gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / fs / buffer.c
blobf73276d746bbfc7f2c98bf057938cc5f6c5e8ef0
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/buffer.c
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
6 */
8 /*
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
52 #include "internal.h"
54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
55 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
56 enum rw_hint hint, struct writeback_control *wbc);
58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
60 inline void touch_buffer(struct buffer_head *bh)
62 trace_block_touch_buffer(bh);
63 mark_page_accessed(bh->b_page);
65 EXPORT_SYMBOL(touch_buffer);
67 void __lock_buffer(struct buffer_head *bh)
69 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
71 EXPORT_SYMBOL(__lock_buffer);
73 void unlock_buffer(struct buffer_head *bh)
75 clear_bit_unlock(BH_Lock, &bh->b_state);
76 smp_mb__after_atomic();
77 wake_up_bit(&bh->b_state, BH_Lock);
79 EXPORT_SYMBOL(unlock_buffer);
82 * Returns if the page has dirty or writeback buffers. If all the buffers
83 * are unlocked and clean then the PageDirty information is stale. If
84 * any of the pages are locked, it is assumed they are locked for IO.
86 void buffer_check_dirty_writeback(struct page *page,
87 bool *dirty, bool *writeback)
89 struct buffer_head *head, *bh;
90 *dirty = false;
91 *writeback = false;
93 BUG_ON(!PageLocked(page));
95 if (!page_has_buffers(page))
96 return;
98 if (PageWriteback(page))
99 *writeback = true;
101 head = page_buffers(page);
102 bh = head;
103 do {
104 if (buffer_locked(bh))
105 *writeback = true;
107 if (buffer_dirty(bh))
108 *dirty = true;
110 bh = bh->b_this_page;
111 } while (bh != head);
113 EXPORT_SYMBOL(buffer_check_dirty_writeback);
116 * Block until a buffer comes unlocked. This doesn't stop it
117 * from becoming locked again - you have to lock it yourself
118 * if you want to preserve its state.
120 void __wait_on_buffer(struct buffer_head * bh)
122 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124 EXPORT_SYMBOL(__wait_on_buffer);
126 static void
127 __clear_page_buffers(struct page *page)
129 ClearPagePrivate(page);
130 set_page_private(page, 0);
131 put_page(page);
134 static void buffer_io_error(struct buffer_head *bh, char *msg)
136 if (!test_bit(BH_Quiet, &bh->b_state))
137 printk_ratelimited(KERN_ERR
138 "Buffer I/O error on dev %pg, logical block %llu%s\n",
139 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
143 * End-of-IO handler helper function which does not touch the bh after
144 * unlocking it.
145 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
146 * a race there is benign: unlock_buffer() only use the bh's address for
147 * hashing after unlocking the buffer, so it doesn't actually touch the bh
148 * itself.
150 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
152 if (uptodate) {
153 set_buffer_uptodate(bh);
154 } else {
155 /* This happens, due to failed read-ahead attempts. */
156 clear_buffer_uptodate(bh);
158 unlock_buffer(bh);
162 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
163 * unlock the buffer. This is what ll_rw_block uses too.
165 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
167 __end_buffer_read_notouch(bh, uptodate);
168 put_bh(bh);
170 EXPORT_SYMBOL(end_buffer_read_sync);
172 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
174 if (uptodate) {
175 set_buffer_uptodate(bh);
176 } else {
177 buffer_io_error(bh, ", lost sync page write");
178 mark_buffer_write_io_error(bh);
179 clear_buffer_uptodate(bh);
181 unlock_buffer(bh);
182 put_bh(bh);
184 EXPORT_SYMBOL(end_buffer_write_sync);
187 * Various filesystems appear to want __find_get_block to be non-blocking.
188 * But it's the page lock which protects the buffers. To get around this,
189 * we get exclusion from try_to_free_buffers with the blockdev mapping's
190 * private_lock.
192 * Hack idea: for the blockdev mapping, private_lock contention
193 * may be quite high. This code could TryLock the page, and if that
194 * succeeds, there is no need to take private_lock.
196 static struct buffer_head *
197 __find_get_block_slow(struct block_device *bdev, sector_t block)
199 struct inode *bd_inode = bdev->bd_inode;
200 struct address_space *bd_mapping = bd_inode->i_mapping;
201 struct buffer_head *ret = NULL;
202 pgoff_t index;
203 struct buffer_head *bh;
204 struct buffer_head *head;
205 struct page *page;
206 int all_mapped = 1;
207 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
209 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
210 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
211 if (!page)
212 goto out;
214 spin_lock(&bd_mapping->private_lock);
215 if (!page_has_buffers(page))
216 goto out_unlock;
217 head = page_buffers(page);
218 bh = head;
219 do {
220 if (!buffer_mapped(bh))
221 all_mapped = 0;
222 else if (bh->b_blocknr == block) {
223 ret = bh;
224 get_bh(bh);
225 goto out_unlock;
227 bh = bh->b_this_page;
228 } while (bh != head);
230 /* we might be here because some of the buffers on this page are
231 * not mapped. This is due to various races between
232 * file io on the block device and getblk. It gets dealt with
233 * elsewhere, don't buffer_error if we had some unmapped buffers
235 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
236 if (all_mapped && __ratelimit(&last_warned)) {
237 printk("__find_get_block_slow() failed. block=%llu, "
238 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
239 "device %pg blocksize: %d\n",
240 (unsigned long long)block,
241 (unsigned long long)bh->b_blocknr,
242 bh->b_state, bh->b_size, bdev,
243 1 << bd_inode->i_blkbits);
245 out_unlock:
246 spin_unlock(&bd_mapping->private_lock);
247 put_page(page);
248 out:
249 return ret;
252 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
254 unsigned long flags;
255 struct buffer_head *first;
256 struct buffer_head *tmp;
257 struct page *page;
258 int page_uptodate = 1;
260 BUG_ON(!buffer_async_read(bh));
262 page = bh->b_page;
263 if (uptodate) {
264 set_buffer_uptodate(bh);
265 } else {
266 clear_buffer_uptodate(bh);
267 buffer_io_error(bh, ", async page read");
268 SetPageError(page);
272 * Be _very_ careful from here on. Bad things can happen if
273 * two buffer heads end IO at almost the same time and both
274 * decide that the page is now completely done.
276 first = page_buffers(page);
277 spin_lock_irqsave(&first->b_uptodate_lock, flags);
278 clear_buffer_async_read(bh);
279 unlock_buffer(bh);
280 tmp = bh;
281 do {
282 if (!buffer_uptodate(tmp))
283 page_uptodate = 0;
284 if (buffer_async_read(tmp)) {
285 BUG_ON(!buffer_locked(tmp));
286 goto still_busy;
288 tmp = tmp->b_this_page;
289 } while (tmp != bh);
290 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
293 * If none of the buffers had errors and they are all
294 * uptodate then we can set the page uptodate.
296 if (page_uptodate && !PageError(page))
297 SetPageUptodate(page);
298 unlock_page(page);
299 return;
301 still_busy:
302 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
303 return;
306 struct decrypt_bh_ctx {
307 struct work_struct work;
308 struct buffer_head *bh;
311 static void decrypt_bh(struct work_struct *work)
313 struct decrypt_bh_ctx *ctx =
314 container_of(work, struct decrypt_bh_ctx, work);
315 struct buffer_head *bh = ctx->bh;
316 int err;
318 err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
319 bh_offset(bh));
320 end_buffer_async_read(bh, err == 0);
321 kfree(ctx);
325 * I/O completion handler for block_read_full_page() - pages
326 * which come unlocked at the end of I/O.
328 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
330 /* Decrypt if needed */
331 if (uptodate && IS_ENABLED(CONFIG_FS_ENCRYPTION) &&
332 IS_ENCRYPTED(bh->b_page->mapping->host) &&
333 S_ISREG(bh->b_page->mapping->host->i_mode)) {
334 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
336 if (ctx) {
337 INIT_WORK(&ctx->work, decrypt_bh);
338 ctx->bh = bh;
339 fscrypt_enqueue_decrypt_work(&ctx->work);
340 return;
342 uptodate = 0;
344 end_buffer_async_read(bh, uptodate);
348 * Completion handler for block_write_full_page() - pages which are unlocked
349 * during I/O, and which have PageWriteback cleared upon I/O completion.
351 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
353 unsigned long flags;
354 struct buffer_head *first;
355 struct buffer_head *tmp;
356 struct page *page;
358 BUG_ON(!buffer_async_write(bh));
360 page = bh->b_page;
361 if (uptodate) {
362 set_buffer_uptodate(bh);
363 } else {
364 buffer_io_error(bh, ", lost async page write");
365 mark_buffer_write_io_error(bh);
366 clear_buffer_uptodate(bh);
367 SetPageError(page);
370 first = page_buffers(page);
371 spin_lock_irqsave(&first->b_uptodate_lock, flags);
373 clear_buffer_async_write(bh);
374 unlock_buffer(bh);
375 tmp = bh->b_this_page;
376 while (tmp != bh) {
377 if (buffer_async_write(tmp)) {
378 BUG_ON(!buffer_locked(tmp));
379 goto still_busy;
381 tmp = tmp->b_this_page;
383 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
384 end_page_writeback(page);
385 return;
387 still_busy:
388 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
389 return;
391 EXPORT_SYMBOL(end_buffer_async_write);
394 * If a page's buffers are under async readin (end_buffer_async_read
395 * completion) then there is a possibility that another thread of
396 * control could lock one of the buffers after it has completed
397 * but while some of the other buffers have not completed. This
398 * locked buffer would confuse end_buffer_async_read() into not unlocking
399 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
400 * that this buffer is not under async I/O.
402 * The page comes unlocked when it has no locked buffer_async buffers
403 * left.
405 * PageLocked prevents anyone starting new async I/O reads any of
406 * the buffers.
408 * PageWriteback is used to prevent simultaneous writeout of the same
409 * page.
411 * PageLocked prevents anyone from starting writeback of a page which is
412 * under read I/O (PageWriteback is only ever set against a locked page).
414 static void mark_buffer_async_read(struct buffer_head *bh)
416 bh->b_end_io = end_buffer_async_read_io;
417 set_buffer_async_read(bh);
420 static void mark_buffer_async_write_endio(struct buffer_head *bh,
421 bh_end_io_t *handler)
423 bh->b_end_io = handler;
424 set_buffer_async_write(bh);
427 void mark_buffer_async_write(struct buffer_head *bh)
429 mark_buffer_async_write_endio(bh, end_buffer_async_write);
431 EXPORT_SYMBOL(mark_buffer_async_write);
435 * fs/buffer.c contains helper functions for buffer-backed address space's
436 * fsync functions. A common requirement for buffer-based filesystems is
437 * that certain data from the backing blockdev needs to be written out for
438 * a successful fsync(). For example, ext2 indirect blocks need to be
439 * written back and waited upon before fsync() returns.
441 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
442 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
443 * management of a list of dependent buffers at ->i_mapping->private_list.
445 * Locking is a little subtle: try_to_free_buffers() will remove buffers
446 * from their controlling inode's queue when they are being freed. But
447 * try_to_free_buffers() will be operating against the *blockdev* mapping
448 * at the time, not against the S_ISREG file which depends on those buffers.
449 * So the locking for private_list is via the private_lock in the address_space
450 * which backs the buffers. Which is different from the address_space
451 * against which the buffers are listed. So for a particular address_space,
452 * mapping->private_lock does *not* protect mapping->private_list! In fact,
453 * mapping->private_list will always be protected by the backing blockdev's
454 * ->private_lock.
456 * Which introduces a requirement: all buffers on an address_space's
457 * ->private_list must be from the same address_space: the blockdev's.
459 * address_spaces which do not place buffers at ->private_list via these
460 * utility functions are free to use private_lock and private_list for
461 * whatever they want. The only requirement is that list_empty(private_list)
462 * be true at clear_inode() time.
464 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
465 * filesystems should do that. invalidate_inode_buffers() should just go
466 * BUG_ON(!list_empty).
468 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
469 * take an address_space, not an inode. And it should be called
470 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
471 * queued up.
473 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
474 * list if it is already on a list. Because if the buffer is on a list,
475 * it *must* already be on the right one. If not, the filesystem is being
476 * silly. This will save a ton of locking. But first we have to ensure
477 * that buffers are taken *off* the old inode's list when they are freed
478 * (presumably in truncate). That requires careful auditing of all
479 * filesystems (do it inside bforget()). It could also be done by bringing
480 * b_inode back.
484 * The buffer's backing address_space's private_lock must be held
486 static void __remove_assoc_queue(struct buffer_head *bh)
488 list_del_init(&bh->b_assoc_buffers);
489 WARN_ON(!bh->b_assoc_map);
490 bh->b_assoc_map = NULL;
493 int inode_has_buffers(struct inode *inode)
495 return !list_empty(&inode->i_data.private_list);
499 * osync is designed to support O_SYNC io. It waits synchronously for
500 * all already-submitted IO to complete, but does not queue any new
501 * writes to the disk.
503 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
504 * you dirty the buffers, and then use osync_inode_buffers to wait for
505 * completion. Any other dirty buffers which are not yet queued for
506 * write will not be flushed to disk by the osync.
508 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
510 struct buffer_head *bh;
511 struct list_head *p;
512 int err = 0;
514 spin_lock(lock);
515 repeat:
516 list_for_each_prev(p, list) {
517 bh = BH_ENTRY(p);
518 if (buffer_locked(bh)) {
519 get_bh(bh);
520 spin_unlock(lock);
521 wait_on_buffer(bh);
522 if (!buffer_uptodate(bh))
523 err = -EIO;
524 brelse(bh);
525 spin_lock(lock);
526 goto repeat;
529 spin_unlock(lock);
530 return err;
533 void emergency_thaw_bdev(struct super_block *sb)
535 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
536 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
540 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
541 * @mapping: the mapping which wants those buffers written
543 * Starts I/O against the buffers at mapping->private_list, and waits upon
544 * that I/O.
546 * Basically, this is a convenience function for fsync().
547 * @mapping is a file or directory which needs those buffers to be written for
548 * a successful fsync().
550 int sync_mapping_buffers(struct address_space *mapping)
552 struct address_space *buffer_mapping = mapping->private_data;
554 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
555 return 0;
557 return fsync_buffers_list(&buffer_mapping->private_lock,
558 &mapping->private_list);
560 EXPORT_SYMBOL(sync_mapping_buffers);
563 * Called when we've recently written block `bblock', and it is known that
564 * `bblock' was for a buffer_boundary() buffer. This means that the block at
565 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
566 * dirty, schedule it for IO. So that indirects merge nicely with their data.
568 void write_boundary_block(struct block_device *bdev,
569 sector_t bblock, unsigned blocksize)
571 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
572 if (bh) {
573 if (buffer_dirty(bh))
574 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
575 put_bh(bh);
579 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
581 struct address_space *mapping = inode->i_mapping;
582 struct address_space *buffer_mapping = bh->b_page->mapping;
584 mark_buffer_dirty(bh);
585 if (!mapping->private_data) {
586 mapping->private_data = buffer_mapping;
587 } else {
588 BUG_ON(mapping->private_data != buffer_mapping);
590 if (!bh->b_assoc_map) {
591 spin_lock(&buffer_mapping->private_lock);
592 list_move_tail(&bh->b_assoc_buffers,
593 &mapping->private_list);
594 bh->b_assoc_map = mapping;
595 spin_unlock(&buffer_mapping->private_lock);
598 EXPORT_SYMBOL(mark_buffer_dirty_inode);
601 * Mark the page dirty, and set it dirty in the page cache, and mark the inode
602 * dirty.
604 * If warn is true, then emit a warning if the page is not uptodate and has
605 * not been truncated.
607 * The caller must hold lock_page_memcg().
609 void __set_page_dirty(struct page *page, struct address_space *mapping,
610 int warn)
612 unsigned long flags;
614 xa_lock_irqsave(&mapping->i_pages, flags);
615 if (page->mapping) { /* Race with truncate? */
616 WARN_ON_ONCE(warn && !PageUptodate(page));
617 account_page_dirtied(page, mapping);
618 __xa_set_mark(&mapping->i_pages, page_index(page),
619 PAGECACHE_TAG_DIRTY);
621 xa_unlock_irqrestore(&mapping->i_pages, flags);
623 EXPORT_SYMBOL_GPL(__set_page_dirty);
626 * Add a page to the dirty page list.
628 * It is a sad fact of life that this function is called from several places
629 * deeply under spinlocking. It may not sleep.
631 * If the page has buffers, the uptodate buffers are set dirty, to preserve
632 * dirty-state coherency between the page and the buffers. It the page does
633 * not have buffers then when they are later attached they will all be set
634 * dirty.
636 * The buffers are dirtied before the page is dirtied. There's a small race
637 * window in which a writepage caller may see the page cleanness but not the
638 * buffer dirtiness. That's fine. If this code were to set the page dirty
639 * before the buffers, a concurrent writepage caller could clear the page dirty
640 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
641 * page on the dirty page list.
643 * We use private_lock to lock against try_to_free_buffers while using the
644 * page's buffer list. Also use this to protect against clean buffers being
645 * added to the page after it was set dirty.
647 * FIXME: may need to call ->reservepage here as well. That's rather up to the
648 * address_space though.
650 int __set_page_dirty_buffers(struct page *page)
652 int newly_dirty;
653 struct address_space *mapping = page_mapping(page);
655 if (unlikely(!mapping))
656 return !TestSetPageDirty(page);
658 spin_lock(&mapping->private_lock);
659 if (page_has_buffers(page)) {
660 struct buffer_head *head = page_buffers(page);
661 struct buffer_head *bh = head;
663 do {
664 set_buffer_dirty(bh);
665 bh = bh->b_this_page;
666 } while (bh != head);
669 * Lock out page->mem_cgroup migration to keep PageDirty
670 * synchronized with per-memcg dirty page counters.
672 lock_page_memcg(page);
673 newly_dirty = !TestSetPageDirty(page);
674 spin_unlock(&mapping->private_lock);
676 if (newly_dirty)
677 __set_page_dirty(page, mapping, 1);
679 unlock_page_memcg(page);
681 if (newly_dirty)
682 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
684 return newly_dirty;
686 EXPORT_SYMBOL(__set_page_dirty_buffers);
689 * Write out and wait upon a list of buffers.
691 * We have conflicting pressures: we want to make sure that all
692 * initially dirty buffers get waited on, but that any subsequently
693 * dirtied buffers don't. After all, we don't want fsync to last
694 * forever if somebody is actively writing to the file.
696 * Do this in two main stages: first we copy dirty buffers to a
697 * temporary inode list, queueing the writes as we go. Then we clean
698 * up, waiting for those writes to complete.
700 * During this second stage, any subsequent updates to the file may end
701 * up refiling the buffer on the original inode's dirty list again, so
702 * there is a chance we will end up with a buffer queued for write but
703 * not yet completed on that list. So, as a final cleanup we go through
704 * the osync code to catch these locked, dirty buffers without requeuing
705 * any newly dirty buffers for write.
707 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
709 struct buffer_head *bh;
710 struct list_head tmp;
711 struct address_space *mapping;
712 int err = 0, err2;
713 struct blk_plug plug;
715 INIT_LIST_HEAD(&tmp);
716 blk_start_plug(&plug);
718 spin_lock(lock);
719 while (!list_empty(list)) {
720 bh = BH_ENTRY(list->next);
721 mapping = bh->b_assoc_map;
722 __remove_assoc_queue(bh);
723 /* Avoid race with mark_buffer_dirty_inode() which does
724 * a lockless check and we rely on seeing the dirty bit */
725 smp_mb();
726 if (buffer_dirty(bh) || buffer_locked(bh)) {
727 list_add(&bh->b_assoc_buffers, &tmp);
728 bh->b_assoc_map = mapping;
729 if (buffer_dirty(bh)) {
730 get_bh(bh);
731 spin_unlock(lock);
733 * Ensure any pending I/O completes so that
734 * write_dirty_buffer() actually writes the
735 * current contents - it is a noop if I/O is
736 * still in flight on potentially older
737 * contents.
739 write_dirty_buffer(bh, REQ_SYNC);
742 * Kick off IO for the previous mapping. Note
743 * that we will not run the very last mapping,
744 * wait_on_buffer() will do that for us
745 * through sync_buffer().
747 brelse(bh);
748 spin_lock(lock);
753 spin_unlock(lock);
754 blk_finish_plug(&plug);
755 spin_lock(lock);
757 while (!list_empty(&tmp)) {
758 bh = BH_ENTRY(tmp.prev);
759 get_bh(bh);
760 mapping = bh->b_assoc_map;
761 __remove_assoc_queue(bh);
762 /* Avoid race with mark_buffer_dirty_inode() which does
763 * a lockless check and we rely on seeing the dirty bit */
764 smp_mb();
765 if (buffer_dirty(bh)) {
766 list_add(&bh->b_assoc_buffers,
767 &mapping->private_list);
768 bh->b_assoc_map = mapping;
770 spin_unlock(lock);
771 wait_on_buffer(bh);
772 if (!buffer_uptodate(bh))
773 err = -EIO;
774 brelse(bh);
775 spin_lock(lock);
778 spin_unlock(lock);
779 err2 = osync_buffers_list(lock, list);
780 if (err)
781 return err;
782 else
783 return err2;
787 * Invalidate any and all dirty buffers on a given inode. We are
788 * probably unmounting the fs, but that doesn't mean we have already
789 * done a sync(). Just drop the buffers from the inode list.
791 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
792 * assumes that all the buffers are against the blockdev. Not true
793 * for reiserfs.
795 void invalidate_inode_buffers(struct inode *inode)
797 if (inode_has_buffers(inode)) {
798 struct address_space *mapping = &inode->i_data;
799 struct list_head *list = &mapping->private_list;
800 struct address_space *buffer_mapping = mapping->private_data;
802 spin_lock(&buffer_mapping->private_lock);
803 while (!list_empty(list))
804 __remove_assoc_queue(BH_ENTRY(list->next));
805 spin_unlock(&buffer_mapping->private_lock);
808 EXPORT_SYMBOL(invalidate_inode_buffers);
811 * Remove any clean buffers from the inode's buffer list. This is called
812 * when we're trying to free the inode itself. Those buffers can pin it.
814 * Returns true if all buffers were removed.
816 int remove_inode_buffers(struct inode *inode)
818 int ret = 1;
820 if (inode_has_buffers(inode)) {
821 struct address_space *mapping = &inode->i_data;
822 struct list_head *list = &mapping->private_list;
823 struct address_space *buffer_mapping = mapping->private_data;
825 spin_lock(&buffer_mapping->private_lock);
826 while (!list_empty(list)) {
827 struct buffer_head *bh = BH_ENTRY(list->next);
828 if (buffer_dirty(bh)) {
829 ret = 0;
830 break;
832 __remove_assoc_queue(bh);
834 spin_unlock(&buffer_mapping->private_lock);
836 return ret;
840 * Create the appropriate buffers when given a page for data area and
841 * the size of each buffer.. Use the bh->b_this_page linked list to
842 * follow the buffers created. Return NULL if unable to create more
843 * buffers.
845 * The retry flag is used to differentiate async IO (paging, swapping)
846 * which may not fail from ordinary buffer allocations.
848 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
849 bool retry)
851 struct buffer_head *bh, *head;
852 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
853 long offset;
854 struct mem_cgroup *memcg;
856 if (retry)
857 gfp |= __GFP_NOFAIL;
859 memcg = get_mem_cgroup_from_page(page);
860 memalloc_use_memcg(memcg);
862 head = NULL;
863 offset = PAGE_SIZE;
864 while ((offset -= size) >= 0) {
865 bh = alloc_buffer_head(gfp);
866 if (!bh)
867 goto no_grow;
869 bh->b_this_page = head;
870 bh->b_blocknr = -1;
871 head = bh;
873 bh->b_size = size;
875 /* Link the buffer to its page */
876 set_bh_page(bh, page, offset);
878 out:
879 memalloc_unuse_memcg();
880 mem_cgroup_put(memcg);
881 return head;
883 * In case anything failed, we just free everything we got.
885 no_grow:
886 if (head) {
887 do {
888 bh = head;
889 head = head->b_this_page;
890 free_buffer_head(bh);
891 } while (head);
894 goto out;
896 EXPORT_SYMBOL_GPL(alloc_page_buffers);
898 static inline void
899 link_dev_buffers(struct page *page, struct buffer_head *head)
901 struct buffer_head *bh, *tail;
903 bh = head;
904 do {
905 tail = bh;
906 bh = bh->b_this_page;
907 } while (bh);
908 tail->b_this_page = head;
909 attach_page_buffers(page, head);
912 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
914 sector_t retval = ~((sector_t)0);
915 loff_t sz = i_size_read(bdev->bd_inode);
917 if (sz) {
918 unsigned int sizebits = blksize_bits(size);
919 retval = (sz >> sizebits);
921 return retval;
925 * Initialise the state of a blockdev page's buffers.
927 static sector_t
928 init_page_buffers(struct page *page, struct block_device *bdev,
929 sector_t block, int size)
931 struct buffer_head *head = page_buffers(page);
932 struct buffer_head *bh = head;
933 int uptodate = PageUptodate(page);
934 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
936 do {
937 if (!buffer_mapped(bh)) {
938 bh->b_end_io = NULL;
939 bh->b_private = NULL;
940 bh->b_bdev = bdev;
941 bh->b_blocknr = block;
942 if (uptodate)
943 set_buffer_uptodate(bh);
944 if (block < end_block)
945 set_buffer_mapped(bh);
947 block++;
948 bh = bh->b_this_page;
949 } while (bh != head);
952 * Caller needs to validate requested block against end of device.
954 return end_block;
958 * Create the page-cache page that contains the requested block.
960 * This is used purely for blockdev mappings.
962 static int
963 grow_dev_page(struct block_device *bdev, sector_t block,
964 pgoff_t index, int size, int sizebits, gfp_t gfp)
966 struct inode *inode = bdev->bd_inode;
967 struct page *page;
968 struct buffer_head *bh;
969 sector_t end_block;
970 int ret = 0; /* Will call free_more_memory() */
971 gfp_t gfp_mask;
973 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
976 * XXX: __getblk_slow() can not really deal with failure and
977 * will endlessly loop on improvised global reclaim. Prefer
978 * looping in the allocator rather than here, at least that
979 * code knows what it's doing.
981 gfp_mask |= __GFP_NOFAIL;
983 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
985 BUG_ON(!PageLocked(page));
987 if (page_has_buffers(page)) {
988 bh = page_buffers(page);
989 if (bh->b_size == size) {
990 end_block = init_page_buffers(page, bdev,
991 (sector_t)index << sizebits,
992 size);
993 goto done;
995 if (!try_to_free_buffers(page))
996 goto failed;
1000 * Allocate some buffers for this page
1002 bh = alloc_page_buffers(page, size, true);
1005 * Link the page to the buffers and initialise them. Take the
1006 * lock to be atomic wrt __find_get_block(), which does not
1007 * run under the page lock.
1009 spin_lock(&inode->i_mapping->private_lock);
1010 link_dev_buffers(page, bh);
1011 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1012 size);
1013 spin_unlock(&inode->i_mapping->private_lock);
1014 done:
1015 ret = (block < end_block) ? 1 : -ENXIO;
1016 failed:
1017 unlock_page(page);
1018 put_page(page);
1019 return ret;
1023 * Create buffers for the specified block device block's page. If
1024 * that page was dirty, the buffers are set dirty also.
1026 static int
1027 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1029 pgoff_t index;
1030 int sizebits;
1032 sizebits = -1;
1033 do {
1034 sizebits++;
1035 } while ((size << sizebits) < PAGE_SIZE);
1037 index = block >> sizebits;
1040 * Check for a block which wants to lie outside our maximum possible
1041 * pagecache index. (this comparison is done using sector_t types).
1043 if (unlikely(index != block >> sizebits)) {
1044 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1045 "device %pg\n",
1046 __func__, (unsigned long long)block,
1047 bdev);
1048 return -EIO;
1051 /* Create a page with the proper size buffers.. */
1052 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1055 static struct buffer_head *
1056 __getblk_slow(struct block_device *bdev, sector_t block,
1057 unsigned size, gfp_t gfp)
1059 /* Size must be multiple of hard sectorsize */
1060 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1061 (size < 512 || size > PAGE_SIZE))) {
1062 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1063 size);
1064 printk(KERN_ERR "logical block size: %d\n",
1065 bdev_logical_block_size(bdev));
1067 dump_stack();
1068 return NULL;
1071 for (;;) {
1072 struct buffer_head *bh;
1073 int ret;
1075 bh = __find_get_block(bdev, block, size);
1076 if (bh)
1077 return bh;
1079 ret = grow_buffers(bdev, block, size, gfp);
1080 if (ret < 0)
1081 return NULL;
1086 * The relationship between dirty buffers and dirty pages:
1088 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1089 * the page is tagged dirty in the page cache.
1091 * At all times, the dirtiness of the buffers represents the dirtiness of
1092 * subsections of the page. If the page has buffers, the page dirty bit is
1093 * merely a hint about the true dirty state.
1095 * When a page is set dirty in its entirety, all its buffers are marked dirty
1096 * (if the page has buffers).
1098 * When a buffer is marked dirty, its page is dirtied, but the page's other
1099 * buffers are not.
1101 * Also. When blockdev buffers are explicitly read with bread(), they
1102 * individually become uptodate. But their backing page remains not
1103 * uptodate - even if all of its buffers are uptodate. A subsequent
1104 * block_read_full_page() against that page will discover all the uptodate
1105 * buffers, will set the page uptodate and will perform no I/O.
1109 * mark_buffer_dirty - mark a buffer_head as needing writeout
1110 * @bh: the buffer_head to mark dirty
1112 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1113 * its backing page dirty, then tag the page as dirty in the page cache
1114 * and then attach the address_space's inode to its superblock's dirty
1115 * inode list.
1117 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1118 * i_pages lock and mapping->host->i_lock.
1120 void mark_buffer_dirty(struct buffer_head *bh)
1122 WARN_ON_ONCE(!buffer_uptodate(bh));
1124 trace_block_dirty_buffer(bh);
1127 * Very *carefully* optimize the it-is-already-dirty case.
1129 * Don't let the final "is it dirty" escape to before we
1130 * perhaps modified the buffer.
1132 if (buffer_dirty(bh)) {
1133 smp_mb();
1134 if (buffer_dirty(bh))
1135 return;
1138 if (!test_set_buffer_dirty(bh)) {
1139 struct page *page = bh->b_page;
1140 struct address_space *mapping = NULL;
1142 lock_page_memcg(page);
1143 if (!TestSetPageDirty(page)) {
1144 mapping = page_mapping(page);
1145 if (mapping)
1146 __set_page_dirty(page, mapping, 0);
1148 unlock_page_memcg(page);
1149 if (mapping)
1150 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1153 EXPORT_SYMBOL(mark_buffer_dirty);
1155 void mark_buffer_write_io_error(struct buffer_head *bh)
1157 set_buffer_write_io_error(bh);
1158 /* FIXME: do we need to set this in both places? */
1159 if (bh->b_page && bh->b_page->mapping)
1160 mapping_set_error(bh->b_page->mapping, -EIO);
1161 if (bh->b_assoc_map)
1162 mapping_set_error(bh->b_assoc_map, -EIO);
1164 EXPORT_SYMBOL(mark_buffer_write_io_error);
1167 * Decrement a buffer_head's reference count. If all buffers against a page
1168 * have zero reference count, are clean and unlocked, and if the page is clean
1169 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1170 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1171 * a page but it ends up not being freed, and buffers may later be reattached).
1173 void __brelse(struct buffer_head * buf)
1175 if (atomic_read(&buf->b_count)) {
1176 put_bh(buf);
1177 return;
1179 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1181 EXPORT_SYMBOL(__brelse);
1184 * bforget() is like brelse(), except it discards any
1185 * potentially dirty data.
1187 void __bforget(struct buffer_head *bh)
1189 clear_buffer_dirty(bh);
1190 if (bh->b_assoc_map) {
1191 struct address_space *buffer_mapping = bh->b_page->mapping;
1193 spin_lock(&buffer_mapping->private_lock);
1194 list_del_init(&bh->b_assoc_buffers);
1195 bh->b_assoc_map = NULL;
1196 spin_unlock(&buffer_mapping->private_lock);
1198 __brelse(bh);
1200 EXPORT_SYMBOL(__bforget);
1202 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1204 lock_buffer(bh);
1205 if (buffer_uptodate(bh)) {
1206 unlock_buffer(bh);
1207 return bh;
1208 } else {
1209 get_bh(bh);
1210 bh->b_end_io = end_buffer_read_sync;
1211 submit_bh(REQ_OP_READ, 0, bh);
1212 wait_on_buffer(bh);
1213 if (buffer_uptodate(bh))
1214 return bh;
1216 brelse(bh);
1217 return NULL;
1221 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1222 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1223 * refcount elevated by one when they're in an LRU. A buffer can only appear
1224 * once in a particular CPU's LRU. A single buffer can be present in multiple
1225 * CPU's LRUs at the same time.
1227 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1228 * sb_find_get_block().
1230 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1231 * a local interrupt disable for that.
1234 #define BH_LRU_SIZE 16
1236 struct bh_lru {
1237 struct buffer_head *bhs[BH_LRU_SIZE];
1240 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1242 #ifdef CONFIG_SMP
1243 #define bh_lru_lock() local_irq_disable()
1244 #define bh_lru_unlock() local_irq_enable()
1245 #else
1246 #define bh_lru_lock() preempt_disable()
1247 #define bh_lru_unlock() preempt_enable()
1248 #endif
1250 static inline void check_irqs_on(void)
1252 #ifdef irqs_disabled
1253 BUG_ON(irqs_disabled());
1254 #endif
1258 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1259 * inserted at the front, and the buffer_head at the back if any is evicted.
1260 * Or, if already in the LRU it is moved to the front.
1262 static void bh_lru_install(struct buffer_head *bh)
1264 struct buffer_head *evictee = bh;
1265 struct bh_lru *b;
1266 int i;
1268 check_irqs_on();
1269 bh_lru_lock();
1271 b = this_cpu_ptr(&bh_lrus);
1272 for (i = 0; i < BH_LRU_SIZE; i++) {
1273 swap(evictee, b->bhs[i]);
1274 if (evictee == bh) {
1275 bh_lru_unlock();
1276 return;
1280 get_bh(bh);
1281 bh_lru_unlock();
1282 brelse(evictee);
1286 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1288 static struct buffer_head *
1289 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1291 struct buffer_head *ret = NULL;
1292 unsigned int i;
1294 check_irqs_on();
1295 bh_lru_lock();
1296 for (i = 0; i < BH_LRU_SIZE; i++) {
1297 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1299 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1300 bh->b_size == size) {
1301 if (i) {
1302 while (i) {
1303 __this_cpu_write(bh_lrus.bhs[i],
1304 __this_cpu_read(bh_lrus.bhs[i - 1]));
1305 i--;
1307 __this_cpu_write(bh_lrus.bhs[0], bh);
1309 get_bh(bh);
1310 ret = bh;
1311 break;
1314 bh_lru_unlock();
1315 return ret;
1319 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1320 * it in the LRU and mark it as accessed. If it is not present then return
1321 * NULL
1323 struct buffer_head *
1324 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1326 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1328 if (bh == NULL) {
1329 /* __find_get_block_slow will mark the page accessed */
1330 bh = __find_get_block_slow(bdev, block);
1331 if (bh)
1332 bh_lru_install(bh);
1333 } else
1334 touch_buffer(bh);
1336 return bh;
1338 EXPORT_SYMBOL(__find_get_block);
1341 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1342 * which corresponds to the passed block_device, block and size. The
1343 * returned buffer has its reference count incremented.
1345 * __getblk_gfp() will lock up the machine if grow_dev_page's
1346 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1348 struct buffer_head *
1349 __getblk_gfp(struct block_device *bdev, sector_t block,
1350 unsigned size, gfp_t gfp)
1352 struct buffer_head *bh = __find_get_block(bdev, block, size);
1354 might_sleep();
1355 if (bh == NULL)
1356 bh = __getblk_slow(bdev, block, size, gfp);
1357 return bh;
1359 EXPORT_SYMBOL(__getblk_gfp);
1362 * Do async read-ahead on a buffer..
1364 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1366 struct buffer_head *bh = __getblk(bdev, block, size);
1367 if (likely(bh)) {
1368 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1369 brelse(bh);
1372 EXPORT_SYMBOL(__breadahead);
1375 * __bread_gfp() - reads a specified block and returns the bh
1376 * @bdev: the block_device to read from
1377 * @block: number of block
1378 * @size: size (in bytes) to read
1379 * @gfp: page allocation flag
1381 * Reads a specified block, and returns buffer head that contains it.
1382 * The page cache can be allocated from non-movable area
1383 * not to prevent page migration if you set gfp to zero.
1384 * It returns NULL if the block was unreadable.
1386 struct buffer_head *
1387 __bread_gfp(struct block_device *bdev, sector_t block,
1388 unsigned size, gfp_t gfp)
1390 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1392 if (likely(bh) && !buffer_uptodate(bh))
1393 bh = __bread_slow(bh);
1394 return bh;
1396 EXPORT_SYMBOL(__bread_gfp);
1399 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1400 * This doesn't race because it runs in each cpu either in irq
1401 * or with preempt disabled.
1403 static void invalidate_bh_lru(void *arg)
1405 struct bh_lru *b = &get_cpu_var(bh_lrus);
1406 int i;
1408 for (i = 0; i < BH_LRU_SIZE; i++) {
1409 brelse(b->bhs[i]);
1410 b->bhs[i] = NULL;
1412 put_cpu_var(bh_lrus);
1415 static bool has_bh_in_lru(int cpu, void *dummy)
1417 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1418 int i;
1420 for (i = 0; i < BH_LRU_SIZE; i++) {
1421 if (b->bhs[i])
1422 return true;
1425 return false;
1428 void invalidate_bh_lrus(void)
1430 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1432 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1434 void set_bh_page(struct buffer_head *bh,
1435 struct page *page, unsigned long offset)
1437 bh->b_page = page;
1438 BUG_ON(offset >= PAGE_SIZE);
1439 if (PageHighMem(page))
1441 * This catches illegal uses and preserves the offset:
1443 bh->b_data = (char *)(0 + offset);
1444 else
1445 bh->b_data = page_address(page) + offset;
1447 EXPORT_SYMBOL(set_bh_page);
1450 * Called when truncating a buffer on a page completely.
1453 /* Bits that are cleared during an invalidate */
1454 #define BUFFER_FLAGS_DISCARD \
1455 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1456 1 << BH_Delay | 1 << BH_Unwritten)
1458 static void discard_buffer(struct buffer_head * bh)
1460 unsigned long b_state, b_state_old;
1462 lock_buffer(bh);
1463 clear_buffer_dirty(bh);
1464 bh->b_bdev = NULL;
1465 b_state = bh->b_state;
1466 for (;;) {
1467 b_state_old = cmpxchg(&bh->b_state, b_state,
1468 (b_state & ~BUFFER_FLAGS_DISCARD));
1469 if (b_state_old == b_state)
1470 break;
1471 b_state = b_state_old;
1473 unlock_buffer(bh);
1477 * block_invalidatepage - invalidate part or all of a buffer-backed page
1479 * @page: the page which is affected
1480 * @offset: start of the range to invalidate
1481 * @length: length of the range to invalidate
1483 * block_invalidatepage() is called when all or part of the page has become
1484 * invalidated by a truncate operation.
1486 * block_invalidatepage() does not have to release all buffers, but it must
1487 * ensure that no dirty buffer is left outside @offset and that no I/O
1488 * is underway against any of the blocks which are outside the truncation
1489 * point. Because the caller is about to free (and possibly reuse) those
1490 * blocks on-disk.
1492 void block_invalidatepage(struct page *page, unsigned int offset,
1493 unsigned int length)
1495 struct buffer_head *head, *bh, *next;
1496 unsigned int curr_off = 0;
1497 unsigned int stop = length + offset;
1499 BUG_ON(!PageLocked(page));
1500 if (!page_has_buffers(page))
1501 goto out;
1504 * Check for overflow
1506 BUG_ON(stop > PAGE_SIZE || stop < length);
1508 head = page_buffers(page);
1509 bh = head;
1510 do {
1511 unsigned int next_off = curr_off + bh->b_size;
1512 next = bh->b_this_page;
1515 * Are we still fully in range ?
1517 if (next_off > stop)
1518 goto out;
1521 * is this block fully invalidated?
1523 if (offset <= curr_off)
1524 discard_buffer(bh);
1525 curr_off = next_off;
1526 bh = next;
1527 } while (bh != head);
1530 * We release buffers only if the entire page is being invalidated.
1531 * The get_block cached value has been unconditionally invalidated,
1532 * so real IO is not possible anymore.
1534 if (length == PAGE_SIZE)
1535 try_to_release_page(page, 0);
1536 out:
1537 return;
1539 EXPORT_SYMBOL(block_invalidatepage);
1543 * We attach and possibly dirty the buffers atomically wrt
1544 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1545 * is already excluded via the page lock.
1547 void create_empty_buffers(struct page *page,
1548 unsigned long blocksize, unsigned long b_state)
1550 struct buffer_head *bh, *head, *tail;
1552 head = alloc_page_buffers(page, blocksize, true);
1553 bh = head;
1554 do {
1555 bh->b_state |= b_state;
1556 tail = bh;
1557 bh = bh->b_this_page;
1558 } while (bh);
1559 tail->b_this_page = head;
1561 spin_lock(&page->mapping->private_lock);
1562 if (PageUptodate(page) || PageDirty(page)) {
1563 bh = head;
1564 do {
1565 if (PageDirty(page))
1566 set_buffer_dirty(bh);
1567 if (PageUptodate(page))
1568 set_buffer_uptodate(bh);
1569 bh = bh->b_this_page;
1570 } while (bh != head);
1572 attach_page_buffers(page, head);
1573 spin_unlock(&page->mapping->private_lock);
1575 EXPORT_SYMBOL(create_empty_buffers);
1578 * clean_bdev_aliases: clean a range of buffers in block device
1579 * @bdev: Block device to clean buffers in
1580 * @block: Start of a range of blocks to clean
1581 * @len: Number of blocks to clean
1583 * We are taking a range of blocks for data and we don't want writeback of any
1584 * buffer-cache aliases starting from return from this function and until the
1585 * moment when something will explicitly mark the buffer dirty (hopefully that
1586 * will not happen until we will free that block ;-) We don't even need to mark
1587 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1588 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1589 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1590 * would confuse anyone who might pick it with bread() afterwards...
1592 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1593 * writeout I/O going on against recently-freed buffers. We don't wait on that
1594 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1595 * need to. That happens here.
1597 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1599 struct inode *bd_inode = bdev->bd_inode;
1600 struct address_space *bd_mapping = bd_inode->i_mapping;
1601 struct pagevec pvec;
1602 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1603 pgoff_t end;
1604 int i, count;
1605 struct buffer_head *bh;
1606 struct buffer_head *head;
1608 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1609 pagevec_init(&pvec);
1610 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1611 count = pagevec_count(&pvec);
1612 for (i = 0; i < count; i++) {
1613 struct page *page = pvec.pages[i];
1615 if (!page_has_buffers(page))
1616 continue;
1618 * We use page lock instead of bd_mapping->private_lock
1619 * to pin buffers here since we can afford to sleep and
1620 * it scales better than a global spinlock lock.
1622 lock_page(page);
1623 /* Recheck when the page is locked which pins bhs */
1624 if (!page_has_buffers(page))
1625 goto unlock_page;
1626 head = page_buffers(page);
1627 bh = head;
1628 do {
1629 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1630 goto next;
1631 if (bh->b_blocknr >= block + len)
1632 break;
1633 clear_buffer_dirty(bh);
1634 wait_on_buffer(bh);
1635 clear_buffer_req(bh);
1636 next:
1637 bh = bh->b_this_page;
1638 } while (bh != head);
1639 unlock_page:
1640 unlock_page(page);
1642 pagevec_release(&pvec);
1643 cond_resched();
1644 /* End of range already reached? */
1645 if (index > end || !index)
1646 break;
1649 EXPORT_SYMBOL(clean_bdev_aliases);
1652 * Size is a power-of-two in the range 512..PAGE_SIZE,
1653 * and the case we care about most is PAGE_SIZE.
1655 * So this *could* possibly be written with those
1656 * constraints in mind (relevant mostly if some
1657 * architecture has a slow bit-scan instruction)
1659 static inline int block_size_bits(unsigned int blocksize)
1661 return ilog2(blocksize);
1664 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1666 BUG_ON(!PageLocked(page));
1668 if (!page_has_buffers(page))
1669 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1670 b_state);
1671 return page_buffers(page);
1675 * NOTE! All mapped/uptodate combinations are valid:
1677 * Mapped Uptodate Meaning
1679 * No No "unknown" - must do get_block()
1680 * No Yes "hole" - zero-filled
1681 * Yes No "allocated" - allocated on disk, not read in
1682 * Yes Yes "valid" - allocated and up-to-date in memory.
1684 * "Dirty" is valid only with the last case (mapped+uptodate).
1688 * While block_write_full_page is writing back the dirty buffers under
1689 * the page lock, whoever dirtied the buffers may decide to clean them
1690 * again at any time. We handle that by only looking at the buffer
1691 * state inside lock_buffer().
1693 * If block_write_full_page() is called for regular writeback
1694 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1695 * locked buffer. This only can happen if someone has written the buffer
1696 * directly, with submit_bh(). At the address_space level PageWriteback
1697 * prevents this contention from occurring.
1699 * If block_write_full_page() is called with wbc->sync_mode ==
1700 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1701 * causes the writes to be flagged as synchronous writes.
1703 int __block_write_full_page(struct inode *inode, struct page *page,
1704 get_block_t *get_block, struct writeback_control *wbc,
1705 bh_end_io_t *handler)
1707 int err;
1708 sector_t block;
1709 sector_t last_block;
1710 struct buffer_head *bh, *head;
1711 unsigned int blocksize, bbits;
1712 int nr_underway = 0;
1713 int write_flags = wbc_to_write_flags(wbc);
1715 head = create_page_buffers(page, inode,
1716 (1 << BH_Dirty)|(1 << BH_Uptodate));
1719 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1720 * here, and the (potentially unmapped) buffers may become dirty at
1721 * any time. If a buffer becomes dirty here after we've inspected it
1722 * then we just miss that fact, and the page stays dirty.
1724 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1725 * handle that here by just cleaning them.
1728 bh = head;
1729 blocksize = bh->b_size;
1730 bbits = block_size_bits(blocksize);
1732 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1733 last_block = (i_size_read(inode) - 1) >> bbits;
1736 * Get all the dirty buffers mapped to disk addresses and
1737 * handle any aliases from the underlying blockdev's mapping.
1739 do {
1740 if (block > last_block) {
1742 * mapped buffers outside i_size will occur, because
1743 * this page can be outside i_size when there is a
1744 * truncate in progress.
1747 * The buffer was zeroed by block_write_full_page()
1749 clear_buffer_dirty(bh);
1750 set_buffer_uptodate(bh);
1751 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1752 buffer_dirty(bh)) {
1753 WARN_ON(bh->b_size != blocksize);
1754 err = get_block(inode, block, bh, 1);
1755 if (err)
1756 goto recover;
1757 clear_buffer_delay(bh);
1758 if (buffer_new(bh)) {
1759 /* blockdev mappings never come here */
1760 clear_buffer_new(bh);
1761 clean_bdev_bh_alias(bh);
1764 bh = bh->b_this_page;
1765 block++;
1766 } while (bh != head);
1768 do {
1769 if (!buffer_mapped(bh))
1770 continue;
1772 * If it's a fully non-blocking write attempt and we cannot
1773 * lock the buffer then redirty the page. Note that this can
1774 * potentially cause a busy-wait loop from writeback threads
1775 * and kswapd activity, but those code paths have their own
1776 * higher-level throttling.
1778 if (wbc->sync_mode != WB_SYNC_NONE) {
1779 lock_buffer(bh);
1780 } else if (!trylock_buffer(bh)) {
1781 redirty_page_for_writepage(wbc, page);
1782 continue;
1784 if (test_clear_buffer_dirty(bh)) {
1785 mark_buffer_async_write_endio(bh, handler);
1786 } else {
1787 unlock_buffer(bh);
1789 } while ((bh = bh->b_this_page) != head);
1792 * The page and its buffers are protected by PageWriteback(), so we can
1793 * drop the bh refcounts early.
1795 BUG_ON(PageWriteback(page));
1796 set_page_writeback(page);
1798 do {
1799 struct buffer_head *next = bh->b_this_page;
1800 if (buffer_async_write(bh)) {
1801 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1802 inode->i_write_hint, wbc);
1803 nr_underway++;
1805 bh = next;
1806 } while (bh != head);
1807 unlock_page(page);
1809 err = 0;
1810 done:
1811 if (nr_underway == 0) {
1813 * The page was marked dirty, but the buffers were
1814 * clean. Someone wrote them back by hand with
1815 * ll_rw_block/submit_bh. A rare case.
1817 end_page_writeback(page);
1820 * The page and buffer_heads can be released at any time from
1821 * here on.
1824 return err;
1826 recover:
1828 * ENOSPC, or some other error. We may already have added some
1829 * blocks to the file, so we need to write these out to avoid
1830 * exposing stale data.
1831 * The page is currently locked and not marked for writeback
1833 bh = head;
1834 /* Recovery: lock and submit the mapped buffers */
1835 do {
1836 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1837 !buffer_delay(bh)) {
1838 lock_buffer(bh);
1839 mark_buffer_async_write_endio(bh, handler);
1840 } else {
1842 * The buffer may have been set dirty during
1843 * attachment to a dirty page.
1845 clear_buffer_dirty(bh);
1847 } while ((bh = bh->b_this_page) != head);
1848 SetPageError(page);
1849 BUG_ON(PageWriteback(page));
1850 mapping_set_error(page->mapping, err);
1851 set_page_writeback(page);
1852 do {
1853 struct buffer_head *next = bh->b_this_page;
1854 if (buffer_async_write(bh)) {
1855 clear_buffer_dirty(bh);
1856 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1857 inode->i_write_hint, wbc);
1858 nr_underway++;
1860 bh = next;
1861 } while (bh != head);
1862 unlock_page(page);
1863 goto done;
1865 EXPORT_SYMBOL(__block_write_full_page);
1868 * If a page has any new buffers, zero them out here, and mark them uptodate
1869 * and dirty so they'll be written out (in order to prevent uninitialised
1870 * block data from leaking). And clear the new bit.
1872 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1874 unsigned int block_start, block_end;
1875 struct buffer_head *head, *bh;
1877 BUG_ON(!PageLocked(page));
1878 if (!page_has_buffers(page))
1879 return;
1881 bh = head = page_buffers(page);
1882 block_start = 0;
1883 do {
1884 block_end = block_start + bh->b_size;
1886 if (buffer_new(bh)) {
1887 if (block_end > from && block_start < to) {
1888 if (!PageUptodate(page)) {
1889 unsigned start, size;
1891 start = max(from, block_start);
1892 size = min(to, block_end) - start;
1894 zero_user(page, start, size);
1895 set_buffer_uptodate(bh);
1898 clear_buffer_new(bh);
1899 mark_buffer_dirty(bh);
1903 block_start = block_end;
1904 bh = bh->b_this_page;
1905 } while (bh != head);
1907 EXPORT_SYMBOL(page_zero_new_buffers);
1909 static void
1910 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1911 struct iomap *iomap)
1913 loff_t offset = block << inode->i_blkbits;
1915 bh->b_bdev = iomap->bdev;
1918 * Block points to offset in file we need to map, iomap contains
1919 * the offset at which the map starts. If the map ends before the
1920 * current block, then do not map the buffer and let the caller
1921 * handle it.
1923 BUG_ON(offset >= iomap->offset + iomap->length);
1925 switch (iomap->type) {
1926 case IOMAP_HOLE:
1928 * If the buffer is not up to date or beyond the current EOF,
1929 * we need to mark it as new to ensure sub-block zeroing is
1930 * executed if necessary.
1932 if (!buffer_uptodate(bh) ||
1933 (offset >= i_size_read(inode)))
1934 set_buffer_new(bh);
1935 break;
1936 case IOMAP_DELALLOC:
1937 if (!buffer_uptodate(bh) ||
1938 (offset >= i_size_read(inode)))
1939 set_buffer_new(bh);
1940 set_buffer_uptodate(bh);
1941 set_buffer_mapped(bh);
1942 set_buffer_delay(bh);
1943 break;
1944 case IOMAP_UNWRITTEN:
1946 * For unwritten regions, we always need to ensure that regions
1947 * in the block we are not writing to are zeroed. Mark the
1948 * buffer as new to ensure this.
1950 set_buffer_new(bh);
1951 set_buffer_unwritten(bh);
1952 /* FALLTHRU */
1953 case IOMAP_MAPPED:
1954 if ((iomap->flags & IOMAP_F_NEW) ||
1955 offset >= i_size_read(inode))
1956 set_buffer_new(bh);
1957 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1958 inode->i_blkbits;
1959 set_buffer_mapped(bh);
1960 break;
1964 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1965 get_block_t *get_block, struct iomap *iomap)
1967 unsigned from = pos & (PAGE_SIZE - 1);
1968 unsigned to = from + len;
1969 struct inode *inode = page->mapping->host;
1970 unsigned block_start, block_end;
1971 sector_t block;
1972 int err = 0;
1973 unsigned blocksize, bbits;
1974 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1976 BUG_ON(!PageLocked(page));
1977 BUG_ON(from > PAGE_SIZE);
1978 BUG_ON(to > PAGE_SIZE);
1979 BUG_ON(from > to);
1981 head = create_page_buffers(page, inode, 0);
1982 blocksize = head->b_size;
1983 bbits = block_size_bits(blocksize);
1985 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1987 for(bh = head, block_start = 0; bh != head || !block_start;
1988 block++, block_start=block_end, bh = bh->b_this_page) {
1989 block_end = block_start + blocksize;
1990 if (block_end <= from || block_start >= to) {
1991 if (PageUptodate(page)) {
1992 if (!buffer_uptodate(bh))
1993 set_buffer_uptodate(bh);
1995 continue;
1997 if (buffer_new(bh))
1998 clear_buffer_new(bh);
1999 if (!buffer_mapped(bh)) {
2000 WARN_ON(bh->b_size != blocksize);
2001 if (get_block) {
2002 err = get_block(inode, block, bh, 1);
2003 if (err)
2004 break;
2005 } else {
2006 iomap_to_bh(inode, block, bh, iomap);
2009 if (buffer_new(bh)) {
2010 clean_bdev_bh_alias(bh);
2011 if (PageUptodate(page)) {
2012 clear_buffer_new(bh);
2013 set_buffer_uptodate(bh);
2014 mark_buffer_dirty(bh);
2015 continue;
2017 if (block_end > to || block_start < from)
2018 zero_user_segments(page,
2019 to, block_end,
2020 block_start, from);
2021 continue;
2024 if (PageUptodate(page)) {
2025 if (!buffer_uptodate(bh))
2026 set_buffer_uptodate(bh);
2027 continue;
2029 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2030 !buffer_unwritten(bh) &&
2031 (block_start < from || block_end > to)) {
2032 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2033 *wait_bh++=bh;
2037 * If we issued read requests - let them complete.
2039 while(wait_bh > wait) {
2040 wait_on_buffer(*--wait_bh);
2041 if (!buffer_uptodate(*wait_bh))
2042 err = -EIO;
2044 if (unlikely(err))
2045 page_zero_new_buffers(page, from, to);
2046 return err;
2049 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2050 get_block_t *get_block)
2052 return __block_write_begin_int(page, pos, len, get_block, NULL);
2054 EXPORT_SYMBOL(__block_write_begin);
2056 static int __block_commit_write(struct inode *inode, struct page *page,
2057 unsigned from, unsigned to)
2059 unsigned block_start, block_end;
2060 int partial = 0;
2061 unsigned blocksize;
2062 struct buffer_head *bh, *head;
2064 bh = head = page_buffers(page);
2065 blocksize = bh->b_size;
2067 block_start = 0;
2068 do {
2069 block_end = block_start + blocksize;
2070 if (block_end <= from || block_start >= to) {
2071 if (!buffer_uptodate(bh))
2072 partial = 1;
2073 } else {
2074 set_buffer_uptodate(bh);
2075 mark_buffer_dirty(bh);
2077 clear_buffer_new(bh);
2079 block_start = block_end;
2080 bh = bh->b_this_page;
2081 } while (bh != head);
2084 * If this is a partial write which happened to make all buffers
2085 * uptodate then we can optimize away a bogus readpage() for
2086 * the next read(). Here we 'discover' whether the page went
2087 * uptodate as a result of this (potentially partial) write.
2089 if (!partial)
2090 SetPageUptodate(page);
2091 return 0;
2095 * block_write_begin takes care of the basic task of block allocation and
2096 * bringing partial write blocks uptodate first.
2098 * The filesystem needs to handle block truncation upon failure.
2100 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2101 unsigned flags, struct page **pagep, get_block_t *get_block)
2103 pgoff_t index = pos >> PAGE_SHIFT;
2104 struct page *page;
2105 int status;
2107 page = grab_cache_page_write_begin(mapping, index, flags);
2108 if (!page)
2109 return -ENOMEM;
2111 status = __block_write_begin(page, pos, len, get_block);
2112 if (unlikely(status)) {
2113 unlock_page(page);
2114 put_page(page);
2115 page = NULL;
2118 *pagep = page;
2119 return status;
2121 EXPORT_SYMBOL(block_write_begin);
2123 int block_write_end(struct file *file, struct address_space *mapping,
2124 loff_t pos, unsigned len, unsigned copied,
2125 struct page *page, void *fsdata)
2127 struct inode *inode = mapping->host;
2128 unsigned start;
2130 start = pos & (PAGE_SIZE - 1);
2132 if (unlikely(copied < len)) {
2134 * The buffers that were written will now be uptodate, so we
2135 * don't have to worry about a readpage reading them and
2136 * overwriting a partial write. However if we have encountered
2137 * a short write and only partially written into a buffer, it
2138 * will not be marked uptodate, so a readpage might come in and
2139 * destroy our partial write.
2141 * Do the simplest thing, and just treat any short write to a
2142 * non uptodate page as a zero-length write, and force the
2143 * caller to redo the whole thing.
2145 if (!PageUptodate(page))
2146 copied = 0;
2148 page_zero_new_buffers(page, start+copied, start+len);
2150 flush_dcache_page(page);
2152 /* This could be a short (even 0-length) commit */
2153 __block_commit_write(inode, page, start, start+copied);
2155 return copied;
2157 EXPORT_SYMBOL(block_write_end);
2159 int generic_write_end(struct file *file, struct address_space *mapping,
2160 loff_t pos, unsigned len, unsigned copied,
2161 struct page *page, void *fsdata)
2163 struct inode *inode = mapping->host;
2164 loff_t old_size = inode->i_size;
2165 bool i_size_changed = false;
2167 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2170 * No need to use i_size_read() here, the i_size cannot change under us
2171 * because we hold i_rwsem.
2173 * But it's important to update i_size while still holding page lock:
2174 * page writeout could otherwise come in and zero beyond i_size.
2176 if (pos + copied > inode->i_size) {
2177 i_size_write(inode, pos + copied);
2178 i_size_changed = true;
2181 unlock_page(page);
2182 put_page(page);
2184 if (old_size < pos)
2185 pagecache_isize_extended(inode, old_size, pos);
2187 * Don't mark the inode dirty under page lock. First, it unnecessarily
2188 * makes the holding time of page lock longer. Second, it forces lock
2189 * ordering of page lock and transaction start for journaling
2190 * filesystems.
2192 if (i_size_changed)
2193 mark_inode_dirty(inode);
2194 return copied;
2196 EXPORT_SYMBOL(generic_write_end);
2199 * block_is_partially_uptodate checks whether buffers within a page are
2200 * uptodate or not.
2202 * Returns true if all buffers which correspond to a file portion
2203 * we want to read are uptodate.
2205 int block_is_partially_uptodate(struct page *page, unsigned long from,
2206 unsigned long count)
2208 unsigned block_start, block_end, blocksize;
2209 unsigned to;
2210 struct buffer_head *bh, *head;
2211 int ret = 1;
2213 if (!page_has_buffers(page))
2214 return 0;
2216 head = page_buffers(page);
2217 blocksize = head->b_size;
2218 to = min_t(unsigned, PAGE_SIZE - from, count);
2219 to = from + to;
2220 if (from < blocksize && to > PAGE_SIZE - blocksize)
2221 return 0;
2223 bh = head;
2224 block_start = 0;
2225 do {
2226 block_end = block_start + blocksize;
2227 if (block_end > from && block_start < to) {
2228 if (!buffer_uptodate(bh)) {
2229 ret = 0;
2230 break;
2232 if (block_end >= to)
2233 break;
2235 block_start = block_end;
2236 bh = bh->b_this_page;
2237 } while (bh != head);
2239 return ret;
2241 EXPORT_SYMBOL(block_is_partially_uptodate);
2244 * Generic "read page" function for block devices that have the normal
2245 * get_block functionality. This is most of the block device filesystems.
2246 * Reads the page asynchronously --- the unlock_buffer() and
2247 * set/clear_buffer_uptodate() functions propagate buffer state into the
2248 * page struct once IO has completed.
2250 int block_read_full_page(struct page *page, get_block_t *get_block)
2252 struct inode *inode = page->mapping->host;
2253 sector_t iblock, lblock;
2254 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2255 unsigned int blocksize, bbits;
2256 int nr, i;
2257 int fully_mapped = 1;
2259 head = create_page_buffers(page, inode, 0);
2260 blocksize = head->b_size;
2261 bbits = block_size_bits(blocksize);
2263 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2264 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2265 bh = head;
2266 nr = 0;
2267 i = 0;
2269 do {
2270 if (buffer_uptodate(bh))
2271 continue;
2273 if (!buffer_mapped(bh)) {
2274 int err = 0;
2276 fully_mapped = 0;
2277 if (iblock < lblock) {
2278 WARN_ON(bh->b_size != blocksize);
2279 err = get_block(inode, iblock, bh, 0);
2280 if (err)
2281 SetPageError(page);
2283 if (!buffer_mapped(bh)) {
2284 zero_user(page, i * blocksize, blocksize);
2285 if (!err)
2286 set_buffer_uptodate(bh);
2287 continue;
2290 * get_block() might have updated the buffer
2291 * synchronously
2293 if (buffer_uptodate(bh))
2294 continue;
2296 arr[nr++] = bh;
2297 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2299 if (fully_mapped)
2300 SetPageMappedToDisk(page);
2302 if (!nr) {
2304 * All buffers are uptodate - we can set the page uptodate
2305 * as well. But not if get_block() returned an error.
2307 if (!PageError(page))
2308 SetPageUptodate(page);
2309 unlock_page(page);
2310 return 0;
2313 /* Stage two: lock the buffers */
2314 for (i = 0; i < nr; i++) {
2315 bh = arr[i];
2316 lock_buffer(bh);
2317 mark_buffer_async_read(bh);
2321 * Stage 3: start the IO. Check for uptodateness
2322 * inside the buffer lock in case another process reading
2323 * the underlying blockdev brought it uptodate (the sct fix).
2325 for (i = 0; i < nr; i++) {
2326 bh = arr[i];
2327 if (buffer_uptodate(bh))
2328 end_buffer_async_read(bh, 1);
2329 else
2330 submit_bh(REQ_OP_READ, 0, bh);
2332 return 0;
2334 EXPORT_SYMBOL(block_read_full_page);
2336 /* utility function for filesystems that need to do work on expanding
2337 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2338 * deal with the hole.
2340 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2342 struct address_space *mapping = inode->i_mapping;
2343 struct page *page;
2344 void *fsdata;
2345 int err;
2347 err = inode_newsize_ok(inode, size);
2348 if (err)
2349 goto out;
2351 err = pagecache_write_begin(NULL, mapping, size, 0,
2352 AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2353 if (err)
2354 goto out;
2356 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2357 BUG_ON(err > 0);
2359 out:
2360 return err;
2362 EXPORT_SYMBOL(generic_cont_expand_simple);
2364 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2365 loff_t pos, loff_t *bytes)
2367 struct inode *inode = mapping->host;
2368 unsigned int blocksize = i_blocksize(inode);
2369 struct page *page;
2370 void *fsdata;
2371 pgoff_t index, curidx;
2372 loff_t curpos;
2373 unsigned zerofrom, offset, len;
2374 int err = 0;
2376 index = pos >> PAGE_SHIFT;
2377 offset = pos & ~PAGE_MASK;
2379 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2380 zerofrom = curpos & ~PAGE_MASK;
2381 if (zerofrom & (blocksize-1)) {
2382 *bytes |= (blocksize-1);
2383 (*bytes)++;
2385 len = PAGE_SIZE - zerofrom;
2387 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2388 &page, &fsdata);
2389 if (err)
2390 goto out;
2391 zero_user(page, zerofrom, len);
2392 err = pagecache_write_end(file, mapping, curpos, len, len,
2393 page, fsdata);
2394 if (err < 0)
2395 goto out;
2396 BUG_ON(err != len);
2397 err = 0;
2399 balance_dirty_pages_ratelimited(mapping);
2401 if (fatal_signal_pending(current)) {
2402 err = -EINTR;
2403 goto out;
2407 /* page covers the boundary, find the boundary offset */
2408 if (index == curidx) {
2409 zerofrom = curpos & ~PAGE_MASK;
2410 /* if we will expand the thing last block will be filled */
2411 if (offset <= zerofrom) {
2412 goto out;
2414 if (zerofrom & (blocksize-1)) {
2415 *bytes |= (blocksize-1);
2416 (*bytes)++;
2418 len = offset - zerofrom;
2420 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2421 &page, &fsdata);
2422 if (err)
2423 goto out;
2424 zero_user(page, zerofrom, len);
2425 err = pagecache_write_end(file, mapping, curpos, len, len,
2426 page, fsdata);
2427 if (err < 0)
2428 goto out;
2429 BUG_ON(err != len);
2430 err = 0;
2432 out:
2433 return err;
2437 * For moronic filesystems that do not allow holes in file.
2438 * We may have to extend the file.
2440 int cont_write_begin(struct file *file, struct address_space *mapping,
2441 loff_t pos, unsigned len, unsigned flags,
2442 struct page **pagep, void **fsdata,
2443 get_block_t *get_block, loff_t *bytes)
2445 struct inode *inode = mapping->host;
2446 unsigned int blocksize = i_blocksize(inode);
2447 unsigned int zerofrom;
2448 int err;
2450 err = cont_expand_zero(file, mapping, pos, bytes);
2451 if (err)
2452 return err;
2454 zerofrom = *bytes & ~PAGE_MASK;
2455 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2456 *bytes |= (blocksize-1);
2457 (*bytes)++;
2460 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2462 EXPORT_SYMBOL(cont_write_begin);
2464 int block_commit_write(struct page *page, unsigned from, unsigned to)
2466 struct inode *inode = page->mapping->host;
2467 __block_commit_write(inode,page,from,to);
2468 return 0;
2470 EXPORT_SYMBOL(block_commit_write);
2473 * block_page_mkwrite() is not allowed to change the file size as it gets
2474 * called from a page fault handler when a page is first dirtied. Hence we must
2475 * be careful to check for EOF conditions here. We set the page up correctly
2476 * for a written page which means we get ENOSPC checking when writing into
2477 * holes and correct delalloc and unwritten extent mapping on filesystems that
2478 * support these features.
2480 * We are not allowed to take the i_mutex here so we have to play games to
2481 * protect against truncate races as the page could now be beyond EOF. Because
2482 * truncate writes the inode size before removing pages, once we have the
2483 * page lock we can determine safely if the page is beyond EOF. If it is not
2484 * beyond EOF, then the page is guaranteed safe against truncation until we
2485 * unlock the page.
2487 * Direct callers of this function should protect against filesystem freezing
2488 * using sb_start_pagefault() - sb_end_pagefault() functions.
2490 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2491 get_block_t get_block)
2493 struct page *page = vmf->page;
2494 struct inode *inode = file_inode(vma->vm_file);
2495 unsigned long end;
2496 loff_t size;
2497 int ret;
2499 lock_page(page);
2500 size = i_size_read(inode);
2501 if ((page->mapping != inode->i_mapping) ||
2502 (page_offset(page) > size)) {
2503 /* We overload EFAULT to mean page got truncated */
2504 ret = -EFAULT;
2505 goto out_unlock;
2508 /* page is wholly or partially inside EOF */
2509 if (((page->index + 1) << PAGE_SHIFT) > size)
2510 end = size & ~PAGE_MASK;
2511 else
2512 end = PAGE_SIZE;
2514 ret = __block_write_begin(page, 0, end, get_block);
2515 if (!ret)
2516 ret = block_commit_write(page, 0, end);
2518 if (unlikely(ret < 0))
2519 goto out_unlock;
2520 set_page_dirty(page);
2521 wait_for_stable_page(page);
2522 return 0;
2523 out_unlock:
2524 unlock_page(page);
2525 return ret;
2527 EXPORT_SYMBOL(block_page_mkwrite);
2530 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2531 * immediately, while under the page lock. So it needs a special end_io
2532 * handler which does not touch the bh after unlocking it.
2534 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2536 __end_buffer_read_notouch(bh, uptodate);
2540 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2541 * the page (converting it to circular linked list and taking care of page
2542 * dirty races).
2544 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2546 struct buffer_head *bh;
2548 BUG_ON(!PageLocked(page));
2550 spin_lock(&page->mapping->private_lock);
2551 bh = head;
2552 do {
2553 if (PageDirty(page))
2554 set_buffer_dirty(bh);
2555 if (!bh->b_this_page)
2556 bh->b_this_page = head;
2557 bh = bh->b_this_page;
2558 } while (bh != head);
2559 attach_page_buffers(page, head);
2560 spin_unlock(&page->mapping->private_lock);
2564 * On entry, the page is fully not uptodate.
2565 * On exit the page is fully uptodate in the areas outside (from,to)
2566 * The filesystem needs to handle block truncation upon failure.
2568 int nobh_write_begin(struct address_space *mapping,
2569 loff_t pos, unsigned len, unsigned flags,
2570 struct page **pagep, void **fsdata,
2571 get_block_t *get_block)
2573 struct inode *inode = mapping->host;
2574 const unsigned blkbits = inode->i_blkbits;
2575 const unsigned blocksize = 1 << blkbits;
2576 struct buffer_head *head, *bh;
2577 struct page *page;
2578 pgoff_t index;
2579 unsigned from, to;
2580 unsigned block_in_page;
2581 unsigned block_start, block_end;
2582 sector_t block_in_file;
2583 int nr_reads = 0;
2584 int ret = 0;
2585 int is_mapped_to_disk = 1;
2587 index = pos >> PAGE_SHIFT;
2588 from = pos & (PAGE_SIZE - 1);
2589 to = from + len;
2591 page = grab_cache_page_write_begin(mapping, index, flags);
2592 if (!page)
2593 return -ENOMEM;
2594 *pagep = page;
2595 *fsdata = NULL;
2597 if (page_has_buffers(page)) {
2598 ret = __block_write_begin(page, pos, len, get_block);
2599 if (unlikely(ret))
2600 goto out_release;
2601 return ret;
2604 if (PageMappedToDisk(page))
2605 return 0;
2608 * Allocate buffers so that we can keep track of state, and potentially
2609 * attach them to the page if an error occurs. In the common case of
2610 * no error, they will just be freed again without ever being attached
2611 * to the page (which is all OK, because we're under the page lock).
2613 * Be careful: the buffer linked list is a NULL terminated one, rather
2614 * than the circular one we're used to.
2616 head = alloc_page_buffers(page, blocksize, false);
2617 if (!head) {
2618 ret = -ENOMEM;
2619 goto out_release;
2622 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2625 * We loop across all blocks in the page, whether or not they are
2626 * part of the affected region. This is so we can discover if the
2627 * page is fully mapped-to-disk.
2629 for (block_start = 0, block_in_page = 0, bh = head;
2630 block_start < PAGE_SIZE;
2631 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2632 int create;
2634 block_end = block_start + blocksize;
2635 bh->b_state = 0;
2636 create = 1;
2637 if (block_start >= to)
2638 create = 0;
2639 ret = get_block(inode, block_in_file + block_in_page,
2640 bh, create);
2641 if (ret)
2642 goto failed;
2643 if (!buffer_mapped(bh))
2644 is_mapped_to_disk = 0;
2645 if (buffer_new(bh))
2646 clean_bdev_bh_alias(bh);
2647 if (PageUptodate(page)) {
2648 set_buffer_uptodate(bh);
2649 continue;
2651 if (buffer_new(bh) || !buffer_mapped(bh)) {
2652 zero_user_segments(page, block_start, from,
2653 to, block_end);
2654 continue;
2656 if (buffer_uptodate(bh))
2657 continue; /* reiserfs does this */
2658 if (block_start < from || block_end > to) {
2659 lock_buffer(bh);
2660 bh->b_end_io = end_buffer_read_nobh;
2661 submit_bh(REQ_OP_READ, 0, bh);
2662 nr_reads++;
2666 if (nr_reads) {
2668 * The page is locked, so these buffers are protected from
2669 * any VM or truncate activity. Hence we don't need to care
2670 * for the buffer_head refcounts.
2672 for (bh = head; bh; bh = bh->b_this_page) {
2673 wait_on_buffer(bh);
2674 if (!buffer_uptodate(bh))
2675 ret = -EIO;
2677 if (ret)
2678 goto failed;
2681 if (is_mapped_to_disk)
2682 SetPageMappedToDisk(page);
2684 *fsdata = head; /* to be released by nobh_write_end */
2686 return 0;
2688 failed:
2689 BUG_ON(!ret);
2691 * Error recovery is a bit difficult. We need to zero out blocks that
2692 * were newly allocated, and dirty them to ensure they get written out.
2693 * Buffers need to be attached to the page at this point, otherwise
2694 * the handling of potential IO errors during writeout would be hard
2695 * (could try doing synchronous writeout, but what if that fails too?)
2697 attach_nobh_buffers(page, head);
2698 page_zero_new_buffers(page, from, to);
2700 out_release:
2701 unlock_page(page);
2702 put_page(page);
2703 *pagep = NULL;
2705 return ret;
2707 EXPORT_SYMBOL(nobh_write_begin);
2709 int nobh_write_end(struct file *file, struct address_space *mapping,
2710 loff_t pos, unsigned len, unsigned copied,
2711 struct page *page, void *fsdata)
2713 struct inode *inode = page->mapping->host;
2714 struct buffer_head *head = fsdata;
2715 struct buffer_head *bh;
2716 BUG_ON(fsdata != NULL && page_has_buffers(page));
2718 if (unlikely(copied < len) && head)
2719 attach_nobh_buffers(page, head);
2720 if (page_has_buffers(page))
2721 return generic_write_end(file, mapping, pos, len,
2722 copied, page, fsdata);
2724 SetPageUptodate(page);
2725 set_page_dirty(page);
2726 if (pos+copied > inode->i_size) {
2727 i_size_write(inode, pos+copied);
2728 mark_inode_dirty(inode);
2731 unlock_page(page);
2732 put_page(page);
2734 while (head) {
2735 bh = head;
2736 head = head->b_this_page;
2737 free_buffer_head(bh);
2740 return copied;
2742 EXPORT_SYMBOL(nobh_write_end);
2745 * nobh_writepage() - based on block_full_write_page() except
2746 * that it tries to operate without attaching bufferheads to
2747 * the page.
2749 int nobh_writepage(struct page *page, get_block_t *get_block,
2750 struct writeback_control *wbc)
2752 struct inode * const inode = page->mapping->host;
2753 loff_t i_size = i_size_read(inode);
2754 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2755 unsigned offset;
2756 int ret;
2758 /* Is the page fully inside i_size? */
2759 if (page->index < end_index)
2760 goto out;
2762 /* Is the page fully outside i_size? (truncate in progress) */
2763 offset = i_size & (PAGE_SIZE-1);
2764 if (page->index >= end_index+1 || !offset) {
2766 * The page may have dirty, unmapped buffers. For example,
2767 * they may have been added in ext3_writepage(). Make them
2768 * freeable here, so the page does not leak.
2770 #if 0
2771 /* Not really sure about this - do we need this ? */
2772 if (page->mapping->a_ops->invalidatepage)
2773 page->mapping->a_ops->invalidatepage(page, offset);
2774 #endif
2775 unlock_page(page);
2776 return 0; /* don't care */
2780 * The page straddles i_size. It must be zeroed out on each and every
2781 * writepage invocation because it may be mmapped. "A file is mapped
2782 * in multiples of the page size. For a file that is not a multiple of
2783 * the page size, the remaining memory is zeroed when mapped, and
2784 * writes to that region are not written out to the file."
2786 zero_user_segment(page, offset, PAGE_SIZE);
2787 out:
2788 ret = mpage_writepage(page, get_block, wbc);
2789 if (ret == -EAGAIN)
2790 ret = __block_write_full_page(inode, page, get_block, wbc,
2791 end_buffer_async_write);
2792 return ret;
2794 EXPORT_SYMBOL(nobh_writepage);
2796 int nobh_truncate_page(struct address_space *mapping,
2797 loff_t from, get_block_t *get_block)
2799 pgoff_t index = from >> PAGE_SHIFT;
2800 unsigned offset = from & (PAGE_SIZE-1);
2801 unsigned blocksize;
2802 sector_t iblock;
2803 unsigned length, pos;
2804 struct inode *inode = mapping->host;
2805 struct page *page;
2806 struct buffer_head map_bh;
2807 int err;
2809 blocksize = i_blocksize(inode);
2810 length = offset & (blocksize - 1);
2812 /* Block boundary? Nothing to do */
2813 if (!length)
2814 return 0;
2816 length = blocksize - length;
2817 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2819 page = grab_cache_page(mapping, index);
2820 err = -ENOMEM;
2821 if (!page)
2822 goto out;
2824 if (page_has_buffers(page)) {
2825 has_buffers:
2826 unlock_page(page);
2827 put_page(page);
2828 return block_truncate_page(mapping, from, get_block);
2831 /* Find the buffer that contains "offset" */
2832 pos = blocksize;
2833 while (offset >= pos) {
2834 iblock++;
2835 pos += blocksize;
2838 map_bh.b_size = blocksize;
2839 map_bh.b_state = 0;
2840 err = get_block(inode, iblock, &map_bh, 0);
2841 if (err)
2842 goto unlock;
2843 /* unmapped? It's a hole - nothing to do */
2844 if (!buffer_mapped(&map_bh))
2845 goto unlock;
2847 /* Ok, it's mapped. Make sure it's up-to-date */
2848 if (!PageUptodate(page)) {
2849 err = mapping->a_ops->readpage(NULL, page);
2850 if (err) {
2851 put_page(page);
2852 goto out;
2854 lock_page(page);
2855 if (!PageUptodate(page)) {
2856 err = -EIO;
2857 goto unlock;
2859 if (page_has_buffers(page))
2860 goto has_buffers;
2862 zero_user(page, offset, length);
2863 set_page_dirty(page);
2864 err = 0;
2866 unlock:
2867 unlock_page(page);
2868 put_page(page);
2869 out:
2870 return err;
2872 EXPORT_SYMBOL(nobh_truncate_page);
2874 int block_truncate_page(struct address_space *mapping,
2875 loff_t from, get_block_t *get_block)
2877 pgoff_t index = from >> PAGE_SHIFT;
2878 unsigned offset = from & (PAGE_SIZE-1);
2879 unsigned blocksize;
2880 sector_t iblock;
2881 unsigned length, pos;
2882 struct inode *inode = mapping->host;
2883 struct page *page;
2884 struct buffer_head *bh;
2885 int err;
2887 blocksize = i_blocksize(inode);
2888 length = offset & (blocksize - 1);
2890 /* Block boundary? Nothing to do */
2891 if (!length)
2892 return 0;
2894 length = blocksize - length;
2895 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2897 page = grab_cache_page(mapping, index);
2898 err = -ENOMEM;
2899 if (!page)
2900 goto out;
2902 if (!page_has_buffers(page))
2903 create_empty_buffers(page, blocksize, 0);
2905 /* Find the buffer that contains "offset" */
2906 bh = page_buffers(page);
2907 pos = blocksize;
2908 while (offset >= pos) {
2909 bh = bh->b_this_page;
2910 iblock++;
2911 pos += blocksize;
2914 err = 0;
2915 if (!buffer_mapped(bh)) {
2916 WARN_ON(bh->b_size != blocksize);
2917 err = get_block(inode, iblock, bh, 0);
2918 if (err)
2919 goto unlock;
2920 /* unmapped? It's a hole - nothing to do */
2921 if (!buffer_mapped(bh))
2922 goto unlock;
2925 /* Ok, it's mapped. Make sure it's up-to-date */
2926 if (PageUptodate(page))
2927 set_buffer_uptodate(bh);
2929 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2930 err = -EIO;
2931 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2932 wait_on_buffer(bh);
2933 /* Uhhuh. Read error. Complain and punt. */
2934 if (!buffer_uptodate(bh))
2935 goto unlock;
2938 zero_user(page, offset, length);
2939 mark_buffer_dirty(bh);
2940 err = 0;
2942 unlock:
2943 unlock_page(page);
2944 put_page(page);
2945 out:
2946 return err;
2948 EXPORT_SYMBOL(block_truncate_page);
2951 * The generic ->writepage function for buffer-backed address_spaces
2953 int block_write_full_page(struct page *page, get_block_t *get_block,
2954 struct writeback_control *wbc)
2956 struct inode * const inode = page->mapping->host;
2957 loff_t i_size = i_size_read(inode);
2958 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2959 unsigned offset;
2961 /* Is the page fully inside i_size? */
2962 if (page->index < end_index)
2963 return __block_write_full_page(inode, page, get_block, wbc,
2964 end_buffer_async_write);
2966 /* Is the page fully outside i_size? (truncate in progress) */
2967 offset = i_size & (PAGE_SIZE-1);
2968 if (page->index >= end_index+1 || !offset) {
2970 * The page may have dirty, unmapped buffers. For example,
2971 * they may have been added in ext3_writepage(). Make them
2972 * freeable here, so the page does not leak.
2974 do_invalidatepage(page, 0, PAGE_SIZE);
2975 unlock_page(page);
2976 return 0; /* don't care */
2980 * The page straddles i_size. It must be zeroed out on each and every
2981 * writepage invocation because it may be mmapped. "A file is mapped
2982 * in multiples of the page size. For a file that is not a multiple of
2983 * the page size, the remaining memory is zeroed when mapped, and
2984 * writes to that region are not written out to the file."
2986 zero_user_segment(page, offset, PAGE_SIZE);
2987 return __block_write_full_page(inode, page, get_block, wbc,
2988 end_buffer_async_write);
2990 EXPORT_SYMBOL(block_write_full_page);
2992 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2993 get_block_t *get_block)
2995 struct inode *inode = mapping->host;
2996 struct buffer_head tmp = {
2997 .b_size = i_blocksize(inode),
3000 get_block(inode, block, &tmp, 0);
3001 return tmp.b_blocknr;
3003 EXPORT_SYMBOL(generic_block_bmap);
3005 static void end_bio_bh_io_sync(struct bio *bio)
3007 struct buffer_head *bh = bio->bi_private;
3009 if (unlikely(bio_flagged(bio, BIO_QUIET)))
3010 set_bit(BH_Quiet, &bh->b_state);
3012 bh->b_end_io(bh, !bio->bi_status);
3013 bio_put(bio);
3016 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3017 enum rw_hint write_hint, struct writeback_control *wbc)
3019 struct bio *bio;
3021 BUG_ON(!buffer_locked(bh));
3022 BUG_ON(!buffer_mapped(bh));
3023 BUG_ON(!bh->b_end_io);
3024 BUG_ON(buffer_delay(bh));
3025 BUG_ON(buffer_unwritten(bh));
3028 * Only clear out a write error when rewriting
3030 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3031 clear_buffer_write_io_error(bh);
3034 * from here on down, it's all bio -- do the initial mapping,
3035 * submit_bio -> generic_make_request may further map this bio around
3037 bio = bio_alloc(GFP_NOIO, 1);
3039 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3040 bio_set_dev(bio, bh->b_bdev);
3041 bio->bi_write_hint = write_hint;
3043 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3044 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3046 bio->bi_end_io = end_bio_bh_io_sync;
3047 bio->bi_private = bh;
3049 if (buffer_meta(bh))
3050 op_flags |= REQ_META;
3051 if (buffer_prio(bh))
3052 op_flags |= REQ_PRIO;
3053 bio_set_op_attrs(bio, op, op_flags);
3055 /* Take care of bh's that straddle the end of the device */
3056 guard_bio_eod(bio);
3058 if (wbc) {
3059 wbc_init_bio(wbc, bio);
3060 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3063 submit_bio(bio);
3064 return 0;
3067 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3069 return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3071 EXPORT_SYMBOL(submit_bh);
3074 * ll_rw_block: low-level access to block devices (DEPRECATED)
3075 * @op: whether to %READ or %WRITE
3076 * @op_flags: req_flag_bits
3077 * @nr: number of &struct buffer_heads in the array
3078 * @bhs: array of pointers to &struct buffer_head
3080 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3081 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3082 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3083 * %REQ_RAHEAD.
3085 * This function drops any buffer that it cannot get a lock on (with the
3086 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3087 * request, and any buffer that appears to be up-to-date when doing read
3088 * request. Further it marks as clean buffers that are processed for
3089 * writing (the buffer cache won't assume that they are actually clean
3090 * until the buffer gets unlocked).
3092 * ll_rw_block sets b_end_io to simple completion handler that marks
3093 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3094 * any waiters.
3096 * All of the buffers must be for the same device, and must also be a
3097 * multiple of the current approved size for the device.
3099 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
3101 int i;
3103 for (i = 0; i < nr; i++) {
3104 struct buffer_head *bh = bhs[i];
3106 if (!trylock_buffer(bh))
3107 continue;
3108 if (op == WRITE) {
3109 if (test_clear_buffer_dirty(bh)) {
3110 bh->b_end_io = end_buffer_write_sync;
3111 get_bh(bh);
3112 submit_bh(op, op_flags, bh);
3113 continue;
3115 } else {
3116 if (!buffer_uptodate(bh)) {
3117 bh->b_end_io = end_buffer_read_sync;
3118 get_bh(bh);
3119 submit_bh(op, op_flags, bh);
3120 continue;
3123 unlock_buffer(bh);
3126 EXPORT_SYMBOL(ll_rw_block);
3128 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3130 lock_buffer(bh);
3131 if (!test_clear_buffer_dirty(bh)) {
3132 unlock_buffer(bh);
3133 return;
3135 bh->b_end_io = end_buffer_write_sync;
3136 get_bh(bh);
3137 submit_bh(REQ_OP_WRITE, op_flags, bh);
3139 EXPORT_SYMBOL(write_dirty_buffer);
3142 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3143 * and then start new I/O and then wait upon it. The caller must have a ref on
3144 * the buffer_head.
3146 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3148 int ret = 0;
3150 WARN_ON(atomic_read(&bh->b_count) < 1);
3151 lock_buffer(bh);
3152 if (test_clear_buffer_dirty(bh)) {
3153 get_bh(bh);
3154 bh->b_end_io = end_buffer_write_sync;
3155 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3156 wait_on_buffer(bh);
3157 if (!ret && !buffer_uptodate(bh))
3158 ret = -EIO;
3159 } else {
3160 unlock_buffer(bh);
3162 return ret;
3164 EXPORT_SYMBOL(__sync_dirty_buffer);
3166 int sync_dirty_buffer(struct buffer_head *bh)
3168 return __sync_dirty_buffer(bh, REQ_SYNC);
3170 EXPORT_SYMBOL(sync_dirty_buffer);
3173 * try_to_free_buffers() checks if all the buffers on this particular page
3174 * are unused, and releases them if so.
3176 * Exclusion against try_to_free_buffers may be obtained by either
3177 * locking the page or by holding its mapping's private_lock.
3179 * If the page is dirty but all the buffers are clean then we need to
3180 * be sure to mark the page clean as well. This is because the page
3181 * may be against a block device, and a later reattachment of buffers
3182 * to a dirty page will set *all* buffers dirty. Which would corrupt
3183 * filesystem data on the same device.
3185 * The same applies to regular filesystem pages: if all the buffers are
3186 * clean then we set the page clean and proceed. To do that, we require
3187 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3188 * private_lock.
3190 * try_to_free_buffers() is non-blocking.
3192 static inline int buffer_busy(struct buffer_head *bh)
3194 return atomic_read(&bh->b_count) |
3195 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3198 static int
3199 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3201 struct buffer_head *head = page_buffers(page);
3202 struct buffer_head *bh;
3204 bh = head;
3205 do {
3206 if (buffer_busy(bh))
3207 goto failed;
3208 bh = bh->b_this_page;
3209 } while (bh != head);
3211 do {
3212 struct buffer_head *next = bh->b_this_page;
3214 if (bh->b_assoc_map)
3215 __remove_assoc_queue(bh);
3216 bh = next;
3217 } while (bh != head);
3218 *buffers_to_free = head;
3219 __clear_page_buffers(page);
3220 return 1;
3221 failed:
3222 return 0;
3225 int try_to_free_buffers(struct page *page)
3227 struct address_space * const mapping = page->mapping;
3228 struct buffer_head *buffers_to_free = NULL;
3229 int ret = 0;
3231 BUG_ON(!PageLocked(page));
3232 if (PageWriteback(page))
3233 return 0;
3235 if (mapping == NULL) { /* can this still happen? */
3236 ret = drop_buffers(page, &buffers_to_free);
3237 goto out;
3240 spin_lock(&mapping->private_lock);
3241 ret = drop_buffers(page, &buffers_to_free);
3244 * If the filesystem writes its buffers by hand (eg ext3)
3245 * then we can have clean buffers against a dirty page. We
3246 * clean the page here; otherwise the VM will never notice
3247 * that the filesystem did any IO at all.
3249 * Also, during truncate, discard_buffer will have marked all
3250 * the page's buffers clean. We discover that here and clean
3251 * the page also.
3253 * private_lock must be held over this entire operation in order
3254 * to synchronise against __set_page_dirty_buffers and prevent the
3255 * dirty bit from being lost.
3257 if (ret)
3258 cancel_dirty_page(page);
3259 spin_unlock(&mapping->private_lock);
3260 out:
3261 if (buffers_to_free) {
3262 struct buffer_head *bh = buffers_to_free;
3264 do {
3265 struct buffer_head *next = bh->b_this_page;
3266 free_buffer_head(bh);
3267 bh = next;
3268 } while (bh != buffers_to_free);
3270 return ret;
3272 EXPORT_SYMBOL(try_to_free_buffers);
3275 * There are no bdflush tunables left. But distributions are
3276 * still running obsolete flush daemons, so we terminate them here.
3278 * Use of bdflush() is deprecated and will be removed in a future kernel.
3279 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3281 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3283 static int msg_count;
3285 if (!capable(CAP_SYS_ADMIN))
3286 return -EPERM;
3288 if (msg_count < 5) {
3289 msg_count++;
3290 printk(KERN_INFO
3291 "warning: process `%s' used the obsolete bdflush"
3292 " system call\n", current->comm);
3293 printk(KERN_INFO "Fix your initscripts?\n");
3296 if (func == 1)
3297 do_exit(0);
3298 return 0;
3302 * Buffer-head allocation
3304 static struct kmem_cache *bh_cachep __read_mostly;
3307 * Once the number of bh's in the machine exceeds this level, we start
3308 * stripping them in writeback.
3310 static unsigned long max_buffer_heads;
3312 int buffer_heads_over_limit;
3314 struct bh_accounting {
3315 int nr; /* Number of live bh's */
3316 int ratelimit; /* Limit cacheline bouncing */
3319 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3321 static void recalc_bh_state(void)
3323 int i;
3324 int tot = 0;
3326 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3327 return;
3328 __this_cpu_write(bh_accounting.ratelimit, 0);
3329 for_each_online_cpu(i)
3330 tot += per_cpu(bh_accounting, i).nr;
3331 buffer_heads_over_limit = (tot > max_buffer_heads);
3334 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3336 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3337 if (ret) {
3338 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3339 spin_lock_init(&ret->b_uptodate_lock);
3340 preempt_disable();
3341 __this_cpu_inc(bh_accounting.nr);
3342 recalc_bh_state();
3343 preempt_enable();
3345 return ret;
3347 EXPORT_SYMBOL(alloc_buffer_head);
3349 void free_buffer_head(struct buffer_head *bh)
3351 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3352 kmem_cache_free(bh_cachep, bh);
3353 preempt_disable();
3354 __this_cpu_dec(bh_accounting.nr);
3355 recalc_bh_state();
3356 preempt_enable();
3358 EXPORT_SYMBOL(free_buffer_head);
3360 static int buffer_exit_cpu_dead(unsigned int cpu)
3362 int i;
3363 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3365 for (i = 0; i < BH_LRU_SIZE; i++) {
3366 brelse(b->bhs[i]);
3367 b->bhs[i] = NULL;
3369 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3370 per_cpu(bh_accounting, cpu).nr = 0;
3371 return 0;
3375 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3376 * @bh: struct buffer_head
3378 * Return true if the buffer is up-to-date and false,
3379 * with the buffer locked, if not.
3381 int bh_uptodate_or_lock(struct buffer_head *bh)
3383 if (!buffer_uptodate(bh)) {
3384 lock_buffer(bh);
3385 if (!buffer_uptodate(bh))
3386 return 0;
3387 unlock_buffer(bh);
3389 return 1;
3391 EXPORT_SYMBOL(bh_uptodate_or_lock);
3394 * bh_submit_read - Submit a locked buffer for reading
3395 * @bh: struct buffer_head
3397 * Returns zero on success and -EIO on error.
3399 int bh_submit_read(struct buffer_head *bh)
3401 BUG_ON(!buffer_locked(bh));
3403 if (buffer_uptodate(bh)) {
3404 unlock_buffer(bh);
3405 return 0;
3408 get_bh(bh);
3409 bh->b_end_io = end_buffer_read_sync;
3410 submit_bh(REQ_OP_READ, 0, bh);
3411 wait_on_buffer(bh);
3412 if (buffer_uptodate(bh))
3413 return 0;
3414 return -EIO;
3416 EXPORT_SYMBOL(bh_submit_read);
3418 void __init buffer_init(void)
3420 unsigned long nrpages;
3421 int ret;
3423 bh_cachep = kmem_cache_create("buffer_head",
3424 sizeof(struct buffer_head), 0,
3425 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3426 SLAB_MEM_SPREAD),
3427 NULL);
3430 * Limit the bh occupancy to 10% of ZONE_NORMAL
3432 nrpages = (nr_free_buffer_pages() * 10) / 100;
3433 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3434 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3435 NULL, buffer_exit_cpu_dead);
3436 WARN_ON(ret < 0);