gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / fs / btrfs / volumes.c
blobc1909e5f4506835f7741c5003c51ac65982a3a29
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
6 #include <linux/sched.h>
7 #include <linux/bio.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/ratelimit.h>
11 #include <linux/kthread.h>
12 #include <linux/raid/pq.h>
13 #include <linux/semaphore.h>
14 #include <linux/uuid.h>
15 #include <linux/list_sort.h>
16 #include "misc.h"
17 #include "ctree.h"
18 #include "extent_map.h"
19 #include "disk-io.h"
20 #include "transaction.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "async-thread.h"
25 #include "check-integrity.h"
26 #include "rcu-string.h"
27 #include "dev-replace.h"
28 #include "sysfs.h"
29 #include "tree-checker.h"
30 #include "space-info.h"
31 #include "block-group.h"
32 #include "discard.h"
34 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
35 [BTRFS_RAID_RAID10] = {
36 .sub_stripes = 2,
37 .dev_stripes = 1,
38 .devs_max = 0, /* 0 == as many as possible */
39 .devs_min = 4,
40 .tolerated_failures = 1,
41 .devs_increment = 2,
42 .ncopies = 2,
43 .nparity = 0,
44 .raid_name = "raid10",
45 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
46 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
48 [BTRFS_RAID_RAID1] = {
49 .sub_stripes = 1,
50 .dev_stripes = 1,
51 .devs_max = 2,
52 .devs_min = 2,
53 .tolerated_failures = 1,
54 .devs_increment = 2,
55 .ncopies = 2,
56 .nparity = 0,
57 .raid_name = "raid1",
58 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
59 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
61 [BTRFS_RAID_RAID1C3] = {
62 .sub_stripes = 1,
63 .dev_stripes = 1,
64 .devs_max = 3,
65 .devs_min = 3,
66 .tolerated_failures = 2,
67 .devs_increment = 3,
68 .ncopies = 3,
69 .nparity = 0,
70 .raid_name = "raid1c3",
71 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
72 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
74 [BTRFS_RAID_RAID1C4] = {
75 .sub_stripes = 1,
76 .dev_stripes = 1,
77 .devs_max = 4,
78 .devs_min = 4,
79 .tolerated_failures = 3,
80 .devs_increment = 4,
81 .ncopies = 4,
82 .nparity = 0,
83 .raid_name = "raid1c4",
84 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
85 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
87 [BTRFS_RAID_DUP] = {
88 .sub_stripes = 1,
89 .dev_stripes = 2,
90 .devs_max = 1,
91 .devs_min = 1,
92 .tolerated_failures = 0,
93 .devs_increment = 1,
94 .ncopies = 2,
95 .nparity = 0,
96 .raid_name = "dup",
97 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
98 .mindev_error = 0,
100 [BTRFS_RAID_RAID0] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 2,
105 .tolerated_failures = 0,
106 .devs_increment = 1,
107 .ncopies = 1,
108 .nparity = 0,
109 .raid_name = "raid0",
110 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
111 .mindev_error = 0,
113 [BTRFS_RAID_SINGLE] = {
114 .sub_stripes = 1,
115 .dev_stripes = 1,
116 .devs_max = 1,
117 .devs_min = 1,
118 .tolerated_failures = 0,
119 .devs_increment = 1,
120 .ncopies = 1,
121 .nparity = 0,
122 .raid_name = "single",
123 .bg_flag = 0,
124 .mindev_error = 0,
126 [BTRFS_RAID_RAID5] = {
127 .sub_stripes = 1,
128 .dev_stripes = 1,
129 .devs_max = 0,
130 .devs_min = 2,
131 .tolerated_failures = 1,
132 .devs_increment = 1,
133 .ncopies = 1,
134 .nparity = 1,
135 .raid_name = "raid5",
136 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
137 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
139 [BTRFS_RAID_RAID6] = {
140 .sub_stripes = 1,
141 .dev_stripes = 1,
142 .devs_max = 0,
143 .devs_min = 3,
144 .tolerated_failures = 2,
145 .devs_increment = 1,
146 .ncopies = 1,
147 .nparity = 2,
148 .raid_name = "raid6",
149 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
150 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
154 const char *btrfs_bg_type_to_raid_name(u64 flags)
156 const int index = btrfs_bg_flags_to_raid_index(flags);
158 if (index >= BTRFS_NR_RAID_TYPES)
159 return NULL;
161 return btrfs_raid_array[index].raid_name;
165 * Fill @buf with textual description of @bg_flags, no more than @size_buf
166 * bytes including terminating null byte.
168 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
170 int i;
171 int ret;
172 char *bp = buf;
173 u64 flags = bg_flags;
174 u32 size_bp = size_buf;
176 if (!flags) {
177 strcpy(bp, "NONE");
178 return;
181 #define DESCRIBE_FLAG(flag, desc) \
182 do { \
183 if (flags & (flag)) { \
184 ret = snprintf(bp, size_bp, "%s|", (desc)); \
185 if (ret < 0 || ret >= size_bp) \
186 goto out_overflow; \
187 size_bp -= ret; \
188 bp += ret; \
189 flags &= ~(flag); \
191 } while (0)
193 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
194 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
195 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
197 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
198 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
199 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
200 btrfs_raid_array[i].raid_name);
201 #undef DESCRIBE_FLAG
203 if (flags) {
204 ret = snprintf(bp, size_bp, "0x%llx|", flags);
205 size_bp -= ret;
208 if (size_bp < size_buf)
209 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
212 * The text is trimmed, it's up to the caller to provide sufficiently
213 * large buffer
215 out_overflow:;
218 static int init_first_rw_device(struct btrfs_trans_handle *trans);
219 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
220 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
221 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
222 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
223 enum btrfs_map_op op,
224 u64 logical, u64 *length,
225 struct btrfs_bio **bbio_ret,
226 int mirror_num, int need_raid_map);
229 * Device locking
230 * ==============
232 * There are several mutexes that protect manipulation of devices and low-level
233 * structures like chunks but not block groups, extents or files
235 * uuid_mutex (global lock)
236 * ------------------------
237 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
238 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
239 * device) or requested by the device= mount option
241 * the mutex can be very coarse and can cover long-running operations
243 * protects: updates to fs_devices counters like missing devices, rw devices,
244 * seeding, structure cloning, opening/closing devices at mount/umount time
246 * global::fs_devs - add, remove, updates to the global list
248 * does not protect: manipulation of the fs_devices::devices list!
250 * btrfs_device::name - renames (write side), read is RCU
252 * fs_devices::device_list_mutex (per-fs, with RCU)
253 * ------------------------------------------------
254 * protects updates to fs_devices::devices, ie. adding and deleting
256 * simple list traversal with read-only actions can be done with RCU protection
258 * may be used to exclude some operations from running concurrently without any
259 * modifications to the list (see write_all_supers)
261 * balance_mutex
262 * -------------
263 * protects balance structures (status, state) and context accessed from
264 * several places (internally, ioctl)
266 * chunk_mutex
267 * -----------
268 * protects chunks, adding or removing during allocation, trim or when a new
269 * device is added/removed. Additionally it also protects post_commit_list of
270 * individual devices, since they can be added to the transaction's
271 * post_commit_list only with chunk_mutex held.
273 * cleaner_mutex
274 * -------------
275 * a big lock that is held by the cleaner thread and prevents running subvolume
276 * cleaning together with relocation or delayed iputs
279 * Lock nesting
280 * ============
282 * uuid_mutex
283 * volume_mutex
284 * device_list_mutex
285 * chunk_mutex
286 * balance_mutex
289 * Exclusive operations, BTRFS_FS_EXCL_OP
290 * ======================================
292 * Maintains the exclusivity of the following operations that apply to the
293 * whole filesystem and cannot run in parallel.
295 * - Balance (*)
296 * - Device add
297 * - Device remove
298 * - Device replace (*)
299 * - Resize
301 * The device operations (as above) can be in one of the following states:
303 * - Running state
304 * - Paused state
305 * - Completed state
307 * Only device operations marked with (*) can go into the Paused state for the
308 * following reasons:
310 * - ioctl (only Balance can be Paused through ioctl)
311 * - filesystem remounted as read-only
312 * - filesystem unmounted and mounted as read-only
313 * - system power-cycle and filesystem mounted as read-only
314 * - filesystem or device errors leading to forced read-only
316 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
317 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
318 * A device operation in Paused or Running state can be canceled or resumed
319 * either by ioctl (Balance only) or when remounted as read-write.
320 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
321 * completed.
324 DEFINE_MUTEX(uuid_mutex);
325 static LIST_HEAD(fs_uuids);
326 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
328 return &fs_uuids;
332 * alloc_fs_devices - allocate struct btrfs_fs_devices
333 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
334 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
336 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
337 * The returned struct is not linked onto any lists and can be destroyed with
338 * kfree() right away.
340 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
341 const u8 *metadata_fsid)
343 struct btrfs_fs_devices *fs_devs;
345 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
346 if (!fs_devs)
347 return ERR_PTR(-ENOMEM);
349 mutex_init(&fs_devs->device_list_mutex);
351 INIT_LIST_HEAD(&fs_devs->devices);
352 INIT_LIST_HEAD(&fs_devs->alloc_list);
353 INIT_LIST_HEAD(&fs_devs->fs_list);
354 if (fsid)
355 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
357 if (metadata_fsid)
358 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
359 else if (fsid)
360 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
362 return fs_devs;
365 void btrfs_free_device(struct btrfs_device *device)
367 WARN_ON(!list_empty(&device->post_commit_list));
368 rcu_string_free(device->name);
369 extent_io_tree_release(&device->alloc_state);
370 bio_put(device->flush_bio);
371 kfree(device);
374 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
376 struct btrfs_device *device;
377 WARN_ON(fs_devices->opened);
378 while (!list_empty(&fs_devices->devices)) {
379 device = list_entry(fs_devices->devices.next,
380 struct btrfs_device, dev_list);
381 list_del(&device->dev_list);
382 btrfs_free_device(device);
384 kfree(fs_devices);
387 void __exit btrfs_cleanup_fs_uuids(void)
389 struct btrfs_fs_devices *fs_devices;
391 while (!list_empty(&fs_uuids)) {
392 fs_devices = list_entry(fs_uuids.next,
393 struct btrfs_fs_devices, fs_list);
394 list_del(&fs_devices->fs_list);
395 free_fs_devices(fs_devices);
400 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
401 * Returned struct is not linked onto any lists and must be destroyed using
402 * btrfs_free_device.
404 static struct btrfs_device *__alloc_device(void)
406 struct btrfs_device *dev;
408 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
409 if (!dev)
410 return ERR_PTR(-ENOMEM);
413 * Preallocate a bio that's always going to be used for flushing device
414 * barriers and matches the device lifespan
416 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
417 if (!dev->flush_bio) {
418 kfree(dev);
419 return ERR_PTR(-ENOMEM);
422 INIT_LIST_HEAD(&dev->dev_list);
423 INIT_LIST_HEAD(&dev->dev_alloc_list);
424 INIT_LIST_HEAD(&dev->post_commit_list);
426 atomic_set(&dev->reada_in_flight, 0);
427 atomic_set(&dev->dev_stats_ccnt, 0);
428 btrfs_device_data_ordered_init(dev);
429 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
430 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
431 extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL);
433 return dev;
436 static noinline struct btrfs_fs_devices *find_fsid(
437 const u8 *fsid, const u8 *metadata_fsid)
439 struct btrfs_fs_devices *fs_devices;
441 ASSERT(fsid);
443 /* Handle non-split brain cases */
444 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
445 if (metadata_fsid) {
446 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
447 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
448 BTRFS_FSID_SIZE) == 0)
449 return fs_devices;
450 } else {
451 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
452 return fs_devices;
455 return NULL;
458 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
459 struct btrfs_super_block *disk_super)
462 struct btrfs_fs_devices *fs_devices;
465 * Handle scanned device having completed its fsid change but
466 * belonging to a fs_devices that was created by first scanning
467 * a device which didn't have its fsid/metadata_uuid changed
468 * at all and the CHANGING_FSID_V2 flag set.
470 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
471 if (fs_devices->fsid_change &&
472 memcmp(disk_super->metadata_uuid, fs_devices->fsid,
473 BTRFS_FSID_SIZE) == 0 &&
474 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
475 BTRFS_FSID_SIZE) == 0) {
476 return fs_devices;
480 * Handle scanned device having completed its fsid change but
481 * belonging to a fs_devices that was created by a device that
482 * has an outdated pair of fsid/metadata_uuid and
483 * CHANGING_FSID_V2 flag set.
485 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
486 if (fs_devices->fsid_change &&
487 memcmp(fs_devices->metadata_uuid,
488 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
489 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
490 BTRFS_FSID_SIZE) == 0) {
491 return fs_devices;
495 return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
499 static int
500 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
501 int flush, struct block_device **bdev,
502 struct btrfs_super_block **disk_super)
504 int ret;
506 *bdev = blkdev_get_by_path(device_path, flags, holder);
508 if (IS_ERR(*bdev)) {
509 ret = PTR_ERR(*bdev);
510 goto error;
513 if (flush)
514 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
515 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
516 if (ret) {
517 blkdev_put(*bdev, flags);
518 goto error;
520 invalidate_bdev(*bdev);
521 *disk_super = btrfs_read_dev_super(*bdev);
522 if (IS_ERR(*disk_super)) {
523 ret = PTR_ERR(*disk_super);
524 blkdev_put(*bdev, flags);
525 goto error;
528 return 0;
530 error:
531 *bdev = NULL;
532 return ret;
535 static bool device_path_matched(const char *path, struct btrfs_device *device)
537 int found;
539 rcu_read_lock();
540 found = strcmp(rcu_str_deref(device->name), path);
541 rcu_read_unlock();
543 return found == 0;
547 * Search and remove all stale (devices which are not mounted) devices.
548 * When both inputs are NULL, it will search and release all stale devices.
549 * path: Optional. When provided will it release all unmounted devices
550 * matching this path only.
551 * skip_dev: Optional. Will skip this device when searching for the stale
552 * devices.
553 * Return: 0 for success or if @path is NULL.
554 * -EBUSY if @path is a mounted device.
555 * -ENOENT if @path does not match any device in the list.
557 static int btrfs_free_stale_devices(const char *path,
558 struct btrfs_device *skip_device)
560 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
561 struct btrfs_device *device, *tmp_device;
562 int ret = 0;
564 if (path)
565 ret = -ENOENT;
567 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
569 mutex_lock(&fs_devices->device_list_mutex);
570 list_for_each_entry_safe(device, tmp_device,
571 &fs_devices->devices, dev_list) {
572 if (skip_device && skip_device == device)
573 continue;
574 if (path && !device->name)
575 continue;
576 if (path && !device_path_matched(path, device))
577 continue;
578 if (fs_devices->opened) {
579 /* for an already deleted device return 0 */
580 if (path && ret != 0)
581 ret = -EBUSY;
582 break;
585 /* delete the stale device */
586 fs_devices->num_devices--;
587 list_del(&device->dev_list);
588 btrfs_free_device(device);
590 ret = 0;
591 if (fs_devices->num_devices == 0)
592 break;
594 mutex_unlock(&fs_devices->device_list_mutex);
596 if (fs_devices->num_devices == 0) {
597 btrfs_sysfs_remove_fsid(fs_devices);
598 list_del(&fs_devices->fs_list);
599 free_fs_devices(fs_devices);
603 return ret;
606 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
607 struct btrfs_device *device, fmode_t flags,
608 void *holder)
610 struct request_queue *q;
611 struct block_device *bdev;
612 struct btrfs_super_block *disk_super;
613 u64 devid;
614 int ret;
616 if (device->bdev)
617 return -EINVAL;
618 if (!device->name)
619 return -EINVAL;
621 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
622 &bdev, &disk_super);
623 if (ret)
624 return ret;
626 devid = btrfs_stack_device_id(&disk_super->dev_item);
627 if (devid != device->devid)
628 goto error_free_page;
630 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
631 goto error_free_page;
633 device->generation = btrfs_super_generation(disk_super);
635 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
636 if (btrfs_super_incompat_flags(disk_super) &
637 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
638 pr_err(
639 "BTRFS: Invalid seeding and uuid-changed device detected\n");
640 goto error_free_page;
643 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
644 fs_devices->seeding = true;
645 } else {
646 if (bdev_read_only(bdev))
647 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
648 else
649 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
652 q = bdev_get_queue(bdev);
653 if (!blk_queue_nonrot(q))
654 fs_devices->rotating = true;
656 device->bdev = bdev;
657 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
658 device->mode = flags;
660 fs_devices->open_devices++;
661 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
662 device->devid != BTRFS_DEV_REPLACE_DEVID) {
663 fs_devices->rw_devices++;
664 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
666 btrfs_release_disk_super(disk_super);
668 return 0;
670 error_free_page:
671 btrfs_release_disk_super(disk_super);
672 blkdev_put(bdev, flags);
674 return -EINVAL;
678 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
679 * being created with a disk that has already completed its fsid change. Such
680 * disk can belong to an fs which has its FSID changed or to one which doesn't.
681 * Handle both cases here.
683 static struct btrfs_fs_devices *find_fsid_inprogress(
684 struct btrfs_super_block *disk_super)
686 struct btrfs_fs_devices *fs_devices;
688 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
689 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
690 BTRFS_FSID_SIZE) != 0 &&
691 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
692 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
693 return fs_devices;
697 return find_fsid(disk_super->fsid, NULL);
701 static struct btrfs_fs_devices *find_fsid_changed(
702 struct btrfs_super_block *disk_super)
704 struct btrfs_fs_devices *fs_devices;
707 * Handles the case where scanned device is part of an fs that had
708 * multiple successful changes of FSID but curently device didn't
709 * observe it. Meaning our fsid will be different than theirs. We need
710 * to handle two subcases :
711 * 1 - The fs still continues to have different METADATA/FSID uuids.
712 * 2 - The fs is switched back to its original FSID (METADATA/FSID
713 * are equal).
715 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
716 /* Changed UUIDs */
717 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
718 BTRFS_FSID_SIZE) != 0 &&
719 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
720 BTRFS_FSID_SIZE) == 0 &&
721 memcmp(fs_devices->fsid, disk_super->fsid,
722 BTRFS_FSID_SIZE) != 0)
723 return fs_devices;
725 /* Unchanged UUIDs */
726 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
727 BTRFS_FSID_SIZE) == 0 &&
728 memcmp(fs_devices->fsid, disk_super->metadata_uuid,
729 BTRFS_FSID_SIZE) == 0)
730 return fs_devices;
733 return NULL;
736 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
737 struct btrfs_super_block *disk_super)
739 struct btrfs_fs_devices *fs_devices;
742 * Handle the case where the scanned device is part of an fs whose last
743 * metadata UUID change reverted it to the original FSID. At the same
744 * time * fs_devices was first created by another constitutent device
745 * which didn't fully observe the operation. This results in an
746 * btrfs_fs_devices created with metadata/fsid different AND
747 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
748 * fs_devices equal to the FSID of the disk.
750 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
751 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
752 BTRFS_FSID_SIZE) != 0 &&
753 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
754 BTRFS_FSID_SIZE) == 0 &&
755 fs_devices->fsid_change)
756 return fs_devices;
759 return NULL;
762 * Add new device to list of registered devices
764 * Returns:
765 * device pointer which was just added or updated when successful
766 * error pointer when failed
768 static noinline struct btrfs_device *device_list_add(const char *path,
769 struct btrfs_super_block *disk_super,
770 bool *new_device_added)
772 struct btrfs_device *device;
773 struct btrfs_fs_devices *fs_devices = NULL;
774 struct rcu_string *name;
775 u64 found_transid = btrfs_super_generation(disk_super);
776 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
777 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
778 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
779 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
780 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
782 if (fsid_change_in_progress) {
783 if (!has_metadata_uuid)
784 fs_devices = find_fsid_inprogress(disk_super);
785 else
786 fs_devices = find_fsid_changed(disk_super);
787 } else if (has_metadata_uuid) {
788 fs_devices = find_fsid_with_metadata_uuid(disk_super);
789 } else {
790 fs_devices = find_fsid_reverted_metadata(disk_super);
791 if (!fs_devices)
792 fs_devices = find_fsid(disk_super->fsid, NULL);
796 if (!fs_devices) {
797 if (has_metadata_uuid)
798 fs_devices = alloc_fs_devices(disk_super->fsid,
799 disk_super->metadata_uuid);
800 else
801 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
803 if (IS_ERR(fs_devices))
804 return ERR_CAST(fs_devices);
806 fs_devices->fsid_change = fsid_change_in_progress;
808 mutex_lock(&fs_devices->device_list_mutex);
809 list_add(&fs_devices->fs_list, &fs_uuids);
811 device = NULL;
812 } else {
813 mutex_lock(&fs_devices->device_list_mutex);
814 device = btrfs_find_device(fs_devices, devid,
815 disk_super->dev_item.uuid, NULL, false);
818 * If this disk has been pulled into an fs devices created by
819 * a device which had the CHANGING_FSID_V2 flag then replace the
820 * metadata_uuid/fsid values of the fs_devices.
822 if (fs_devices->fsid_change &&
823 found_transid > fs_devices->latest_generation) {
824 memcpy(fs_devices->fsid, disk_super->fsid,
825 BTRFS_FSID_SIZE);
827 if (has_metadata_uuid)
828 memcpy(fs_devices->metadata_uuid,
829 disk_super->metadata_uuid,
830 BTRFS_FSID_SIZE);
831 else
832 memcpy(fs_devices->metadata_uuid,
833 disk_super->fsid, BTRFS_FSID_SIZE);
835 fs_devices->fsid_change = false;
839 if (!device) {
840 if (fs_devices->opened) {
841 mutex_unlock(&fs_devices->device_list_mutex);
842 return ERR_PTR(-EBUSY);
845 device = btrfs_alloc_device(NULL, &devid,
846 disk_super->dev_item.uuid);
847 if (IS_ERR(device)) {
848 mutex_unlock(&fs_devices->device_list_mutex);
849 /* we can safely leave the fs_devices entry around */
850 return device;
853 name = rcu_string_strdup(path, GFP_NOFS);
854 if (!name) {
855 btrfs_free_device(device);
856 mutex_unlock(&fs_devices->device_list_mutex);
857 return ERR_PTR(-ENOMEM);
859 rcu_assign_pointer(device->name, name);
861 list_add_rcu(&device->dev_list, &fs_devices->devices);
862 fs_devices->num_devices++;
864 device->fs_devices = fs_devices;
865 *new_device_added = true;
867 if (disk_super->label[0])
868 pr_info(
869 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
870 disk_super->label, devid, found_transid, path,
871 current->comm, task_pid_nr(current));
872 else
873 pr_info(
874 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
875 disk_super->fsid, devid, found_transid, path,
876 current->comm, task_pid_nr(current));
878 } else if (!device->name || strcmp(device->name->str, path)) {
880 * When FS is already mounted.
881 * 1. If you are here and if the device->name is NULL that
882 * means this device was missing at time of FS mount.
883 * 2. If you are here and if the device->name is different
884 * from 'path' that means either
885 * a. The same device disappeared and reappeared with
886 * different name. or
887 * b. The missing-disk-which-was-replaced, has
888 * reappeared now.
890 * We must allow 1 and 2a above. But 2b would be a spurious
891 * and unintentional.
893 * Further in case of 1 and 2a above, the disk at 'path'
894 * would have missed some transaction when it was away and
895 * in case of 2a the stale bdev has to be updated as well.
896 * 2b must not be allowed at all time.
900 * For now, we do allow update to btrfs_fs_device through the
901 * btrfs dev scan cli after FS has been mounted. We're still
902 * tracking a problem where systems fail mount by subvolume id
903 * when we reject replacement on a mounted FS.
905 if (!fs_devices->opened && found_transid < device->generation) {
907 * That is if the FS is _not_ mounted and if you
908 * are here, that means there is more than one
909 * disk with same uuid and devid.We keep the one
910 * with larger generation number or the last-in if
911 * generation are equal.
913 mutex_unlock(&fs_devices->device_list_mutex);
914 return ERR_PTR(-EEXIST);
918 * We are going to replace the device path for a given devid,
919 * make sure it's the same device if the device is mounted
921 if (device->bdev) {
922 struct block_device *path_bdev;
924 path_bdev = lookup_bdev(path);
925 if (IS_ERR(path_bdev)) {
926 mutex_unlock(&fs_devices->device_list_mutex);
927 return ERR_CAST(path_bdev);
930 if (device->bdev != path_bdev) {
931 bdput(path_bdev);
932 mutex_unlock(&fs_devices->device_list_mutex);
933 btrfs_warn_in_rcu(device->fs_info,
934 "duplicate device fsid:devid for %pU:%llu old:%s new:%s",
935 disk_super->fsid, devid,
936 rcu_str_deref(device->name), path);
937 return ERR_PTR(-EEXIST);
939 bdput(path_bdev);
940 btrfs_info_in_rcu(device->fs_info,
941 "device fsid %pU devid %llu moved old:%s new:%s",
942 disk_super->fsid, devid,
943 rcu_str_deref(device->name), path);
946 name = rcu_string_strdup(path, GFP_NOFS);
947 if (!name) {
948 mutex_unlock(&fs_devices->device_list_mutex);
949 return ERR_PTR(-ENOMEM);
951 rcu_string_free(device->name);
952 rcu_assign_pointer(device->name, name);
953 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
954 fs_devices->missing_devices--;
955 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
960 * Unmount does not free the btrfs_device struct but would zero
961 * generation along with most of the other members. So just update
962 * it back. We need it to pick the disk with largest generation
963 * (as above).
965 if (!fs_devices->opened) {
966 device->generation = found_transid;
967 fs_devices->latest_generation = max_t(u64, found_transid,
968 fs_devices->latest_generation);
971 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
973 mutex_unlock(&fs_devices->device_list_mutex);
974 return device;
977 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
979 struct btrfs_fs_devices *fs_devices;
980 struct btrfs_device *device;
981 struct btrfs_device *orig_dev;
982 int ret = 0;
984 fs_devices = alloc_fs_devices(orig->fsid, NULL);
985 if (IS_ERR(fs_devices))
986 return fs_devices;
988 mutex_lock(&orig->device_list_mutex);
989 fs_devices->total_devices = orig->total_devices;
991 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
992 struct rcu_string *name;
994 device = btrfs_alloc_device(NULL, &orig_dev->devid,
995 orig_dev->uuid);
996 if (IS_ERR(device)) {
997 ret = PTR_ERR(device);
998 goto error;
1002 * This is ok to do without rcu read locked because we hold the
1003 * uuid mutex so nothing we touch in here is going to disappear.
1005 if (orig_dev->name) {
1006 name = rcu_string_strdup(orig_dev->name->str,
1007 GFP_KERNEL);
1008 if (!name) {
1009 btrfs_free_device(device);
1010 ret = -ENOMEM;
1011 goto error;
1013 rcu_assign_pointer(device->name, name);
1016 list_add(&device->dev_list, &fs_devices->devices);
1017 device->fs_devices = fs_devices;
1018 fs_devices->num_devices++;
1020 mutex_unlock(&orig->device_list_mutex);
1021 return fs_devices;
1022 error:
1023 mutex_unlock(&orig->device_list_mutex);
1024 free_fs_devices(fs_devices);
1025 return ERR_PTR(ret);
1029 * After we have read the system tree and know devids belonging to
1030 * this filesystem, remove the device which does not belong there.
1032 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1034 struct btrfs_device *device, *next;
1035 struct btrfs_device *latest_dev = NULL;
1037 mutex_lock(&uuid_mutex);
1038 again:
1039 /* This is the initialized path, it is safe to release the devices. */
1040 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1041 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1042 &device->dev_state)) {
1043 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1044 &device->dev_state) &&
1045 (!latest_dev ||
1046 device->generation > latest_dev->generation)) {
1047 latest_dev = device;
1049 continue;
1052 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
1054 * In the first step, keep the device which has
1055 * the correct fsid and the devid that is used
1056 * for the dev_replace procedure.
1057 * In the second step, the dev_replace state is
1058 * read from the device tree and it is known
1059 * whether the procedure is really active or
1060 * not, which means whether this device is
1061 * used or whether it should be removed.
1063 if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1064 &device->dev_state)) {
1065 continue;
1068 if (device->bdev) {
1069 blkdev_put(device->bdev, device->mode);
1070 device->bdev = NULL;
1071 fs_devices->open_devices--;
1073 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1074 list_del_init(&device->dev_alloc_list);
1075 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1076 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1077 &device->dev_state))
1078 fs_devices->rw_devices--;
1080 list_del_init(&device->dev_list);
1081 fs_devices->num_devices--;
1082 btrfs_free_device(device);
1085 if (fs_devices->seed) {
1086 fs_devices = fs_devices->seed;
1087 goto again;
1090 fs_devices->latest_bdev = latest_dev->bdev;
1092 mutex_unlock(&uuid_mutex);
1095 static void btrfs_close_bdev(struct btrfs_device *device)
1097 if (!device->bdev)
1098 return;
1100 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1101 sync_blockdev(device->bdev);
1102 invalidate_bdev(device->bdev);
1105 blkdev_put(device->bdev, device->mode);
1108 static void btrfs_close_one_device(struct btrfs_device *device)
1110 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1112 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1113 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1114 list_del_init(&device->dev_alloc_list);
1115 fs_devices->rw_devices--;
1118 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1119 fs_devices->missing_devices--;
1121 btrfs_close_bdev(device);
1122 if (device->bdev) {
1123 fs_devices->open_devices--;
1124 device->bdev = NULL;
1126 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1128 device->fs_info = NULL;
1129 atomic_set(&device->dev_stats_ccnt, 0);
1130 extent_io_tree_release(&device->alloc_state);
1132 /* Verify the device is back in a pristine state */
1133 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1134 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1135 ASSERT(list_empty(&device->dev_alloc_list));
1136 ASSERT(list_empty(&device->post_commit_list));
1137 ASSERT(atomic_read(&device->reada_in_flight) == 0);
1140 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1142 struct btrfs_device *device, *tmp;
1144 if (--fs_devices->opened > 0)
1145 return 0;
1147 mutex_lock(&fs_devices->device_list_mutex);
1148 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1149 btrfs_close_one_device(device);
1151 mutex_unlock(&fs_devices->device_list_mutex);
1153 WARN_ON(fs_devices->open_devices);
1154 WARN_ON(fs_devices->rw_devices);
1155 fs_devices->opened = 0;
1156 fs_devices->seeding = false;
1158 return 0;
1161 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1163 struct btrfs_fs_devices *seed_devices = NULL;
1164 int ret;
1166 mutex_lock(&uuid_mutex);
1167 ret = close_fs_devices(fs_devices);
1168 if (!fs_devices->opened) {
1169 seed_devices = fs_devices->seed;
1170 fs_devices->seed = NULL;
1172 mutex_unlock(&uuid_mutex);
1174 while (seed_devices) {
1175 fs_devices = seed_devices;
1176 seed_devices = fs_devices->seed;
1177 close_fs_devices(fs_devices);
1178 free_fs_devices(fs_devices);
1180 return ret;
1183 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1184 fmode_t flags, void *holder)
1186 struct btrfs_device *device;
1187 struct btrfs_device *latest_dev = NULL;
1188 int ret = 0;
1190 flags |= FMODE_EXCL;
1192 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1193 /* Just open everything we can; ignore failures here */
1194 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1195 continue;
1197 if (!latest_dev ||
1198 device->generation > latest_dev->generation)
1199 latest_dev = device;
1201 if (fs_devices->open_devices == 0) {
1202 ret = -EINVAL;
1203 goto out;
1205 fs_devices->opened = 1;
1206 fs_devices->latest_bdev = latest_dev->bdev;
1207 fs_devices->total_rw_bytes = 0;
1208 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1209 out:
1210 return ret;
1213 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1215 struct btrfs_device *dev1, *dev2;
1217 dev1 = list_entry(a, struct btrfs_device, dev_list);
1218 dev2 = list_entry(b, struct btrfs_device, dev_list);
1220 if (dev1->devid < dev2->devid)
1221 return -1;
1222 else if (dev1->devid > dev2->devid)
1223 return 1;
1224 return 0;
1227 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1228 fmode_t flags, void *holder)
1230 int ret;
1232 lockdep_assert_held(&uuid_mutex);
1234 mutex_lock(&fs_devices->device_list_mutex);
1235 if (fs_devices->opened) {
1236 fs_devices->opened++;
1237 ret = 0;
1238 } else {
1239 list_sort(NULL, &fs_devices->devices, devid_cmp);
1240 ret = open_fs_devices(fs_devices, flags, holder);
1242 mutex_unlock(&fs_devices->device_list_mutex);
1244 return ret;
1247 void btrfs_release_disk_super(struct btrfs_super_block *super)
1249 struct page *page = virt_to_page(super);
1251 put_page(page);
1254 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1255 struct page **page,
1256 struct btrfs_super_block **disk_super)
1258 void *p;
1259 pgoff_t index;
1261 /* make sure our super fits in the device */
1262 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1263 return 1;
1265 /* make sure our super fits in the page */
1266 if (sizeof(**disk_super) > PAGE_SIZE)
1267 return 1;
1269 /* make sure our super doesn't straddle pages on disk */
1270 index = bytenr >> PAGE_SHIFT;
1271 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1272 return 1;
1274 /* pull in the page with our super */
1275 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1276 index, GFP_KERNEL);
1278 if (IS_ERR(*page))
1279 return 1;
1281 p = page_address(*page);
1283 /* align our pointer to the offset of the super block */
1284 *disk_super = p + offset_in_page(bytenr);
1286 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1287 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1288 btrfs_release_disk_super(p);
1289 return 1;
1292 if ((*disk_super)->label[0] &&
1293 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1294 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1296 return 0;
1299 int btrfs_forget_devices(const char *path)
1301 int ret;
1303 mutex_lock(&uuid_mutex);
1304 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1305 mutex_unlock(&uuid_mutex);
1307 return ret;
1311 * Look for a btrfs signature on a device. This may be called out of the mount path
1312 * and we are not allowed to call set_blocksize during the scan. The superblock
1313 * is read via pagecache
1315 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1316 void *holder)
1318 struct btrfs_super_block *disk_super;
1319 bool new_device_added = false;
1320 struct btrfs_device *device = NULL;
1321 struct block_device *bdev;
1322 struct page *page;
1323 u64 bytenr;
1325 lockdep_assert_held(&uuid_mutex);
1328 * we would like to check all the supers, but that would make
1329 * a btrfs mount succeed after a mkfs from a different FS.
1330 * So, we need to add a special mount option to scan for
1331 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1333 bytenr = btrfs_sb_offset(0);
1334 flags |= FMODE_EXCL;
1336 bdev = blkdev_get_by_path(path, flags, holder);
1337 if (IS_ERR(bdev))
1338 return ERR_CAST(bdev);
1340 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1341 device = ERR_PTR(-EINVAL);
1342 goto error_bdev_put;
1345 device = device_list_add(path, disk_super, &new_device_added);
1346 if (!IS_ERR(device)) {
1347 if (new_device_added)
1348 btrfs_free_stale_devices(path, device);
1351 btrfs_release_disk_super(disk_super);
1353 error_bdev_put:
1354 blkdev_put(bdev, flags);
1356 return device;
1360 * Try to find a chunk that intersects [start, start + len] range and when one
1361 * such is found, record the end of it in *start
1363 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1364 u64 len)
1366 u64 physical_start, physical_end;
1368 lockdep_assert_held(&device->fs_info->chunk_mutex);
1370 if (!find_first_extent_bit(&device->alloc_state, *start,
1371 &physical_start, &physical_end,
1372 CHUNK_ALLOCATED, NULL)) {
1374 if (in_range(physical_start, *start, len) ||
1375 in_range(*start, physical_start,
1376 physical_end - physical_start)) {
1377 *start = physical_end + 1;
1378 return true;
1381 return false;
1384 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1386 switch (device->fs_devices->chunk_alloc_policy) {
1387 case BTRFS_CHUNK_ALLOC_REGULAR:
1389 * We don't want to overwrite the superblock on the drive nor
1390 * any area used by the boot loader (grub for example), so we
1391 * make sure to start at an offset of at least 1MB.
1393 return max_t(u64, start, SZ_1M);
1394 default:
1395 BUG();
1400 * dev_extent_hole_check - check if specified hole is suitable for allocation
1401 * @device: the device which we have the hole
1402 * @hole_start: starting position of the hole
1403 * @hole_size: the size of the hole
1404 * @num_bytes: the size of the free space that we need
1406 * This function may modify @hole_start and @hole_end to reflect the suitable
1407 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1409 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1410 u64 *hole_size, u64 num_bytes)
1412 bool changed = false;
1413 u64 hole_end = *hole_start + *hole_size;
1416 * Check before we set max_hole_start, otherwise we could end up
1417 * sending back this offset anyway.
1419 if (contains_pending_extent(device, hole_start, *hole_size)) {
1420 if (hole_end >= *hole_start)
1421 *hole_size = hole_end - *hole_start;
1422 else
1423 *hole_size = 0;
1424 changed = true;
1427 switch (device->fs_devices->chunk_alloc_policy) {
1428 case BTRFS_CHUNK_ALLOC_REGULAR:
1429 /* No extra check */
1430 break;
1431 default:
1432 BUG();
1435 return changed;
1439 * find_free_dev_extent_start - find free space in the specified device
1440 * @device: the device which we search the free space in
1441 * @num_bytes: the size of the free space that we need
1442 * @search_start: the position from which to begin the search
1443 * @start: store the start of the free space.
1444 * @len: the size of the free space. that we find, or the size
1445 * of the max free space if we don't find suitable free space
1447 * this uses a pretty simple search, the expectation is that it is
1448 * called very infrequently and that a given device has a small number
1449 * of extents
1451 * @start is used to store the start of the free space if we find. But if we
1452 * don't find suitable free space, it will be used to store the start position
1453 * of the max free space.
1455 * @len is used to store the size of the free space that we find.
1456 * But if we don't find suitable free space, it is used to store the size of
1457 * the max free space.
1459 * NOTE: This function will search *commit* root of device tree, and does extra
1460 * check to ensure dev extents are not double allocated.
1461 * This makes the function safe to allocate dev extents but may not report
1462 * correct usable device space, as device extent freed in current transaction
1463 * is not reported as avaiable.
1465 static int find_free_dev_extent_start(struct btrfs_device *device,
1466 u64 num_bytes, u64 search_start, u64 *start,
1467 u64 *len)
1469 struct btrfs_fs_info *fs_info = device->fs_info;
1470 struct btrfs_root *root = fs_info->dev_root;
1471 struct btrfs_key key;
1472 struct btrfs_dev_extent *dev_extent;
1473 struct btrfs_path *path;
1474 u64 hole_size;
1475 u64 max_hole_start;
1476 u64 max_hole_size;
1477 u64 extent_end;
1478 u64 search_end = device->total_bytes;
1479 int ret;
1480 int slot;
1481 struct extent_buffer *l;
1483 search_start = dev_extent_search_start(device, search_start);
1485 path = btrfs_alloc_path();
1486 if (!path)
1487 return -ENOMEM;
1489 max_hole_start = search_start;
1490 max_hole_size = 0;
1492 again:
1493 if (search_start >= search_end ||
1494 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1495 ret = -ENOSPC;
1496 goto out;
1499 path->reada = READA_FORWARD;
1500 path->search_commit_root = 1;
1501 path->skip_locking = 1;
1503 key.objectid = device->devid;
1504 key.offset = search_start;
1505 key.type = BTRFS_DEV_EXTENT_KEY;
1507 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1508 if (ret < 0)
1509 goto out;
1510 if (ret > 0) {
1511 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1512 if (ret < 0)
1513 goto out;
1516 while (1) {
1517 l = path->nodes[0];
1518 slot = path->slots[0];
1519 if (slot >= btrfs_header_nritems(l)) {
1520 ret = btrfs_next_leaf(root, path);
1521 if (ret == 0)
1522 continue;
1523 if (ret < 0)
1524 goto out;
1526 break;
1528 btrfs_item_key_to_cpu(l, &key, slot);
1530 if (key.objectid < device->devid)
1531 goto next;
1533 if (key.objectid > device->devid)
1534 break;
1536 if (key.type != BTRFS_DEV_EXTENT_KEY)
1537 goto next;
1539 if (key.offset > search_start) {
1540 hole_size = key.offset - search_start;
1541 dev_extent_hole_check(device, &search_start, &hole_size,
1542 num_bytes);
1544 if (hole_size > max_hole_size) {
1545 max_hole_start = search_start;
1546 max_hole_size = hole_size;
1550 * If this free space is greater than which we need,
1551 * it must be the max free space that we have found
1552 * until now, so max_hole_start must point to the start
1553 * of this free space and the length of this free space
1554 * is stored in max_hole_size. Thus, we return
1555 * max_hole_start and max_hole_size and go back to the
1556 * caller.
1558 if (hole_size >= num_bytes) {
1559 ret = 0;
1560 goto out;
1564 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1565 extent_end = key.offset + btrfs_dev_extent_length(l,
1566 dev_extent);
1567 if (extent_end > search_start)
1568 search_start = extent_end;
1569 next:
1570 path->slots[0]++;
1571 cond_resched();
1575 * At this point, search_start should be the end of
1576 * allocated dev extents, and when shrinking the device,
1577 * search_end may be smaller than search_start.
1579 if (search_end > search_start) {
1580 hole_size = search_end - search_start;
1581 if (dev_extent_hole_check(device, &search_start, &hole_size,
1582 num_bytes)) {
1583 btrfs_release_path(path);
1584 goto again;
1587 if (hole_size > max_hole_size) {
1588 max_hole_start = search_start;
1589 max_hole_size = hole_size;
1593 /* See above. */
1594 if (max_hole_size < num_bytes)
1595 ret = -ENOSPC;
1596 else
1597 ret = 0;
1599 out:
1600 btrfs_free_path(path);
1601 *start = max_hole_start;
1602 if (len)
1603 *len = max_hole_size;
1604 return ret;
1607 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1608 u64 *start, u64 *len)
1610 /* FIXME use last free of some kind */
1611 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1614 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1615 struct btrfs_device *device,
1616 u64 start, u64 *dev_extent_len)
1618 struct btrfs_fs_info *fs_info = device->fs_info;
1619 struct btrfs_root *root = fs_info->dev_root;
1620 int ret;
1621 struct btrfs_path *path;
1622 struct btrfs_key key;
1623 struct btrfs_key found_key;
1624 struct extent_buffer *leaf = NULL;
1625 struct btrfs_dev_extent *extent = NULL;
1627 path = btrfs_alloc_path();
1628 if (!path)
1629 return -ENOMEM;
1631 key.objectid = device->devid;
1632 key.offset = start;
1633 key.type = BTRFS_DEV_EXTENT_KEY;
1634 again:
1635 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1636 if (ret > 0) {
1637 ret = btrfs_previous_item(root, path, key.objectid,
1638 BTRFS_DEV_EXTENT_KEY);
1639 if (ret)
1640 goto out;
1641 leaf = path->nodes[0];
1642 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1643 extent = btrfs_item_ptr(leaf, path->slots[0],
1644 struct btrfs_dev_extent);
1645 BUG_ON(found_key.offset > start || found_key.offset +
1646 btrfs_dev_extent_length(leaf, extent) < start);
1647 key = found_key;
1648 btrfs_release_path(path);
1649 goto again;
1650 } else if (ret == 0) {
1651 leaf = path->nodes[0];
1652 extent = btrfs_item_ptr(leaf, path->slots[0],
1653 struct btrfs_dev_extent);
1654 } else {
1655 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1656 goto out;
1659 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1661 ret = btrfs_del_item(trans, root, path);
1662 if (ret) {
1663 btrfs_handle_fs_error(fs_info, ret,
1664 "Failed to remove dev extent item");
1665 } else {
1666 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1668 out:
1669 btrfs_free_path(path);
1670 return ret;
1673 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1674 struct btrfs_device *device,
1675 u64 chunk_offset, u64 start, u64 num_bytes)
1677 int ret;
1678 struct btrfs_path *path;
1679 struct btrfs_fs_info *fs_info = device->fs_info;
1680 struct btrfs_root *root = fs_info->dev_root;
1681 struct btrfs_dev_extent *extent;
1682 struct extent_buffer *leaf;
1683 struct btrfs_key key;
1685 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1686 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1687 path = btrfs_alloc_path();
1688 if (!path)
1689 return -ENOMEM;
1691 key.objectid = device->devid;
1692 key.offset = start;
1693 key.type = BTRFS_DEV_EXTENT_KEY;
1694 ret = btrfs_insert_empty_item(trans, root, path, &key,
1695 sizeof(*extent));
1696 if (ret)
1697 goto out;
1699 leaf = path->nodes[0];
1700 extent = btrfs_item_ptr(leaf, path->slots[0],
1701 struct btrfs_dev_extent);
1702 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1703 BTRFS_CHUNK_TREE_OBJECTID);
1704 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1705 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1706 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1708 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1709 btrfs_mark_buffer_dirty(leaf);
1710 out:
1711 btrfs_free_path(path);
1712 return ret;
1715 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1717 struct extent_map_tree *em_tree;
1718 struct extent_map *em;
1719 struct rb_node *n;
1720 u64 ret = 0;
1722 em_tree = &fs_info->mapping_tree;
1723 read_lock(&em_tree->lock);
1724 n = rb_last(&em_tree->map.rb_root);
1725 if (n) {
1726 em = rb_entry(n, struct extent_map, rb_node);
1727 ret = em->start + em->len;
1729 read_unlock(&em_tree->lock);
1731 return ret;
1734 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1735 u64 *devid_ret)
1737 int ret;
1738 struct btrfs_key key;
1739 struct btrfs_key found_key;
1740 struct btrfs_path *path;
1742 path = btrfs_alloc_path();
1743 if (!path)
1744 return -ENOMEM;
1746 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1747 key.type = BTRFS_DEV_ITEM_KEY;
1748 key.offset = (u64)-1;
1750 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1751 if (ret < 0)
1752 goto error;
1754 if (ret == 0) {
1755 /* Corruption */
1756 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1757 ret = -EUCLEAN;
1758 goto error;
1761 ret = btrfs_previous_item(fs_info->chunk_root, path,
1762 BTRFS_DEV_ITEMS_OBJECTID,
1763 BTRFS_DEV_ITEM_KEY);
1764 if (ret) {
1765 *devid_ret = 1;
1766 } else {
1767 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1768 path->slots[0]);
1769 *devid_ret = found_key.offset + 1;
1771 ret = 0;
1772 error:
1773 btrfs_free_path(path);
1774 return ret;
1778 * the device information is stored in the chunk root
1779 * the btrfs_device struct should be fully filled in
1781 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1782 struct btrfs_device *device)
1784 int ret;
1785 struct btrfs_path *path;
1786 struct btrfs_dev_item *dev_item;
1787 struct extent_buffer *leaf;
1788 struct btrfs_key key;
1789 unsigned long ptr;
1791 path = btrfs_alloc_path();
1792 if (!path)
1793 return -ENOMEM;
1795 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1796 key.type = BTRFS_DEV_ITEM_KEY;
1797 key.offset = device->devid;
1799 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1800 &key, sizeof(*dev_item));
1801 if (ret)
1802 goto out;
1804 leaf = path->nodes[0];
1805 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1807 btrfs_set_device_id(leaf, dev_item, device->devid);
1808 btrfs_set_device_generation(leaf, dev_item, 0);
1809 btrfs_set_device_type(leaf, dev_item, device->type);
1810 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1811 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1812 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1813 btrfs_set_device_total_bytes(leaf, dev_item,
1814 btrfs_device_get_disk_total_bytes(device));
1815 btrfs_set_device_bytes_used(leaf, dev_item,
1816 btrfs_device_get_bytes_used(device));
1817 btrfs_set_device_group(leaf, dev_item, 0);
1818 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1819 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1820 btrfs_set_device_start_offset(leaf, dev_item, 0);
1822 ptr = btrfs_device_uuid(dev_item);
1823 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1824 ptr = btrfs_device_fsid(dev_item);
1825 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1826 ptr, BTRFS_FSID_SIZE);
1827 btrfs_mark_buffer_dirty(leaf);
1829 ret = 0;
1830 out:
1831 btrfs_free_path(path);
1832 return ret;
1836 * Function to update ctime/mtime for a given device path.
1837 * Mainly used for ctime/mtime based probe like libblkid.
1839 static void update_dev_time(const char *path_name)
1841 struct file *filp;
1843 filp = filp_open(path_name, O_RDWR, 0);
1844 if (IS_ERR(filp))
1845 return;
1846 file_update_time(filp);
1847 filp_close(filp, NULL);
1850 static int btrfs_rm_dev_item(struct btrfs_device *device)
1852 struct btrfs_root *root = device->fs_info->chunk_root;
1853 int ret;
1854 struct btrfs_path *path;
1855 struct btrfs_key key;
1856 struct btrfs_trans_handle *trans;
1858 path = btrfs_alloc_path();
1859 if (!path)
1860 return -ENOMEM;
1862 trans = btrfs_start_transaction(root, 0);
1863 if (IS_ERR(trans)) {
1864 btrfs_free_path(path);
1865 return PTR_ERR(trans);
1867 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1868 key.type = BTRFS_DEV_ITEM_KEY;
1869 key.offset = device->devid;
1871 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1872 if (ret) {
1873 if (ret > 0)
1874 ret = -ENOENT;
1875 btrfs_abort_transaction(trans, ret);
1876 btrfs_end_transaction(trans);
1877 goto out;
1880 ret = btrfs_del_item(trans, root, path);
1881 if (ret) {
1882 btrfs_abort_transaction(trans, ret);
1883 btrfs_end_transaction(trans);
1886 out:
1887 btrfs_free_path(path);
1888 if (!ret)
1889 ret = btrfs_commit_transaction(trans);
1890 return ret;
1894 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1895 * filesystem. It's up to the caller to adjust that number regarding eg. device
1896 * replace.
1898 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1899 u64 num_devices)
1901 u64 all_avail;
1902 unsigned seq;
1903 int i;
1905 do {
1906 seq = read_seqbegin(&fs_info->profiles_lock);
1908 all_avail = fs_info->avail_data_alloc_bits |
1909 fs_info->avail_system_alloc_bits |
1910 fs_info->avail_metadata_alloc_bits;
1911 } while (read_seqretry(&fs_info->profiles_lock, seq));
1913 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1914 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1915 continue;
1917 if (num_devices < btrfs_raid_array[i].devs_min) {
1918 int ret = btrfs_raid_array[i].mindev_error;
1920 if (ret)
1921 return ret;
1925 return 0;
1928 static struct btrfs_device * btrfs_find_next_active_device(
1929 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1931 struct btrfs_device *next_device;
1933 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1934 if (next_device != device &&
1935 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1936 && next_device->bdev)
1937 return next_device;
1940 return NULL;
1944 * Helper function to check if the given device is part of s_bdev / latest_bdev
1945 * and replace it with the provided or the next active device, in the context
1946 * where this function called, there should be always be another device (or
1947 * this_dev) which is active.
1949 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1950 struct btrfs_device *this_dev)
1952 struct btrfs_fs_info *fs_info = device->fs_info;
1953 struct btrfs_device *next_device;
1955 if (this_dev)
1956 next_device = this_dev;
1957 else
1958 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1959 device);
1960 ASSERT(next_device);
1962 if (fs_info->sb->s_bdev &&
1963 (fs_info->sb->s_bdev == device->bdev))
1964 fs_info->sb->s_bdev = next_device->bdev;
1966 if (fs_info->fs_devices->latest_bdev == device->bdev)
1967 fs_info->fs_devices->latest_bdev = next_device->bdev;
1971 * Return btrfs_fs_devices::num_devices excluding the device that's being
1972 * currently replaced.
1974 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
1976 u64 num_devices = fs_info->fs_devices->num_devices;
1978 down_read(&fs_info->dev_replace.rwsem);
1979 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1980 ASSERT(num_devices > 1);
1981 num_devices--;
1983 up_read(&fs_info->dev_replace.rwsem);
1985 return num_devices;
1988 static void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
1989 struct block_device *bdev,
1990 const char *device_path)
1992 struct btrfs_super_block *disk_super;
1993 int copy_num;
1995 if (!bdev)
1996 return;
1998 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
1999 struct page *page;
2000 int ret;
2002 disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2003 if (IS_ERR(disk_super))
2004 continue;
2006 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2008 page = virt_to_page(disk_super);
2009 set_page_dirty(page);
2010 lock_page(page);
2011 /* write_on_page() unlocks the page */
2012 ret = write_one_page(page);
2013 if (ret)
2014 btrfs_warn(fs_info,
2015 "error clearing superblock number %d (%d)",
2016 copy_num, ret);
2017 btrfs_release_disk_super(disk_super);
2021 /* Notify udev that device has changed */
2022 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2024 /* Update ctime/mtime for device path for libblkid */
2025 update_dev_time(device_path);
2028 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2029 u64 devid)
2031 struct btrfs_device *device;
2032 struct btrfs_fs_devices *cur_devices;
2033 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2034 u64 num_devices;
2035 int ret = 0;
2037 mutex_lock(&uuid_mutex);
2039 num_devices = btrfs_num_devices(fs_info);
2041 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2042 if (ret)
2043 goto out;
2045 device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2047 if (IS_ERR(device)) {
2048 if (PTR_ERR(device) == -ENOENT &&
2049 strcmp(device_path, "missing") == 0)
2050 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2051 else
2052 ret = PTR_ERR(device);
2053 goto out;
2056 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2057 btrfs_warn_in_rcu(fs_info,
2058 "cannot remove device %s (devid %llu) due to active swapfile",
2059 rcu_str_deref(device->name), device->devid);
2060 ret = -ETXTBSY;
2061 goto out;
2064 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2065 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2066 goto out;
2069 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2070 fs_info->fs_devices->rw_devices == 1) {
2071 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2072 goto out;
2075 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2076 mutex_lock(&fs_info->chunk_mutex);
2077 list_del_init(&device->dev_alloc_list);
2078 device->fs_devices->rw_devices--;
2079 mutex_unlock(&fs_info->chunk_mutex);
2082 mutex_unlock(&uuid_mutex);
2083 ret = btrfs_shrink_device(device, 0);
2084 mutex_lock(&uuid_mutex);
2085 if (ret)
2086 goto error_undo;
2089 * TODO: the superblock still includes this device in its num_devices
2090 * counter although write_all_supers() is not locked out. This
2091 * could give a filesystem state which requires a degraded mount.
2093 ret = btrfs_rm_dev_item(device);
2094 if (ret)
2095 goto error_undo;
2097 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2098 btrfs_scrub_cancel_dev(device);
2101 * the device list mutex makes sure that we don't change
2102 * the device list while someone else is writing out all
2103 * the device supers. Whoever is writing all supers, should
2104 * lock the device list mutex before getting the number of
2105 * devices in the super block (super_copy). Conversely,
2106 * whoever updates the number of devices in the super block
2107 * (super_copy) should hold the device list mutex.
2111 * In normal cases the cur_devices == fs_devices. But in case
2112 * of deleting a seed device, the cur_devices should point to
2113 * its own fs_devices listed under the fs_devices->seed.
2115 cur_devices = device->fs_devices;
2116 mutex_lock(&fs_devices->device_list_mutex);
2117 list_del_rcu(&device->dev_list);
2119 cur_devices->num_devices--;
2120 cur_devices->total_devices--;
2121 /* Update total_devices of the parent fs_devices if it's seed */
2122 if (cur_devices != fs_devices)
2123 fs_devices->total_devices--;
2125 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2126 cur_devices->missing_devices--;
2128 btrfs_assign_next_active_device(device, NULL);
2130 if (device->bdev) {
2131 cur_devices->open_devices--;
2132 /* remove sysfs entry */
2133 btrfs_sysfs_remove_devices_dir(fs_devices, device);
2136 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2137 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2138 mutex_unlock(&fs_devices->device_list_mutex);
2141 * at this point, the device is zero sized and detached from
2142 * the devices list. All that's left is to zero out the old
2143 * supers and free the device.
2145 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2146 btrfs_scratch_superblocks(fs_info, device->bdev,
2147 device->name->str);
2149 btrfs_close_bdev(device);
2150 synchronize_rcu();
2151 btrfs_free_device(device);
2153 if (cur_devices->open_devices == 0) {
2154 while (fs_devices) {
2155 if (fs_devices->seed == cur_devices) {
2156 fs_devices->seed = cur_devices->seed;
2157 break;
2159 fs_devices = fs_devices->seed;
2161 cur_devices->seed = NULL;
2162 close_fs_devices(cur_devices);
2163 free_fs_devices(cur_devices);
2166 out:
2167 mutex_unlock(&uuid_mutex);
2168 return ret;
2170 error_undo:
2171 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2172 mutex_lock(&fs_info->chunk_mutex);
2173 list_add(&device->dev_alloc_list,
2174 &fs_devices->alloc_list);
2175 device->fs_devices->rw_devices++;
2176 mutex_unlock(&fs_info->chunk_mutex);
2178 goto out;
2181 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2183 struct btrfs_fs_devices *fs_devices;
2185 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2188 * in case of fs with no seed, srcdev->fs_devices will point
2189 * to fs_devices of fs_info. However when the dev being replaced is
2190 * a seed dev it will point to the seed's local fs_devices. In short
2191 * srcdev will have its correct fs_devices in both the cases.
2193 fs_devices = srcdev->fs_devices;
2195 list_del_rcu(&srcdev->dev_list);
2196 list_del(&srcdev->dev_alloc_list);
2197 fs_devices->num_devices--;
2198 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2199 fs_devices->missing_devices--;
2201 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2202 fs_devices->rw_devices--;
2204 if (srcdev->bdev)
2205 fs_devices->open_devices--;
2208 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2210 struct btrfs_fs_info *fs_info = srcdev->fs_info;
2211 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2213 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2214 /* zero out the old super if it is writable */
2215 btrfs_scratch_superblocks(fs_info, srcdev->bdev,
2216 srcdev->name->str);
2219 btrfs_close_bdev(srcdev);
2220 synchronize_rcu();
2221 btrfs_free_device(srcdev);
2223 /* if this is no devs we rather delete the fs_devices */
2224 if (!fs_devices->num_devices) {
2225 struct btrfs_fs_devices *tmp_fs_devices;
2228 * On a mounted FS, num_devices can't be zero unless it's a
2229 * seed. In case of a seed device being replaced, the replace
2230 * target added to the sprout FS, so there will be no more
2231 * device left under the seed FS.
2233 ASSERT(fs_devices->seeding);
2235 tmp_fs_devices = fs_info->fs_devices;
2236 while (tmp_fs_devices) {
2237 if (tmp_fs_devices->seed == fs_devices) {
2238 tmp_fs_devices->seed = fs_devices->seed;
2239 break;
2241 tmp_fs_devices = tmp_fs_devices->seed;
2243 fs_devices->seed = NULL;
2244 close_fs_devices(fs_devices);
2245 free_fs_devices(fs_devices);
2249 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2251 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2253 mutex_lock(&fs_devices->device_list_mutex);
2255 btrfs_sysfs_remove_devices_dir(fs_devices, tgtdev);
2257 if (tgtdev->bdev)
2258 fs_devices->open_devices--;
2260 fs_devices->num_devices--;
2262 btrfs_assign_next_active_device(tgtdev, NULL);
2264 list_del_rcu(&tgtdev->dev_list);
2266 mutex_unlock(&fs_devices->device_list_mutex);
2269 * The update_dev_time() with in btrfs_scratch_superblocks()
2270 * may lead to a call to btrfs_show_devname() which will try
2271 * to hold device_list_mutex. And here this device
2272 * is already out of device list, so we don't have to hold
2273 * the device_list_mutex lock.
2275 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2276 tgtdev->name->str);
2278 btrfs_close_bdev(tgtdev);
2279 synchronize_rcu();
2280 btrfs_free_device(tgtdev);
2283 static struct btrfs_device *btrfs_find_device_by_path(
2284 struct btrfs_fs_info *fs_info, const char *device_path)
2286 int ret = 0;
2287 struct btrfs_super_block *disk_super;
2288 u64 devid;
2289 u8 *dev_uuid;
2290 struct block_device *bdev;
2291 struct btrfs_device *device;
2293 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2294 fs_info->bdev_holder, 0, &bdev, &disk_super);
2295 if (ret)
2296 return ERR_PTR(ret);
2298 devid = btrfs_stack_device_id(&disk_super->dev_item);
2299 dev_uuid = disk_super->dev_item.uuid;
2300 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2301 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2302 disk_super->metadata_uuid, true);
2303 else
2304 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2305 disk_super->fsid, true);
2307 btrfs_release_disk_super(disk_super);
2308 if (!device)
2309 device = ERR_PTR(-ENOENT);
2310 blkdev_put(bdev, FMODE_READ);
2311 return device;
2315 * Lookup a device given by device id, or the path if the id is 0.
2317 struct btrfs_device *btrfs_find_device_by_devspec(
2318 struct btrfs_fs_info *fs_info, u64 devid,
2319 const char *device_path)
2321 struct btrfs_device *device;
2323 if (devid) {
2324 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2325 NULL, true);
2326 if (!device)
2327 return ERR_PTR(-ENOENT);
2328 return device;
2331 if (!device_path || !device_path[0])
2332 return ERR_PTR(-EINVAL);
2334 if (strcmp(device_path, "missing") == 0) {
2335 /* Find first missing device */
2336 list_for_each_entry(device, &fs_info->fs_devices->devices,
2337 dev_list) {
2338 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2339 &device->dev_state) && !device->bdev)
2340 return device;
2342 return ERR_PTR(-ENOENT);
2345 return btrfs_find_device_by_path(fs_info, device_path);
2349 * does all the dirty work required for changing file system's UUID.
2351 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2353 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2354 struct btrfs_fs_devices *old_devices;
2355 struct btrfs_fs_devices *seed_devices;
2356 struct btrfs_super_block *disk_super = fs_info->super_copy;
2357 struct btrfs_device *device;
2358 u64 super_flags;
2360 lockdep_assert_held(&uuid_mutex);
2361 if (!fs_devices->seeding)
2362 return -EINVAL;
2364 seed_devices = alloc_fs_devices(NULL, NULL);
2365 if (IS_ERR(seed_devices))
2366 return PTR_ERR(seed_devices);
2368 old_devices = clone_fs_devices(fs_devices);
2369 if (IS_ERR(old_devices)) {
2370 kfree(seed_devices);
2371 return PTR_ERR(old_devices);
2374 list_add(&old_devices->fs_list, &fs_uuids);
2376 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2377 seed_devices->opened = 1;
2378 INIT_LIST_HEAD(&seed_devices->devices);
2379 INIT_LIST_HEAD(&seed_devices->alloc_list);
2380 mutex_init(&seed_devices->device_list_mutex);
2382 mutex_lock(&fs_devices->device_list_mutex);
2383 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2384 synchronize_rcu);
2385 list_for_each_entry(device, &seed_devices->devices, dev_list)
2386 device->fs_devices = seed_devices;
2388 mutex_lock(&fs_info->chunk_mutex);
2389 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2390 mutex_unlock(&fs_info->chunk_mutex);
2392 fs_devices->seeding = false;
2393 fs_devices->num_devices = 0;
2394 fs_devices->open_devices = 0;
2395 fs_devices->missing_devices = 0;
2396 fs_devices->rotating = false;
2397 fs_devices->seed = seed_devices;
2399 generate_random_uuid(fs_devices->fsid);
2400 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2401 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2402 mutex_unlock(&fs_devices->device_list_mutex);
2404 super_flags = btrfs_super_flags(disk_super) &
2405 ~BTRFS_SUPER_FLAG_SEEDING;
2406 btrfs_set_super_flags(disk_super, super_flags);
2408 return 0;
2412 * Store the expected generation for seed devices in device items.
2414 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2416 struct btrfs_fs_info *fs_info = trans->fs_info;
2417 struct btrfs_root *root = fs_info->chunk_root;
2418 struct btrfs_path *path;
2419 struct extent_buffer *leaf;
2420 struct btrfs_dev_item *dev_item;
2421 struct btrfs_device *device;
2422 struct btrfs_key key;
2423 u8 fs_uuid[BTRFS_FSID_SIZE];
2424 u8 dev_uuid[BTRFS_UUID_SIZE];
2425 u64 devid;
2426 int ret;
2428 path = btrfs_alloc_path();
2429 if (!path)
2430 return -ENOMEM;
2432 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2433 key.offset = 0;
2434 key.type = BTRFS_DEV_ITEM_KEY;
2436 while (1) {
2437 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2438 if (ret < 0)
2439 goto error;
2441 leaf = path->nodes[0];
2442 next_slot:
2443 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2444 ret = btrfs_next_leaf(root, path);
2445 if (ret > 0)
2446 break;
2447 if (ret < 0)
2448 goto error;
2449 leaf = path->nodes[0];
2450 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2451 btrfs_release_path(path);
2452 continue;
2455 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2456 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2457 key.type != BTRFS_DEV_ITEM_KEY)
2458 break;
2460 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2461 struct btrfs_dev_item);
2462 devid = btrfs_device_id(leaf, dev_item);
2463 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2464 BTRFS_UUID_SIZE);
2465 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2466 BTRFS_FSID_SIZE);
2467 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2468 fs_uuid, true);
2469 BUG_ON(!device); /* Logic error */
2471 if (device->fs_devices->seeding) {
2472 btrfs_set_device_generation(leaf, dev_item,
2473 device->generation);
2474 btrfs_mark_buffer_dirty(leaf);
2477 path->slots[0]++;
2478 goto next_slot;
2480 ret = 0;
2481 error:
2482 btrfs_free_path(path);
2483 return ret;
2486 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2488 struct btrfs_root *root = fs_info->dev_root;
2489 struct request_queue *q;
2490 struct btrfs_trans_handle *trans;
2491 struct btrfs_device *device;
2492 struct block_device *bdev;
2493 struct super_block *sb = fs_info->sb;
2494 struct rcu_string *name;
2495 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2496 u64 orig_super_total_bytes;
2497 u64 orig_super_num_devices;
2498 int seeding_dev = 0;
2499 int ret = 0;
2500 bool unlocked = false;
2502 if (sb_rdonly(sb) && !fs_devices->seeding)
2503 return -EROFS;
2505 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2506 fs_info->bdev_holder);
2507 if (IS_ERR(bdev))
2508 return PTR_ERR(bdev);
2510 if (fs_devices->seeding) {
2511 seeding_dev = 1;
2512 down_write(&sb->s_umount);
2513 mutex_lock(&uuid_mutex);
2516 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2518 mutex_lock(&fs_devices->device_list_mutex);
2519 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2520 if (device->bdev == bdev) {
2521 ret = -EEXIST;
2522 mutex_unlock(
2523 &fs_devices->device_list_mutex);
2524 goto error;
2527 mutex_unlock(&fs_devices->device_list_mutex);
2529 device = btrfs_alloc_device(fs_info, NULL, NULL);
2530 if (IS_ERR(device)) {
2531 /* we can safely leave the fs_devices entry around */
2532 ret = PTR_ERR(device);
2533 goto error;
2536 name = rcu_string_strdup(device_path, GFP_KERNEL);
2537 if (!name) {
2538 ret = -ENOMEM;
2539 goto error_free_device;
2541 rcu_assign_pointer(device->name, name);
2543 trans = btrfs_start_transaction(root, 0);
2544 if (IS_ERR(trans)) {
2545 ret = PTR_ERR(trans);
2546 goto error_free_device;
2549 q = bdev_get_queue(bdev);
2550 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2551 device->generation = trans->transid;
2552 device->io_width = fs_info->sectorsize;
2553 device->io_align = fs_info->sectorsize;
2554 device->sector_size = fs_info->sectorsize;
2555 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2556 fs_info->sectorsize);
2557 device->disk_total_bytes = device->total_bytes;
2558 device->commit_total_bytes = device->total_bytes;
2559 device->fs_info = fs_info;
2560 device->bdev = bdev;
2561 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2562 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2563 device->mode = FMODE_EXCL;
2564 device->dev_stats_valid = 1;
2565 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2567 if (seeding_dev) {
2568 sb->s_flags &= ~SB_RDONLY;
2569 ret = btrfs_prepare_sprout(fs_info);
2570 if (ret) {
2571 btrfs_abort_transaction(trans, ret);
2572 goto error_trans;
2576 device->fs_devices = fs_devices;
2578 mutex_lock(&fs_devices->device_list_mutex);
2579 mutex_lock(&fs_info->chunk_mutex);
2580 list_add_rcu(&device->dev_list, &fs_devices->devices);
2581 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2582 fs_devices->num_devices++;
2583 fs_devices->open_devices++;
2584 fs_devices->rw_devices++;
2585 fs_devices->total_devices++;
2586 fs_devices->total_rw_bytes += device->total_bytes;
2588 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2590 if (!blk_queue_nonrot(q))
2591 fs_devices->rotating = true;
2593 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2594 btrfs_set_super_total_bytes(fs_info->super_copy,
2595 round_down(orig_super_total_bytes + device->total_bytes,
2596 fs_info->sectorsize));
2598 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2599 btrfs_set_super_num_devices(fs_info->super_copy,
2600 orig_super_num_devices + 1);
2602 /* add sysfs device entry */
2603 btrfs_sysfs_add_devices_dir(fs_devices, device);
2606 * we've got more storage, clear any full flags on the space
2607 * infos
2609 btrfs_clear_space_info_full(fs_info);
2611 mutex_unlock(&fs_info->chunk_mutex);
2612 mutex_unlock(&fs_devices->device_list_mutex);
2614 if (seeding_dev) {
2615 mutex_lock(&fs_info->chunk_mutex);
2616 ret = init_first_rw_device(trans);
2617 mutex_unlock(&fs_info->chunk_mutex);
2618 if (ret) {
2619 btrfs_abort_transaction(trans, ret);
2620 goto error_sysfs;
2624 ret = btrfs_add_dev_item(trans, device);
2625 if (ret) {
2626 btrfs_abort_transaction(trans, ret);
2627 goto error_sysfs;
2630 if (seeding_dev) {
2631 ret = btrfs_finish_sprout(trans);
2632 if (ret) {
2633 btrfs_abort_transaction(trans, ret);
2634 goto error_sysfs;
2637 btrfs_sysfs_update_sprout_fsid(fs_devices,
2638 fs_info->fs_devices->fsid);
2641 ret = btrfs_commit_transaction(trans);
2643 if (seeding_dev) {
2644 mutex_unlock(&uuid_mutex);
2645 up_write(&sb->s_umount);
2646 unlocked = true;
2648 if (ret) /* transaction commit */
2649 return ret;
2651 ret = btrfs_relocate_sys_chunks(fs_info);
2652 if (ret < 0)
2653 btrfs_handle_fs_error(fs_info, ret,
2654 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2655 trans = btrfs_attach_transaction(root);
2656 if (IS_ERR(trans)) {
2657 if (PTR_ERR(trans) == -ENOENT)
2658 return 0;
2659 ret = PTR_ERR(trans);
2660 trans = NULL;
2661 goto error_sysfs;
2663 ret = btrfs_commit_transaction(trans);
2666 /* Update ctime/mtime for libblkid */
2667 update_dev_time(device_path);
2668 return ret;
2670 error_sysfs:
2671 btrfs_sysfs_remove_devices_dir(fs_devices, device);
2672 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2673 mutex_lock(&fs_info->chunk_mutex);
2674 list_del_rcu(&device->dev_list);
2675 list_del(&device->dev_alloc_list);
2676 fs_info->fs_devices->num_devices--;
2677 fs_info->fs_devices->open_devices--;
2678 fs_info->fs_devices->rw_devices--;
2679 fs_info->fs_devices->total_devices--;
2680 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2681 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2682 btrfs_set_super_total_bytes(fs_info->super_copy,
2683 orig_super_total_bytes);
2684 btrfs_set_super_num_devices(fs_info->super_copy,
2685 orig_super_num_devices);
2686 mutex_unlock(&fs_info->chunk_mutex);
2687 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2688 error_trans:
2689 if (seeding_dev)
2690 sb->s_flags |= SB_RDONLY;
2691 if (trans)
2692 btrfs_end_transaction(trans);
2693 error_free_device:
2694 btrfs_free_device(device);
2695 error:
2696 blkdev_put(bdev, FMODE_EXCL);
2697 if (seeding_dev && !unlocked) {
2698 mutex_unlock(&uuid_mutex);
2699 up_write(&sb->s_umount);
2701 return ret;
2704 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2705 struct btrfs_device *device)
2707 int ret;
2708 struct btrfs_path *path;
2709 struct btrfs_root *root = device->fs_info->chunk_root;
2710 struct btrfs_dev_item *dev_item;
2711 struct extent_buffer *leaf;
2712 struct btrfs_key key;
2714 path = btrfs_alloc_path();
2715 if (!path)
2716 return -ENOMEM;
2718 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2719 key.type = BTRFS_DEV_ITEM_KEY;
2720 key.offset = device->devid;
2722 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2723 if (ret < 0)
2724 goto out;
2726 if (ret > 0) {
2727 ret = -ENOENT;
2728 goto out;
2731 leaf = path->nodes[0];
2732 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2734 btrfs_set_device_id(leaf, dev_item, device->devid);
2735 btrfs_set_device_type(leaf, dev_item, device->type);
2736 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2737 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2738 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2739 btrfs_set_device_total_bytes(leaf, dev_item,
2740 btrfs_device_get_disk_total_bytes(device));
2741 btrfs_set_device_bytes_used(leaf, dev_item,
2742 btrfs_device_get_bytes_used(device));
2743 btrfs_mark_buffer_dirty(leaf);
2745 out:
2746 btrfs_free_path(path);
2747 return ret;
2750 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2751 struct btrfs_device *device, u64 new_size)
2753 struct btrfs_fs_info *fs_info = device->fs_info;
2754 struct btrfs_super_block *super_copy = fs_info->super_copy;
2755 u64 old_total;
2756 u64 diff;
2758 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2759 return -EACCES;
2761 new_size = round_down(new_size, fs_info->sectorsize);
2763 mutex_lock(&fs_info->chunk_mutex);
2764 old_total = btrfs_super_total_bytes(super_copy);
2765 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2767 if (new_size <= device->total_bytes ||
2768 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2769 mutex_unlock(&fs_info->chunk_mutex);
2770 return -EINVAL;
2773 btrfs_set_super_total_bytes(super_copy,
2774 round_down(old_total + diff, fs_info->sectorsize));
2775 device->fs_devices->total_rw_bytes += diff;
2777 btrfs_device_set_total_bytes(device, new_size);
2778 btrfs_device_set_disk_total_bytes(device, new_size);
2779 btrfs_clear_space_info_full(device->fs_info);
2780 if (list_empty(&device->post_commit_list))
2781 list_add_tail(&device->post_commit_list,
2782 &trans->transaction->dev_update_list);
2783 mutex_unlock(&fs_info->chunk_mutex);
2785 return btrfs_update_device(trans, device);
2788 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2790 struct btrfs_fs_info *fs_info = trans->fs_info;
2791 struct btrfs_root *root = fs_info->chunk_root;
2792 int ret;
2793 struct btrfs_path *path;
2794 struct btrfs_key key;
2796 path = btrfs_alloc_path();
2797 if (!path)
2798 return -ENOMEM;
2800 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2801 key.offset = chunk_offset;
2802 key.type = BTRFS_CHUNK_ITEM_KEY;
2804 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2805 if (ret < 0)
2806 goto out;
2807 else if (ret > 0) { /* Logic error or corruption */
2808 btrfs_handle_fs_error(fs_info, -ENOENT,
2809 "Failed lookup while freeing chunk.");
2810 ret = -ENOENT;
2811 goto out;
2814 ret = btrfs_del_item(trans, root, path);
2815 if (ret < 0)
2816 btrfs_handle_fs_error(fs_info, ret,
2817 "Failed to delete chunk item.");
2818 out:
2819 btrfs_free_path(path);
2820 return ret;
2823 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2825 struct btrfs_super_block *super_copy = fs_info->super_copy;
2826 struct btrfs_disk_key *disk_key;
2827 struct btrfs_chunk *chunk;
2828 u8 *ptr;
2829 int ret = 0;
2830 u32 num_stripes;
2831 u32 array_size;
2832 u32 len = 0;
2833 u32 cur;
2834 struct btrfs_key key;
2836 mutex_lock(&fs_info->chunk_mutex);
2837 array_size = btrfs_super_sys_array_size(super_copy);
2839 ptr = super_copy->sys_chunk_array;
2840 cur = 0;
2842 while (cur < array_size) {
2843 disk_key = (struct btrfs_disk_key *)ptr;
2844 btrfs_disk_key_to_cpu(&key, disk_key);
2846 len = sizeof(*disk_key);
2848 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2849 chunk = (struct btrfs_chunk *)(ptr + len);
2850 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2851 len += btrfs_chunk_item_size(num_stripes);
2852 } else {
2853 ret = -EIO;
2854 break;
2856 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2857 key.offset == chunk_offset) {
2858 memmove(ptr, ptr + len, array_size - (cur + len));
2859 array_size -= len;
2860 btrfs_set_super_sys_array_size(super_copy, array_size);
2861 } else {
2862 ptr += len;
2863 cur += len;
2866 mutex_unlock(&fs_info->chunk_mutex);
2867 return ret;
2871 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2872 * @logical: Logical block offset in bytes.
2873 * @length: Length of extent in bytes.
2875 * Return: Chunk mapping or ERR_PTR.
2877 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2878 u64 logical, u64 length)
2880 struct extent_map_tree *em_tree;
2881 struct extent_map *em;
2883 em_tree = &fs_info->mapping_tree;
2884 read_lock(&em_tree->lock);
2885 em = lookup_extent_mapping(em_tree, logical, length);
2886 read_unlock(&em_tree->lock);
2888 if (!em) {
2889 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2890 logical, length);
2891 return ERR_PTR(-EINVAL);
2894 if (em->start > logical || em->start + em->len < logical) {
2895 btrfs_crit(fs_info,
2896 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2897 logical, length, em->start, em->start + em->len);
2898 free_extent_map(em);
2899 return ERR_PTR(-EINVAL);
2902 /* callers are responsible for dropping em's ref. */
2903 return em;
2906 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2908 struct btrfs_fs_info *fs_info = trans->fs_info;
2909 struct extent_map *em;
2910 struct map_lookup *map;
2911 u64 dev_extent_len = 0;
2912 int i, ret = 0;
2913 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2915 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2916 if (IS_ERR(em)) {
2918 * This is a logic error, but we don't want to just rely on the
2919 * user having built with ASSERT enabled, so if ASSERT doesn't
2920 * do anything we still error out.
2922 ASSERT(0);
2923 return PTR_ERR(em);
2925 map = em->map_lookup;
2926 mutex_lock(&fs_info->chunk_mutex);
2927 check_system_chunk(trans, map->type);
2928 mutex_unlock(&fs_info->chunk_mutex);
2931 * Take the device list mutex to prevent races with the final phase of
2932 * a device replace operation that replaces the device object associated
2933 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2935 mutex_lock(&fs_devices->device_list_mutex);
2936 for (i = 0; i < map->num_stripes; i++) {
2937 struct btrfs_device *device = map->stripes[i].dev;
2938 ret = btrfs_free_dev_extent(trans, device,
2939 map->stripes[i].physical,
2940 &dev_extent_len);
2941 if (ret) {
2942 mutex_unlock(&fs_devices->device_list_mutex);
2943 btrfs_abort_transaction(trans, ret);
2944 goto out;
2947 if (device->bytes_used > 0) {
2948 mutex_lock(&fs_info->chunk_mutex);
2949 btrfs_device_set_bytes_used(device,
2950 device->bytes_used - dev_extent_len);
2951 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2952 btrfs_clear_space_info_full(fs_info);
2953 mutex_unlock(&fs_info->chunk_mutex);
2956 ret = btrfs_update_device(trans, device);
2957 if (ret) {
2958 mutex_unlock(&fs_devices->device_list_mutex);
2959 btrfs_abort_transaction(trans, ret);
2960 goto out;
2963 mutex_unlock(&fs_devices->device_list_mutex);
2965 ret = btrfs_free_chunk(trans, chunk_offset);
2966 if (ret) {
2967 btrfs_abort_transaction(trans, ret);
2968 goto out;
2971 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2973 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2974 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2975 if (ret) {
2976 btrfs_abort_transaction(trans, ret);
2977 goto out;
2981 ret = btrfs_remove_block_group(trans, chunk_offset, em);
2982 if (ret) {
2983 btrfs_abort_transaction(trans, ret);
2984 goto out;
2987 out:
2988 /* once for us */
2989 free_extent_map(em);
2990 return ret;
2993 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2995 struct btrfs_root *root = fs_info->chunk_root;
2996 struct btrfs_trans_handle *trans;
2997 struct btrfs_block_group *block_group;
2998 int ret;
3001 * Prevent races with automatic removal of unused block groups.
3002 * After we relocate and before we remove the chunk with offset
3003 * chunk_offset, automatic removal of the block group can kick in,
3004 * resulting in a failure when calling btrfs_remove_chunk() below.
3006 * Make sure to acquire this mutex before doing a tree search (dev
3007 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3008 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3009 * we release the path used to search the chunk/dev tree and before
3010 * the current task acquires this mutex and calls us.
3012 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3014 /* step one, relocate all the extents inside this chunk */
3015 btrfs_scrub_pause(fs_info);
3016 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3017 btrfs_scrub_continue(fs_info);
3018 if (ret)
3019 return ret;
3021 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3022 if (!block_group)
3023 return -ENOENT;
3024 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3025 btrfs_put_block_group(block_group);
3027 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3028 chunk_offset);
3029 if (IS_ERR(trans)) {
3030 ret = PTR_ERR(trans);
3031 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3032 return ret;
3036 * step two, delete the device extents and the
3037 * chunk tree entries
3039 ret = btrfs_remove_chunk(trans, chunk_offset);
3040 btrfs_end_transaction(trans);
3041 return ret;
3044 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3046 struct btrfs_root *chunk_root = fs_info->chunk_root;
3047 struct btrfs_path *path;
3048 struct extent_buffer *leaf;
3049 struct btrfs_chunk *chunk;
3050 struct btrfs_key key;
3051 struct btrfs_key found_key;
3052 u64 chunk_type;
3053 bool retried = false;
3054 int failed = 0;
3055 int ret;
3057 path = btrfs_alloc_path();
3058 if (!path)
3059 return -ENOMEM;
3061 again:
3062 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3063 key.offset = (u64)-1;
3064 key.type = BTRFS_CHUNK_ITEM_KEY;
3066 while (1) {
3067 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3068 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3069 if (ret < 0) {
3070 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3071 goto error;
3073 BUG_ON(ret == 0); /* Corruption */
3075 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3076 key.type);
3077 if (ret)
3078 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3079 if (ret < 0)
3080 goto error;
3081 if (ret > 0)
3082 break;
3084 leaf = path->nodes[0];
3085 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3087 chunk = btrfs_item_ptr(leaf, path->slots[0],
3088 struct btrfs_chunk);
3089 chunk_type = btrfs_chunk_type(leaf, chunk);
3090 btrfs_release_path(path);
3092 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3093 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3094 if (ret == -ENOSPC)
3095 failed++;
3096 else
3097 BUG_ON(ret);
3099 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3101 if (found_key.offset == 0)
3102 break;
3103 key.offset = found_key.offset - 1;
3105 ret = 0;
3106 if (failed && !retried) {
3107 failed = 0;
3108 retried = true;
3109 goto again;
3110 } else if (WARN_ON(failed && retried)) {
3111 ret = -ENOSPC;
3113 error:
3114 btrfs_free_path(path);
3115 return ret;
3119 * return 1 : allocate a data chunk successfully,
3120 * return <0: errors during allocating a data chunk,
3121 * return 0 : no need to allocate a data chunk.
3123 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3124 u64 chunk_offset)
3126 struct btrfs_block_group *cache;
3127 u64 bytes_used;
3128 u64 chunk_type;
3130 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3131 ASSERT(cache);
3132 chunk_type = cache->flags;
3133 btrfs_put_block_group(cache);
3135 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3136 return 0;
3138 spin_lock(&fs_info->data_sinfo->lock);
3139 bytes_used = fs_info->data_sinfo->bytes_used;
3140 spin_unlock(&fs_info->data_sinfo->lock);
3142 if (!bytes_used) {
3143 struct btrfs_trans_handle *trans;
3144 int ret;
3146 trans = btrfs_join_transaction(fs_info->tree_root);
3147 if (IS_ERR(trans))
3148 return PTR_ERR(trans);
3150 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3151 btrfs_end_transaction(trans);
3152 if (ret < 0)
3153 return ret;
3154 return 1;
3157 return 0;
3160 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3161 struct btrfs_balance_control *bctl)
3163 struct btrfs_root *root = fs_info->tree_root;
3164 struct btrfs_trans_handle *trans;
3165 struct btrfs_balance_item *item;
3166 struct btrfs_disk_balance_args disk_bargs;
3167 struct btrfs_path *path;
3168 struct extent_buffer *leaf;
3169 struct btrfs_key key;
3170 int ret, err;
3172 path = btrfs_alloc_path();
3173 if (!path)
3174 return -ENOMEM;
3176 trans = btrfs_start_transaction(root, 0);
3177 if (IS_ERR(trans)) {
3178 btrfs_free_path(path);
3179 return PTR_ERR(trans);
3182 key.objectid = BTRFS_BALANCE_OBJECTID;
3183 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3184 key.offset = 0;
3186 ret = btrfs_insert_empty_item(trans, root, path, &key,
3187 sizeof(*item));
3188 if (ret)
3189 goto out;
3191 leaf = path->nodes[0];
3192 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3194 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3196 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3197 btrfs_set_balance_data(leaf, item, &disk_bargs);
3198 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3199 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3200 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3201 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3203 btrfs_set_balance_flags(leaf, item, bctl->flags);
3205 btrfs_mark_buffer_dirty(leaf);
3206 out:
3207 btrfs_free_path(path);
3208 err = btrfs_commit_transaction(trans);
3209 if (err && !ret)
3210 ret = err;
3211 return ret;
3214 static int del_balance_item(struct btrfs_fs_info *fs_info)
3216 struct btrfs_root *root = fs_info->tree_root;
3217 struct btrfs_trans_handle *trans;
3218 struct btrfs_path *path;
3219 struct btrfs_key key;
3220 int ret, err;
3222 path = btrfs_alloc_path();
3223 if (!path)
3224 return -ENOMEM;
3226 trans = btrfs_start_transaction(root, 0);
3227 if (IS_ERR(trans)) {
3228 btrfs_free_path(path);
3229 return PTR_ERR(trans);
3232 key.objectid = BTRFS_BALANCE_OBJECTID;
3233 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3234 key.offset = 0;
3236 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3237 if (ret < 0)
3238 goto out;
3239 if (ret > 0) {
3240 ret = -ENOENT;
3241 goto out;
3244 ret = btrfs_del_item(trans, root, path);
3245 out:
3246 btrfs_free_path(path);
3247 err = btrfs_commit_transaction(trans);
3248 if (err && !ret)
3249 ret = err;
3250 return ret;
3254 * This is a heuristic used to reduce the number of chunks balanced on
3255 * resume after balance was interrupted.
3257 static void update_balance_args(struct btrfs_balance_control *bctl)
3260 * Turn on soft mode for chunk types that were being converted.
3262 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3263 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3264 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3265 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3266 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3267 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3270 * Turn on usage filter if is not already used. The idea is
3271 * that chunks that we have already balanced should be
3272 * reasonably full. Don't do it for chunks that are being
3273 * converted - that will keep us from relocating unconverted
3274 * (albeit full) chunks.
3276 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3277 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3278 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3279 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3280 bctl->data.usage = 90;
3282 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3283 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3284 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3285 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3286 bctl->sys.usage = 90;
3288 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3289 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3290 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3291 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3292 bctl->meta.usage = 90;
3297 * Clear the balance status in fs_info and delete the balance item from disk.
3299 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3301 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3302 int ret;
3304 BUG_ON(!fs_info->balance_ctl);
3306 spin_lock(&fs_info->balance_lock);
3307 fs_info->balance_ctl = NULL;
3308 spin_unlock(&fs_info->balance_lock);
3310 kfree(bctl);
3311 ret = del_balance_item(fs_info);
3312 if (ret)
3313 btrfs_handle_fs_error(fs_info, ret, NULL);
3317 * Balance filters. Return 1 if chunk should be filtered out
3318 * (should not be balanced).
3320 static int chunk_profiles_filter(u64 chunk_type,
3321 struct btrfs_balance_args *bargs)
3323 chunk_type = chunk_to_extended(chunk_type) &
3324 BTRFS_EXTENDED_PROFILE_MASK;
3326 if (bargs->profiles & chunk_type)
3327 return 0;
3329 return 1;
3332 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3333 struct btrfs_balance_args *bargs)
3335 struct btrfs_block_group *cache;
3336 u64 chunk_used;
3337 u64 user_thresh_min;
3338 u64 user_thresh_max;
3339 int ret = 1;
3341 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3342 chunk_used = cache->used;
3344 if (bargs->usage_min == 0)
3345 user_thresh_min = 0;
3346 else
3347 user_thresh_min = div_factor_fine(cache->length,
3348 bargs->usage_min);
3350 if (bargs->usage_max == 0)
3351 user_thresh_max = 1;
3352 else if (bargs->usage_max > 100)
3353 user_thresh_max = cache->length;
3354 else
3355 user_thresh_max = div_factor_fine(cache->length,
3356 bargs->usage_max);
3358 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3359 ret = 0;
3361 btrfs_put_block_group(cache);
3362 return ret;
3365 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3366 u64 chunk_offset, struct btrfs_balance_args *bargs)
3368 struct btrfs_block_group *cache;
3369 u64 chunk_used, user_thresh;
3370 int ret = 1;
3372 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3373 chunk_used = cache->used;
3375 if (bargs->usage_min == 0)
3376 user_thresh = 1;
3377 else if (bargs->usage > 100)
3378 user_thresh = cache->length;
3379 else
3380 user_thresh = div_factor_fine(cache->length, bargs->usage);
3382 if (chunk_used < user_thresh)
3383 ret = 0;
3385 btrfs_put_block_group(cache);
3386 return ret;
3389 static int chunk_devid_filter(struct extent_buffer *leaf,
3390 struct btrfs_chunk *chunk,
3391 struct btrfs_balance_args *bargs)
3393 struct btrfs_stripe *stripe;
3394 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3395 int i;
3397 for (i = 0; i < num_stripes; i++) {
3398 stripe = btrfs_stripe_nr(chunk, i);
3399 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3400 return 0;
3403 return 1;
3406 static u64 calc_data_stripes(u64 type, int num_stripes)
3408 const int index = btrfs_bg_flags_to_raid_index(type);
3409 const int ncopies = btrfs_raid_array[index].ncopies;
3410 const int nparity = btrfs_raid_array[index].nparity;
3412 if (nparity)
3413 return num_stripes - nparity;
3414 else
3415 return num_stripes / ncopies;
3418 /* [pstart, pend) */
3419 static int chunk_drange_filter(struct extent_buffer *leaf,
3420 struct btrfs_chunk *chunk,
3421 struct btrfs_balance_args *bargs)
3423 struct btrfs_stripe *stripe;
3424 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3425 u64 stripe_offset;
3426 u64 stripe_length;
3427 u64 type;
3428 int factor;
3429 int i;
3431 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3432 return 0;
3434 type = btrfs_chunk_type(leaf, chunk);
3435 factor = calc_data_stripes(type, num_stripes);
3437 for (i = 0; i < num_stripes; i++) {
3438 stripe = btrfs_stripe_nr(chunk, i);
3439 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3440 continue;
3442 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3443 stripe_length = btrfs_chunk_length(leaf, chunk);
3444 stripe_length = div_u64(stripe_length, factor);
3446 if (stripe_offset < bargs->pend &&
3447 stripe_offset + stripe_length > bargs->pstart)
3448 return 0;
3451 return 1;
3454 /* [vstart, vend) */
3455 static int chunk_vrange_filter(struct extent_buffer *leaf,
3456 struct btrfs_chunk *chunk,
3457 u64 chunk_offset,
3458 struct btrfs_balance_args *bargs)
3460 if (chunk_offset < bargs->vend &&
3461 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3462 /* at least part of the chunk is inside this vrange */
3463 return 0;
3465 return 1;
3468 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3469 struct btrfs_chunk *chunk,
3470 struct btrfs_balance_args *bargs)
3472 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3474 if (bargs->stripes_min <= num_stripes
3475 && num_stripes <= bargs->stripes_max)
3476 return 0;
3478 return 1;
3481 static int chunk_soft_convert_filter(u64 chunk_type,
3482 struct btrfs_balance_args *bargs)
3484 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3485 return 0;
3487 chunk_type = chunk_to_extended(chunk_type) &
3488 BTRFS_EXTENDED_PROFILE_MASK;
3490 if (bargs->target == chunk_type)
3491 return 1;
3493 return 0;
3496 static int should_balance_chunk(struct extent_buffer *leaf,
3497 struct btrfs_chunk *chunk, u64 chunk_offset)
3499 struct btrfs_fs_info *fs_info = leaf->fs_info;
3500 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3501 struct btrfs_balance_args *bargs = NULL;
3502 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3504 /* type filter */
3505 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3506 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3507 return 0;
3510 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3511 bargs = &bctl->data;
3512 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3513 bargs = &bctl->sys;
3514 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3515 bargs = &bctl->meta;
3517 /* profiles filter */
3518 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3519 chunk_profiles_filter(chunk_type, bargs)) {
3520 return 0;
3523 /* usage filter */
3524 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3525 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3526 return 0;
3527 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3528 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3529 return 0;
3532 /* devid filter */
3533 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3534 chunk_devid_filter(leaf, chunk, bargs)) {
3535 return 0;
3538 /* drange filter, makes sense only with devid filter */
3539 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3540 chunk_drange_filter(leaf, chunk, bargs)) {
3541 return 0;
3544 /* vrange filter */
3545 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3546 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3547 return 0;
3550 /* stripes filter */
3551 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3552 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3553 return 0;
3556 /* soft profile changing mode */
3557 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3558 chunk_soft_convert_filter(chunk_type, bargs)) {
3559 return 0;
3563 * limited by count, must be the last filter
3565 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3566 if (bargs->limit == 0)
3567 return 0;
3568 else
3569 bargs->limit--;
3570 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3572 * Same logic as the 'limit' filter; the minimum cannot be
3573 * determined here because we do not have the global information
3574 * about the count of all chunks that satisfy the filters.
3576 if (bargs->limit_max == 0)
3577 return 0;
3578 else
3579 bargs->limit_max--;
3582 return 1;
3585 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3587 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3588 struct btrfs_root *chunk_root = fs_info->chunk_root;
3589 u64 chunk_type;
3590 struct btrfs_chunk *chunk;
3591 struct btrfs_path *path = NULL;
3592 struct btrfs_key key;
3593 struct btrfs_key found_key;
3594 struct extent_buffer *leaf;
3595 int slot;
3596 int ret;
3597 int enospc_errors = 0;
3598 bool counting = true;
3599 /* The single value limit and min/max limits use the same bytes in the */
3600 u64 limit_data = bctl->data.limit;
3601 u64 limit_meta = bctl->meta.limit;
3602 u64 limit_sys = bctl->sys.limit;
3603 u32 count_data = 0;
3604 u32 count_meta = 0;
3605 u32 count_sys = 0;
3606 int chunk_reserved = 0;
3608 path = btrfs_alloc_path();
3609 if (!path) {
3610 ret = -ENOMEM;
3611 goto error;
3614 /* zero out stat counters */
3615 spin_lock(&fs_info->balance_lock);
3616 memset(&bctl->stat, 0, sizeof(bctl->stat));
3617 spin_unlock(&fs_info->balance_lock);
3618 again:
3619 if (!counting) {
3621 * The single value limit and min/max limits use the same bytes
3622 * in the
3624 bctl->data.limit = limit_data;
3625 bctl->meta.limit = limit_meta;
3626 bctl->sys.limit = limit_sys;
3628 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3629 key.offset = (u64)-1;
3630 key.type = BTRFS_CHUNK_ITEM_KEY;
3632 while (1) {
3633 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3634 atomic_read(&fs_info->balance_cancel_req)) {
3635 ret = -ECANCELED;
3636 goto error;
3639 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3640 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3641 if (ret < 0) {
3642 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3643 goto error;
3647 * this shouldn't happen, it means the last relocate
3648 * failed
3650 if (ret == 0)
3651 BUG(); /* FIXME break ? */
3653 ret = btrfs_previous_item(chunk_root, path, 0,
3654 BTRFS_CHUNK_ITEM_KEY);
3655 if (ret) {
3656 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3657 ret = 0;
3658 break;
3661 leaf = path->nodes[0];
3662 slot = path->slots[0];
3663 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3665 if (found_key.objectid != key.objectid) {
3666 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3667 break;
3670 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3671 chunk_type = btrfs_chunk_type(leaf, chunk);
3673 if (!counting) {
3674 spin_lock(&fs_info->balance_lock);
3675 bctl->stat.considered++;
3676 spin_unlock(&fs_info->balance_lock);
3679 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3681 btrfs_release_path(path);
3682 if (!ret) {
3683 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3684 goto loop;
3687 if (counting) {
3688 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3689 spin_lock(&fs_info->balance_lock);
3690 bctl->stat.expected++;
3691 spin_unlock(&fs_info->balance_lock);
3693 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3694 count_data++;
3695 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3696 count_sys++;
3697 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3698 count_meta++;
3700 goto loop;
3704 * Apply limit_min filter, no need to check if the LIMITS
3705 * filter is used, limit_min is 0 by default
3707 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3708 count_data < bctl->data.limit_min)
3709 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3710 count_meta < bctl->meta.limit_min)
3711 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3712 count_sys < bctl->sys.limit_min)) {
3713 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3714 goto loop;
3717 if (!chunk_reserved) {
3719 * We may be relocating the only data chunk we have,
3720 * which could potentially end up with losing data's
3721 * raid profile, so lets allocate an empty one in
3722 * advance.
3724 ret = btrfs_may_alloc_data_chunk(fs_info,
3725 found_key.offset);
3726 if (ret < 0) {
3727 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3728 goto error;
3729 } else if (ret == 1) {
3730 chunk_reserved = 1;
3734 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3735 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3736 if (ret == -ENOSPC) {
3737 enospc_errors++;
3738 } else if (ret == -ETXTBSY) {
3739 btrfs_info(fs_info,
3740 "skipping relocation of block group %llu due to active swapfile",
3741 found_key.offset);
3742 ret = 0;
3743 } else if (ret) {
3744 goto error;
3745 } else {
3746 spin_lock(&fs_info->balance_lock);
3747 bctl->stat.completed++;
3748 spin_unlock(&fs_info->balance_lock);
3750 loop:
3751 if (found_key.offset == 0)
3752 break;
3753 key.offset = found_key.offset - 1;
3756 if (counting) {
3757 btrfs_release_path(path);
3758 counting = false;
3759 goto again;
3761 error:
3762 btrfs_free_path(path);
3763 if (enospc_errors) {
3764 btrfs_info(fs_info, "%d enospc errors during balance",
3765 enospc_errors);
3766 if (!ret)
3767 ret = -ENOSPC;
3770 return ret;
3774 * alloc_profile_is_valid - see if a given profile is valid and reduced
3775 * @flags: profile to validate
3776 * @extended: if true @flags is treated as an extended profile
3778 static int alloc_profile_is_valid(u64 flags, int extended)
3780 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3781 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3783 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3785 /* 1) check that all other bits are zeroed */
3786 if (flags & ~mask)
3787 return 0;
3789 /* 2) see if profile is reduced */
3790 if (flags == 0)
3791 return !extended; /* "0" is valid for usual profiles */
3793 return has_single_bit_set(flags);
3796 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3798 /* cancel requested || normal exit path */
3799 return atomic_read(&fs_info->balance_cancel_req) ||
3800 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3801 atomic_read(&fs_info->balance_cancel_req) == 0);
3805 * Validate target profile against allowed profiles and return true if it's OK.
3806 * Otherwise print the error message and return false.
3808 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3809 const struct btrfs_balance_args *bargs,
3810 u64 allowed, const char *type)
3812 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3813 return true;
3815 /* Profile is valid and does not have bits outside of the allowed set */
3816 if (alloc_profile_is_valid(bargs->target, 1) &&
3817 (bargs->target & ~allowed) == 0)
3818 return true;
3820 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
3821 type, btrfs_bg_type_to_raid_name(bargs->target));
3822 return false;
3826 * Fill @buf with textual description of balance filter flags @bargs, up to
3827 * @size_buf including the terminating null. The output may be trimmed if it
3828 * does not fit into the provided buffer.
3830 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3831 u32 size_buf)
3833 int ret;
3834 u32 size_bp = size_buf;
3835 char *bp = buf;
3836 u64 flags = bargs->flags;
3837 char tmp_buf[128] = {'\0'};
3839 if (!flags)
3840 return;
3842 #define CHECK_APPEND_NOARG(a) \
3843 do { \
3844 ret = snprintf(bp, size_bp, (a)); \
3845 if (ret < 0 || ret >= size_bp) \
3846 goto out_overflow; \
3847 size_bp -= ret; \
3848 bp += ret; \
3849 } while (0)
3851 #define CHECK_APPEND_1ARG(a, v1) \
3852 do { \
3853 ret = snprintf(bp, size_bp, (a), (v1)); \
3854 if (ret < 0 || ret >= size_bp) \
3855 goto out_overflow; \
3856 size_bp -= ret; \
3857 bp += ret; \
3858 } while (0)
3860 #define CHECK_APPEND_2ARG(a, v1, v2) \
3861 do { \
3862 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
3863 if (ret < 0 || ret >= size_bp) \
3864 goto out_overflow; \
3865 size_bp -= ret; \
3866 bp += ret; \
3867 } while (0)
3869 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3870 CHECK_APPEND_1ARG("convert=%s,",
3871 btrfs_bg_type_to_raid_name(bargs->target));
3873 if (flags & BTRFS_BALANCE_ARGS_SOFT)
3874 CHECK_APPEND_NOARG("soft,");
3876 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3877 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3878 sizeof(tmp_buf));
3879 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3882 if (flags & BTRFS_BALANCE_ARGS_USAGE)
3883 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3885 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3886 CHECK_APPEND_2ARG("usage=%u..%u,",
3887 bargs->usage_min, bargs->usage_max);
3889 if (flags & BTRFS_BALANCE_ARGS_DEVID)
3890 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3892 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3893 CHECK_APPEND_2ARG("drange=%llu..%llu,",
3894 bargs->pstart, bargs->pend);
3896 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3897 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3898 bargs->vstart, bargs->vend);
3900 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3901 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3903 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3904 CHECK_APPEND_2ARG("limit=%u..%u,",
3905 bargs->limit_min, bargs->limit_max);
3907 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3908 CHECK_APPEND_2ARG("stripes=%u..%u,",
3909 bargs->stripes_min, bargs->stripes_max);
3911 #undef CHECK_APPEND_2ARG
3912 #undef CHECK_APPEND_1ARG
3913 #undef CHECK_APPEND_NOARG
3915 out_overflow:
3917 if (size_bp < size_buf)
3918 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3919 else
3920 buf[0] = '\0';
3923 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3925 u32 size_buf = 1024;
3926 char tmp_buf[192] = {'\0'};
3927 char *buf;
3928 char *bp;
3929 u32 size_bp = size_buf;
3930 int ret;
3931 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3933 buf = kzalloc(size_buf, GFP_KERNEL);
3934 if (!buf)
3935 return;
3937 bp = buf;
3939 #define CHECK_APPEND_1ARG(a, v1) \
3940 do { \
3941 ret = snprintf(bp, size_bp, (a), (v1)); \
3942 if (ret < 0 || ret >= size_bp) \
3943 goto out_overflow; \
3944 size_bp -= ret; \
3945 bp += ret; \
3946 } while (0)
3948 if (bctl->flags & BTRFS_BALANCE_FORCE)
3949 CHECK_APPEND_1ARG("%s", "-f ");
3951 if (bctl->flags & BTRFS_BALANCE_DATA) {
3952 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
3953 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
3956 if (bctl->flags & BTRFS_BALANCE_METADATA) {
3957 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
3958 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
3961 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
3962 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
3963 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
3966 #undef CHECK_APPEND_1ARG
3968 out_overflow:
3970 if (size_bp < size_buf)
3971 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
3972 btrfs_info(fs_info, "balance: %s %s",
3973 (bctl->flags & BTRFS_BALANCE_RESUME) ?
3974 "resume" : "start", buf);
3976 kfree(buf);
3980 * Should be called with balance mutexe held
3982 int btrfs_balance(struct btrfs_fs_info *fs_info,
3983 struct btrfs_balance_control *bctl,
3984 struct btrfs_ioctl_balance_args *bargs)
3986 u64 meta_target, data_target;
3987 u64 allowed;
3988 int mixed = 0;
3989 int ret;
3990 u64 num_devices;
3991 unsigned seq;
3992 bool reducing_redundancy;
3993 int i;
3995 if (btrfs_fs_closing(fs_info) ||
3996 atomic_read(&fs_info->balance_pause_req) ||
3997 btrfs_should_cancel_balance(fs_info)) {
3998 ret = -EINVAL;
3999 goto out;
4002 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4003 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4004 mixed = 1;
4007 * In case of mixed groups both data and meta should be picked,
4008 * and identical options should be given for both of them.
4010 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4011 if (mixed && (bctl->flags & allowed)) {
4012 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4013 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4014 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4015 btrfs_err(fs_info,
4016 "balance: mixed groups data and metadata options must be the same");
4017 ret = -EINVAL;
4018 goto out;
4023 * rw_devices will not change at the moment, device add/delete/replace
4024 * are excluded by EXCL_OP
4026 num_devices = fs_info->fs_devices->rw_devices;
4029 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4030 * special bit for it, to make it easier to distinguish. Thus we need
4031 * to set it manually, or balance would refuse the profile.
4033 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4034 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4035 if (num_devices >= btrfs_raid_array[i].devs_min)
4036 allowed |= btrfs_raid_array[i].bg_flag;
4038 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4039 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4040 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4041 ret = -EINVAL;
4042 goto out;
4046 * Allow to reduce metadata or system integrity only if force set for
4047 * profiles with redundancy (copies, parity)
4049 allowed = 0;
4050 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4051 if (btrfs_raid_array[i].ncopies >= 2 ||
4052 btrfs_raid_array[i].tolerated_failures >= 1)
4053 allowed |= btrfs_raid_array[i].bg_flag;
4055 do {
4056 seq = read_seqbegin(&fs_info->profiles_lock);
4058 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4059 (fs_info->avail_system_alloc_bits & allowed) &&
4060 !(bctl->sys.target & allowed)) ||
4061 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4062 (fs_info->avail_metadata_alloc_bits & allowed) &&
4063 !(bctl->meta.target & allowed)))
4064 reducing_redundancy = true;
4065 else
4066 reducing_redundancy = false;
4068 /* if we're not converting, the target field is uninitialized */
4069 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4070 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4071 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4072 bctl->data.target : fs_info->avail_data_alloc_bits;
4073 } while (read_seqretry(&fs_info->profiles_lock, seq));
4075 if (reducing_redundancy) {
4076 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4077 btrfs_info(fs_info,
4078 "balance: force reducing metadata redundancy");
4079 } else {
4080 btrfs_err(fs_info,
4081 "balance: reduces metadata redundancy, use --force if you want this");
4082 ret = -EINVAL;
4083 goto out;
4087 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4088 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4089 btrfs_warn(fs_info,
4090 "balance: metadata profile %s has lower redundancy than data profile %s",
4091 btrfs_bg_type_to_raid_name(meta_target),
4092 btrfs_bg_type_to_raid_name(data_target));
4095 if (fs_info->send_in_progress) {
4096 btrfs_warn_rl(fs_info,
4097 "cannot run balance while send operations are in progress (%d in progress)",
4098 fs_info->send_in_progress);
4099 ret = -EAGAIN;
4100 goto out;
4103 ret = insert_balance_item(fs_info, bctl);
4104 if (ret && ret != -EEXIST)
4105 goto out;
4107 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4108 BUG_ON(ret == -EEXIST);
4109 BUG_ON(fs_info->balance_ctl);
4110 spin_lock(&fs_info->balance_lock);
4111 fs_info->balance_ctl = bctl;
4112 spin_unlock(&fs_info->balance_lock);
4113 } else {
4114 BUG_ON(ret != -EEXIST);
4115 spin_lock(&fs_info->balance_lock);
4116 update_balance_args(bctl);
4117 spin_unlock(&fs_info->balance_lock);
4120 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4121 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4122 describe_balance_start_or_resume(fs_info);
4123 mutex_unlock(&fs_info->balance_mutex);
4125 ret = __btrfs_balance(fs_info);
4127 mutex_lock(&fs_info->balance_mutex);
4128 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4129 btrfs_info(fs_info, "balance: paused");
4130 else if (ret == -ECANCELED && atomic_read(&fs_info->balance_cancel_req))
4131 btrfs_info(fs_info, "balance: canceled");
4132 else
4133 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4135 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4137 if (bargs) {
4138 memset(bargs, 0, sizeof(*bargs));
4139 btrfs_update_ioctl_balance_args(fs_info, bargs);
4142 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4143 balance_need_close(fs_info)) {
4144 reset_balance_state(fs_info);
4145 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4148 wake_up(&fs_info->balance_wait_q);
4150 return ret;
4151 out:
4152 if (bctl->flags & BTRFS_BALANCE_RESUME)
4153 reset_balance_state(fs_info);
4154 else
4155 kfree(bctl);
4156 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4158 return ret;
4161 static int balance_kthread(void *data)
4163 struct btrfs_fs_info *fs_info = data;
4164 int ret = 0;
4166 mutex_lock(&fs_info->balance_mutex);
4167 if (fs_info->balance_ctl)
4168 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4169 mutex_unlock(&fs_info->balance_mutex);
4171 return ret;
4174 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4176 struct task_struct *tsk;
4178 mutex_lock(&fs_info->balance_mutex);
4179 if (!fs_info->balance_ctl) {
4180 mutex_unlock(&fs_info->balance_mutex);
4181 return 0;
4183 mutex_unlock(&fs_info->balance_mutex);
4185 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4186 btrfs_info(fs_info, "balance: resume skipped");
4187 return 0;
4191 * A ro->rw remount sequence should continue with the paused balance
4192 * regardless of who pauses it, system or the user as of now, so set
4193 * the resume flag.
4195 spin_lock(&fs_info->balance_lock);
4196 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4197 spin_unlock(&fs_info->balance_lock);
4199 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4200 return PTR_ERR_OR_ZERO(tsk);
4203 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4205 struct btrfs_balance_control *bctl;
4206 struct btrfs_balance_item *item;
4207 struct btrfs_disk_balance_args disk_bargs;
4208 struct btrfs_path *path;
4209 struct extent_buffer *leaf;
4210 struct btrfs_key key;
4211 int ret;
4213 path = btrfs_alloc_path();
4214 if (!path)
4215 return -ENOMEM;
4217 key.objectid = BTRFS_BALANCE_OBJECTID;
4218 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4219 key.offset = 0;
4221 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4222 if (ret < 0)
4223 goto out;
4224 if (ret > 0) { /* ret = -ENOENT; */
4225 ret = 0;
4226 goto out;
4229 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4230 if (!bctl) {
4231 ret = -ENOMEM;
4232 goto out;
4235 leaf = path->nodes[0];
4236 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4238 bctl->flags = btrfs_balance_flags(leaf, item);
4239 bctl->flags |= BTRFS_BALANCE_RESUME;
4241 btrfs_balance_data(leaf, item, &disk_bargs);
4242 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4243 btrfs_balance_meta(leaf, item, &disk_bargs);
4244 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4245 btrfs_balance_sys(leaf, item, &disk_bargs);
4246 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4249 * This should never happen, as the paused balance state is recovered
4250 * during mount without any chance of other exclusive ops to collide.
4252 * This gives the exclusive op status to balance and keeps in paused
4253 * state until user intervention (cancel or umount). If the ownership
4254 * cannot be assigned, show a message but do not fail. The balance
4255 * is in a paused state and must have fs_info::balance_ctl properly
4256 * set up.
4258 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4259 btrfs_warn(fs_info,
4260 "balance: cannot set exclusive op status, resume manually");
4262 mutex_lock(&fs_info->balance_mutex);
4263 BUG_ON(fs_info->balance_ctl);
4264 spin_lock(&fs_info->balance_lock);
4265 fs_info->balance_ctl = bctl;
4266 spin_unlock(&fs_info->balance_lock);
4267 mutex_unlock(&fs_info->balance_mutex);
4268 out:
4269 btrfs_free_path(path);
4270 return ret;
4273 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4275 int ret = 0;
4277 mutex_lock(&fs_info->balance_mutex);
4278 if (!fs_info->balance_ctl) {
4279 mutex_unlock(&fs_info->balance_mutex);
4280 return -ENOTCONN;
4283 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4284 atomic_inc(&fs_info->balance_pause_req);
4285 mutex_unlock(&fs_info->balance_mutex);
4287 wait_event(fs_info->balance_wait_q,
4288 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4290 mutex_lock(&fs_info->balance_mutex);
4291 /* we are good with balance_ctl ripped off from under us */
4292 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4293 atomic_dec(&fs_info->balance_pause_req);
4294 } else {
4295 ret = -ENOTCONN;
4298 mutex_unlock(&fs_info->balance_mutex);
4299 return ret;
4302 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4304 mutex_lock(&fs_info->balance_mutex);
4305 if (!fs_info->balance_ctl) {
4306 mutex_unlock(&fs_info->balance_mutex);
4307 return -ENOTCONN;
4311 * A paused balance with the item stored on disk can be resumed at
4312 * mount time if the mount is read-write. Otherwise it's still paused
4313 * and we must not allow cancelling as it deletes the item.
4315 if (sb_rdonly(fs_info->sb)) {
4316 mutex_unlock(&fs_info->balance_mutex);
4317 return -EROFS;
4320 atomic_inc(&fs_info->balance_cancel_req);
4322 * if we are running just wait and return, balance item is
4323 * deleted in btrfs_balance in this case
4325 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4326 mutex_unlock(&fs_info->balance_mutex);
4327 wait_event(fs_info->balance_wait_q,
4328 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4329 mutex_lock(&fs_info->balance_mutex);
4330 } else {
4331 mutex_unlock(&fs_info->balance_mutex);
4333 * Lock released to allow other waiters to continue, we'll
4334 * reexamine the status again.
4336 mutex_lock(&fs_info->balance_mutex);
4338 if (fs_info->balance_ctl) {
4339 reset_balance_state(fs_info);
4340 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4341 btrfs_info(fs_info, "balance: canceled");
4345 BUG_ON(fs_info->balance_ctl ||
4346 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4347 atomic_dec(&fs_info->balance_cancel_req);
4348 mutex_unlock(&fs_info->balance_mutex);
4349 return 0;
4352 int btrfs_uuid_scan_kthread(void *data)
4354 struct btrfs_fs_info *fs_info = data;
4355 struct btrfs_root *root = fs_info->tree_root;
4356 struct btrfs_key key;
4357 struct btrfs_path *path = NULL;
4358 int ret = 0;
4359 struct extent_buffer *eb;
4360 int slot;
4361 struct btrfs_root_item root_item;
4362 u32 item_size;
4363 struct btrfs_trans_handle *trans = NULL;
4364 bool closing = false;
4366 path = btrfs_alloc_path();
4367 if (!path) {
4368 ret = -ENOMEM;
4369 goto out;
4372 key.objectid = 0;
4373 key.type = BTRFS_ROOT_ITEM_KEY;
4374 key.offset = 0;
4376 while (1) {
4377 if (btrfs_fs_closing(fs_info)) {
4378 closing = true;
4379 break;
4381 ret = btrfs_search_forward(root, &key, path,
4382 BTRFS_OLDEST_GENERATION);
4383 if (ret) {
4384 if (ret > 0)
4385 ret = 0;
4386 break;
4389 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4390 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4391 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4392 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4393 goto skip;
4395 eb = path->nodes[0];
4396 slot = path->slots[0];
4397 item_size = btrfs_item_size_nr(eb, slot);
4398 if (item_size < sizeof(root_item))
4399 goto skip;
4401 read_extent_buffer(eb, &root_item,
4402 btrfs_item_ptr_offset(eb, slot),
4403 (int)sizeof(root_item));
4404 if (btrfs_root_refs(&root_item) == 0)
4405 goto skip;
4407 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4408 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4409 if (trans)
4410 goto update_tree;
4412 btrfs_release_path(path);
4414 * 1 - subvol uuid item
4415 * 1 - received_subvol uuid item
4417 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4418 if (IS_ERR(trans)) {
4419 ret = PTR_ERR(trans);
4420 break;
4422 continue;
4423 } else {
4424 goto skip;
4426 update_tree:
4427 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4428 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4429 BTRFS_UUID_KEY_SUBVOL,
4430 key.objectid);
4431 if (ret < 0) {
4432 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4433 ret);
4434 break;
4438 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4439 ret = btrfs_uuid_tree_add(trans,
4440 root_item.received_uuid,
4441 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4442 key.objectid);
4443 if (ret < 0) {
4444 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4445 ret);
4446 break;
4450 skip:
4451 if (trans) {
4452 ret = btrfs_end_transaction(trans);
4453 trans = NULL;
4454 if (ret)
4455 break;
4458 btrfs_release_path(path);
4459 if (key.offset < (u64)-1) {
4460 key.offset++;
4461 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4462 key.offset = 0;
4463 key.type = BTRFS_ROOT_ITEM_KEY;
4464 } else if (key.objectid < (u64)-1) {
4465 key.offset = 0;
4466 key.type = BTRFS_ROOT_ITEM_KEY;
4467 key.objectid++;
4468 } else {
4469 break;
4471 cond_resched();
4474 out:
4475 btrfs_free_path(path);
4476 if (trans && !IS_ERR(trans))
4477 btrfs_end_transaction(trans);
4478 if (ret)
4479 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4480 else if (!closing)
4481 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4482 up(&fs_info->uuid_tree_rescan_sem);
4483 return 0;
4486 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4488 struct btrfs_trans_handle *trans;
4489 struct btrfs_root *tree_root = fs_info->tree_root;
4490 struct btrfs_root *uuid_root;
4491 struct task_struct *task;
4492 int ret;
4495 * 1 - root node
4496 * 1 - root item
4498 trans = btrfs_start_transaction(tree_root, 2);
4499 if (IS_ERR(trans))
4500 return PTR_ERR(trans);
4502 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4503 if (IS_ERR(uuid_root)) {
4504 ret = PTR_ERR(uuid_root);
4505 btrfs_abort_transaction(trans, ret);
4506 btrfs_end_transaction(trans);
4507 return ret;
4510 fs_info->uuid_root = uuid_root;
4512 ret = btrfs_commit_transaction(trans);
4513 if (ret)
4514 return ret;
4516 down(&fs_info->uuid_tree_rescan_sem);
4517 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4518 if (IS_ERR(task)) {
4519 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4520 btrfs_warn(fs_info, "failed to start uuid_scan task");
4521 up(&fs_info->uuid_tree_rescan_sem);
4522 return PTR_ERR(task);
4525 return 0;
4529 * shrinking a device means finding all of the device extents past
4530 * the new size, and then following the back refs to the chunks.
4531 * The chunk relocation code actually frees the device extent
4533 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4535 struct btrfs_fs_info *fs_info = device->fs_info;
4536 struct btrfs_root *root = fs_info->dev_root;
4537 struct btrfs_trans_handle *trans;
4538 struct btrfs_dev_extent *dev_extent = NULL;
4539 struct btrfs_path *path;
4540 u64 length;
4541 u64 chunk_offset;
4542 int ret;
4543 int slot;
4544 int failed = 0;
4545 bool retried = false;
4546 struct extent_buffer *l;
4547 struct btrfs_key key;
4548 struct btrfs_super_block *super_copy = fs_info->super_copy;
4549 u64 old_total = btrfs_super_total_bytes(super_copy);
4550 u64 old_size = btrfs_device_get_total_bytes(device);
4551 u64 diff;
4552 u64 start;
4554 new_size = round_down(new_size, fs_info->sectorsize);
4555 start = new_size;
4556 diff = round_down(old_size - new_size, fs_info->sectorsize);
4558 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4559 return -EINVAL;
4561 path = btrfs_alloc_path();
4562 if (!path)
4563 return -ENOMEM;
4565 path->reada = READA_BACK;
4567 trans = btrfs_start_transaction(root, 0);
4568 if (IS_ERR(trans)) {
4569 btrfs_free_path(path);
4570 return PTR_ERR(trans);
4573 mutex_lock(&fs_info->chunk_mutex);
4575 btrfs_device_set_total_bytes(device, new_size);
4576 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4577 device->fs_devices->total_rw_bytes -= diff;
4578 atomic64_sub(diff, &fs_info->free_chunk_space);
4582 * Once the device's size has been set to the new size, ensure all
4583 * in-memory chunks are synced to disk so that the loop below sees them
4584 * and relocates them accordingly.
4586 if (contains_pending_extent(device, &start, diff)) {
4587 mutex_unlock(&fs_info->chunk_mutex);
4588 ret = btrfs_commit_transaction(trans);
4589 if (ret)
4590 goto done;
4591 } else {
4592 mutex_unlock(&fs_info->chunk_mutex);
4593 btrfs_end_transaction(trans);
4596 again:
4597 key.objectid = device->devid;
4598 key.offset = (u64)-1;
4599 key.type = BTRFS_DEV_EXTENT_KEY;
4601 do {
4602 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4603 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4604 if (ret < 0) {
4605 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4606 goto done;
4609 ret = btrfs_previous_item(root, path, 0, key.type);
4610 if (ret)
4611 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4612 if (ret < 0)
4613 goto done;
4614 if (ret) {
4615 ret = 0;
4616 btrfs_release_path(path);
4617 break;
4620 l = path->nodes[0];
4621 slot = path->slots[0];
4622 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4624 if (key.objectid != device->devid) {
4625 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4626 btrfs_release_path(path);
4627 break;
4630 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4631 length = btrfs_dev_extent_length(l, dev_extent);
4633 if (key.offset + length <= new_size) {
4634 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4635 btrfs_release_path(path);
4636 break;
4639 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4640 btrfs_release_path(path);
4643 * We may be relocating the only data chunk we have,
4644 * which could potentially end up with losing data's
4645 * raid profile, so lets allocate an empty one in
4646 * advance.
4648 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4649 if (ret < 0) {
4650 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4651 goto done;
4654 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4655 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4656 if (ret == -ENOSPC) {
4657 failed++;
4658 } else if (ret) {
4659 if (ret == -ETXTBSY) {
4660 btrfs_warn(fs_info,
4661 "could not shrink block group %llu due to active swapfile",
4662 chunk_offset);
4664 goto done;
4666 } while (key.offset-- > 0);
4668 if (failed && !retried) {
4669 failed = 0;
4670 retried = true;
4671 goto again;
4672 } else if (failed && retried) {
4673 ret = -ENOSPC;
4674 goto done;
4677 /* Shrinking succeeded, else we would be at "done". */
4678 trans = btrfs_start_transaction(root, 0);
4679 if (IS_ERR(trans)) {
4680 ret = PTR_ERR(trans);
4681 goto done;
4684 mutex_lock(&fs_info->chunk_mutex);
4685 btrfs_device_set_disk_total_bytes(device, new_size);
4686 if (list_empty(&device->post_commit_list))
4687 list_add_tail(&device->post_commit_list,
4688 &trans->transaction->dev_update_list);
4690 WARN_ON(diff > old_total);
4691 btrfs_set_super_total_bytes(super_copy,
4692 round_down(old_total - diff, fs_info->sectorsize));
4693 mutex_unlock(&fs_info->chunk_mutex);
4695 /* Now btrfs_update_device() will change the on-disk size. */
4696 ret = btrfs_update_device(trans, device);
4697 if (ret < 0) {
4698 btrfs_abort_transaction(trans, ret);
4699 btrfs_end_transaction(trans);
4700 } else {
4701 ret = btrfs_commit_transaction(trans);
4703 done:
4704 btrfs_free_path(path);
4705 if (ret) {
4706 mutex_lock(&fs_info->chunk_mutex);
4707 btrfs_device_set_total_bytes(device, old_size);
4708 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4709 device->fs_devices->total_rw_bytes += diff;
4710 atomic64_add(diff, &fs_info->free_chunk_space);
4711 mutex_unlock(&fs_info->chunk_mutex);
4713 return ret;
4716 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4717 struct btrfs_key *key,
4718 struct btrfs_chunk *chunk, int item_size)
4720 struct btrfs_super_block *super_copy = fs_info->super_copy;
4721 struct btrfs_disk_key disk_key;
4722 u32 array_size;
4723 u8 *ptr;
4725 mutex_lock(&fs_info->chunk_mutex);
4726 array_size = btrfs_super_sys_array_size(super_copy);
4727 if (array_size + item_size + sizeof(disk_key)
4728 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4729 mutex_unlock(&fs_info->chunk_mutex);
4730 return -EFBIG;
4733 ptr = super_copy->sys_chunk_array + array_size;
4734 btrfs_cpu_key_to_disk(&disk_key, key);
4735 memcpy(ptr, &disk_key, sizeof(disk_key));
4736 ptr += sizeof(disk_key);
4737 memcpy(ptr, chunk, item_size);
4738 item_size += sizeof(disk_key);
4739 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4740 mutex_unlock(&fs_info->chunk_mutex);
4742 return 0;
4746 * sort the devices in descending order by max_avail, total_avail
4748 static int btrfs_cmp_device_info(const void *a, const void *b)
4750 const struct btrfs_device_info *di_a = a;
4751 const struct btrfs_device_info *di_b = b;
4753 if (di_a->max_avail > di_b->max_avail)
4754 return -1;
4755 if (di_a->max_avail < di_b->max_avail)
4756 return 1;
4757 if (di_a->total_avail > di_b->total_avail)
4758 return -1;
4759 if (di_a->total_avail < di_b->total_avail)
4760 return 1;
4761 return 0;
4764 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4766 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4767 return;
4769 btrfs_set_fs_incompat(info, RAID56);
4772 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4774 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4775 return;
4777 btrfs_set_fs_incompat(info, RAID1C34);
4781 * Structure used internally for __btrfs_alloc_chunk() function.
4782 * Wraps needed parameters.
4784 struct alloc_chunk_ctl {
4785 u64 start;
4786 u64 type;
4787 /* Total number of stripes to allocate */
4788 int num_stripes;
4789 /* sub_stripes info for map */
4790 int sub_stripes;
4791 /* Stripes per device */
4792 int dev_stripes;
4793 /* Maximum number of devices to use */
4794 int devs_max;
4795 /* Minimum number of devices to use */
4796 int devs_min;
4797 /* ndevs has to be a multiple of this */
4798 int devs_increment;
4799 /* Number of copies */
4800 int ncopies;
4801 /* Number of stripes worth of bytes to store parity information */
4802 int nparity;
4803 u64 max_stripe_size;
4804 u64 max_chunk_size;
4805 u64 dev_extent_min;
4806 u64 stripe_size;
4807 u64 chunk_size;
4808 int ndevs;
4811 static void init_alloc_chunk_ctl_policy_regular(
4812 struct btrfs_fs_devices *fs_devices,
4813 struct alloc_chunk_ctl *ctl)
4815 u64 type = ctl->type;
4817 if (type & BTRFS_BLOCK_GROUP_DATA) {
4818 ctl->max_stripe_size = SZ_1G;
4819 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4820 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4821 /* For larger filesystems, use larger metadata chunks */
4822 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4823 ctl->max_stripe_size = SZ_1G;
4824 else
4825 ctl->max_stripe_size = SZ_256M;
4826 ctl->max_chunk_size = ctl->max_stripe_size;
4827 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4828 ctl->max_stripe_size = SZ_32M;
4829 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
4830 ctl->devs_max = min_t(int, ctl->devs_max,
4831 BTRFS_MAX_DEVS_SYS_CHUNK);
4832 } else {
4833 BUG();
4836 /* We don't want a chunk larger than 10% of writable space */
4837 ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4838 ctl->max_chunk_size);
4839 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
4842 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
4843 struct alloc_chunk_ctl *ctl)
4845 int index = btrfs_bg_flags_to_raid_index(ctl->type);
4847 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
4848 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
4849 ctl->devs_max = btrfs_raid_array[index].devs_max;
4850 if (!ctl->devs_max)
4851 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
4852 ctl->devs_min = btrfs_raid_array[index].devs_min;
4853 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
4854 ctl->ncopies = btrfs_raid_array[index].ncopies;
4855 ctl->nparity = btrfs_raid_array[index].nparity;
4856 ctl->ndevs = 0;
4858 switch (fs_devices->chunk_alloc_policy) {
4859 case BTRFS_CHUNK_ALLOC_REGULAR:
4860 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
4861 break;
4862 default:
4863 BUG();
4867 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
4868 struct alloc_chunk_ctl *ctl,
4869 struct btrfs_device_info *devices_info)
4871 struct btrfs_fs_info *info = fs_devices->fs_info;
4872 struct btrfs_device *device;
4873 u64 total_avail;
4874 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
4875 int ret;
4876 int ndevs = 0;
4877 u64 max_avail;
4878 u64 dev_offset;
4881 * in the first pass through the devices list, we gather information
4882 * about the available holes on each device.
4884 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4885 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4886 WARN(1, KERN_ERR
4887 "BTRFS: read-only device in alloc_list\n");
4888 continue;
4891 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4892 &device->dev_state) ||
4893 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4894 continue;
4896 if (device->total_bytes > device->bytes_used)
4897 total_avail = device->total_bytes - device->bytes_used;
4898 else
4899 total_avail = 0;
4901 /* If there is no space on this device, skip it. */
4902 if (total_avail < ctl->dev_extent_min)
4903 continue;
4905 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
4906 &max_avail);
4907 if (ret && ret != -ENOSPC)
4908 return ret;
4910 if (ret == 0)
4911 max_avail = dev_extent_want;
4913 if (max_avail < ctl->dev_extent_min) {
4914 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4915 btrfs_debug(info,
4916 "%s: devid %llu has no free space, have=%llu want=%llu",
4917 __func__, device->devid, max_avail,
4918 ctl->dev_extent_min);
4919 continue;
4922 if (ndevs == fs_devices->rw_devices) {
4923 WARN(1, "%s: found more than %llu devices\n",
4924 __func__, fs_devices->rw_devices);
4925 break;
4927 devices_info[ndevs].dev_offset = dev_offset;
4928 devices_info[ndevs].max_avail = max_avail;
4929 devices_info[ndevs].total_avail = total_avail;
4930 devices_info[ndevs].dev = device;
4931 ++ndevs;
4933 ctl->ndevs = ndevs;
4936 * now sort the devices by hole size / available space
4938 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4939 btrfs_cmp_device_info, NULL);
4941 return 0;
4944 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
4945 struct btrfs_device_info *devices_info)
4947 /* Number of stripes that count for block group size */
4948 int data_stripes;
4951 * The primary goal is to maximize the number of stripes, so use as
4952 * many devices as possible, even if the stripes are not maximum sized.
4954 * The DUP profile stores more than one stripe per device, the
4955 * max_avail is the total size so we have to adjust.
4957 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
4958 ctl->dev_stripes);
4959 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
4961 /* This will have to be fixed for RAID1 and RAID10 over more drives */
4962 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
4965 * Use the number of data stripes to figure out how big this chunk is
4966 * really going to be in terms of logical address space, and compare
4967 * that answer with the max chunk size. If it's higher, we try to
4968 * reduce stripe_size.
4970 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
4972 * Reduce stripe_size, round it up to a 16MB boundary again and
4973 * then use it, unless it ends up being even bigger than the
4974 * previous value we had already.
4976 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
4977 data_stripes), SZ_16M),
4978 ctl->stripe_size);
4981 /* Align to BTRFS_STRIPE_LEN */
4982 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
4983 ctl->chunk_size = ctl->stripe_size * data_stripes;
4985 return 0;
4988 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
4989 struct alloc_chunk_ctl *ctl,
4990 struct btrfs_device_info *devices_info)
4992 struct btrfs_fs_info *info = fs_devices->fs_info;
4995 * Round down to number of usable stripes, devs_increment can be any
4996 * number so we can't use round_down() that requires power of 2, while
4997 * rounddown is safe.
4999 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5001 if (ctl->ndevs < ctl->devs_min) {
5002 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5003 btrfs_debug(info,
5004 "%s: not enough devices with free space: have=%d minimum required=%d",
5005 __func__, ctl->ndevs, ctl->devs_min);
5007 return -ENOSPC;
5010 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5012 switch (fs_devices->chunk_alloc_policy) {
5013 case BTRFS_CHUNK_ALLOC_REGULAR:
5014 return decide_stripe_size_regular(ctl, devices_info);
5015 default:
5016 BUG();
5020 static int create_chunk(struct btrfs_trans_handle *trans,
5021 struct alloc_chunk_ctl *ctl,
5022 struct btrfs_device_info *devices_info)
5024 struct btrfs_fs_info *info = trans->fs_info;
5025 struct map_lookup *map = NULL;
5026 struct extent_map_tree *em_tree;
5027 struct extent_map *em;
5028 u64 start = ctl->start;
5029 u64 type = ctl->type;
5030 int ret;
5031 int i;
5032 int j;
5034 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5035 if (!map)
5036 return -ENOMEM;
5037 map->num_stripes = ctl->num_stripes;
5039 for (i = 0; i < ctl->ndevs; ++i) {
5040 for (j = 0; j < ctl->dev_stripes; ++j) {
5041 int s = i * ctl->dev_stripes + j;
5042 map->stripes[s].dev = devices_info[i].dev;
5043 map->stripes[s].physical = devices_info[i].dev_offset +
5044 j * ctl->stripe_size;
5047 map->stripe_len = BTRFS_STRIPE_LEN;
5048 map->io_align = BTRFS_STRIPE_LEN;
5049 map->io_width = BTRFS_STRIPE_LEN;
5050 map->type = type;
5051 map->sub_stripes = ctl->sub_stripes;
5053 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5055 em = alloc_extent_map();
5056 if (!em) {
5057 kfree(map);
5058 return -ENOMEM;
5060 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5061 em->map_lookup = map;
5062 em->start = start;
5063 em->len = ctl->chunk_size;
5064 em->block_start = 0;
5065 em->block_len = em->len;
5066 em->orig_block_len = ctl->stripe_size;
5068 em_tree = &info->mapping_tree;
5069 write_lock(&em_tree->lock);
5070 ret = add_extent_mapping(em_tree, em, 0);
5071 if (ret) {
5072 write_unlock(&em_tree->lock);
5073 free_extent_map(em);
5074 return ret;
5076 write_unlock(&em_tree->lock);
5078 ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5079 if (ret)
5080 goto error_del_extent;
5082 for (i = 0; i < map->num_stripes; i++) {
5083 struct btrfs_device *dev = map->stripes[i].dev;
5085 btrfs_device_set_bytes_used(dev,
5086 dev->bytes_used + ctl->stripe_size);
5087 if (list_empty(&dev->post_commit_list))
5088 list_add_tail(&dev->post_commit_list,
5089 &trans->transaction->dev_update_list);
5092 atomic64_sub(ctl->stripe_size * map->num_stripes,
5093 &info->free_chunk_space);
5095 free_extent_map(em);
5096 check_raid56_incompat_flag(info, type);
5097 check_raid1c34_incompat_flag(info, type);
5099 return 0;
5101 error_del_extent:
5102 write_lock(&em_tree->lock);
5103 remove_extent_mapping(em_tree, em);
5104 write_unlock(&em_tree->lock);
5106 /* One for our allocation */
5107 free_extent_map(em);
5108 /* One for the tree reference */
5109 free_extent_map(em);
5111 return ret;
5114 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5116 struct btrfs_fs_info *info = trans->fs_info;
5117 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5118 struct btrfs_device_info *devices_info = NULL;
5119 struct alloc_chunk_ctl ctl;
5120 int ret;
5122 lockdep_assert_held(&info->chunk_mutex);
5124 if (!alloc_profile_is_valid(type, 0)) {
5125 ASSERT(0);
5126 return -EINVAL;
5129 if (list_empty(&fs_devices->alloc_list)) {
5130 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5131 btrfs_debug(info, "%s: no writable device", __func__);
5132 return -ENOSPC;
5135 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5136 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5137 ASSERT(0);
5138 return -EINVAL;
5141 ctl.start = find_next_chunk(info);
5142 ctl.type = type;
5143 init_alloc_chunk_ctl(fs_devices, &ctl);
5145 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5146 GFP_NOFS);
5147 if (!devices_info)
5148 return -ENOMEM;
5150 ret = gather_device_info(fs_devices, &ctl, devices_info);
5151 if (ret < 0)
5152 goto out;
5154 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5155 if (ret < 0)
5156 goto out;
5158 ret = create_chunk(trans, &ctl, devices_info);
5160 out:
5161 kfree(devices_info);
5162 return ret;
5166 * Chunk allocation falls into two parts. The first part does work
5167 * that makes the new allocated chunk usable, but does not do any operation
5168 * that modifies the chunk tree. The second part does the work that
5169 * requires modifying the chunk tree. This division is important for the
5170 * bootstrap process of adding storage to a seed btrfs.
5172 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5173 u64 chunk_offset, u64 chunk_size)
5175 struct btrfs_fs_info *fs_info = trans->fs_info;
5176 struct btrfs_root *extent_root = fs_info->extent_root;
5177 struct btrfs_root *chunk_root = fs_info->chunk_root;
5178 struct btrfs_key key;
5179 struct btrfs_device *device;
5180 struct btrfs_chunk *chunk;
5181 struct btrfs_stripe *stripe;
5182 struct extent_map *em;
5183 struct map_lookup *map;
5184 size_t item_size;
5185 u64 dev_offset;
5186 u64 stripe_size;
5187 int i = 0;
5188 int ret = 0;
5190 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5191 if (IS_ERR(em))
5192 return PTR_ERR(em);
5194 map = em->map_lookup;
5195 item_size = btrfs_chunk_item_size(map->num_stripes);
5196 stripe_size = em->orig_block_len;
5198 chunk = kzalloc(item_size, GFP_NOFS);
5199 if (!chunk) {
5200 ret = -ENOMEM;
5201 goto out;
5205 * Take the device list mutex to prevent races with the final phase of
5206 * a device replace operation that replaces the device object associated
5207 * with the map's stripes, because the device object's id can change
5208 * at any time during that final phase of the device replace operation
5209 * (dev-replace.c:btrfs_dev_replace_finishing()).
5211 mutex_lock(&fs_info->fs_devices->device_list_mutex);
5212 for (i = 0; i < map->num_stripes; i++) {
5213 device = map->stripes[i].dev;
5214 dev_offset = map->stripes[i].physical;
5216 ret = btrfs_update_device(trans, device);
5217 if (ret)
5218 break;
5219 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5220 dev_offset, stripe_size);
5221 if (ret)
5222 break;
5224 if (ret) {
5225 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5226 goto out;
5229 stripe = &chunk->stripe;
5230 for (i = 0; i < map->num_stripes; i++) {
5231 device = map->stripes[i].dev;
5232 dev_offset = map->stripes[i].physical;
5234 btrfs_set_stack_stripe_devid(stripe, device->devid);
5235 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5236 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5237 stripe++;
5239 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5241 btrfs_set_stack_chunk_length(chunk, chunk_size);
5242 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5243 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5244 btrfs_set_stack_chunk_type(chunk, map->type);
5245 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5246 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5247 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5248 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5249 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5251 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5252 key.type = BTRFS_CHUNK_ITEM_KEY;
5253 key.offset = chunk_offset;
5255 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5256 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5258 * TODO: Cleanup of inserted chunk root in case of
5259 * failure.
5261 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5264 out:
5265 kfree(chunk);
5266 free_extent_map(em);
5267 return ret;
5270 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5272 struct btrfs_fs_info *fs_info = trans->fs_info;
5273 u64 alloc_profile;
5274 int ret;
5276 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5277 ret = btrfs_alloc_chunk(trans, alloc_profile);
5278 if (ret)
5279 return ret;
5281 alloc_profile = btrfs_system_alloc_profile(fs_info);
5282 ret = btrfs_alloc_chunk(trans, alloc_profile);
5283 return ret;
5286 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5288 const int index = btrfs_bg_flags_to_raid_index(map->type);
5290 return btrfs_raid_array[index].tolerated_failures;
5293 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5295 struct extent_map *em;
5296 struct map_lookup *map;
5297 int readonly = 0;
5298 int miss_ndevs = 0;
5299 int i;
5301 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5302 if (IS_ERR(em))
5303 return 1;
5305 map = em->map_lookup;
5306 for (i = 0; i < map->num_stripes; i++) {
5307 if (test_bit(BTRFS_DEV_STATE_MISSING,
5308 &map->stripes[i].dev->dev_state)) {
5309 miss_ndevs++;
5310 continue;
5312 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5313 &map->stripes[i].dev->dev_state)) {
5314 readonly = 1;
5315 goto end;
5320 * If the number of missing devices is larger than max errors,
5321 * we can not write the data into that chunk successfully, so
5322 * set it readonly.
5324 if (miss_ndevs > btrfs_chunk_max_errors(map))
5325 readonly = 1;
5326 end:
5327 free_extent_map(em);
5328 return readonly;
5331 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5333 struct extent_map *em;
5335 while (1) {
5336 write_lock(&tree->lock);
5337 em = lookup_extent_mapping(tree, 0, (u64)-1);
5338 if (em)
5339 remove_extent_mapping(tree, em);
5340 write_unlock(&tree->lock);
5341 if (!em)
5342 break;
5343 /* once for us */
5344 free_extent_map(em);
5345 /* once for the tree */
5346 free_extent_map(em);
5350 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5352 struct extent_map *em;
5353 struct map_lookup *map;
5354 int ret;
5356 em = btrfs_get_chunk_map(fs_info, logical, len);
5357 if (IS_ERR(em))
5359 * We could return errors for these cases, but that could get
5360 * ugly and we'd probably do the same thing which is just not do
5361 * anything else and exit, so return 1 so the callers don't try
5362 * to use other copies.
5364 return 1;
5366 map = em->map_lookup;
5367 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5368 ret = map->num_stripes;
5369 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5370 ret = map->sub_stripes;
5371 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5372 ret = 2;
5373 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5375 * There could be two corrupted data stripes, we need
5376 * to loop retry in order to rebuild the correct data.
5378 * Fail a stripe at a time on every retry except the
5379 * stripe under reconstruction.
5381 ret = map->num_stripes;
5382 else
5383 ret = 1;
5384 free_extent_map(em);
5386 down_read(&fs_info->dev_replace.rwsem);
5387 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5388 fs_info->dev_replace.tgtdev)
5389 ret++;
5390 up_read(&fs_info->dev_replace.rwsem);
5392 return ret;
5395 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5396 u64 logical)
5398 struct extent_map *em;
5399 struct map_lookup *map;
5400 unsigned long len = fs_info->sectorsize;
5402 em = btrfs_get_chunk_map(fs_info, logical, len);
5404 if (!WARN_ON(IS_ERR(em))) {
5405 map = em->map_lookup;
5406 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5407 len = map->stripe_len * nr_data_stripes(map);
5408 free_extent_map(em);
5410 return len;
5413 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5415 struct extent_map *em;
5416 struct map_lookup *map;
5417 int ret = 0;
5419 em = btrfs_get_chunk_map(fs_info, logical, len);
5421 if(!WARN_ON(IS_ERR(em))) {
5422 map = em->map_lookup;
5423 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5424 ret = 1;
5425 free_extent_map(em);
5427 return ret;
5430 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5431 struct map_lookup *map, int first,
5432 int dev_replace_is_ongoing)
5434 int i;
5435 int num_stripes;
5436 int preferred_mirror;
5437 int tolerance;
5438 struct btrfs_device *srcdev;
5440 ASSERT((map->type &
5441 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5443 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5444 num_stripes = map->sub_stripes;
5445 else
5446 num_stripes = map->num_stripes;
5448 preferred_mirror = first + current->pid % num_stripes;
5450 if (dev_replace_is_ongoing &&
5451 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5452 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5453 srcdev = fs_info->dev_replace.srcdev;
5454 else
5455 srcdev = NULL;
5458 * try to avoid the drive that is the source drive for a
5459 * dev-replace procedure, only choose it if no other non-missing
5460 * mirror is available
5462 for (tolerance = 0; tolerance < 2; tolerance++) {
5463 if (map->stripes[preferred_mirror].dev->bdev &&
5464 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5465 return preferred_mirror;
5466 for (i = first; i < first + num_stripes; i++) {
5467 if (map->stripes[i].dev->bdev &&
5468 (tolerance || map->stripes[i].dev != srcdev))
5469 return i;
5473 /* we couldn't find one that doesn't fail. Just return something
5474 * and the io error handling code will clean up eventually
5476 return preferred_mirror;
5479 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5480 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5482 int i;
5483 int again = 1;
5485 while (again) {
5486 again = 0;
5487 for (i = 0; i < num_stripes - 1; i++) {
5488 /* Swap if parity is on a smaller index */
5489 if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5490 swap(bbio->stripes[i], bbio->stripes[i + 1]);
5491 swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5492 again = 1;
5498 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5500 struct btrfs_bio *bbio = kzalloc(
5501 /* the size of the btrfs_bio */
5502 sizeof(struct btrfs_bio) +
5503 /* plus the variable array for the stripes */
5504 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5505 /* plus the variable array for the tgt dev */
5506 sizeof(int) * (real_stripes) +
5508 * plus the raid_map, which includes both the tgt dev
5509 * and the stripes
5511 sizeof(u64) * (total_stripes),
5512 GFP_NOFS|__GFP_NOFAIL);
5514 atomic_set(&bbio->error, 0);
5515 refcount_set(&bbio->refs, 1);
5517 return bbio;
5520 void btrfs_get_bbio(struct btrfs_bio *bbio)
5522 WARN_ON(!refcount_read(&bbio->refs));
5523 refcount_inc(&bbio->refs);
5526 void btrfs_put_bbio(struct btrfs_bio *bbio)
5528 if (!bbio)
5529 return;
5530 if (refcount_dec_and_test(&bbio->refs))
5531 kfree(bbio);
5534 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5536 * Please note that, discard won't be sent to target device of device
5537 * replace.
5539 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5540 u64 logical, u64 *length_ret,
5541 struct btrfs_bio **bbio_ret)
5543 struct extent_map *em;
5544 struct map_lookup *map;
5545 struct btrfs_bio *bbio;
5546 u64 length = *length_ret;
5547 u64 offset;
5548 u64 stripe_nr;
5549 u64 stripe_nr_end;
5550 u64 stripe_end_offset;
5551 u64 stripe_cnt;
5552 u64 stripe_len;
5553 u64 stripe_offset;
5554 u64 num_stripes;
5555 u32 stripe_index;
5556 u32 factor = 0;
5557 u32 sub_stripes = 0;
5558 u64 stripes_per_dev = 0;
5559 u32 remaining_stripes = 0;
5560 u32 last_stripe = 0;
5561 int ret = 0;
5562 int i;
5564 /* discard always return a bbio */
5565 ASSERT(bbio_ret);
5567 em = btrfs_get_chunk_map(fs_info, logical, length);
5568 if (IS_ERR(em))
5569 return PTR_ERR(em);
5571 map = em->map_lookup;
5572 /* we don't discard raid56 yet */
5573 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5574 ret = -EOPNOTSUPP;
5575 goto out;
5578 offset = logical - em->start;
5579 length = min_t(u64, em->start + em->len - logical, length);
5580 *length_ret = length;
5582 stripe_len = map->stripe_len;
5584 * stripe_nr counts the total number of stripes we have to stride
5585 * to get to this block
5587 stripe_nr = div64_u64(offset, stripe_len);
5589 /* stripe_offset is the offset of this block in its stripe */
5590 stripe_offset = offset - stripe_nr * stripe_len;
5592 stripe_nr_end = round_up(offset + length, map->stripe_len);
5593 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5594 stripe_cnt = stripe_nr_end - stripe_nr;
5595 stripe_end_offset = stripe_nr_end * map->stripe_len -
5596 (offset + length);
5598 * after this, stripe_nr is the number of stripes on this
5599 * device we have to walk to find the data, and stripe_index is
5600 * the number of our device in the stripe array
5602 num_stripes = 1;
5603 stripe_index = 0;
5604 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5605 BTRFS_BLOCK_GROUP_RAID10)) {
5606 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5607 sub_stripes = 1;
5608 else
5609 sub_stripes = map->sub_stripes;
5611 factor = map->num_stripes / sub_stripes;
5612 num_stripes = min_t(u64, map->num_stripes,
5613 sub_stripes * stripe_cnt);
5614 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5615 stripe_index *= sub_stripes;
5616 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5617 &remaining_stripes);
5618 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5619 last_stripe *= sub_stripes;
5620 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5621 BTRFS_BLOCK_GROUP_DUP)) {
5622 num_stripes = map->num_stripes;
5623 } else {
5624 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5625 &stripe_index);
5628 bbio = alloc_btrfs_bio(num_stripes, 0);
5629 if (!bbio) {
5630 ret = -ENOMEM;
5631 goto out;
5634 for (i = 0; i < num_stripes; i++) {
5635 bbio->stripes[i].physical =
5636 map->stripes[stripe_index].physical +
5637 stripe_offset + stripe_nr * map->stripe_len;
5638 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5640 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5641 BTRFS_BLOCK_GROUP_RAID10)) {
5642 bbio->stripes[i].length = stripes_per_dev *
5643 map->stripe_len;
5645 if (i / sub_stripes < remaining_stripes)
5646 bbio->stripes[i].length +=
5647 map->stripe_len;
5650 * Special for the first stripe and
5651 * the last stripe:
5653 * |-------|...|-------|
5654 * |----------|
5655 * off end_off
5657 if (i < sub_stripes)
5658 bbio->stripes[i].length -=
5659 stripe_offset;
5661 if (stripe_index >= last_stripe &&
5662 stripe_index <= (last_stripe +
5663 sub_stripes - 1))
5664 bbio->stripes[i].length -=
5665 stripe_end_offset;
5667 if (i == sub_stripes - 1)
5668 stripe_offset = 0;
5669 } else {
5670 bbio->stripes[i].length = length;
5673 stripe_index++;
5674 if (stripe_index == map->num_stripes) {
5675 stripe_index = 0;
5676 stripe_nr++;
5680 *bbio_ret = bbio;
5681 bbio->map_type = map->type;
5682 bbio->num_stripes = num_stripes;
5683 out:
5684 free_extent_map(em);
5685 return ret;
5689 * In dev-replace case, for repair case (that's the only case where the mirror
5690 * is selected explicitly when calling btrfs_map_block), blocks left of the
5691 * left cursor can also be read from the target drive.
5693 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5694 * array of stripes.
5695 * For READ, it also needs to be supported using the same mirror number.
5697 * If the requested block is not left of the left cursor, EIO is returned. This
5698 * can happen because btrfs_num_copies() returns one more in the dev-replace
5699 * case.
5701 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5702 u64 logical, u64 length,
5703 u64 srcdev_devid, int *mirror_num,
5704 u64 *physical)
5706 struct btrfs_bio *bbio = NULL;
5707 int num_stripes;
5708 int index_srcdev = 0;
5709 int found = 0;
5710 u64 physical_of_found = 0;
5711 int i;
5712 int ret = 0;
5714 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5715 logical, &length, &bbio, 0, 0);
5716 if (ret) {
5717 ASSERT(bbio == NULL);
5718 return ret;
5721 num_stripes = bbio->num_stripes;
5722 if (*mirror_num > num_stripes) {
5724 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5725 * that means that the requested area is not left of the left
5726 * cursor
5728 btrfs_put_bbio(bbio);
5729 return -EIO;
5733 * process the rest of the function using the mirror_num of the source
5734 * drive. Therefore look it up first. At the end, patch the device
5735 * pointer to the one of the target drive.
5737 for (i = 0; i < num_stripes; i++) {
5738 if (bbio->stripes[i].dev->devid != srcdev_devid)
5739 continue;
5742 * In case of DUP, in order to keep it simple, only add the
5743 * mirror with the lowest physical address
5745 if (found &&
5746 physical_of_found <= bbio->stripes[i].physical)
5747 continue;
5749 index_srcdev = i;
5750 found = 1;
5751 physical_of_found = bbio->stripes[i].physical;
5754 btrfs_put_bbio(bbio);
5756 ASSERT(found);
5757 if (!found)
5758 return -EIO;
5760 *mirror_num = index_srcdev + 1;
5761 *physical = physical_of_found;
5762 return ret;
5765 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5766 struct btrfs_bio **bbio_ret,
5767 struct btrfs_dev_replace *dev_replace,
5768 int *num_stripes_ret, int *max_errors_ret)
5770 struct btrfs_bio *bbio = *bbio_ret;
5771 u64 srcdev_devid = dev_replace->srcdev->devid;
5772 int tgtdev_indexes = 0;
5773 int num_stripes = *num_stripes_ret;
5774 int max_errors = *max_errors_ret;
5775 int i;
5777 if (op == BTRFS_MAP_WRITE) {
5778 int index_where_to_add;
5781 * duplicate the write operations while the dev replace
5782 * procedure is running. Since the copying of the old disk to
5783 * the new disk takes place at run time while the filesystem is
5784 * mounted writable, the regular write operations to the old
5785 * disk have to be duplicated to go to the new disk as well.
5787 * Note that device->missing is handled by the caller, and that
5788 * the write to the old disk is already set up in the stripes
5789 * array.
5791 index_where_to_add = num_stripes;
5792 for (i = 0; i < num_stripes; i++) {
5793 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5794 /* write to new disk, too */
5795 struct btrfs_bio_stripe *new =
5796 bbio->stripes + index_where_to_add;
5797 struct btrfs_bio_stripe *old =
5798 bbio->stripes + i;
5800 new->physical = old->physical;
5801 new->length = old->length;
5802 new->dev = dev_replace->tgtdev;
5803 bbio->tgtdev_map[i] = index_where_to_add;
5804 index_where_to_add++;
5805 max_errors++;
5806 tgtdev_indexes++;
5809 num_stripes = index_where_to_add;
5810 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5811 int index_srcdev = 0;
5812 int found = 0;
5813 u64 physical_of_found = 0;
5816 * During the dev-replace procedure, the target drive can also
5817 * be used to read data in case it is needed to repair a corrupt
5818 * block elsewhere. This is possible if the requested area is
5819 * left of the left cursor. In this area, the target drive is a
5820 * full copy of the source drive.
5822 for (i = 0; i < num_stripes; i++) {
5823 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5825 * In case of DUP, in order to keep it simple,
5826 * only add the mirror with the lowest physical
5827 * address
5829 if (found &&
5830 physical_of_found <=
5831 bbio->stripes[i].physical)
5832 continue;
5833 index_srcdev = i;
5834 found = 1;
5835 physical_of_found = bbio->stripes[i].physical;
5838 if (found) {
5839 struct btrfs_bio_stripe *tgtdev_stripe =
5840 bbio->stripes + num_stripes;
5842 tgtdev_stripe->physical = physical_of_found;
5843 tgtdev_stripe->length =
5844 bbio->stripes[index_srcdev].length;
5845 tgtdev_stripe->dev = dev_replace->tgtdev;
5846 bbio->tgtdev_map[index_srcdev] = num_stripes;
5848 tgtdev_indexes++;
5849 num_stripes++;
5853 *num_stripes_ret = num_stripes;
5854 *max_errors_ret = max_errors;
5855 bbio->num_tgtdevs = tgtdev_indexes;
5856 *bbio_ret = bbio;
5859 static bool need_full_stripe(enum btrfs_map_op op)
5861 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5865 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5866 * tuple. This information is used to calculate how big a
5867 * particular bio can get before it straddles a stripe.
5869 * @fs_info - the filesystem
5870 * @logical - address that we want to figure out the geometry of
5871 * @len - the length of IO we are going to perform, starting at @logical
5872 * @op - type of operation - write or read
5873 * @io_geom - pointer used to return values
5875 * Returns < 0 in case a chunk for the given logical address cannot be found,
5876 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5878 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5879 u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5881 struct extent_map *em;
5882 struct map_lookup *map;
5883 u64 offset;
5884 u64 stripe_offset;
5885 u64 stripe_nr;
5886 u64 stripe_len;
5887 u64 raid56_full_stripe_start = (u64)-1;
5888 int data_stripes;
5889 int ret = 0;
5891 ASSERT(op != BTRFS_MAP_DISCARD);
5893 em = btrfs_get_chunk_map(fs_info, logical, len);
5894 if (IS_ERR(em))
5895 return PTR_ERR(em);
5897 map = em->map_lookup;
5898 /* Offset of this logical address in the chunk */
5899 offset = logical - em->start;
5900 /* Len of a stripe in a chunk */
5901 stripe_len = map->stripe_len;
5902 /* Stripe wher this block falls in */
5903 stripe_nr = div64_u64(offset, stripe_len);
5904 /* Offset of stripe in the chunk */
5905 stripe_offset = stripe_nr * stripe_len;
5906 if (offset < stripe_offset) {
5907 btrfs_crit(fs_info,
5908 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5909 stripe_offset, offset, em->start, logical, stripe_len);
5910 ret = -EINVAL;
5911 goto out;
5914 /* stripe_offset is the offset of this block in its stripe */
5915 stripe_offset = offset - stripe_offset;
5916 data_stripes = nr_data_stripes(map);
5918 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5919 u64 max_len = stripe_len - stripe_offset;
5922 * In case of raid56, we need to know the stripe aligned start
5924 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5925 unsigned long full_stripe_len = stripe_len * data_stripes;
5926 raid56_full_stripe_start = offset;
5929 * Allow a write of a full stripe, but make sure we
5930 * don't allow straddling of stripes
5932 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5933 full_stripe_len);
5934 raid56_full_stripe_start *= full_stripe_len;
5937 * For writes to RAID[56], allow a full stripeset across
5938 * all disks. For other RAID types and for RAID[56]
5939 * reads, just allow a single stripe (on a single disk).
5941 if (op == BTRFS_MAP_WRITE) {
5942 max_len = stripe_len * data_stripes -
5943 (offset - raid56_full_stripe_start);
5946 len = min_t(u64, em->len - offset, max_len);
5947 } else {
5948 len = em->len - offset;
5951 io_geom->len = len;
5952 io_geom->offset = offset;
5953 io_geom->stripe_len = stripe_len;
5954 io_geom->stripe_nr = stripe_nr;
5955 io_geom->stripe_offset = stripe_offset;
5956 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
5958 out:
5959 /* once for us */
5960 free_extent_map(em);
5961 return ret;
5964 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5965 enum btrfs_map_op op,
5966 u64 logical, u64 *length,
5967 struct btrfs_bio **bbio_ret,
5968 int mirror_num, int need_raid_map)
5970 struct extent_map *em;
5971 struct map_lookup *map;
5972 u64 stripe_offset;
5973 u64 stripe_nr;
5974 u64 stripe_len;
5975 u32 stripe_index;
5976 int data_stripes;
5977 int i;
5978 int ret = 0;
5979 int num_stripes;
5980 int max_errors = 0;
5981 int tgtdev_indexes = 0;
5982 struct btrfs_bio *bbio = NULL;
5983 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5984 int dev_replace_is_ongoing = 0;
5985 int num_alloc_stripes;
5986 int patch_the_first_stripe_for_dev_replace = 0;
5987 u64 physical_to_patch_in_first_stripe = 0;
5988 u64 raid56_full_stripe_start = (u64)-1;
5989 struct btrfs_io_geometry geom;
5991 ASSERT(bbio_ret);
5992 ASSERT(op != BTRFS_MAP_DISCARD);
5994 ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
5995 if (ret < 0)
5996 return ret;
5998 em = btrfs_get_chunk_map(fs_info, logical, *length);
5999 ASSERT(!IS_ERR(em));
6000 map = em->map_lookup;
6002 *length = geom.len;
6003 stripe_len = geom.stripe_len;
6004 stripe_nr = geom.stripe_nr;
6005 stripe_offset = geom.stripe_offset;
6006 raid56_full_stripe_start = geom.raid56_stripe_offset;
6007 data_stripes = nr_data_stripes(map);
6009 down_read(&dev_replace->rwsem);
6010 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6012 * Hold the semaphore for read during the whole operation, write is
6013 * requested at commit time but must wait.
6015 if (!dev_replace_is_ongoing)
6016 up_read(&dev_replace->rwsem);
6018 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6019 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6020 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6021 dev_replace->srcdev->devid,
6022 &mirror_num,
6023 &physical_to_patch_in_first_stripe);
6024 if (ret)
6025 goto out;
6026 else
6027 patch_the_first_stripe_for_dev_replace = 1;
6028 } else if (mirror_num > map->num_stripes) {
6029 mirror_num = 0;
6032 num_stripes = 1;
6033 stripe_index = 0;
6034 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6035 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6036 &stripe_index);
6037 if (!need_full_stripe(op))
6038 mirror_num = 1;
6039 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6040 if (need_full_stripe(op))
6041 num_stripes = map->num_stripes;
6042 else if (mirror_num)
6043 stripe_index = mirror_num - 1;
6044 else {
6045 stripe_index = find_live_mirror(fs_info, map, 0,
6046 dev_replace_is_ongoing);
6047 mirror_num = stripe_index + 1;
6050 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6051 if (need_full_stripe(op)) {
6052 num_stripes = map->num_stripes;
6053 } else if (mirror_num) {
6054 stripe_index = mirror_num - 1;
6055 } else {
6056 mirror_num = 1;
6059 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6060 u32 factor = map->num_stripes / map->sub_stripes;
6062 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6063 stripe_index *= map->sub_stripes;
6065 if (need_full_stripe(op))
6066 num_stripes = map->sub_stripes;
6067 else if (mirror_num)
6068 stripe_index += mirror_num - 1;
6069 else {
6070 int old_stripe_index = stripe_index;
6071 stripe_index = find_live_mirror(fs_info, map,
6072 stripe_index,
6073 dev_replace_is_ongoing);
6074 mirror_num = stripe_index - old_stripe_index + 1;
6077 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6078 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6079 /* push stripe_nr back to the start of the full stripe */
6080 stripe_nr = div64_u64(raid56_full_stripe_start,
6081 stripe_len * data_stripes);
6083 /* RAID[56] write or recovery. Return all stripes */
6084 num_stripes = map->num_stripes;
6085 max_errors = nr_parity_stripes(map);
6087 *length = map->stripe_len;
6088 stripe_index = 0;
6089 stripe_offset = 0;
6090 } else {
6092 * Mirror #0 or #1 means the original data block.
6093 * Mirror #2 is RAID5 parity block.
6094 * Mirror #3 is RAID6 Q block.
6096 stripe_nr = div_u64_rem(stripe_nr,
6097 data_stripes, &stripe_index);
6098 if (mirror_num > 1)
6099 stripe_index = data_stripes + mirror_num - 2;
6101 /* We distribute the parity blocks across stripes */
6102 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6103 &stripe_index);
6104 if (!need_full_stripe(op) && mirror_num <= 1)
6105 mirror_num = 1;
6107 } else {
6109 * after this, stripe_nr is the number of stripes on this
6110 * device we have to walk to find the data, and stripe_index is
6111 * the number of our device in the stripe array
6113 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6114 &stripe_index);
6115 mirror_num = stripe_index + 1;
6117 if (stripe_index >= map->num_stripes) {
6118 btrfs_crit(fs_info,
6119 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6120 stripe_index, map->num_stripes);
6121 ret = -EINVAL;
6122 goto out;
6125 num_alloc_stripes = num_stripes;
6126 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6127 if (op == BTRFS_MAP_WRITE)
6128 num_alloc_stripes <<= 1;
6129 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6130 num_alloc_stripes++;
6131 tgtdev_indexes = num_stripes;
6134 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6135 if (!bbio) {
6136 ret = -ENOMEM;
6137 goto out;
6139 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
6140 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
6142 /* build raid_map */
6143 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6144 (need_full_stripe(op) || mirror_num > 1)) {
6145 u64 tmp;
6146 unsigned rot;
6148 bbio->raid_map = (u64 *)((void *)bbio->stripes +
6149 sizeof(struct btrfs_bio_stripe) *
6150 num_alloc_stripes +
6151 sizeof(int) * tgtdev_indexes);
6153 /* Work out the disk rotation on this stripe-set */
6154 div_u64_rem(stripe_nr, num_stripes, &rot);
6156 /* Fill in the logical address of each stripe */
6157 tmp = stripe_nr * data_stripes;
6158 for (i = 0; i < data_stripes; i++)
6159 bbio->raid_map[(i+rot) % num_stripes] =
6160 em->start + (tmp + i) * map->stripe_len;
6162 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6163 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6164 bbio->raid_map[(i+rot+1) % num_stripes] =
6165 RAID6_Q_STRIPE;
6169 for (i = 0; i < num_stripes; i++) {
6170 bbio->stripes[i].physical =
6171 map->stripes[stripe_index].physical +
6172 stripe_offset +
6173 stripe_nr * map->stripe_len;
6174 bbio->stripes[i].dev =
6175 map->stripes[stripe_index].dev;
6176 stripe_index++;
6179 if (need_full_stripe(op))
6180 max_errors = btrfs_chunk_max_errors(map);
6182 if (bbio->raid_map)
6183 sort_parity_stripes(bbio, num_stripes);
6185 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6186 need_full_stripe(op)) {
6187 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6188 &max_errors);
6191 *bbio_ret = bbio;
6192 bbio->map_type = map->type;
6193 bbio->num_stripes = num_stripes;
6194 bbio->max_errors = max_errors;
6195 bbio->mirror_num = mirror_num;
6198 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6199 * mirror_num == num_stripes + 1 && dev_replace target drive is
6200 * available as a mirror
6202 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6203 WARN_ON(num_stripes > 1);
6204 bbio->stripes[0].dev = dev_replace->tgtdev;
6205 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6206 bbio->mirror_num = map->num_stripes + 1;
6208 out:
6209 if (dev_replace_is_ongoing) {
6210 lockdep_assert_held(&dev_replace->rwsem);
6211 /* Unlock and let waiting writers proceed */
6212 up_read(&dev_replace->rwsem);
6214 free_extent_map(em);
6215 return ret;
6218 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6219 u64 logical, u64 *length,
6220 struct btrfs_bio **bbio_ret, int mirror_num)
6222 if (op == BTRFS_MAP_DISCARD)
6223 return __btrfs_map_block_for_discard(fs_info, logical,
6224 length, bbio_ret);
6226 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6227 mirror_num, 0);
6230 /* For Scrub/replace */
6231 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6232 u64 logical, u64 *length,
6233 struct btrfs_bio **bbio_ret)
6235 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6238 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6240 bio->bi_private = bbio->private;
6241 bio->bi_end_io = bbio->end_io;
6242 bio_endio(bio);
6244 btrfs_put_bbio(bbio);
6247 static void btrfs_end_bio(struct bio *bio)
6249 struct btrfs_bio *bbio = bio->bi_private;
6250 int is_orig_bio = 0;
6252 if (bio->bi_status) {
6253 atomic_inc(&bbio->error);
6254 if (bio->bi_status == BLK_STS_IOERR ||
6255 bio->bi_status == BLK_STS_TARGET) {
6256 unsigned int stripe_index =
6257 btrfs_io_bio(bio)->stripe_index;
6258 struct btrfs_device *dev;
6260 BUG_ON(stripe_index >= bbio->num_stripes);
6261 dev = bbio->stripes[stripe_index].dev;
6262 if (dev->bdev) {
6263 if (bio_op(bio) == REQ_OP_WRITE)
6264 btrfs_dev_stat_inc_and_print(dev,
6265 BTRFS_DEV_STAT_WRITE_ERRS);
6266 else if (!(bio->bi_opf & REQ_RAHEAD))
6267 btrfs_dev_stat_inc_and_print(dev,
6268 BTRFS_DEV_STAT_READ_ERRS);
6269 if (bio->bi_opf & REQ_PREFLUSH)
6270 btrfs_dev_stat_inc_and_print(dev,
6271 BTRFS_DEV_STAT_FLUSH_ERRS);
6276 if (bio == bbio->orig_bio)
6277 is_orig_bio = 1;
6279 btrfs_bio_counter_dec(bbio->fs_info);
6281 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6282 if (!is_orig_bio) {
6283 bio_put(bio);
6284 bio = bbio->orig_bio;
6287 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6288 /* only send an error to the higher layers if it is
6289 * beyond the tolerance of the btrfs bio
6291 if (atomic_read(&bbio->error) > bbio->max_errors) {
6292 bio->bi_status = BLK_STS_IOERR;
6293 } else {
6295 * this bio is actually up to date, we didn't
6296 * go over the max number of errors
6298 bio->bi_status = BLK_STS_OK;
6301 btrfs_end_bbio(bbio, bio);
6302 } else if (!is_orig_bio) {
6303 bio_put(bio);
6307 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6308 u64 physical, int dev_nr)
6310 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6311 struct btrfs_fs_info *fs_info = bbio->fs_info;
6313 bio->bi_private = bbio;
6314 btrfs_io_bio(bio)->stripe_index = dev_nr;
6315 bio->bi_end_io = btrfs_end_bio;
6316 bio->bi_iter.bi_sector = physical >> 9;
6317 btrfs_debug_in_rcu(fs_info,
6318 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6319 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6320 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6321 dev->devid, bio->bi_iter.bi_size);
6322 bio_set_dev(bio, dev->bdev);
6324 btrfs_bio_counter_inc_noblocked(fs_info);
6326 btrfsic_submit_bio(bio);
6329 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6331 atomic_inc(&bbio->error);
6332 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6333 /* Should be the original bio. */
6334 WARN_ON(bio != bbio->orig_bio);
6336 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6337 bio->bi_iter.bi_sector = logical >> 9;
6338 if (atomic_read(&bbio->error) > bbio->max_errors)
6339 bio->bi_status = BLK_STS_IOERR;
6340 else
6341 bio->bi_status = BLK_STS_OK;
6342 btrfs_end_bbio(bbio, bio);
6346 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6347 int mirror_num)
6349 struct btrfs_device *dev;
6350 struct bio *first_bio = bio;
6351 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6352 u64 length = 0;
6353 u64 map_length;
6354 int ret;
6355 int dev_nr;
6356 int total_devs;
6357 struct btrfs_bio *bbio = NULL;
6359 length = bio->bi_iter.bi_size;
6360 map_length = length;
6362 btrfs_bio_counter_inc_blocked(fs_info);
6363 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6364 &map_length, &bbio, mirror_num, 1);
6365 if (ret) {
6366 btrfs_bio_counter_dec(fs_info);
6367 return errno_to_blk_status(ret);
6370 total_devs = bbio->num_stripes;
6371 bbio->orig_bio = first_bio;
6372 bbio->private = first_bio->bi_private;
6373 bbio->end_io = first_bio->bi_end_io;
6374 bbio->fs_info = fs_info;
6375 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6377 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6378 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6379 /* In this case, map_length has been set to the length of
6380 a single stripe; not the whole write */
6381 if (bio_op(bio) == REQ_OP_WRITE) {
6382 ret = raid56_parity_write(fs_info, bio, bbio,
6383 map_length);
6384 } else {
6385 ret = raid56_parity_recover(fs_info, bio, bbio,
6386 map_length, mirror_num, 1);
6389 btrfs_bio_counter_dec(fs_info);
6390 return errno_to_blk_status(ret);
6393 if (map_length < length) {
6394 btrfs_crit(fs_info,
6395 "mapping failed logical %llu bio len %llu len %llu",
6396 logical, length, map_length);
6397 BUG();
6400 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6401 dev = bbio->stripes[dev_nr].dev;
6402 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6403 &dev->dev_state) ||
6404 (bio_op(first_bio) == REQ_OP_WRITE &&
6405 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6406 bbio_error(bbio, first_bio, logical);
6407 continue;
6410 if (dev_nr < total_devs - 1)
6411 bio = btrfs_bio_clone(first_bio);
6412 else
6413 bio = first_bio;
6415 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6416 dev_nr);
6418 btrfs_bio_counter_dec(fs_info);
6419 return BLK_STS_OK;
6423 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6424 * return NULL.
6426 * If devid and uuid are both specified, the match must be exact, otherwise
6427 * only devid is used.
6429 * If @seed is true, traverse through the seed devices.
6431 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6432 u64 devid, u8 *uuid, u8 *fsid,
6433 bool seed)
6435 struct btrfs_device *device;
6437 while (fs_devices) {
6438 if (!fsid ||
6439 !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6440 list_for_each_entry(device, &fs_devices->devices,
6441 dev_list) {
6442 if (device->devid == devid &&
6443 (!uuid || memcmp(device->uuid, uuid,
6444 BTRFS_UUID_SIZE) == 0))
6445 return device;
6448 if (seed)
6449 fs_devices = fs_devices->seed;
6450 else
6451 return NULL;
6453 return NULL;
6456 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6457 u64 devid, u8 *dev_uuid)
6459 struct btrfs_device *device;
6461 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6462 if (IS_ERR(device))
6463 return device;
6465 list_add(&device->dev_list, &fs_devices->devices);
6466 device->fs_devices = fs_devices;
6467 fs_devices->num_devices++;
6469 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6470 fs_devices->missing_devices++;
6472 return device;
6476 * btrfs_alloc_device - allocate struct btrfs_device
6477 * @fs_info: used only for generating a new devid, can be NULL if
6478 * devid is provided (i.e. @devid != NULL).
6479 * @devid: a pointer to devid for this device. If NULL a new devid
6480 * is generated.
6481 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6482 * is generated.
6484 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6485 * on error. Returned struct is not linked onto any lists and must be
6486 * destroyed with btrfs_free_device.
6488 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6489 const u64 *devid,
6490 const u8 *uuid)
6492 struct btrfs_device *dev;
6493 u64 tmp;
6495 if (WARN_ON(!devid && !fs_info))
6496 return ERR_PTR(-EINVAL);
6498 dev = __alloc_device();
6499 if (IS_ERR(dev))
6500 return dev;
6502 if (devid)
6503 tmp = *devid;
6504 else {
6505 int ret;
6507 ret = find_next_devid(fs_info, &tmp);
6508 if (ret) {
6509 btrfs_free_device(dev);
6510 return ERR_PTR(ret);
6513 dev->devid = tmp;
6515 if (uuid)
6516 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6517 else
6518 generate_random_uuid(dev->uuid);
6520 return dev;
6523 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6524 u64 devid, u8 *uuid, bool error)
6526 if (error)
6527 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6528 devid, uuid);
6529 else
6530 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6531 devid, uuid);
6534 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6536 int index = btrfs_bg_flags_to_raid_index(type);
6537 int ncopies = btrfs_raid_array[index].ncopies;
6538 const int nparity = btrfs_raid_array[index].nparity;
6539 int data_stripes;
6541 if (nparity)
6542 data_stripes = num_stripes - nparity;
6543 else
6544 data_stripes = num_stripes / ncopies;
6546 return div_u64(chunk_len, data_stripes);
6549 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6550 struct btrfs_chunk *chunk)
6552 struct btrfs_fs_info *fs_info = leaf->fs_info;
6553 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6554 struct map_lookup *map;
6555 struct extent_map *em;
6556 u64 logical;
6557 u64 length;
6558 u64 devid;
6559 u8 uuid[BTRFS_UUID_SIZE];
6560 int num_stripes;
6561 int ret;
6562 int i;
6564 logical = key->offset;
6565 length = btrfs_chunk_length(leaf, chunk);
6566 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6569 * Only need to verify chunk item if we're reading from sys chunk array,
6570 * as chunk item in tree block is already verified by tree-checker.
6572 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6573 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6574 if (ret)
6575 return ret;
6578 read_lock(&map_tree->lock);
6579 em = lookup_extent_mapping(map_tree, logical, 1);
6580 read_unlock(&map_tree->lock);
6582 /* already mapped? */
6583 if (em && em->start <= logical && em->start + em->len > logical) {
6584 free_extent_map(em);
6585 return 0;
6586 } else if (em) {
6587 free_extent_map(em);
6590 em = alloc_extent_map();
6591 if (!em)
6592 return -ENOMEM;
6593 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6594 if (!map) {
6595 free_extent_map(em);
6596 return -ENOMEM;
6599 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6600 em->map_lookup = map;
6601 em->start = logical;
6602 em->len = length;
6603 em->orig_start = 0;
6604 em->block_start = 0;
6605 em->block_len = em->len;
6607 map->num_stripes = num_stripes;
6608 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6609 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6610 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6611 map->type = btrfs_chunk_type(leaf, chunk);
6612 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6613 map->verified_stripes = 0;
6614 em->orig_block_len = calc_stripe_length(map->type, em->len,
6615 map->num_stripes);
6616 for (i = 0; i < num_stripes; i++) {
6617 map->stripes[i].physical =
6618 btrfs_stripe_offset_nr(leaf, chunk, i);
6619 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6620 read_extent_buffer(leaf, uuid, (unsigned long)
6621 btrfs_stripe_dev_uuid_nr(chunk, i),
6622 BTRFS_UUID_SIZE);
6623 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6624 devid, uuid, NULL, true);
6625 if (!map->stripes[i].dev &&
6626 !btrfs_test_opt(fs_info, DEGRADED)) {
6627 free_extent_map(em);
6628 btrfs_report_missing_device(fs_info, devid, uuid, true);
6629 return -ENOENT;
6631 if (!map->stripes[i].dev) {
6632 map->stripes[i].dev =
6633 add_missing_dev(fs_info->fs_devices, devid,
6634 uuid);
6635 if (IS_ERR(map->stripes[i].dev)) {
6636 free_extent_map(em);
6637 btrfs_err(fs_info,
6638 "failed to init missing dev %llu: %ld",
6639 devid, PTR_ERR(map->stripes[i].dev));
6640 return PTR_ERR(map->stripes[i].dev);
6642 btrfs_report_missing_device(fs_info, devid, uuid, false);
6644 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6645 &(map->stripes[i].dev->dev_state));
6649 write_lock(&map_tree->lock);
6650 ret = add_extent_mapping(map_tree, em, 0);
6651 write_unlock(&map_tree->lock);
6652 if (ret < 0) {
6653 btrfs_err(fs_info,
6654 "failed to add chunk map, start=%llu len=%llu: %d",
6655 em->start, em->len, ret);
6657 free_extent_map(em);
6659 return ret;
6662 static void fill_device_from_item(struct extent_buffer *leaf,
6663 struct btrfs_dev_item *dev_item,
6664 struct btrfs_device *device)
6666 unsigned long ptr;
6668 device->devid = btrfs_device_id(leaf, dev_item);
6669 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6670 device->total_bytes = device->disk_total_bytes;
6671 device->commit_total_bytes = device->disk_total_bytes;
6672 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6673 device->commit_bytes_used = device->bytes_used;
6674 device->type = btrfs_device_type(leaf, dev_item);
6675 device->io_align = btrfs_device_io_align(leaf, dev_item);
6676 device->io_width = btrfs_device_io_width(leaf, dev_item);
6677 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6678 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6679 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6681 ptr = btrfs_device_uuid(dev_item);
6682 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6685 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6686 u8 *fsid)
6688 struct btrfs_fs_devices *fs_devices;
6689 int ret;
6691 lockdep_assert_held(&uuid_mutex);
6692 ASSERT(fsid);
6694 fs_devices = fs_info->fs_devices->seed;
6695 while (fs_devices) {
6696 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6697 return fs_devices;
6699 fs_devices = fs_devices->seed;
6702 fs_devices = find_fsid(fsid, NULL);
6703 if (!fs_devices) {
6704 if (!btrfs_test_opt(fs_info, DEGRADED))
6705 return ERR_PTR(-ENOENT);
6707 fs_devices = alloc_fs_devices(fsid, NULL);
6708 if (IS_ERR(fs_devices))
6709 return fs_devices;
6711 fs_devices->seeding = true;
6712 fs_devices->opened = 1;
6713 return fs_devices;
6716 fs_devices = clone_fs_devices(fs_devices);
6717 if (IS_ERR(fs_devices))
6718 return fs_devices;
6720 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6721 if (ret) {
6722 free_fs_devices(fs_devices);
6723 fs_devices = ERR_PTR(ret);
6724 goto out;
6727 if (!fs_devices->seeding) {
6728 close_fs_devices(fs_devices);
6729 free_fs_devices(fs_devices);
6730 fs_devices = ERR_PTR(-EINVAL);
6731 goto out;
6734 fs_devices->seed = fs_info->fs_devices->seed;
6735 fs_info->fs_devices->seed = fs_devices;
6736 out:
6737 return fs_devices;
6740 static int read_one_dev(struct extent_buffer *leaf,
6741 struct btrfs_dev_item *dev_item)
6743 struct btrfs_fs_info *fs_info = leaf->fs_info;
6744 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6745 struct btrfs_device *device;
6746 u64 devid;
6747 int ret;
6748 u8 fs_uuid[BTRFS_FSID_SIZE];
6749 u8 dev_uuid[BTRFS_UUID_SIZE];
6751 devid = btrfs_device_id(leaf, dev_item);
6752 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6753 BTRFS_UUID_SIZE);
6754 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6755 BTRFS_FSID_SIZE);
6757 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6758 fs_devices = open_seed_devices(fs_info, fs_uuid);
6759 if (IS_ERR(fs_devices))
6760 return PTR_ERR(fs_devices);
6763 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6764 fs_uuid, true);
6765 if (!device) {
6766 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6767 btrfs_report_missing_device(fs_info, devid,
6768 dev_uuid, true);
6769 return -ENOENT;
6772 device = add_missing_dev(fs_devices, devid, dev_uuid);
6773 if (IS_ERR(device)) {
6774 btrfs_err(fs_info,
6775 "failed to add missing dev %llu: %ld",
6776 devid, PTR_ERR(device));
6777 return PTR_ERR(device);
6779 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6780 } else {
6781 if (!device->bdev) {
6782 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6783 btrfs_report_missing_device(fs_info,
6784 devid, dev_uuid, true);
6785 return -ENOENT;
6787 btrfs_report_missing_device(fs_info, devid,
6788 dev_uuid, false);
6791 if (!device->bdev &&
6792 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6794 * this happens when a device that was properly setup
6795 * in the device info lists suddenly goes bad.
6796 * device->bdev is NULL, and so we have to set
6797 * device->missing to one here
6799 device->fs_devices->missing_devices++;
6800 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6803 /* Move the device to its own fs_devices */
6804 if (device->fs_devices != fs_devices) {
6805 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6806 &device->dev_state));
6808 list_move(&device->dev_list, &fs_devices->devices);
6809 device->fs_devices->num_devices--;
6810 fs_devices->num_devices++;
6812 device->fs_devices->missing_devices--;
6813 fs_devices->missing_devices++;
6815 device->fs_devices = fs_devices;
6819 if (device->fs_devices != fs_info->fs_devices) {
6820 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6821 if (device->generation !=
6822 btrfs_device_generation(leaf, dev_item))
6823 return -EINVAL;
6826 fill_device_from_item(leaf, dev_item, device);
6827 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6828 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6829 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6830 device->fs_devices->total_rw_bytes += device->total_bytes;
6831 atomic64_add(device->total_bytes - device->bytes_used,
6832 &fs_info->free_chunk_space);
6834 ret = 0;
6835 return ret;
6838 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6840 struct btrfs_root *root = fs_info->tree_root;
6841 struct btrfs_super_block *super_copy = fs_info->super_copy;
6842 struct extent_buffer *sb;
6843 struct btrfs_disk_key *disk_key;
6844 struct btrfs_chunk *chunk;
6845 u8 *array_ptr;
6846 unsigned long sb_array_offset;
6847 int ret = 0;
6848 u32 num_stripes;
6849 u32 array_size;
6850 u32 len = 0;
6851 u32 cur_offset;
6852 u64 type;
6853 struct btrfs_key key;
6855 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6857 * This will create extent buffer of nodesize, superblock size is
6858 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6859 * overallocate but we can keep it as-is, only the first page is used.
6861 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6862 if (IS_ERR(sb))
6863 return PTR_ERR(sb);
6864 set_extent_buffer_uptodate(sb);
6865 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6867 * The sb extent buffer is artificial and just used to read the system array.
6868 * set_extent_buffer_uptodate() call does not properly mark all it's
6869 * pages up-to-date when the page is larger: extent does not cover the
6870 * whole page and consequently check_page_uptodate does not find all
6871 * the page's extents up-to-date (the hole beyond sb),
6872 * write_extent_buffer then triggers a WARN_ON.
6874 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6875 * but sb spans only this function. Add an explicit SetPageUptodate call
6876 * to silence the warning eg. on PowerPC 64.
6878 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6879 SetPageUptodate(sb->pages[0]);
6881 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6882 array_size = btrfs_super_sys_array_size(super_copy);
6884 array_ptr = super_copy->sys_chunk_array;
6885 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6886 cur_offset = 0;
6888 while (cur_offset < array_size) {
6889 disk_key = (struct btrfs_disk_key *)array_ptr;
6890 len = sizeof(*disk_key);
6891 if (cur_offset + len > array_size)
6892 goto out_short_read;
6894 btrfs_disk_key_to_cpu(&key, disk_key);
6896 array_ptr += len;
6897 sb_array_offset += len;
6898 cur_offset += len;
6900 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
6901 btrfs_err(fs_info,
6902 "unexpected item type %u in sys_array at offset %u",
6903 (u32)key.type, cur_offset);
6904 ret = -EIO;
6905 break;
6908 chunk = (struct btrfs_chunk *)sb_array_offset;
6910 * At least one btrfs_chunk with one stripe must be present,
6911 * exact stripe count check comes afterwards
6913 len = btrfs_chunk_item_size(1);
6914 if (cur_offset + len > array_size)
6915 goto out_short_read;
6917 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6918 if (!num_stripes) {
6919 btrfs_err(fs_info,
6920 "invalid number of stripes %u in sys_array at offset %u",
6921 num_stripes, cur_offset);
6922 ret = -EIO;
6923 break;
6926 type = btrfs_chunk_type(sb, chunk);
6927 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6928 btrfs_err(fs_info,
6929 "invalid chunk type %llu in sys_array at offset %u",
6930 type, cur_offset);
6931 ret = -EIO;
6932 break;
6935 len = btrfs_chunk_item_size(num_stripes);
6936 if (cur_offset + len > array_size)
6937 goto out_short_read;
6939 ret = read_one_chunk(&key, sb, chunk);
6940 if (ret)
6941 break;
6943 array_ptr += len;
6944 sb_array_offset += len;
6945 cur_offset += len;
6947 clear_extent_buffer_uptodate(sb);
6948 free_extent_buffer_stale(sb);
6949 return ret;
6951 out_short_read:
6952 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6953 len, cur_offset);
6954 clear_extent_buffer_uptodate(sb);
6955 free_extent_buffer_stale(sb);
6956 return -EIO;
6960 * Check if all chunks in the fs are OK for read-write degraded mount
6962 * If the @failing_dev is specified, it's accounted as missing.
6964 * Return true if all chunks meet the minimal RW mount requirements.
6965 * Return false if any chunk doesn't meet the minimal RW mount requirements.
6967 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6968 struct btrfs_device *failing_dev)
6970 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6971 struct extent_map *em;
6972 u64 next_start = 0;
6973 bool ret = true;
6975 read_lock(&map_tree->lock);
6976 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
6977 read_unlock(&map_tree->lock);
6978 /* No chunk at all? Return false anyway */
6979 if (!em) {
6980 ret = false;
6981 goto out;
6983 while (em) {
6984 struct map_lookup *map;
6985 int missing = 0;
6986 int max_tolerated;
6987 int i;
6989 map = em->map_lookup;
6990 max_tolerated =
6991 btrfs_get_num_tolerated_disk_barrier_failures(
6992 map->type);
6993 for (i = 0; i < map->num_stripes; i++) {
6994 struct btrfs_device *dev = map->stripes[i].dev;
6996 if (!dev || !dev->bdev ||
6997 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
6998 dev->last_flush_error)
6999 missing++;
7000 else if (failing_dev && failing_dev == dev)
7001 missing++;
7003 if (missing > max_tolerated) {
7004 if (!failing_dev)
7005 btrfs_warn(fs_info,
7006 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7007 em->start, missing, max_tolerated);
7008 free_extent_map(em);
7009 ret = false;
7010 goto out;
7012 next_start = extent_map_end(em);
7013 free_extent_map(em);
7015 read_lock(&map_tree->lock);
7016 em = lookup_extent_mapping(map_tree, next_start,
7017 (u64)(-1) - next_start);
7018 read_unlock(&map_tree->lock);
7020 out:
7021 return ret;
7024 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7026 struct btrfs_root *root = fs_info->chunk_root;
7027 struct btrfs_path *path;
7028 struct extent_buffer *leaf;
7029 struct btrfs_key key;
7030 struct btrfs_key found_key;
7031 int ret;
7032 int slot;
7033 u64 total_dev = 0;
7035 path = btrfs_alloc_path();
7036 if (!path)
7037 return -ENOMEM;
7040 * uuid_mutex is needed only if we are mounting a sprout FS
7041 * otherwise we don't need it.
7043 mutex_lock(&uuid_mutex);
7044 mutex_lock(&fs_info->chunk_mutex);
7047 * Read all device items, and then all the chunk items. All
7048 * device items are found before any chunk item (their object id
7049 * is smaller than the lowest possible object id for a chunk
7050 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7052 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7053 key.offset = 0;
7054 key.type = 0;
7055 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7056 if (ret < 0)
7057 goto error;
7058 while (1) {
7059 leaf = path->nodes[0];
7060 slot = path->slots[0];
7061 if (slot >= btrfs_header_nritems(leaf)) {
7062 ret = btrfs_next_leaf(root, path);
7063 if (ret == 0)
7064 continue;
7065 if (ret < 0)
7066 goto error;
7067 break;
7069 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7070 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7071 struct btrfs_dev_item *dev_item;
7072 dev_item = btrfs_item_ptr(leaf, slot,
7073 struct btrfs_dev_item);
7074 ret = read_one_dev(leaf, dev_item);
7075 if (ret)
7076 goto error;
7077 total_dev++;
7078 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7079 struct btrfs_chunk *chunk;
7080 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7081 ret = read_one_chunk(&found_key, leaf, chunk);
7082 if (ret)
7083 goto error;
7085 path->slots[0]++;
7089 * After loading chunk tree, we've got all device information,
7090 * do another round of validation checks.
7092 if (total_dev != fs_info->fs_devices->total_devices) {
7093 btrfs_err(fs_info,
7094 "super_num_devices %llu mismatch with num_devices %llu found here",
7095 btrfs_super_num_devices(fs_info->super_copy),
7096 total_dev);
7097 ret = -EINVAL;
7098 goto error;
7100 if (btrfs_super_total_bytes(fs_info->super_copy) <
7101 fs_info->fs_devices->total_rw_bytes) {
7102 btrfs_err(fs_info,
7103 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7104 btrfs_super_total_bytes(fs_info->super_copy),
7105 fs_info->fs_devices->total_rw_bytes);
7106 ret = -EINVAL;
7107 goto error;
7109 ret = 0;
7110 error:
7111 mutex_unlock(&fs_info->chunk_mutex);
7112 mutex_unlock(&uuid_mutex);
7114 btrfs_free_path(path);
7115 return ret;
7118 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7120 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7121 struct btrfs_device *device;
7123 while (fs_devices) {
7124 mutex_lock(&fs_devices->device_list_mutex);
7125 list_for_each_entry(device, &fs_devices->devices, dev_list)
7126 device->fs_info = fs_info;
7127 mutex_unlock(&fs_devices->device_list_mutex);
7129 fs_devices = fs_devices->seed;
7133 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7134 const struct btrfs_dev_stats_item *ptr,
7135 int index)
7137 u64 val;
7139 read_extent_buffer(eb, &val,
7140 offsetof(struct btrfs_dev_stats_item, values) +
7141 ((unsigned long)ptr) + (index * sizeof(u64)),
7142 sizeof(val));
7143 return val;
7146 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7147 struct btrfs_dev_stats_item *ptr,
7148 int index, u64 val)
7150 write_extent_buffer(eb, &val,
7151 offsetof(struct btrfs_dev_stats_item, values) +
7152 ((unsigned long)ptr) + (index * sizeof(u64)),
7153 sizeof(val));
7156 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7158 struct btrfs_key key;
7159 struct btrfs_root *dev_root = fs_info->dev_root;
7160 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7161 struct extent_buffer *eb;
7162 int slot;
7163 int ret = 0;
7164 struct btrfs_device *device;
7165 struct btrfs_path *path = NULL;
7166 int i;
7168 path = btrfs_alloc_path();
7169 if (!path)
7170 return -ENOMEM;
7172 mutex_lock(&fs_devices->device_list_mutex);
7173 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7174 int item_size;
7175 struct btrfs_dev_stats_item *ptr;
7177 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7178 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7179 key.offset = device->devid;
7180 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7181 if (ret) {
7182 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7183 btrfs_dev_stat_set(device, i, 0);
7184 device->dev_stats_valid = 1;
7185 btrfs_release_path(path);
7186 continue;
7188 slot = path->slots[0];
7189 eb = path->nodes[0];
7190 item_size = btrfs_item_size_nr(eb, slot);
7192 ptr = btrfs_item_ptr(eb, slot,
7193 struct btrfs_dev_stats_item);
7195 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7196 if (item_size >= (1 + i) * sizeof(__le64))
7197 btrfs_dev_stat_set(device, i,
7198 btrfs_dev_stats_value(eb, ptr, i));
7199 else
7200 btrfs_dev_stat_set(device, i, 0);
7203 device->dev_stats_valid = 1;
7204 btrfs_dev_stat_print_on_load(device);
7205 btrfs_release_path(path);
7207 mutex_unlock(&fs_devices->device_list_mutex);
7209 btrfs_free_path(path);
7210 return ret < 0 ? ret : 0;
7213 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7214 struct btrfs_device *device)
7216 struct btrfs_fs_info *fs_info = trans->fs_info;
7217 struct btrfs_root *dev_root = fs_info->dev_root;
7218 struct btrfs_path *path;
7219 struct btrfs_key key;
7220 struct extent_buffer *eb;
7221 struct btrfs_dev_stats_item *ptr;
7222 int ret;
7223 int i;
7225 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7226 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7227 key.offset = device->devid;
7229 path = btrfs_alloc_path();
7230 if (!path)
7231 return -ENOMEM;
7232 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7233 if (ret < 0) {
7234 btrfs_warn_in_rcu(fs_info,
7235 "error %d while searching for dev_stats item for device %s",
7236 ret, rcu_str_deref(device->name));
7237 goto out;
7240 if (ret == 0 &&
7241 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7242 /* need to delete old one and insert a new one */
7243 ret = btrfs_del_item(trans, dev_root, path);
7244 if (ret != 0) {
7245 btrfs_warn_in_rcu(fs_info,
7246 "delete too small dev_stats item for device %s failed %d",
7247 rcu_str_deref(device->name), ret);
7248 goto out;
7250 ret = 1;
7253 if (ret == 1) {
7254 /* need to insert a new item */
7255 btrfs_release_path(path);
7256 ret = btrfs_insert_empty_item(trans, dev_root, path,
7257 &key, sizeof(*ptr));
7258 if (ret < 0) {
7259 btrfs_warn_in_rcu(fs_info,
7260 "insert dev_stats item for device %s failed %d",
7261 rcu_str_deref(device->name), ret);
7262 goto out;
7266 eb = path->nodes[0];
7267 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7268 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7269 btrfs_set_dev_stats_value(eb, ptr, i,
7270 btrfs_dev_stat_read(device, i));
7271 btrfs_mark_buffer_dirty(eb);
7273 out:
7274 btrfs_free_path(path);
7275 return ret;
7279 * called from commit_transaction. Writes all changed device stats to disk.
7281 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7283 struct btrfs_fs_info *fs_info = trans->fs_info;
7284 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7285 struct btrfs_device *device;
7286 int stats_cnt;
7287 int ret = 0;
7289 mutex_lock(&fs_devices->device_list_mutex);
7290 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7291 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7292 if (!device->dev_stats_valid || stats_cnt == 0)
7293 continue;
7297 * There is a LOAD-LOAD control dependency between the value of
7298 * dev_stats_ccnt and updating the on-disk values which requires
7299 * reading the in-memory counters. Such control dependencies
7300 * require explicit read memory barriers.
7302 * This memory barriers pairs with smp_mb__before_atomic in
7303 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7304 * barrier implied by atomic_xchg in
7305 * btrfs_dev_stats_read_and_reset
7307 smp_rmb();
7309 ret = update_dev_stat_item(trans, device);
7310 if (!ret)
7311 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7313 mutex_unlock(&fs_devices->device_list_mutex);
7315 return ret;
7318 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7320 btrfs_dev_stat_inc(dev, index);
7321 btrfs_dev_stat_print_on_error(dev);
7324 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7326 if (!dev->dev_stats_valid)
7327 return;
7328 btrfs_err_rl_in_rcu(dev->fs_info,
7329 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7330 rcu_str_deref(dev->name),
7331 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7332 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7333 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7334 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7335 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7338 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7340 int i;
7342 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7343 if (btrfs_dev_stat_read(dev, i) != 0)
7344 break;
7345 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7346 return; /* all values == 0, suppress message */
7348 btrfs_info_in_rcu(dev->fs_info,
7349 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7350 rcu_str_deref(dev->name),
7351 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7352 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7353 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7354 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7355 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7358 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7359 struct btrfs_ioctl_get_dev_stats *stats)
7361 struct btrfs_device *dev;
7362 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7363 int i;
7365 mutex_lock(&fs_devices->device_list_mutex);
7366 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7367 true);
7368 mutex_unlock(&fs_devices->device_list_mutex);
7370 if (!dev) {
7371 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7372 return -ENODEV;
7373 } else if (!dev->dev_stats_valid) {
7374 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7375 return -ENODEV;
7376 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7377 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7378 if (stats->nr_items > i)
7379 stats->values[i] =
7380 btrfs_dev_stat_read_and_reset(dev, i);
7381 else
7382 btrfs_dev_stat_set(dev, i, 0);
7384 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7385 current->comm, task_pid_nr(current));
7386 } else {
7387 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7388 if (stats->nr_items > i)
7389 stats->values[i] = btrfs_dev_stat_read(dev, i);
7391 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7392 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7393 return 0;
7397 * Update the size and bytes used for each device where it changed. This is
7398 * delayed since we would otherwise get errors while writing out the
7399 * superblocks.
7401 * Must be invoked during transaction commit.
7403 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7405 struct btrfs_device *curr, *next;
7407 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7409 if (list_empty(&trans->dev_update_list))
7410 return;
7413 * We don't need the device_list_mutex here. This list is owned by the
7414 * transaction and the transaction must complete before the device is
7415 * released.
7417 mutex_lock(&trans->fs_info->chunk_mutex);
7418 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7419 post_commit_list) {
7420 list_del_init(&curr->post_commit_list);
7421 curr->commit_total_bytes = curr->disk_total_bytes;
7422 curr->commit_bytes_used = curr->bytes_used;
7424 mutex_unlock(&trans->fs_info->chunk_mutex);
7427 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7429 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7430 while (fs_devices) {
7431 fs_devices->fs_info = fs_info;
7432 fs_devices = fs_devices->seed;
7436 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7438 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7439 while (fs_devices) {
7440 fs_devices->fs_info = NULL;
7441 fs_devices = fs_devices->seed;
7446 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7448 int btrfs_bg_type_to_factor(u64 flags)
7450 const int index = btrfs_bg_flags_to_raid_index(flags);
7452 return btrfs_raid_array[index].ncopies;
7457 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7458 u64 chunk_offset, u64 devid,
7459 u64 physical_offset, u64 physical_len)
7461 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7462 struct extent_map *em;
7463 struct map_lookup *map;
7464 struct btrfs_device *dev;
7465 u64 stripe_len;
7466 bool found = false;
7467 int ret = 0;
7468 int i;
7470 read_lock(&em_tree->lock);
7471 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7472 read_unlock(&em_tree->lock);
7474 if (!em) {
7475 btrfs_err(fs_info,
7476 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7477 physical_offset, devid);
7478 ret = -EUCLEAN;
7479 goto out;
7482 map = em->map_lookup;
7483 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7484 if (physical_len != stripe_len) {
7485 btrfs_err(fs_info,
7486 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7487 physical_offset, devid, em->start, physical_len,
7488 stripe_len);
7489 ret = -EUCLEAN;
7490 goto out;
7493 for (i = 0; i < map->num_stripes; i++) {
7494 if (map->stripes[i].dev->devid == devid &&
7495 map->stripes[i].physical == physical_offset) {
7496 found = true;
7497 if (map->verified_stripes >= map->num_stripes) {
7498 btrfs_err(fs_info,
7499 "too many dev extents for chunk %llu found",
7500 em->start);
7501 ret = -EUCLEAN;
7502 goto out;
7504 map->verified_stripes++;
7505 break;
7508 if (!found) {
7509 btrfs_err(fs_info,
7510 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7511 physical_offset, devid);
7512 ret = -EUCLEAN;
7515 /* Make sure no dev extent is beyond device bondary */
7516 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7517 if (!dev) {
7518 btrfs_err(fs_info, "failed to find devid %llu", devid);
7519 ret = -EUCLEAN;
7520 goto out;
7523 /* It's possible this device is a dummy for seed device */
7524 if (dev->disk_total_bytes == 0) {
7525 dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL,
7526 NULL, false);
7527 if (!dev) {
7528 btrfs_err(fs_info, "failed to find seed devid %llu",
7529 devid);
7530 ret = -EUCLEAN;
7531 goto out;
7535 if (physical_offset + physical_len > dev->disk_total_bytes) {
7536 btrfs_err(fs_info,
7537 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7538 devid, physical_offset, physical_len,
7539 dev->disk_total_bytes);
7540 ret = -EUCLEAN;
7541 goto out;
7543 out:
7544 free_extent_map(em);
7545 return ret;
7548 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7550 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7551 struct extent_map *em;
7552 struct rb_node *node;
7553 int ret = 0;
7555 read_lock(&em_tree->lock);
7556 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7557 em = rb_entry(node, struct extent_map, rb_node);
7558 if (em->map_lookup->num_stripes !=
7559 em->map_lookup->verified_stripes) {
7560 btrfs_err(fs_info,
7561 "chunk %llu has missing dev extent, have %d expect %d",
7562 em->start, em->map_lookup->verified_stripes,
7563 em->map_lookup->num_stripes);
7564 ret = -EUCLEAN;
7565 goto out;
7568 out:
7569 read_unlock(&em_tree->lock);
7570 return ret;
7574 * Ensure that all dev extents are mapped to correct chunk, otherwise
7575 * later chunk allocation/free would cause unexpected behavior.
7577 * NOTE: This will iterate through the whole device tree, which should be of
7578 * the same size level as the chunk tree. This slightly increases mount time.
7580 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7582 struct btrfs_path *path;
7583 struct btrfs_root *root = fs_info->dev_root;
7584 struct btrfs_key key;
7585 u64 prev_devid = 0;
7586 u64 prev_dev_ext_end = 0;
7587 int ret = 0;
7589 key.objectid = 1;
7590 key.type = BTRFS_DEV_EXTENT_KEY;
7591 key.offset = 0;
7593 path = btrfs_alloc_path();
7594 if (!path)
7595 return -ENOMEM;
7597 path->reada = READA_FORWARD;
7598 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7599 if (ret < 0)
7600 goto out;
7602 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7603 ret = btrfs_next_item(root, path);
7604 if (ret < 0)
7605 goto out;
7606 /* No dev extents at all? Not good */
7607 if (ret > 0) {
7608 ret = -EUCLEAN;
7609 goto out;
7612 while (1) {
7613 struct extent_buffer *leaf = path->nodes[0];
7614 struct btrfs_dev_extent *dext;
7615 int slot = path->slots[0];
7616 u64 chunk_offset;
7617 u64 physical_offset;
7618 u64 physical_len;
7619 u64 devid;
7621 btrfs_item_key_to_cpu(leaf, &key, slot);
7622 if (key.type != BTRFS_DEV_EXTENT_KEY)
7623 break;
7624 devid = key.objectid;
7625 physical_offset = key.offset;
7627 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7628 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7629 physical_len = btrfs_dev_extent_length(leaf, dext);
7631 /* Check if this dev extent overlaps with the previous one */
7632 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7633 btrfs_err(fs_info,
7634 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7635 devid, physical_offset, prev_dev_ext_end);
7636 ret = -EUCLEAN;
7637 goto out;
7640 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7641 physical_offset, physical_len);
7642 if (ret < 0)
7643 goto out;
7644 prev_devid = devid;
7645 prev_dev_ext_end = physical_offset + physical_len;
7647 ret = btrfs_next_item(root, path);
7648 if (ret < 0)
7649 goto out;
7650 if (ret > 0) {
7651 ret = 0;
7652 break;
7656 /* Ensure all chunks have corresponding dev extents */
7657 ret = verify_chunk_dev_extent_mapping(fs_info);
7658 out:
7659 btrfs_free_path(path);
7660 return ret;
7664 * Check whether the given block group or device is pinned by any inode being
7665 * used as a swapfile.
7667 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7669 struct btrfs_swapfile_pin *sp;
7670 struct rb_node *node;
7672 spin_lock(&fs_info->swapfile_pins_lock);
7673 node = fs_info->swapfile_pins.rb_node;
7674 while (node) {
7675 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7676 if (ptr < sp->ptr)
7677 node = node->rb_left;
7678 else if (ptr > sp->ptr)
7679 node = node->rb_right;
7680 else
7681 break;
7683 spin_unlock(&fs_info->swapfile_pins_lock);
7684 return node != NULL;