1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include <crypto/hash.h>
14 #include "ordered-data.h"
15 #include "transaction.h"
17 #include "extent_io.h"
18 #include "dev-replace.h"
19 #include "check-integrity.h"
20 #include "rcu-string.h"
22 #include "block-group.h"
25 * This is only the first step towards a full-features scrub. It reads all
26 * extent and super block and verifies the checksums. In case a bad checksum
27 * is found or the extent cannot be read, good data will be written back if
30 * Future enhancements:
31 * - In case an unrepairable extent is encountered, track which files are
32 * affected and report them
33 * - track and record media errors, throw out bad devices
34 * - add a mode to also read unallocated space
41 * the following three values only influence the performance.
42 * The last one configures the number of parallel and outstanding I/O
43 * operations. The first two values configure an upper limit for the number
44 * of (dynamically allocated) pages that are added to a bio.
46 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
47 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
48 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
51 * the following value times PAGE_SIZE needs to be large enough to match the
52 * largest node/leaf/sector size that shall be supported.
53 * Values larger than BTRFS_STRIPE_LEN are not supported.
55 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
57 struct scrub_recover
{
59 struct btrfs_bio
*bbio
;
64 struct scrub_block
*sblock
;
66 struct btrfs_device
*dev
;
67 struct list_head list
;
68 u64 flags
; /* extent flags */
72 u64 physical_for_dev_replace
;
75 unsigned int mirror_num
:8;
76 unsigned int have_csum
:1;
77 unsigned int io_error
:1;
79 u8 csum
[BTRFS_CSUM_SIZE
];
81 struct scrub_recover
*recover
;
86 struct scrub_ctx
*sctx
;
87 struct btrfs_device
*dev
;
92 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
93 struct scrub_page
*pagev
[SCRUB_PAGES_PER_WR_BIO
];
95 struct scrub_page
*pagev
[SCRUB_PAGES_PER_RD_BIO
];
99 struct btrfs_work work
;
103 struct scrub_page
*pagev
[SCRUB_MAX_PAGES_PER_BLOCK
];
105 atomic_t outstanding_pages
;
106 refcount_t refs
; /* free mem on transition to zero */
107 struct scrub_ctx
*sctx
;
108 struct scrub_parity
*sparity
;
110 unsigned int header_error
:1;
111 unsigned int checksum_error
:1;
112 unsigned int no_io_error_seen
:1;
113 unsigned int generation_error
:1; /* also sets header_error */
115 /* The following is for the data used to check parity */
116 /* It is for the data with checksum */
117 unsigned int data_corrected
:1;
119 struct btrfs_work work
;
122 /* Used for the chunks with parity stripe such RAID5/6 */
123 struct scrub_parity
{
124 struct scrub_ctx
*sctx
;
126 struct btrfs_device
*scrub_dev
;
138 struct list_head spages
;
140 /* Work of parity check and repair */
141 struct btrfs_work work
;
143 /* Mark the parity blocks which have data */
144 unsigned long *dbitmap
;
147 * Mark the parity blocks which have data, but errors happen when
148 * read data or check data
150 unsigned long *ebitmap
;
152 unsigned long bitmap
[];
156 struct scrub_bio
*bios
[SCRUB_BIOS_PER_SCTX
];
157 struct btrfs_fs_info
*fs_info
;
160 atomic_t bios_in_flight
;
161 atomic_t workers_pending
;
162 spinlock_t list_lock
;
163 wait_queue_head_t list_wait
;
165 struct list_head csum_list
;
168 int pages_per_rd_bio
;
172 struct scrub_bio
*wr_curr_bio
;
173 struct mutex wr_lock
;
174 int pages_per_wr_bio
; /* <= SCRUB_PAGES_PER_WR_BIO */
175 struct btrfs_device
*wr_tgtdev
;
176 bool flush_all_writes
;
181 struct btrfs_scrub_progress stat
;
182 spinlock_t stat_lock
;
185 * Use a ref counter to avoid use-after-free issues. Scrub workers
186 * decrement bios_in_flight and workers_pending and then do a wakeup
187 * on the list_wait wait queue. We must ensure the main scrub task
188 * doesn't free the scrub context before or while the workers are
189 * doing the wakeup() call.
194 struct scrub_warning
{
195 struct btrfs_path
*path
;
196 u64 extent_item_size
;
200 struct btrfs_device
*dev
;
203 struct full_stripe_lock
{
210 static void scrub_pending_bio_inc(struct scrub_ctx
*sctx
);
211 static void scrub_pending_bio_dec(struct scrub_ctx
*sctx
);
212 static int scrub_handle_errored_block(struct scrub_block
*sblock_to_check
);
213 static int scrub_setup_recheck_block(struct scrub_block
*original_sblock
,
214 struct scrub_block
*sblocks_for_recheck
);
215 static void scrub_recheck_block(struct btrfs_fs_info
*fs_info
,
216 struct scrub_block
*sblock
,
217 int retry_failed_mirror
);
218 static void scrub_recheck_block_checksum(struct scrub_block
*sblock
);
219 static int scrub_repair_block_from_good_copy(struct scrub_block
*sblock_bad
,
220 struct scrub_block
*sblock_good
);
221 static int scrub_repair_page_from_good_copy(struct scrub_block
*sblock_bad
,
222 struct scrub_block
*sblock_good
,
223 int page_num
, int force_write
);
224 static void scrub_write_block_to_dev_replace(struct scrub_block
*sblock
);
225 static int scrub_write_page_to_dev_replace(struct scrub_block
*sblock
,
227 static int scrub_checksum_data(struct scrub_block
*sblock
);
228 static int scrub_checksum_tree_block(struct scrub_block
*sblock
);
229 static int scrub_checksum_super(struct scrub_block
*sblock
);
230 static void scrub_block_get(struct scrub_block
*sblock
);
231 static void scrub_block_put(struct scrub_block
*sblock
);
232 static void scrub_page_get(struct scrub_page
*spage
);
233 static void scrub_page_put(struct scrub_page
*spage
);
234 static void scrub_parity_get(struct scrub_parity
*sparity
);
235 static void scrub_parity_put(struct scrub_parity
*sparity
);
236 static int scrub_add_page_to_rd_bio(struct scrub_ctx
*sctx
,
237 struct scrub_page
*spage
);
238 static int scrub_pages(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
239 u64 physical
, struct btrfs_device
*dev
, u64 flags
,
240 u64 gen
, int mirror_num
, u8
*csum
, int force
,
241 u64 physical_for_dev_replace
);
242 static void scrub_bio_end_io(struct bio
*bio
);
243 static void scrub_bio_end_io_worker(struct btrfs_work
*work
);
244 static void scrub_block_complete(struct scrub_block
*sblock
);
245 static void scrub_remap_extent(struct btrfs_fs_info
*fs_info
,
246 u64 extent_logical
, u64 extent_len
,
247 u64
*extent_physical
,
248 struct btrfs_device
**extent_dev
,
249 int *extent_mirror_num
);
250 static int scrub_add_page_to_wr_bio(struct scrub_ctx
*sctx
,
251 struct scrub_page
*spage
);
252 static void scrub_wr_submit(struct scrub_ctx
*sctx
);
253 static void scrub_wr_bio_end_io(struct bio
*bio
);
254 static void scrub_wr_bio_end_io_worker(struct btrfs_work
*work
);
255 static void __scrub_blocked_if_needed(struct btrfs_fs_info
*fs_info
);
256 static void scrub_blocked_if_needed(struct btrfs_fs_info
*fs_info
);
257 static void scrub_put_ctx(struct scrub_ctx
*sctx
);
259 static inline int scrub_is_page_on_raid56(struct scrub_page
*page
)
261 return page
->recover
&&
262 (page
->recover
->bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID56_MASK
);
265 static void scrub_pending_bio_inc(struct scrub_ctx
*sctx
)
267 refcount_inc(&sctx
->refs
);
268 atomic_inc(&sctx
->bios_in_flight
);
271 static void scrub_pending_bio_dec(struct scrub_ctx
*sctx
)
273 atomic_dec(&sctx
->bios_in_flight
);
274 wake_up(&sctx
->list_wait
);
278 static void __scrub_blocked_if_needed(struct btrfs_fs_info
*fs_info
)
280 while (atomic_read(&fs_info
->scrub_pause_req
)) {
281 mutex_unlock(&fs_info
->scrub_lock
);
282 wait_event(fs_info
->scrub_pause_wait
,
283 atomic_read(&fs_info
->scrub_pause_req
) == 0);
284 mutex_lock(&fs_info
->scrub_lock
);
288 static void scrub_pause_on(struct btrfs_fs_info
*fs_info
)
290 atomic_inc(&fs_info
->scrubs_paused
);
291 wake_up(&fs_info
->scrub_pause_wait
);
294 static void scrub_pause_off(struct btrfs_fs_info
*fs_info
)
296 mutex_lock(&fs_info
->scrub_lock
);
297 __scrub_blocked_if_needed(fs_info
);
298 atomic_dec(&fs_info
->scrubs_paused
);
299 mutex_unlock(&fs_info
->scrub_lock
);
301 wake_up(&fs_info
->scrub_pause_wait
);
304 static void scrub_blocked_if_needed(struct btrfs_fs_info
*fs_info
)
306 scrub_pause_on(fs_info
);
307 scrub_pause_off(fs_info
);
311 * Insert new full stripe lock into full stripe locks tree
313 * Return pointer to existing or newly inserted full_stripe_lock structure if
314 * everything works well.
315 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
317 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
320 static struct full_stripe_lock
*insert_full_stripe_lock(
321 struct btrfs_full_stripe_locks_tree
*locks_root
,
325 struct rb_node
*parent
= NULL
;
326 struct full_stripe_lock
*entry
;
327 struct full_stripe_lock
*ret
;
329 lockdep_assert_held(&locks_root
->lock
);
331 p
= &locks_root
->root
.rb_node
;
334 entry
= rb_entry(parent
, struct full_stripe_lock
, node
);
335 if (fstripe_logical
< entry
->logical
) {
337 } else if (fstripe_logical
> entry
->logical
) {
348 ret
= kmalloc(sizeof(*ret
), GFP_KERNEL
);
350 return ERR_PTR(-ENOMEM
);
351 ret
->logical
= fstripe_logical
;
353 mutex_init(&ret
->mutex
);
355 rb_link_node(&ret
->node
, parent
, p
);
356 rb_insert_color(&ret
->node
, &locks_root
->root
);
361 * Search for a full stripe lock of a block group
363 * Return pointer to existing full stripe lock if found
364 * Return NULL if not found
366 static struct full_stripe_lock
*search_full_stripe_lock(
367 struct btrfs_full_stripe_locks_tree
*locks_root
,
370 struct rb_node
*node
;
371 struct full_stripe_lock
*entry
;
373 lockdep_assert_held(&locks_root
->lock
);
375 node
= locks_root
->root
.rb_node
;
377 entry
= rb_entry(node
, struct full_stripe_lock
, node
);
378 if (fstripe_logical
< entry
->logical
)
379 node
= node
->rb_left
;
380 else if (fstripe_logical
> entry
->logical
)
381 node
= node
->rb_right
;
389 * Helper to get full stripe logical from a normal bytenr.
391 * Caller must ensure @cache is a RAID56 block group.
393 static u64
get_full_stripe_logical(struct btrfs_block_group
*cache
, u64 bytenr
)
398 * Due to chunk item size limit, full stripe length should not be
399 * larger than U32_MAX. Just a sanity check here.
401 WARN_ON_ONCE(cache
->full_stripe_len
>= U32_MAX
);
404 * round_down() can only handle power of 2, while RAID56 full
405 * stripe length can be 64KiB * n, so we need to manually round down.
407 ret
= div64_u64(bytenr
- cache
->start
, cache
->full_stripe_len
) *
408 cache
->full_stripe_len
+ cache
->start
;
413 * Lock a full stripe to avoid concurrency of recovery and read
415 * It's only used for profiles with parities (RAID5/6), for other profiles it
418 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
419 * So caller must call unlock_full_stripe() at the same context.
421 * Return <0 if encounters error.
423 static int lock_full_stripe(struct btrfs_fs_info
*fs_info
, u64 bytenr
,
426 struct btrfs_block_group
*bg_cache
;
427 struct btrfs_full_stripe_locks_tree
*locks_root
;
428 struct full_stripe_lock
*existing
;
433 bg_cache
= btrfs_lookup_block_group(fs_info
, bytenr
);
439 /* Profiles not based on parity don't need full stripe lock */
440 if (!(bg_cache
->flags
& BTRFS_BLOCK_GROUP_RAID56_MASK
))
442 locks_root
= &bg_cache
->full_stripe_locks_root
;
444 fstripe_start
= get_full_stripe_logical(bg_cache
, bytenr
);
446 /* Now insert the full stripe lock */
447 mutex_lock(&locks_root
->lock
);
448 existing
= insert_full_stripe_lock(locks_root
, fstripe_start
);
449 mutex_unlock(&locks_root
->lock
);
450 if (IS_ERR(existing
)) {
451 ret
= PTR_ERR(existing
);
454 mutex_lock(&existing
->mutex
);
457 btrfs_put_block_group(bg_cache
);
462 * Unlock a full stripe.
464 * NOTE: Caller must ensure it's the same context calling corresponding
465 * lock_full_stripe().
467 * Return 0 if we unlock full stripe without problem.
468 * Return <0 for error
470 static int unlock_full_stripe(struct btrfs_fs_info
*fs_info
, u64 bytenr
,
473 struct btrfs_block_group
*bg_cache
;
474 struct btrfs_full_stripe_locks_tree
*locks_root
;
475 struct full_stripe_lock
*fstripe_lock
;
480 /* If we didn't acquire full stripe lock, no need to continue */
484 bg_cache
= btrfs_lookup_block_group(fs_info
, bytenr
);
489 if (!(bg_cache
->flags
& BTRFS_BLOCK_GROUP_RAID56_MASK
))
492 locks_root
= &bg_cache
->full_stripe_locks_root
;
493 fstripe_start
= get_full_stripe_logical(bg_cache
, bytenr
);
495 mutex_lock(&locks_root
->lock
);
496 fstripe_lock
= search_full_stripe_lock(locks_root
, fstripe_start
);
497 /* Unpaired unlock_full_stripe() detected */
501 mutex_unlock(&locks_root
->lock
);
505 if (fstripe_lock
->refs
== 0) {
507 btrfs_warn(fs_info
, "full stripe lock at %llu refcount underflow",
508 fstripe_lock
->logical
);
510 fstripe_lock
->refs
--;
513 if (fstripe_lock
->refs
== 0) {
514 rb_erase(&fstripe_lock
->node
, &locks_root
->root
);
517 mutex_unlock(&locks_root
->lock
);
519 mutex_unlock(&fstripe_lock
->mutex
);
523 btrfs_put_block_group(bg_cache
);
527 static void scrub_free_csums(struct scrub_ctx
*sctx
)
529 while (!list_empty(&sctx
->csum_list
)) {
530 struct btrfs_ordered_sum
*sum
;
531 sum
= list_first_entry(&sctx
->csum_list
,
532 struct btrfs_ordered_sum
, list
);
533 list_del(&sum
->list
);
538 static noinline_for_stack
void scrub_free_ctx(struct scrub_ctx
*sctx
)
545 /* this can happen when scrub is cancelled */
546 if (sctx
->curr
!= -1) {
547 struct scrub_bio
*sbio
= sctx
->bios
[sctx
->curr
];
549 for (i
= 0; i
< sbio
->page_count
; i
++) {
550 WARN_ON(!sbio
->pagev
[i
]->page
);
551 scrub_block_put(sbio
->pagev
[i
]->sblock
);
556 for (i
= 0; i
< SCRUB_BIOS_PER_SCTX
; ++i
) {
557 struct scrub_bio
*sbio
= sctx
->bios
[i
];
564 kfree(sctx
->wr_curr_bio
);
565 scrub_free_csums(sctx
);
569 static void scrub_put_ctx(struct scrub_ctx
*sctx
)
571 if (refcount_dec_and_test(&sctx
->refs
))
572 scrub_free_ctx(sctx
);
575 static noinline_for_stack
struct scrub_ctx
*scrub_setup_ctx(
576 struct btrfs_fs_info
*fs_info
, int is_dev_replace
)
578 struct scrub_ctx
*sctx
;
581 sctx
= kzalloc(sizeof(*sctx
), GFP_KERNEL
);
584 refcount_set(&sctx
->refs
, 1);
585 sctx
->is_dev_replace
= is_dev_replace
;
586 sctx
->pages_per_rd_bio
= SCRUB_PAGES_PER_RD_BIO
;
588 sctx
->fs_info
= fs_info
;
589 INIT_LIST_HEAD(&sctx
->csum_list
);
590 for (i
= 0; i
< SCRUB_BIOS_PER_SCTX
; ++i
) {
591 struct scrub_bio
*sbio
;
593 sbio
= kzalloc(sizeof(*sbio
), GFP_KERNEL
);
596 sctx
->bios
[i
] = sbio
;
600 sbio
->page_count
= 0;
601 btrfs_init_work(&sbio
->work
, scrub_bio_end_io_worker
, NULL
,
604 if (i
!= SCRUB_BIOS_PER_SCTX
- 1)
605 sctx
->bios
[i
]->next_free
= i
+ 1;
607 sctx
->bios
[i
]->next_free
= -1;
609 sctx
->first_free
= 0;
610 atomic_set(&sctx
->bios_in_flight
, 0);
611 atomic_set(&sctx
->workers_pending
, 0);
612 atomic_set(&sctx
->cancel_req
, 0);
613 sctx
->csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
615 spin_lock_init(&sctx
->list_lock
);
616 spin_lock_init(&sctx
->stat_lock
);
617 init_waitqueue_head(&sctx
->list_wait
);
619 WARN_ON(sctx
->wr_curr_bio
!= NULL
);
620 mutex_init(&sctx
->wr_lock
);
621 sctx
->wr_curr_bio
= NULL
;
622 if (is_dev_replace
) {
623 WARN_ON(!fs_info
->dev_replace
.tgtdev
);
624 sctx
->pages_per_wr_bio
= SCRUB_PAGES_PER_WR_BIO
;
625 sctx
->wr_tgtdev
= fs_info
->dev_replace
.tgtdev
;
626 sctx
->flush_all_writes
= false;
632 scrub_free_ctx(sctx
);
633 return ERR_PTR(-ENOMEM
);
636 static int scrub_print_warning_inode(u64 inum
, u64 offset
, u64 root
,
644 struct extent_buffer
*eb
;
645 struct btrfs_inode_item
*inode_item
;
646 struct scrub_warning
*swarn
= warn_ctx
;
647 struct btrfs_fs_info
*fs_info
= swarn
->dev
->fs_info
;
648 struct inode_fs_paths
*ipath
= NULL
;
649 struct btrfs_root
*local_root
;
650 struct btrfs_key root_key
;
651 struct btrfs_key key
;
653 root_key
.objectid
= root
;
654 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
655 root_key
.offset
= (u64
)-1;
656 local_root
= btrfs_get_fs_root(fs_info
, &root_key
, true);
657 if (IS_ERR(local_root
)) {
658 ret
= PTR_ERR(local_root
);
663 * this makes the path point to (inum INODE_ITEM ioff)
666 key
.type
= BTRFS_INODE_ITEM_KEY
;
669 ret
= btrfs_search_slot(NULL
, local_root
, &key
, swarn
->path
, 0, 0);
671 btrfs_put_root(local_root
);
672 btrfs_release_path(swarn
->path
);
676 eb
= swarn
->path
->nodes
[0];
677 inode_item
= btrfs_item_ptr(eb
, swarn
->path
->slots
[0],
678 struct btrfs_inode_item
);
679 isize
= btrfs_inode_size(eb
, inode_item
);
680 nlink
= btrfs_inode_nlink(eb
, inode_item
);
681 btrfs_release_path(swarn
->path
);
684 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
685 * uses GFP_NOFS in this context, so we keep it consistent but it does
686 * not seem to be strictly necessary.
688 nofs_flag
= memalloc_nofs_save();
689 ipath
= init_ipath(4096, local_root
, swarn
->path
);
690 memalloc_nofs_restore(nofs_flag
);
692 btrfs_put_root(local_root
);
693 ret
= PTR_ERR(ipath
);
697 ret
= paths_from_inode(inum
, ipath
);
703 * we deliberately ignore the bit ipath might have been too small to
704 * hold all of the paths here
706 for (i
= 0; i
< ipath
->fspath
->elem_cnt
; ++i
)
707 btrfs_warn_in_rcu(fs_info
,
708 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
709 swarn
->errstr
, swarn
->logical
,
710 rcu_str_deref(swarn
->dev
->name
),
713 min(isize
- offset
, (u64
)PAGE_SIZE
), nlink
,
714 (char *)(unsigned long)ipath
->fspath
->val
[i
]);
716 btrfs_put_root(local_root
);
721 btrfs_warn_in_rcu(fs_info
,
722 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
723 swarn
->errstr
, swarn
->logical
,
724 rcu_str_deref(swarn
->dev
->name
),
726 root
, inum
, offset
, ret
);
732 static void scrub_print_warning(const char *errstr
, struct scrub_block
*sblock
)
734 struct btrfs_device
*dev
;
735 struct btrfs_fs_info
*fs_info
;
736 struct btrfs_path
*path
;
737 struct btrfs_key found_key
;
738 struct extent_buffer
*eb
;
739 struct btrfs_extent_item
*ei
;
740 struct scrub_warning swarn
;
741 unsigned long ptr
= 0;
749 WARN_ON(sblock
->page_count
< 1);
750 dev
= sblock
->pagev
[0]->dev
;
751 fs_info
= sblock
->sctx
->fs_info
;
753 path
= btrfs_alloc_path();
757 swarn
.physical
= sblock
->pagev
[0]->physical
;
758 swarn
.logical
= sblock
->pagev
[0]->logical
;
759 swarn
.errstr
= errstr
;
762 ret
= extent_from_logical(fs_info
, swarn
.logical
, path
, &found_key
,
767 extent_item_pos
= swarn
.logical
- found_key
.objectid
;
768 swarn
.extent_item_size
= found_key
.offset
;
771 ei
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_extent_item
);
772 item_size
= btrfs_item_size_nr(eb
, path
->slots
[0]);
774 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
776 ret
= tree_backref_for_extent(&ptr
, eb
, &found_key
, ei
,
777 item_size
, &ref_root
,
779 btrfs_warn_in_rcu(fs_info
,
780 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
781 errstr
, swarn
.logical
,
782 rcu_str_deref(dev
->name
),
784 ref_level
? "node" : "leaf",
785 ret
< 0 ? -1 : ref_level
,
786 ret
< 0 ? -1 : ref_root
);
788 btrfs_release_path(path
);
790 btrfs_release_path(path
);
793 iterate_extent_inodes(fs_info
, found_key
.objectid
,
795 scrub_print_warning_inode
, &swarn
, false);
799 btrfs_free_path(path
);
802 static inline void scrub_get_recover(struct scrub_recover
*recover
)
804 refcount_inc(&recover
->refs
);
807 static inline void scrub_put_recover(struct btrfs_fs_info
*fs_info
,
808 struct scrub_recover
*recover
)
810 if (refcount_dec_and_test(&recover
->refs
)) {
811 btrfs_bio_counter_dec(fs_info
);
812 btrfs_put_bbio(recover
->bbio
);
818 * scrub_handle_errored_block gets called when either verification of the
819 * pages failed or the bio failed to read, e.g. with EIO. In the latter
820 * case, this function handles all pages in the bio, even though only one
822 * The goal of this function is to repair the errored block by using the
823 * contents of one of the mirrors.
825 static int scrub_handle_errored_block(struct scrub_block
*sblock_to_check
)
827 struct scrub_ctx
*sctx
= sblock_to_check
->sctx
;
828 struct btrfs_device
*dev
;
829 struct btrfs_fs_info
*fs_info
;
831 unsigned int failed_mirror_index
;
832 unsigned int is_metadata
;
833 unsigned int have_csum
;
834 struct scrub_block
*sblocks_for_recheck
; /* holds one for each mirror */
835 struct scrub_block
*sblock_bad
;
840 bool full_stripe_locked
;
841 unsigned int nofs_flag
;
842 static DEFINE_RATELIMIT_STATE(_rs
, DEFAULT_RATELIMIT_INTERVAL
,
843 DEFAULT_RATELIMIT_BURST
);
845 BUG_ON(sblock_to_check
->page_count
< 1);
846 fs_info
= sctx
->fs_info
;
847 if (sblock_to_check
->pagev
[0]->flags
& BTRFS_EXTENT_FLAG_SUPER
) {
849 * if we find an error in a super block, we just report it.
850 * They will get written with the next transaction commit
853 spin_lock(&sctx
->stat_lock
);
854 ++sctx
->stat
.super_errors
;
855 spin_unlock(&sctx
->stat_lock
);
858 logical
= sblock_to_check
->pagev
[0]->logical
;
859 BUG_ON(sblock_to_check
->pagev
[0]->mirror_num
< 1);
860 failed_mirror_index
= sblock_to_check
->pagev
[0]->mirror_num
- 1;
861 is_metadata
= !(sblock_to_check
->pagev
[0]->flags
&
862 BTRFS_EXTENT_FLAG_DATA
);
863 have_csum
= sblock_to_check
->pagev
[0]->have_csum
;
864 dev
= sblock_to_check
->pagev
[0]->dev
;
867 * We must use GFP_NOFS because the scrub task might be waiting for a
868 * worker task executing this function and in turn a transaction commit
869 * might be waiting the scrub task to pause (which needs to wait for all
870 * the worker tasks to complete before pausing).
871 * We do allocations in the workers through insert_full_stripe_lock()
872 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
875 nofs_flag
= memalloc_nofs_save();
877 * For RAID5/6, race can happen for a different device scrub thread.
878 * For data corruption, Parity and Data threads will both try
879 * to recovery the data.
880 * Race can lead to doubly added csum error, or even unrecoverable
883 ret
= lock_full_stripe(fs_info
, logical
, &full_stripe_locked
);
885 memalloc_nofs_restore(nofs_flag
);
886 spin_lock(&sctx
->stat_lock
);
888 sctx
->stat
.malloc_errors
++;
889 sctx
->stat
.read_errors
++;
890 sctx
->stat
.uncorrectable_errors
++;
891 spin_unlock(&sctx
->stat_lock
);
896 * read all mirrors one after the other. This includes to
897 * re-read the extent or metadata block that failed (that was
898 * the cause that this fixup code is called) another time,
899 * page by page this time in order to know which pages
900 * caused I/O errors and which ones are good (for all mirrors).
901 * It is the goal to handle the situation when more than one
902 * mirror contains I/O errors, but the errors do not
903 * overlap, i.e. the data can be repaired by selecting the
904 * pages from those mirrors without I/O error on the
905 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
906 * would be that mirror #1 has an I/O error on the first page,
907 * the second page is good, and mirror #2 has an I/O error on
908 * the second page, but the first page is good.
909 * Then the first page of the first mirror can be repaired by
910 * taking the first page of the second mirror, and the
911 * second page of the second mirror can be repaired by
912 * copying the contents of the 2nd page of the 1st mirror.
913 * One more note: if the pages of one mirror contain I/O
914 * errors, the checksum cannot be verified. In order to get
915 * the best data for repairing, the first attempt is to find
916 * a mirror without I/O errors and with a validated checksum.
917 * Only if this is not possible, the pages are picked from
918 * mirrors with I/O errors without considering the checksum.
919 * If the latter is the case, at the end, the checksum of the
920 * repaired area is verified in order to correctly maintain
924 sblocks_for_recheck
= kcalloc(BTRFS_MAX_MIRRORS
,
925 sizeof(*sblocks_for_recheck
), GFP_KERNEL
);
926 if (!sblocks_for_recheck
) {
927 spin_lock(&sctx
->stat_lock
);
928 sctx
->stat
.malloc_errors
++;
929 sctx
->stat
.read_errors
++;
930 sctx
->stat
.uncorrectable_errors
++;
931 spin_unlock(&sctx
->stat_lock
);
932 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_READ_ERRS
);
936 /* setup the context, map the logical blocks and alloc the pages */
937 ret
= scrub_setup_recheck_block(sblock_to_check
, sblocks_for_recheck
);
939 spin_lock(&sctx
->stat_lock
);
940 sctx
->stat
.read_errors
++;
941 sctx
->stat
.uncorrectable_errors
++;
942 spin_unlock(&sctx
->stat_lock
);
943 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_READ_ERRS
);
946 BUG_ON(failed_mirror_index
>= BTRFS_MAX_MIRRORS
);
947 sblock_bad
= sblocks_for_recheck
+ failed_mirror_index
;
949 /* build and submit the bios for the failed mirror, check checksums */
950 scrub_recheck_block(fs_info
, sblock_bad
, 1);
952 if (!sblock_bad
->header_error
&& !sblock_bad
->checksum_error
&&
953 sblock_bad
->no_io_error_seen
) {
955 * the error disappeared after reading page by page, or
956 * the area was part of a huge bio and other parts of the
957 * bio caused I/O errors, or the block layer merged several
958 * read requests into one and the error is caused by a
959 * different bio (usually one of the two latter cases is
962 spin_lock(&sctx
->stat_lock
);
963 sctx
->stat
.unverified_errors
++;
964 sblock_to_check
->data_corrected
= 1;
965 spin_unlock(&sctx
->stat_lock
);
967 if (sctx
->is_dev_replace
)
968 scrub_write_block_to_dev_replace(sblock_bad
);
972 if (!sblock_bad
->no_io_error_seen
) {
973 spin_lock(&sctx
->stat_lock
);
974 sctx
->stat
.read_errors
++;
975 spin_unlock(&sctx
->stat_lock
);
976 if (__ratelimit(&_rs
))
977 scrub_print_warning("i/o error", sblock_to_check
);
978 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_READ_ERRS
);
979 } else if (sblock_bad
->checksum_error
) {
980 spin_lock(&sctx
->stat_lock
);
981 sctx
->stat
.csum_errors
++;
982 spin_unlock(&sctx
->stat_lock
);
983 if (__ratelimit(&_rs
))
984 scrub_print_warning("checksum error", sblock_to_check
);
985 btrfs_dev_stat_inc_and_print(dev
,
986 BTRFS_DEV_STAT_CORRUPTION_ERRS
);
987 } else if (sblock_bad
->header_error
) {
988 spin_lock(&sctx
->stat_lock
);
989 sctx
->stat
.verify_errors
++;
990 spin_unlock(&sctx
->stat_lock
);
991 if (__ratelimit(&_rs
))
992 scrub_print_warning("checksum/header error",
994 if (sblock_bad
->generation_error
)
995 btrfs_dev_stat_inc_and_print(dev
,
996 BTRFS_DEV_STAT_GENERATION_ERRS
);
998 btrfs_dev_stat_inc_and_print(dev
,
999 BTRFS_DEV_STAT_CORRUPTION_ERRS
);
1002 if (sctx
->readonly
) {
1003 ASSERT(!sctx
->is_dev_replace
);
1008 * now build and submit the bios for the other mirrors, check
1010 * First try to pick the mirror which is completely without I/O
1011 * errors and also does not have a checksum error.
1012 * If one is found, and if a checksum is present, the full block
1013 * that is known to contain an error is rewritten. Afterwards
1014 * the block is known to be corrected.
1015 * If a mirror is found which is completely correct, and no
1016 * checksum is present, only those pages are rewritten that had
1017 * an I/O error in the block to be repaired, since it cannot be
1018 * determined, which copy of the other pages is better (and it
1019 * could happen otherwise that a correct page would be
1020 * overwritten by a bad one).
1022 for (mirror_index
= 0; ;mirror_index
++) {
1023 struct scrub_block
*sblock_other
;
1025 if (mirror_index
== failed_mirror_index
)
1028 /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1029 if (!scrub_is_page_on_raid56(sblock_bad
->pagev
[0])) {
1030 if (mirror_index
>= BTRFS_MAX_MIRRORS
)
1032 if (!sblocks_for_recheck
[mirror_index
].page_count
)
1035 sblock_other
= sblocks_for_recheck
+ mirror_index
;
1037 struct scrub_recover
*r
= sblock_bad
->pagev
[0]->recover
;
1038 int max_allowed
= r
->bbio
->num_stripes
-
1039 r
->bbio
->num_tgtdevs
;
1041 if (mirror_index
>= max_allowed
)
1043 if (!sblocks_for_recheck
[1].page_count
)
1046 ASSERT(failed_mirror_index
== 0);
1047 sblock_other
= sblocks_for_recheck
+ 1;
1048 sblock_other
->pagev
[0]->mirror_num
= 1 + mirror_index
;
1051 /* build and submit the bios, check checksums */
1052 scrub_recheck_block(fs_info
, sblock_other
, 0);
1054 if (!sblock_other
->header_error
&&
1055 !sblock_other
->checksum_error
&&
1056 sblock_other
->no_io_error_seen
) {
1057 if (sctx
->is_dev_replace
) {
1058 scrub_write_block_to_dev_replace(sblock_other
);
1059 goto corrected_error
;
1061 ret
= scrub_repair_block_from_good_copy(
1062 sblock_bad
, sblock_other
);
1064 goto corrected_error
;
1069 if (sblock_bad
->no_io_error_seen
&& !sctx
->is_dev_replace
)
1070 goto did_not_correct_error
;
1073 * In case of I/O errors in the area that is supposed to be
1074 * repaired, continue by picking good copies of those pages.
1075 * Select the good pages from mirrors to rewrite bad pages from
1076 * the area to fix. Afterwards verify the checksum of the block
1077 * that is supposed to be repaired. This verification step is
1078 * only done for the purpose of statistic counting and for the
1079 * final scrub report, whether errors remain.
1080 * A perfect algorithm could make use of the checksum and try
1081 * all possible combinations of pages from the different mirrors
1082 * until the checksum verification succeeds. For example, when
1083 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1084 * of mirror #2 is readable but the final checksum test fails,
1085 * then the 2nd page of mirror #3 could be tried, whether now
1086 * the final checksum succeeds. But this would be a rare
1087 * exception and is therefore not implemented. At least it is
1088 * avoided that the good copy is overwritten.
1089 * A more useful improvement would be to pick the sectors
1090 * without I/O error based on sector sizes (512 bytes on legacy
1091 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1092 * mirror could be repaired by taking 512 byte of a different
1093 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1094 * area are unreadable.
1097 for (page_num
= 0; page_num
< sblock_bad
->page_count
;
1099 struct scrub_page
*page_bad
= sblock_bad
->pagev
[page_num
];
1100 struct scrub_block
*sblock_other
= NULL
;
1102 /* skip no-io-error page in scrub */
1103 if (!page_bad
->io_error
&& !sctx
->is_dev_replace
)
1106 if (scrub_is_page_on_raid56(sblock_bad
->pagev
[0])) {
1108 * In case of dev replace, if raid56 rebuild process
1109 * didn't work out correct data, then copy the content
1110 * in sblock_bad to make sure target device is identical
1111 * to source device, instead of writing garbage data in
1112 * sblock_for_recheck array to target device.
1114 sblock_other
= NULL
;
1115 } else if (page_bad
->io_error
) {
1116 /* try to find no-io-error page in mirrors */
1117 for (mirror_index
= 0;
1118 mirror_index
< BTRFS_MAX_MIRRORS
&&
1119 sblocks_for_recheck
[mirror_index
].page_count
> 0;
1121 if (!sblocks_for_recheck
[mirror_index
].
1122 pagev
[page_num
]->io_error
) {
1123 sblock_other
= sblocks_for_recheck
+
1132 if (sctx
->is_dev_replace
) {
1134 * did not find a mirror to fetch the page
1135 * from. scrub_write_page_to_dev_replace()
1136 * handles this case (page->io_error), by
1137 * filling the block with zeros before
1138 * submitting the write request
1141 sblock_other
= sblock_bad
;
1143 if (scrub_write_page_to_dev_replace(sblock_other
,
1146 &fs_info
->dev_replace
.num_write_errors
);
1149 } else if (sblock_other
) {
1150 ret
= scrub_repair_page_from_good_copy(sblock_bad
,
1154 page_bad
->io_error
= 0;
1160 if (success
&& !sctx
->is_dev_replace
) {
1161 if (is_metadata
|| have_csum
) {
1163 * need to verify the checksum now that all
1164 * sectors on disk are repaired (the write
1165 * request for data to be repaired is on its way).
1166 * Just be lazy and use scrub_recheck_block()
1167 * which re-reads the data before the checksum
1168 * is verified, but most likely the data comes out
1169 * of the page cache.
1171 scrub_recheck_block(fs_info
, sblock_bad
, 1);
1172 if (!sblock_bad
->header_error
&&
1173 !sblock_bad
->checksum_error
&&
1174 sblock_bad
->no_io_error_seen
)
1175 goto corrected_error
;
1177 goto did_not_correct_error
;
1180 spin_lock(&sctx
->stat_lock
);
1181 sctx
->stat
.corrected_errors
++;
1182 sblock_to_check
->data_corrected
= 1;
1183 spin_unlock(&sctx
->stat_lock
);
1184 btrfs_err_rl_in_rcu(fs_info
,
1185 "fixed up error at logical %llu on dev %s",
1186 logical
, rcu_str_deref(dev
->name
));
1189 did_not_correct_error
:
1190 spin_lock(&sctx
->stat_lock
);
1191 sctx
->stat
.uncorrectable_errors
++;
1192 spin_unlock(&sctx
->stat_lock
);
1193 btrfs_err_rl_in_rcu(fs_info
,
1194 "unable to fixup (regular) error at logical %llu on dev %s",
1195 logical
, rcu_str_deref(dev
->name
));
1199 if (sblocks_for_recheck
) {
1200 for (mirror_index
= 0; mirror_index
< BTRFS_MAX_MIRRORS
;
1202 struct scrub_block
*sblock
= sblocks_for_recheck
+
1204 struct scrub_recover
*recover
;
1207 for (page_index
= 0; page_index
< sblock
->page_count
;
1209 sblock
->pagev
[page_index
]->sblock
= NULL
;
1210 recover
= sblock
->pagev
[page_index
]->recover
;
1212 scrub_put_recover(fs_info
, recover
);
1213 sblock
->pagev
[page_index
]->recover
=
1216 scrub_page_put(sblock
->pagev
[page_index
]);
1219 kfree(sblocks_for_recheck
);
1222 ret
= unlock_full_stripe(fs_info
, logical
, full_stripe_locked
);
1223 memalloc_nofs_restore(nofs_flag
);
1229 static inline int scrub_nr_raid_mirrors(struct btrfs_bio
*bbio
)
1231 if (bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID5
)
1233 else if (bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID6
)
1236 return (int)bbio
->num_stripes
;
1239 static inline void scrub_stripe_index_and_offset(u64 logical
, u64 map_type
,
1242 int nstripes
, int mirror
,
1248 if (map_type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
1250 for (i
= 0; i
< nstripes
; i
++) {
1251 if (raid_map
[i
] == RAID6_Q_STRIPE
||
1252 raid_map
[i
] == RAID5_P_STRIPE
)
1255 if (logical
>= raid_map
[i
] &&
1256 logical
< raid_map
[i
] + mapped_length
)
1261 *stripe_offset
= logical
- raid_map
[i
];
1263 /* The other RAID type */
1264 *stripe_index
= mirror
;
1269 static int scrub_setup_recheck_block(struct scrub_block
*original_sblock
,
1270 struct scrub_block
*sblocks_for_recheck
)
1272 struct scrub_ctx
*sctx
= original_sblock
->sctx
;
1273 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
1274 u64 length
= original_sblock
->page_count
* PAGE_SIZE
;
1275 u64 logical
= original_sblock
->pagev
[0]->logical
;
1276 u64 generation
= original_sblock
->pagev
[0]->generation
;
1277 u64 flags
= original_sblock
->pagev
[0]->flags
;
1278 u64 have_csum
= original_sblock
->pagev
[0]->have_csum
;
1279 struct scrub_recover
*recover
;
1280 struct btrfs_bio
*bbio
;
1291 * note: the two members refs and outstanding_pages
1292 * are not used (and not set) in the blocks that are used for
1293 * the recheck procedure
1296 while (length
> 0) {
1297 sublen
= min_t(u64
, length
, PAGE_SIZE
);
1298 mapped_length
= sublen
;
1302 * with a length of PAGE_SIZE, each returned stripe
1303 * represents one mirror
1305 btrfs_bio_counter_inc_blocked(fs_info
);
1306 ret
= btrfs_map_sblock(fs_info
, BTRFS_MAP_GET_READ_MIRRORS
,
1307 logical
, &mapped_length
, &bbio
);
1308 if (ret
|| !bbio
|| mapped_length
< sublen
) {
1309 btrfs_put_bbio(bbio
);
1310 btrfs_bio_counter_dec(fs_info
);
1314 recover
= kzalloc(sizeof(struct scrub_recover
), GFP_NOFS
);
1316 btrfs_put_bbio(bbio
);
1317 btrfs_bio_counter_dec(fs_info
);
1321 refcount_set(&recover
->refs
, 1);
1322 recover
->bbio
= bbio
;
1323 recover
->map_length
= mapped_length
;
1325 BUG_ON(page_index
>= SCRUB_MAX_PAGES_PER_BLOCK
);
1327 nmirrors
= min(scrub_nr_raid_mirrors(bbio
), BTRFS_MAX_MIRRORS
);
1329 for (mirror_index
= 0; mirror_index
< nmirrors
;
1331 struct scrub_block
*sblock
;
1332 struct scrub_page
*page
;
1334 sblock
= sblocks_for_recheck
+ mirror_index
;
1335 sblock
->sctx
= sctx
;
1337 page
= kzalloc(sizeof(*page
), GFP_NOFS
);
1340 spin_lock(&sctx
->stat_lock
);
1341 sctx
->stat
.malloc_errors
++;
1342 spin_unlock(&sctx
->stat_lock
);
1343 scrub_put_recover(fs_info
, recover
);
1346 scrub_page_get(page
);
1347 sblock
->pagev
[page_index
] = page
;
1348 page
->sblock
= sblock
;
1349 page
->flags
= flags
;
1350 page
->generation
= generation
;
1351 page
->logical
= logical
;
1352 page
->have_csum
= have_csum
;
1355 original_sblock
->pagev
[0]->csum
,
1358 scrub_stripe_index_and_offset(logical
,
1367 page
->physical
= bbio
->stripes
[stripe_index
].physical
+
1369 page
->dev
= bbio
->stripes
[stripe_index
].dev
;
1371 BUG_ON(page_index
>= original_sblock
->page_count
);
1372 page
->physical_for_dev_replace
=
1373 original_sblock
->pagev
[page_index
]->
1374 physical_for_dev_replace
;
1375 /* for missing devices, dev->bdev is NULL */
1376 page
->mirror_num
= mirror_index
+ 1;
1377 sblock
->page_count
++;
1378 page
->page
= alloc_page(GFP_NOFS
);
1382 scrub_get_recover(recover
);
1383 page
->recover
= recover
;
1385 scrub_put_recover(fs_info
, recover
);
1394 static void scrub_bio_wait_endio(struct bio
*bio
)
1396 complete(bio
->bi_private
);
1399 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info
*fs_info
,
1401 struct scrub_page
*page
)
1403 DECLARE_COMPLETION_ONSTACK(done
);
1407 bio
->bi_iter
.bi_sector
= page
->logical
>> 9;
1408 bio
->bi_private
= &done
;
1409 bio
->bi_end_io
= scrub_bio_wait_endio
;
1411 mirror_num
= page
->sblock
->pagev
[0]->mirror_num
;
1412 ret
= raid56_parity_recover(fs_info
, bio
, page
->recover
->bbio
,
1413 page
->recover
->map_length
,
1418 wait_for_completion_io(&done
);
1419 return blk_status_to_errno(bio
->bi_status
);
1422 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info
*fs_info
,
1423 struct scrub_block
*sblock
)
1425 struct scrub_page
*first_page
= sblock
->pagev
[0];
1429 /* All pages in sblock belong to the same stripe on the same device. */
1430 ASSERT(first_page
->dev
);
1431 if (!first_page
->dev
->bdev
)
1434 bio
= btrfs_io_bio_alloc(BIO_MAX_PAGES
);
1435 bio_set_dev(bio
, first_page
->dev
->bdev
);
1437 for (page_num
= 0; page_num
< sblock
->page_count
; page_num
++) {
1438 struct scrub_page
*page
= sblock
->pagev
[page_num
];
1440 WARN_ON(!page
->page
);
1441 bio_add_page(bio
, page
->page
, PAGE_SIZE
, 0);
1444 if (scrub_submit_raid56_bio_wait(fs_info
, bio
, first_page
)) {
1451 scrub_recheck_block_checksum(sblock
);
1455 for (page_num
= 0; page_num
< sblock
->page_count
; page_num
++)
1456 sblock
->pagev
[page_num
]->io_error
= 1;
1458 sblock
->no_io_error_seen
= 0;
1462 * this function will check the on disk data for checksum errors, header
1463 * errors and read I/O errors. If any I/O errors happen, the exact pages
1464 * which are errored are marked as being bad. The goal is to enable scrub
1465 * to take those pages that are not errored from all the mirrors so that
1466 * the pages that are errored in the just handled mirror can be repaired.
1468 static void scrub_recheck_block(struct btrfs_fs_info
*fs_info
,
1469 struct scrub_block
*sblock
,
1470 int retry_failed_mirror
)
1474 sblock
->no_io_error_seen
= 1;
1476 /* short cut for raid56 */
1477 if (!retry_failed_mirror
&& scrub_is_page_on_raid56(sblock
->pagev
[0]))
1478 return scrub_recheck_block_on_raid56(fs_info
, sblock
);
1480 for (page_num
= 0; page_num
< sblock
->page_count
; page_num
++) {
1482 struct scrub_page
*page
= sblock
->pagev
[page_num
];
1484 if (page
->dev
->bdev
== NULL
) {
1486 sblock
->no_io_error_seen
= 0;
1490 WARN_ON(!page
->page
);
1491 bio
= btrfs_io_bio_alloc(1);
1492 bio_set_dev(bio
, page
->dev
->bdev
);
1494 bio_add_page(bio
, page
->page
, PAGE_SIZE
, 0);
1495 bio
->bi_iter
.bi_sector
= page
->physical
>> 9;
1496 bio
->bi_opf
= REQ_OP_READ
;
1498 if (btrfsic_submit_bio_wait(bio
)) {
1500 sblock
->no_io_error_seen
= 0;
1506 if (sblock
->no_io_error_seen
)
1507 scrub_recheck_block_checksum(sblock
);
1510 static inline int scrub_check_fsid(u8 fsid
[],
1511 struct scrub_page
*spage
)
1513 struct btrfs_fs_devices
*fs_devices
= spage
->dev
->fs_devices
;
1516 ret
= memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
1520 static void scrub_recheck_block_checksum(struct scrub_block
*sblock
)
1522 sblock
->header_error
= 0;
1523 sblock
->checksum_error
= 0;
1524 sblock
->generation_error
= 0;
1526 if (sblock
->pagev
[0]->flags
& BTRFS_EXTENT_FLAG_DATA
)
1527 scrub_checksum_data(sblock
);
1529 scrub_checksum_tree_block(sblock
);
1532 static int scrub_repair_block_from_good_copy(struct scrub_block
*sblock_bad
,
1533 struct scrub_block
*sblock_good
)
1538 for (page_num
= 0; page_num
< sblock_bad
->page_count
; page_num
++) {
1541 ret_sub
= scrub_repair_page_from_good_copy(sblock_bad
,
1551 static int scrub_repair_page_from_good_copy(struct scrub_block
*sblock_bad
,
1552 struct scrub_block
*sblock_good
,
1553 int page_num
, int force_write
)
1555 struct scrub_page
*page_bad
= sblock_bad
->pagev
[page_num
];
1556 struct scrub_page
*page_good
= sblock_good
->pagev
[page_num
];
1557 struct btrfs_fs_info
*fs_info
= sblock_bad
->sctx
->fs_info
;
1559 BUG_ON(page_bad
->page
== NULL
);
1560 BUG_ON(page_good
->page
== NULL
);
1561 if (force_write
|| sblock_bad
->header_error
||
1562 sblock_bad
->checksum_error
|| page_bad
->io_error
) {
1566 if (!page_bad
->dev
->bdev
) {
1567 btrfs_warn_rl(fs_info
,
1568 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1572 bio
= btrfs_io_bio_alloc(1);
1573 bio_set_dev(bio
, page_bad
->dev
->bdev
);
1574 bio
->bi_iter
.bi_sector
= page_bad
->physical
>> 9;
1575 bio
->bi_opf
= REQ_OP_WRITE
;
1577 ret
= bio_add_page(bio
, page_good
->page
, PAGE_SIZE
, 0);
1578 if (PAGE_SIZE
!= ret
) {
1583 if (btrfsic_submit_bio_wait(bio
)) {
1584 btrfs_dev_stat_inc_and_print(page_bad
->dev
,
1585 BTRFS_DEV_STAT_WRITE_ERRS
);
1586 atomic64_inc(&fs_info
->dev_replace
.num_write_errors
);
1596 static void scrub_write_block_to_dev_replace(struct scrub_block
*sblock
)
1598 struct btrfs_fs_info
*fs_info
= sblock
->sctx
->fs_info
;
1602 * This block is used for the check of the parity on the source device,
1603 * so the data needn't be written into the destination device.
1605 if (sblock
->sparity
)
1608 for (page_num
= 0; page_num
< sblock
->page_count
; page_num
++) {
1611 ret
= scrub_write_page_to_dev_replace(sblock
, page_num
);
1613 atomic64_inc(&fs_info
->dev_replace
.num_write_errors
);
1617 static int scrub_write_page_to_dev_replace(struct scrub_block
*sblock
,
1620 struct scrub_page
*spage
= sblock
->pagev
[page_num
];
1622 BUG_ON(spage
->page
== NULL
);
1623 if (spage
->io_error
) {
1624 void *mapped_buffer
= kmap_atomic(spage
->page
);
1626 clear_page(mapped_buffer
);
1627 flush_dcache_page(spage
->page
);
1628 kunmap_atomic(mapped_buffer
);
1630 return scrub_add_page_to_wr_bio(sblock
->sctx
, spage
);
1633 static int scrub_add_page_to_wr_bio(struct scrub_ctx
*sctx
,
1634 struct scrub_page
*spage
)
1636 struct scrub_bio
*sbio
;
1639 mutex_lock(&sctx
->wr_lock
);
1641 if (!sctx
->wr_curr_bio
) {
1642 sctx
->wr_curr_bio
= kzalloc(sizeof(*sctx
->wr_curr_bio
),
1644 if (!sctx
->wr_curr_bio
) {
1645 mutex_unlock(&sctx
->wr_lock
);
1648 sctx
->wr_curr_bio
->sctx
= sctx
;
1649 sctx
->wr_curr_bio
->page_count
= 0;
1651 sbio
= sctx
->wr_curr_bio
;
1652 if (sbio
->page_count
== 0) {
1655 sbio
->physical
= spage
->physical_for_dev_replace
;
1656 sbio
->logical
= spage
->logical
;
1657 sbio
->dev
= sctx
->wr_tgtdev
;
1660 bio
= btrfs_io_bio_alloc(sctx
->pages_per_wr_bio
);
1664 bio
->bi_private
= sbio
;
1665 bio
->bi_end_io
= scrub_wr_bio_end_io
;
1666 bio_set_dev(bio
, sbio
->dev
->bdev
);
1667 bio
->bi_iter
.bi_sector
= sbio
->physical
>> 9;
1668 bio
->bi_opf
= REQ_OP_WRITE
;
1670 } else if (sbio
->physical
+ sbio
->page_count
* PAGE_SIZE
!=
1671 spage
->physical_for_dev_replace
||
1672 sbio
->logical
+ sbio
->page_count
* PAGE_SIZE
!=
1674 scrub_wr_submit(sctx
);
1678 ret
= bio_add_page(sbio
->bio
, spage
->page
, PAGE_SIZE
, 0);
1679 if (ret
!= PAGE_SIZE
) {
1680 if (sbio
->page_count
< 1) {
1683 mutex_unlock(&sctx
->wr_lock
);
1686 scrub_wr_submit(sctx
);
1690 sbio
->pagev
[sbio
->page_count
] = spage
;
1691 scrub_page_get(spage
);
1693 if (sbio
->page_count
== sctx
->pages_per_wr_bio
)
1694 scrub_wr_submit(sctx
);
1695 mutex_unlock(&sctx
->wr_lock
);
1700 static void scrub_wr_submit(struct scrub_ctx
*sctx
)
1702 struct scrub_bio
*sbio
;
1704 if (!sctx
->wr_curr_bio
)
1707 sbio
= sctx
->wr_curr_bio
;
1708 sctx
->wr_curr_bio
= NULL
;
1709 WARN_ON(!sbio
->bio
->bi_disk
);
1710 scrub_pending_bio_inc(sctx
);
1711 /* process all writes in a single worker thread. Then the block layer
1712 * orders the requests before sending them to the driver which
1713 * doubled the write performance on spinning disks when measured
1715 btrfsic_submit_bio(sbio
->bio
);
1718 static void scrub_wr_bio_end_io(struct bio
*bio
)
1720 struct scrub_bio
*sbio
= bio
->bi_private
;
1721 struct btrfs_fs_info
*fs_info
= sbio
->dev
->fs_info
;
1723 sbio
->status
= bio
->bi_status
;
1726 btrfs_init_work(&sbio
->work
, scrub_wr_bio_end_io_worker
, NULL
, NULL
);
1727 btrfs_queue_work(fs_info
->scrub_wr_completion_workers
, &sbio
->work
);
1730 static void scrub_wr_bio_end_io_worker(struct btrfs_work
*work
)
1732 struct scrub_bio
*sbio
= container_of(work
, struct scrub_bio
, work
);
1733 struct scrub_ctx
*sctx
= sbio
->sctx
;
1736 WARN_ON(sbio
->page_count
> SCRUB_PAGES_PER_WR_BIO
);
1738 struct btrfs_dev_replace
*dev_replace
=
1739 &sbio
->sctx
->fs_info
->dev_replace
;
1741 for (i
= 0; i
< sbio
->page_count
; i
++) {
1742 struct scrub_page
*spage
= sbio
->pagev
[i
];
1744 spage
->io_error
= 1;
1745 atomic64_inc(&dev_replace
->num_write_errors
);
1749 for (i
= 0; i
< sbio
->page_count
; i
++)
1750 scrub_page_put(sbio
->pagev
[i
]);
1754 scrub_pending_bio_dec(sctx
);
1757 static int scrub_checksum(struct scrub_block
*sblock
)
1763 * No need to initialize these stats currently,
1764 * because this function only use return value
1765 * instead of these stats value.
1770 sblock
->header_error
= 0;
1771 sblock
->generation_error
= 0;
1772 sblock
->checksum_error
= 0;
1774 WARN_ON(sblock
->page_count
< 1);
1775 flags
= sblock
->pagev
[0]->flags
;
1777 if (flags
& BTRFS_EXTENT_FLAG_DATA
)
1778 ret
= scrub_checksum_data(sblock
);
1779 else if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)
1780 ret
= scrub_checksum_tree_block(sblock
);
1781 else if (flags
& BTRFS_EXTENT_FLAG_SUPER
)
1782 (void)scrub_checksum_super(sblock
);
1786 scrub_handle_errored_block(sblock
);
1791 static int scrub_checksum_data(struct scrub_block
*sblock
)
1793 struct scrub_ctx
*sctx
= sblock
->sctx
;
1794 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
1795 SHASH_DESC_ON_STACK(shash
, fs_info
->csum_shash
);
1796 u8 csum
[BTRFS_CSUM_SIZE
];
1803 BUG_ON(sblock
->page_count
< 1);
1804 if (!sblock
->pagev
[0]->have_csum
)
1807 shash
->tfm
= fs_info
->csum_shash
;
1808 crypto_shash_init(shash
);
1810 on_disk_csum
= sblock
->pagev
[0]->csum
;
1811 page
= sblock
->pagev
[0]->page
;
1812 buffer
= kmap_atomic(page
);
1814 len
= sctx
->fs_info
->sectorsize
;
1817 u64 l
= min_t(u64
, len
, PAGE_SIZE
);
1819 crypto_shash_update(shash
, buffer
, l
);
1820 kunmap_atomic(buffer
);
1825 BUG_ON(index
>= sblock
->page_count
);
1826 BUG_ON(!sblock
->pagev
[index
]->page
);
1827 page
= sblock
->pagev
[index
]->page
;
1828 buffer
= kmap_atomic(page
);
1831 crypto_shash_final(shash
, csum
);
1832 if (memcmp(csum
, on_disk_csum
, sctx
->csum_size
))
1833 sblock
->checksum_error
= 1;
1835 return sblock
->checksum_error
;
1838 static int scrub_checksum_tree_block(struct scrub_block
*sblock
)
1840 struct scrub_ctx
*sctx
= sblock
->sctx
;
1841 struct btrfs_header
*h
;
1842 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
1843 SHASH_DESC_ON_STACK(shash
, fs_info
->csum_shash
);
1844 u8 calculated_csum
[BTRFS_CSUM_SIZE
];
1845 u8 on_disk_csum
[BTRFS_CSUM_SIZE
];
1847 void *mapped_buffer
;
1853 shash
->tfm
= fs_info
->csum_shash
;
1854 crypto_shash_init(shash
);
1856 BUG_ON(sblock
->page_count
< 1);
1857 page
= sblock
->pagev
[0]->page
;
1858 mapped_buffer
= kmap_atomic(page
);
1859 h
= (struct btrfs_header
*)mapped_buffer
;
1860 memcpy(on_disk_csum
, h
->csum
, sctx
->csum_size
);
1863 * we don't use the getter functions here, as we
1864 * a) don't have an extent buffer and
1865 * b) the page is already kmapped
1867 if (sblock
->pagev
[0]->logical
!= btrfs_stack_header_bytenr(h
))
1868 sblock
->header_error
= 1;
1870 if (sblock
->pagev
[0]->generation
!= btrfs_stack_header_generation(h
)) {
1871 sblock
->header_error
= 1;
1872 sblock
->generation_error
= 1;
1875 if (!scrub_check_fsid(h
->fsid
, sblock
->pagev
[0]))
1876 sblock
->header_error
= 1;
1878 if (memcmp(h
->chunk_tree_uuid
, fs_info
->chunk_tree_uuid
,
1880 sblock
->header_error
= 1;
1882 len
= sctx
->fs_info
->nodesize
- BTRFS_CSUM_SIZE
;
1883 mapped_size
= PAGE_SIZE
- BTRFS_CSUM_SIZE
;
1884 p
= ((u8
*)mapped_buffer
) + BTRFS_CSUM_SIZE
;
1887 u64 l
= min_t(u64
, len
, mapped_size
);
1889 crypto_shash_update(shash
, p
, l
);
1890 kunmap_atomic(mapped_buffer
);
1895 BUG_ON(index
>= sblock
->page_count
);
1896 BUG_ON(!sblock
->pagev
[index
]->page
);
1897 page
= sblock
->pagev
[index
]->page
;
1898 mapped_buffer
= kmap_atomic(page
);
1899 mapped_size
= PAGE_SIZE
;
1903 crypto_shash_final(shash
, calculated_csum
);
1904 if (memcmp(calculated_csum
, on_disk_csum
, sctx
->csum_size
))
1905 sblock
->checksum_error
= 1;
1907 return sblock
->header_error
|| sblock
->checksum_error
;
1910 static int scrub_checksum_super(struct scrub_block
*sblock
)
1912 struct btrfs_super_block
*s
;
1913 struct scrub_ctx
*sctx
= sblock
->sctx
;
1914 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
1915 SHASH_DESC_ON_STACK(shash
, fs_info
->csum_shash
);
1916 u8 calculated_csum
[BTRFS_CSUM_SIZE
];
1917 u8 on_disk_csum
[BTRFS_CSUM_SIZE
];
1919 void *mapped_buffer
;
1927 shash
->tfm
= fs_info
->csum_shash
;
1928 crypto_shash_init(shash
);
1930 BUG_ON(sblock
->page_count
< 1);
1931 page
= sblock
->pagev
[0]->page
;
1932 mapped_buffer
= kmap_atomic(page
);
1933 s
= (struct btrfs_super_block
*)mapped_buffer
;
1934 memcpy(on_disk_csum
, s
->csum
, sctx
->csum_size
);
1936 if (sblock
->pagev
[0]->logical
!= btrfs_super_bytenr(s
))
1939 if (sblock
->pagev
[0]->generation
!= btrfs_super_generation(s
))
1942 if (!scrub_check_fsid(s
->fsid
, sblock
->pagev
[0]))
1945 len
= BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
;
1946 mapped_size
= PAGE_SIZE
- BTRFS_CSUM_SIZE
;
1947 p
= ((u8
*)mapped_buffer
) + BTRFS_CSUM_SIZE
;
1950 u64 l
= min_t(u64
, len
, mapped_size
);
1952 crypto_shash_update(shash
, p
, l
);
1953 kunmap_atomic(mapped_buffer
);
1958 BUG_ON(index
>= sblock
->page_count
);
1959 BUG_ON(!sblock
->pagev
[index
]->page
);
1960 page
= sblock
->pagev
[index
]->page
;
1961 mapped_buffer
= kmap_atomic(page
);
1962 mapped_size
= PAGE_SIZE
;
1966 crypto_shash_final(shash
, calculated_csum
);
1967 if (memcmp(calculated_csum
, on_disk_csum
, sctx
->csum_size
))
1970 if (fail_cor
+ fail_gen
) {
1972 * if we find an error in a super block, we just report it.
1973 * They will get written with the next transaction commit
1976 spin_lock(&sctx
->stat_lock
);
1977 ++sctx
->stat
.super_errors
;
1978 spin_unlock(&sctx
->stat_lock
);
1980 btrfs_dev_stat_inc_and_print(sblock
->pagev
[0]->dev
,
1981 BTRFS_DEV_STAT_CORRUPTION_ERRS
);
1983 btrfs_dev_stat_inc_and_print(sblock
->pagev
[0]->dev
,
1984 BTRFS_DEV_STAT_GENERATION_ERRS
);
1987 return fail_cor
+ fail_gen
;
1990 static void scrub_block_get(struct scrub_block
*sblock
)
1992 refcount_inc(&sblock
->refs
);
1995 static void scrub_block_put(struct scrub_block
*sblock
)
1997 if (refcount_dec_and_test(&sblock
->refs
)) {
2000 if (sblock
->sparity
)
2001 scrub_parity_put(sblock
->sparity
);
2003 for (i
= 0; i
< sblock
->page_count
; i
++)
2004 scrub_page_put(sblock
->pagev
[i
]);
2009 static void scrub_page_get(struct scrub_page
*spage
)
2011 atomic_inc(&spage
->refs
);
2014 static void scrub_page_put(struct scrub_page
*spage
)
2016 if (atomic_dec_and_test(&spage
->refs
)) {
2018 __free_page(spage
->page
);
2023 static void scrub_submit(struct scrub_ctx
*sctx
)
2025 struct scrub_bio
*sbio
;
2027 if (sctx
->curr
== -1)
2030 sbio
= sctx
->bios
[sctx
->curr
];
2032 scrub_pending_bio_inc(sctx
);
2033 btrfsic_submit_bio(sbio
->bio
);
2036 static int scrub_add_page_to_rd_bio(struct scrub_ctx
*sctx
,
2037 struct scrub_page
*spage
)
2039 struct scrub_block
*sblock
= spage
->sblock
;
2040 struct scrub_bio
*sbio
;
2045 * grab a fresh bio or wait for one to become available
2047 while (sctx
->curr
== -1) {
2048 spin_lock(&sctx
->list_lock
);
2049 sctx
->curr
= sctx
->first_free
;
2050 if (sctx
->curr
!= -1) {
2051 sctx
->first_free
= sctx
->bios
[sctx
->curr
]->next_free
;
2052 sctx
->bios
[sctx
->curr
]->next_free
= -1;
2053 sctx
->bios
[sctx
->curr
]->page_count
= 0;
2054 spin_unlock(&sctx
->list_lock
);
2056 spin_unlock(&sctx
->list_lock
);
2057 wait_event(sctx
->list_wait
, sctx
->first_free
!= -1);
2060 sbio
= sctx
->bios
[sctx
->curr
];
2061 if (sbio
->page_count
== 0) {
2064 sbio
->physical
= spage
->physical
;
2065 sbio
->logical
= spage
->logical
;
2066 sbio
->dev
= spage
->dev
;
2069 bio
= btrfs_io_bio_alloc(sctx
->pages_per_rd_bio
);
2073 bio
->bi_private
= sbio
;
2074 bio
->bi_end_io
= scrub_bio_end_io
;
2075 bio_set_dev(bio
, sbio
->dev
->bdev
);
2076 bio
->bi_iter
.bi_sector
= sbio
->physical
>> 9;
2077 bio
->bi_opf
= REQ_OP_READ
;
2079 } else if (sbio
->physical
+ sbio
->page_count
* PAGE_SIZE
!=
2081 sbio
->logical
+ sbio
->page_count
* PAGE_SIZE
!=
2083 sbio
->dev
!= spage
->dev
) {
2088 sbio
->pagev
[sbio
->page_count
] = spage
;
2089 ret
= bio_add_page(sbio
->bio
, spage
->page
, PAGE_SIZE
, 0);
2090 if (ret
!= PAGE_SIZE
) {
2091 if (sbio
->page_count
< 1) {
2100 scrub_block_get(sblock
); /* one for the page added to the bio */
2101 atomic_inc(&sblock
->outstanding_pages
);
2103 if (sbio
->page_count
== sctx
->pages_per_rd_bio
)
2109 static void scrub_missing_raid56_end_io(struct bio
*bio
)
2111 struct scrub_block
*sblock
= bio
->bi_private
;
2112 struct btrfs_fs_info
*fs_info
= sblock
->sctx
->fs_info
;
2115 sblock
->no_io_error_seen
= 0;
2119 btrfs_queue_work(fs_info
->scrub_workers
, &sblock
->work
);
2122 static void scrub_missing_raid56_worker(struct btrfs_work
*work
)
2124 struct scrub_block
*sblock
= container_of(work
, struct scrub_block
, work
);
2125 struct scrub_ctx
*sctx
= sblock
->sctx
;
2126 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
2128 struct btrfs_device
*dev
;
2130 logical
= sblock
->pagev
[0]->logical
;
2131 dev
= sblock
->pagev
[0]->dev
;
2133 if (sblock
->no_io_error_seen
)
2134 scrub_recheck_block_checksum(sblock
);
2136 if (!sblock
->no_io_error_seen
) {
2137 spin_lock(&sctx
->stat_lock
);
2138 sctx
->stat
.read_errors
++;
2139 spin_unlock(&sctx
->stat_lock
);
2140 btrfs_err_rl_in_rcu(fs_info
,
2141 "IO error rebuilding logical %llu for dev %s",
2142 logical
, rcu_str_deref(dev
->name
));
2143 } else if (sblock
->header_error
|| sblock
->checksum_error
) {
2144 spin_lock(&sctx
->stat_lock
);
2145 sctx
->stat
.uncorrectable_errors
++;
2146 spin_unlock(&sctx
->stat_lock
);
2147 btrfs_err_rl_in_rcu(fs_info
,
2148 "failed to rebuild valid logical %llu for dev %s",
2149 logical
, rcu_str_deref(dev
->name
));
2151 scrub_write_block_to_dev_replace(sblock
);
2154 if (sctx
->is_dev_replace
&& sctx
->flush_all_writes
) {
2155 mutex_lock(&sctx
->wr_lock
);
2156 scrub_wr_submit(sctx
);
2157 mutex_unlock(&sctx
->wr_lock
);
2160 scrub_block_put(sblock
);
2161 scrub_pending_bio_dec(sctx
);
2164 static void scrub_missing_raid56_pages(struct scrub_block
*sblock
)
2166 struct scrub_ctx
*sctx
= sblock
->sctx
;
2167 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
2168 u64 length
= sblock
->page_count
* PAGE_SIZE
;
2169 u64 logical
= sblock
->pagev
[0]->logical
;
2170 struct btrfs_bio
*bbio
= NULL
;
2172 struct btrfs_raid_bio
*rbio
;
2176 btrfs_bio_counter_inc_blocked(fs_info
);
2177 ret
= btrfs_map_sblock(fs_info
, BTRFS_MAP_GET_READ_MIRRORS
, logical
,
2179 if (ret
|| !bbio
|| !bbio
->raid_map
)
2182 if (WARN_ON(!sctx
->is_dev_replace
||
2183 !(bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID56_MASK
))) {
2185 * We shouldn't be scrubbing a missing device. Even for dev
2186 * replace, we should only get here for RAID 5/6. We either
2187 * managed to mount something with no mirrors remaining or
2188 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2193 bio
= btrfs_io_bio_alloc(0);
2194 bio
->bi_iter
.bi_sector
= logical
>> 9;
2195 bio
->bi_private
= sblock
;
2196 bio
->bi_end_io
= scrub_missing_raid56_end_io
;
2198 rbio
= raid56_alloc_missing_rbio(fs_info
, bio
, bbio
, length
);
2202 for (i
= 0; i
< sblock
->page_count
; i
++) {
2203 struct scrub_page
*spage
= sblock
->pagev
[i
];
2205 raid56_add_scrub_pages(rbio
, spage
->page
, spage
->logical
);
2208 btrfs_init_work(&sblock
->work
, scrub_missing_raid56_worker
, NULL
, NULL
);
2209 scrub_block_get(sblock
);
2210 scrub_pending_bio_inc(sctx
);
2211 raid56_submit_missing_rbio(rbio
);
2217 btrfs_bio_counter_dec(fs_info
);
2218 btrfs_put_bbio(bbio
);
2219 spin_lock(&sctx
->stat_lock
);
2220 sctx
->stat
.malloc_errors
++;
2221 spin_unlock(&sctx
->stat_lock
);
2224 static int scrub_pages(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
2225 u64 physical
, struct btrfs_device
*dev
, u64 flags
,
2226 u64 gen
, int mirror_num
, u8
*csum
, int force
,
2227 u64 physical_for_dev_replace
)
2229 struct scrub_block
*sblock
;
2232 sblock
= kzalloc(sizeof(*sblock
), GFP_KERNEL
);
2234 spin_lock(&sctx
->stat_lock
);
2235 sctx
->stat
.malloc_errors
++;
2236 spin_unlock(&sctx
->stat_lock
);
2240 /* one ref inside this function, plus one for each page added to
2242 refcount_set(&sblock
->refs
, 1);
2243 sblock
->sctx
= sctx
;
2244 sblock
->no_io_error_seen
= 1;
2246 for (index
= 0; len
> 0; index
++) {
2247 struct scrub_page
*spage
;
2248 u64 l
= min_t(u64
, len
, PAGE_SIZE
);
2250 spage
= kzalloc(sizeof(*spage
), GFP_KERNEL
);
2253 spin_lock(&sctx
->stat_lock
);
2254 sctx
->stat
.malloc_errors
++;
2255 spin_unlock(&sctx
->stat_lock
);
2256 scrub_block_put(sblock
);
2259 BUG_ON(index
>= SCRUB_MAX_PAGES_PER_BLOCK
);
2260 scrub_page_get(spage
);
2261 sblock
->pagev
[index
] = spage
;
2262 spage
->sblock
= sblock
;
2264 spage
->flags
= flags
;
2265 spage
->generation
= gen
;
2266 spage
->logical
= logical
;
2267 spage
->physical
= physical
;
2268 spage
->physical_for_dev_replace
= physical_for_dev_replace
;
2269 spage
->mirror_num
= mirror_num
;
2271 spage
->have_csum
= 1;
2272 memcpy(spage
->csum
, csum
, sctx
->csum_size
);
2274 spage
->have_csum
= 0;
2276 sblock
->page_count
++;
2277 spage
->page
= alloc_page(GFP_KERNEL
);
2283 physical_for_dev_replace
+= l
;
2286 WARN_ON(sblock
->page_count
== 0);
2287 if (test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
)) {
2289 * This case should only be hit for RAID 5/6 device replace. See
2290 * the comment in scrub_missing_raid56_pages() for details.
2292 scrub_missing_raid56_pages(sblock
);
2294 for (index
= 0; index
< sblock
->page_count
; index
++) {
2295 struct scrub_page
*spage
= sblock
->pagev
[index
];
2298 ret
= scrub_add_page_to_rd_bio(sctx
, spage
);
2300 scrub_block_put(sblock
);
2309 /* last one frees, either here or in bio completion for last page */
2310 scrub_block_put(sblock
);
2314 static void scrub_bio_end_io(struct bio
*bio
)
2316 struct scrub_bio
*sbio
= bio
->bi_private
;
2317 struct btrfs_fs_info
*fs_info
= sbio
->dev
->fs_info
;
2319 sbio
->status
= bio
->bi_status
;
2322 btrfs_queue_work(fs_info
->scrub_workers
, &sbio
->work
);
2325 static void scrub_bio_end_io_worker(struct btrfs_work
*work
)
2327 struct scrub_bio
*sbio
= container_of(work
, struct scrub_bio
, work
);
2328 struct scrub_ctx
*sctx
= sbio
->sctx
;
2331 BUG_ON(sbio
->page_count
> SCRUB_PAGES_PER_RD_BIO
);
2333 for (i
= 0; i
< sbio
->page_count
; i
++) {
2334 struct scrub_page
*spage
= sbio
->pagev
[i
];
2336 spage
->io_error
= 1;
2337 spage
->sblock
->no_io_error_seen
= 0;
2341 /* now complete the scrub_block items that have all pages completed */
2342 for (i
= 0; i
< sbio
->page_count
; i
++) {
2343 struct scrub_page
*spage
= sbio
->pagev
[i
];
2344 struct scrub_block
*sblock
= spage
->sblock
;
2346 if (atomic_dec_and_test(&sblock
->outstanding_pages
))
2347 scrub_block_complete(sblock
);
2348 scrub_block_put(sblock
);
2353 spin_lock(&sctx
->list_lock
);
2354 sbio
->next_free
= sctx
->first_free
;
2355 sctx
->first_free
= sbio
->index
;
2356 spin_unlock(&sctx
->list_lock
);
2358 if (sctx
->is_dev_replace
&& sctx
->flush_all_writes
) {
2359 mutex_lock(&sctx
->wr_lock
);
2360 scrub_wr_submit(sctx
);
2361 mutex_unlock(&sctx
->wr_lock
);
2364 scrub_pending_bio_dec(sctx
);
2367 static inline void __scrub_mark_bitmap(struct scrub_parity
*sparity
,
2368 unsigned long *bitmap
,
2374 int sectorsize
= sparity
->sctx
->fs_info
->sectorsize
;
2376 if (len
>= sparity
->stripe_len
) {
2377 bitmap_set(bitmap
, 0, sparity
->nsectors
);
2381 start
-= sparity
->logic_start
;
2382 start
= div64_u64_rem(start
, sparity
->stripe_len
, &offset
);
2383 offset
= div_u64(offset
, sectorsize
);
2384 nsectors64
= div_u64(len
, sectorsize
);
2386 ASSERT(nsectors64
< UINT_MAX
);
2387 nsectors
= (u32
)nsectors64
;
2389 if (offset
+ nsectors
<= sparity
->nsectors
) {
2390 bitmap_set(bitmap
, offset
, nsectors
);
2394 bitmap_set(bitmap
, offset
, sparity
->nsectors
- offset
);
2395 bitmap_set(bitmap
, 0, nsectors
- (sparity
->nsectors
- offset
));
2398 static inline void scrub_parity_mark_sectors_error(struct scrub_parity
*sparity
,
2401 __scrub_mark_bitmap(sparity
, sparity
->ebitmap
, start
, len
);
2404 static inline void scrub_parity_mark_sectors_data(struct scrub_parity
*sparity
,
2407 __scrub_mark_bitmap(sparity
, sparity
->dbitmap
, start
, len
);
2410 static void scrub_block_complete(struct scrub_block
*sblock
)
2414 if (!sblock
->no_io_error_seen
) {
2416 scrub_handle_errored_block(sblock
);
2419 * if has checksum error, write via repair mechanism in
2420 * dev replace case, otherwise write here in dev replace
2423 corrupted
= scrub_checksum(sblock
);
2424 if (!corrupted
&& sblock
->sctx
->is_dev_replace
)
2425 scrub_write_block_to_dev_replace(sblock
);
2428 if (sblock
->sparity
&& corrupted
&& !sblock
->data_corrected
) {
2429 u64 start
= sblock
->pagev
[0]->logical
;
2430 u64 end
= sblock
->pagev
[sblock
->page_count
- 1]->logical
+
2433 scrub_parity_mark_sectors_error(sblock
->sparity
,
2434 start
, end
- start
);
2438 static int scrub_find_csum(struct scrub_ctx
*sctx
, u64 logical
, u8
*csum
)
2440 struct btrfs_ordered_sum
*sum
= NULL
;
2441 unsigned long index
;
2442 unsigned long num_sectors
;
2444 while (!list_empty(&sctx
->csum_list
)) {
2445 sum
= list_first_entry(&sctx
->csum_list
,
2446 struct btrfs_ordered_sum
, list
);
2447 if (sum
->bytenr
> logical
)
2449 if (sum
->bytenr
+ sum
->len
> logical
)
2452 ++sctx
->stat
.csum_discards
;
2453 list_del(&sum
->list
);
2460 index
= div_u64(logical
- sum
->bytenr
, sctx
->fs_info
->sectorsize
);
2461 ASSERT(index
< UINT_MAX
);
2463 num_sectors
= sum
->len
/ sctx
->fs_info
->sectorsize
;
2464 memcpy(csum
, sum
->sums
+ index
* sctx
->csum_size
, sctx
->csum_size
);
2465 if (index
== num_sectors
- 1) {
2466 list_del(&sum
->list
);
2472 /* scrub extent tries to collect up to 64 kB for each bio */
2473 static int scrub_extent(struct scrub_ctx
*sctx
, struct map_lookup
*map
,
2474 u64 logical
, u64 len
,
2475 u64 physical
, struct btrfs_device
*dev
, u64 flags
,
2476 u64 gen
, int mirror_num
, u64 physical_for_dev_replace
)
2479 u8 csum
[BTRFS_CSUM_SIZE
];
2482 if (flags
& BTRFS_EXTENT_FLAG_DATA
) {
2483 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
2484 blocksize
= map
->stripe_len
;
2486 blocksize
= sctx
->fs_info
->sectorsize
;
2487 spin_lock(&sctx
->stat_lock
);
2488 sctx
->stat
.data_extents_scrubbed
++;
2489 sctx
->stat
.data_bytes_scrubbed
+= len
;
2490 spin_unlock(&sctx
->stat_lock
);
2491 } else if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
2492 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
2493 blocksize
= map
->stripe_len
;
2495 blocksize
= sctx
->fs_info
->nodesize
;
2496 spin_lock(&sctx
->stat_lock
);
2497 sctx
->stat
.tree_extents_scrubbed
++;
2498 sctx
->stat
.tree_bytes_scrubbed
+= len
;
2499 spin_unlock(&sctx
->stat_lock
);
2501 blocksize
= sctx
->fs_info
->sectorsize
;
2506 u64 l
= min_t(u64
, len
, blocksize
);
2509 if (flags
& BTRFS_EXTENT_FLAG_DATA
) {
2510 /* push csums to sbio */
2511 have_csum
= scrub_find_csum(sctx
, logical
, csum
);
2513 ++sctx
->stat
.no_csum
;
2515 ret
= scrub_pages(sctx
, logical
, l
, physical
, dev
, flags
, gen
,
2516 mirror_num
, have_csum
? csum
: NULL
, 0,
2517 physical_for_dev_replace
);
2523 physical_for_dev_replace
+= l
;
2528 static int scrub_pages_for_parity(struct scrub_parity
*sparity
,
2529 u64 logical
, u64 len
,
2530 u64 physical
, struct btrfs_device
*dev
,
2531 u64 flags
, u64 gen
, int mirror_num
, u8
*csum
)
2533 struct scrub_ctx
*sctx
= sparity
->sctx
;
2534 struct scrub_block
*sblock
;
2537 sblock
= kzalloc(sizeof(*sblock
), GFP_KERNEL
);
2539 spin_lock(&sctx
->stat_lock
);
2540 sctx
->stat
.malloc_errors
++;
2541 spin_unlock(&sctx
->stat_lock
);
2545 /* one ref inside this function, plus one for each page added to
2547 refcount_set(&sblock
->refs
, 1);
2548 sblock
->sctx
= sctx
;
2549 sblock
->no_io_error_seen
= 1;
2550 sblock
->sparity
= sparity
;
2551 scrub_parity_get(sparity
);
2553 for (index
= 0; len
> 0; index
++) {
2554 struct scrub_page
*spage
;
2555 u64 l
= min_t(u64
, len
, PAGE_SIZE
);
2557 spage
= kzalloc(sizeof(*spage
), GFP_KERNEL
);
2560 spin_lock(&sctx
->stat_lock
);
2561 sctx
->stat
.malloc_errors
++;
2562 spin_unlock(&sctx
->stat_lock
);
2563 scrub_block_put(sblock
);
2566 BUG_ON(index
>= SCRUB_MAX_PAGES_PER_BLOCK
);
2567 /* For scrub block */
2568 scrub_page_get(spage
);
2569 sblock
->pagev
[index
] = spage
;
2570 /* For scrub parity */
2571 scrub_page_get(spage
);
2572 list_add_tail(&spage
->list
, &sparity
->spages
);
2573 spage
->sblock
= sblock
;
2575 spage
->flags
= flags
;
2576 spage
->generation
= gen
;
2577 spage
->logical
= logical
;
2578 spage
->physical
= physical
;
2579 spage
->mirror_num
= mirror_num
;
2581 spage
->have_csum
= 1;
2582 memcpy(spage
->csum
, csum
, sctx
->csum_size
);
2584 spage
->have_csum
= 0;
2586 sblock
->page_count
++;
2587 spage
->page
= alloc_page(GFP_KERNEL
);
2595 WARN_ON(sblock
->page_count
== 0);
2596 for (index
= 0; index
< sblock
->page_count
; index
++) {
2597 struct scrub_page
*spage
= sblock
->pagev
[index
];
2600 ret
= scrub_add_page_to_rd_bio(sctx
, spage
);
2602 scrub_block_put(sblock
);
2607 /* last one frees, either here or in bio completion for last page */
2608 scrub_block_put(sblock
);
2612 static int scrub_extent_for_parity(struct scrub_parity
*sparity
,
2613 u64 logical
, u64 len
,
2614 u64 physical
, struct btrfs_device
*dev
,
2615 u64 flags
, u64 gen
, int mirror_num
)
2617 struct scrub_ctx
*sctx
= sparity
->sctx
;
2619 u8 csum
[BTRFS_CSUM_SIZE
];
2622 if (test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
)) {
2623 scrub_parity_mark_sectors_error(sparity
, logical
, len
);
2627 if (flags
& BTRFS_EXTENT_FLAG_DATA
) {
2628 blocksize
= sparity
->stripe_len
;
2629 } else if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
2630 blocksize
= sparity
->stripe_len
;
2632 blocksize
= sctx
->fs_info
->sectorsize
;
2637 u64 l
= min_t(u64
, len
, blocksize
);
2640 if (flags
& BTRFS_EXTENT_FLAG_DATA
) {
2641 /* push csums to sbio */
2642 have_csum
= scrub_find_csum(sctx
, logical
, csum
);
2646 ret
= scrub_pages_for_parity(sparity
, logical
, l
, physical
, dev
,
2647 flags
, gen
, mirror_num
,
2648 have_csum
? csum
: NULL
);
2660 * Given a physical address, this will calculate it's
2661 * logical offset. if this is a parity stripe, it will return
2662 * the most left data stripe's logical offset.
2664 * return 0 if it is a data stripe, 1 means parity stripe.
2666 static int get_raid56_logic_offset(u64 physical
, int num
,
2667 struct map_lookup
*map
, u64
*offset
,
2676 const int data_stripes
= nr_data_stripes(map
);
2678 last_offset
= (physical
- map
->stripes
[num
].physical
) * data_stripes
;
2680 *stripe_start
= last_offset
;
2682 *offset
= last_offset
;
2683 for (i
= 0; i
< data_stripes
; i
++) {
2684 *offset
= last_offset
+ i
* map
->stripe_len
;
2686 stripe_nr
= div64_u64(*offset
, map
->stripe_len
);
2687 stripe_nr
= div_u64(stripe_nr
, data_stripes
);
2689 /* Work out the disk rotation on this stripe-set */
2690 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
, &rot
);
2691 /* calculate which stripe this data locates */
2693 stripe_index
= rot
% map
->num_stripes
;
2694 if (stripe_index
== num
)
2696 if (stripe_index
< num
)
2699 *offset
= last_offset
+ j
* map
->stripe_len
;
2703 static void scrub_free_parity(struct scrub_parity
*sparity
)
2705 struct scrub_ctx
*sctx
= sparity
->sctx
;
2706 struct scrub_page
*curr
, *next
;
2709 nbits
= bitmap_weight(sparity
->ebitmap
, sparity
->nsectors
);
2711 spin_lock(&sctx
->stat_lock
);
2712 sctx
->stat
.read_errors
+= nbits
;
2713 sctx
->stat
.uncorrectable_errors
+= nbits
;
2714 spin_unlock(&sctx
->stat_lock
);
2717 list_for_each_entry_safe(curr
, next
, &sparity
->spages
, list
) {
2718 list_del_init(&curr
->list
);
2719 scrub_page_put(curr
);
2725 static void scrub_parity_bio_endio_worker(struct btrfs_work
*work
)
2727 struct scrub_parity
*sparity
= container_of(work
, struct scrub_parity
,
2729 struct scrub_ctx
*sctx
= sparity
->sctx
;
2731 scrub_free_parity(sparity
);
2732 scrub_pending_bio_dec(sctx
);
2735 static void scrub_parity_bio_endio(struct bio
*bio
)
2737 struct scrub_parity
*sparity
= (struct scrub_parity
*)bio
->bi_private
;
2738 struct btrfs_fs_info
*fs_info
= sparity
->sctx
->fs_info
;
2741 bitmap_or(sparity
->ebitmap
, sparity
->ebitmap
, sparity
->dbitmap
,
2746 btrfs_init_work(&sparity
->work
, scrub_parity_bio_endio_worker
, NULL
,
2748 btrfs_queue_work(fs_info
->scrub_parity_workers
, &sparity
->work
);
2751 static void scrub_parity_check_and_repair(struct scrub_parity
*sparity
)
2753 struct scrub_ctx
*sctx
= sparity
->sctx
;
2754 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
2756 struct btrfs_raid_bio
*rbio
;
2757 struct btrfs_bio
*bbio
= NULL
;
2761 if (!bitmap_andnot(sparity
->dbitmap
, sparity
->dbitmap
, sparity
->ebitmap
,
2765 length
= sparity
->logic_end
- sparity
->logic_start
;
2767 btrfs_bio_counter_inc_blocked(fs_info
);
2768 ret
= btrfs_map_sblock(fs_info
, BTRFS_MAP_WRITE
, sparity
->logic_start
,
2770 if (ret
|| !bbio
|| !bbio
->raid_map
)
2773 bio
= btrfs_io_bio_alloc(0);
2774 bio
->bi_iter
.bi_sector
= sparity
->logic_start
>> 9;
2775 bio
->bi_private
= sparity
;
2776 bio
->bi_end_io
= scrub_parity_bio_endio
;
2778 rbio
= raid56_parity_alloc_scrub_rbio(fs_info
, bio
, bbio
,
2779 length
, sparity
->scrub_dev
,
2785 scrub_pending_bio_inc(sctx
);
2786 raid56_parity_submit_scrub_rbio(rbio
);
2792 btrfs_bio_counter_dec(fs_info
);
2793 btrfs_put_bbio(bbio
);
2794 bitmap_or(sparity
->ebitmap
, sparity
->ebitmap
, sparity
->dbitmap
,
2796 spin_lock(&sctx
->stat_lock
);
2797 sctx
->stat
.malloc_errors
++;
2798 spin_unlock(&sctx
->stat_lock
);
2800 scrub_free_parity(sparity
);
2803 static inline int scrub_calc_parity_bitmap_len(int nsectors
)
2805 return DIV_ROUND_UP(nsectors
, BITS_PER_LONG
) * sizeof(long);
2808 static void scrub_parity_get(struct scrub_parity
*sparity
)
2810 refcount_inc(&sparity
->refs
);
2813 static void scrub_parity_put(struct scrub_parity
*sparity
)
2815 if (!refcount_dec_and_test(&sparity
->refs
))
2818 scrub_parity_check_and_repair(sparity
);
2821 static noinline_for_stack
int scrub_raid56_parity(struct scrub_ctx
*sctx
,
2822 struct map_lookup
*map
,
2823 struct btrfs_device
*sdev
,
2824 struct btrfs_path
*path
,
2828 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
2829 struct btrfs_root
*root
= fs_info
->extent_root
;
2830 struct btrfs_root
*csum_root
= fs_info
->csum_root
;
2831 struct btrfs_extent_item
*extent
;
2832 struct btrfs_bio
*bbio
= NULL
;
2836 struct extent_buffer
*l
;
2837 struct btrfs_key key
;
2840 u64 extent_physical
;
2843 struct btrfs_device
*extent_dev
;
2844 struct scrub_parity
*sparity
;
2847 int extent_mirror_num
;
2850 nsectors
= div_u64(map
->stripe_len
, fs_info
->sectorsize
);
2851 bitmap_len
= scrub_calc_parity_bitmap_len(nsectors
);
2852 sparity
= kzalloc(sizeof(struct scrub_parity
) + 2 * bitmap_len
,
2855 spin_lock(&sctx
->stat_lock
);
2856 sctx
->stat
.malloc_errors
++;
2857 spin_unlock(&sctx
->stat_lock
);
2861 sparity
->stripe_len
= map
->stripe_len
;
2862 sparity
->nsectors
= nsectors
;
2863 sparity
->sctx
= sctx
;
2864 sparity
->scrub_dev
= sdev
;
2865 sparity
->logic_start
= logic_start
;
2866 sparity
->logic_end
= logic_end
;
2867 refcount_set(&sparity
->refs
, 1);
2868 INIT_LIST_HEAD(&sparity
->spages
);
2869 sparity
->dbitmap
= sparity
->bitmap
;
2870 sparity
->ebitmap
= (void *)sparity
->bitmap
+ bitmap_len
;
2873 while (logic_start
< logic_end
) {
2874 if (btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
2875 key
.type
= BTRFS_METADATA_ITEM_KEY
;
2877 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2878 key
.objectid
= logic_start
;
2879 key
.offset
= (u64
)-1;
2881 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2886 ret
= btrfs_previous_extent_item(root
, path
, 0);
2890 btrfs_release_path(path
);
2891 ret
= btrfs_search_slot(NULL
, root
, &key
,
2903 slot
= path
->slots
[0];
2904 if (slot
>= btrfs_header_nritems(l
)) {
2905 ret
= btrfs_next_leaf(root
, path
);
2914 btrfs_item_key_to_cpu(l
, &key
, slot
);
2916 if (key
.type
!= BTRFS_EXTENT_ITEM_KEY
&&
2917 key
.type
!= BTRFS_METADATA_ITEM_KEY
)
2920 if (key
.type
== BTRFS_METADATA_ITEM_KEY
)
2921 bytes
= fs_info
->nodesize
;
2925 if (key
.objectid
+ bytes
<= logic_start
)
2928 if (key
.objectid
>= logic_end
) {
2933 while (key
.objectid
>= logic_start
+ map
->stripe_len
)
2934 logic_start
+= map
->stripe_len
;
2936 extent
= btrfs_item_ptr(l
, slot
,
2937 struct btrfs_extent_item
);
2938 flags
= btrfs_extent_flags(l
, extent
);
2939 generation
= btrfs_extent_generation(l
, extent
);
2941 if ((flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) &&
2942 (key
.objectid
< logic_start
||
2943 key
.objectid
+ bytes
>
2944 logic_start
+ map
->stripe_len
)) {
2946 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2947 key
.objectid
, logic_start
);
2948 spin_lock(&sctx
->stat_lock
);
2949 sctx
->stat
.uncorrectable_errors
++;
2950 spin_unlock(&sctx
->stat_lock
);
2954 extent_logical
= key
.objectid
;
2957 if (extent_logical
< logic_start
) {
2958 extent_len
-= logic_start
- extent_logical
;
2959 extent_logical
= logic_start
;
2962 if (extent_logical
+ extent_len
>
2963 logic_start
+ map
->stripe_len
)
2964 extent_len
= logic_start
+ map
->stripe_len
-
2967 scrub_parity_mark_sectors_data(sparity
, extent_logical
,
2970 mapped_length
= extent_len
;
2972 ret
= btrfs_map_block(fs_info
, BTRFS_MAP_READ
,
2973 extent_logical
, &mapped_length
, &bbio
,
2976 if (!bbio
|| mapped_length
< extent_len
)
2980 btrfs_put_bbio(bbio
);
2983 extent_physical
= bbio
->stripes
[0].physical
;
2984 extent_mirror_num
= bbio
->mirror_num
;
2985 extent_dev
= bbio
->stripes
[0].dev
;
2986 btrfs_put_bbio(bbio
);
2988 ret
= btrfs_lookup_csums_range(csum_root
,
2990 extent_logical
+ extent_len
- 1,
2991 &sctx
->csum_list
, 1);
2995 ret
= scrub_extent_for_parity(sparity
, extent_logical
,
3002 scrub_free_csums(sctx
);
3007 if (extent_logical
+ extent_len
<
3008 key
.objectid
+ bytes
) {
3009 logic_start
+= map
->stripe_len
;
3011 if (logic_start
>= logic_end
) {
3016 if (logic_start
< key
.objectid
+ bytes
) {
3025 btrfs_release_path(path
);
3030 logic_start
+= map
->stripe_len
;
3034 scrub_parity_mark_sectors_error(sparity
, logic_start
,
3035 logic_end
- logic_start
);
3036 scrub_parity_put(sparity
);
3038 mutex_lock(&sctx
->wr_lock
);
3039 scrub_wr_submit(sctx
);
3040 mutex_unlock(&sctx
->wr_lock
);
3042 btrfs_release_path(path
);
3043 return ret
< 0 ? ret
: 0;
3046 static noinline_for_stack
int scrub_stripe(struct scrub_ctx
*sctx
,
3047 struct map_lookup
*map
,
3048 struct btrfs_device
*scrub_dev
,
3049 int num
, u64 base
, u64 length
)
3051 struct btrfs_path
*path
, *ppath
;
3052 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
3053 struct btrfs_root
*root
= fs_info
->extent_root
;
3054 struct btrfs_root
*csum_root
= fs_info
->csum_root
;
3055 struct btrfs_extent_item
*extent
;
3056 struct blk_plug plug
;
3061 struct extent_buffer
*l
;
3068 struct reada_control
*reada1
;
3069 struct reada_control
*reada2
;
3070 struct btrfs_key key
;
3071 struct btrfs_key key_end
;
3072 u64 increment
= map
->stripe_len
;
3075 u64 extent_physical
;
3079 struct btrfs_device
*extent_dev
;
3080 int extent_mirror_num
;
3083 physical
= map
->stripes
[num
].physical
;
3085 nstripes
= div64_u64(length
, map
->stripe_len
);
3086 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
3087 offset
= map
->stripe_len
* num
;
3088 increment
= map
->stripe_len
* map
->num_stripes
;
3090 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
3091 int factor
= map
->num_stripes
/ map
->sub_stripes
;
3092 offset
= map
->stripe_len
* (num
/ map
->sub_stripes
);
3093 increment
= map
->stripe_len
* factor
;
3094 mirror_num
= num
% map
->sub_stripes
+ 1;
3095 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID1_MASK
) {
3096 increment
= map
->stripe_len
;
3097 mirror_num
= num
% map
->num_stripes
+ 1;
3098 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
3099 increment
= map
->stripe_len
;
3100 mirror_num
= num
% map
->num_stripes
+ 1;
3101 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
3102 get_raid56_logic_offset(physical
, num
, map
, &offset
, NULL
);
3103 increment
= map
->stripe_len
* nr_data_stripes(map
);
3106 increment
= map
->stripe_len
;
3110 path
= btrfs_alloc_path();
3114 ppath
= btrfs_alloc_path();
3116 btrfs_free_path(path
);
3121 * work on commit root. The related disk blocks are static as
3122 * long as COW is applied. This means, it is save to rewrite
3123 * them to repair disk errors without any race conditions
3125 path
->search_commit_root
= 1;
3126 path
->skip_locking
= 1;
3128 ppath
->search_commit_root
= 1;
3129 ppath
->skip_locking
= 1;
3131 * trigger the readahead for extent tree csum tree and wait for
3132 * completion. During readahead, the scrub is officially paused
3133 * to not hold off transaction commits
3135 logical
= base
+ offset
;
3136 physical_end
= physical
+ nstripes
* map
->stripe_len
;
3137 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
3138 get_raid56_logic_offset(physical_end
, num
,
3139 map
, &logic_end
, NULL
);
3142 logic_end
= logical
+ increment
* nstripes
;
3144 wait_event(sctx
->list_wait
,
3145 atomic_read(&sctx
->bios_in_flight
) == 0);
3146 scrub_blocked_if_needed(fs_info
);
3148 /* FIXME it might be better to start readahead at commit root */
3149 key
.objectid
= logical
;
3150 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3151 key
.offset
= (u64
)0;
3152 key_end
.objectid
= logic_end
;
3153 key_end
.type
= BTRFS_METADATA_ITEM_KEY
;
3154 key_end
.offset
= (u64
)-1;
3155 reada1
= btrfs_reada_add(root
, &key
, &key_end
);
3157 key
.objectid
= BTRFS_EXTENT_CSUM_OBJECTID
;
3158 key
.type
= BTRFS_EXTENT_CSUM_KEY
;
3159 key
.offset
= logical
;
3160 key_end
.objectid
= BTRFS_EXTENT_CSUM_OBJECTID
;
3161 key_end
.type
= BTRFS_EXTENT_CSUM_KEY
;
3162 key_end
.offset
= logic_end
;
3163 reada2
= btrfs_reada_add(csum_root
, &key
, &key_end
);
3165 if (!IS_ERR(reada1
))
3166 btrfs_reada_wait(reada1
);
3167 if (!IS_ERR(reada2
))
3168 btrfs_reada_wait(reada2
);
3172 * collect all data csums for the stripe to avoid seeking during
3173 * the scrub. This might currently (crc32) end up to be about 1MB
3175 blk_start_plug(&plug
);
3178 * now find all extents for each stripe and scrub them
3181 while (physical
< physical_end
) {
3185 if (atomic_read(&fs_info
->scrub_cancel_req
) ||
3186 atomic_read(&sctx
->cancel_req
)) {
3191 * check to see if we have to pause
3193 if (atomic_read(&fs_info
->scrub_pause_req
)) {
3194 /* push queued extents */
3195 sctx
->flush_all_writes
= true;
3197 mutex_lock(&sctx
->wr_lock
);
3198 scrub_wr_submit(sctx
);
3199 mutex_unlock(&sctx
->wr_lock
);
3200 wait_event(sctx
->list_wait
,
3201 atomic_read(&sctx
->bios_in_flight
) == 0);
3202 sctx
->flush_all_writes
= false;
3203 scrub_blocked_if_needed(fs_info
);
3206 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
3207 ret
= get_raid56_logic_offset(physical
, num
, map
,
3212 /* it is parity strip */
3213 stripe_logical
+= base
;
3214 stripe_end
= stripe_logical
+ increment
;
3215 ret
= scrub_raid56_parity(sctx
, map
, scrub_dev
,
3216 ppath
, stripe_logical
,
3224 if (btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
3225 key
.type
= BTRFS_METADATA_ITEM_KEY
;
3227 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3228 key
.objectid
= logical
;
3229 key
.offset
= (u64
)-1;
3231 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3236 ret
= btrfs_previous_extent_item(root
, path
, 0);
3240 /* there's no smaller item, so stick with the
3242 btrfs_release_path(path
);
3243 ret
= btrfs_search_slot(NULL
, root
, &key
,
3255 slot
= path
->slots
[0];
3256 if (slot
>= btrfs_header_nritems(l
)) {
3257 ret
= btrfs_next_leaf(root
, path
);
3266 btrfs_item_key_to_cpu(l
, &key
, slot
);
3268 if (key
.type
!= BTRFS_EXTENT_ITEM_KEY
&&
3269 key
.type
!= BTRFS_METADATA_ITEM_KEY
)
3272 if (key
.type
== BTRFS_METADATA_ITEM_KEY
)
3273 bytes
= fs_info
->nodesize
;
3277 if (key
.objectid
+ bytes
<= logical
)
3280 if (key
.objectid
>= logical
+ map
->stripe_len
) {
3281 /* out of this device extent */
3282 if (key
.objectid
>= logic_end
)
3287 extent
= btrfs_item_ptr(l
, slot
,
3288 struct btrfs_extent_item
);
3289 flags
= btrfs_extent_flags(l
, extent
);
3290 generation
= btrfs_extent_generation(l
, extent
);
3292 if ((flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) &&
3293 (key
.objectid
< logical
||
3294 key
.objectid
+ bytes
>
3295 logical
+ map
->stripe_len
)) {
3297 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3298 key
.objectid
, logical
);
3299 spin_lock(&sctx
->stat_lock
);
3300 sctx
->stat
.uncorrectable_errors
++;
3301 spin_unlock(&sctx
->stat_lock
);
3306 extent_logical
= key
.objectid
;
3310 * trim extent to this stripe
3312 if (extent_logical
< logical
) {
3313 extent_len
-= logical
- extent_logical
;
3314 extent_logical
= logical
;
3316 if (extent_logical
+ extent_len
>
3317 logical
+ map
->stripe_len
) {
3318 extent_len
= logical
+ map
->stripe_len
-
3322 extent_physical
= extent_logical
- logical
+ physical
;
3323 extent_dev
= scrub_dev
;
3324 extent_mirror_num
= mirror_num
;
3325 if (sctx
->is_dev_replace
)
3326 scrub_remap_extent(fs_info
, extent_logical
,
3327 extent_len
, &extent_physical
,
3329 &extent_mirror_num
);
3331 ret
= btrfs_lookup_csums_range(csum_root
,
3335 &sctx
->csum_list
, 1);
3339 ret
= scrub_extent(sctx
, map
, extent_logical
, extent_len
,
3340 extent_physical
, extent_dev
, flags
,
3341 generation
, extent_mirror_num
,
3342 extent_logical
- logical
+ physical
);
3344 scrub_free_csums(sctx
);
3349 if (extent_logical
+ extent_len
<
3350 key
.objectid
+ bytes
) {
3351 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
3353 * loop until we find next data stripe
3354 * or we have finished all stripes.
3357 physical
+= map
->stripe_len
;
3358 ret
= get_raid56_logic_offset(physical
,
3363 if (ret
&& physical
< physical_end
) {
3364 stripe_logical
+= base
;
3365 stripe_end
= stripe_logical
+
3367 ret
= scrub_raid56_parity(sctx
,
3368 map
, scrub_dev
, ppath
,
3376 physical
+= map
->stripe_len
;
3377 logical
+= increment
;
3379 if (logical
< key
.objectid
+ bytes
) {
3384 if (physical
>= physical_end
) {
3392 btrfs_release_path(path
);
3394 logical
+= increment
;
3395 physical
+= map
->stripe_len
;
3396 spin_lock(&sctx
->stat_lock
);
3398 sctx
->stat
.last_physical
= map
->stripes
[num
].physical
+
3401 sctx
->stat
.last_physical
= physical
;
3402 spin_unlock(&sctx
->stat_lock
);
3407 /* push queued extents */
3409 mutex_lock(&sctx
->wr_lock
);
3410 scrub_wr_submit(sctx
);
3411 mutex_unlock(&sctx
->wr_lock
);
3413 blk_finish_plug(&plug
);
3414 btrfs_free_path(path
);
3415 btrfs_free_path(ppath
);
3416 return ret
< 0 ? ret
: 0;
3419 static noinline_for_stack
int scrub_chunk(struct scrub_ctx
*sctx
,
3420 struct btrfs_device
*scrub_dev
,
3421 u64 chunk_offset
, u64 length
,
3423 struct btrfs_block_group
*cache
)
3425 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
3426 struct extent_map_tree
*map_tree
= &fs_info
->mapping_tree
;
3427 struct map_lookup
*map
;
3428 struct extent_map
*em
;
3432 read_lock(&map_tree
->lock
);
3433 em
= lookup_extent_mapping(map_tree
, chunk_offset
, 1);
3434 read_unlock(&map_tree
->lock
);
3438 * Might have been an unused block group deleted by the cleaner
3439 * kthread or relocation.
3441 spin_lock(&cache
->lock
);
3442 if (!cache
->removed
)
3444 spin_unlock(&cache
->lock
);
3449 map
= em
->map_lookup
;
3450 if (em
->start
!= chunk_offset
)
3453 if (em
->len
< length
)
3456 for (i
= 0; i
< map
->num_stripes
; ++i
) {
3457 if (map
->stripes
[i
].dev
->bdev
== scrub_dev
->bdev
&&
3458 map
->stripes
[i
].physical
== dev_offset
) {
3459 ret
= scrub_stripe(sctx
, map
, scrub_dev
, i
,
3460 chunk_offset
, length
);
3466 free_extent_map(em
);
3471 static noinline_for_stack
3472 int scrub_enumerate_chunks(struct scrub_ctx
*sctx
,
3473 struct btrfs_device
*scrub_dev
, u64 start
, u64 end
)
3475 struct btrfs_dev_extent
*dev_extent
= NULL
;
3476 struct btrfs_path
*path
;
3477 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
3478 struct btrfs_root
*root
= fs_info
->dev_root
;
3484 struct extent_buffer
*l
;
3485 struct btrfs_key key
;
3486 struct btrfs_key found_key
;
3487 struct btrfs_block_group
*cache
;
3488 struct btrfs_dev_replace
*dev_replace
= &fs_info
->dev_replace
;
3490 path
= btrfs_alloc_path();
3494 path
->reada
= READA_FORWARD
;
3495 path
->search_commit_root
= 1;
3496 path
->skip_locking
= 1;
3498 key
.objectid
= scrub_dev
->devid
;
3500 key
.type
= BTRFS_DEV_EXTENT_KEY
;
3503 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3507 if (path
->slots
[0] >=
3508 btrfs_header_nritems(path
->nodes
[0])) {
3509 ret
= btrfs_next_leaf(root
, path
);
3522 slot
= path
->slots
[0];
3524 btrfs_item_key_to_cpu(l
, &found_key
, slot
);
3526 if (found_key
.objectid
!= scrub_dev
->devid
)
3529 if (found_key
.type
!= BTRFS_DEV_EXTENT_KEY
)
3532 if (found_key
.offset
>= end
)
3535 if (found_key
.offset
< key
.offset
)
3538 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
3539 length
= btrfs_dev_extent_length(l
, dev_extent
);
3541 if (found_key
.offset
+ length
<= start
)
3544 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
3547 * get a reference on the corresponding block group to prevent
3548 * the chunk from going away while we scrub it
3550 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3552 /* some chunks are removed but not committed to disk yet,
3553 * continue scrubbing */
3558 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3559 * to avoid deadlock caused by:
3560 * btrfs_inc_block_group_ro()
3561 * -> btrfs_wait_for_commit()
3562 * -> btrfs_commit_transaction()
3563 * -> btrfs_scrub_pause()
3565 scrub_pause_on(fs_info
);
3568 * Don't do chunk preallocation for scrub.
3570 * This is especially important for SYSTEM bgs, or we can hit
3571 * -EFBIG from btrfs_finish_chunk_alloc() like:
3572 * 1. The only SYSTEM bg is marked RO.
3573 * Since SYSTEM bg is small, that's pretty common.
3574 * 2. New SYSTEM bg will be allocated
3575 * Due to regular version will allocate new chunk.
3576 * 3. New SYSTEM bg is empty and will get cleaned up
3577 * Before cleanup really happens, it's marked RO again.
3578 * 4. Empty SYSTEM bg get scrubbed
3581 * This can easily boost the amount of SYSTEM chunks if cleaner
3582 * thread can't be triggered fast enough, and use up all space
3583 * of btrfs_super_block::sys_chunk_array
3585 * While for dev replace, we need to try our best to mark block
3586 * group RO, to prevent race between:
3587 * - Write duplication
3588 * Contains latest data
3590 * Contains data from commit tree
3592 * If target block group is not marked RO, nocow writes can
3593 * be overwritten by scrub copy, causing data corruption.
3594 * So for dev-replace, it's not allowed to continue if a block
3597 ret
= btrfs_inc_block_group_ro(cache
, sctx
->is_dev_replace
);
3600 } else if (ret
== -ENOSPC
&& !sctx
->is_dev_replace
) {
3602 * btrfs_inc_block_group_ro return -ENOSPC when it
3603 * failed in creating new chunk for metadata.
3604 * It is not a problem for scrub, because
3605 * metadata are always cowed, and our scrub paused
3606 * commit_transactions.
3611 "failed setting block group ro: %d", ret
);
3612 btrfs_put_block_group(cache
);
3613 scrub_pause_off(fs_info
);
3618 * Now the target block is marked RO, wait for nocow writes to
3619 * finish before dev-replace.
3620 * COW is fine, as COW never overwrites extents in commit tree.
3622 if (sctx
->is_dev_replace
) {
3623 btrfs_wait_nocow_writers(cache
);
3624 btrfs_wait_ordered_roots(fs_info
, U64_MAX
, cache
->start
,
3628 scrub_pause_off(fs_info
);
3629 down_write(&dev_replace
->rwsem
);
3630 dev_replace
->cursor_right
= found_key
.offset
+ length
;
3631 dev_replace
->cursor_left
= found_key
.offset
;
3632 dev_replace
->item_needs_writeback
= 1;
3633 up_write(&dev_replace
->rwsem
);
3635 ret
= scrub_chunk(sctx
, scrub_dev
, chunk_offset
, length
,
3636 found_key
.offset
, cache
);
3639 * flush, submit all pending read and write bios, afterwards
3641 * Note that in the dev replace case, a read request causes
3642 * write requests that are submitted in the read completion
3643 * worker. Therefore in the current situation, it is required
3644 * that all write requests are flushed, so that all read and
3645 * write requests are really completed when bios_in_flight
3648 sctx
->flush_all_writes
= true;
3650 mutex_lock(&sctx
->wr_lock
);
3651 scrub_wr_submit(sctx
);
3652 mutex_unlock(&sctx
->wr_lock
);
3654 wait_event(sctx
->list_wait
,
3655 atomic_read(&sctx
->bios_in_flight
) == 0);
3657 scrub_pause_on(fs_info
);
3660 * must be called before we decrease @scrub_paused.
3661 * make sure we don't block transaction commit while
3662 * we are waiting pending workers finished.
3664 wait_event(sctx
->list_wait
,
3665 atomic_read(&sctx
->workers_pending
) == 0);
3666 sctx
->flush_all_writes
= false;
3668 scrub_pause_off(fs_info
);
3670 down_write(&dev_replace
->rwsem
);
3671 dev_replace
->cursor_left
= dev_replace
->cursor_right
;
3672 dev_replace
->item_needs_writeback
= 1;
3673 up_write(&dev_replace
->rwsem
);
3676 btrfs_dec_block_group_ro(cache
);
3679 * We might have prevented the cleaner kthread from deleting
3680 * this block group if it was already unused because we raced
3681 * and set it to RO mode first. So add it back to the unused
3682 * list, otherwise it might not ever be deleted unless a manual
3683 * balance is triggered or it becomes used and unused again.
3685 spin_lock(&cache
->lock
);
3686 if (!cache
->removed
&& !cache
->ro
&& cache
->reserved
== 0 &&
3688 spin_unlock(&cache
->lock
);
3689 if (btrfs_test_opt(fs_info
, DISCARD_ASYNC
))
3690 btrfs_discard_queue_work(&fs_info
->discard_ctl
,
3693 btrfs_mark_bg_unused(cache
);
3695 spin_unlock(&cache
->lock
);
3698 btrfs_put_block_group(cache
);
3701 if (sctx
->is_dev_replace
&&
3702 atomic64_read(&dev_replace
->num_write_errors
) > 0) {
3706 if (sctx
->stat
.malloc_errors
> 0) {
3711 key
.offset
= found_key
.offset
+ length
;
3712 btrfs_release_path(path
);
3715 btrfs_free_path(path
);
3720 static noinline_for_stack
int scrub_supers(struct scrub_ctx
*sctx
,
3721 struct btrfs_device
*scrub_dev
)
3727 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
3729 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
3732 /* Seed devices of a new filesystem has their own generation. */
3733 if (scrub_dev
->fs_devices
!= fs_info
->fs_devices
)
3734 gen
= scrub_dev
->generation
;
3736 gen
= fs_info
->last_trans_committed
;
3738 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
3739 bytenr
= btrfs_sb_offset(i
);
3740 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>
3741 scrub_dev
->commit_total_bytes
)
3744 ret
= scrub_pages(sctx
, bytenr
, BTRFS_SUPER_INFO_SIZE
, bytenr
,
3745 scrub_dev
, BTRFS_EXTENT_FLAG_SUPER
, gen
, i
,
3750 wait_event(sctx
->list_wait
, atomic_read(&sctx
->bios_in_flight
) == 0);
3756 * get a reference count on fs_info->scrub_workers. start worker if necessary
3758 static noinline_for_stack
int scrub_workers_get(struct btrfs_fs_info
*fs_info
,
3761 unsigned int flags
= WQ_FREEZABLE
| WQ_UNBOUND
;
3762 int max_active
= fs_info
->thread_pool_size
;
3764 lockdep_assert_held(&fs_info
->scrub_lock
);
3766 if (refcount_read(&fs_info
->scrub_workers_refcnt
) == 0) {
3767 ASSERT(fs_info
->scrub_workers
== NULL
);
3768 fs_info
->scrub_workers
= btrfs_alloc_workqueue(fs_info
, "scrub",
3769 flags
, is_dev_replace
? 1 : max_active
, 4);
3770 if (!fs_info
->scrub_workers
)
3771 goto fail_scrub_workers
;
3773 ASSERT(fs_info
->scrub_wr_completion_workers
== NULL
);
3774 fs_info
->scrub_wr_completion_workers
=
3775 btrfs_alloc_workqueue(fs_info
, "scrubwrc", flags
,
3777 if (!fs_info
->scrub_wr_completion_workers
)
3778 goto fail_scrub_wr_completion_workers
;
3780 ASSERT(fs_info
->scrub_parity_workers
== NULL
);
3781 fs_info
->scrub_parity_workers
=
3782 btrfs_alloc_workqueue(fs_info
, "scrubparity", flags
,
3784 if (!fs_info
->scrub_parity_workers
)
3785 goto fail_scrub_parity_workers
;
3787 refcount_set(&fs_info
->scrub_workers_refcnt
, 1);
3789 refcount_inc(&fs_info
->scrub_workers_refcnt
);
3793 fail_scrub_parity_workers
:
3794 btrfs_destroy_workqueue(fs_info
->scrub_wr_completion_workers
);
3795 fail_scrub_wr_completion_workers
:
3796 btrfs_destroy_workqueue(fs_info
->scrub_workers
);
3801 int btrfs_scrub_dev(struct btrfs_fs_info
*fs_info
, u64 devid
, u64 start
,
3802 u64 end
, struct btrfs_scrub_progress
*progress
,
3803 int readonly
, int is_dev_replace
)
3805 struct scrub_ctx
*sctx
;
3807 struct btrfs_device
*dev
;
3808 unsigned int nofs_flag
;
3809 struct btrfs_workqueue
*scrub_workers
= NULL
;
3810 struct btrfs_workqueue
*scrub_wr_comp
= NULL
;
3811 struct btrfs_workqueue
*scrub_parity
= NULL
;
3813 if (btrfs_fs_closing(fs_info
))
3816 if (fs_info
->nodesize
> BTRFS_STRIPE_LEN
) {
3818 * in this case scrub is unable to calculate the checksum
3819 * the way scrub is implemented. Do not handle this
3820 * situation at all because it won't ever happen.
3823 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3829 if (fs_info
->sectorsize
!= PAGE_SIZE
) {
3830 /* not supported for data w/o checksums */
3831 btrfs_err_rl(fs_info
,
3832 "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3833 fs_info
->sectorsize
, PAGE_SIZE
);
3837 if (fs_info
->nodesize
>
3838 PAGE_SIZE
* SCRUB_MAX_PAGES_PER_BLOCK
||
3839 fs_info
->sectorsize
> PAGE_SIZE
* SCRUB_MAX_PAGES_PER_BLOCK
) {
3841 * would exhaust the array bounds of pagev member in
3842 * struct scrub_block
3845 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3847 SCRUB_MAX_PAGES_PER_BLOCK
,
3848 fs_info
->sectorsize
,
3849 SCRUB_MAX_PAGES_PER_BLOCK
);
3853 /* Allocate outside of device_list_mutex */
3854 sctx
= scrub_setup_ctx(fs_info
, is_dev_replace
);
3856 return PTR_ERR(sctx
);
3858 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
3859 dev
= btrfs_find_device(fs_info
->fs_devices
, devid
, NULL
, NULL
, true);
3860 if (!dev
|| (test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
) &&
3862 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3867 if (!is_dev_replace
&& !readonly
&&
3868 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
)) {
3869 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3870 btrfs_err_in_rcu(fs_info
, "scrub: device %s is not writable",
3871 rcu_str_deref(dev
->name
));
3876 mutex_lock(&fs_info
->scrub_lock
);
3877 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
3878 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &dev
->dev_state
)) {
3879 mutex_unlock(&fs_info
->scrub_lock
);
3880 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3885 down_read(&fs_info
->dev_replace
.rwsem
);
3886 if (dev
->scrub_ctx
||
3888 btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
))) {
3889 up_read(&fs_info
->dev_replace
.rwsem
);
3890 mutex_unlock(&fs_info
->scrub_lock
);
3891 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3895 up_read(&fs_info
->dev_replace
.rwsem
);
3897 ret
= scrub_workers_get(fs_info
, is_dev_replace
);
3899 mutex_unlock(&fs_info
->scrub_lock
);
3900 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3904 sctx
->readonly
= readonly
;
3905 dev
->scrub_ctx
= sctx
;
3906 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3909 * checking @scrub_pause_req here, we can avoid
3910 * race between committing transaction and scrubbing.
3912 __scrub_blocked_if_needed(fs_info
);
3913 atomic_inc(&fs_info
->scrubs_running
);
3914 mutex_unlock(&fs_info
->scrub_lock
);
3917 * In order to avoid deadlock with reclaim when there is a transaction
3918 * trying to pause scrub, make sure we use GFP_NOFS for all the
3919 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
3920 * invoked by our callees. The pausing request is done when the
3921 * transaction commit starts, and it blocks the transaction until scrub
3922 * is paused (done at specific points at scrub_stripe() or right above
3923 * before incrementing fs_info->scrubs_running).
3925 nofs_flag
= memalloc_nofs_save();
3926 if (!is_dev_replace
) {
3927 btrfs_info(fs_info
, "scrub: started on devid %llu", devid
);
3929 * by holding device list mutex, we can
3930 * kick off writing super in log tree sync.
3932 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
3933 ret
= scrub_supers(sctx
, dev
);
3934 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3938 ret
= scrub_enumerate_chunks(sctx
, dev
, start
, end
);
3939 memalloc_nofs_restore(nofs_flag
);
3941 wait_event(sctx
->list_wait
, atomic_read(&sctx
->bios_in_flight
) == 0);
3942 atomic_dec(&fs_info
->scrubs_running
);
3943 wake_up(&fs_info
->scrub_pause_wait
);
3945 wait_event(sctx
->list_wait
, atomic_read(&sctx
->workers_pending
) == 0);
3948 memcpy(progress
, &sctx
->stat
, sizeof(*progress
));
3950 if (!is_dev_replace
)
3951 btrfs_info(fs_info
, "scrub: %s on devid %llu with status: %d",
3952 ret
? "not finished" : "finished", devid
, ret
);
3954 mutex_lock(&fs_info
->scrub_lock
);
3955 dev
->scrub_ctx
= NULL
;
3956 if (refcount_dec_and_test(&fs_info
->scrub_workers_refcnt
)) {
3957 scrub_workers
= fs_info
->scrub_workers
;
3958 scrub_wr_comp
= fs_info
->scrub_wr_completion_workers
;
3959 scrub_parity
= fs_info
->scrub_parity_workers
;
3961 fs_info
->scrub_workers
= NULL
;
3962 fs_info
->scrub_wr_completion_workers
= NULL
;
3963 fs_info
->scrub_parity_workers
= NULL
;
3965 mutex_unlock(&fs_info
->scrub_lock
);
3967 btrfs_destroy_workqueue(scrub_workers
);
3968 btrfs_destroy_workqueue(scrub_wr_comp
);
3969 btrfs_destroy_workqueue(scrub_parity
);
3970 scrub_put_ctx(sctx
);
3975 scrub_free_ctx(sctx
);
3980 void btrfs_scrub_pause(struct btrfs_fs_info
*fs_info
)
3982 mutex_lock(&fs_info
->scrub_lock
);
3983 atomic_inc(&fs_info
->scrub_pause_req
);
3984 while (atomic_read(&fs_info
->scrubs_paused
) !=
3985 atomic_read(&fs_info
->scrubs_running
)) {
3986 mutex_unlock(&fs_info
->scrub_lock
);
3987 wait_event(fs_info
->scrub_pause_wait
,
3988 atomic_read(&fs_info
->scrubs_paused
) ==
3989 atomic_read(&fs_info
->scrubs_running
));
3990 mutex_lock(&fs_info
->scrub_lock
);
3992 mutex_unlock(&fs_info
->scrub_lock
);
3995 void btrfs_scrub_continue(struct btrfs_fs_info
*fs_info
)
3997 atomic_dec(&fs_info
->scrub_pause_req
);
3998 wake_up(&fs_info
->scrub_pause_wait
);
4001 int btrfs_scrub_cancel(struct btrfs_fs_info
*fs_info
)
4003 mutex_lock(&fs_info
->scrub_lock
);
4004 if (!atomic_read(&fs_info
->scrubs_running
)) {
4005 mutex_unlock(&fs_info
->scrub_lock
);
4009 atomic_inc(&fs_info
->scrub_cancel_req
);
4010 while (atomic_read(&fs_info
->scrubs_running
)) {
4011 mutex_unlock(&fs_info
->scrub_lock
);
4012 wait_event(fs_info
->scrub_pause_wait
,
4013 atomic_read(&fs_info
->scrubs_running
) == 0);
4014 mutex_lock(&fs_info
->scrub_lock
);
4016 atomic_dec(&fs_info
->scrub_cancel_req
);
4017 mutex_unlock(&fs_info
->scrub_lock
);
4022 int btrfs_scrub_cancel_dev(struct btrfs_device
*dev
)
4024 struct btrfs_fs_info
*fs_info
= dev
->fs_info
;
4025 struct scrub_ctx
*sctx
;
4027 mutex_lock(&fs_info
->scrub_lock
);
4028 sctx
= dev
->scrub_ctx
;
4030 mutex_unlock(&fs_info
->scrub_lock
);
4033 atomic_inc(&sctx
->cancel_req
);
4034 while (dev
->scrub_ctx
) {
4035 mutex_unlock(&fs_info
->scrub_lock
);
4036 wait_event(fs_info
->scrub_pause_wait
,
4037 dev
->scrub_ctx
== NULL
);
4038 mutex_lock(&fs_info
->scrub_lock
);
4040 mutex_unlock(&fs_info
->scrub_lock
);
4045 int btrfs_scrub_progress(struct btrfs_fs_info
*fs_info
, u64 devid
,
4046 struct btrfs_scrub_progress
*progress
)
4048 struct btrfs_device
*dev
;
4049 struct scrub_ctx
*sctx
= NULL
;
4051 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
4052 dev
= btrfs_find_device(fs_info
->fs_devices
, devid
, NULL
, NULL
, true);
4054 sctx
= dev
->scrub_ctx
;
4056 memcpy(progress
, &sctx
->stat
, sizeof(*progress
));
4057 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4059 return dev
? (sctx
? 0 : -ENOTCONN
) : -ENODEV
;
4062 static void scrub_remap_extent(struct btrfs_fs_info
*fs_info
,
4063 u64 extent_logical
, u64 extent_len
,
4064 u64
*extent_physical
,
4065 struct btrfs_device
**extent_dev
,
4066 int *extent_mirror_num
)
4069 struct btrfs_bio
*bbio
= NULL
;
4072 mapped_length
= extent_len
;
4073 ret
= btrfs_map_block(fs_info
, BTRFS_MAP_READ
, extent_logical
,
4074 &mapped_length
, &bbio
, 0);
4075 if (ret
|| !bbio
|| mapped_length
< extent_len
||
4076 !bbio
->stripes
[0].dev
->bdev
) {
4077 btrfs_put_bbio(bbio
);
4081 *extent_physical
= bbio
->stripes
[0].physical
;
4082 *extent_mirror_num
= bbio
->mirror_num
;
4083 *extent_dev
= bbio
->stripes
[0].dev
;
4084 btrfs_put_bbio(bbio
);