gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / fs / btrfs / transaction.c
blob8cede6eb9843c73f432325dbfd98af132c2563ba
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "misc.h"
14 #include "ctree.h"
15 #include "disk-io.h"
16 #include "transaction.h"
17 #include "locking.h"
18 #include "tree-log.h"
19 #include "inode-map.h"
20 #include "volumes.h"
21 #include "dev-replace.h"
22 #include "qgroup.h"
23 #include "block-group.h"
25 #define BTRFS_ROOT_TRANS_TAG 0
28 * Transaction states and transitions
30 * No running transaction (fs tree blocks are not modified)
31 * |
32 * | To next stage:
33 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
34 * V
35 * Transaction N [[TRANS_STATE_RUNNING]]
36 * |
37 * | New trans handles can be attached to transaction N by calling all
38 * | start_transaction() variants.
39 * |
40 * | To next stage:
41 * | Call btrfs_commit_transaction() on any trans handle attached to
42 * | transaction N
43 * V
44 * Transaction N [[TRANS_STATE_COMMIT_START]]
45 * |
46 * | Will wait for previous running transaction to completely finish if there
47 * | is one
48 * |
49 * | Then one of the following happes:
50 * | - Wait for all other trans handle holders to release.
51 * | The btrfs_commit_transaction() caller will do the commit work.
52 * | - Wait for current transaction to be committed by others.
53 * | Other btrfs_commit_transaction() caller will do the commit work.
54 * |
55 * | At this stage, only btrfs_join_transaction*() variants can attach
56 * | to this running transaction.
57 * | All other variants will wait for current one to finish and attach to
58 * | transaction N+1.
59 * |
60 * | To next stage:
61 * | Caller is chosen to commit transaction N, and all other trans handle
62 * | haven been released.
63 * V
64 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
65 * |
66 * | The heavy lifting transaction work is started.
67 * | From running delayed refs (modifying extent tree) to creating pending
68 * | snapshots, running qgroups.
69 * | In short, modify supporting trees to reflect modifications of subvolume
70 * | trees.
71 * |
72 * | At this stage, all start_transaction() calls will wait for this
73 * | transaction to finish and attach to transaction N+1.
74 * |
75 * | To next stage:
76 * | Until all supporting trees are updated.
77 * V
78 * Transaction N [[TRANS_STATE_UNBLOCKED]]
79 * | Transaction N+1
80 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
81 * | need to write them back to disk and update |
82 * | super blocks. |
83 * | |
84 * | At this stage, new transaction is allowed to |
85 * | start. |
86 * | All new start_transaction() calls will be |
87 * | attached to transid N+1. |
88 * | |
89 * | To next stage: |
90 * | Until all tree blocks are super blocks are |
91 * | written to block devices |
92 * V |
93 * Transaction N [[TRANS_STATE_COMPLETED]] V
94 * All tree blocks and super blocks are written. Transaction N+1
95 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
96 * data structures will be cleaned up. | Life goes on
98 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
99 [TRANS_STATE_RUNNING] = 0U,
100 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
101 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
102 __TRANS_ATTACH |
103 __TRANS_JOIN |
104 __TRANS_JOIN_NOSTART),
105 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
106 __TRANS_ATTACH |
107 __TRANS_JOIN |
108 __TRANS_JOIN_NOLOCK |
109 __TRANS_JOIN_NOSTART),
110 [TRANS_STATE_COMPLETED] = (__TRANS_START |
111 __TRANS_ATTACH |
112 __TRANS_JOIN |
113 __TRANS_JOIN_NOLOCK |
114 __TRANS_JOIN_NOSTART),
117 void btrfs_put_transaction(struct btrfs_transaction *transaction)
119 WARN_ON(refcount_read(&transaction->use_count) == 0);
120 if (refcount_dec_and_test(&transaction->use_count)) {
121 BUG_ON(!list_empty(&transaction->list));
122 WARN_ON(!RB_EMPTY_ROOT(
123 &transaction->delayed_refs.href_root.rb_root));
124 WARN_ON(!RB_EMPTY_ROOT(
125 &transaction->delayed_refs.dirty_extent_root));
126 if (transaction->delayed_refs.pending_csums)
127 btrfs_err(transaction->fs_info,
128 "pending csums is %llu",
129 transaction->delayed_refs.pending_csums);
131 * If any block groups are found in ->deleted_bgs then it's
132 * because the transaction was aborted and a commit did not
133 * happen (things failed before writing the new superblock
134 * and calling btrfs_finish_extent_commit()), so we can not
135 * discard the physical locations of the block groups.
137 while (!list_empty(&transaction->deleted_bgs)) {
138 struct btrfs_block_group *cache;
140 cache = list_first_entry(&transaction->deleted_bgs,
141 struct btrfs_block_group,
142 bg_list);
143 list_del_init(&cache->bg_list);
144 btrfs_put_block_group_trimming(cache);
145 btrfs_put_block_group(cache);
147 WARN_ON(!list_empty(&transaction->dev_update_list));
148 kfree(transaction);
152 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
154 struct btrfs_transaction *cur_trans = trans->transaction;
155 struct btrfs_fs_info *fs_info = trans->fs_info;
156 struct btrfs_root *root, *tmp;
158 down_write(&fs_info->commit_root_sem);
159 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
160 dirty_list) {
161 list_del_init(&root->dirty_list);
162 free_extent_buffer(root->commit_root);
163 root->commit_root = btrfs_root_node(root);
164 if (is_fstree(root->root_key.objectid))
165 btrfs_unpin_free_ino(root);
166 extent_io_tree_release(&root->dirty_log_pages);
167 btrfs_qgroup_clean_swapped_blocks(root);
170 /* We can free old roots now. */
171 spin_lock(&cur_trans->dropped_roots_lock);
172 while (!list_empty(&cur_trans->dropped_roots)) {
173 root = list_first_entry(&cur_trans->dropped_roots,
174 struct btrfs_root, root_list);
175 list_del_init(&root->root_list);
176 spin_unlock(&cur_trans->dropped_roots_lock);
177 btrfs_free_log(trans, root);
178 btrfs_drop_and_free_fs_root(fs_info, root);
179 spin_lock(&cur_trans->dropped_roots_lock);
181 spin_unlock(&cur_trans->dropped_roots_lock);
182 up_write(&fs_info->commit_root_sem);
185 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
186 unsigned int type)
188 if (type & TRANS_EXTWRITERS)
189 atomic_inc(&trans->num_extwriters);
192 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
193 unsigned int type)
195 if (type & TRANS_EXTWRITERS)
196 atomic_dec(&trans->num_extwriters);
199 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
200 unsigned int type)
202 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
205 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
207 return atomic_read(&trans->num_extwriters);
211 * To be called after all the new block groups attached to the transaction
212 * handle have been created (btrfs_create_pending_block_groups()).
214 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
216 struct btrfs_fs_info *fs_info = trans->fs_info;
218 if (!trans->chunk_bytes_reserved)
219 return;
221 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
223 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
224 trans->chunk_bytes_reserved, NULL);
225 trans->chunk_bytes_reserved = 0;
229 * either allocate a new transaction or hop into the existing one
231 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
232 unsigned int type)
234 struct btrfs_transaction *cur_trans;
236 spin_lock(&fs_info->trans_lock);
237 loop:
238 /* The file system has been taken offline. No new transactions. */
239 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
240 spin_unlock(&fs_info->trans_lock);
241 return -EROFS;
244 cur_trans = fs_info->running_transaction;
245 if (cur_trans) {
246 if (TRANS_ABORTED(cur_trans)) {
247 spin_unlock(&fs_info->trans_lock);
248 return cur_trans->aborted;
250 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
251 spin_unlock(&fs_info->trans_lock);
252 return -EBUSY;
254 refcount_inc(&cur_trans->use_count);
255 atomic_inc(&cur_trans->num_writers);
256 extwriter_counter_inc(cur_trans, type);
257 spin_unlock(&fs_info->trans_lock);
258 return 0;
260 spin_unlock(&fs_info->trans_lock);
263 * If we are ATTACH, we just want to catch the current transaction,
264 * and commit it. If there is no transaction, just return ENOENT.
266 if (type == TRANS_ATTACH)
267 return -ENOENT;
270 * JOIN_NOLOCK only happens during the transaction commit, so
271 * it is impossible that ->running_transaction is NULL
273 BUG_ON(type == TRANS_JOIN_NOLOCK);
275 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
276 if (!cur_trans)
277 return -ENOMEM;
279 spin_lock(&fs_info->trans_lock);
280 if (fs_info->running_transaction) {
282 * someone started a transaction after we unlocked. Make sure
283 * to redo the checks above
285 kfree(cur_trans);
286 goto loop;
287 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
288 spin_unlock(&fs_info->trans_lock);
289 kfree(cur_trans);
290 return -EROFS;
293 cur_trans->fs_info = fs_info;
294 atomic_set(&cur_trans->num_writers, 1);
295 extwriter_counter_init(cur_trans, type);
296 init_waitqueue_head(&cur_trans->writer_wait);
297 init_waitqueue_head(&cur_trans->commit_wait);
298 cur_trans->state = TRANS_STATE_RUNNING;
300 * One for this trans handle, one so it will live on until we
301 * commit the transaction.
303 refcount_set(&cur_trans->use_count, 2);
304 cur_trans->flags = 0;
305 cur_trans->start_time = ktime_get_seconds();
307 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
309 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
310 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
311 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
314 * although the tree mod log is per file system and not per transaction,
315 * the log must never go across transaction boundaries.
317 smp_mb();
318 if (!list_empty(&fs_info->tree_mod_seq_list))
319 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
320 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
321 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
322 atomic64_set(&fs_info->tree_mod_seq, 0);
324 spin_lock_init(&cur_trans->delayed_refs.lock);
326 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
327 INIT_LIST_HEAD(&cur_trans->dev_update_list);
328 INIT_LIST_HEAD(&cur_trans->switch_commits);
329 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
330 INIT_LIST_HEAD(&cur_trans->io_bgs);
331 INIT_LIST_HEAD(&cur_trans->dropped_roots);
332 mutex_init(&cur_trans->cache_write_mutex);
333 spin_lock_init(&cur_trans->dirty_bgs_lock);
334 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
335 spin_lock_init(&cur_trans->dropped_roots_lock);
336 list_add_tail(&cur_trans->list, &fs_info->trans_list);
337 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
338 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
339 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
340 IO_TREE_FS_PINNED_EXTENTS, NULL);
341 fs_info->generation++;
342 cur_trans->transid = fs_info->generation;
343 fs_info->running_transaction = cur_trans;
344 cur_trans->aborted = 0;
345 spin_unlock(&fs_info->trans_lock);
347 return 0;
351 * this does all the record keeping required to make sure that a reference
352 * counted root is properly recorded in a given transaction. This is required
353 * to make sure the old root from before we joined the transaction is deleted
354 * when the transaction commits
356 static int record_root_in_trans(struct btrfs_trans_handle *trans,
357 struct btrfs_root *root,
358 int force)
360 struct btrfs_fs_info *fs_info = root->fs_info;
362 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
363 root->last_trans < trans->transid) || force) {
364 WARN_ON(root == fs_info->extent_root);
365 WARN_ON(!force && root->commit_root != root->node);
368 * see below for IN_TRANS_SETUP usage rules
369 * we have the reloc mutex held now, so there
370 * is only one writer in this function
372 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
374 /* make sure readers find IN_TRANS_SETUP before
375 * they find our root->last_trans update
377 smp_wmb();
379 spin_lock(&fs_info->fs_roots_radix_lock);
380 if (root->last_trans == trans->transid && !force) {
381 spin_unlock(&fs_info->fs_roots_radix_lock);
382 return 0;
384 radix_tree_tag_set(&fs_info->fs_roots_radix,
385 (unsigned long)root->root_key.objectid,
386 BTRFS_ROOT_TRANS_TAG);
387 spin_unlock(&fs_info->fs_roots_radix_lock);
388 root->last_trans = trans->transid;
390 /* this is pretty tricky. We don't want to
391 * take the relocation lock in btrfs_record_root_in_trans
392 * unless we're really doing the first setup for this root in
393 * this transaction.
395 * Normally we'd use root->last_trans as a flag to decide
396 * if we want to take the expensive mutex.
398 * But, we have to set root->last_trans before we
399 * init the relocation root, otherwise, we trip over warnings
400 * in ctree.c. The solution used here is to flag ourselves
401 * with root IN_TRANS_SETUP. When this is 1, we're still
402 * fixing up the reloc trees and everyone must wait.
404 * When this is zero, they can trust root->last_trans and fly
405 * through btrfs_record_root_in_trans without having to take the
406 * lock. smp_wmb() makes sure that all the writes above are
407 * done before we pop in the zero below
409 btrfs_init_reloc_root(trans, root);
410 smp_mb__before_atomic();
411 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
413 return 0;
417 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
418 struct btrfs_root *root)
420 struct btrfs_fs_info *fs_info = root->fs_info;
421 struct btrfs_transaction *cur_trans = trans->transaction;
423 /* Add ourselves to the transaction dropped list */
424 spin_lock(&cur_trans->dropped_roots_lock);
425 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
426 spin_unlock(&cur_trans->dropped_roots_lock);
428 /* Make sure we don't try to update the root at commit time */
429 spin_lock(&fs_info->fs_roots_radix_lock);
430 radix_tree_tag_clear(&fs_info->fs_roots_radix,
431 (unsigned long)root->root_key.objectid,
432 BTRFS_ROOT_TRANS_TAG);
433 spin_unlock(&fs_info->fs_roots_radix_lock);
436 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
437 struct btrfs_root *root)
439 struct btrfs_fs_info *fs_info = root->fs_info;
441 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
442 return 0;
445 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
446 * and barriers
448 smp_rmb();
449 if (root->last_trans == trans->transid &&
450 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
451 return 0;
453 mutex_lock(&fs_info->reloc_mutex);
454 record_root_in_trans(trans, root, 0);
455 mutex_unlock(&fs_info->reloc_mutex);
457 return 0;
460 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
462 return (trans->state >= TRANS_STATE_COMMIT_START &&
463 trans->state < TRANS_STATE_UNBLOCKED &&
464 !TRANS_ABORTED(trans));
467 /* wait for commit against the current transaction to become unblocked
468 * when this is done, it is safe to start a new transaction, but the current
469 * transaction might not be fully on disk.
471 static void wait_current_trans(struct btrfs_fs_info *fs_info)
473 struct btrfs_transaction *cur_trans;
475 spin_lock(&fs_info->trans_lock);
476 cur_trans = fs_info->running_transaction;
477 if (cur_trans && is_transaction_blocked(cur_trans)) {
478 refcount_inc(&cur_trans->use_count);
479 spin_unlock(&fs_info->trans_lock);
481 wait_event(fs_info->transaction_wait,
482 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
483 TRANS_ABORTED(cur_trans));
484 btrfs_put_transaction(cur_trans);
485 } else {
486 spin_unlock(&fs_info->trans_lock);
490 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
492 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
493 return 0;
495 if (type == TRANS_START)
496 return 1;
498 return 0;
501 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
503 struct btrfs_fs_info *fs_info = root->fs_info;
505 if (!fs_info->reloc_ctl ||
506 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
507 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
508 root->reloc_root)
509 return false;
511 return true;
514 static struct btrfs_trans_handle *
515 start_transaction(struct btrfs_root *root, unsigned int num_items,
516 unsigned int type, enum btrfs_reserve_flush_enum flush,
517 bool enforce_qgroups)
519 struct btrfs_fs_info *fs_info = root->fs_info;
520 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
521 struct btrfs_trans_handle *h;
522 struct btrfs_transaction *cur_trans;
523 u64 num_bytes = 0;
524 u64 qgroup_reserved = 0;
525 bool reloc_reserved = false;
526 int ret;
528 /* Send isn't supposed to start transactions. */
529 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
531 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
532 return ERR_PTR(-EROFS);
534 if (current->journal_info) {
535 WARN_ON(type & TRANS_EXTWRITERS);
536 h = current->journal_info;
537 refcount_inc(&h->use_count);
538 WARN_ON(refcount_read(&h->use_count) > 2);
539 h->orig_rsv = h->block_rsv;
540 h->block_rsv = NULL;
541 goto got_it;
545 * Do the reservation before we join the transaction so we can do all
546 * the appropriate flushing if need be.
548 if (num_items && root != fs_info->chunk_root) {
549 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
550 u64 delayed_refs_bytes = 0;
552 qgroup_reserved = num_items * fs_info->nodesize;
553 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
554 enforce_qgroups);
555 if (ret)
556 return ERR_PTR(ret);
559 * We want to reserve all the bytes we may need all at once, so
560 * we only do 1 enospc flushing cycle per transaction start. We
561 * accomplish this by simply assuming we'll do 2 x num_items
562 * worth of delayed refs updates in this trans handle, and
563 * refill that amount for whatever is missing in the reserve.
565 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
566 if (delayed_refs_rsv->full == 0) {
567 delayed_refs_bytes = num_bytes;
568 num_bytes <<= 1;
572 * Do the reservation for the relocation root creation
574 if (need_reserve_reloc_root(root)) {
575 num_bytes += fs_info->nodesize;
576 reloc_reserved = true;
579 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
580 if (ret)
581 goto reserve_fail;
582 if (delayed_refs_bytes) {
583 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
584 delayed_refs_bytes);
585 num_bytes -= delayed_refs_bytes;
587 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
588 !delayed_refs_rsv->full) {
590 * Some people call with btrfs_start_transaction(root, 0)
591 * because they can be throttled, but have some other mechanism
592 * for reserving space. We still want these guys to refill the
593 * delayed block_rsv so just add 1 items worth of reservation
594 * here.
596 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
597 if (ret)
598 goto reserve_fail;
600 again:
601 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
602 if (!h) {
603 ret = -ENOMEM;
604 goto alloc_fail;
608 * If we are JOIN_NOLOCK we're already committing a transaction and
609 * waiting on this guy, so we don't need to do the sb_start_intwrite
610 * because we're already holding a ref. We need this because we could
611 * have raced in and did an fsync() on a file which can kick a commit
612 * and then we deadlock with somebody doing a freeze.
614 * If we are ATTACH, it means we just want to catch the current
615 * transaction and commit it, so we needn't do sb_start_intwrite().
617 if (type & __TRANS_FREEZABLE)
618 sb_start_intwrite(fs_info->sb);
620 if (may_wait_transaction(fs_info, type))
621 wait_current_trans(fs_info);
623 do {
624 ret = join_transaction(fs_info, type);
625 if (ret == -EBUSY) {
626 wait_current_trans(fs_info);
627 if (unlikely(type == TRANS_ATTACH ||
628 type == TRANS_JOIN_NOSTART))
629 ret = -ENOENT;
631 } while (ret == -EBUSY);
633 if (ret < 0)
634 goto join_fail;
636 cur_trans = fs_info->running_transaction;
638 h->transid = cur_trans->transid;
639 h->transaction = cur_trans;
640 h->root = root;
641 refcount_set(&h->use_count, 1);
642 h->fs_info = root->fs_info;
644 h->type = type;
645 h->can_flush_pending_bgs = true;
646 INIT_LIST_HEAD(&h->new_bgs);
648 smp_mb();
649 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
650 may_wait_transaction(fs_info, type)) {
651 current->journal_info = h;
652 btrfs_commit_transaction(h);
653 goto again;
656 if (num_bytes) {
657 trace_btrfs_space_reservation(fs_info, "transaction",
658 h->transid, num_bytes, 1);
659 h->block_rsv = &fs_info->trans_block_rsv;
660 h->bytes_reserved = num_bytes;
661 h->reloc_reserved = reloc_reserved;
664 got_it:
665 btrfs_record_root_in_trans(h, root);
667 if (!current->journal_info)
668 current->journal_info = h;
669 return h;
671 join_fail:
672 if (type & __TRANS_FREEZABLE)
673 sb_end_intwrite(fs_info->sb);
674 kmem_cache_free(btrfs_trans_handle_cachep, h);
675 alloc_fail:
676 if (num_bytes)
677 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
678 num_bytes, NULL);
679 reserve_fail:
680 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
681 return ERR_PTR(ret);
684 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
685 unsigned int num_items)
687 return start_transaction(root, num_items, TRANS_START,
688 BTRFS_RESERVE_FLUSH_ALL, true);
691 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
692 struct btrfs_root *root,
693 unsigned int num_items,
694 int min_factor)
696 struct btrfs_fs_info *fs_info = root->fs_info;
697 struct btrfs_trans_handle *trans;
698 u64 num_bytes;
699 int ret;
702 * We have two callers: unlink and block group removal. The
703 * former should succeed even if we will temporarily exceed
704 * quota and the latter operates on the extent root so
705 * qgroup enforcement is ignored anyway.
707 trans = start_transaction(root, num_items, TRANS_START,
708 BTRFS_RESERVE_FLUSH_ALL, false);
709 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
710 return trans;
712 trans = btrfs_start_transaction(root, 0);
713 if (IS_ERR(trans))
714 return trans;
716 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
717 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
718 num_bytes, min_factor);
719 if (ret) {
720 btrfs_end_transaction(trans);
721 return ERR_PTR(ret);
724 trans->block_rsv = &fs_info->trans_block_rsv;
725 trans->bytes_reserved = num_bytes;
726 trace_btrfs_space_reservation(fs_info, "transaction",
727 trans->transid, num_bytes, 1);
729 return trans;
732 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
734 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
735 true);
738 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
740 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
741 BTRFS_RESERVE_NO_FLUSH, true);
745 * Similar to regular join but it never starts a transaction when none is
746 * running or after waiting for the current one to finish.
748 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
750 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
751 BTRFS_RESERVE_NO_FLUSH, true);
755 * btrfs_attach_transaction() - catch the running transaction
757 * It is used when we want to commit the current the transaction, but
758 * don't want to start a new one.
760 * Note: If this function return -ENOENT, it just means there is no
761 * running transaction. But it is possible that the inactive transaction
762 * is still in the memory, not fully on disk. If you hope there is no
763 * inactive transaction in the fs when -ENOENT is returned, you should
764 * invoke
765 * btrfs_attach_transaction_barrier()
767 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
769 return start_transaction(root, 0, TRANS_ATTACH,
770 BTRFS_RESERVE_NO_FLUSH, true);
774 * btrfs_attach_transaction_barrier() - catch the running transaction
776 * It is similar to the above function, the difference is this one
777 * will wait for all the inactive transactions until they fully
778 * complete.
780 struct btrfs_trans_handle *
781 btrfs_attach_transaction_barrier(struct btrfs_root *root)
783 struct btrfs_trans_handle *trans;
785 trans = start_transaction(root, 0, TRANS_ATTACH,
786 BTRFS_RESERVE_NO_FLUSH, true);
787 if (trans == ERR_PTR(-ENOENT))
788 btrfs_wait_for_commit(root->fs_info, 0);
790 return trans;
793 /* wait for a transaction commit to be fully complete */
794 static noinline void wait_for_commit(struct btrfs_transaction *commit)
796 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
799 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
801 struct btrfs_transaction *cur_trans = NULL, *t;
802 int ret = 0;
804 if (transid) {
805 if (transid <= fs_info->last_trans_committed)
806 goto out;
808 /* find specified transaction */
809 spin_lock(&fs_info->trans_lock);
810 list_for_each_entry(t, &fs_info->trans_list, list) {
811 if (t->transid == transid) {
812 cur_trans = t;
813 refcount_inc(&cur_trans->use_count);
814 ret = 0;
815 break;
817 if (t->transid > transid) {
818 ret = 0;
819 break;
822 spin_unlock(&fs_info->trans_lock);
825 * The specified transaction doesn't exist, or we
826 * raced with btrfs_commit_transaction
828 if (!cur_trans) {
829 if (transid > fs_info->last_trans_committed)
830 ret = -EINVAL;
831 goto out;
833 } else {
834 /* find newest transaction that is committing | committed */
835 spin_lock(&fs_info->trans_lock);
836 list_for_each_entry_reverse(t, &fs_info->trans_list,
837 list) {
838 if (t->state >= TRANS_STATE_COMMIT_START) {
839 if (t->state == TRANS_STATE_COMPLETED)
840 break;
841 cur_trans = t;
842 refcount_inc(&cur_trans->use_count);
843 break;
846 spin_unlock(&fs_info->trans_lock);
847 if (!cur_trans)
848 goto out; /* nothing committing|committed */
851 wait_for_commit(cur_trans);
852 btrfs_put_transaction(cur_trans);
853 out:
854 return ret;
857 void btrfs_throttle(struct btrfs_fs_info *fs_info)
859 wait_current_trans(fs_info);
862 static int should_end_transaction(struct btrfs_trans_handle *trans)
864 struct btrfs_fs_info *fs_info = trans->fs_info;
866 if (btrfs_check_space_for_delayed_refs(fs_info))
867 return 1;
869 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
872 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
874 struct btrfs_transaction *cur_trans = trans->transaction;
876 smp_mb();
877 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
878 cur_trans->delayed_refs.flushing)
879 return 1;
881 return should_end_transaction(trans);
884 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
887 struct btrfs_fs_info *fs_info = trans->fs_info;
889 if (!trans->block_rsv) {
890 ASSERT(!trans->bytes_reserved);
891 return;
894 if (!trans->bytes_reserved)
895 return;
897 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
898 trace_btrfs_space_reservation(fs_info, "transaction",
899 trans->transid, trans->bytes_reserved, 0);
900 btrfs_block_rsv_release(fs_info, trans->block_rsv,
901 trans->bytes_reserved, NULL);
902 trans->bytes_reserved = 0;
905 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
906 int throttle)
908 struct btrfs_fs_info *info = trans->fs_info;
909 struct btrfs_transaction *cur_trans = trans->transaction;
910 int err = 0;
912 if (refcount_read(&trans->use_count) > 1) {
913 refcount_dec(&trans->use_count);
914 trans->block_rsv = trans->orig_rsv;
915 return 0;
918 btrfs_trans_release_metadata(trans);
919 trans->block_rsv = NULL;
921 btrfs_create_pending_block_groups(trans);
923 btrfs_trans_release_chunk_metadata(trans);
925 if (trans->type & __TRANS_FREEZABLE)
926 sb_end_intwrite(info->sb);
928 WARN_ON(cur_trans != info->running_transaction);
929 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
930 atomic_dec(&cur_trans->num_writers);
931 extwriter_counter_dec(cur_trans, trans->type);
933 cond_wake_up(&cur_trans->writer_wait);
934 btrfs_put_transaction(cur_trans);
936 if (current->journal_info == trans)
937 current->journal_info = NULL;
939 if (throttle)
940 btrfs_run_delayed_iputs(info);
942 if (TRANS_ABORTED(trans) ||
943 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
944 wake_up_process(info->transaction_kthread);
945 err = -EIO;
948 kmem_cache_free(btrfs_trans_handle_cachep, trans);
949 return err;
952 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
954 return __btrfs_end_transaction(trans, 0);
957 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
959 return __btrfs_end_transaction(trans, 1);
963 * when btree blocks are allocated, they have some corresponding bits set for
964 * them in one of two extent_io trees. This is used to make sure all of
965 * those extents are sent to disk but does not wait on them
967 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
968 struct extent_io_tree *dirty_pages, int mark)
970 int err = 0;
971 int werr = 0;
972 struct address_space *mapping = fs_info->btree_inode->i_mapping;
973 struct extent_state *cached_state = NULL;
974 u64 start = 0;
975 u64 end;
977 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
978 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
979 mark, &cached_state)) {
980 bool wait_writeback = false;
982 err = convert_extent_bit(dirty_pages, start, end,
983 EXTENT_NEED_WAIT,
984 mark, &cached_state);
986 * convert_extent_bit can return -ENOMEM, which is most of the
987 * time a temporary error. So when it happens, ignore the error
988 * and wait for writeback of this range to finish - because we
989 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
990 * to __btrfs_wait_marked_extents() would not know that
991 * writeback for this range started and therefore wouldn't
992 * wait for it to finish - we don't want to commit a
993 * superblock that points to btree nodes/leafs for which
994 * writeback hasn't finished yet (and without errors).
995 * We cleanup any entries left in the io tree when committing
996 * the transaction (through extent_io_tree_release()).
998 if (err == -ENOMEM) {
999 err = 0;
1000 wait_writeback = true;
1002 if (!err)
1003 err = filemap_fdatawrite_range(mapping, start, end);
1004 if (err)
1005 werr = err;
1006 else if (wait_writeback)
1007 werr = filemap_fdatawait_range(mapping, start, end);
1008 free_extent_state(cached_state);
1009 cached_state = NULL;
1010 cond_resched();
1011 start = end + 1;
1013 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1014 return werr;
1018 * when btree blocks are allocated, they have some corresponding bits set for
1019 * them in one of two extent_io trees. This is used to make sure all of
1020 * those extents are on disk for transaction or log commit. We wait
1021 * on all the pages and clear them from the dirty pages state tree
1023 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1024 struct extent_io_tree *dirty_pages)
1026 int err = 0;
1027 int werr = 0;
1028 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1029 struct extent_state *cached_state = NULL;
1030 u64 start = 0;
1031 u64 end;
1033 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1034 EXTENT_NEED_WAIT, &cached_state)) {
1036 * Ignore -ENOMEM errors returned by clear_extent_bit().
1037 * When committing the transaction, we'll remove any entries
1038 * left in the io tree. For a log commit, we don't remove them
1039 * after committing the log because the tree can be accessed
1040 * concurrently - we do it only at transaction commit time when
1041 * it's safe to do it (through extent_io_tree_release()).
1043 err = clear_extent_bit(dirty_pages, start, end,
1044 EXTENT_NEED_WAIT, 0, 0, &cached_state);
1045 if (err == -ENOMEM)
1046 err = 0;
1047 if (!err)
1048 err = filemap_fdatawait_range(mapping, start, end);
1049 if (err)
1050 werr = err;
1051 free_extent_state(cached_state);
1052 cached_state = NULL;
1053 cond_resched();
1054 start = end + 1;
1056 if (err)
1057 werr = err;
1058 return werr;
1061 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1062 struct extent_io_tree *dirty_pages)
1064 bool errors = false;
1065 int err;
1067 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1068 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1069 errors = true;
1071 if (errors && !err)
1072 err = -EIO;
1073 return err;
1076 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1078 struct btrfs_fs_info *fs_info = log_root->fs_info;
1079 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1080 bool errors = false;
1081 int err;
1083 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1085 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1086 if ((mark & EXTENT_DIRTY) &&
1087 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1088 errors = true;
1090 if ((mark & EXTENT_NEW) &&
1091 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1092 errors = true;
1094 if (errors && !err)
1095 err = -EIO;
1096 return err;
1100 * When btree blocks are allocated the corresponding extents are marked dirty.
1101 * This function ensures such extents are persisted on disk for transaction or
1102 * log commit.
1104 * @trans: transaction whose dirty pages we'd like to write
1106 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1108 int ret;
1109 int ret2;
1110 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1111 struct btrfs_fs_info *fs_info = trans->fs_info;
1112 struct blk_plug plug;
1114 blk_start_plug(&plug);
1115 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1116 blk_finish_plug(&plug);
1117 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1119 extent_io_tree_release(&trans->transaction->dirty_pages);
1121 if (ret)
1122 return ret;
1123 else if (ret2)
1124 return ret2;
1125 else
1126 return 0;
1130 * this is used to update the root pointer in the tree of tree roots.
1132 * But, in the case of the extent allocation tree, updating the root
1133 * pointer may allocate blocks which may change the root of the extent
1134 * allocation tree.
1136 * So, this loops and repeats and makes sure the cowonly root didn't
1137 * change while the root pointer was being updated in the metadata.
1139 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1140 struct btrfs_root *root)
1142 int ret;
1143 u64 old_root_bytenr;
1144 u64 old_root_used;
1145 struct btrfs_fs_info *fs_info = root->fs_info;
1146 struct btrfs_root *tree_root = fs_info->tree_root;
1148 old_root_used = btrfs_root_used(&root->root_item);
1150 while (1) {
1151 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1152 if (old_root_bytenr == root->node->start &&
1153 old_root_used == btrfs_root_used(&root->root_item))
1154 break;
1156 btrfs_set_root_node(&root->root_item, root->node);
1157 ret = btrfs_update_root(trans, tree_root,
1158 &root->root_key,
1159 &root->root_item);
1160 if (ret)
1161 return ret;
1163 old_root_used = btrfs_root_used(&root->root_item);
1166 return 0;
1170 * update all the cowonly tree roots on disk
1172 * The error handling in this function may not be obvious. Any of the
1173 * failures will cause the file system to go offline. We still need
1174 * to clean up the delayed refs.
1176 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1178 struct btrfs_fs_info *fs_info = trans->fs_info;
1179 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1180 struct list_head *io_bgs = &trans->transaction->io_bgs;
1181 struct list_head *next;
1182 struct extent_buffer *eb;
1183 int ret;
1185 eb = btrfs_lock_root_node(fs_info->tree_root);
1186 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1187 0, &eb);
1188 btrfs_tree_unlock(eb);
1189 free_extent_buffer(eb);
1191 if (ret)
1192 return ret;
1194 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1195 if (ret)
1196 return ret;
1198 ret = btrfs_run_dev_stats(trans);
1199 if (ret)
1200 return ret;
1201 ret = btrfs_run_dev_replace(trans);
1202 if (ret)
1203 return ret;
1204 ret = btrfs_run_qgroups(trans);
1205 if (ret)
1206 return ret;
1208 ret = btrfs_setup_space_cache(trans);
1209 if (ret)
1210 return ret;
1212 /* run_qgroups might have added some more refs */
1213 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1214 if (ret)
1215 return ret;
1216 again:
1217 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1218 struct btrfs_root *root;
1219 next = fs_info->dirty_cowonly_roots.next;
1220 list_del_init(next);
1221 root = list_entry(next, struct btrfs_root, dirty_list);
1222 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1224 if (root != fs_info->extent_root)
1225 list_add_tail(&root->dirty_list,
1226 &trans->transaction->switch_commits);
1227 ret = update_cowonly_root(trans, root);
1228 if (ret)
1229 return ret;
1230 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1231 if (ret)
1232 return ret;
1235 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1236 ret = btrfs_write_dirty_block_groups(trans);
1237 if (ret)
1238 return ret;
1239 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1240 if (ret)
1241 return ret;
1244 if (!list_empty(&fs_info->dirty_cowonly_roots))
1245 goto again;
1247 list_add_tail(&fs_info->extent_root->dirty_list,
1248 &trans->transaction->switch_commits);
1250 /* Update dev-replace pointer once everything is committed */
1251 fs_info->dev_replace.committed_cursor_left =
1252 fs_info->dev_replace.cursor_left_last_write_of_item;
1254 return 0;
1258 * dead roots are old snapshots that need to be deleted. This allocates
1259 * a dirty root struct and adds it into the list of dead roots that need to
1260 * be deleted
1262 void btrfs_add_dead_root(struct btrfs_root *root)
1264 struct btrfs_fs_info *fs_info = root->fs_info;
1266 spin_lock(&fs_info->trans_lock);
1267 if (list_empty(&root->root_list)) {
1268 btrfs_grab_root(root);
1269 list_add_tail(&root->root_list, &fs_info->dead_roots);
1271 spin_unlock(&fs_info->trans_lock);
1275 * update all the cowonly tree roots on disk
1277 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1279 struct btrfs_fs_info *fs_info = trans->fs_info;
1280 struct btrfs_root *gang[8];
1281 int i;
1282 int ret;
1283 int err = 0;
1285 spin_lock(&fs_info->fs_roots_radix_lock);
1286 while (1) {
1287 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1288 (void **)gang, 0,
1289 ARRAY_SIZE(gang),
1290 BTRFS_ROOT_TRANS_TAG);
1291 if (ret == 0)
1292 break;
1293 for (i = 0; i < ret; i++) {
1294 struct btrfs_root *root = gang[i];
1295 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1296 (unsigned long)root->root_key.objectid,
1297 BTRFS_ROOT_TRANS_TAG);
1298 spin_unlock(&fs_info->fs_roots_radix_lock);
1300 btrfs_free_log(trans, root);
1301 btrfs_update_reloc_root(trans, root);
1303 btrfs_save_ino_cache(root, trans);
1305 /* see comments in should_cow_block() */
1306 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1307 smp_mb__after_atomic();
1309 if (root->commit_root != root->node) {
1310 list_add_tail(&root->dirty_list,
1311 &trans->transaction->switch_commits);
1312 btrfs_set_root_node(&root->root_item,
1313 root->node);
1316 err = btrfs_update_root(trans, fs_info->tree_root,
1317 &root->root_key,
1318 &root->root_item);
1319 spin_lock(&fs_info->fs_roots_radix_lock);
1320 if (err)
1321 break;
1322 btrfs_qgroup_free_meta_all_pertrans(root);
1325 spin_unlock(&fs_info->fs_roots_radix_lock);
1326 return err;
1330 * defrag a given btree.
1331 * Every leaf in the btree is read and defragged.
1333 int btrfs_defrag_root(struct btrfs_root *root)
1335 struct btrfs_fs_info *info = root->fs_info;
1336 struct btrfs_trans_handle *trans;
1337 int ret;
1339 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1340 return 0;
1342 while (1) {
1343 trans = btrfs_start_transaction(root, 0);
1344 if (IS_ERR(trans))
1345 return PTR_ERR(trans);
1347 ret = btrfs_defrag_leaves(trans, root);
1349 btrfs_end_transaction(trans);
1350 btrfs_btree_balance_dirty(info);
1351 cond_resched();
1353 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1354 break;
1356 if (btrfs_defrag_cancelled(info)) {
1357 btrfs_debug(info, "defrag_root cancelled");
1358 ret = -EAGAIN;
1359 break;
1362 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1363 return ret;
1367 * Do all special snapshot related qgroup dirty hack.
1369 * Will do all needed qgroup inherit and dirty hack like switch commit
1370 * roots inside one transaction and write all btree into disk, to make
1371 * qgroup works.
1373 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1374 struct btrfs_root *src,
1375 struct btrfs_root *parent,
1376 struct btrfs_qgroup_inherit *inherit,
1377 u64 dst_objectid)
1379 struct btrfs_fs_info *fs_info = src->fs_info;
1380 int ret;
1383 * Save some performance in the case that qgroups are not
1384 * enabled. If this check races with the ioctl, rescan will
1385 * kick in anyway.
1387 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1388 return 0;
1391 * Ensure dirty @src will be committed. Or, after coming
1392 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1393 * recorded root will never be updated again, causing an outdated root
1394 * item.
1396 record_root_in_trans(trans, src, 1);
1399 * We are going to commit transaction, see btrfs_commit_transaction()
1400 * comment for reason locking tree_log_mutex
1402 mutex_lock(&fs_info->tree_log_mutex);
1404 ret = commit_fs_roots(trans);
1405 if (ret)
1406 goto out;
1407 ret = btrfs_qgroup_account_extents(trans);
1408 if (ret < 0)
1409 goto out;
1411 /* Now qgroup are all updated, we can inherit it to new qgroups */
1412 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1413 inherit);
1414 if (ret < 0)
1415 goto out;
1418 * Now we do a simplified commit transaction, which will:
1419 * 1) commit all subvolume and extent tree
1420 * To ensure all subvolume and extent tree have a valid
1421 * commit_root to accounting later insert_dir_item()
1422 * 2) write all btree blocks onto disk
1423 * This is to make sure later btree modification will be cowed
1424 * Or commit_root can be populated and cause wrong qgroup numbers
1425 * In this simplified commit, we don't really care about other trees
1426 * like chunk and root tree, as they won't affect qgroup.
1427 * And we don't write super to avoid half committed status.
1429 ret = commit_cowonly_roots(trans);
1430 if (ret)
1431 goto out;
1432 switch_commit_roots(trans);
1433 ret = btrfs_write_and_wait_transaction(trans);
1434 if (ret)
1435 btrfs_handle_fs_error(fs_info, ret,
1436 "Error while writing out transaction for qgroup");
1438 out:
1439 mutex_unlock(&fs_info->tree_log_mutex);
1442 * Force parent root to be updated, as we recorded it before so its
1443 * last_trans == cur_transid.
1444 * Or it won't be committed again onto disk after later
1445 * insert_dir_item()
1447 if (!ret)
1448 record_root_in_trans(trans, parent, 1);
1449 return ret;
1453 * new snapshots need to be created at a very specific time in the
1454 * transaction commit. This does the actual creation.
1456 * Note:
1457 * If the error which may affect the commitment of the current transaction
1458 * happens, we should return the error number. If the error which just affect
1459 * the creation of the pending snapshots, just return 0.
1461 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1462 struct btrfs_pending_snapshot *pending)
1465 struct btrfs_fs_info *fs_info = trans->fs_info;
1466 struct btrfs_key key;
1467 struct btrfs_root_item *new_root_item;
1468 struct btrfs_root *tree_root = fs_info->tree_root;
1469 struct btrfs_root *root = pending->root;
1470 struct btrfs_root *parent_root;
1471 struct btrfs_block_rsv *rsv;
1472 struct inode *parent_inode;
1473 struct btrfs_path *path;
1474 struct btrfs_dir_item *dir_item;
1475 struct dentry *dentry;
1476 struct extent_buffer *tmp;
1477 struct extent_buffer *old;
1478 struct timespec64 cur_time;
1479 int ret = 0;
1480 u64 to_reserve = 0;
1481 u64 index = 0;
1482 u64 objectid;
1483 u64 root_flags;
1485 ASSERT(pending->path);
1486 path = pending->path;
1488 ASSERT(pending->root_item);
1489 new_root_item = pending->root_item;
1491 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1492 if (pending->error)
1493 goto no_free_objectid;
1496 * Make qgroup to skip current new snapshot's qgroupid, as it is
1497 * accounted by later btrfs_qgroup_inherit().
1499 btrfs_set_skip_qgroup(trans, objectid);
1501 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1503 if (to_reserve > 0) {
1504 pending->error = btrfs_block_rsv_add(root,
1505 &pending->block_rsv,
1506 to_reserve,
1507 BTRFS_RESERVE_NO_FLUSH);
1508 if (pending->error)
1509 goto clear_skip_qgroup;
1512 key.objectid = objectid;
1513 key.offset = (u64)-1;
1514 key.type = BTRFS_ROOT_ITEM_KEY;
1516 rsv = trans->block_rsv;
1517 trans->block_rsv = &pending->block_rsv;
1518 trans->bytes_reserved = trans->block_rsv->reserved;
1519 trace_btrfs_space_reservation(fs_info, "transaction",
1520 trans->transid,
1521 trans->bytes_reserved, 1);
1522 dentry = pending->dentry;
1523 parent_inode = pending->dir;
1524 parent_root = BTRFS_I(parent_inode)->root;
1525 record_root_in_trans(trans, parent_root, 0);
1527 cur_time = current_time(parent_inode);
1530 * insert the directory item
1532 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1533 BUG_ON(ret); /* -ENOMEM */
1535 /* check if there is a file/dir which has the same name. */
1536 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1537 btrfs_ino(BTRFS_I(parent_inode)),
1538 dentry->d_name.name,
1539 dentry->d_name.len, 0);
1540 if (dir_item != NULL && !IS_ERR(dir_item)) {
1541 pending->error = -EEXIST;
1542 goto dir_item_existed;
1543 } else if (IS_ERR(dir_item)) {
1544 ret = PTR_ERR(dir_item);
1545 btrfs_abort_transaction(trans, ret);
1546 goto fail;
1548 btrfs_release_path(path);
1551 * pull in the delayed directory update
1552 * and the delayed inode item
1553 * otherwise we corrupt the FS during
1554 * snapshot
1556 ret = btrfs_run_delayed_items(trans);
1557 if (ret) { /* Transaction aborted */
1558 btrfs_abort_transaction(trans, ret);
1559 goto fail;
1562 record_root_in_trans(trans, root, 0);
1563 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1564 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1565 btrfs_check_and_init_root_item(new_root_item);
1567 root_flags = btrfs_root_flags(new_root_item);
1568 if (pending->readonly)
1569 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1570 else
1571 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1572 btrfs_set_root_flags(new_root_item, root_flags);
1574 btrfs_set_root_generation_v2(new_root_item,
1575 trans->transid);
1576 generate_random_guid(new_root_item->uuid);
1577 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1578 BTRFS_UUID_SIZE);
1579 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1580 memset(new_root_item->received_uuid, 0,
1581 sizeof(new_root_item->received_uuid));
1582 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1583 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1584 btrfs_set_root_stransid(new_root_item, 0);
1585 btrfs_set_root_rtransid(new_root_item, 0);
1587 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1588 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1589 btrfs_set_root_otransid(new_root_item, trans->transid);
1591 old = btrfs_lock_root_node(root);
1592 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1593 if (ret) {
1594 btrfs_tree_unlock(old);
1595 free_extent_buffer(old);
1596 btrfs_abort_transaction(trans, ret);
1597 goto fail;
1600 btrfs_set_lock_blocking_write(old);
1602 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1603 /* clean up in any case */
1604 btrfs_tree_unlock(old);
1605 free_extent_buffer(old);
1606 if (ret) {
1607 btrfs_abort_transaction(trans, ret);
1608 goto fail;
1610 /* see comments in should_cow_block() */
1611 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1612 smp_wmb();
1614 btrfs_set_root_node(new_root_item, tmp);
1615 /* record when the snapshot was created in key.offset */
1616 key.offset = trans->transid;
1617 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1618 btrfs_tree_unlock(tmp);
1619 free_extent_buffer(tmp);
1620 if (ret) {
1621 btrfs_abort_transaction(trans, ret);
1622 goto fail;
1626 * insert root back/forward references
1628 ret = btrfs_add_root_ref(trans, objectid,
1629 parent_root->root_key.objectid,
1630 btrfs_ino(BTRFS_I(parent_inode)), index,
1631 dentry->d_name.name, dentry->d_name.len);
1632 if (ret) {
1633 btrfs_abort_transaction(trans, ret);
1634 goto fail;
1637 key.offset = (u64)-1;
1638 pending->snap = btrfs_get_fs_root(fs_info, &key, true);
1639 if (IS_ERR(pending->snap)) {
1640 ret = PTR_ERR(pending->snap);
1641 btrfs_abort_transaction(trans, ret);
1642 goto fail;
1645 ret = btrfs_reloc_post_snapshot(trans, pending);
1646 if (ret) {
1647 btrfs_abort_transaction(trans, ret);
1648 goto fail;
1651 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1652 if (ret) {
1653 btrfs_abort_transaction(trans, ret);
1654 goto fail;
1658 * Do special qgroup accounting for snapshot, as we do some qgroup
1659 * snapshot hack to do fast snapshot.
1660 * To co-operate with that hack, we do hack again.
1661 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1663 ret = qgroup_account_snapshot(trans, root, parent_root,
1664 pending->inherit, objectid);
1665 if (ret < 0)
1666 goto fail;
1668 ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1669 dentry->d_name.len, BTRFS_I(parent_inode),
1670 &key, BTRFS_FT_DIR, index);
1671 /* We have check then name at the beginning, so it is impossible. */
1672 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1673 if (ret) {
1674 btrfs_abort_transaction(trans, ret);
1675 goto fail;
1678 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1679 dentry->d_name.len * 2);
1680 parent_inode->i_mtime = parent_inode->i_ctime =
1681 current_time(parent_inode);
1682 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1683 if (ret) {
1684 btrfs_abort_transaction(trans, ret);
1685 goto fail;
1687 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1688 BTRFS_UUID_KEY_SUBVOL,
1689 objectid);
1690 if (ret) {
1691 btrfs_abort_transaction(trans, ret);
1692 goto fail;
1694 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1695 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1696 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1697 objectid);
1698 if (ret && ret != -EEXIST) {
1699 btrfs_abort_transaction(trans, ret);
1700 goto fail;
1704 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1705 if (ret) {
1706 btrfs_abort_transaction(trans, ret);
1707 goto fail;
1710 fail:
1711 pending->error = ret;
1712 dir_item_existed:
1713 trans->block_rsv = rsv;
1714 trans->bytes_reserved = 0;
1715 clear_skip_qgroup:
1716 btrfs_clear_skip_qgroup(trans);
1717 no_free_objectid:
1718 kfree(new_root_item);
1719 pending->root_item = NULL;
1720 btrfs_free_path(path);
1721 pending->path = NULL;
1723 return ret;
1727 * create all the snapshots we've scheduled for creation
1729 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1731 struct btrfs_pending_snapshot *pending, *next;
1732 struct list_head *head = &trans->transaction->pending_snapshots;
1733 int ret = 0;
1735 list_for_each_entry_safe(pending, next, head, list) {
1736 list_del(&pending->list);
1737 ret = create_pending_snapshot(trans, pending);
1738 if (ret)
1739 break;
1741 return ret;
1744 static void update_super_roots(struct btrfs_fs_info *fs_info)
1746 struct btrfs_root_item *root_item;
1747 struct btrfs_super_block *super;
1749 super = fs_info->super_copy;
1751 root_item = &fs_info->chunk_root->root_item;
1752 super->chunk_root = root_item->bytenr;
1753 super->chunk_root_generation = root_item->generation;
1754 super->chunk_root_level = root_item->level;
1756 root_item = &fs_info->tree_root->root_item;
1757 super->root = root_item->bytenr;
1758 super->generation = root_item->generation;
1759 super->root_level = root_item->level;
1760 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1761 super->cache_generation = root_item->generation;
1762 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1763 super->uuid_tree_generation = root_item->generation;
1766 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1768 struct btrfs_transaction *trans;
1769 int ret = 0;
1771 spin_lock(&info->trans_lock);
1772 trans = info->running_transaction;
1773 if (trans)
1774 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1775 spin_unlock(&info->trans_lock);
1776 return ret;
1779 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1781 struct btrfs_transaction *trans;
1782 int ret = 0;
1784 spin_lock(&info->trans_lock);
1785 trans = info->running_transaction;
1786 if (trans)
1787 ret = is_transaction_blocked(trans);
1788 spin_unlock(&info->trans_lock);
1789 return ret;
1793 * wait for the current transaction commit to start and block subsequent
1794 * transaction joins
1796 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1797 struct btrfs_transaction *trans)
1799 wait_event(fs_info->transaction_blocked_wait,
1800 trans->state >= TRANS_STATE_COMMIT_START ||
1801 TRANS_ABORTED(trans));
1805 * wait for the current transaction to start and then become unblocked.
1806 * caller holds ref.
1808 static void wait_current_trans_commit_start_and_unblock(
1809 struct btrfs_fs_info *fs_info,
1810 struct btrfs_transaction *trans)
1812 wait_event(fs_info->transaction_wait,
1813 trans->state >= TRANS_STATE_UNBLOCKED ||
1814 TRANS_ABORTED(trans));
1818 * commit transactions asynchronously. once btrfs_commit_transaction_async
1819 * returns, any subsequent transaction will not be allowed to join.
1821 struct btrfs_async_commit {
1822 struct btrfs_trans_handle *newtrans;
1823 struct work_struct work;
1826 static void do_async_commit(struct work_struct *work)
1828 struct btrfs_async_commit *ac =
1829 container_of(work, struct btrfs_async_commit, work);
1832 * We've got freeze protection passed with the transaction.
1833 * Tell lockdep about it.
1835 if (ac->newtrans->type & __TRANS_FREEZABLE)
1836 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1838 current->journal_info = ac->newtrans;
1840 btrfs_commit_transaction(ac->newtrans);
1841 kfree(ac);
1844 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1845 int wait_for_unblock)
1847 struct btrfs_fs_info *fs_info = trans->fs_info;
1848 struct btrfs_async_commit *ac;
1849 struct btrfs_transaction *cur_trans;
1851 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1852 if (!ac)
1853 return -ENOMEM;
1855 INIT_WORK(&ac->work, do_async_commit);
1856 ac->newtrans = btrfs_join_transaction(trans->root);
1857 if (IS_ERR(ac->newtrans)) {
1858 int err = PTR_ERR(ac->newtrans);
1859 kfree(ac);
1860 return err;
1863 /* take transaction reference */
1864 cur_trans = trans->transaction;
1865 refcount_inc(&cur_trans->use_count);
1867 btrfs_end_transaction(trans);
1870 * Tell lockdep we've released the freeze rwsem, since the
1871 * async commit thread will be the one to unlock it.
1873 if (ac->newtrans->type & __TRANS_FREEZABLE)
1874 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1876 schedule_work(&ac->work);
1878 /* wait for transaction to start and unblock */
1879 if (wait_for_unblock)
1880 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1881 else
1882 wait_current_trans_commit_start(fs_info, cur_trans);
1884 if (current->journal_info == trans)
1885 current->journal_info = NULL;
1887 btrfs_put_transaction(cur_trans);
1888 return 0;
1892 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1894 struct btrfs_fs_info *fs_info = trans->fs_info;
1895 struct btrfs_transaction *cur_trans = trans->transaction;
1897 WARN_ON(refcount_read(&trans->use_count) > 1);
1899 btrfs_abort_transaction(trans, err);
1901 spin_lock(&fs_info->trans_lock);
1904 * If the transaction is removed from the list, it means this
1905 * transaction has been committed successfully, so it is impossible
1906 * to call the cleanup function.
1908 BUG_ON(list_empty(&cur_trans->list));
1910 list_del_init(&cur_trans->list);
1911 if (cur_trans == fs_info->running_transaction) {
1912 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1913 spin_unlock(&fs_info->trans_lock);
1914 wait_event(cur_trans->writer_wait,
1915 atomic_read(&cur_trans->num_writers) == 1);
1917 spin_lock(&fs_info->trans_lock);
1919 spin_unlock(&fs_info->trans_lock);
1921 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1923 spin_lock(&fs_info->trans_lock);
1924 if (cur_trans == fs_info->running_transaction)
1925 fs_info->running_transaction = NULL;
1926 spin_unlock(&fs_info->trans_lock);
1928 if (trans->type & __TRANS_FREEZABLE)
1929 sb_end_intwrite(fs_info->sb);
1930 btrfs_put_transaction(cur_trans);
1931 btrfs_put_transaction(cur_trans);
1933 trace_btrfs_transaction_commit(trans->root);
1935 if (current->journal_info == trans)
1936 current->journal_info = NULL;
1937 btrfs_scrub_cancel(fs_info);
1939 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1943 * Release reserved delayed ref space of all pending block groups of the
1944 * transaction and remove them from the list
1946 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1948 struct btrfs_fs_info *fs_info = trans->fs_info;
1949 struct btrfs_block_group *block_group, *tmp;
1951 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1952 btrfs_delayed_refs_rsv_release(fs_info, 1);
1953 list_del_init(&block_group->bg_list);
1957 static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans)
1959 struct btrfs_fs_info *fs_info = trans->fs_info;
1962 * We use writeback_inodes_sb here because if we used
1963 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1964 * Currently are holding the fs freeze lock, if we do an async flush
1965 * we'll do btrfs_join_transaction() and deadlock because we need to
1966 * wait for the fs freeze lock. Using the direct flushing we benefit
1967 * from already being in a transaction and our join_transaction doesn't
1968 * have to re-take the fs freeze lock.
1970 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1971 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1972 } else {
1973 struct btrfs_pending_snapshot *pending;
1974 struct list_head *head = &trans->transaction->pending_snapshots;
1977 * Flush dellaloc for any root that is going to be snapshotted.
1978 * This is done to avoid a corrupted version of files, in the
1979 * snapshots, that had both buffered and direct IO writes (even
1980 * if they were done sequentially) due to an unordered update of
1981 * the inode's size on disk.
1983 list_for_each_entry(pending, head, list) {
1984 int ret;
1986 ret = btrfs_start_delalloc_snapshot(pending->root);
1987 if (ret)
1988 return ret;
1991 return 0;
1994 static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans)
1996 struct btrfs_fs_info *fs_info = trans->fs_info;
1998 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1999 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2000 } else {
2001 struct btrfs_pending_snapshot *pending;
2002 struct list_head *head = &trans->transaction->pending_snapshots;
2005 * Wait for any dellaloc that we started previously for the roots
2006 * that are going to be snapshotted. This is to avoid a corrupted
2007 * version of files in the snapshots that had both buffered and
2008 * direct IO writes (even if they were done sequentially).
2010 list_for_each_entry(pending, head, list)
2011 btrfs_wait_ordered_extents(pending->root,
2012 U64_MAX, 0, U64_MAX);
2016 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2018 struct btrfs_fs_info *fs_info = trans->fs_info;
2019 struct btrfs_transaction *cur_trans = trans->transaction;
2020 struct btrfs_transaction *prev_trans = NULL;
2021 int ret;
2023 ASSERT(refcount_read(&trans->use_count) == 1);
2026 * Some places just start a transaction to commit it. We need to make
2027 * sure that if this commit fails that the abort code actually marks the
2028 * transaction as failed, so set trans->dirty to make the abort code do
2029 * the right thing.
2031 trans->dirty = true;
2033 /* Stop the commit early if ->aborted is set */
2034 if (TRANS_ABORTED(cur_trans)) {
2035 ret = cur_trans->aborted;
2036 btrfs_end_transaction(trans);
2037 return ret;
2040 btrfs_trans_release_metadata(trans);
2041 trans->block_rsv = NULL;
2043 /* make a pass through all the delayed refs we have so far
2044 * any runnings procs may add more while we are here
2046 ret = btrfs_run_delayed_refs(trans, 0);
2047 if (ret) {
2048 btrfs_end_transaction(trans);
2049 return ret;
2052 cur_trans = trans->transaction;
2055 * set the flushing flag so procs in this transaction have to
2056 * start sending their work down.
2058 cur_trans->delayed_refs.flushing = 1;
2059 smp_wmb();
2061 btrfs_create_pending_block_groups(trans);
2063 ret = btrfs_run_delayed_refs(trans, 0);
2064 if (ret) {
2065 btrfs_end_transaction(trans);
2066 return ret;
2069 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2070 int run_it = 0;
2072 /* this mutex is also taken before trying to set
2073 * block groups readonly. We need to make sure
2074 * that nobody has set a block group readonly
2075 * after a extents from that block group have been
2076 * allocated for cache files. btrfs_set_block_group_ro
2077 * will wait for the transaction to commit if it
2078 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2080 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2081 * only one process starts all the block group IO. It wouldn't
2082 * hurt to have more than one go through, but there's no
2083 * real advantage to it either.
2085 mutex_lock(&fs_info->ro_block_group_mutex);
2086 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2087 &cur_trans->flags))
2088 run_it = 1;
2089 mutex_unlock(&fs_info->ro_block_group_mutex);
2091 if (run_it) {
2092 ret = btrfs_start_dirty_block_groups(trans);
2093 if (ret) {
2094 btrfs_end_transaction(trans);
2095 return ret;
2100 spin_lock(&fs_info->trans_lock);
2101 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2102 spin_unlock(&fs_info->trans_lock);
2103 refcount_inc(&cur_trans->use_count);
2104 ret = btrfs_end_transaction(trans);
2106 wait_for_commit(cur_trans);
2108 if (TRANS_ABORTED(cur_trans))
2109 ret = cur_trans->aborted;
2111 btrfs_put_transaction(cur_trans);
2113 return ret;
2116 cur_trans->state = TRANS_STATE_COMMIT_START;
2117 wake_up(&fs_info->transaction_blocked_wait);
2119 if (cur_trans->list.prev != &fs_info->trans_list) {
2120 prev_trans = list_entry(cur_trans->list.prev,
2121 struct btrfs_transaction, list);
2122 if (prev_trans->state != TRANS_STATE_COMPLETED) {
2123 refcount_inc(&prev_trans->use_count);
2124 spin_unlock(&fs_info->trans_lock);
2126 wait_for_commit(prev_trans);
2127 ret = READ_ONCE(prev_trans->aborted);
2129 btrfs_put_transaction(prev_trans);
2130 if (ret)
2131 goto cleanup_transaction;
2132 } else {
2133 spin_unlock(&fs_info->trans_lock);
2135 } else {
2136 spin_unlock(&fs_info->trans_lock);
2138 * The previous transaction was aborted and was already removed
2139 * from the list of transactions at fs_info->trans_list. So we
2140 * abort to prevent writing a new superblock that reflects a
2141 * corrupt state (pointing to trees with unwritten nodes/leafs).
2143 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2144 ret = -EROFS;
2145 goto cleanup_transaction;
2149 extwriter_counter_dec(cur_trans, trans->type);
2151 ret = btrfs_start_delalloc_flush(trans);
2152 if (ret)
2153 goto cleanup_transaction;
2155 ret = btrfs_run_delayed_items(trans);
2156 if (ret)
2157 goto cleanup_transaction;
2159 wait_event(cur_trans->writer_wait,
2160 extwriter_counter_read(cur_trans) == 0);
2162 /* some pending stuffs might be added after the previous flush. */
2163 ret = btrfs_run_delayed_items(trans);
2164 if (ret)
2165 goto cleanup_transaction;
2167 btrfs_wait_delalloc_flush(trans);
2169 btrfs_scrub_pause(fs_info);
2171 * Ok now we need to make sure to block out any other joins while we
2172 * commit the transaction. We could have started a join before setting
2173 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2175 spin_lock(&fs_info->trans_lock);
2176 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2177 spin_unlock(&fs_info->trans_lock);
2178 wait_event(cur_trans->writer_wait,
2179 atomic_read(&cur_trans->num_writers) == 1);
2181 if (TRANS_ABORTED(cur_trans)) {
2182 ret = cur_trans->aborted;
2183 goto scrub_continue;
2186 * the reloc mutex makes sure that we stop
2187 * the balancing code from coming in and moving
2188 * extents around in the middle of the commit
2190 mutex_lock(&fs_info->reloc_mutex);
2193 * We needn't worry about the delayed items because we will
2194 * deal with them in create_pending_snapshot(), which is the
2195 * core function of the snapshot creation.
2197 ret = create_pending_snapshots(trans);
2198 if (ret)
2199 goto unlock_reloc;
2202 * We insert the dir indexes of the snapshots and update the inode
2203 * of the snapshots' parents after the snapshot creation, so there
2204 * are some delayed items which are not dealt with. Now deal with
2205 * them.
2207 * We needn't worry that this operation will corrupt the snapshots,
2208 * because all the tree which are snapshoted will be forced to COW
2209 * the nodes and leaves.
2211 ret = btrfs_run_delayed_items(trans);
2212 if (ret)
2213 goto unlock_reloc;
2215 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2216 if (ret)
2217 goto unlock_reloc;
2220 * make sure none of the code above managed to slip in a
2221 * delayed item
2223 btrfs_assert_delayed_root_empty(fs_info);
2225 WARN_ON(cur_trans != trans->transaction);
2227 /* btrfs_commit_tree_roots is responsible for getting the
2228 * various roots consistent with each other. Every pointer
2229 * in the tree of tree roots has to point to the most up to date
2230 * root for every subvolume and other tree. So, we have to keep
2231 * the tree logging code from jumping in and changing any
2232 * of the trees.
2234 * At this point in the commit, there can't be any tree-log
2235 * writers, but a little lower down we drop the trans mutex
2236 * and let new people in. By holding the tree_log_mutex
2237 * from now until after the super is written, we avoid races
2238 * with the tree-log code.
2240 mutex_lock(&fs_info->tree_log_mutex);
2242 ret = commit_fs_roots(trans);
2243 if (ret)
2244 goto unlock_tree_log;
2247 * Since the transaction is done, we can apply the pending changes
2248 * before the next transaction.
2250 btrfs_apply_pending_changes(fs_info);
2252 /* commit_fs_roots gets rid of all the tree log roots, it is now
2253 * safe to free the root of tree log roots
2255 btrfs_free_log_root_tree(trans, fs_info);
2258 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2259 * new delayed refs. Must handle them or qgroup can be wrong.
2261 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2262 if (ret)
2263 goto unlock_tree_log;
2266 * Since fs roots are all committed, we can get a quite accurate
2267 * new_roots. So let's do quota accounting.
2269 ret = btrfs_qgroup_account_extents(trans);
2270 if (ret < 0)
2271 goto unlock_tree_log;
2273 ret = commit_cowonly_roots(trans);
2274 if (ret)
2275 goto unlock_tree_log;
2278 * The tasks which save the space cache and inode cache may also
2279 * update ->aborted, check it.
2281 if (TRANS_ABORTED(cur_trans)) {
2282 ret = cur_trans->aborted;
2283 goto unlock_tree_log;
2286 btrfs_prepare_extent_commit(fs_info);
2288 cur_trans = fs_info->running_transaction;
2290 btrfs_set_root_node(&fs_info->tree_root->root_item,
2291 fs_info->tree_root->node);
2292 list_add_tail(&fs_info->tree_root->dirty_list,
2293 &cur_trans->switch_commits);
2295 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2296 fs_info->chunk_root->node);
2297 list_add_tail(&fs_info->chunk_root->dirty_list,
2298 &cur_trans->switch_commits);
2300 switch_commit_roots(trans);
2302 ASSERT(list_empty(&cur_trans->dirty_bgs));
2303 ASSERT(list_empty(&cur_trans->io_bgs));
2304 update_super_roots(fs_info);
2306 btrfs_set_super_log_root(fs_info->super_copy, 0);
2307 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2308 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2309 sizeof(*fs_info->super_copy));
2311 btrfs_commit_device_sizes(cur_trans);
2313 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2314 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2316 btrfs_trans_release_chunk_metadata(trans);
2318 spin_lock(&fs_info->trans_lock);
2319 cur_trans->state = TRANS_STATE_UNBLOCKED;
2320 fs_info->running_transaction = NULL;
2321 spin_unlock(&fs_info->trans_lock);
2322 mutex_unlock(&fs_info->reloc_mutex);
2324 wake_up(&fs_info->transaction_wait);
2326 ret = btrfs_write_and_wait_transaction(trans);
2327 if (ret) {
2328 btrfs_handle_fs_error(fs_info, ret,
2329 "Error while writing out transaction");
2331 * reloc_mutex has been unlocked, tree_log_mutex is still held
2332 * but we can't jump to unlock_tree_log causing double unlock
2334 mutex_unlock(&fs_info->tree_log_mutex);
2335 goto scrub_continue;
2338 ret = write_all_supers(fs_info, 0);
2340 * the super is written, we can safely allow the tree-loggers
2341 * to go about their business
2343 mutex_unlock(&fs_info->tree_log_mutex);
2344 if (ret)
2345 goto scrub_continue;
2347 btrfs_finish_extent_commit(trans);
2349 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2350 btrfs_clear_space_info_full(fs_info);
2352 fs_info->last_trans_committed = cur_trans->transid;
2354 * We needn't acquire the lock here because there is no other task
2355 * which can change it.
2357 cur_trans->state = TRANS_STATE_COMPLETED;
2358 wake_up(&cur_trans->commit_wait);
2359 clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags);
2361 spin_lock(&fs_info->trans_lock);
2362 list_del_init(&cur_trans->list);
2363 spin_unlock(&fs_info->trans_lock);
2365 btrfs_put_transaction(cur_trans);
2366 btrfs_put_transaction(cur_trans);
2368 if (trans->type & __TRANS_FREEZABLE)
2369 sb_end_intwrite(fs_info->sb);
2371 trace_btrfs_transaction_commit(trans->root);
2373 btrfs_scrub_continue(fs_info);
2375 if (current->journal_info == trans)
2376 current->journal_info = NULL;
2378 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2380 return ret;
2382 unlock_tree_log:
2383 mutex_unlock(&fs_info->tree_log_mutex);
2384 unlock_reloc:
2385 mutex_unlock(&fs_info->reloc_mutex);
2386 scrub_continue:
2387 btrfs_scrub_continue(fs_info);
2388 cleanup_transaction:
2389 btrfs_trans_release_metadata(trans);
2390 btrfs_cleanup_pending_block_groups(trans);
2391 btrfs_trans_release_chunk_metadata(trans);
2392 trans->block_rsv = NULL;
2393 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2394 if (current->journal_info == trans)
2395 current->journal_info = NULL;
2396 cleanup_transaction(trans, ret);
2398 return ret;
2402 * return < 0 if error
2403 * 0 if there are no more dead_roots at the time of call
2404 * 1 there are more to be processed, call me again
2406 * The return value indicates there are certainly more snapshots to delete, but
2407 * if there comes a new one during processing, it may return 0. We don't mind,
2408 * because btrfs_commit_super will poke cleaner thread and it will process it a
2409 * few seconds later.
2411 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2413 int ret;
2414 struct btrfs_fs_info *fs_info = root->fs_info;
2416 spin_lock(&fs_info->trans_lock);
2417 if (list_empty(&fs_info->dead_roots)) {
2418 spin_unlock(&fs_info->trans_lock);
2419 return 0;
2421 root = list_first_entry(&fs_info->dead_roots,
2422 struct btrfs_root, root_list);
2423 list_del_init(&root->root_list);
2424 spin_unlock(&fs_info->trans_lock);
2426 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2428 btrfs_kill_all_delayed_nodes(root);
2429 if (root->ino_cache_inode) {
2430 iput(root->ino_cache_inode);
2431 root->ino_cache_inode = NULL;
2434 if (btrfs_header_backref_rev(root->node) <
2435 BTRFS_MIXED_BACKREF_REV)
2436 ret = btrfs_drop_snapshot(root, 0, 0);
2437 else
2438 ret = btrfs_drop_snapshot(root, 1, 0);
2440 btrfs_put_root(root);
2441 return (ret < 0) ? 0 : 1;
2444 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2446 unsigned long prev;
2447 unsigned long bit;
2449 prev = xchg(&fs_info->pending_changes, 0);
2450 if (!prev)
2451 return;
2453 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2454 if (prev & bit)
2455 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2456 prev &= ~bit;
2458 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2459 if (prev & bit)
2460 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2461 prev &= ~bit;
2463 bit = 1 << BTRFS_PENDING_COMMIT;
2464 if (prev & bit)
2465 btrfs_debug(fs_info, "pending commit done");
2466 prev &= ~bit;
2468 if (prev)
2469 btrfs_warn(fs_info,
2470 "unknown pending changes left 0x%lx, ignoring", prev);