1 // SPDX-License-Identifier: GPL-2.0
3 * linux/fs/ext4/ialloc.c
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
10 * BSD ufs-inspired inode and directory allocation by
11 * Stephen Tweedie (sct@redhat.com), 1993
12 * Big-endian to little-endian byte-swapping/bitmaps by
13 * David S. Miller (davem@caip.rutgers.edu), 1995
16 #include <linux/time.h>
18 #include <linux/stat.h>
19 #include <linux/string.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/random.h>
23 #include <linux/bitops.h>
24 #include <linux/blkdev.h>
25 #include <linux/cred.h>
27 #include <asm/byteorder.h>
30 #include "ext4_jbd2.h"
34 #include <trace/events/ext4.h>
37 * ialloc.c contains the inodes allocation and deallocation routines
41 * The free inodes are managed by bitmaps. A file system contains several
42 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
43 * block for inodes, N blocks for the inode table and data blocks.
45 * The file system contains group descriptors which are located after the
46 * super block. Each descriptor contains the number of the bitmap block and
47 * the free blocks count in the block.
51 * To avoid calling the atomic setbit hundreds or thousands of times, we only
52 * need to use it within a single byte (to ensure we get endianness right).
53 * We can use memset for the rest of the bitmap as there are no other users.
55 void ext4_mark_bitmap_end(int start_bit
, int end_bit
, char *bitmap
)
59 if (start_bit
>= end_bit
)
62 ext4_debug("mark end bits +%d through +%d used\n", start_bit
, end_bit
);
63 for (i
= start_bit
; i
< ((start_bit
+ 7) & ~7UL); i
++)
64 ext4_set_bit(i
, bitmap
);
66 memset(bitmap
+ (i
>> 3), 0xff, (end_bit
- i
) >> 3);
69 void ext4_end_bitmap_read(struct buffer_head
*bh
, int uptodate
)
72 set_buffer_uptodate(bh
);
73 set_bitmap_uptodate(bh
);
79 static int ext4_validate_inode_bitmap(struct super_block
*sb
,
80 struct ext4_group_desc
*desc
,
81 ext4_group_t block_group
,
82 struct buffer_head
*bh
)
85 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, block_group
);
87 if (buffer_verified(bh
))
89 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp
))
92 ext4_lock_group(sb
, block_group
);
93 if (buffer_verified(bh
))
95 blk
= ext4_inode_bitmap(sb
, desc
);
96 if (!ext4_inode_bitmap_csum_verify(sb
, block_group
, desc
, bh
,
97 EXT4_INODES_PER_GROUP(sb
) / 8) ||
98 ext4_simulate_fail(sb
, EXT4_SIM_IBITMAP_CRC
)) {
99 ext4_unlock_group(sb
, block_group
);
100 ext4_error(sb
, "Corrupt inode bitmap - block_group = %u, "
101 "inode_bitmap = %llu", block_group
, blk
);
102 ext4_mark_group_bitmap_corrupted(sb
, block_group
,
103 EXT4_GROUP_INFO_IBITMAP_CORRUPT
);
106 set_buffer_verified(bh
);
108 ext4_unlock_group(sb
, block_group
);
113 * Read the inode allocation bitmap for a given block_group, reading
114 * into the specified slot in the superblock's bitmap cache.
116 * Return buffer_head of bitmap on success or NULL.
118 static struct buffer_head
*
119 ext4_read_inode_bitmap(struct super_block
*sb
, ext4_group_t block_group
)
121 struct ext4_group_desc
*desc
;
122 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
123 struct buffer_head
*bh
= NULL
;
124 ext4_fsblk_t bitmap_blk
;
127 desc
= ext4_get_group_desc(sb
, block_group
, NULL
);
129 return ERR_PTR(-EFSCORRUPTED
);
131 bitmap_blk
= ext4_inode_bitmap(sb
, desc
);
132 if ((bitmap_blk
<= le32_to_cpu(sbi
->s_es
->s_first_data_block
)) ||
133 (bitmap_blk
>= ext4_blocks_count(sbi
->s_es
))) {
134 ext4_error(sb
, "Invalid inode bitmap blk %llu in "
135 "block_group %u", bitmap_blk
, block_group
);
136 ext4_mark_group_bitmap_corrupted(sb
, block_group
,
137 EXT4_GROUP_INFO_IBITMAP_CORRUPT
);
138 return ERR_PTR(-EFSCORRUPTED
);
140 bh
= sb_getblk(sb
, bitmap_blk
);
142 ext4_warning(sb
, "Cannot read inode bitmap - "
143 "block_group = %u, inode_bitmap = %llu",
144 block_group
, bitmap_blk
);
145 return ERR_PTR(-ENOMEM
);
147 if (bitmap_uptodate(bh
))
151 if (bitmap_uptodate(bh
)) {
156 ext4_lock_group(sb
, block_group
);
157 if (ext4_has_group_desc_csum(sb
) &&
158 (desc
->bg_flags
& cpu_to_le16(EXT4_BG_INODE_UNINIT
))) {
159 if (block_group
== 0) {
160 ext4_unlock_group(sb
, block_group
);
162 ext4_error(sb
, "Inode bitmap for bg 0 marked "
167 memset(bh
->b_data
, 0, (EXT4_INODES_PER_GROUP(sb
) + 7) / 8);
168 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb
),
169 sb
->s_blocksize
* 8, bh
->b_data
);
170 set_bitmap_uptodate(bh
);
171 set_buffer_uptodate(bh
);
172 set_buffer_verified(bh
);
173 ext4_unlock_group(sb
, block_group
);
177 ext4_unlock_group(sb
, block_group
);
179 if (buffer_uptodate(bh
)) {
181 * if not uninit if bh is uptodate,
182 * bitmap is also uptodate
184 set_bitmap_uptodate(bh
);
189 * submit the buffer_head for reading
191 trace_ext4_load_inode_bitmap(sb
, block_group
);
192 bh
->b_end_io
= ext4_end_bitmap_read
;
194 submit_bh(REQ_OP_READ
, REQ_META
| REQ_PRIO
, bh
);
196 ext4_simulate_fail_bh(sb
, bh
, EXT4_SIM_IBITMAP_EIO
);
197 if (!buffer_uptodate(bh
)) {
199 ext4_error_err(sb
, EIO
, "Cannot read inode bitmap - "
200 "block_group = %u, inode_bitmap = %llu",
201 block_group
, bitmap_blk
);
202 ext4_mark_group_bitmap_corrupted(sb
, block_group
,
203 EXT4_GROUP_INFO_IBITMAP_CORRUPT
);
204 return ERR_PTR(-EIO
);
208 err
= ext4_validate_inode_bitmap(sb
, desc
, block_group
, bh
);
218 * NOTE! When we get the inode, we're the only people
219 * that have access to it, and as such there are no
220 * race conditions we have to worry about. The inode
221 * is not on the hash-lists, and it cannot be reached
222 * through the filesystem because the directory entry
223 * has been deleted earlier.
225 * HOWEVER: we must make sure that we get no aliases,
226 * which means that we have to call "clear_inode()"
227 * _before_ we mark the inode not in use in the inode
228 * bitmaps. Otherwise a newly created file might use
229 * the same inode number (not actually the same pointer
230 * though), and then we'd have two inodes sharing the
231 * same inode number and space on the harddisk.
233 void ext4_free_inode(handle_t
*handle
, struct inode
*inode
)
235 struct super_block
*sb
= inode
->i_sb
;
238 struct buffer_head
*bitmap_bh
= NULL
;
239 struct buffer_head
*bh2
;
240 ext4_group_t block_group
;
242 struct ext4_group_desc
*gdp
;
243 struct ext4_super_block
*es
;
244 struct ext4_sb_info
*sbi
;
245 int fatal
= 0, err
, count
, cleared
;
246 struct ext4_group_info
*grp
;
249 printk(KERN_ERR
"EXT4-fs: %s:%d: inode on "
250 "nonexistent device\n", __func__
, __LINE__
);
253 if (atomic_read(&inode
->i_count
) > 1) {
254 ext4_msg(sb
, KERN_ERR
, "%s:%d: inode #%lu: count=%d",
255 __func__
, __LINE__
, inode
->i_ino
,
256 atomic_read(&inode
->i_count
));
259 if (inode
->i_nlink
) {
260 ext4_msg(sb
, KERN_ERR
, "%s:%d: inode #%lu: nlink=%d\n",
261 __func__
, __LINE__
, inode
->i_ino
, inode
->i_nlink
);
267 ext4_debug("freeing inode %lu\n", ino
);
268 trace_ext4_free_inode(inode
);
270 dquot_initialize(inode
);
271 dquot_free_inode(inode
);
273 is_directory
= S_ISDIR(inode
->i_mode
);
275 /* Do this BEFORE marking the inode not in use or returning an error */
276 ext4_clear_inode(inode
);
279 if (ino
< EXT4_FIRST_INO(sb
) || ino
> le32_to_cpu(es
->s_inodes_count
)) {
280 ext4_error(sb
, "reserved or nonexistent inode %lu", ino
);
283 block_group
= (ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
284 bit
= (ino
- 1) % EXT4_INODES_PER_GROUP(sb
);
285 bitmap_bh
= ext4_read_inode_bitmap(sb
, block_group
);
286 /* Don't bother if the inode bitmap is corrupt. */
287 grp
= ext4_get_group_info(sb
, block_group
);
288 if (IS_ERR(bitmap_bh
)) {
289 fatal
= PTR_ERR(bitmap_bh
);
293 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp
))) {
294 fatal
= -EFSCORRUPTED
;
298 BUFFER_TRACE(bitmap_bh
, "get_write_access");
299 fatal
= ext4_journal_get_write_access(handle
, bitmap_bh
);
304 gdp
= ext4_get_group_desc(sb
, block_group
, &bh2
);
306 BUFFER_TRACE(bh2
, "get_write_access");
307 fatal
= ext4_journal_get_write_access(handle
, bh2
);
309 ext4_lock_group(sb
, block_group
);
310 cleared
= ext4_test_and_clear_bit(bit
, bitmap_bh
->b_data
);
311 if (fatal
|| !cleared
) {
312 ext4_unlock_group(sb
, block_group
);
316 count
= ext4_free_inodes_count(sb
, gdp
) + 1;
317 ext4_free_inodes_set(sb
, gdp
, count
);
319 count
= ext4_used_dirs_count(sb
, gdp
) - 1;
320 ext4_used_dirs_set(sb
, gdp
, count
);
321 percpu_counter_dec(&sbi
->s_dirs_counter
);
323 ext4_inode_bitmap_csum_set(sb
, block_group
, gdp
, bitmap_bh
,
324 EXT4_INODES_PER_GROUP(sb
) / 8);
325 ext4_group_desc_csum_set(sb
, block_group
, gdp
);
326 ext4_unlock_group(sb
, block_group
);
328 percpu_counter_inc(&sbi
->s_freeinodes_counter
);
329 if (sbi
->s_log_groups_per_flex
) {
330 struct flex_groups
*fg
;
332 fg
= sbi_array_rcu_deref(sbi
, s_flex_groups
,
333 ext4_flex_group(sbi
, block_group
));
334 atomic_inc(&fg
->free_inodes
);
336 atomic_dec(&fg
->used_dirs
);
338 BUFFER_TRACE(bh2
, "call ext4_handle_dirty_metadata");
339 fatal
= ext4_handle_dirty_metadata(handle
, NULL
, bh2
);
342 BUFFER_TRACE(bitmap_bh
, "call ext4_handle_dirty_metadata");
343 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
347 ext4_error(sb
, "bit already cleared for inode %lu", ino
);
348 ext4_mark_group_bitmap_corrupted(sb
, block_group
,
349 EXT4_GROUP_INFO_IBITMAP_CORRUPT
);
354 ext4_std_error(sb
, fatal
);
364 * Helper function for Orlov's allocator; returns critical information
365 * for a particular block group or flex_bg. If flex_size is 1, then g
366 * is a block group number; otherwise it is flex_bg number.
368 static void get_orlov_stats(struct super_block
*sb
, ext4_group_t g
,
369 int flex_size
, struct orlov_stats
*stats
)
371 struct ext4_group_desc
*desc
;
374 struct flex_groups
*fg
= sbi_array_rcu_deref(EXT4_SB(sb
),
376 stats
->free_inodes
= atomic_read(&fg
->free_inodes
);
377 stats
->free_clusters
= atomic64_read(&fg
->free_clusters
);
378 stats
->used_dirs
= atomic_read(&fg
->used_dirs
);
382 desc
= ext4_get_group_desc(sb
, g
, NULL
);
384 stats
->free_inodes
= ext4_free_inodes_count(sb
, desc
);
385 stats
->free_clusters
= ext4_free_group_clusters(sb
, desc
);
386 stats
->used_dirs
= ext4_used_dirs_count(sb
, desc
);
388 stats
->free_inodes
= 0;
389 stats
->free_clusters
= 0;
390 stats
->used_dirs
= 0;
395 * Orlov's allocator for directories.
397 * We always try to spread first-level directories.
399 * If there are blockgroups with both free inodes and free blocks counts
400 * not worse than average we return one with smallest directory count.
401 * Otherwise we simply return a random group.
403 * For the rest rules look so:
405 * It's OK to put directory into a group unless
406 * it has too many directories already (max_dirs) or
407 * it has too few free inodes left (min_inodes) or
408 * it has too few free blocks left (min_blocks) or
409 * Parent's group is preferred, if it doesn't satisfy these
410 * conditions we search cyclically through the rest. If none
411 * of the groups look good we just look for a group with more
412 * free inodes than average (starting at parent's group).
415 static int find_group_orlov(struct super_block
*sb
, struct inode
*parent
,
416 ext4_group_t
*group
, umode_t mode
,
417 const struct qstr
*qstr
)
419 ext4_group_t parent_group
= EXT4_I(parent
)->i_block_group
;
420 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
421 ext4_group_t real_ngroups
= ext4_get_groups_count(sb
);
422 int inodes_per_group
= EXT4_INODES_PER_GROUP(sb
);
423 unsigned int freei
, avefreei
, grp_free
;
424 ext4_fsblk_t freeb
, avefreec
;
426 int max_dirs
, min_inodes
;
427 ext4_grpblk_t min_clusters
;
428 ext4_group_t i
, grp
, g
, ngroups
;
429 struct ext4_group_desc
*desc
;
430 struct orlov_stats stats
;
431 int flex_size
= ext4_flex_bg_size(sbi
);
432 struct dx_hash_info hinfo
;
434 ngroups
= real_ngroups
;
436 ngroups
= (real_ngroups
+ flex_size
- 1) >>
437 sbi
->s_log_groups_per_flex
;
438 parent_group
>>= sbi
->s_log_groups_per_flex
;
441 freei
= percpu_counter_read_positive(&sbi
->s_freeinodes_counter
);
442 avefreei
= freei
/ ngroups
;
443 freeb
= EXT4_C2B(sbi
,
444 percpu_counter_read_positive(&sbi
->s_freeclusters_counter
));
446 do_div(avefreec
, ngroups
);
447 ndirs
= percpu_counter_read_positive(&sbi
->s_dirs_counter
);
450 ((parent
== d_inode(sb
->s_root
)) ||
451 (ext4_test_inode_flag(parent
, EXT4_INODE_TOPDIR
)))) {
452 int best_ndir
= inodes_per_group
;
456 hinfo
.hash_version
= DX_HASH_HALF_MD4
;
457 hinfo
.seed
= sbi
->s_hash_seed
;
458 ext4fs_dirhash(parent
, qstr
->name
, qstr
->len
, &hinfo
);
462 parent_group
= (unsigned)grp
% ngroups
;
463 for (i
= 0; i
< ngroups
; i
++) {
464 g
= (parent_group
+ i
) % ngroups
;
465 get_orlov_stats(sb
, g
, flex_size
, &stats
);
466 if (!stats
.free_inodes
)
468 if (stats
.used_dirs
>= best_ndir
)
470 if (stats
.free_inodes
< avefreei
)
472 if (stats
.free_clusters
< avefreec
)
476 best_ndir
= stats
.used_dirs
;
481 if (flex_size
== 1) {
487 * We pack inodes at the beginning of the flexgroup's
488 * inode tables. Block allocation decisions will do
489 * something similar, although regular files will
490 * start at 2nd block group of the flexgroup. See
491 * ext4_ext_find_goal() and ext4_find_near().
494 for (i
= 0; i
< flex_size
; i
++) {
495 if (grp
+i
>= real_ngroups
)
497 desc
= ext4_get_group_desc(sb
, grp
+i
, NULL
);
498 if (desc
&& ext4_free_inodes_count(sb
, desc
)) {
506 max_dirs
= ndirs
/ ngroups
+ inodes_per_group
/ 16;
507 min_inodes
= avefreei
- inodes_per_group
*flex_size
/ 4;
510 min_clusters
= avefreec
- EXT4_CLUSTERS_PER_GROUP(sb
)*flex_size
/ 4;
513 * Start looking in the flex group where we last allocated an
514 * inode for this parent directory
516 if (EXT4_I(parent
)->i_last_alloc_group
!= ~0) {
517 parent_group
= EXT4_I(parent
)->i_last_alloc_group
;
519 parent_group
>>= sbi
->s_log_groups_per_flex
;
522 for (i
= 0; i
< ngroups
; i
++) {
523 grp
= (parent_group
+ i
) % ngroups
;
524 get_orlov_stats(sb
, grp
, flex_size
, &stats
);
525 if (stats
.used_dirs
>= max_dirs
)
527 if (stats
.free_inodes
< min_inodes
)
529 if (stats
.free_clusters
< min_clusters
)
535 ngroups
= real_ngroups
;
536 avefreei
= freei
/ ngroups
;
538 parent_group
= EXT4_I(parent
)->i_block_group
;
539 for (i
= 0; i
< ngroups
; i
++) {
540 grp
= (parent_group
+ i
) % ngroups
;
541 desc
= ext4_get_group_desc(sb
, grp
, NULL
);
543 grp_free
= ext4_free_inodes_count(sb
, desc
);
544 if (grp_free
&& grp_free
>= avefreei
) {
553 * The free-inodes counter is approximate, and for really small
554 * filesystems the above test can fail to find any blockgroups
563 static int find_group_other(struct super_block
*sb
, struct inode
*parent
,
564 ext4_group_t
*group
, umode_t mode
)
566 ext4_group_t parent_group
= EXT4_I(parent
)->i_block_group
;
567 ext4_group_t i
, last
, ngroups
= ext4_get_groups_count(sb
);
568 struct ext4_group_desc
*desc
;
569 int flex_size
= ext4_flex_bg_size(EXT4_SB(sb
));
572 * Try to place the inode is the same flex group as its
573 * parent. If we can't find space, use the Orlov algorithm to
574 * find another flex group, and store that information in the
575 * parent directory's inode information so that use that flex
576 * group for future allocations.
582 parent_group
&= ~(flex_size
-1);
583 last
= parent_group
+ flex_size
;
586 for (i
= parent_group
; i
< last
; i
++) {
587 desc
= ext4_get_group_desc(sb
, i
, NULL
);
588 if (desc
&& ext4_free_inodes_count(sb
, desc
)) {
593 if (!retry
&& EXT4_I(parent
)->i_last_alloc_group
!= ~0) {
595 parent_group
= EXT4_I(parent
)->i_last_alloc_group
;
599 * If this didn't work, use the Orlov search algorithm
600 * to find a new flex group; we pass in the mode to
601 * avoid the topdir algorithms.
603 *group
= parent_group
+ flex_size
;
604 if (*group
> ngroups
)
606 return find_group_orlov(sb
, parent
, group
, mode
, NULL
);
610 * Try to place the inode in its parent directory
612 *group
= parent_group
;
613 desc
= ext4_get_group_desc(sb
, *group
, NULL
);
614 if (desc
&& ext4_free_inodes_count(sb
, desc
) &&
615 ext4_free_group_clusters(sb
, desc
))
619 * We're going to place this inode in a different blockgroup from its
620 * parent. We want to cause files in a common directory to all land in
621 * the same blockgroup. But we want files which are in a different
622 * directory which shares a blockgroup with our parent to land in a
623 * different blockgroup.
625 * So add our directory's i_ino into the starting point for the hash.
627 *group
= (*group
+ parent
->i_ino
) % ngroups
;
630 * Use a quadratic hash to find a group with a free inode and some free
633 for (i
= 1; i
< ngroups
; i
<<= 1) {
635 if (*group
>= ngroups
)
637 desc
= ext4_get_group_desc(sb
, *group
, NULL
);
638 if (desc
&& ext4_free_inodes_count(sb
, desc
) &&
639 ext4_free_group_clusters(sb
, desc
))
644 * That failed: try linear search for a free inode, even if that group
645 * has no free blocks.
647 *group
= parent_group
;
648 for (i
= 0; i
< ngroups
; i
++) {
649 if (++*group
>= ngroups
)
651 desc
= ext4_get_group_desc(sb
, *group
, NULL
);
652 if (desc
&& ext4_free_inodes_count(sb
, desc
))
660 * In no journal mode, if an inode has recently been deleted, we want
661 * to avoid reusing it until we're reasonably sure the inode table
662 * block has been written back to disk. (Yes, these values are
663 * somewhat arbitrary...)
665 #define RECENTCY_MIN 5
666 #define RECENTCY_DIRTY 300
668 static int recently_deleted(struct super_block
*sb
, ext4_group_t group
, int ino
)
670 struct ext4_group_desc
*gdp
;
671 struct ext4_inode
*raw_inode
;
672 struct buffer_head
*bh
;
673 int inodes_per_block
= EXT4_SB(sb
)->s_inodes_per_block
;
675 int recentcy
= RECENTCY_MIN
;
678 gdp
= ext4_get_group_desc(sb
, group
, NULL
);
682 bh
= sb_find_get_block(sb
, ext4_inode_table(sb
, gdp
) +
683 (ino
/ inodes_per_block
));
684 if (!bh
|| !buffer_uptodate(bh
))
686 * If the block is not in the buffer cache, then it
687 * must have been written out.
691 offset
= (ino
% inodes_per_block
) * EXT4_INODE_SIZE(sb
);
692 raw_inode
= (struct ext4_inode
*) (bh
->b_data
+ offset
);
694 /* i_dtime is only 32 bits on disk, but we only care about relative
695 * times in the range of a few minutes (i.e. long enough to sync a
696 * recently-deleted inode to disk), so using the low 32 bits of the
697 * clock (a 68 year range) is enough, see time_before32() */
698 dtime
= le32_to_cpu(raw_inode
->i_dtime
);
699 now
= ktime_get_real_seconds();
700 if (buffer_dirty(bh
))
701 recentcy
+= RECENTCY_DIRTY
;
703 if (dtime
&& time_before32(dtime
, now
) &&
704 time_before32(now
, dtime
+ recentcy
))
711 static int find_inode_bit(struct super_block
*sb
, ext4_group_t group
,
712 struct buffer_head
*bitmap
, unsigned long *ino
)
714 bool check_recently_deleted
= EXT4_SB(sb
)->s_journal
== NULL
;
715 unsigned long recently_deleted_ino
= EXT4_INODES_PER_GROUP(sb
);
718 *ino
= ext4_find_next_zero_bit((unsigned long *)
720 EXT4_INODES_PER_GROUP(sb
), *ino
);
721 if (*ino
>= EXT4_INODES_PER_GROUP(sb
))
724 if (check_recently_deleted
&& recently_deleted(sb
, group
, *ino
)) {
725 recently_deleted_ino
= *ino
;
727 if (*ino
< EXT4_INODES_PER_GROUP(sb
))
733 if (recently_deleted_ino
>= EXT4_INODES_PER_GROUP(sb
))
736 * Not reusing recently deleted inodes is mostly a preference. We don't
737 * want to report ENOSPC or skew allocation patterns because of that.
738 * So return even recently deleted inode if we could find better in the
741 *ino
= recently_deleted_ino
;
746 * There are two policies for allocating an inode. If the new inode is
747 * a directory, then a forward search is made for a block group with both
748 * free space and a low directory-to-inode ratio; if that fails, then of
749 * the groups with above-average free space, that group with the fewest
750 * directories already is chosen.
752 * For other inodes, search forward from the parent directory's block
753 * group to find a free inode.
755 struct inode
*__ext4_new_inode(handle_t
*handle
, struct inode
*dir
,
756 umode_t mode
, const struct qstr
*qstr
,
757 __u32 goal
, uid_t
*owner
, __u32 i_flags
,
758 int handle_type
, unsigned int line_no
,
761 struct super_block
*sb
;
762 struct buffer_head
*inode_bitmap_bh
= NULL
;
763 struct buffer_head
*group_desc_bh
;
764 ext4_group_t ngroups
, group
= 0;
765 unsigned long ino
= 0;
767 struct ext4_group_desc
*gdp
= NULL
;
768 struct ext4_inode_info
*ei
;
769 struct ext4_sb_info
*sbi
;
773 ext4_group_t flex_group
;
774 struct ext4_group_info
*grp
;
777 /* Cannot create files in a deleted directory */
778 if (!dir
|| !dir
->i_nlink
)
779 return ERR_PTR(-EPERM
);
784 if (unlikely(ext4_forced_shutdown(sbi
)))
785 return ERR_PTR(-EIO
);
787 if ((IS_ENCRYPTED(dir
) || DUMMY_ENCRYPTION_ENABLED(sbi
)) &&
788 (S_ISREG(mode
) || S_ISDIR(mode
) || S_ISLNK(mode
)) &&
789 !(i_flags
& EXT4_EA_INODE_FL
)) {
790 err
= fscrypt_get_encryption_info(dir
);
793 if (!fscrypt_has_encryption_key(dir
))
794 return ERR_PTR(-ENOKEY
);
798 if (!handle
&& sbi
->s_journal
&& !(i_flags
& EXT4_EA_INODE_FL
)) {
799 #ifdef CONFIG_EXT4_FS_POSIX_ACL
800 struct posix_acl
*p
= get_acl(dir
, ACL_TYPE_DEFAULT
);
805 int acl_size
= p
->a_count
* sizeof(ext4_acl_entry
);
807 nblocks
+= (S_ISDIR(mode
) ? 2 : 1) *
808 __ext4_xattr_set_credits(sb
, NULL
/* inode */,
809 NULL
/* block_bh */, acl_size
,
810 true /* is_create */);
811 posix_acl_release(p
);
815 #ifdef CONFIG_SECURITY
817 int num_security_xattrs
= 1;
819 #ifdef CONFIG_INTEGRITY
820 num_security_xattrs
++;
823 * We assume that security xattrs are never
824 * more than 1k. In practice they are under
827 nblocks
+= num_security_xattrs
*
828 __ext4_xattr_set_credits(sb
, NULL
/* inode */,
829 NULL
/* block_bh */, 1024,
830 true /* is_create */);
834 nblocks
+= __ext4_xattr_set_credits(sb
,
835 NULL
/* inode */, NULL
/* block_bh */,
836 FSCRYPT_SET_CONTEXT_MAX_SIZE
,
837 true /* is_create */);
840 ngroups
= ext4_get_groups_count(sb
);
841 trace_ext4_request_inode(dir
, mode
);
842 inode
= new_inode(sb
);
844 return ERR_PTR(-ENOMEM
);
848 * Initialize owners and quota early so that we don't have to account
849 * for quota initialization worst case in standard inode creating
853 inode
->i_mode
= mode
;
854 i_uid_write(inode
, owner
[0]);
855 i_gid_write(inode
, owner
[1]);
856 } else if (test_opt(sb
, GRPID
)) {
857 inode
->i_mode
= mode
;
858 inode
->i_uid
= current_fsuid();
859 inode
->i_gid
= dir
->i_gid
;
861 inode_init_owner(inode
, dir
, mode
);
863 if (ext4_has_feature_project(sb
) &&
864 ext4_test_inode_flag(dir
, EXT4_INODE_PROJINHERIT
))
865 ei
->i_projid
= EXT4_I(dir
)->i_projid
;
867 ei
->i_projid
= make_kprojid(&init_user_ns
, EXT4_DEF_PROJID
);
869 err
= dquot_initialize(inode
);
874 goal
= sbi
->s_inode_goal
;
876 if (goal
&& goal
<= le32_to_cpu(sbi
->s_es
->s_inodes_count
)) {
877 group
= (goal
- 1) / EXT4_INODES_PER_GROUP(sb
);
878 ino
= (goal
- 1) % EXT4_INODES_PER_GROUP(sb
);
884 ret2
= find_group_orlov(sb
, dir
, &group
, mode
, qstr
);
886 ret2
= find_group_other(sb
, dir
, &group
, mode
);
889 EXT4_I(dir
)->i_last_alloc_group
= group
;
895 * Normally we will only go through one pass of this loop,
896 * unless we get unlucky and it turns out the group we selected
897 * had its last inode grabbed by someone else.
899 for (i
= 0; i
< ngroups
; i
++, ino
= 0) {
902 gdp
= ext4_get_group_desc(sb
, group
, &group_desc_bh
);
907 * Check free inodes count before loading bitmap.
909 if (ext4_free_inodes_count(sb
, gdp
) == 0)
912 grp
= ext4_get_group_info(sb
, group
);
913 /* Skip groups with already-known suspicious inode tables */
914 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp
))
917 brelse(inode_bitmap_bh
);
918 inode_bitmap_bh
= ext4_read_inode_bitmap(sb
, group
);
919 /* Skip groups with suspicious inode tables */
920 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp
) ||
921 IS_ERR(inode_bitmap_bh
)) {
922 inode_bitmap_bh
= NULL
;
926 repeat_in_this_group
:
927 ret2
= find_inode_bit(sb
, group
, inode_bitmap_bh
, &ino
);
931 if (group
== 0 && (ino
+ 1) < EXT4_FIRST_INO(sb
)) {
932 ext4_error(sb
, "reserved inode found cleared - "
933 "inode=%lu", ino
+ 1);
934 ext4_mark_group_bitmap_corrupted(sb
, group
,
935 EXT4_GROUP_INFO_IBITMAP_CORRUPT
);
940 BUG_ON(nblocks
<= 0);
941 handle
= __ext4_journal_start_sb(dir
->i_sb
, line_no
,
942 handle_type
, nblocks
, 0,
943 ext4_trans_default_revoke_credits(sb
));
944 if (IS_ERR(handle
)) {
945 err
= PTR_ERR(handle
);
946 ext4_std_error(sb
, err
);
950 BUFFER_TRACE(inode_bitmap_bh
, "get_write_access");
951 err
= ext4_journal_get_write_access(handle
, inode_bitmap_bh
);
953 ext4_std_error(sb
, err
);
956 ext4_lock_group(sb
, group
);
957 ret2
= ext4_test_and_set_bit(ino
, inode_bitmap_bh
->b_data
);
959 /* Someone already took the bit. Repeat the search
962 ret2
= find_inode_bit(sb
, group
, inode_bitmap_bh
, &ino
);
964 ext4_set_bit(ino
, inode_bitmap_bh
->b_data
);
967 ret2
= 1; /* we didn't grab the inode */
970 ext4_unlock_group(sb
, group
);
971 ino
++; /* the inode bitmap is zero-based */
973 goto got
; /* we grabbed the inode! */
975 if (ino
< EXT4_INODES_PER_GROUP(sb
))
976 goto repeat_in_this_group
;
978 if (++group
== ngroups
)
985 BUFFER_TRACE(inode_bitmap_bh
, "call ext4_handle_dirty_metadata");
986 err
= ext4_handle_dirty_metadata(handle
, NULL
, inode_bitmap_bh
);
988 ext4_std_error(sb
, err
);
992 BUFFER_TRACE(group_desc_bh
, "get_write_access");
993 err
= ext4_journal_get_write_access(handle
, group_desc_bh
);
995 ext4_std_error(sb
, err
);
999 /* We may have to initialize the block bitmap if it isn't already */
1000 if (ext4_has_group_desc_csum(sb
) &&
1001 gdp
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)) {
1002 struct buffer_head
*block_bitmap_bh
;
1004 block_bitmap_bh
= ext4_read_block_bitmap(sb
, group
);
1005 if (IS_ERR(block_bitmap_bh
)) {
1006 err
= PTR_ERR(block_bitmap_bh
);
1009 BUFFER_TRACE(block_bitmap_bh
, "get block bitmap access");
1010 err
= ext4_journal_get_write_access(handle
, block_bitmap_bh
);
1012 brelse(block_bitmap_bh
);
1013 ext4_std_error(sb
, err
);
1017 BUFFER_TRACE(block_bitmap_bh
, "dirty block bitmap");
1018 err
= ext4_handle_dirty_metadata(handle
, NULL
, block_bitmap_bh
);
1020 /* recheck and clear flag under lock if we still need to */
1021 ext4_lock_group(sb
, group
);
1022 if (ext4_has_group_desc_csum(sb
) &&
1023 (gdp
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
))) {
1024 gdp
->bg_flags
&= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT
);
1025 ext4_free_group_clusters_set(sb
, gdp
,
1026 ext4_free_clusters_after_init(sb
, group
, gdp
));
1027 ext4_block_bitmap_csum_set(sb
, group
, gdp
,
1029 ext4_group_desc_csum_set(sb
, group
, gdp
);
1031 ext4_unlock_group(sb
, group
);
1032 brelse(block_bitmap_bh
);
1035 ext4_std_error(sb
, err
);
1040 /* Update the relevant bg descriptor fields */
1041 if (ext4_has_group_desc_csum(sb
)) {
1043 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
1045 down_read(&grp
->alloc_sem
); /* protect vs itable lazyinit */
1046 ext4_lock_group(sb
, group
); /* while we modify the bg desc */
1047 free
= EXT4_INODES_PER_GROUP(sb
) -
1048 ext4_itable_unused_count(sb
, gdp
);
1049 if (gdp
->bg_flags
& cpu_to_le16(EXT4_BG_INODE_UNINIT
)) {
1050 gdp
->bg_flags
&= cpu_to_le16(~EXT4_BG_INODE_UNINIT
);
1054 * Check the relative inode number against the last used
1055 * relative inode number in this group. if it is greater
1056 * we need to update the bg_itable_unused count
1059 ext4_itable_unused_set(sb
, gdp
,
1060 (EXT4_INODES_PER_GROUP(sb
) - ino
));
1061 up_read(&grp
->alloc_sem
);
1063 ext4_lock_group(sb
, group
);
1066 ext4_free_inodes_set(sb
, gdp
, ext4_free_inodes_count(sb
, gdp
) - 1);
1067 if (S_ISDIR(mode
)) {
1068 ext4_used_dirs_set(sb
, gdp
, ext4_used_dirs_count(sb
, gdp
) + 1);
1069 if (sbi
->s_log_groups_per_flex
) {
1070 ext4_group_t f
= ext4_flex_group(sbi
, group
);
1072 atomic_inc(&sbi_array_rcu_deref(sbi
, s_flex_groups
,
1076 if (ext4_has_group_desc_csum(sb
)) {
1077 ext4_inode_bitmap_csum_set(sb
, group
, gdp
, inode_bitmap_bh
,
1078 EXT4_INODES_PER_GROUP(sb
) / 8);
1079 ext4_group_desc_csum_set(sb
, group
, gdp
);
1081 ext4_unlock_group(sb
, group
);
1083 BUFFER_TRACE(group_desc_bh
, "call ext4_handle_dirty_metadata");
1084 err
= ext4_handle_dirty_metadata(handle
, NULL
, group_desc_bh
);
1086 ext4_std_error(sb
, err
);
1090 percpu_counter_dec(&sbi
->s_freeinodes_counter
);
1092 percpu_counter_inc(&sbi
->s_dirs_counter
);
1094 if (sbi
->s_log_groups_per_flex
) {
1095 flex_group
= ext4_flex_group(sbi
, group
);
1096 atomic_dec(&sbi_array_rcu_deref(sbi
, s_flex_groups
,
1097 flex_group
)->free_inodes
);
1100 inode
->i_ino
= ino
+ group
* EXT4_INODES_PER_GROUP(sb
);
1101 /* This is the optimal IO size (for stat), not the fs block size */
1102 inode
->i_blocks
= 0;
1103 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= current_time(inode
);
1104 ei
->i_crtime
= inode
->i_mtime
;
1106 memset(ei
->i_data
, 0, sizeof(ei
->i_data
));
1107 ei
->i_dir_start_lookup
= 0;
1110 /* Don't inherit extent flag from directory, amongst others. */
1112 ext4_mask_flags(mode
, EXT4_I(dir
)->i_flags
& EXT4_FL_INHERITED
);
1113 ei
->i_flags
|= i_flags
;
1116 ei
->i_block_group
= group
;
1117 ei
->i_last_alloc_group
= ~0;
1119 ext4_set_inode_flags(inode
);
1120 if (IS_DIRSYNC(inode
))
1121 ext4_handle_sync(handle
);
1122 if (insert_inode_locked(inode
) < 0) {
1124 * Likely a bitmap corruption causing inode to be allocated
1128 ext4_error(sb
, "failed to insert inode %lu: doubly allocated?",
1130 ext4_mark_group_bitmap_corrupted(sb
, group
,
1131 EXT4_GROUP_INFO_IBITMAP_CORRUPT
);
1134 inode
->i_generation
= prandom_u32();
1136 /* Precompute checksum seed for inode metadata */
1137 if (ext4_has_metadata_csum(sb
)) {
1139 __le32 inum
= cpu_to_le32(inode
->i_ino
);
1140 __le32 gen
= cpu_to_le32(inode
->i_generation
);
1141 csum
= ext4_chksum(sbi
, sbi
->s_csum_seed
, (__u8
*)&inum
,
1143 ei
->i_csum_seed
= ext4_chksum(sbi
, csum
, (__u8
*)&gen
,
1147 ext4_clear_state_flags(ei
); /* Only relevant on 32-bit archs */
1148 ext4_set_inode_state(inode
, EXT4_STATE_NEW
);
1150 ei
->i_extra_isize
= sbi
->s_want_extra_isize
;
1151 ei
->i_inline_off
= 0;
1152 if (ext4_has_feature_inline_data(sb
))
1153 ext4_set_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
);
1155 err
= dquot_alloc_inode(inode
);
1160 * Since the encryption xattr will always be unique, create it first so
1161 * that it's less likely to end up in an external xattr block and
1162 * prevent its deduplication.
1165 err
= fscrypt_inherit_context(dir
, inode
, handle
, true);
1167 goto fail_free_drop
;
1170 if (!(ei
->i_flags
& EXT4_EA_INODE_FL
)) {
1171 err
= ext4_init_acl(handle
, inode
, dir
);
1173 goto fail_free_drop
;
1175 err
= ext4_init_security(handle
, inode
, dir
, qstr
);
1177 goto fail_free_drop
;
1180 if (ext4_has_feature_extents(sb
)) {
1181 /* set extent flag only for directory, file and normal symlink*/
1182 if (S_ISDIR(mode
) || S_ISREG(mode
) || S_ISLNK(mode
)) {
1183 ext4_set_inode_flag(inode
, EXT4_INODE_EXTENTS
);
1184 ext4_ext_tree_init(handle
, inode
);
1188 if (ext4_handle_valid(handle
)) {
1189 ei
->i_sync_tid
= handle
->h_transaction
->t_tid
;
1190 ei
->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1193 err
= ext4_mark_inode_dirty(handle
, inode
);
1195 ext4_std_error(sb
, err
);
1196 goto fail_free_drop
;
1199 ext4_debug("allocating inode %lu\n", inode
->i_ino
);
1200 trace_ext4_allocate_inode(inode
, dir
, mode
);
1201 brelse(inode_bitmap_bh
);
1205 dquot_free_inode(inode
);
1208 unlock_new_inode(inode
);
1211 inode
->i_flags
|= S_NOQUOTA
;
1213 brelse(inode_bitmap_bh
);
1214 return ERR_PTR(err
);
1217 /* Verify that we are loading a valid orphan from disk */
1218 struct inode
*ext4_orphan_get(struct super_block
*sb
, unsigned long ino
)
1220 unsigned long max_ino
= le32_to_cpu(EXT4_SB(sb
)->s_es
->s_inodes_count
);
1221 ext4_group_t block_group
;
1223 struct buffer_head
*bitmap_bh
= NULL
;
1224 struct inode
*inode
= NULL
;
1225 int err
= -EFSCORRUPTED
;
1227 if (ino
< EXT4_FIRST_INO(sb
) || ino
> max_ino
)
1230 block_group
= (ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
1231 bit
= (ino
- 1) % EXT4_INODES_PER_GROUP(sb
);
1232 bitmap_bh
= ext4_read_inode_bitmap(sb
, block_group
);
1233 if (IS_ERR(bitmap_bh
))
1234 return ERR_CAST(bitmap_bh
);
1236 /* Having the inode bit set should be a 100% indicator that this
1237 * is a valid orphan (no e2fsck run on fs). Orphans also include
1238 * inodes that were being truncated, so we can't check i_nlink==0.
1240 if (!ext4_test_bit(bit
, bitmap_bh
->b_data
))
1243 inode
= ext4_iget(sb
, ino
, EXT4_IGET_NORMAL
);
1244 if (IS_ERR(inode
)) {
1245 err
= PTR_ERR(inode
);
1246 ext4_error_err(sb
, -err
,
1247 "couldn't read orphan inode %lu (err %d)",
1253 * If the orphans has i_nlinks > 0 then it should be able to
1254 * be truncated, otherwise it won't be removed from the orphan
1255 * list during processing and an infinite loop will result.
1256 * Similarly, it must not be a bad inode.
1258 if ((inode
->i_nlink
&& !ext4_can_truncate(inode
)) ||
1259 is_bad_inode(inode
))
1262 if (NEXT_ORPHAN(inode
) > max_ino
)
1268 ext4_error(sb
, "bad orphan inode %lu", ino
);
1270 printk(KERN_ERR
"ext4_test_bit(bit=%d, block=%llu) = %d\n",
1271 bit
, (unsigned long long)bitmap_bh
->b_blocknr
,
1272 ext4_test_bit(bit
, bitmap_bh
->b_data
));
1274 printk(KERN_ERR
"is_bad_inode(inode)=%d\n",
1275 is_bad_inode(inode
));
1276 printk(KERN_ERR
"NEXT_ORPHAN(inode)=%u\n",
1277 NEXT_ORPHAN(inode
));
1278 printk(KERN_ERR
"max_ino=%lu\n", max_ino
);
1279 printk(KERN_ERR
"i_nlink=%u\n", inode
->i_nlink
);
1280 /* Avoid freeing blocks if we got a bad deleted inode */
1281 if (inode
->i_nlink
== 0)
1282 inode
->i_blocks
= 0;
1286 return ERR_PTR(err
);
1289 unsigned long ext4_count_free_inodes(struct super_block
*sb
)
1291 unsigned long desc_count
;
1292 struct ext4_group_desc
*gdp
;
1293 ext4_group_t i
, ngroups
= ext4_get_groups_count(sb
);
1295 struct ext4_super_block
*es
;
1296 unsigned long bitmap_count
, x
;
1297 struct buffer_head
*bitmap_bh
= NULL
;
1299 es
= EXT4_SB(sb
)->s_es
;
1303 for (i
= 0; i
< ngroups
; i
++) {
1304 gdp
= ext4_get_group_desc(sb
, i
, NULL
);
1307 desc_count
+= ext4_free_inodes_count(sb
, gdp
);
1309 bitmap_bh
= ext4_read_inode_bitmap(sb
, i
);
1310 if (IS_ERR(bitmap_bh
)) {
1315 x
= ext4_count_free(bitmap_bh
->b_data
,
1316 EXT4_INODES_PER_GROUP(sb
) / 8);
1317 printk(KERN_DEBUG
"group %lu: stored = %d, counted = %lu\n",
1318 (unsigned long) i
, ext4_free_inodes_count(sb
, gdp
), x
);
1322 printk(KERN_DEBUG
"ext4_count_free_inodes: "
1323 "stored = %u, computed = %lu, %lu\n",
1324 le32_to_cpu(es
->s_free_inodes_count
), desc_count
, bitmap_count
);
1328 for (i
= 0; i
< ngroups
; i
++) {
1329 gdp
= ext4_get_group_desc(sb
, i
, NULL
);
1332 desc_count
+= ext4_free_inodes_count(sb
, gdp
);
1339 /* Called at mount-time, super-block is locked */
1340 unsigned long ext4_count_dirs(struct super_block
* sb
)
1342 unsigned long count
= 0;
1343 ext4_group_t i
, ngroups
= ext4_get_groups_count(sb
);
1345 for (i
= 0; i
< ngroups
; i
++) {
1346 struct ext4_group_desc
*gdp
= ext4_get_group_desc(sb
, i
, NULL
);
1349 count
+= ext4_used_dirs_count(sb
, gdp
);
1355 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1356 * inode table. Must be called without any spinlock held. The only place
1357 * where it is called from on active part of filesystem is ext4lazyinit
1358 * thread, so we do not need any special locks, however we have to prevent
1359 * inode allocation from the current group, so we take alloc_sem lock, to
1360 * block ext4_new_inode() until we are finished.
1362 int ext4_init_inode_table(struct super_block
*sb
, ext4_group_t group
,
1365 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
1366 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1367 struct ext4_group_desc
*gdp
= NULL
;
1368 struct buffer_head
*group_desc_bh
;
1371 int num
, ret
= 0, used_blks
= 0;
1373 /* This should not happen, but just to be sure check this */
1374 if (sb_rdonly(sb
)) {
1379 gdp
= ext4_get_group_desc(sb
, group
, &group_desc_bh
);
1384 * We do not need to lock this, because we are the only one
1385 * handling this flag.
1387 if (gdp
->bg_flags
& cpu_to_le16(EXT4_BG_INODE_ZEROED
))
1390 handle
= ext4_journal_start_sb(sb
, EXT4_HT_MISC
, 1);
1391 if (IS_ERR(handle
)) {
1392 ret
= PTR_ERR(handle
);
1396 down_write(&grp
->alloc_sem
);
1398 * If inode bitmap was already initialized there may be some
1399 * used inodes so we need to skip blocks with used inodes in
1402 if (!(gdp
->bg_flags
& cpu_to_le16(EXT4_BG_INODE_UNINIT
)))
1403 used_blks
= DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb
) -
1404 ext4_itable_unused_count(sb
, gdp
)),
1405 sbi
->s_inodes_per_block
);
1407 if ((used_blks
< 0) || (used_blks
> sbi
->s_itb_per_group
) ||
1408 ((group
== 0) && ((EXT4_INODES_PER_GROUP(sb
) -
1409 ext4_itable_unused_count(sb
, gdp
)) <
1410 EXT4_FIRST_INO(sb
)))) {
1411 ext4_error(sb
, "Something is wrong with group %u: "
1412 "used itable blocks: %d; "
1413 "itable unused count: %u",
1415 ext4_itable_unused_count(sb
, gdp
));
1420 blk
= ext4_inode_table(sb
, gdp
) + used_blks
;
1421 num
= sbi
->s_itb_per_group
- used_blks
;
1423 BUFFER_TRACE(group_desc_bh
, "get_write_access");
1424 ret
= ext4_journal_get_write_access(handle
,
1430 * Skip zeroout if the inode table is full. But we set the ZEROED
1431 * flag anyway, because obviously, when it is full it does not need
1434 if (unlikely(num
== 0))
1437 ext4_debug("going to zero out inode table in group %d\n",
1439 ret
= sb_issue_zeroout(sb
, blk
, num
, GFP_NOFS
);
1443 blkdev_issue_flush(sb
->s_bdev
, GFP_NOFS
, NULL
);
1446 ext4_lock_group(sb
, group
);
1447 gdp
->bg_flags
|= cpu_to_le16(EXT4_BG_INODE_ZEROED
);
1448 ext4_group_desc_csum_set(sb
, group
, gdp
);
1449 ext4_unlock_group(sb
, group
);
1451 BUFFER_TRACE(group_desc_bh
,
1452 "call ext4_handle_dirty_metadata");
1453 ret
= ext4_handle_dirty_metadata(handle
, NULL
,
1457 up_write(&grp
->alloc_sem
);
1458 ext4_journal_stop(handle
);