1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
16 #include "transaction.h"
19 #include "inode-map.h"
21 #include "dev-replace.h"
23 #include "block-group.h"
25 #define BTRFS_ROOT_TRANS_TAG 0
28 * Transaction states and transitions
30 * No running transaction (fs tree blocks are not modified)
33 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
35 * Transaction N [[TRANS_STATE_RUNNING]]
37 * | New trans handles can be attached to transaction N by calling all
38 * | start_transaction() variants.
41 * | Call btrfs_commit_transaction() on any trans handle attached to
44 * Transaction N [[TRANS_STATE_COMMIT_START]]
46 * | Will wait for previous running transaction to completely finish if there
49 * | Then one of the following happes:
50 * | - Wait for all other trans handle holders to release.
51 * | The btrfs_commit_transaction() caller will do the commit work.
52 * | - Wait for current transaction to be committed by others.
53 * | Other btrfs_commit_transaction() caller will do the commit work.
55 * | At this stage, only btrfs_join_transaction*() variants can attach
56 * | to this running transaction.
57 * | All other variants will wait for current one to finish and attach to
61 * | Caller is chosen to commit transaction N, and all other trans handle
62 * | haven been released.
64 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
66 * | The heavy lifting transaction work is started.
67 * | From running delayed refs (modifying extent tree) to creating pending
68 * | snapshots, running qgroups.
69 * | In short, modify supporting trees to reflect modifications of subvolume
72 * | At this stage, all start_transaction() calls will wait for this
73 * | transaction to finish and attach to transaction N+1.
76 * | Until all supporting trees are updated.
78 * Transaction N [[TRANS_STATE_UNBLOCKED]]
80 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
81 * | need to write them back to disk and update |
84 * | At this stage, new transaction is allowed to |
86 * | All new start_transaction() calls will be |
87 * | attached to transid N+1. |
90 * | Until all tree blocks are super blocks are |
91 * | written to block devices |
93 * Transaction N [[TRANS_STATE_COMPLETED]] V
94 * All tree blocks and super blocks are written. Transaction N+1
95 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
96 * data structures will be cleaned up. | Life goes on
98 static const unsigned int btrfs_blocked_trans_types
[TRANS_STATE_MAX
] = {
99 [TRANS_STATE_RUNNING
] = 0U,
100 [TRANS_STATE_COMMIT_START
] = (__TRANS_START
| __TRANS_ATTACH
),
101 [TRANS_STATE_COMMIT_DOING
] = (__TRANS_START
|
104 __TRANS_JOIN_NOSTART
),
105 [TRANS_STATE_UNBLOCKED
] = (__TRANS_START
|
108 __TRANS_JOIN_NOLOCK
|
109 __TRANS_JOIN_NOSTART
),
110 [TRANS_STATE_COMPLETED
] = (__TRANS_START
|
113 __TRANS_JOIN_NOLOCK
|
114 __TRANS_JOIN_NOSTART
),
117 void btrfs_put_transaction(struct btrfs_transaction
*transaction
)
119 WARN_ON(refcount_read(&transaction
->use_count
) == 0);
120 if (refcount_dec_and_test(&transaction
->use_count
)) {
121 BUG_ON(!list_empty(&transaction
->list
));
122 WARN_ON(!RB_EMPTY_ROOT(
123 &transaction
->delayed_refs
.href_root
.rb_root
));
124 WARN_ON(!RB_EMPTY_ROOT(
125 &transaction
->delayed_refs
.dirty_extent_root
));
126 if (transaction
->delayed_refs
.pending_csums
)
127 btrfs_err(transaction
->fs_info
,
128 "pending csums is %llu",
129 transaction
->delayed_refs
.pending_csums
);
131 * If any block groups are found in ->deleted_bgs then it's
132 * because the transaction was aborted and a commit did not
133 * happen (things failed before writing the new superblock
134 * and calling btrfs_finish_extent_commit()), so we can not
135 * discard the physical locations of the block groups.
137 while (!list_empty(&transaction
->deleted_bgs
)) {
138 struct btrfs_block_group
*cache
;
140 cache
= list_first_entry(&transaction
->deleted_bgs
,
141 struct btrfs_block_group
,
143 list_del_init(&cache
->bg_list
);
144 btrfs_put_block_group_trimming(cache
);
145 btrfs_put_block_group(cache
);
147 WARN_ON(!list_empty(&transaction
->dev_update_list
));
152 static noinline
void switch_commit_roots(struct btrfs_trans_handle
*trans
)
154 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
155 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
156 struct btrfs_root
*root
, *tmp
;
158 down_write(&fs_info
->commit_root_sem
);
159 list_for_each_entry_safe(root
, tmp
, &cur_trans
->switch_commits
,
161 list_del_init(&root
->dirty_list
);
162 free_extent_buffer(root
->commit_root
);
163 root
->commit_root
= btrfs_root_node(root
);
164 if (is_fstree(root
->root_key
.objectid
))
165 btrfs_unpin_free_ino(root
);
166 extent_io_tree_release(&root
->dirty_log_pages
);
167 btrfs_qgroup_clean_swapped_blocks(root
);
170 /* We can free old roots now. */
171 spin_lock(&cur_trans
->dropped_roots_lock
);
172 while (!list_empty(&cur_trans
->dropped_roots
)) {
173 root
= list_first_entry(&cur_trans
->dropped_roots
,
174 struct btrfs_root
, root_list
);
175 list_del_init(&root
->root_list
);
176 spin_unlock(&cur_trans
->dropped_roots_lock
);
177 btrfs_free_log(trans
, root
);
178 btrfs_drop_and_free_fs_root(fs_info
, root
);
179 spin_lock(&cur_trans
->dropped_roots_lock
);
181 spin_unlock(&cur_trans
->dropped_roots_lock
);
182 up_write(&fs_info
->commit_root_sem
);
185 static inline void extwriter_counter_inc(struct btrfs_transaction
*trans
,
188 if (type
& TRANS_EXTWRITERS
)
189 atomic_inc(&trans
->num_extwriters
);
192 static inline void extwriter_counter_dec(struct btrfs_transaction
*trans
,
195 if (type
& TRANS_EXTWRITERS
)
196 atomic_dec(&trans
->num_extwriters
);
199 static inline void extwriter_counter_init(struct btrfs_transaction
*trans
,
202 atomic_set(&trans
->num_extwriters
, ((type
& TRANS_EXTWRITERS
) ? 1 : 0));
205 static inline int extwriter_counter_read(struct btrfs_transaction
*trans
)
207 return atomic_read(&trans
->num_extwriters
);
211 * To be called after all the new block groups attached to the transaction
212 * handle have been created (btrfs_create_pending_block_groups()).
214 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle
*trans
)
216 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
218 if (!trans
->chunk_bytes_reserved
)
221 WARN_ON_ONCE(!list_empty(&trans
->new_bgs
));
223 btrfs_block_rsv_release(fs_info
, &fs_info
->chunk_block_rsv
,
224 trans
->chunk_bytes_reserved
, NULL
);
225 trans
->chunk_bytes_reserved
= 0;
229 * either allocate a new transaction or hop into the existing one
231 static noinline
int join_transaction(struct btrfs_fs_info
*fs_info
,
234 struct btrfs_transaction
*cur_trans
;
236 spin_lock(&fs_info
->trans_lock
);
238 /* The file system has been taken offline. No new transactions. */
239 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
240 spin_unlock(&fs_info
->trans_lock
);
244 cur_trans
= fs_info
->running_transaction
;
246 if (TRANS_ABORTED(cur_trans
)) {
247 spin_unlock(&fs_info
->trans_lock
);
248 return cur_trans
->aborted
;
250 if (btrfs_blocked_trans_types
[cur_trans
->state
] & type
) {
251 spin_unlock(&fs_info
->trans_lock
);
254 refcount_inc(&cur_trans
->use_count
);
255 atomic_inc(&cur_trans
->num_writers
);
256 extwriter_counter_inc(cur_trans
, type
);
257 spin_unlock(&fs_info
->trans_lock
);
260 spin_unlock(&fs_info
->trans_lock
);
263 * If we are ATTACH, we just want to catch the current transaction,
264 * and commit it. If there is no transaction, just return ENOENT.
266 if (type
== TRANS_ATTACH
)
270 * JOIN_NOLOCK only happens during the transaction commit, so
271 * it is impossible that ->running_transaction is NULL
273 BUG_ON(type
== TRANS_JOIN_NOLOCK
);
275 cur_trans
= kmalloc(sizeof(*cur_trans
), GFP_NOFS
);
279 spin_lock(&fs_info
->trans_lock
);
280 if (fs_info
->running_transaction
) {
282 * someone started a transaction after we unlocked. Make sure
283 * to redo the checks above
287 } else if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
288 spin_unlock(&fs_info
->trans_lock
);
293 cur_trans
->fs_info
= fs_info
;
294 atomic_set(&cur_trans
->num_writers
, 1);
295 extwriter_counter_init(cur_trans
, type
);
296 init_waitqueue_head(&cur_trans
->writer_wait
);
297 init_waitqueue_head(&cur_trans
->commit_wait
);
298 cur_trans
->state
= TRANS_STATE_RUNNING
;
300 * One for this trans handle, one so it will live on until we
301 * commit the transaction.
303 refcount_set(&cur_trans
->use_count
, 2);
304 cur_trans
->flags
= 0;
305 cur_trans
->start_time
= ktime_get_seconds();
307 memset(&cur_trans
->delayed_refs
, 0, sizeof(cur_trans
->delayed_refs
));
309 cur_trans
->delayed_refs
.href_root
= RB_ROOT_CACHED
;
310 cur_trans
->delayed_refs
.dirty_extent_root
= RB_ROOT
;
311 atomic_set(&cur_trans
->delayed_refs
.num_entries
, 0);
314 * although the tree mod log is per file system and not per transaction,
315 * the log must never go across transaction boundaries.
318 if (!list_empty(&fs_info
->tree_mod_seq_list
))
319 WARN(1, KERN_ERR
"BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
320 if (!RB_EMPTY_ROOT(&fs_info
->tree_mod_log
))
321 WARN(1, KERN_ERR
"BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
322 atomic64_set(&fs_info
->tree_mod_seq
, 0);
324 spin_lock_init(&cur_trans
->delayed_refs
.lock
);
326 INIT_LIST_HEAD(&cur_trans
->pending_snapshots
);
327 INIT_LIST_HEAD(&cur_trans
->dev_update_list
);
328 INIT_LIST_HEAD(&cur_trans
->switch_commits
);
329 INIT_LIST_HEAD(&cur_trans
->dirty_bgs
);
330 INIT_LIST_HEAD(&cur_trans
->io_bgs
);
331 INIT_LIST_HEAD(&cur_trans
->dropped_roots
);
332 mutex_init(&cur_trans
->cache_write_mutex
);
333 spin_lock_init(&cur_trans
->dirty_bgs_lock
);
334 INIT_LIST_HEAD(&cur_trans
->deleted_bgs
);
335 spin_lock_init(&cur_trans
->dropped_roots_lock
);
336 list_add_tail(&cur_trans
->list
, &fs_info
->trans_list
);
337 extent_io_tree_init(fs_info
, &cur_trans
->dirty_pages
,
338 IO_TREE_TRANS_DIRTY_PAGES
, fs_info
->btree_inode
);
339 extent_io_tree_init(fs_info
, &cur_trans
->pinned_extents
,
340 IO_TREE_FS_PINNED_EXTENTS
, NULL
);
341 fs_info
->generation
++;
342 cur_trans
->transid
= fs_info
->generation
;
343 fs_info
->running_transaction
= cur_trans
;
344 cur_trans
->aborted
= 0;
345 spin_unlock(&fs_info
->trans_lock
);
351 * this does all the record keeping required to make sure that a reference
352 * counted root is properly recorded in a given transaction. This is required
353 * to make sure the old root from before we joined the transaction is deleted
354 * when the transaction commits
356 static int record_root_in_trans(struct btrfs_trans_handle
*trans
,
357 struct btrfs_root
*root
,
360 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
362 if ((test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
363 root
->last_trans
< trans
->transid
) || force
) {
364 WARN_ON(root
== fs_info
->extent_root
);
365 WARN_ON(!force
&& root
->commit_root
!= root
->node
);
368 * see below for IN_TRANS_SETUP usage rules
369 * we have the reloc mutex held now, so there
370 * is only one writer in this function
372 set_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
);
374 /* make sure readers find IN_TRANS_SETUP before
375 * they find our root->last_trans update
379 spin_lock(&fs_info
->fs_roots_radix_lock
);
380 if (root
->last_trans
== trans
->transid
&& !force
) {
381 spin_unlock(&fs_info
->fs_roots_radix_lock
);
384 radix_tree_tag_set(&fs_info
->fs_roots_radix
,
385 (unsigned long)root
->root_key
.objectid
,
386 BTRFS_ROOT_TRANS_TAG
);
387 spin_unlock(&fs_info
->fs_roots_radix_lock
);
388 root
->last_trans
= trans
->transid
;
390 /* this is pretty tricky. We don't want to
391 * take the relocation lock in btrfs_record_root_in_trans
392 * unless we're really doing the first setup for this root in
395 * Normally we'd use root->last_trans as a flag to decide
396 * if we want to take the expensive mutex.
398 * But, we have to set root->last_trans before we
399 * init the relocation root, otherwise, we trip over warnings
400 * in ctree.c. The solution used here is to flag ourselves
401 * with root IN_TRANS_SETUP. When this is 1, we're still
402 * fixing up the reloc trees and everyone must wait.
404 * When this is zero, they can trust root->last_trans and fly
405 * through btrfs_record_root_in_trans without having to take the
406 * lock. smp_wmb() makes sure that all the writes above are
407 * done before we pop in the zero below
409 btrfs_init_reloc_root(trans
, root
);
410 smp_mb__before_atomic();
411 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
);
417 void btrfs_add_dropped_root(struct btrfs_trans_handle
*trans
,
418 struct btrfs_root
*root
)
420 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
421 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
423 /* Add ourselves to the transaction dropped list */
424 spin_lock(&cur_trans
->dropped_roots_lock
);
425 list_add_tail(&root
->root_list
, &cur_trans
->dropped_roots
);
426 spin_unlock(&cur_trans
->dropped_roots_lock
);
428 /* Make sure we don't try to update the root at commit time */
429 spin_lock(&fs_info
->fs_roots_radix_lock
);
430 radix_tree_tag_clear(&fs_info
->fs_roots_radix
,
431 (unsigned long)root
->root_key
.objectid
,
432 BTRFS_ROOT_TRANS_TAG
);
433 spin_unlock(&fs_info
->fs_roots_radix_lock
);
436 int btrfs_record_root_in_trans(struct btrfs_trans_handle
*trans
,
437 struct btrfs_root
*root
)
439 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
441 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
445 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
449 if (root
->last_trans
== trans
->transid
&&
450 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
))
453 mutex_lock(&fs_info
->reloc_mutex
);
454 record_root_in_trans(trans
, root
, 0);
455 mutex_unlock(&fs_info
->reloc_mutex
);
460 static inline int is_transaction_blocked(struct btrfs_transaction
*trans
)
462 return (trans
->state
>= TRANS_STATE_COMMIT_START
&&
463 trans
->state
< TRANS_STATE_UNBLOCKED
&&
464 !TRANS_ABORTED(trans
));
467 /* wait for commit against the current transaction to become unblocked
468 * when this is done, it is safe to start a new transaction, but the current
469 * transaction might not be fully on disk.
471 static void wait_current_trans(struct btrfs_fs_info
*fs_info
)
473 struct btrfs_transaction
*cur_trans
;
475 spin_lock(&fs_info
->trans_lock
);
476 cur_trans
= fs_info
->running_transaction
;
477 if (cur_trans
&& is_transaction_blocked(cur_trans
)) {
478 refcount_inc(&cur_trans
->use_count
);
479 spin_unlock(&fs_info
->trans_lock
);
481 wait_event(fs_info
->transaction_wait
,
482 cur_trans
->state
>= TRANS_STATE_UNBLOCKED
||
483 TRANS_ABORTED(cur_trans
));
484 btrfs_put_transaction(cur_trans
);
486 spin_unlock(&fs_info
->trans_lock
);
490 static int may_wait_transaction(struct btrfs_fs_info
*fs_info
, int type
)
492 if (test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
))
495 if (type
== TRANS_START
)
501 static inline bool need_reserve_reloc_root(struct btrfs_root
*root
)
503 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
505 if (!fs_info
->reloc_ctl
||
506 !test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
507 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
514 static struct btrfs_trans_handle
*
515 start_transaction(struct btrfs_root
*root
, unsigned int num_items
,
516 unsigned int type
, enum btrfs_reserve_flush_enum flush
,
517 bool enforce_qgroups
)
519 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
520 struct btrfs_block_rsv
*delayed_refs_rsv
= &fs_info
->delayed_refs_rsv
;
521 struct btrfs_trans_handle
*h
;
522 struct btrfs_transaction
*cur_trans
;
524 u64 qgroup_reserved
= 0;
525 bool reloc_reserved
= false;
528 /* Send isn't supposed to start transactions. */
529 ASSERT(current
->journal_info
!= BTRFS_SEND_TRANS_STUB
);
531 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
532 return ERR_PTR(-EROFS
);
534 if (current
->journal_info
) {
535 WARN_ON(type
& TRANS_EXTWRITERS
);
536 h
= current
->journal_info
;
537 refcount_inc(&h
->use_count
);
538 WARN_ON(refcount_read(&h
->use_count
) > 2);
539 h
->orig_rsv
= h
->block_rsv
;
545 * Do the reservation before we join the transaction so we can do all
546 * the appropriate flushing if need be.
548 if (num_items
&& root
!= fs_info
->chunk_root
) {
549 struct btrfs_block_rsv
*rsv
= &fs_info
->trans_block_rsv
;
550 u64 delayed_refs_bytes
= 0;
552 qgroup_reserved
= num_items
* fs_info
->nodesize
;
553 ret
= btrfs_qgroup_reserve_meta_pertrans(root
, qgroup_reserved
,
559 * We want to reserve all the bytes we may need all at once, so
560 * we only do 1 enospc flushing cycle per transaction start. We
561 * accomplish this by simply assuming we'll do 2 x num_items
562 * worth of delayed refs updates in this trans handle, and
563 * refill that amount for whatever is missing in the reserve.
565 num_bytes
= btrfs_calc_insert_metadata_size(fs_info
, num_items
);
566 if (delayed_refs_rsv
->full
== 0) {
567 delayed_refs_bytes
= num_bytes
;
572 * Do the reservation for the relocation root creation
574 if (need_reserve_reloc_root(root
)) {
575 num_bytes
+= fs_info
->nodesize
;
576 reloc_reserved
= true;
579 ret
= btrfs_block_rsv_add(root
, rsv
, num_bytes
, flush
);
582 if (delayed_refs_bytes
) {
583 btrfs_migrate_to_delayed_refs_rsv(fs_info
, rsv
,
585 num_bytes
-= delayed_refs_bytes
;
587 } else if (num_items
== 0 && flush
== BTRFS_RESERVE_FLUSH_ALL
&&
588 !delayed_refs_rsv
->full
) {
590 * Some people call with btrfs_start_transaction(root, 0)
591 * because they can be throttled, but have some other mechanism
592 * for reserving space. We still want these guys to refill the
593 * delayed block_rsv so just add 1 items worth of reservation
596 ret
= btrfs_delayed_refs_rsv_refill(fs_info
, flush
);
601 h
= kmem_cache_zalloc(btrfs_trans_handle_cachep
, GFP_NOFS
);
608 * If we are JOIN_NOLOCK we're already committing a transaction and
609 * waiting on this guy, so we don't need to do the sb_start_intwrite
610 * because we're already holding a ref. We need this because we could
611 * have raced in and did an fsync() on a file which can kick a commit
612 * and then we deadlock with somebody doing a freeze.
614 * If we are ATTACH, it means we just want to catch the current
615 * transaction and commit it, so we needn't do sb_start_intwrite().
617 if (type
& __TRANS_FREEZABLE
)
618 sb_start_intwrite(fs_info
->sb
);
620 if (may_wait_transaction(fs_info
, type
))
621 wait_current_trans(fs_info
);
624 ret
= join_transaction(fs_info
, type
);
626 wait_current_trans(fs_info
);
627 if (unlikely(type
== TRANS_ATTACH
||
628 type
== TRANS_JOIN_NOSTART
))
631 } while (ret
== -EBUSY
);
636 cur_trans
= fs_info
->running_transaction
;
638 h
->transid
= cur_trans
->transid
;
639 h
->transaction
= cur_trans
;
641 refcount_set(&h
->use_count
, 1);
642 h
->fs_info
= root
->fs_info
;
645 h
->can_flush_pending_bgs
= true;
646 INIT_LIST_HEAD(&h
->new_bgs
);
649 if (cur_trans
->state
>= TRANS_STATE_COMMIT_START
&&
650 may_wait_transaction(fs_info
, type
)) {
651 current
->journal_info
= h
;
652 btrfs_commit_transaction(h
);
657 trace_btrfs_space_reservation(fs_info
, "transaction",
658 h
->transid
, num_bytes
, 1);
659 h
->block_rsv
= &fs_info
->trans_block_rsv
;
660 h
->bytes_reserved
= num_bytes
;
661 h
->reloc_reserved
= reloc_reserved
;
665 btrfs_record_root_in_trans(h
, root
);
667 if (!current
->journal_info
)
668 current
->journal_info
= h
;
672 if (type
& __TRANS_FREEZABLE
)
673 sb_end_intwrite(fs_info
->sb
);
674 kmem_cache_free(btrfs_trans_handle_cachep
, h
);
677 btrfs_block_rsv_release(fs_info
, &fs_info
->trans_block_rsv
,
680 btrfs_qgroup_free_meta_pertrans(root
, qgroup_reserved
);
684 struct btrfs_trans_handle
*btrfs_start_transaction(struct btrfs_root
*root
,
685 unsigned int num_items
)
687 return start_transaction(root
, num_items
, TRANS_START
,
688 BTRFS_RESERVE_FLUSH_ALL
, true);
691 struct btrfs_trans_handle
*btrfs_start_transaction_fallback_global_rsv(
692 struct btrfs_root
*root
,
693 unsigned int num_items
,
696 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
697 struct btrfs_trans_handle
*trans
;
702 * We have two callers: unlink and block group removal. The
703 * former should succeed even if we will temporarily exceed
704 * quota and the latter operates on the extent root so
705 * qgroup enforcement is ignored anyway.
707 trans
= start_transaction(root
, num_items
, TRANS_START
,
708 BTRFS_RESERVE_FLUSH_ALL
, false);
709 if (!IS_ERR(trans
) || PTR_ERR(trans
) != -ENOSPC
)
712 trans
= btrfs_start_transaction(root
, 0);
716 num_bytes
= btrfs_calc_insert_metadata_size(fs_info
, num_items
);
717 ret
= btrfs_cond_migrate_bytes(fs_info
, &fs_info
->trans_block_rsv
,
718 num_bytes
, min_factor
);
720 btrfs_end_transaction(trans
);
724 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
725 trans
->bytes_reserved
= num_bytes
;
726 trace_btrfs_space_reservation(fs_info
, "transaction",
727 trans
->transid
, num_bytes
, 1);
732 struct btrfs_trans_handle
*btrfs_join_transaction(struct btrfs_root
*root
)
734 return start_transaction(root
, 0, TRANS_JOIN
, BTRFS_RESERVE_NO_FLUSH
,
738 struct btrfs_trans_handle
*btrfs_join_transaction_spacecache(struct btrfs_root
*root
)
740 return start_transaction(root
, 0, TRANS_JOIN_NOLOCK
,
741 BTRFS_RESERVE_NO_FLUSH
, true);
745 * Similar to regular join but it never starts a transaction when none is
746 * running or after waiting for the current one to finish.
748 struct btrfs_trans_handle
*btrfs_join_transaction_nostart(struct btrfs_root
*root
)
750 return start_transaction(root
, 0, TRANS_JOIN_NOSTART
,
751 BTRFS_RESERVE_NO_FLUSH
, true);
755 * btrfs_attach_transaction() - catch the running transaction
757 * It is used when we want to commit the current the transaction, but
758 * don't want to start a new one.
760 * Note: If this function return -ENOENT, it just means there is no
761 * running transaction. But it is possible that the inactive transaction
762 * is still in the memory, not fully on disk. If you hope there is no
763 * inactive transaction in the fs when -ENOENT is returned, you should
765 * btrfs_attach_transaction_barrier()
767 struct btrfs_trans_handle
*btrfs_attach_transaction(struct btrfs_root
*root
)
769 return start_transaction(root
, 0, TRANS_ATTACH
,
770 BTRFS_RESERVE_NO_FLUSH
, true);
774 * btrfs_attach_transaction_barrier() - catch the running transaction
776 * It is similar to the above function, the difference is this one
777 * will wait for all the inactive transactions until they fully
780 struct btrfs_trans_handle
*
781 btrfs_attach_transaction_barrier(struct btrfs_root
*root
)
783 struct btrfs_trans_handle
*trans
;
785 trans
= start_transaction(root
, 0, TRANS_ATTACH
,
786 BTRFS_RESERVE_NO_FLUSH
, true);
787 if (trans
== ERR_PTR(-ENOENT
))
788 btrfs_wait_for_commit(root
->fs_info
, 0);
793 /* wait for a transaction commit to be fully complete */
794 static noinline
void wait_for_commit(struct btrfs_transaction
*commit
)
796 wait_event(commit
->commit_wait
, commit
->state
== TRANS_STATE_COMPLETED
);
799 int btrfs_wait_for_commit(struct btrfs_fs_info
*fs_info
, u64 transid
)
801 struct btrfs_transaction
*cur_trans
= NULL
, *t
;
805 if (transid
<= fs_info
->last_trans_committed
)
808 /* find specified transaction */
809 spin_lock(&fs_info
->trans_lock
);
810 list_for_each_entry(t
, &fs_info
->trans_list
, list
) {
811 if (t
->transid
== transid
) {
813 refcount_inc(&cur_trans
->use_count
);
817 if (t
->transid
> transid
) {
822 spin_unlock(&fs_info
->trans_lock
);
825 * The specified transaction doesn't exist, or we
826 * raced with btrfs_commit_transaction
829 if (transid
> fs_info
->last_trans_committed
)
834 /* find newest transaction that is committing | committed */
835 spin_lock(&fs_info
->trans_lock
);
836 list_for_each_entry_reverse(t
, &fs_info
->trans_list
,
838 if (t
->state
>= TRANS_STATE_COMMIT_START
) {
839 if (t
->state
== TRANS_STATE_COMPLETED
)
842 refcount_inc(&cur_trans
->use_count
);
846 spin_unlock(&fs_info
->trans_lock
);
848 goto out
; /* nothing committing|committed */
851 wait_for_commit(cur_trans
);
852 btrfs_put_transaction(cur_trans
);
857 void btrfs_throttle(struct btrfs_fs_info
*fs_info
)
859 wait_current_trans(fs_info
);
862 static int should_end_transaction(struct btrfs_trans_handle
*trans
)
864 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
866 if (btrfs_check_space_for_delayed_refs(fs_info
))
869 return !!btrfs_block_rsv_check(&fs_info
->global_block_rsv
, 5);
872 int btrfs_should_end_transaction(struct btrfs_trans_handle
*trans
)
874 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
877 if (cur_trans
->state
>= TRANS_STATE_COMMIT_START
||
878 cur_trans
->delayed_refs
.flushing
)
881 return should_end_transaction(trans
);
884 static void btrfs_trans_release_metadata(struct btrfs_trans_handle
*trans
)
887 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
889 if (!trans
->block_rsv
) {
890 ASSERT(!trans
->bytes_reserved
);
894 if (!trans
->bytes_reserved
)
897 ASSERT(trans
->block_rsv
== &fs_info
->trans_block_rsv
);
898 trace_btrfs_space_reservation(fs_info
, "transaction",
899 trans
->transid
, trans
->bytes_reserved
, 0);
900 btrfs_block_rsv_release(fs_info
, trans
->block_rsv
,
901 trans
->bytes_reserved
, NULL
);
902 trans
->bytes_reserved
= 0;
905 static int __btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
908 struct btrfs_fs_info
*info
= trans
->fs_info
;
909 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
912 if (refcount_read(&trans
->use_count
) > 1) {
913 refcount_dec(&trans
->use_count
);
914 trans
->block_rsv
= trans
->orig_rsv
;
918 btrfs_trans_release_metadata(trans
);
919 trans
->block_rsv
= NULL
;
921 btrfs_create_pending_block_groups(trans
);
923 btrfs_trans_release_chunk_metadata(trans
);
925 if (trans
->type
& __TRANS_FREEZABLE
)
926 sb_end_intwrite(info
->sb
);
928 WARN_ON(cur_trans
!= info
->running_transaction
);
929 WARN_ON(atomic_read(&cur_trans
->num_writers
) < 1);
930 atomic_dec(&cur_trans
->num_writers
);
931 extwriter_counter_dec(cur_trans
, trans
->type
);
933 cond_wake_up(&cur_trans
->writer_wait
);
934 btrfs_put_transaction(cur_trans
);
936 if (current
->journal_info
== trans
)
937 current
->journal_info
= NULL
;
940 btrfs_run_delayed_iputs(info
);
942 if (TRANS_ABORTED(trans
) ||
943 test_bit(BTRFS_FS_STATE_ERROR
, &info
->fs_state
)) {
944 wake_up_process(info
->transaction_kthread
);
948 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
952 int btrfs_end_transaction(struct btrfs_trans_handle
*trans
)
954 return __btrfs_end_transaction(trans
, 0);
957 int btrfs_end_transaction_throttle(struct btrfs_trans_handle
*trans
)
959 return __btrfs_end_transaction(trans
, 1);
963 * when btree blocks are allocated, they have some corresponding bits set for
964 * them in one of two extent_io trees. This is used to make sure all of
965 * those extents are sent to disk but does not wait on them
967 int btrfs_write_marked_extents(struct btrfs_fs_info
*fs_info
,
968 struct extent_io_tree
*dirty_pages
, int mark
)
972 struct address_space
*mapping
= fs_info
->btree_inode
->i_mapping
;
973 struct extent_state
*cached_state
= NULL
;
977 atomic_inc(&BTRFS_I(fs_info
->btree_inode
)->sync_writers
);
978 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
979 mark
, &cached_state
)) {
980 bool wait_writeback
= false;
982 err
= convert_extent_bit(dirty_pages
, start
, end
,
984 mark
, &cached_state
);
986 * convert_extent_bit can return -ENOMEM, which is most of the
987 * time a temporary error. So when it happens, ignore the error
988 * and wait for writeback of this range to finish - because we
989 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
990 * to __btrfs_wait_marked_extents() would not know that
991 * writeback for this range started and therefore wouldn't
992 * wait for it to finish - we don't want to commit a
993 * superblock that points to btree nodes/leafs for which
994 * writeback hasn't finished yet (and without errors).
995 * We cleanup any entries left in the io tree when committing
996 * the transaction (through extent_io_tree_release()).
998 if (err
== -ENOMEM
) {
1000 wait_writeback
= true;
1003 err
= filemap_fdatawrite_range(mapping
, start
, end
);
1006 else if (wait_writeback
)
1007 werr
= filemap_fdatawait_range(mapping
, start
, end
);
1008 free_extent_state(cached_state
);
1009 cached_state
= NULL
;
1013 atomic_dec(&BTRFS_I(fs_info
->btree_inode
)->sync_writers
);
1018 * when btree blocks are allocated, they have some corresponding bits set for
1019 * them in one of two extent_io trees. This is used to make sure all of
1020 * those extents are on disk for transaction or log commit. We wait
1021 * on all the pages and clear them from the dirty pages state tree
1023 static int __btrfs_wait_marked_extents(struct btrfs_fs_info
*fs_info
,
1024 struct extent_io_tree
*dirty_pages
)
1028 struct address_space
*mapping
= fs_info
->btree_inode
->i_mapping
;
1029 struct extent_state
*cached_state
= NULL
;
1033 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
1034 EXTENT_NEED_WAIT
, &cached_state
)) {
1036 * Ignore -ENOMEM errors returned by clear_extent_bit().
1037 * When committing the transaction, we'll remove any entries
1038 * left in the io tree. For a log commit, we don't remove them
1039 * after committing the log because the tree can be accessed
1040 * concurrently - we do it only at transaction commit time when
1041 * it's safe to do it (through extent_io_tree_release()).
1043 err
= clear_extent_bit(dirty_pages
, start
, end
,
1044 EXTENT_NEED_WAIT
, 0, 0, &cached_state
);
1048 err
= filemap_fdatawait_range(mapping
, start
, end
);
1051 free_extent_state(cached_state
);
1052 cached_state
= NULL
;
1061 static int btrfs_wait_extents(struct btrfs_fs_info
*fs_info
,
1062 struct extent_io_tree
*dirty_pages
)
1064 bool errors
= false;
1067 err
= __btrfs_wait_marked_extents(fs_info
, dirty_pages
);
1068 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR
, &fs_info
->flags
))
1076 int btrfs_wait_tree_log_extents(struct btrfs_root
*log_root
, int mark
)
1078 struct btrfs_fs_info
*fs_info
= log_root
->fs_info
;
1079 struct extent_io_tree
*dirty_pages
= &log_root
->dirty_log_pages
;
1080 bool errors
= false;
1083 ASSERT(log_root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
);
1085 err
= __btrfs_wait_marked_extents(fs_info
, dirty_pages
);
1086 if ((mark
& EXTENT_DIRTY
) &&
1087 test_and_clear_bit(BTRFS_FS_LOG1_ERR
, &fs_info
->flags
))
1090 if ((mark
& EXTENT_NEW
) &&
1091 test_and_clear_bit(BTRFS_FS_LOG2_ERR
, &fs_info
->flags
))
1100 * When btree blocks are allocated the corresponding extents are marked dirty.
1101 * This function ensures such extents are persisted on disk for transaction or
1104 * @trans: transaction whose dirty pages we'd like to write
1106 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle
*trans
)
1110 struct extent_io_tree
*dirty_pages
= &trans
->transaction
->dirty_pages
;
1111 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1112 struct blk_plug plug
;
1114 blk_start_plug(&plug
);
1115 ret
= btrfs_write_marked_extents(fs_info
, dirty_pages
, EXTENT_DIRTY
);
1116 blk_finish_plug(&plug
);
1117 ret2
= btrfs_wait_extents(fs_info
, dirty_pages
);
1119 extent_io_tree_release(&trans
->transaction
->dirty_pages
);
1130 * this is used to update the root pointer in the tree of tree roots.
1132 * But, in the case of the extent allocation tree, updating the root
1133 * pointer may allocate blocks which may change the root of the extent
1136 * So, this loops and repeats and makes sure the cowonly root didn't
1137 * change while the root pointer was being updated in the metadata.
1139 static int update_cowonly_root(struct btrfs_trans_handle
*trans
,
1140 struct btrfs_root
*root
)
1143 u64 old_root_bytenr
;
1145 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1146 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1148 old_root_used
= btrfs_root_used(&root
->root_item
);
1151 old_root_bytenr
= btrfs_root_bytenr(&root
->root_item
);
1152 if (old_root_bytenr
== root
->node
->start
&&
1153 old_root_used
== btrfs_root_used(&root
->root_item
))
1156 btrfs_set_root_node(&root
->root_item
, root
->node
);
1157 ret
= btrfs_update_root(trans
, tree_root
,
1163 old_root_used
= btrfs_root_used(&root
->root_item
);
1170 * update all the cowonly tree roots on disk
1172 * The error handling in this function may not be obvious. Any of the
1173 * failures will cause the file system to go offline. We still need
1174 * to clean up the delayed refs.
1176 static noinline
int commit_cowonly_roots(struct btrfs_trans_handle
*trans
)
1178 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1179 struct list_head
*dirty_bgs
= &trans
->transaction
->dirty_bgs
;
1180 struct list_head
*io_bgs
= &trans
->transaction
->io_bgs
;
1181 struct list_head
*next
;
1182 struct extent_buffer
*eb
;
1185 eb
= btrfs_lock_root_node(fs_info
->tree_root
);
1186 ret
= btrfs_cow_block(trans
, fs_info
->tree_root
, eb
, NULL
,
1188 btrfs_tree_unlock(eb
);
1189 free_extent_buffer(eb
);
1194 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1198 ret
= btrfs_run_dev_stats(trans
);
1201 ret
= btrfs_run_dev_replace(trans
);
1204 ret
= btrfs_run_qgroups(trans
);
1208 ret
= btrfs_setup_space_cache(trans
);
1212 /* run_qgroups might have added some more refs */
1213 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1217 while (!list_empty(&fs_info
->dirty_cowonly_roots
)) {
1218 struct btrfs_root
*root
;
1219 next
= fs_info
->dirty_cowonly_roots
.next
;
1220 list_del_init(next
);
1221 root
= list_entry(next
, struct btrfs_root
, dirty_list
);
1222 clear_bit(BTRFS_ROOT_DIRTY
, &root
->state
);
1224 if (root
!= fs_info
->extent_root
)
1225 list_add_tail(&root
->dirty_list
,
1226 &trans
->transaction
->switch_commits
);
1227 ret
= update_cowonly_root(trans
, root
);
1230 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1235 while (!list_empty(dirty_bgs
) || !list_empty(io_bgs
)) {
1236 ret
= btrfs_write_dirty_block_groups(trans
);
1239 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1244 if (!list_empty(&fs_info
->dirty_cowonly_roots
))
1247 list_add_tail(&fs_info
->extent_root
->dirty_list
,
1248 &trans
->transaction
->switch_commits
);
1250 /* Update dev-replace pointer once everything is committed */
1251 fs_info
->dev_replace
.committed_cursor_left
=
1252 fs_info
->dev_replace
.cursor_left_last_write_of_item
;
1258 * dead roots are old snapshots that need to be deleted. This allocates
1259 * a dirty root struct and adds it into the list of dead roots that need to
1262 void btrfs_add_dead_root(struct btrfs_root
*root
)
1264 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1266 spin_lock(&fs_info
->trans_lock
);
1267 if (list_empty(&root
->root_list
)) {
1268 btrfs_grab_root(root
);
1269 list_add_tail(&root
->root_list
, &fs_info
->dead_roots
);
1271 spin_unlock(&fs_info
->trans_lock
);
1275 * update all the cowonly tree roots on disk
1277 static noinline
int commit_fs_roots(struct btrfs_trans_handle
*trans
)
1279 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1280 struct btrfs_root
*gang
[8];
1285 spin_lock(&fs_info
->fs_roots_radix_lock
);
1287 ret
= radix_tree_gang_lookup_tag(&fs_info
->fs_roots_radix
,
1290 BTRFS_ROOT_TRANS_TAG
);
1293 for (i
= 0; i
< ret
; i
++) {
1294 struct btrfs_root
*root
= gang
[i
];
1295 radix_tree_tag_clear(&fs_info
->fs_roots_radix
,
1296 (unsigned long)root
->root_key
.objectid
,
1297 BTRFS_ROOT_TRANS_TAG
);
1298 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1300 btrfs_free_log(trans
, root
);
1301 btrfs_update_reloc_root(trans
, root
);
1303 btrfs_save_ino_cache(root
, trans
);
1305 /* see comments in should_cow_block() */
1306 clear_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
);
1307 smp_mb__after_atomic();
1309 if (root
->commit_root
!= root
->node
) {
1310 list_add_tail(&root
->dirty_list
,
1311 &trans
->transaction
->switch_commits
);
1312 btrfs_set_root_node(&root
->root_item
,
1316 err
= btrfs_update_root(trans
, fs_info
->tree_root
,
1319 spin_lock(&fs_info
->fs_roots_radix_lock
);
1322 btrfs_qgroup_free_meta_all_pertrans(root
);
1325 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1330 * defrag a given btree.
1331 * Every leaf in the btree is read and defragged.
1333 int btrfs_defrag_root(struct btrfs_root
*root
)
1335 struct btrfs_fs_info
*info
= root
->fs_info
;
1336 struct btrfs_trans_handle
*trans
;
1339 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING
, &root
->state
))
1343 trans
= btrfs_start_transaction(root
, 0);
1345 return PTR_ERR(trans
);
1347 ret
= btrfs_defrag_leaves(trans
, root
);
1349 btrfs_end_transaction(trans
);
1350 btrfs_btree_balance_dirty(info
);
1353 if (btrfs_fs_closing(info
) || ret
!= -EAGAIN
)
1356 if (btrfs_defrag_cancelled(info
)) {
1357 btrfs_debug(info
, "defrag_root cancelled");
1362 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING
, &root
->state
);
1367 * Do all special snapshot related qgroup dirty hack.
1369 * Will do all needed qgroup inherit and dirty hack like switch commit
1370 * roots inside one transaction and write all btree into disk, to make
1373 static int qgroup_account_snapshot(struct btrfs_trans_handle
*trans
,
1374 struct btrfs_root
*src
,
1375 struct btrfs_root
*parent
,
1376 struct btrfs_qgroup_inherit
*inherit
,
1379 struct btrfs_fs_info
*fs_info
= src
->fs_info
;
1383 * Save some performance in the case that qgroups are not
1384 * enabled. If this check races with the ioctl, rescan will
1387 if (!test_bit(BTRFS_FS_QUOTA_ENABLED
, &fs_info
->flags
))
1391 * Ensure dirty @src will be committed. Or, after coming
1392 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1393 * recorded root will never be updated again, causing an outdated root
1396 record_root_in_trans(trans
, src
, 1);
1399 * We are going to commit transaction, see btrfs_commit_transaction()
1400 * comment for reason locking tree_log_mutex
1402 mutex_lock(&fs_info
->tree_log_mutex
);
1404 ret
= commit_fs_roots(trans
);
1407 ret
= btrfs_qgroup_account_extents(trans
);
1411 /* Now qgroup are all updated, we can inherit it to new qgroups */
1412 ret
= btrfs_qgroup_inherit(trans
, src
->root_key
.objectid
, dst_objectid
,
1418 * Now we do a simplified commit transaction, which will:
1419 * 1) commit all subvolume and extent tree
1420 * To ensure all subvolume and extent tree have a valid
1421 * commit_root to accounting later insert_dir_item()
1422 * 2) write all btree blocks onto disk
1423 * This is to make sure later btree modification will be cowed
1424 * Or commit_root can be populated and cause wrong qgroup numbers
1425 * In this simplified commit, we don't really care about other trees
1426 * like chunk and root tree, as they won't affect qgroup.
1427 * And we don't write super to avoid half committed status.
1429 ret
= commit_cowonly_roots(trans
);
1432 switch_commit_roots(trans
);
1433 ret
= btrfs_write_and_wait_transaction(trans
);
1435 btrfs_handle_fs_error(fs_info
, ret
,
1436 "Error while writing out transaction for qgroup");
1439 mutex_unlock(&fs_info
->tree_log_mutex
);
1442 * Force parent root to be updated, as we recorded it before so its
1443 * last_trans == cur_transid.
1444 * Or it won't be committed again onto disk after later
1448 record_root_in_trans(trans
, parent
, 1);
1453 * new snapshots need to be created at a very specific time in the
1454 * transaction commit. This does the actual creation.
1457 * If the error which may affect the commitment of the current transaction
1458 * happens, we should return the error number. If the error which just affect
1459 * the creation of the pending snapshots, just return 0.
1461 static noinline
int create_pending_snapshot(struct btrfs_trans_handle
*trans
,
1462 struct btrfs_pending_snapshot
*pending
)
1465 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1466 struct btrfs_key key
;
1467 struct btrfs_root_item
*new_root_item
;
1468 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1469 struct btrfs_root
*root
= pending
->root
;
1470 struct btrfs_root
*parent_root
;
1471 struct btrfs_block_rsv
*rsv
;
1472 struct inode
*parent_inode
;
1473 struct btrfs_path
*path
;
1474 struct btrfs_dir_item
*dir_item
;
1475 struct dentry
*dentry
;
1476 struct extent_buffer
*tmp
;
1477 struct extent_buffer
*old
;
1478 struct timespec64 cur_time
;
1485 ASSERT(pending
->path
);
1486 path
= pending
->path
;
1488 ASSERT(pending
->root_item
);
1489 new_root_item
= pending
->root_item
;
1491 pending
->error
= btrfs_find_free_objectid(tree_root
, &objectid
);
1493 goto no_free_objectid
;
1496 * Make qgroup to skip current new snapshot's qgroupid, as it is
1497 * accounted by later btrfs_qgroup_inherit().
1499 btrfs_set_skip_qgroup(trans
, objectid
);
1501 btrfs_reloc_pre_snapshot(pending
, &to_reserve
);
1503 if (to_reserve
> 0) {
1504 pending
->error
= btrfs_block_rsv_add(root
,
1505 &pending
->block_rsv
,
1507 BTRFS_RESERVE_NO_FLUSH
);
1509 goto clear_skip_qgroup
;
1512 key
.objectid
= objectid
;
1513 key
.offset
= (u64
)-1;
1514 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1516 rsv
= trans
->block_rsv
;
1517 trans
->block_rsv
= &pending
->block_rsv
;
1518 trans
->bytes_reserved
= trans
->block_rsv
->reserved
;
1519 trace_btrfs_space_reservation(fs_info
, "transaction",
1521 trans
->bytes_reserved
, 1);
1522 dentry
= pending
->dentry
;
1523 parent_inode
= pending
->dir
;
1524 parent_root
= BTRFS_I(parent_inode
)->root
;
1525 record_root_in_trans(trans
, parent_root
, 0);
1527 cur_time
= current_time(parent_inode
);
1530 * insert the directory item
1532 ret
= btrfs_set_inode_index(BTRFS_I(parent_inode
), &index
);
1533 BUG_ON(ret
); /* -ENOMEM */
1535 /* check if there is a file/dir which has the same name. */
1536 dir_item
= btrfs_lookup_dir_item(NULL
, parent_root
, path
,
1537 btrfs_ino(BTRFS_I(parent_inode
)),
1538 dentry
->d_name
.name
,
1539 dentry
->d_name
.len
, 0);
1540 if (dir_item
!= NULL
&& !IS_ERR(dir_item
)) {
1541 pending
->error
= -EEXIST
;
1542 goto dir_item_existed
;
1543 } else if (IS_ERR(dir_item
)) {
1544 ret
= PTR_ERR(dir_item
);
1545 btrfs_abort_transaction(trans
, ret
);
1548 btrfs_release_path(path
);
1551 * pull in the delayed directory update
1552 * and the delayed inode item
1553 * otherwise we corrupt the FS during
1556 ret
= btrfs_run_delayed_items(trans
);
1557 if (ret
) { /* Transaction aborted */
1558 btrfs_abort_transaction(trans
, ret
);
1562 record_root_in_trans(trans
, root
, 0);
1563 btrfs_set_root_last_snapshot(&root
->root_item
, trans
->transid
);
1564 memcpy(new_root_item
, &root
->root_item
, sizeof(*new_root_item
));
1565 btrfs_check_and_init_root_item(new_root_item
);
1567 root_flags
= btrfs_root_flags(new_root_item
);
1568 if (pending
->readonly
)
1569 root_flags
|= BTRFS_ROOT_SUBVOL_RDONLY
;
1571 root_flags
&= ~BTRFS_ROOT_SUBVOL_RDONLY
;
1572 btrfs_set_root_flags(new_root_item
, root_flags
);
1574 btrfs_set_root_generation_v2(new_root_item
,
1576 generate_random_guid(new_root_item
->uuid
);
1577 memcpy(new_root_item
->parent_uuid
, root
->root_item
.uuid
,
1579 if (!(root_flags
& BTRFS_ROOT_SUBVOL_RDONLY
)) {
1580 memset(new_root_item
->received_uuid
, 0,
1581 sizeof(new_root_item
->received_uuid
));
1582 memset(&new_root_item
->stime
, 0, sizeof(new_root_item
->stime
));
1583 memset(&new_root_item
->rtime
, 0, sizeof(new_root_item
->rtime
));
1584 btrfs_set_root_stransid(new_root_item
, 0);
1585 btrfs_set_root_rtransid(new_root_item
, 0);
1587 btrfs_set_stack_timespec_sec(&new_root_item
->otime
, cur_time
.tv_sec
);
1588 btrfs_set_stack_timespec_nsec(&new_root_item
->otime
, cur_time
.tv_nsec
);
1589 btrfs_set_root_otransid(new_root_item
, trans
->transid
);
1591 old
= btrfs_lock_root_node(root
);
1592 ret
= btrfs_cow_block(trans
, root
, old
, NULL
, 0, &old
);
1594 btrfs_tree_unlock(old
);
1595 free_extent_buffer(old
);
1596 btrfs_abort_transaction(trans
, ret
);
1600 btrfs_set_lock_blocking_write(old
);
1602 ret
= btrfs_copy_root(trans
, root
, old
, &tmp
, objectid
);
1603 /* clean up in any case */
1604 btrfs_tree_unlock(old
);
1605 free_extent_buffer(old
);
1607 btrfs_abort_transaction(trans
, ret
);
1610 /* see comments in should_cow_block() */
1611 set_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
);
1614 btrfs_set_root_node(new_root_item
, tmp
);
1615 /* record when the snapshot was created in key.offset */
1616 key
.offset
= trans
->transid
;
1617 ret
= btrfs_insert_root(trans
, tree_root
, &key
, new_root_item
);
1618 btrfs_tree_unlock(tmp
);
1619 free_extent_buffer(tmp
);
1621 btrfs_abort_transaction(trans
, ret
);
1626 * insert root back/forward references
1628 ret
= btrfs_add_root_ref(trans
, objectid
,
1629 parent_root
->root_key
.objectid
,
1630 btrfs_ino(BTRFS_I(parent_inode
)), index
,
1631 dentry
->d_name
.name
, dentry
->d_name
.len
);
1633 btrfs_abort_transaction(trans
, ret
);
1637 key
.offset
= (u64
)-1;
1638 pending
->snap
= btrfs_get_fs_root(fs_info
, &key
, true);
1639 if (IS_ERR(pending
->snap
)) {
1640 ret
= PTR_ERR(pending
->snap
);
1641 btrfs_abort_transaction(trans
, ret
);
1645 ret
= btrfs_reloc_post_snapshot(trans
, pending
);
1647 btrfs_abort_transaction(trans
, ret
);
1651 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1653 btrfs_abort_transaction(trans
, ret
);
1658 * Do special qgroup accounting for snapshot, as we do some qgroup
1659 * snapshot hack to do fast snapshot.
1660 * To co-operate with that hack, we do hack again.
1661 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1663 ret
= qgroup_account_snapshot(trans
, root
, parent_root
,
1664 pending
->inherit
, objectid
);
1668 ret
= btrfs_insert_dir_item(trans
, dentry
->d_name
.name
,
1669 dentry
->d_name
.len
, BTRFS_I(parent_inode
),
1670 &key
, BTRFS_FT_DIR
, index
);
1671 /* We have check then name at the beginning, so it is impossible. */
1672 BUG_ON(ret
== -EEXIST
|| ret
== -EOVERFLOW
);
1674 btrfs_abort_transaction(trans
, ret
);
1678 btrfs_i_size_write(BTRFS_I(parent_inode
), parent_inode
->i_size
+
1679 dentry
->d_name
.len
* 2);
1680 parent_inode
->i_mtime
= parent_inode
->i_ctime
=
1681 current_time(parent_inode
);
1682 ret
= btrfs_update_inode_fallback(trans
, parent_root
, parent_inode
);
1684 btrfs_abort_transaction(trans
, ret
);
1687 ret
= btrfs_uuid_tree_add(trans
, new_root_item
->uuid
,
1688 BTRFS_UUID_KEY_SUBVOL
,
1691 btrfs_abort_transaction(trans
, ret
);
1694 if (!btrfs_is_empty_uuid(new_root_item
->received_uuid
)) {
1695 ret
= btrfs_uuid_tree_add(trans
, new_root_item
->received_uuid
,
1696 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
1698 if (ret
&& ret
!= -EEXIST
) {
1699 btrfs_abort_transaction(trans
, ret
);
1704 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1706 btrfs_abort_transaction(trans
, ret
);
1711 pending
->error
= ret
;
1713 trans
->block_rsv
= rsv
;
1714 trans
->bytes_reserved
= 0;
1716 btrfs_clear_skip_qgroup(trans
);
1718 kfree(new_root_item
);
1719 pending
->root_item
= NULL
;
1720 btrfs_free_path(path
);
1721 pending
->path
= NULL
;
1727 * create all the snapshots we've scheduled for creation
1729 static noinline
int create_pending_snapshots(struct btrfs_trans_handle
*trans
)
1731 struct btrfs_pending_snapshot
*pending
, *next
;
1732 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
1735 list_for_each_entry_safe(pending
, next
, head
, list
) {
1736 list_del(&pending
->list
);
1737 ret
= create_pending_snapshot(trans
, pending
);
1744 static void update_super_roots(struct btrfs_fs_info
*fs_info
)
1746 struct btrfs_root_item
*root_item
;
1747 struct btrfs_super_block
*super
;
1749 super
= fs_info
->super_copy
;
1751 root_item
= &fs_info
->chunk_root
->root_item
;
1752 super
->chunk_root
= root_item
->bytenr
;
1753 super
->chunk_root_generation
= root_item
->generation
;
1754 super
->chunk_root_level
= root_item
->level
;
1756 root_item
= &fs_info
->tree_root
->root_item
;
1757 super
->root
= root_item
->bytenr
;
1758 super
->generation
= root_item
->generation
;
1759 super
->root_level
= root_item
->level
;
1760 if (btrfs_test_opt(fs_info
, SPACE_CACHE
))
1761 super
->cache_generation
= root_item
->generation
;
1762 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN
, &fs_info
->flags
))
1763 super
->uuid_tree_generation
= root_item
->generation
;
1766 int btrfs_transaction_in_commit(struct btrfs_fs_info
*info
)
1768 struct btrfs_transaction
*trans
;
1771 spin_lock(&info
->trans_lock
);
1772 trans
= info
->running_transaction
;
1774 ret
= (trans
->state
>= TRANS_STATE_COMMIT_START
);
1775 spin_unlock(&info
->trans_lock
);
1779 int btrfs_transaction_blocked(struct btrfs_fs_info
*info
)
1781 struct btrfs_transaction
*trans
;
1784 spin_lock(&info
->trans_lock
);
1785 trans
= info
->running_transaction
;
1787 ret
= is_transaction_blocked(trans
);
1788 spin_unlock(&info
->trans_lock
);
1793 * wait for the current transaction commit to start and block subsequent
1796 static void wait_current_trans_commit_start(struct btrfs_fs_info
*fs_info
,
1797 struct btrfs_transaction
*trans
)
1799 wait_event(fs_info
->transaction_blocked_wait
,
1800 trans
->state
>= TRANS_STATE_COMMIT_START
||
1801 TRANS_ABORTED(trans
));
1805 * wait for the current transaction to start and then become unblocked.
1808 static void wait_current_trans_commit_start_and_unblock(
1809 struct btrfs_fs_info
*fs_info
,
1810 struct btrfs_transaction
*trans
)
1812 wait_event(fs_info
->transaction_wait
,
1813 trans
->state
>= TRANS_STATE_UNBLOCKED
||
1814 TRANS_ABORTED(trans
));
1818 * commit transactions asynchronously. once btrfs_commit_transaction_async
1819 * returns, any subsequent transaction will not be allowed to join.
1821 struct btrfs_async_commit
{
1822 struct btrfs_trans_handle
*newtrans
;
1823 struct work_struct work
;
1826 static void do_async_commit(struct work_struct
*work
)
1828 struct btrfs_async_commit
*ac
=
1829 container_of(work
, struct btrfs_async_commit
, work
);
1832 * We've got freeze protection passed with the transaction.
1833 * Tell lockdep about it.
1835 if (ac
->newtrans
->type
& __TRANS_FREEZABLE
)
1836 __sb_writers_acquired(ac
->newtrans
->fs_info
->sb
, SB_FREEZE_FS
);
1838 current
->journal_info
= ac
->newtrans
;
1840 btrfs_commit_transaction(ac
->newtrans
);
1844 int btrfs_commit_transaction_async(struct btrfs_trans_handle
*trans
,
1845 int wait_for_unblock
)
1847 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1848 struct btrfs_async_commit
*ac
;
1849 struct btrfs_transaction
*cur_trans
;
1851 ac
= kmalloc(sizeof(*ac
), GFP_NOFS
);
1855 INIT_WORK(&ac
->work
, do_async_commit
);
1856 ac
->newtrans
= btrfs_join_transaction(trans
->root
);
1857 if (IS_ERR(ac
->newtrans
)) {
1858 int err
= PTR_ERR(ac
->newtrans
);
1863 /* take transaction reference */
1864 cur_trans
= trans
->transaction
;
1865 refcount_inc(&cur_trans
->use_count
);
1867 btrfs_end_transaction(trans
);
1870 * Tell lockdep we've released the freeze rwsem, since the
1871 * async commit thread will be the one to unlock it.
1873 if (ac
->newtrans
->type
& __TRANS_FREEZABLE
)
1874 __sb_writers_release(fs_info
->sb
, SB_FREEZE_FS
);
1876 schedule_work(&ac
->work
);
1878 /* wait for transaction to start and unblock */
1879 if (wait_for_unblock
)
1880 wait_current_trans_commit_start_and_unblock(fs_info
, cur_trans
);
1882 wait_current_trans_commit_start(fs_info
, cur_trans
);
1884 if (current
->journal_info
== trans
)
1885 current
->journal_info
= NULL
;
1887 btrfs_put_transaction(cur_trans
);
1892 static void cleanup_transaction(struct btrfs_trans_handle
*trans
, int err
)
1894 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1895 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
1897 WARN_ON(refcount_read(&trans
->use_count
) > 1);
1899 btrfs_abort_transaction(trans
, err
);
1901 spin_lock(&fs_info
->trans_lock
);
1904 * If the transaction is removed from the list, it means this
1905 * transaction has been committed successfully, so it is impossible
1906 * to call the cleanup function.
1908 BUG_ON(list_empty(&cur_trans
->list
));
1910 list_del_init(&cur_trans
->list
);
1911 if (cur_trans
== fs_info
->running_transaction
) {
1912 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
1913 spin_unlock(&fs_info
->trans_lock
);
1914 wait_event(cur_trans
->writer_wait
,
1915 atomic_read(&cur_trans
->num_writers
) == 1);
1917 spin_lock(&fs_info
->trans_lock
);
1919 spin_unlock(&fs_info
->trans_lock
);
1921 btrfs_cleanup_one_transaction(trans
->transaction
, fs_info
);
1923 spin_lock(&fs_info
->trans_lock
);
1924 if (cur_trans
== fs_info
->running_transaction
)
1925 fs_info
->running_transaction
= NULL
;
1926 spin_unlock(&fs_info
->trans_lock
);
1928 if (trans
->type
& __TRANS_FREEZABLE
)
1929 sb_end_intwrite(fs_info
->sb
);
1930 btrfs_put_transaction(cur_trans
);
1931 btrfs_put_transaction(cur_trans
);
1933 trace_btrfs_transaction_commit(trans
->root
);
1935 if (current
->journal_info
== trans
)
1936 current
->journal_info
= NULL
;
1937 btrfs_scrub_cancel(fs_info
);
1939 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
1943 * Release reserved delayed ref space of all pending block groups of the
1944 * transaction and remove them from the list
1946 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle
*trans
)
1948 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1949 struct btrfs_block_group
*block_group
, *tmp
;
1951 list_for_each_entry_safe(block_group
, tmp
, &trans
->new_bgs
, bg_list
) {
1952 btrfs_delayed_refs_rsv_release(fs_info
, 1);
1953 list_del_init(&block_group
->bg_list
);
1957 static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle
*trans
)
1959 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1962 * We use writeback_inodes_sb here because if we used
1963 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1964 * Currently are holding the fs freeze lock, if we do an async flush
1965 * we'll do btrfs_join_transaction() and deadlock because we need to
1966 * wait for the fs freeze lock. Using the direct flushing we benefit
1967 * from already being in a transaction and our join_transaction doesn't
1968 * have to re-take the fs freeze lock.
1970 if (btrfs_test_opt(fs_info
, FLUSHONCOMMIT
)) {
1971 writeback_inodes_sb(fs_info
->sb
, WB_REASON_SYNC
);
1973 struct btrfs_pending_snapshot
*pending
;
1974 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
1977 * Flush dellaloc for any root that is going to be snapshotted.
1978 * This is done to avoid a corrupted version of files, in the
1979 * snapshots, that had both buffered and direct IO writes (even
1980 * if they were done sequentially) due to an unordered update of
1981 * the inode's size on disk.
1983 list_for_each_entry(pending
, head
, list
) {
1986 ret
= btrfs_start_delalloc_snapshot(pending
->root
);
1994 static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle
*trans
)
1996 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1998 if (btrfs_test_opt(fs_info
, FLUSHONCOMMIT
)) {
1999 btrfs_wait_ordered_roots(fs_info
, U64_MAX
, 0, (u64
)-1);
2001 struct btrfs_pending_snapshot
*pending
;
2002 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
2005 * Wait for any dellaloc that we started previously for the roots
2006 * that are going to be snapshotted. This is to avoid a corrupted
2007 * version of files in the snapshots that had both buffered and
2008 * direct IO writes (even if they were done sequentially).
2010 list_for_each_entry(pending
, head
, list
)
2011 btrfs_wait_ordered_extents(pending
->root
,
2012 U64_MAX
, 0, U64_MAX
);
2016 int btrfs_commit_transaction(struct btrfs_trans_handle
*trans
)
2018 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
2019 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
2020 struct btrfs_transaction
*prev_trans
= NULL
;
2023 ASSERT(refcount_read(&trans
->use_count
) == 1);
2026 * Some places just start a transaction to commit it. We need to make
2027 * sure that if this commit fails that the abort code actually marks the
2028 * transaction as failed, so set trans->dirty to make the abort code do
2031 trans
->dirty
= true;
2033 /* Stop the commit early if ->aborted is set */
2034 if (TRANS_ABORTED(cur_trans
)) {
2035 ret
= cur_trans
->aborted
;
2036 btrfs_end_transaction(trans
);
2040 btrfs_trans_release_metadata(trans
);
2041 trans
->block_rsv
= NULL
;
2043 /* make a pass through all the delayed refs we have so far
2044 * any runnings procs may add more while we are here
2046 ret
= btrfs_run_delayed_refs(trans
, 0);
2048 btrfs_end_transaction(trans
);
2052 cur_trans
= trans
->transaction
;
2055 * set the flushing flag so procs in this transaction have to
2056 * start sending their work down.
2058 cur_trans
->delayed_refs
.flushing
= 1;
2061 btrfs_create_pending_block_groups(trans
);
2063 ret
= btrfs_run_delayed_refs(trans
, 0);
2065 btrfs_end_transaction(trans
);
2069 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN
, &cur_trans
->flags
)) {
2072 /* this mutex is also taken before trying to set
2073 * block groups readonly. We need to make sure
2074 * that nobody has set a block group readonly
2075 * after a extents from that block group have been
2076 * allocated for cache files. btrfs_set_block_group_ro
2077 * will wait for the transaction to commit if it
2078 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2080 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2081 * only one process starts all the block group IO. It wouldn't
2082 * hurt to have more than one go through, but there's no
2083 * real advantage to it either.
2085 mutex_lock(&fs_info
->ro_block_group_mutex
);
2086 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN
,
2089 mutex_unlock(&fs_info
->ro_block_group_mutex
);
2092 ret
= btrfs_start_dirty_block_groups(trans
);
2094 btrfs_end_transaction(trans
);
2100 spin_lock(&fs_info
->trans_lock
);
2101 if (cur_trans
->state
>= TRANS_STATE_COMMIT_START
) {
2102 spin_unlock(&fs_info
->trans_lock
);
2103 refcount_inc(&cur_trans
->use_count
);
2104 ret
= btrfs_end_transaction(trans
);
2106 wait_for_commit(cur_trans
);
2108 if (TRANS_ABORTED(cur_trans
))
2109 ret
= cur_trans
->aborted
;
2111 btrfs_put_transaction(cur_trans
);
2116 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
2117 wake_up(&fs_info
->transaction_blocked_wait
);
2119 if (cur_trans
->list
.prev
!= &fs_info
->trans_list
) {
2120 prev_trans
= list_entry(cur_trans
->list
.prev
,
2121 struct btrfs_transaction
, list
);
2122 if (prev_trans
->state
!= TRANS_STATE_COMPLETED
) {
2123 refcount_inc(&prev_trans
->use_count
);
2124 spin_unlock(&fs_info
->trans_lock
);
2126 wait_for_commit(prev_trans
);
2127 ret
= READ_ONCE(prev_trans
->aborted
);
2129 btrfs_put_transaction(prev_trans
);
2131 goto cleanup_transaction
;
2133 spin_unlock(&fs_info
->trans_lock
);
2136 spin_unlock(&fs_info
->trans_lock
);
2138 * The previous transaction was aborted and was already removed
2139 * from the list of transactions at fs_info->trans_list. So we
2140 * abort to prevent writing a new superblock that reflects a
2141 * corrupt state (pointing to trees with unwritten nodes/leafs).
2143 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED
, &fs_info
->fs_state
)) {
2145 goto cleanup_transaction
;
2149 extwriter_counter_dec(cur_trans
, trans
->type
);
2151 ret
= btrfs_start_delalloc_flush(trans
);
2153 goto cleanup_transaction
;
2155 ret
= btrfs_run_delayed_items(trans
);
2157 goto cleanup_transaction
;
2159 wait_event(cur_trans
->writer_wait
,
2160 extwriter_counter_read(cur_trans
) == 0);
2162 /* some pending stuffs might be added after the previous flush. */
2163 ret
= btrfs_run_delayed_items(trans
);
2165 goto cleanup_transaction
;
2167 btrfs_wait_delalloc_flush(trans
);
2169 btrfs_scrub_pause(fs_info
);
2171 * Ok now we need to make sure to block out any other joins while we
2172 * commit the transaction. We could have started a join before setting
2173 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2175 spin_lock(&fs_info
->trans_lock
);
2176 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
2177 spin_unlock(&fs_info
->trans_lock
);
2178 wait_event(cur_trans
->writer_wait
,
2179 atomic_read(&cur_trans
->num_writers
) == 1);
2181 if (TRANS_ABORTED(cur_trans
)) {
2182 ret
= cur_trans
->aborted
;
2183 goto scrub_continue
;
2186 * the reloc mutex makes sure that we stop
2187 * the balancing code from coming in and moving
2188 * extents around in the middle of the commit
2190 mutex_lock(&fs_info
->reloc_mutex
);
2193 * We needn't worry about the delayed items because we will
2194 * deal with them in create_pending_snapshot(), which is the
2195 * core function of the snapshot creation.
2197 ret
= create_pending_snapshots(trans
);
2202 * We insert the dir indexes of the snapshots and update the inode
2203 * of the snapshots' parents after the snapshot creation, so there
2204 * are some delayed items which are not dealt with. Now deal with
2207 * We needn't worry that this operation will corrupt the snapshots,
2208 * because all the tree which are snapshoted will be forced to COW
2209 * the nodes and leaves.
2211 ret
= btrfs_run_delayed_items(trans
);
2215 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
2220 * make sure none of the code above managed to slip in a
2223 btrfs_assert_delayed_root_empty(fs_info
);
2225 WARN_ON(cur_trans
!= trans
->transaction
);
2227 /* btrfs_commit_tree_roots is responsible for getting the
2228 * various roots consistent with each other. Every pointer
2229 * in the tree of tree roots has to point to the most up to date
2230 * root for every subvolume and other tree. So, we have to keep
2231 * the tree logging code from jumping in and changing any
2234 * At this point in the commit, there can't be any tree-log
2235 * writers, but a little lower down we drop the trans mutex
2236 * and let new people in. By holding the tree_log_mutex
2237 * from now until after the super is written, we avoid races
2238 * with the tree-log code.
2240 mutex_lock(&fs_info
->tree_log_mutex
);
2242 ret
= commit_fs_roots(trans
);
2244 goto unlock_tree_log
;
2247 * Since the transaction is done, we can apply the pending changes
2248 * before the next transaction.
2250 btrfs_apply_pending_changes(fs_info
);
2252 /* commit_fs_roots gets rid of all the tree log roots, it is now
2253 * safe to free the root of tree log roots
2255 btrfs_free_log_root_tree(trans
, fs_info
);
2258 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2259 * new delayed refs. Must handle them or qgroup can be wrong.
2261 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
2263 goto unlock_tree_log
;
2266 * Since fs roots are all committed, we can get a quite accurate
2267 * new_roots. So let's do quota accounting.
2269 ret
= btrfs_qgroup_account_extents(trans
);
2271 goto unlock_tree_log
;
2273 ret
= commit_cowonly_roots(trans
);
2275 goto unlock_tree_log
;
2278 * The tasks which save the space cache and inode cache may also
2279 * update ->aborted, check it.
2281 if (TRANS_ABORTED(cur_trans
)) {
2282 ret
= cur_trans
->aborted
;
2283 goto unlock_tree_log
;
2286 btrfs_prepare_extent_commit(fs_info
);
2288 cur_trans
= fs_info
->running_transaction
;
2290 btrfs_set_root_node(&fs_info
->tree_root
->root_item
,
2291 fs_info
->tree_root
->node
);
2292 list_add_tail(&fs_info
->tree_root
->dirty_list
,
2293 &cur_trans
->switch_commits
);
2295 btrfs_set_root_node(&fs_info
->chunk_root
->root_item
,
2296 fs_info
->chunk_root
->node
);
2297 list_add_tail(&fs_info
->chunk_root
->dirty_list
,
2298 &cur_trans
->switch_commits
);
2300 switch_commit_roots(trans
);
2302 ASSERT(list_empty(&cur_trans
->dirty_bgs
));
2303 ASSERT(list_empty(&cur_trans
->io_bgs
));
2304 update_super_roots(fs_info
);
2306 btrfs_set_super_log_root(fs_info
->super_copy
, 0);
2307 btrfs_set_super_log_root_level(fs_info
->super_copy
, 0);
2308 memcpy(fs_info
->super_for_commit
, fs_info
->super_copy
,
2309 sizeof(*fs_info
->super_copy
));
2311 btrfs_commit_device_sizes(cur_trans
);
2313 clear_bit(BTRFS_FS_LOG1_ERR
, &fs_info
->flags
);
2314 clear_bit(BTRFS_FS_LOG2_ERR
, &fs_info
->flags
);
2316 btrfs_trans_release_chunk_metadata(trans
);
2318 spin_lock(&fs_info
->trans_lock
);
2319 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
2320 fs_info
->running_transaction
= NULL
;
2321 spin_unlock(&fs_info
->trans_lock
);
2322 mutex_unlock(&fs_info
->reloc_mutex
);
2324 wake_up(&fs_info
->transaction_wait
);
2326 ret
= btrfs_write_and_wait_transaction(trans
);
2328 btrfs_handle_fs_error(fs_info
, ret
,
2329 "Error while writing out transaction");
2331 * reloc_mutex has been unlocked, tree_log_mutex is still held
2332 * but we can't jump to unlock_tree_log causing double unlock
2334 mutex_unlock(&fs_info
->tree_log_mutex
);
2335 goto scrub_continue
;
2338 ret
= write_all_supers(fs_info
, 0);
2340 * the super is written, we can safely allow the tree-loggers
2341 * to go about their business
2343 mutex_unlock(&fs_info
->tree_log_mutex
);
2345 goto scrub_continue
;
2347 btrfs_finish_extent_commit(trans
);
2349 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS
, &cur_trans
->flags
))
2350 btrfs_clear_space_info_full(fs_info
);
2352 fs_info
->last_trans_committed
= cur_trans
->transid
;
2354 * We needn't acquire the lock here because there is no other task
2355 * which can change it.
2357 cur_trans
->state
= TRANS_STATE_COMPLETED
;
2358 wake_up(&cur_trans
->commit_wait
);
2359 clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT
, &fs_info
->flags
);
2361 spin_lock(&fs_info
->trans_lock
);
2362 list_del_init(&cur_trans
->list
);
2363 spin_unlock(&fs_info
->trans_lock
);
2365 btrfs_put_transaction(cur_trans
);
2366 btrfs_put_transaction(cur_trans
);
2368 if (trans
->type
& __TRANS_FREEZABLE
)
2369 sb_end_intwrite(fs_info
->sb
);
2371 trace_btrfs_transaction_commit(trans
->root
);
2373 btrfs_scrub_continue(fs_info
);
2375 if (current
->journal_info
== trans
)
2376 current
->journal_info
= NULL
;
2378 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
2383 mutex_unlock(&fs_info
->tree_log_mutex
);
2385 mutex_unlock(&fs_info
->reloc_mutex
);
2387 btrfs_scrub_continue(fs_info
);
2388 cleanup_transaction
:
2389 btrfs_trans_release_metadata(trans
);
2390 btrfs_cleanup_pending_block_groups(trans
);
2391 btrfs_trans_release_chunk_metadata(trans
);
2392 trans
->block_rsv
= NULL
;
2393 btrfs_warn(fs_info
, "Skipping commit of aborted transaction.");
2394 if (current
->journal_info
== trans
)
2395 current
->journal_info
= NULL
;
2396 cleanup_transaction(trans
, ret
);
2402 * return < 0 if error
2403 * 0 if there are no more dead_roots at the time of call
2404 * 1 there are more to be processed, call me again
2406 * The return value indicates there are certainly more snapshots to delete, but
2407 * if there comes a new one during processing, it may return 0. We don't mind,
2408 * because btrfs_commit_super will poke cleaner thread and it will process it a
2409 * few seconds later.
2411 int btrfs_clean_one_deleted_snapshot(struct btrfs_root
*root
)
2414 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2416 spin_lock(&fs_info
->trans_lock
);
2417 if (list_empty(&fs_info
->dead_roots
)) {
2418 spin_unlock(&fs_info
->trans_lock
);
2421 root
= list_first_entry(&fs_info
->dead_roots
,
2422 struct btrfs_root
, root_list
);
2423 list_del_init(&root
->root_list
);
2424 spin_unlock(&fs_info
->trans_lock
);
2426 btrfs_debug(fs_info
, "cleaner removing %llu", root
->root_key
.objectid
);
2428 btrfs_kill_all_delayed_nodes(root
);
2429 if (root
->ino_cache_inode
) {
2430 iput(root
->ino_cache_inode
);
2431 root
->ino_cache_inode
= NULL
;
2434 if (btrfs_header_backref_rev(root
->node
) <
2435 BTRFS_MIXED_BACKREF_REV
)
2436 ret
= btrfs_drop_snapshot(root
, 0, 0);
2438 ret
= btrfs_drop_snapshot(root
, 1, 0);
2440 btrfs_put_root(root
);
2441 return (ret
< 0) ? 0 : 1;
2444 void btrfs_apply_pending_changes(struct btrfs_fs_info
*fs_info
)
2449 prev
= xchg(&fs_info
->pending_changes
, 0);
2453 bit
= 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE
;
2455 btrfs_set_opt(fs_info
->mount_opt
, INODE_MAP_CACHE
);
2458 bit
= 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE
;
2460 btrfs_clear_opt(fs_info
->mount_opt
, INODE_MAP_CACHE
);
2463 bit
= 1 << BTRFS_PENDING_COMMIT
;
2465 btrfs_debug(fs_info
, "pending commit done");
2470 "unknown pending changes left 0x%lx, ignoring", prev
);