 fail_bio_stripe(rbio, bio);
908 bio_put(bio);
910 if (!atomic_dec_and_test(&rbio->stripes_pending))
911 return;
913 err = BLK_STS_OK;
915 /* OK, we have read all the stripes we need to. */
916 max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
917 0 : rbio->bbio->max_errors;
918 if (atomic_read(&rbio->error) > max_errors)
919 err = BLK_STS_IOERR;
921 rbio_orig_end_io(rbio, err);
925 * the read/modify/write code wants to use the original bio for
926 * any pages it included, and then use the rbio for everything
927 * else. This function decides if a given index (stripe number)
928 * and page number in that stripe fall inside the original bio
929 * or the rbio.
931 * if you set bio_list_only, you'll get a NULL back for any ranges
932 * that are outside the bio_list
934 * This doesn't take any refs on anything, you get a bare page pointer
935 * and the caller must bump refs as required.
937 * You must call index_rbio_pages once before you can trust
938 * the answers from this function.
940 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
941 int index, int pagenr, int bio_list_only)
943 int chunk_page;
944 struct page *p = NULL;
946 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
948 spin_lock_irq(&rbio->bio_list_lock);
949 p = rbio->bio_pages[chunk_page];
950 spin_unlock_irq(&rbio->bio_list_lock);
952 if (p || bio_list_only)
953 return p;
955 return rbio->stripe_pages[chunk_page];
959 * number of pages we need for the entire stripe across all the
960 * drives
962 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
964 return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
968 * allocation and initial setup for the btrfs_raid_bio. Not
969 * this does not allocate any pages for rbio->pages.
971 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
972 struct btrfs_bio *bbio,
973 u64 stripe_len)
975 struct btrfs_raid_bio *rbio;
976 int nr_data = 0;
977 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
978 int num_pages = rbio_nr_pages(stripe_len, real_stripes);
979 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
980 void *p;
982 rbio = kzalloc(sizeof(*rbio) +
983 sizeof(*rbio->stripe_pages) * num_pages +
984 sizeof(*rbio->bio_pages) * num_pages +
985 sizeof(*rbio->finish_pointers) * real_stripes +
986 sizeof(*rbio->dbitmap) * BITS_TO_LONGS(stripe_npages) +
987 sizeof(*rbio->finish_pbitmap) *
988 BITS_TO_LONGS(stripe_npages),
989 GFP_NOFS);
990 if (!rbio)
991 return ERR_PTR(-ENOMEM);
993 bio_list_init(&rbio->bio_list);
994 INIT_LIST_HEAD(&rbio->plug_list);
995 spin_lock_init(&rbio->bio_list_lock);
996 INIT_LIST_HEAD(&rbio->stripe_cache);
997 INIT_LIST_HEAD(&rbio->hash_list);
998 rbio->bbio = bbio;
999 rbio->fs_info = fs_info;
1000 rbio->stripe_len = stripe_len;
1001 rbio->nr_pages = num_pages;
1002 rbio->real_stripes = real_stripes;
1003 rbio->stripe_npages = stripe_npages;
1004 rbio->faila = -1;
1005 rbio->failb = -1;
1006 refcount_set(&rbio->refs, 1);
1007 atomic_set(&rbio->error, 0);
1008 atomic_set(&rbio->stripes_pending, 0);
1011 * the stripe_pages, bio_pages, etc arrays point to the extra
1012 * memory we allocated past the end of the rbio
1014 p = rbio + 1;
1015 #define CONSUME_ALLOC(ptr, count) do { \
1016 ptr = p; \
1017 p = (unsigned char *)p + sizeof(*(ptr)) * (count); \
1018 } while (0)
1019 CONSUME_ALLOC(rbio->stripe_pages, num_pages);
1020 CONSUME_ALLOC(rbio->bio_pages, num_pages);
1021 CONSUME_ALLOC(rbio->finish_pointers, real_stripes);
1022 CONSUME_ALLOC(rbio->dbitmap, BITS_TO_LONGS(stripe_npages));
1023 CONSUME_ALLOC(rbio->finish_pbitmap, BITS_TO_LONGS(stripe_npages));
1024 #undef CONSUME_ALLOC
1026 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1027 nr_data = real_stripes - 1;
1028 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1029 nr_data = real_stripes - 2;
1030 else
1031 BUG();
1033 rbio->nr_data = nr_data;
1034 return rbio;
1037 /* allocate pages for all the stripes in the bio, including parity */
1038 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1040 int i;
1041 struct page *page;
1043 for (i = 0; i < rbio->nr_pages; i++) {
1044 if (rbio->stripe_pages[i])
1045 continue;
1046 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1047 if (!page)
1048 return -ENOMEM;
1049 rbio->stripe_pages[i] = page;
1051 return 0;
1054 /* only allocate pages for p/q stripes */
1055 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1057 int i;
1058 struct page *page;
1060 i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
1062 for (; i < rbio->nr_pages; i++) {
1063 if (rbio->stripe_pages[i])
1064 continue;
1065 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1066 if (!page)
1067 return -ENOMEM;
1068 rbio->stripe_pages[i] = page;
1070 return 0;
1074 * add a single page from a specific stripe into our list of bios for IO
1075 * this will try to merge into existing bios if possible, and returns
1076 * zero if all went well.
1078 static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1079 struct bio_list *bio_list,
1080 struct page *page,
1081 int stripe_nr,
1082 unsigned long page_index,
1083 unsigned long bio_max_len)
1085 struct bio *last = bio_list->tail;
1086 u64 last_end = 0;
1087 int ret;
1088 struct bio *bio;
1089 struct btrfs_bio_stripe *stripe;
1090 u64 disk_start;
1092 stripe = &rbio->bbio->stripes[stripe_nr];
1093 disk_start = stripe->physical + (page_index << PAGE_SHIFT);
1095 /* if the device is missing, just fail this stripe */
1096 if (!stripe->dev->bdev)
1097 return fail_rbio_index(rbio, stripe_nr);
1099 /* see if we can add this page onto our existing bio */
1100 if (last) {
1101 last_end = (u64)last->bi_iter.bi_sector << 9;
1102 last_end += last->bi_iter.bi_size;
1105 * we can't merge these if they are from different
1106 * devices or if they are not contiguous
1108 if (last_end == disk_start && stripe->dev->bdev &&
1109 !last->bi_status &&
1110 last->bi_disk == stripe->dev->bdev->bd_disk &&
1111 last->bi_partno == stripe->dev->bdev->bd_partno) {
1112 ret = bio_add_page(last, page, PAGE_SIZE, 0);
1113 if (ret == PAGE_SIZE)
1114 return 0;
1118 /* put a new bio on the list */
1119 bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1);
1120 bio->bi_iter.bi_size = 0;
1121 bio_set_dev(bio, stripe->dev->bdev);
1122 bio->bi_iter.bi_sector = disk_start >> 9;
1124 bio_add_page(bio, page, PAGE_SIZE, 0);
1125 bio_list_add(bio_list, bio);
1126 return 0;
1130 * while we're doing the read/modify/write cycle, we could
1131 * have errors in reading pages off the disk. This checks
1132 * for errors and if we're not able to read the page it'll
1133 * trigger parity reconstruction. The rmw will be finished
1134 * after we've reconstructed the failed stripes
1136 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1138 if (rbio->faila >= 0 || rbio->failb >= 0) {
1139 BUG_ON(rbio->faila == rbio->real_stripes - 1);
1140 __raid56_parity_recover(rbio);
1141 } else {
1142 finish_rmw(rbio);
1147 * helper function to walk our bio list and populate the bio_pages array with
1148 * the result. This seems expensive, but it is faster than constantly
1149 * searching through the bio list as we setup the IO in finish_rmw or stripe
1150 * reconstruction.
1152 * This must be called before you trust the answers from page_in_rbio
1154 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1156 struct bio *bio;
1157 u64 start;
1158 unsigned long stripe_offset;
1159 unsigned long page_index;
1161 spin_lock_irq(&rbio->bio_list_lock);
1162 bio_list_for_each(bio, &rbio->bio_list) {
1163 struct bio_vec bvec;
1164 struct bvec_iter iter;
1165 int i = 0;
1167 start = (u64)bio->bi_iter.bi_sector << 9;
1168 stripe_offset = start - rbio->bbio->raid_map[0];
1169 page_index = stripe_offset >> PAGE_SHIFT;
1171 if (bio_flagged(bio, BIO_CLONED))
1172 bio->bi_iter = btrfs_io_bio(bio)->iter;
1174 bio_for_each_segment(bvec, bio, iter) {
1175 rbio->bio_pages[page_index + i] = bvec.bv_page;
1176 i++;
1179 spin_unlock_irq(&rbio->bio_list_lock);
1183 * this is called from one of two situations. We either
1184 * have a full stripe from the higher layers, or we've read all
1185 * the missing bits off disk.
1187 * This will calculate the parity and then send down any
1188 * changed blocks.
1190 static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1192 struct btrfs_bio *bbio = rbio->bbio;
1193 void **pointers = rbio->finish_pointers;
1194 int nr_data = rbio->nr_data;
1195 int stripe;
1196 int pagenr;
1197 bool has_qstripe;
1198 struct bio_list bio_list;
1199 struct bio *bio;
1200 int ret;
1202 bio_list_init(&bio_list);
1204 if (rbio->real_stripes - rbio->nr_data == 1)
1205 has_qstripe = false;
1206 else if (rbio->real_stripes - rbio->nr_data == 2)
1207 has_qstripe = true;
1208 else
1209 BUG();
1211 /* at this point we either have a full stripe,
1212 * or we've read the full stripe from the drive.
1213 * recalculate the parity and write the new results.
1215 * We're not allowed to add any new bios to the
1216 * bio list here, anyone else that wants to
1217 * change this stripe needs to do their own rmw.
1219 spin_lock_irq(&rbio->bio_list_lock);
1220 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1221 spin_unlock_irq(&rbio->bio_list_lock);
1223 atomic_set(&rbio->error, 0);
1226 * now that we've set rmw_locked, run through the
1227 * bio list one last time and map the page pointers
1229 * We don't cache full rbios because we're assuming
1230 * the higher layers are unlikely to use this area of
1231 * the disk again soon. If they do use it again,
1232 * hopefully they will send another full bio.
1234 index_rbio_pages(rbio);
1235 if (!rbio_is_full(rbio))
1236 cache_rbio_pages(rbio);
1237 else
1238 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1240 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1241 struct page *p;
1242 /* first collect one page from each data stripe */
1243 for (stripe = 0; stripe < nr_data; stripe++) {
1244 p = page_in_rbio(rbio, stripe, pagenr, 0);
1245 pointers[stripe] = kmap(p);
1248 /* then add the parity stripe */
1249 p = rbio_pstripe_page(rbio, pagenr);
1250 SetPageUptodate(p);
1251 pointers[stripe++] = kmap(p);
1253 if (has_qstripe) {
1256 * raid6, add the qstripe and call the
1257 * library function to fill in our p/q
1259 p = rbio_qstripe_page(rbio, pagenr);
1260 SetPageUptodate(p);
1261 pointers[stripe++] = kmap(p);
1263 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1264 pointers);
1265 } else {
1266 /* raid5 */
1267 copy_page(pointers[nr_data], pointers[0]);
1268 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1272 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1273 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1277 * time to start writing. Make bios for everything from the
1278 * higher layers (the bio_list in our rbio) and our p/q. Ignore
1279 * everything else.
1281 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1282 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1283 struct page *page;
1284 if (stripe < rbio->nr_data) {
1285 page = page_in_rbio(rbio, stripe, pagenr, 1);
1286 if (!page)
1287 continue;
1288 } else {
1289 page = rbio_stripe_page(rbio, stripe, pagenr);
1292 ret = rbio_add_io_page(rbio, &bio_list,
1293 page, stripe, pagenr, rbio->stripe_len);
1294 if (ret)
1295 goto cleanup;
1299 if (likely(!bbio->num_tgtdevs))
1300 goto write_data;
1302 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1303 if (!bbio->tgtdev_map[stripe])
1304 continue;
1306 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1307 struct page *page;
1308 if (stripe < rbio->nr_data) {
1309 page = page_in_rbio(rbio, stripe, pagenr, 1);
1310 if (!page)
1311 continue;
1312 } else {
1313 page = rbio_stripe_page(rbio, stripe, pagenr);
1316 ret = rbio_add_io_page(rbio, &bio_list, page,
1317 rbio->bbio->tgtdev_map[stripe],
1318 pagenr, rbio->stripe_len);
1319 if (ret)
1320 goto cleanup;
1324 write_data:
1325 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1326 BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1328 while (1) {
1329 bio = bio_list_pop(&bio_list);
1330 if (!bio)
1331 break;
1333 bio->bi_private = rbio;
1334 bio->bi_end_io = raid_write_end_io;
1335 bio->bi_opf = REQ_OP_WRITE;
1337 submit_bio(bio);
1339 return;
1341 cleanup:
1342 rbio_orig_end_io(rbio, BLK_STS_IOERR);
1344 while ((bio = bio_list_pop(&bio_list)))
1345 bio_put(bio);
1349 * helper to find the stripe number for a given bio. Used to figure out which
1350 * stripe has failed. This expects the bio to correspond to a physical disk,
1351 * so it looks up based on physical sector numbers.
1353 static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1354 struct bio *bio)
1356 u64 physical = bio->bi_iter.bi_sector;
1357 u64 stripe_start;
1358 int i;
1359 struct btrfs_bio_stripe *stripe;
1361 physical <<= 9;
1363 for (i = 0; i < rbio->bbio->num_stripes; i++) {
1364 stripe = &rbio->bbio->stripes[i];
1365 stripe_start = stripe->physical;
1366 if (physical >= stripe_start &&
1367 physical < stripe_start + rbio->stripe_len &&
1368 stripe->dev->bdev &&
1369 bio->bi_disk == stripe->dev->bdev->bd_disk &&
1370 bio->bi_partno == stripe->dev->bdev->bd_partno) {
1371 return i;
1374 return -1;
1378 * helper to find the stripe number for a given
1379 * bio (before mapping). Used to figure out which stripe has
1380 * failed. This looks up based on logical block numbers.
1382 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1383 struct bio *bio)
1385 u64 logical = bio->bi_iter.bi_sector;
1386 u64 stripe_start;
1387 int i;
1389 logical <<= 9;
1391 for (i = 0; i < rbio->nr_data; i++) {
1392 stripe_start = rbio->bbio->raid_map[i];
1393 if (logical >= stripe_start &&
1394 logical < stripe_start + rbio->stripe_len) {
1395 return i;
1398 return -1;
1402 * returns -EIO if we had too many failures
1404 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1406 unsigned long flags;
1407 int ret = 0;
1409 spin_lock_irqsave(&rbio->bio_list_lock, flags);
1411 /* we already know this stripe is bad, move on */
1412 if (rbio->faila == failed || rbio->failb == failed)
1413 goto out;
1415 if (rbio->faila == -1) {
1416 /* first failure on this rbio */
1417 rbio->faila = failed;
1418 atomic_inc(&rbio->error);
1419 } else if (rbio->failb == -1) {
1420 /* second failure on this rbio */
1421 rbio->failb = failed;
1422 atomic_inc(&rbio->error);
1423 } else {
1424 ret = -EIO;
1426 out:
1427 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1429 return ret;
1433 * helper to fail a stripe based on a physical disk
1434 * bio.
1436 static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1437 struct bio *bio)
1439 int failed = find_bio_stripe(rbio, bio);
1441 if (failed < 0)
1442 return -EIO;
1444 return fail_rbio_index(rbio, failed);
1448 * this sets each page in the bio uptodate. It should only be used on private
1449 * rbio pages, nothing that comes in from the higher layers
1451 static void set_bio_pages_uptodate(struct bio *bio)
1453 struct bio_vec *bvec;
1454 struct bvec_iter_all iter_all;
1456 ASSERT(!bio_flagged(bio, BIO_CLONED));
1458 bio_for_each_segment_all(bvec, bio, iter_all)
1459 SetPageUptodate(bvec->bv_page);
1463 * end io for the read phase of the rmw cycle. All the bios here are physical
1464 * stripe bios we've read from the disk so we can recalculate the parity of the
1465 * stripe.
1467 * This will usually kick off finish_rmw once all the bios are read in, but it
1468 * may trigger parity reconstruction if we had any errors along the way
1470 static void raid_rmw_end_io(struct bio *bio)
1472 struct btrfs_raid_bio *rbio = bio->bi_private;
1474 if (bio->bi_status)
1475 fail_bio_stripe(rbio, bio);
1476 else
1477 set_bio_pages_uptodate(bio);
1479 bio_put(bio);
1481 if (!atomic_dec_and_test(&rbio->stripes_pending))
1482 return;
1484 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1485 goto cleanup;
1488 * this will normally call finish_rmw to start our write
1489 * but if there are any failed stripes we'll reconstruct
1490 * from parity first
1492 validate_rbio_for_rmw(rbio);
1493 return;
1495 cleanup:
1497 rbio_orig_end_io(rbio, BLK_STS_IOERR);
1501 * the stripe must be locked by the caller. It will
1502 * unlock after all the writes are done
1504 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1506 int bios_to_read = 0;
1507 struct bio_list bio_list;
1508 int ret;
1509 int pagenr;
1510 int stripe;
1511 struct bio *bio;
1513 bio_list_init(&bio_list);
1515 ret = alloc_rbio_pages(rbio);
1516 if (ret)
1517 goto cleanup;
1519 index_rbio_pages(rbio);
1521 atomic_set(&rbio->error, 0);
1523 * build a list of bios to read all the missing parts of this
1524 * stripe
1526 for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1527 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1528 struct page *page;
1530 * we want to find all the pages missing from
1531 * the rbio and read them from the disk. If
1532 * page_in_rbio finds a page in the bio list
1533 * we don't need to read it off the stripe.
1535 page = page_in_rbio(rbio, stripe, pagenr, 1);
1536 if (page)
1537 continue;
1539 page = rbio_stripe_page(rbio, stripe, pagenr);
1541 * the bio cache may have handed us an uptodate
1542 * page. If so, be happy and use it
1544 if (PageUptodate(page))
1545 continue;
1547 ret = rbio_add_io_page(rbio, &bio_list, page,
1548 stripe, pagenr, rbio->stripe_len);
1549 if (ret)
1550 goto cleanup;
1554 bios_to_read = bio_list_size(&bio_list);
1555 if (!bios_to_read) {
1557 * this can happen if others have merged with
1558 * us, it means there is nothing left to read.
1559 * But if there are missing devices it may not be
1560 * safe to do the full stripe write yet.
1562 goto finish;
1566 * the bbio may be freed once we submit the last bio. Make sure
1567 * not to touch it after that
1569 atomic_set(&rbio->stripes_pending, bios_to_read);
1570 while (1) {
1571 bio = bio_list_pop(&bio_list);
1572 if (!bio)
1573 break;
1575 bio->bi_private = rbio;
1576 bio->bi_end_io = raid_rmw_end_io;
1577 bio->bi_opf = REQ_OP_READ;
1579 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
1581 submit_bio(bio);
1583 /* the actual write will happen once the reads are done */
1584 return 0;
1586 cleanup:
1587 rbio_orig_end_io(rbio, BLK_STS_IOERR);
1589 while ((bio = bio_list_pop(&bio_list)))
1590 bio_put(bio);
1592 return -EIO;
1594 finish:
1595 validate_rbio_for_rmw(rbio);
1596 return 0;
1600 * if the upper layers pass in a full stripe, we thank them by only allocating
1601 * enough pages to hold the parity, and sending it all down quickly.
1603 static int full_stripe_write(struct btrfs_raid_bio *rbio)
1605 int ret;
1607 ret = alloc_rbio_parity_pages(rbio);
1608 if (ret) {
1609 __free_raid_bio(rbio);
1610 return ret;
1613 ret = lock_stripe_add(rbio);
1614 if (ret == 0)
1615 finish_rmw(rbio);
1616 return 0;
1620 * partial stripe writes get handed over to async helpers.
1621 * We're really hoping to merge a few more writes into this
1622 * rbio before calculating new parity
1624 static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1626 int ret;
1628 ret = lock_stripe_add(rbio);
1629 if (ret == 0)
1630 start_async_work(rbio, rmw_work);
1631 return 0;
1635 * sometimes while we were reading from the drive to
1636 * recalculate parity, enough new bios come into create
1637 * a full stripe. So we do a check here to see if we can
1638 * go directly to finish_rmw
1640 static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1642 /* head off into rmw land if we don't have a full stripe */
1643 if (!rbio_is_full(rbio))
1644 return partial_stripe_write(rbio);
1645 return full_stripe_write(rbio);
1649 * We use plugging call backs to collect full stripes.
1650 * Any time we get a partial stripe write while plugged
1651 * we collect it into a list. When the unplug comes down,
1652 * we sort the list by logical block number and merge
1653 * everything we can into the same rbios
1655 struct btrfs_plug_cb {
1656 struct blk_plug_cb cb;
1657 struct btrfs_fs_info *info;
1658 struct list_head rbio_list;
1659 struct btrfs_work work;
1663 * rbios on the plug list are sorted for easier merging.
1665 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1667 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1668 plug_list);
1669 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1670 plug_list);
1671 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1672 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1674 if (a_sector < b_sector)
1675 return -1;
1676 if (a_sector > b_sector)
1677 return 1;
1678 return 0;
1681 static void run_plug(struct btrfs_plug_cb *plug)
1683 struct btrfs_raid_bio *cur;
1684 struct btrfs_raid_bio *last = NULL;
1687 * sort our plug list then try to merge
1688 * everything we can in hopes of creating full
1689 * stripes.
1691 list_sort(NULL, &plug->rbio_list, plug_cmp);
1692 while (!list_empty(&plug->rbio_list)) {
1693 cur = list_entry(plug->rbio_list.next,
1694 struct btrfs_raid_bio, plug_list);
1695 list_del_init(&cur->plug_list);
1697 if (rbio_is_full(cur)) {
1698 int ret;
1700 /* we have a full stripe, send it down */
1701 ret = full_stripe_write(cur);
1702 BUG_ON(ret);
1703 continue;
1705 if (last) {
1706 if (rbio_can_merge(last, cur)) {
1707 merge_rbio(last, cur);
1708 __free_raid_bio(cur);
1709 continue;
1712 __raid56_parity_write(last);
1714 last = cur;
1716 if (last) {
1717 __raid56_parity_write(last);
1719 kfree(plug);
1723 * if the unplug comes from schedule, we have to push the
1724 * work off to a helper thread
1726 static void unplug_work(struct btrfs_work *work)
1728 struct btrfs_plug_cb *plug;
1729 plug = container_of(work, struct btrfs_plug_cb, work);
1730 run_plug(plug);
1733 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1735 struct btrfs_plug_cb *plug;
1736 plug = container_of(cb, struct btrfs_plug_cb, cb);
1738 if (from_schedule) {
1739 btrfs_init_work(&plug->work, unplug_work, NULL, NULL);
1740 btrfs_queue_work(plug->info->rmw_workers,
1741 &plug->work);
1742 return;
1744 run_plug(plug);
1748 * our main entry point for writes from the rest of the FS.
1750 int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
1751 struct btrfs_bio *bbio, u64 stripe_len)
1753 struct btrfs_raid_bio *rbio;
1754 struct btrfs_plug_cb *plug = NULL;
1755 struct blk_plug_cb *cb;
1756 int ret;
1758 rbio = alloc_rbio(fs_info, bbio, stripe_len);
1759 if (IS_ERR(rbio)) {
1760 btrfs_put_bbio(bbio);
1761 return PTR_ERR(rbio);
1763 bio_list_add(&rbio->bio_list, bio);
1764 rbio->bio_list_bytes = bio->bi_iter.bi_size;
1765 rbio->operation = BTRFS_RBIO_WRITE;
1767 btrfs_bio_counter_inc_noblocked(fs_info);
1768 rbio->generic_bio_cnt = 1;
1771 * don't plug on full rbios, just get them out the door
1772 * as quickly as we can
1774 if (rbio_is_full(rbio)) {
1775 ret = full_stripe_write(rbio);
1776 if (ret)
1777 btrfs_bio_counter_dec(fs_info);
1778 return ret;
1781 cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
1782 if (cb) {
1783 plug = container_of(cb, struct btrfs_plug_cb, cb);
1784 if (!plug->info) {
1785 plug->info = fs_info;
1786 INIT_LIST_HEAD(&plug->rbio_list);
1788 list_add_tail(&rbio->plug_list, &plug->rbio_list);
1789 ret = 0;
1790 } else {
1791 ret = __raid56_parity_write(rbio);
1792 if (ret)
1793 btrfs_bio_counter_dec(fs_info);
1795 return ret;
1799 * all parity reconstruction happens here. We've read in everything
1800 * we can find from the drives and this does the heavy lifting of
1801 * sorting the good from the bad.
1803 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1805 int pagenr, stripe;
1806 void **pointers;
1807 int faila = -1, failb = -1;
1808 struct page *page;
1809 blk_status_t err;
1810 int i;
1812 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1813 if (!pointers) {
1814 err = BLK_STS_RESOURCE;
1815 goto cleanup_io;
1818 faila = rbio->faila;
1819 failb = rbio->failb;
1821 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1822 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1823 spin_lock_irq(&rbio->bio_list_lock);
1824 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1825 spin_unlock_irq(&rbio->bio_list_lock);
1828 index_rbio_pages(rbio);
1830 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1832 * Now we just use bitmap to mark the horizontal stripes in
1833 * which we have data when doing parity scrub.
1835 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1836 !test_bit(pagenr, rbio->dbitmap))
1837 continue;
1839 /* setup our array of pointers with pages
1840 * from each stripe
1842 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1844 * if we're rebuilding a read, we have to use
1845 * pages from the bio list
1847 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1848 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1849 (stripe == faila || stripe == failb)) {
1850 page = page_in_rbio(rbio, stripe, pagenr, 0);
1851 } else {
1852 page = rbio_stripe_page(rbio, stripe, pagenr);
1854 pointers[stripe] = kmap(page);
1857 /* all raid6 handling here */
1858 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1860 * single failure, rebuild from parity raid5
1861 * style
1863 if (failb < 0) {
1864 if (faila == rbio->nr_data) {
1866 * Just the P stripe has failed, without
1867 * a bad data or Q stripe.
1868 * TODO, we should redo the xor here.
1870 err = BLK_STS_IOERR;
1871 goto cleanup;
1874 * a single failure in raid6 is rebuilt
1875 * in the pstripe code below
1877 goto pstripe;
1880 /* make sure our ps and qs are in order */
1881 if (faila > failb) {
1882 int tmp = failb;
1883 failb = faila;
1884 faila = tmp;
1887 /* if the q stripe is failed, do a pstripe reconstruction
1888 * from the xors.
1889 * If both the q stripe and the P stripe are failed, we're
1890 * here due to a crc mismatch and we can't give them the
1891 * data they want
1893 if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1894 if (rbio->bbio->raid_map[faila] ==
1895 RAID5_P_STRIPE) {
1896 err = BLK_STS_IOERR;
1897 goto cleanup;
1900 * otherwise we have one bad data stripe and
1901 * a good P stripe. raid5!
1903 goto pstripe;
1906 if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1907 raid6_datap_recov(rbio->real_stripes,
1908 PAGE_SIZE, faila, pointers);
1909 } else {
1910 raid6_2data_recov(rbio->real_stripes,
1911 PAGE_SIZE, faila, failb,
1912 pointers);
1914 } else {
1915 void *p;
1917 /* rebuild from P stripe here (raid5 or raid6) */
1918 BUG_ON(failb != -1);
1919 pstripe:
1920 /* Copy parity block into failed block to start with */
1921 copy_page(pointers[faila], pointers[rbio->nr_data]);
1923 /* rearrange the pointer array */
1924 p = pointers[faila];
1925 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1926 pointers[stripe] = pointers[stripe + 1];
1927 pointers[rbio->nr_data - 1] = p;
1929 /* xor in the rest */
1930 run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1932 /* if we're doing this rebuild as part of an rmw, go through
1933 * and set all of our private rbio pages in the
1934 * failed stripes as uptodate. This way finish_rmw will
1935 * know they can be trusted. If this was a read reconstruction,
1936 * other endio functions will fiddle the uptodate bits
1938 if (rbio->operation == BTRFS_RBIO_WRITE) {
1939 for (i = 0; i < rbio->stripe_npages; i++) {
1940 if (faila != -1) {
1941 page = rbio_stripe_page(rbio, faila, i);
1942 SetPageUptodate(page);
1944 if (failb != -1) {
1945 page = rbio_stripe_page(rbio, failb, i);
1946 SetPageUptodate(page);
1950 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1952 * if we're rebuilding a read, we have to use
1953 * pages from the bio list
1955 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1956 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1957 (stripe == faila || stripe == failb)) {
1958 page = page_in_rbio(rbio, stripe, pagenr, 0);
1959 } else {
1960 page = rbio_stripe_page(rbio, stripe, pagenr);
1962 kunmap(page);
1966 err = BLK_STS_OK;
1967 cleanup:
1968 kfree(pointers);
1970 cleanup_io:
1972 * Similar to READ_REBUILD, REBUILD_MISSING at this point also has a
1973 * valid rbio which is consistent with ondisk content, thus such a
1974 * valid rbio can be cached to avoid further disk reads.
1976 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1977 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1979 * - In case of two failures, where rbio->failb != -1:
1981 * Do not cache this rbio since the above read reconstruction
1982 * (raid6_datap_recov() or raid6_2data_recov()) may have
1983 * changed some content of stripes which are not identical to
1984 * on-disk content any more, otherwise, a later write/recover
1985 * may steal stripe_pages from this rbio and end up with
1986 * corruptions or rebuild failures.
1988 * - In case of single failure, where rbio->failb == -1:
1990 * Cache this rbio iff the above read reconstruction is
1991 * executed without problems.
1993 if (err == BLK_STS_OK && rbio->failb < 0)
1994 cache_rbio_pages(rbio);
1995 else
1996 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1998 rbio_orig_end_io(rbio, err);
1999 } else if (err == BLK_STS_OK) {
2000 rbio->faila = -1;
2001 rbio->failb = -1;
2003 if (rbio->operation == BTRFS_RBIO_WRITE)
2004 finish_rmw(rbio);
2005 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
2006 finish_parity_scrub(rbio, 0);
2007 else
2008 BUG();
2009 } else {
2010 rbio_orig_end_io(rbio, err);
2015 * This is called only for stripes we've read from disk to
2016 * reconstruct the parity.
2018 static void raid_recover_end_io(struct bio *bio)
2020 struct btrfs_raid_bio *rbio = bio->bi_private;
2023 * we only read stripe pages off the disk, set them
2024 * up to date if there were no errors
2026 if (bio->bi_status)
2027 fail_bio_stripe(rbio, bio);
2028 else
2029 set_bio_pages_uptodate(bio);
2030 bio_put(bio);
2032 if (!atomic_dec_and_test(&rbio->stripes_pending))
2033 return;
2035 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2036 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2037 else
2038 __raid_recover_end_io(rbio);
2042 * reads everything we need off the disk to reconstruct
2043 * the parity. endio handlers trigger final reconstruction
2044 * when the IO is done.
2046 * This is used both for reads from the higher layers and for
2047 * parity construction required to finish a rmw cycle.
2049 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2051 int bios_to_read = 0;
2052 struct bio_list bio_list;
2053 int ret;
2054 int pagenr;
2055 int stripe;
2056 struct bio *bio;
2058 bio_list_init(&bio_list);
2060 ret = alloc_rbio_pages(rbio);
2061 if (ret)
2062 goto cleanup;
2064 atomic_set(&rbio->error, 0);
2067 * read everything that hasn't failed. Thanks to the
2068 * stripe cache, it is possible that some or all of these
2069 * pages are going to be uptodate.
2071 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2072 if (rbio->faila == stripe || rbio->failb == stripe) {
2073 atomic_inc(&rbio->error);
2074 continue;
2077 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2078 struct page *p;
2081 * the rmw code may have already read this
2082 * page in
2084 p = rbio_stripe_page(rbio, stripe, pagenr);
2085 if (PageUptodate(p))
2086 continue;
2088 ret = rbio_add_io_page(rbio, &bio_list,
2089 rbio_stripe_page(rbio, stripe, pagenr),
2090 stripe, pagenr, rbio->stripe_len);
2091 if (ret < 0)
2092 goto cleanup;
2096 bios_to_read = bio_list_size(&bio_list);
2097 if (!bios_to_read) {
2099 * we might have no bios to read just because the pages
2100 * were up to date, or we might have no bios to read because
2101 * the devices were gone.
2103 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2104 __raid_recover_end_io(rbio);
2105 goto out;
2106 } else {
2107 goto cleanup;
2112 * the bbio may be freed once we submit the last bio. Make sure
2113 * not to touch it after that
2115 atomic_set(&rbio->stripes_pending, bios_to_read);
2116 while (1) {
2117 bio = bio_list_pop(&bio_list);
2118 if (!bio)
2119 break;
2121 bio->bi_private = rbio;
2122 bio->bi_end_io = raid_recover_end_io;
2123 bio->bi_opf = REQ_OP_READ;
2125 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2127 submit_bio(bio);
2129 out:
2130 return 0;
2132 cleanup:
2133 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2134 rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2135 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2137 while ((bio = bio_list_pop(&bio_list)))
2138 bio_put(bio);
2140 return -EIO;
2144 * the main entry point for reads from the higher layers. This
2145 * is really only called when the normal read path had a failure,
2146 * so we assume the bio they send down corresponds to a failed part
2147 * of the drive.
2149 int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
2150 struct btrfs_bio *bbio, u64 stripe_len,
2151 int mirror_num, int generic_io)
2153 struct btrfs_raid_bio *rbio;
2154 int ret;
2156 if (generic_io) {
2157 ASSERT(bbio->mirror_num == mirror_num);
2158 btrfs_io_bio(bio)->mirror_num = mirror_num;
2161 rbio = alloc_rbio(fs_info, bbio, stripe_len);
2162 if (IS_ERR(rbio)) {
2163 if (generic_io)
2164 btrfs_put_bbio(bbio);
2165 return PTR_ERR(rbio);
2168 rbio->operation = BTRFS_RBIO_READ_REBUILD;
2169 bio_list_add(&rbio->bio_list, bio);
2170 rbio->bio_list_bytes = bio->bi_iter.bi_size;
2172 rbio->faila = find_logical_bio_stripe(rbio, bio);
2173 if (rbio->faila == -1) {
2174 btrfs_warn(fs_info,
2175 "%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2176 __func__, (u64)bio->bi_iter.bi_sector << 9,
2177 (u64)bio->bi_iter.bi_size, bbio->map_type);
2178 if (generic_io)
2179 btrfs_put_bbio(bbio);
2180 kfree(rbio);
2181 return -EIO;
2184 if (generic_io) {
2185 btrfs_bio_counter_inc_noblocked(fs_info);
2186 rbio->generic_bio_cnt = 1;
2187 } else {
2188 btrfs_get_bbio(bbio);
2192 * Loop retry:
2193 * for 'mirror == 2', reconstruct from all other stripes.
2194 * for 'mirror_num > 2', select a stripe to fail on every retry.
2196 if (mirror_num > 2) {
2198 * 'mirror == 3' is to fail the p stripe and
2199 * reconstruct from the q stripe. 'mirror > 3' is to
2200 * fail a data stripe and reconstruct from p+q stripe.
2202 rbio->failb = rbio->real_stripes - (mirror_num - 1);
2203 ASSERT(rbio->failb > 0);
2204 if (rbio->failb <= rbio->faila)
2205 rbio->failb--;
2208 ret = lock_stripe_add(rbio);
2211 * __raid56_parity_recover will end the bio with
2212 * any errors it hits. We don't want to return
2213 * its error value up the stack because our caller
2214 * will end up calling bio_endio with any nonzero
2215 * return
2217 if (ret == 0)
2218 __raid56_parity_recover(rbio);
2220 * our rbio has been added to the list of
2221 * rbios that will be handled after the
2222 * currently lock owner is done
2224 return 0;
2228 static void rmw_work(struct btrfs_work *work)
2230 struct btrfs_raid_bio *rbio;
2232 rbio = container_of(work, struct btrfs_raid_bio, work);
2233 raid56_rmw_stripe(rbio);
2236 static void read_rebuild_work(struct btrfs_work *work)
2238 struct btrfs_raid_bio *rbio;
2240 rbio = container_of(work, struct btrfs_raid_bio, work);
2241 __raid56_parity_recover(rbio);
2245 * The following code is used to scrub/replace the parity stripe
2247 * Caller must have already increased bio_counter for getting @bbio.
2249 * Note: We need make sure all the pages that add into the scrub/replace
2250 * raid bio are correct and not be changed during the scrub/replace. That
2251 * is those pages just hold metadata or file data with checksum.
2254 struct btrfs_raid_bio *
2255 raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2256 struct btrfs_bio *bbio, u64 stripe_len,
2257 struct btrfs_device *scrub_dev,
2258 unsigned long *dbitmap, int stripe_nsectors)
2260 struct btrfs_raid_bio *rbio;
2261 int i;
2263 rbio = alloc_rbio(fs_info, bbio, stripe_len);
2264 if (IS_ERR(rbio))
2265 return NULL;
2266 bio_list_add(&rbio->bio_list, bio);
2268 * This is a special bio which is used to hold the completion handler
2269 * and make the scrub rbio is similar to the other types
2271 ASSERT(!bio->bi_iter.bi_size);
2272 rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2275 * After mapping bbio with BTRFS_MAP_WRITE, parities have been sorted
2276 * to the end position, so this search can start from the first parity
2277 * stripe.
2279 for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2280 if (bbio->stripes[i].dev == scrub_dev) {
2281 rbio->scrubp = i;
2282 break;
2285 ASSERT(i < rbio->real_stripes);
2287 /* Now we just support the sectorsize equals to page size */
2288 ASSERT(fs_info->sectorsize == PAGE_SIZE);
2289 ASSERT(rbio->stripe_npages == stripe_nsectors);
2290 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2293 * We have already increased bio_counter when getting bbio, record it
2294 * so we can free it at rbio_orig_end_io().
2296 rbio->generic_bio_cnt = 1;
2298 return rbio;
2301 /* Used for both parity scrub and missing. */
2302 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2303 u64 logical)
2305 int stripe_offset;
2306 int index;
2308 ASSERT(logical >= rbio->bbio->raid_map[0]);
2309 ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2310 rbio->stripe_len * rbio->nr_data);
2311 stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2312 index = stripe_offset >> PAGE_SHIFT;
2313 rbio->bio_pages[index] = page;
2317 * We just scrub the parity that we have correct data on the same horizontal,
2318 * so we needn't allocate all pages for all the stripes.
2320 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2322 int i;
2323 int bit;
2324 int index;
2325 struct page *page;
2327 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2328 for (i = 0; i < rbio->real_stripes; i++) {
2329 index = i * rbio->stripe_npages + bit;
2330 if (rbio->stripe_pages[index])
2331 continue;
2333 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2334 if (!page)
2335 return -ENOMEM;
2336 rbio->stripe_pages[index] = page;
2339 return 0;
2342 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2343 int need_check)
2345 struct btrfs_bio *bbio = rbio->bbio;
2346 void **pointers = rbio->finish_pointers;
2347 unsigned long *pbitmap = rbio->finish_pbitmap;
2348 int nr_data = rbio->nr_data;
2349 int stripe;
2350 int pagenr;
2351 bool has_qstripe;
2352 struct page *p_page = NULL;
2353 struct page *q_page = NULL;
2354 struct bio_list bio_list;
2355 struct bio *bio;
2356 int is_replace = 0;
2357 int ret;
2359 bio_list_init(&bio_list);
2361 if (rbio->real_stripes - rbio->nr_data == 1)
2362 has_qstripe = false;
2363 else if (rbio->real_stripes - rbio->nr_data == 2)
2364 has_qstripe = true;
2365 else
2366 BUG();
2368 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2369 is_replace = 1;
2370 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2374 * Because the higher layers(scrubber) are unlikely to
2375 * use this area of the disk again soon, so don't cache
2376 * it.
2378 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2380 if (!need_check)
2381 goto writeback;
2383 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2384 if (!p_page)
2385 goto cleanup;
2386 SetPageUptodate(p_page);
2388 if (has_qstripe) {
2389 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2390 if (!q_page) {
2391 __free_page(p_page);
2392 goto cleanup;
2394 SetPageUptodate(q_page);
2397 atomic_set(&rbio->error, 0);
2399 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2400 struct page *p;
2401 void *parity;
2402 /* first collect one page from each data stripe */
2403 for (stripe = 0; stripe < nr_data; stripe++) {
2404 p = page_in_rbio(rbio, stripe, pagenr, 0);
2405 pointers[stripe] = kmap(p);
2408 /* then add the parity stripe */
2409 pointers[stripe++] = kmap(p_page);
2411 if (has_qstripe) {
2413 * raid6, add the qstripe and call the
2414 * library function to fill in our p/q
2416 pointers[stripe++] = kmap(q_page);
2418 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2419 pointers);
2420 } else {
2421 /* raid5 */
2422 copy_page(pointers[nr_data], pointers[0]);
2423 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2426 /* Check scrubbing parity and repair it */
2427 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2428 parity = kmap(p);
2429 if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2430 copy_page(parity, pointers[rbio->scrubp]);
2431 else
2432 /* Parity is right, needn't writeback */
2433 bitmap_clear(rbio->dbitmap, pagenr, 1);
2434 kunmap(p);
2436 for (stripe = 0; stripe < nr_data; stripe++)
2437 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2438 kunmap(p_page);
2441 __free_page(p_page);
2442 if (q_page)
2443 __free_page(q_page);
2445 writeback:
2447 * time to start writing. Make bios for everything from the
2448 * higher layers (the bio_list in our rbio) and our p/q. Ignore
2449 * everything else.
2451 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2452 struct page *page;
2454 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2455 ret = rbio_add_io_page(rbio, &bio_list,
2456 page, rbio->scrubp, pagenr, rbio->stripe_len);
2457 if (ret)
2458 goto cleanup;
2461 if (!is_replace)
2462 goto submit_write;
2464 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2465 struct page *page;
2467 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2468 ret = rbio_add_io_page(rbio, &bio_list, page,
2469 bbio->tgtdev_map[rbio->scrubp],
2470 pagenr, rbio->stripe_len);
2471 if (ret)
2472 goto cleanup;
2475 submit_write:
2476 nr_data = bio_list_size(&bio_list);
2477 if (!nr_data) {
2478 /* Every parity is right */
2479 rbio_orig_end_io(rbio, BLK_STS_OK);
2480 return;
2483 atomic_set(&rbio->stripes_pending, nr_data);
2485 while (1) {
2486 bio = bio_list_pop(&bio_list);
2487 if (!bio)
2488 break;
2490 bio->bi_private = rbio;
2491 bio->bi_end_io = raid_write_end_io;
2492 bio->bi_opf = REQ_OP_WRITE;
2494 submit_bio(bio);
2496 return;
2498 cleanup:
2499 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2501 while ((bio = bio_list_pop(&bio_list)))
2502 bio_put(bio);
2505 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2507 if (stripe >= 0 && stripe < rbio->nr_data)
2508 return 1;
2509 return 0;
2513 * While we're doing the parity check and repair, we could have errors
2514 * in reading pages off the disk. This checks for errors and if we're
2515 * not able to read the page it'll trigger parity reconstruction. The
2516 * parity scrub will be finished after we've reconstructed the failed
2517 * stripes
2519 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2521 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2522 goto cleanup;
2524 if (rbio->faila >= 0 || rbio->failb >= 0) {
2525 int dfail = 0, failp = -1;
2527 if (is_data_stripe(rbio, rbio->faila))
2528 dfail++;
2529 else if (is_parity_stripe(rbio->faila))
2530 failp = rbio->faila;
2532 if (is_data_stripe(rbio, rbio->failb))
2533 dfail++;
2534 else if (is_parity_stripe(rbio->failb))
2535 failp = rbio->failb;
2538 * Because we can not use a scrubbing parity to repair
2539 * the data, so the capability of the repair is declined.
2540 * (In the case of RAID5, we can not repair anything)
2542 if (dfail > rbio->bbio->max_errors - 1)
2543 goto cleanup;
2546 * If all data is good, only parity is correctly, just
2547 * repair the parity.
2549 if (dfail == 0) {
2550 finish_parity_scrub(rbio, 0);
2551 return;
2555 * Here means we got one corrupted data stripe and one
2556 * corrupted parity on RAID6, if the corrupted parity
2557 * is scrubbing parity, luckily, use the other one to repair
2558 * the data, or we can not repair the data stripe.
2560 if (failp != rbio->scrubp)
2561 goto cleanup;
2563 __raid_recover_end_io(rbio);
2564 } else {
2565 finish_parity_scrub(rbio, 1);
2567 return;
2569 cleanup:
2570 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2574 * end io for the read phase of the rmw cycle. All the bios here are physical
2575 * stripe bios we've read from the disk so we can recalculate the parity of the
2576 * stripe.
2578 * This will usually kick off finish_rmw once all the bios are read in, but it
2579 * may trigger parity reconstruction if we had any errors along the way
2581 static void raid56_parity_scrub_end_io(struct bio *bio)
2583 struct btrfs_raid_bio *rbio = bio->bi_private;
2585 if (bio->bi_status)
2586 fail_bio_stripe(rbio, bio);
2587 else
2588 set_bio_pages_uptodate(bio);
2590 bio_put(bio);
2592 if (!atomic_dec_and_test(&rbio->stripes_pending))
2593 return;
2596 * this will normally call finish_rmw to start our write
2597 * but if there are any failed stripes we'll reconstruct
2598 * from parity first
2600 validate_rbio_for_parity_scrub(rbio);
2603 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2605 int bios_to_read = 0;
2606 struct bio_list bio_list;
2607 int ret;
2608 int pagenr;
2609 int stripe;
2610 struct bio *bio;
2612 bio_list_init(&bio_list);
2614 ret = alloc_rbio_essential_pages(rbio);
2615 if (ret)
2616 goto cleanup;
2618 atomic_set(&rbio->error, 0);
2620 * build a list of bios to read all the missing parts of this
2621 * stripe
2623 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2624 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2625 struct page *page;
2627 * we want to find all the pages missing from
2628 * the rbio and read them from the disk. If
2629 * page_in_rbio finds a page in the bio list
2630 * we don't need to read it off the stripe.
2632 page = page_in_rbio(rbio, stripe, pagenr, 1);
2633 if (page)
2634 continue;
2636 page = rbio_stripe_page(rbio, stripe, pagenr);
2638 * the bio cache may have handed us an uptodate
2639 * page. If so, be happy and use it
2641 if (PageUptodate(page))
2642 continue;
2644 ret = rbio_add_io_page(rbio, &bio_list, page,
2645 stripe, pagenr, rbio->stripe_len);
2646 if (ret)
2647 goto cleanup;
2651 bios_to_read = bio_list_size(&bio_list);
2652 if (!bios_to_read) {
2654 * this can happen if others have merged with
2655 * us, it means there is nothing left to read.
2656 * But if there are missing devices it may not be
2657 * safe to do the full stripe write yet.
2659 goto finish;
2663 * the bbio may be freed once we submit the last bio. Make sure
2664 * not to touch it after that
2666 atomic_set(&rbio->stripes_pending, bios_to_read);
2667 while (1) {
2668 bio = bio_list_pop(&bio_list);
2669 if (!bio)
2670 break;
2672 bio->bi_private = rbio;
2673 bio->bi_end_io = raid56_parity_scrub_end_io;
2674 bio->bi_opf = REQ_OP_READ;
2676 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2678 submit_bio(bio);
2680 /* the actual write will happen once the reads are done */
2681 return;
2683 cleanup:
2684 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2686 while ((bio = bio_list_pop(&bio_list)))
2687 bio_put(bio);
2689 return;
2691 finish:
2692 validate_rbio_for_parity_scrub(rbio);
2695 static void scrub_parity_work(struct btrfs_work *work)
2697 struct btrfs_raid_bio *rbio;
2699 rbio = container_of(work, struct btrfs_raid_bio, work);
2700 raid56_parity_scrub_stripe(rbio);
2703 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2705 if (!lock_stripe_add(rbio))
2706 start_async_work(rbio, scrub_parity_work);
2709 /* The following code is used for dev replace of a missing RAID 5/6 device. */
2711 struct btrfs_raid_bio *
2712 raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2713 struct btrfs_bio *bbio, u64 length)
2715 struct btrfs_raid_bio *rbio;
2717 rbio = alloc_rbio(fs_info, bbio, length);
2718 if (IS_ERR(rbio))
2719 return NULL;
2721 rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2722 bio_list_add(&rbio->bio_list, bio);
2724 * This is a special bio which is used to hold the completion handler
2725 * and make the scrub rbio is similar to the other types
2727 ASSERT(!bio->bi_iter.bi_size);
2729 rbio->faila = find_logical_bio_stripe(rbio, bio);
2730 if (rbio->faila == -1) {
2731 BUG();
2732 kfree(rbio);
2733 return NULL;
2737 * When we get bbio, we have already increased bio_counter, record it
2738 * so we can free it at rbio_orig_end_io()
2740 rbio->generic_bio_cnt = 1;
2742 return rbio;
2745 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2747 if (!lock_stripe_add(rbio))
2748 start_async_work(rbio, read_rebuild_work);