1 // SPDX-License-Identifier: GPL-2.0+
3 * linux/fs/jbd2/journal.c
5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
7 * Copyright 1998 Red Hat corp --- All Rights Reserved
9 * Generic filesystem journal-writing code; part of the ext2fs
12 * This file manages journals: areas of disk reserved for logging
13 * transactional updates. This includes the kernel journaling thread
14 * which is responsible for scheduling updates to the log.
16 * We do not actually manage the physical storage of the journal in this
17 * file: that is left to a per-journal policy function, which allows us
18 * to store the journal within a filesystem-specified area for ext2
19 * journaling (ext2 can use a reserved inode for storing the log).
22 #include <linux/module.h>
23 #include <linux/time.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
48 #include <linux/uaccess.h>
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly
;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug
);
55 module_param_named(jbd2_debug
, jbd2_journal_enable_debug
, ushort
, 0644);
56 MODULE_PARM_DESC(jbd2_debug
, "Debugging level for jbd2");
59 EXPORT_SYMBOL(jbd2_journal_extend
);
60 EXPORT_SYMBOL(jbd2_journal_stop
);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates
);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates
);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access
);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access
);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access
);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers
);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata
);
68 EXPORT_SYMBOL(jbd2_journal_forget
);
69 EXPORT_SYMBOL(jbd2_journal_flush
);
70 EXPORT_SYMBOL(jbd2_journal_revoke
);
72 EXPORT_SYMBOL(jbd2_journal_init_dev
);
73 EXPORT_SYMBOL(jbd2_journal_init_inode
);
74 EXPORT_SYMBOL(jbd2_journal_check_used_features
);
75 EXPORT_SYMBOL(jbd2_journal_check_available_features
);
76 EXPORT_SYMBOL(jbd2_journal_set_features
);
77 EXPORT_SYMBOL(jbd2_journal_load
);
78 EXPORT_SYMBOL(jbd2_journal_destroy
);
79 EXPORT_SYMBOL(jbd2_journal_abort
);
80 EXPORT_SYMBOL(jbd2_journal_errno
);
81 EXPORT_SYMBOL(jbd2_journal_ack_err
);
82 EXPORT_SYMBOL(jbd2_journal_clear_err
);
83 EXPORT_SYMBOL(jbd2_log_wait_commit
);
84 EXPORT_SYMBOL(jbd2_log_start_commit
);
85 EXPORT_SYMBOL(jbd2_journal_start_commit
);
86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested
);
87 EXPORT_SYMBOL(jbd2_journal_wipe
);
88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page
);
89 EXPORT_SYMBOL(jbd2_journal_invalidatepage
);
90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers
);
91 EXPORT_SYMBOL(jbd2_journal_force_commit
);
92 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write
);
93 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait
);
94 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode
);
95 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode
);
96 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate
);
97 EXPORT_SYMBOL(jbd2_inode_cache
);
99 static int jbd2_journal_create_slab(size_t slab_size
);
101 #ifdef CONFIG_JBD2_DEBUG
102 void __jbd2_debug(int level
, const char *file
, const char *func
,
103 unsigned int line
, const char *fmt
, ...)
105 struct va_format vaf
;
108 if (level
> jbd2_journal_enable_debug
)
113 printk(KERN_DEBUG
"%s: (%s, %u): %pV", file
, func
, line
, &vaf
);
116 EXPORT_SYMBOL(__jbd2_debug
);
119 /* Checksumming functions */
120 static int jbd2_verify_csum_type(journal_t
*j
, journal_superblock_t
*sb
)
122 if (!jbd2_journal_has_csum_v2or3_feature(j
))
125 return sb
->s_checksum_type
== JBD2_CRC32C_CHKSUM
;
128 static __be32
jbd2_superblock_csum(journal_t
*j
, journal_superblock_t
*sb
)
133 old_csum
= sb
->s_checksum
;
135 csum
= jbd2_chksum(j
, ~0, (char *)sb
, sizeof(journal_superblock_t
));
136 sb
->s_checksum
= old_csum
;
138 return cpu_to_be32(csum
);
142 * Helper function used to manage commit timeouts
145 static void commit_timeout(struct timer_list
*t
)
147 journal_t
*journal
= from_timer(journal
, t
, j_commit_timer
);
149 wake_up_process(journal
->j_task
);
153 * kjournald2: The main thread function used to manage a logging device
156 * This kernel thread is responsible for two things:
158 * 1) COMMIT: Every so often we need to commit the current state of the
159 * filesystem to disk. The journal thread is responsible for writing
160 * all of the metadata buffers to disk.
162 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
163 * of the data in that part of the log has been rewritten elsewhere on
164 * the disk. Flushing these old buffers to reclaim space in the log is
165 * known as checkpointing, and this thread is responsible for that job.
168 static int kjournald2(void *arg
)
170 journal_t
*journal
= arg
;
171 transaction_t
*transaction
;
174 * Set up an interval timer which can be used to trigger a commit wakeup
175 * after the commit interval expires
177 timer_setup(&journal
->j_commit_timer
, commit_timeout
, 0);
181 /* Record that the journal thread is running */
182 journal
->j_task
= current
;
183 wake_up(&journal
->j_wait_done_commit
);
186 * Make sure that no allocations from this kernel thread will ever
187 * recurse to the fs layer because we are responsible for the
188 * transaction commit and any fs involvement might get stuck waiting for
191 memalloc_nofs_save();
194 * And now, wait forever for commit wakeup events.
196 write_lock(&journal
->j_state_lock
);
199 if (journal
->j_flags
& JBD2_UNMOUNT
)
202 jbd_debug(1, "commit_sequence=%u, commit_request=%u\n",
203 journal
->j_commit_sequence
, journal
->j_commit_request
);
205 if (journal
->j_commit_sequence
!= journal
->j_commit_request
) {
206 jbd_debug(1, "OK, requests differ\n");
207 write_unlock(&journal
->j_state_lock
);
208 del_timer_sync(&journal
->j_commit_timer
);
209 jbd2_journal_commit_transaction(journal
);
210 write_lock(&journal
->j_state_lock
);
214 wake_up(&journal
->j_wait_done_commit
);
215 if (freezing(current
)) {
217 * The simpler the better. Flushing journal isn't a
218 * good idea, because that depends on threads that may
219 * be already stopped.
221 jbd_debug(1, "Now suspending kjournald2\n");
222 write_unlock(&journal
->j_state_lock
);
224 write_lock(&journal
->j_state_lock
);
227 * We assume on resume that commits are already there,
231 int should_sleep
= 1;
233 prepare_to_wait(&journal
->j_wait_commit
, &wait
,
235 if (journal
->j_commit_sequence
!= journal
->j_commit_request
)
237 transaction
= journal
->j_running_transaction
;
238 if (transaction
&& time_after_eq(jiffies
,
239 transaction
->t_expires
))
241 if (journal
->j_flags
& JBD2_UNMOUNT
)
244 write_unlock(&journal
->j_state_lock
);
246 write_lock(&journal
->j_state_lock
);
248 finish_wait(&journal
->j_wait_commit
, &wait
);
251 jbd_debug(1, "kjournald2 wakes\n");
254 * Were we woken up by a commit wakeup event?
256 transaction
= journal
->j_running_transaction
;
257 if (transaction
&& time_after_eq(jiffies
, transaction
->t_expires
)) {
258 journal
->j_commit_request
= transaction
->t_tid
;
259 jbd_debug(1, "woke because of timeout\n");
264 del_timer_sync(&journal
->j_commit_timer
);
265 journal
->j_task
= NULL
;
266 wake_up(&journal
->j_wait_done_commit
);
267 jbd_debug(1, "Journal thread exiting.\n");
268 write_unlock(&journal
->j_state_lock
);
272 static int jbd2_journal_start_thread(journal_t
*journal
)
274 struct task_struct
*t
;
276 t
= kthread_run(kjournald2
, journal
, "jbd2/%s",
281 wait_event(journal
->j_wait_done_commit
, journal
->j_task
!= NULL
);
285 static void journal_kill_thread(journal_t
*journal
)
287 write_lock(&journal
->j_state_lock
);
288 journal
->j_flags
|= JBD2_UNMOUNT
;
290 while (journal
->j_task
) {
291 write_unlock(&journal
->j_state_lock
);
292 wake_up(&journal
->j_wait_commit
);
293 wait_event(journal
->j_wait_done_commit
, journal
->j_task
== NULL
);
294 write_lock(&journal
->j_state_lock
);
296 write_unlock(&journal
->j_state_lock
);
300 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
302 * Writes a metadata buffer to a given disk block. The actual IO is not
303 * performed but a new buffer_head is constructed which labels the data
304 * to be written with the correct destination disk block.
306 * Any magic-number escaping which needs to be done will cause a
307 * copy-out here. If the buffer happens to start with the
308 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
309 * magic number is only written to the log for descripter blocks. In
310 * this case, we copy the data and replace the first word with 0, and we
311 * return a result code which indicates that this buffer needs to be
312 * marked as an escaped buffer in the corresponding log descriptor
313 * block. The missing word can then be restored when the block is read
316 * If the source buffer has already been modified by a new transaction
317 * since we took the last commit snapshot, we use the frozen copy of
318 * that data for IO. If we end up using the existing buffer_head's data
319 * for the write, then we have to make sure nobody modifies it while the
320 * IO is in progress. do_get_write_access() handles this.
322 * The function returns a pointer to the buffer_head to be used for IO.
330 * Bit 0 set == escape performed on the data
331 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
334 int jbd2_journal_write_metadata_buffer(transaction_t
*transaction
,
335 struct journal_head
*jh_in
,
336 struct buffer_head
**bh_out
,
339 int need_copy_out
= 0;
340 int done_copy_out
= 0;
343 struct buffer_head
*new_bh
;
344 struct page
*new_page
;
345 unsigned int new_offset
;
346 struct buffer_head
*bh_in
= jh2bh(jh_in
);
347 journal_t
*journal
= transaction
->t_journal
;
350 * The buffer really shouldn't be locked: only the current committing
351 * transaction is allowed to write it, so nobody else is allowed
354 * akpm: except if we're journalling data, and write() output is
355 * also part of a shared mapping, and another thread has
356 * decided to launch a writepage() against this buffer.
358 J_ASSERT_BH(bh_in
, buffer_jbddirty(bh_in
));
360 new_bh
= alloc_buffer_head(GFP_NOFS
|__GFP_NOFAIL
);
362 /* keep subsequent assertions sane */
363 atomic_set(&new_bh
->b_count
, 1);
365 spin_lock(&jh_in
->b_state_lock
);
368 * If a new transaction has already done a buffer copy-out, then
369 * we use that version of the data for the commit.
371 if (jh_in
->b_frozen_data
) {
373 new_page
= virt_to_page(jh_in
->b_frozen_data
);
374 new_offset
= offset_in_page(jh_in
->b_frozen_data
);
376 new_page
= jh2bh(jh_in
)->b_page
;
377 new_offset
= offset_in_page(jh2bh(jh_in
)->b_data
);
380 mapped_data
= kmap_atomic(new_page
);
382 * Fire data frozen trigger if data already wasn't frozen. Do this
383 * before checking for escaping, as the trigger may modify the magic
384 * offset. If a copy-out happens afterwards, it will have the correct
385 * data in the buffer.
388 jbd2_buffer_frozen_trigger(jh_in
, mapped_data
+ new_offset
,
394 if (*((__be32
*)(mapped_data
+ new_offset
)) ==
395 cpu_to_be32(JBD2_MAGIC_NUMBER
)) {
399 kunmap_atomic(mapped_data
);
402 * Do we need to do a data copy?
404 if (need_copy_out
&& !done_copy_out
) {
407 spin_unlock(&jh_in
->b_state_lock
);
408 tmp
= jbd2_alloc(bh_in
->b_size
, GFP_NOFS
);
413 spin_lock(&jh_in
->b_state_lock
);
414 if (jh_in
->b_frozen_data
) {
415 jbd2_free(tmp
, bh_in
->b_size
);
419 jh_in
->b_frozen_data
= tmp
;
420 mapped_data
= kmap_atomic(new_page
);
421 memcpy(tmp
, mapped_data
+ new_offset
, bh_in
->b_size
);
422 kunmap_atomic(mapped_data
);
424 new_page
= virt_to_page(tmp
);
425 new_offset
= offset_in_page(tmp
);
429 * This isn't strictly necessary, as we're using frozen
430 * data for the escaping, but it keeps consistency with
431 * b_frozen_data usage.
433 jh_in
->b_frozen_triggers
= jh_in
->b_triggers
;
437 * Did we need to do an escaping? Now we've done all the
438 * copying, we can finally do so.
441 mapped_data
= kmap_atomic(new_page
);
442 *((unsigned int *)(mapped_data
+ new_offset
)) = 0;
443 kunmap_atomic(mapped_data
);
446 set_bh_page(new_bh
, new_page
, new_offset
);
447 new_bh
->b_size
= bh_in
->b_size
;
448 new_bh
->b_bdev
= journal
->j_dev
;
449 new_bh
->b_blocknr
= blocknr
;
450 new_bh
->b_private
= bh_in
;
451 set_buffer_mapped(new_bh
);
452 set_buffer_dirty(new_bh
);
457 * The to-be-written buffer needs to get moved to the io queue,
458 * and the original buffer whose contents we are shadowing or
459 * copying is moved to the transaction's shadow queue.
461 JBUFFER_TRACE(jh_in
, "file as BJ_Shadow");
462 spin_lock(&journal
->j_list_lock
);
463 __jbd2_journal_file_buffer(jh_in
, transaction
, BJ_Shadow
);
464 spin_unlock(&journal
->j_list_lock
);
465 set_buffer_shadow(bh_in
);
466 spin_unlock(&jh_in
->b_state_lock
);
468 return do_escape
| (done_copy_out
<< 1);
472 * Allocation code for the journal file. Manage the space left in the
473 * journal, so that we can begin checkpointing when appropriate.
477 * Called with j_state_lock locked for writing.
478 * Returns true if a transaction commit was started.
480 int __jbd2_log_start_commit(journal_t
*journal
, tid_t target
)
482 /* Return if the txn has already requested to be committed */
483 if (journal
->j_commit_request
== target
)
487 * The only transaction we can possibly wait upon is the
488 * currently running transaction (if it exists). Otherwise,
489 * the target tid must be an old one.
491 if (journal
->j_running_transaction
&&
492 journal
->j_running_transaction
->t_tid
== target
) {
494 * We want a new commit: OK, mark the request and wakeup the
495 * commit thread. We do _not_ do the commit ourselves.
498 journal
->j_commit_request
= target
;
499 jbd_debug(1, "JBD2: requesting commit %u/%u\n",
500 journal
->j_commit_request
,
501 journal
->j_commit_sequence
);
502 journal
->j_running_transaction
->t_requested
= jiffies
;
503 wake_up(&journal
->j_wait_commit
);
505 } else if (!tid_geq(journal
->j_commit_request
, target
))
506 /* This should never happen, but if it does, preserve
507 the evidence before kjournald goes into a loop and
508 increments j_commit_sequence beyond all recognition. */
509 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
510 journal
->j_commit_request
,
511 journal
->j_commit_sequence
,
512 target
, journal
->j_running_transaction
?
513 journal
->j_running_transaction
->t_tid
: 0);
517 int jbd2_log_start_commit(journal_t
*journal
, tid_t tid
)
521 write_lock(&journal
->j_state_lock
);
522 ret
= __jbd2_log_start_commit(journal
, tid
);
523 write_unlock(&journal
->j_state_lock
);
528 * Force and wait any uncommitted transactions. We can only force the running
529 * transaction if we don't have an active handle, otherwise, we will deadlock.
530 * Returns: <0 in case of error,
531 * 0 if nothing to commit,
532 * 1 if transaction was successfully committed.
534 static int __jbd2_journal_force_commit(journal_t
*journal
)
536 transaction_t
*transaction
= NULL
;
538 int need_to_start
= 0, ret
= 0;
540 read_lock(&journal
->j_state_lock
);
541 if (journal
->j_running_transaction
&& !current
->journal_info
) {
542 transaction
= journal
->j_running_transaction
;
543 if (!tid_geq(journal
->j_commit_request
, transaction
->t_tid
))
545 } else if (journal
->j_committing_transaction
)
546 transaction
= journal
->j_committing_transaction
;
549 /* Nothing to commit */
550 read_unlock(&journal
->j_state_lock
);
553 tid
= transaction
->t_tid
;
554 read_unlock(&journal
->j_state_lock
);
556 jbd2_log_start_commit(journal
, tid
);
557 ret
= jbd2_log_wait_commit(journal
, tid
);
565 * Force and wait upon a commit if the calling process is not within
566 * transaction. This is used for forcing out undo-protected data which contains
567 * bitmaps, when the fs is running out of space.
569 * @journal: journal to force
570 * Returns true if progress was made.
572 int jbd2_journal_force_commit_nested(journal_t
*journal
)
576 ret
= __jbd2_journal_force_commit(journal
);
581 * int journal_force_commit() - force any uncommitted transactions
582 * @journal: journal to force
584 * Caller want unconditional commit. We can only force the running transaction
585 * if we don't have an active handle, otherwise, we will deadlock.
587 int jbd2_journal_force_commit(journal_t
*journal
)
591 J_ASSERT(!current
->journal_info
);
592 ret
= __jbd2_journal_force_commit(journal
);
599 * Start a commit of the current running transaction (if any). Returns true
600 * if a transaction is going to be committed (or is currently already
601 * committing), and fills its tid in at *ptid
603 int jbd2_journal_start_commit(journal_t
*journal
, tid_t
*ptid
)
607 write_lock(&journal
->j_state_lock
);
608 if (journal
->j_running_transaction
) {
609 tid_t tid
= journal
->j_running_transaction
->t_tid
;
611 __jbd2_log_start_commit(journal
, tid
);
612 /* There's a running transaction and we've just made sure
613 * it's commit has been scheduled. */
617 } else if (journal
->j_committing_transaction
) {
619 * If commit has been started, then we have to wait for
620 * completion of that transaction.
623 *ptid
= journal
->j_committing_transaction
->t_tid
;
626 write_unlock(&journal
->j_state_lock
);
631 * Return 1 if a given transaction has not yet sent barrier request
632 * connected with a transaction commit. If 0 is returned, transaction
633 * may or may not have sent the barrier. Used to avoid sending barrier
634 * twice in common cases.
636 int jbd2_trans_will_send_data_barrier(journal_t
*journal
, tid_t tid
)
639 transaction_t
*commit_trans
;
641 if (!(journal
->j_flags
& JBD2_BARRIER
))
643 read_lock(&journal
->j_state_lock
);
644 /* Transaction already committed? */
645 if (tid_geq(journal
->j_commit_sequence
, tid
))
647 commit_trans
= journal
->j_committing_transaction
;
648 if (!commit_trans
|| commit_trans
->t_tid
!= tid
) {
653 * Transaction is being committed and we already proceeded to
654 * submitting a flush to fs partition?
656 if (journal
->j_fs_dev
!= journal
->j_dev
) {
657 if (!commit_trans
->t_need_data_flush
||
658 commit_trans
->t_state
>= T_COMMIT_DFLUSH
)
661 if (commit_trans
->t_state
>= T_COMMIT_JFLUSH
)
666 read_unlock(&journal
->j_state_lock
);
669 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier
);
672 * Wait for a specified commit to complete.
673 * The caller may not hold the journal lock.
675 int jbd2_log_wait_commit(journal_t
*journal
, tid_t tid
)
679 read_lock(&journal
->j_state_lock
);
680 #ifdef CONFIG_PROVE_LOCKING
682 * Some callers make sure transaction is already committing and in that
683 * case we cannot block on open handles anymore. So don't warn in that
686 if (tid_gt(tid
, journal
->j_commit_sequence
) &&
687 (!journal
->j_committing_transaction
||
688 journal
->j_committing_transaction
->t_tid
!= tid
)) {
689 read_unlock(&journal
->j_state_lock
);
690 jbd2_might_wait_for_commit(journal
);
691 read_lock(&journal
->j_state_lock
);
694 #ifdef CONFIG_JBD2_DEBUG
695 if (!tid_geq(journal
->j_commit_request
, tid
)) {
697 "%s: error: j_commit_request=%u, tid=%u\n",
698 __func__
, journal
->j_commit_request
, tid
);
701 while (tid_gt(tid
, journal
->j_commit_sequence
)) {
702 jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
703 tid
, journal
->j_commit_sequence
);
704 read_unlock(&journal
->j_state_lock
);
705 wake_up(&journal
->j_wait_commit
);
706 wait_event(journal
->j_wait_done_commit
,
707 !tid_gt(tid
, journal
->j_commit_sequence
));
708 read_lock(&journal
->j_state_lock
);
710 read_unlock(&journal
->j_state_lock
);
712 if (unlikely(is_journal_aborted(journal
)))
717 /* Return 1 when transaction with given tid has already committed. */
718 int jbd2_transaction_committed(journal_t
*journal
, tid_t tid
)
722 read_lock(&journal
->j_state_lock
);
723 if (journal
->j_running_transaction
&&
724 journal
->j_running_transaction
->t_tid
== tid
)
726 if (journal
->j_committing_transaction
&&
727 journal
->j_committing_transaction
->t_tid
== tid
)
729 read_unlock(&journal
->j_state_lock
);
732 EXPORT_SYMBOL(jbd2_transaction_committed
);
735 * When this function returns the transaction corresponding to tid
736 * will be completed. If the transaction has currently running, start
737 * committing that transaction before waiting for it to complete. If
738 * the transaction id is stale, it is by definition already completed,
739 * so just return SUCCESS.
741 int jbd2_complete_transaction(journal_t
*journal
, tid_t tid
)
743 int need_to_wait
= 1;
745 read_lock(&journal
->j_state_lock
);
746 if (journal
->j_running_transaction
&&
747 journal
->j_running_transaction
->t_tid
== tid
) {
748 if (journal
->j_commit_request
!= tid
) {
749 /* transaction not yet started, so request it */
750 read_unlock(&journal
->j_state_lock
);
751 jbd2_log_start_commit(journal
, tid
);
754 } else if (!(journal
->j_committing_transaction
&&
755 journal
->j_committing_transaction
->t_tid
== tid
))
757 read_unlock(&journal
->j_state_lock
);
761 return jbd2_log_wait_commit(journal
, tid
);
763 EXPORT_SYMBOL(jbd2_complete_transaction
);
766 * Log buffer allocation routines:
769 int jbd2_journal_next_log_block(journal_t
*journal
, unsigned long long *retp
)
771 unsigned long blocknr
;
773 write_lock(&journal
->j_state_lock
);
774 J_ASSERT(journal
->j_free
> 1);
776 blocknr
= journal
->j_head
;
779 if (journal
->j_head
== journal
->j_last
)
780 journal
->j_head
= journal
->j_first
;
781 write_unlock(&journal
->j_state_lock
);
782 return jbd2_journal_bmap(journal
, blocknr
, retp
);
786 * Conversion of logical to physical block numbers for the journal
788 * On external journals the journal blocks are identity-mapped, so
789 * this is a no-op. If needed, we can use j_blk_offset - everything is
792 int jbd2_journal_bmap(journal_t
*journal
, unsigned long blocknr
,
793 unsigned long long *retp
)
796 unsigned long long ret
;
799 if (journal
->j_inode
) {
801 ret
= bmap(journal
->j_inode
, &block
);
804 printk(KERN_ALERT
"%s: journal block not found "
805 "at offset %lu on %s\n",
806 __func__
, blocknr
, journal
->j_devname
);
808 jbd2_journal_abort(journal
, err
);
814 *retp
= blocknr
; /* +journal->j_blk_offset */
820 * We play buffer_head aliasing tricks to write data/metadata blocks to
821 * the journal without copying their contents, but for journal
822 * descriptor blocks we do need to generate bona fide buffers.
824 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
825 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
826 * But we don't bother doing that, so there will be coherency problems with
827 * mmaps of blockdevs which hold live JBD-controlled filesystems.
830 jbd2_journal_get_descriptor_buffer(transaction_t
*transaction
, int type
)
832 journal_t
*journal
= transaction
->t_journal
;
833 struct buffer_head
*bh
;
834 unsigned long long blocknr
;
835 journal_header_t
*header
;
838 err
= jbd2_journal_next_log_block(journal
, &blocknr
);
843 bh
= __getblk(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
846 atomic_dec(&transaction
->t_outstanding_credits
);
848 memset(bh
->b_data
, 0, journal
->j_blocksize
);
849 header
= (journal_header_t
*)bh
->b_data
;
850 header
->h_magic
= cpu_to_be32(JBD2_MAGIC_NUMBER
);
851 header
->h_blocktype
= cpu_to_be32(type
);
852 header
->h_sequence
= cpu_to_be32(transaction
->t_tid
);
853 set_buffer_uptodate(bh
);
855 BUFFER_TRACE(bh
, "return this buffer");
859 void jbd2_descriptor_block_csum_set(journal_t
*j
, struct buffer_head
*bh
)
861 struct jbd2_journal_block_tail
*tail
;
864 if (!jbd2_journal_has_csum_v2or3(j
))
867 tail
= (struct jbd2_journal_block_tail
*)(bh
->b_data
+ j
->j_blocksize
-
868 sizeof(struct jbd2_journal_block_tail
));
869 tail
->t_checksum
= 0;
870 csum
= jbd2_chksum(j
, j
->j_csum_seed
, bh
->b_data
, j
->j_blocksize
);
871 tail
->t_checksum
= cpu_to_be32(csum
);
875 * Return tid of the oldest transaction in the journal and block in the journal
876 * where the transaction starts.
878 * If the journal is now empty, return which will be the next transaction ID
879 * we will write and where will that transaction start.
881 * The return value is 0 if journal tail cannot be pushed any further, 1 if
884 int jbd2_journal_get_log_tail(journal_t
*journal
, tid_t
*tid
,
885 unsigned long *block
)
887 transaction_t
*transaction
;
890 read_lock(&journal
->j_state_lock
);
891 spin_lock(&journal
->j_list_lock
);
892 transaction
= journal
->j_checkpoint_transactions
;
894 *tid
= transaction
->t_tid
;
895 *block
= transaction
->t_log_start
;
896 } else if ((transaction
= journal
->j_committing_transaction
) != NULL
) {
897 *tid
= transaction
->t_tid
;
898 *block
= transaction
->t_log_start
;
899 } else if ((transaction
= journal
->j_running_transaction
) != NULL
) {
900 *tid
= transaction
->t_tid
;
901 *block
= journal
->j_head
;
903 *tid
= journal
->j_transaction_sequence
;
904 *block
= journal
->j_head
;
906 ret
= tid_gt(*tid
, journal
->j_tail_sequence
);
907 spin_unlock(&journal
->j_list_lock
);
908 read_unlock(&journal
->j_state_lock
);
914 * Update information in journal structure and in on disk journal superblock
915 * about log tail. This function does not check whether information passed in
916 * really pushes log tail further. It's responsibility of the caller to make
917 * sure provided log tail information is valid (e.g. by holding
918 * j_checkpoint_mutex all the time between computing log tail and calling this
919 * function as is the case with jbd2_cleanup_journal_tail()).
921 * Requires j_checkpoint_mutex
923 int __jbd2_update_log_tail(journal_t
*journal
, tid_t tid
, unsigned long block
)
928 BUG_ON(!mutex_is_locked(&journal
->j_checkpoint_mutex
));
931 * We cannot afford for write to remain in drive's caches since as
932 * soon as we update j_tail, next transaction can start reusing journal
933 * space and if we lose sb update during power failure we'd replay
934 * old transaction with possibly newly overwritten data.
936 ret
= jbd2_journal_update_sb_log_tail(journal
, tid
, block
,
941 write_lock(&journal
->j_state_lock
);
942 freed
= block
- journal
->j_tail
;
943 if (block
< journal
->j_tail
)
944 freed
+= journal
->j_last
- journal
->j_first
;
946 trace_jbd2_update_log_tail(journal
, tid
, block
, freed
);
948 "Cleaning journal tail from %u to %u (offset %lu), "
950 journal
->j_tail_sequence
, tid
, block
, freed
);
952 journal
->j_free
+= freed
;
953 journal
->j_tail_sequence
= tid
;
954 journal
->j_tail
= block
;
955 write_unlock(&journal
->j_state_lock
);
962 * This is a variation of __jbd2_update_log_tail which checks for validity of
963 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
964 * with other threads updating log tail.
966 void jbd2_update_log_tail(journal_t
*journal
, tid_t tid
, unsigned long block
)
968 mutex_lock_io(&journal
->j_checkpoint_mutex
);
969 if (tid_gt(tid
, journal
->j_tail_sequence
))
970 __jbd2_update_log_tail(journal
, tid
, block
);
971 mutex_unlock(&journal
->j_checkpoint_mutex
);
974 struct jbd2_stats_proc_session
{
976 struct transaction_stats_s
*stats
;
981 static void *jbd2_seq_info_start(struct seq_file
*seq
, loff_t
*pos
)
983 return *pos
? NULL
: SEQ_START_TOKEN
;
986 static void *jbd2_seq_info_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
992 static int jbd2_seq_info_show(struct seq_file
*seq
, void *v
)
994 struct jbd2_stats_proc_session
*s
= seq
->private;
996 if (v
!= SEQ_START_TOKEN
)
998 seq_printf(seq
, "%lu transactions (%lu requested), "
999 "each up to %u blocks\n",
1000 s
->stats
->ts_tid
, s
->stats
->ts_requested
,
1001 s
->journal
->j_max_transaction_buffers
);
1002 if (s
->stats
->ts_tid
== 0)
1004 seq_printf(seq
, "average: \n %ums waiting for transaction\n",
1005 jiffies_to_msecs(s
->stats
->run
.rs_wait
/ s
->stats
->ts_tid
));
1006 seq_printf(seq
, " %ums request delay\n",
1007 (s
->stats
->ts_requested
== 0) ? 0 :
1008 jiffies_to_msecs(s
->stats
->run
.rs_request_delay
/
1009 s
->stats
->ts_requested
));
1010 seq_printf(seq
, " %ums running transaction\n",
1011 jiffies_to_msecs(s
->stats
->run
.rs_running
/ s
->stats
->ts_tid
));
1012 seq_printf(seq
, " %ums transaction was being locked\n",
1013 jiffies_to_msecs(s
->stats
->run
.rs_locked
/ s
->stats
->ts_tid
));
1014 seq_printf(seq
, " %ums flushing data (in ordered mode)\n",
1015 jiffies_to_msecs(s
->stats
->run
.rs_flushing
/ s
->stats
->ts_tid
));
1016 seq_printf(seq
, " %ums logging transaction\n",
1017 jiffies_to_msecs(s
->stats
->run
.rs_logging
/ s
->stats
->ts_tid
));
1018 seq_printf(seq
, " %lluus average transaction commit time\n",
1019 div_u64(s
->journal
->j_average_commit_time
, 1000));
1020 seq_printf(seq
, " %lu handles per transaction\n",
1021 s
->stats
->run
.rs_handle_count
/ s
->stats
->ts_tid
);
1022 seq_printf(seq
, " %lu blocks per transaction\n",
1023 s
->stats
->run
.rs_blocks
/ s
->stats
->ts_tid
);
1024 seq_printf(seq
, " %lu logged blocks per transaction\n",
1025 s
->stats
->run
.rs_blocks_logged
/ s
->stats
->ts_tid
);
1029 static void jbd2_seq_info_stop(struct seq_file
*seq
, void *v
)
1033 static const struct seq_operations jbd2_seq_info_ops
= {
1034 .start
= jbd2_seq_info_start
,
1035 .next
= jbd2_seq_info_next
,
1036 .stop
= jbd2_seq_info_stop
,
1037 .show
= jbd2_seq_info_show
,
1040 static int jbd2_seq_info_open(struct inode
*inode
, struct file
*file
)
1042 journal_t
*journal
= PDE_DATA(inode
);
1043 struct jbd2_stats_proc_session
*s
;
1046 s
= kmalloc(sizeof(*s
), GFP_KERNEL
);
1049 size
= sizeof(struct transaction_stats_s
);
1050 s
->stats
= kmalloc(size
, GFP_KERNEL
);
1051 if (s
->stats
== NULL
) {
1055 spin_lock(&journal
->j_history_lock
);
1056 memcpy(s
->stats
, &journal
->j_stats
, size
);
1057 s
->journal
= journal
;
1058 spin_unlock(&journal
->j_history_lock
);
1060 rc
= seq_open(file
, &jbd2_seq_info_ops
);
1062 struct seq_file
*m
= file
->private_data
;
1072 static int jbd2_seq_info_release(struct inode
*inode
, struct file
*file
)
1074 struct seq_file
*seq
= file
->private_data
;
1075 struct jbd2_stats_proc_session
*s
= seq
->private;
1078 return seq_release(inode
, file
);
1081 static const struct proc_ops jbd2_info_proc_ops
= {
1082 .proc_open
= jbd2_seq_info_open
,
1083 .proc_read
= seq_read
,
1084 .proc_lseek
= seq_lseek
,
1085 .proc_release
= jbd2_seq_info_release
,
1088 static struct proc_dir_entry
*proc_jbd2_stats
;
1090 static void jbd2_stats_proc_init(journal_t
*journal
)
1092 journal
->j_proc_entry
= proc_mkdir(journal
->j_devname
, proc_jbd2_stats
);
1093 if (journal
->j_proc_entry
) {
1094 proc_create_data("info", S_IRUGO
, journal
->j_proc_entry
,
1095 &jbd2_info_proc_ops
, journal
);
1099 static void jbd2_stats_proc_exit(journal_t
*journal
)
1101 remove_proc_entry("info", journal
->j_proc_entry
);
1102 remove_proc_entry(journal
->j_devname
, proc_jbd2_stats
);
1105 /* Minimum size of descriptor tag */
1106 static int jbd2_min_tag_size(void)
1109 * Tag with 32-bit block numbers does not use last four bytes of the
1112 return sizeof(journal_block_tag_t
) - 4;
1116 * Management for journal control blocks: functions to create and
1117 * destroy journal_t structures, and to initialise and read existing
1118 * journal blocks from disk. */
1120 /* First: create and setup a journal_t object in memory. We initialise
1121 * very few fields yet: that has to wait until we have created the
1122 * journal structures from from scratch, or loaded them from disk. */
1124 static journal_t
*journal_init_common(struct block_device
*bdev
,
1125 struct block_device
*fs_dev
,
1126 unsigned long long start
, int len
, int blocksize
)
1128 static struct lock_class_key jbd2_trans_commit_key
;
1131 struct buffer_head
*bh
;
1134 journal
= kzalloc(sizeof(*journal
), GFP_KERNEL
);
1138 init_waitqueue_head(&journal
->j_wait_transaction_locked
);
1139 init_waitqueue_head(&journal
->j_wait_done_commit
);
1140 init_waitqueue_head(&journal
->j_wait_commit
);
1141 init_waitqueue_head(&journal
->j_wait_updates
);
1142 init_waitqueue_head(&journal
->j_wait_reserved
);
1143 mutex_init(&journal
->j_barrier
);
1144 mutex_init(&journal
->j_checkpoint_mutex
);
1145 spin_lock_init(&journal
->j_revoke_lock
);
1146 spin_lock_init(&journal
->j_list_lock
);
1147 rwlock_init(&journal
->j_state_lock
);
1149 journal
->j_commit_interval
= (HZ
* JBD2_DEFAULT_MAX_COMMIT_AGE
);
1150 journal
->j_min_batch_time
= 0;
1151 journal
->j_max_batch_time
= 15000; /* 15ms */
1152 atomic_set(&journal
->j_reserved_credits
, 0);
1154 /* The journal is marked for error until we succeed with recovery! */
1155 journal
->j_flags
= JBD2_ABORT
;
1157 /* Set up a default-sized revoke table for the new mount. */
1158 err
= jbd2_journal_init_revoke(journal
, JOURNAL_REVOKE_DEFAULT_HASH
);
1162 spin_lock_init(&journal
->j_history_lock
);
1164 lockdep_init_map(&journal
->j_trans_commit_map
, "jbd2_handle",
1165 &jbd2_trans_commit_key
, 0);
1167 /* journal descriptor can store up to n blocks -bzzz */
1168 journal
->j_blocksize
= blocksize
;
1169 journal
->j_dev
= bdev
;
1170 journal
->j_fs_dev
= fs_dev
;
1171 journal
->j_blk_offset
= start
;
1172 journal
->j_maxlen
= len
;
1173 /* We need enough buffers to write out full descriptor block. */
1174 n
= journal
->j_blocksize
/ jbd2_min_tag_size();
1175 journal
->j_wbufsize
= n
;
1176 journal
->j_wbuf
= kmalloc_array(n
, sizeof(struct buffer_head
*),
1178 if (!journal
->j_wbuf
)
1181 bh
= getblk_unmovable(journal
->j_dev
, start
, journal
->j_blocksize
);
1183 pr_err("%s: Cannot get buffer for journal superblock\n",
1187 journal
->j_sb_buffer
= bh
;
1188 journal
->j_superblock
= (journal_superblock_t
*)bh
->b_data
;
1193 kfree(journal
->j_wbuf
);
1194 jbd2_journal_destroy_revoke(journal
);
1199 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1201 * Create a journal structure assigned some fixed set of disk blocks to
1202 * the journal. We don't actually touch those disk blocks yet, but we
1203 * need to set up all of the mapping information to tell the journaling
1204 * system where the journal blocks are.
1209 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1210 * @bdev: Block device on which to create the journal
1211 * @fs_dev: Device which hold journalled filesystem for this journal.
1212 * @start: Block nr Start of journal.
1213 * @len: Length of the journal in blocks.
1214 * @blocksize: blocksize of journalling device
1216 * Returns: a newly created journal_t *
1218 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1219 * range of blocks on an arbitrary block device.
1222 journal_t
*jbd2_journal_init_dev(struct block_device
*bdev
,
1223 struct block_device
*fs_dev
,
1224 unsigned long long start
, int len
, int blocksize
)
1228 journal
= journal_init_common(bdev
, fs_dev
, start
, len
, blocksize
);
1232 bdevname(journal
->j_dev
, journal
->j_devname
);
1233 strreplace(journal
->j_devname
, '/', '!');
1234 jbd2_stats_proc_init(journal
);
1240 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1241 * @inode: An inode to create the journal in
1243 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1244 * the journal. The inode must exist already, must support bmap() and
1245 * must have all data blocks preallocated.
1247 journal_t
*jbd2_journal_init_inode(struct inode
*inode
)
1255 err
= bmap(inode
, &blocknr
);
1257 if (err
|| !blocknr
) {
1258 pr_err("%s: Cannot locate journal superblock\n",
1263 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1264 inode
->i_sb
->s_id
, inode
->i_ino
, (long long) inode
->i_size
,
1265 inode
->i_sb
->s_blocksize_bits
, inode
->i_sb
->s_blocksize
);
1267 journal
= journal_init_common(inode
->i_sb
->s_bdev
, inode
->i_sb
->s_bdev
,
1268 blocknr
, inode
->i_size
>> inode
->i_sb
->s_blocksize_bits
,
1269 inode
->i_sb
->s_blocksize
);
1273 journal
->j_inode
= inode
;
1274 bdevname(journal
->j_dev
, journal
->j_devname
);
1275 p
= strreplace(journal
->j_devname
, '/', '!');
1276 sprintf(p
, "-%lu", journal
->j_inode
->i_ino
);
1277 jbd2_stats_proc_init(journal
);
1283 * If the journal init or create aborts, we need to mark the journal
1284 * superblock as being NULL to prevent the journal destroy from writing
1285 * back a bogus superblock.
1287 static void journal_fail_superblock (journal_t
*journal
)
1289 struct buffer_head
*bh
= journal
->j_sb_buffer
;
1291 journal
->j_sb_buffer
= NULL
;
1295 * Given a journal_t structure, initialise the various fields for
1296 * startup of a new journaling session. We use this both when creating
1297 * a journal, and after recovering an old journal to reset it for
1301 static int journal_reset(journal_t
*journal
)
1303 journal_superblock_t
*sb
= journal
->j_superblock
;
1304 unsigned long long first
, last
;
1306 first
= be32_to_cpu(sb
->s_first
);
1307 last
= be32_to_cpu(sb
->s_maxlen
);
1308 if (first
+ JBD2_MIN_JOURNAL_BLOCKS
> last
+ 1) {
1309 printk(KERN_ERR
"JBD2: Journal too short (blocks %llu-%llu).\n",
1311 journal_fail_superblock(journal
);
1315 journal
->j_first
= first
;
1316 journal
->j_last
= last
;
1318 journal
->j_head
= first
;
1319 journal
->j_tail
= first
;
1320 journal
->j_free
= last
- first
;
1322 journal
->j_tail_sequence
= journal
->j_transaction_sequence
;
1323 journal
->j_commit_sequence
= journal
->j_transaction_sequence
- 1;
1324 journal
->j_commit_request
= journal
->j_commit_sequence
;
1326 journal
->j_max_transaction_buffers
= journal
->j_maxlen
/ 4;
1329 * As a special case, if the on-disk copy is already marked as needing
1330 * no recovery (s_start == 0), then we can safely defer the superblock
1331 * update until the next commit by setting JBD2_FLUSHED. This avoids
1332 * attempting a write to a potential-readonly device.
1334 if (sb
->s_start
== 0) {
1335 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1336 "(start %ld, seq %u, errno %d)\n",
1337 journal
->j_tail
, journal
->j_tail_sequence
,
1339 journal
->j_flags
|= JBD2_FLUSHED
;
1341 /* Lock here to make assertions happy... */
1342 mutex_lock_io(&journal
->j_checkpoint_mutex
);
1344 * Update log tail information. We use REQ_FUA since new
1345 * transaction will start reusing journal space and so we
1346 * must make sure information about current log tail is on
1349 jbd2_journal_update_sb_log_tail(journal
,
1350 journal
->j_tail_sequence
,
1352 REQ_SYNC
| REQ_FUA
);
1353 mutex_unlock(&journal
->j_checkpoint_mutex
);
1355 return jbd2_journal_start_thread(journal
);
1359 * This function expects that the caller will have locked the journal
1360 * buffer head, and will return with it unlocked
1362 static int jbd2_write_superblock(journal_t
*journal
, int write_flags
)
1364 struct buffer_head
*bh
= journal
->j_sb_buffer
;
1365 journal_superblock_t
*sb
= journal
->j_superblock
;
1368 /* Buffer got discarded which means block device got invalidated */
1369 if (!buffer_mapped(bh
))
1372 trace_jbd2_write_superblock(journal
, write_flags
);
1373 if (!(journal
->j_flags
& JBD2_BARRIER
))
1374 write_flags
&= ~(REQ_FUA
| REQ_PREFLUSH
);
1375 if (buffer_write_io_error(bh
)) {
1377 * Oh, dear. A previous attempt to write the journal
1378 * superblock failed. This could happen because the
1379 * USB device was yanked out. Or it could happen to
1380 * be a transient write error and maybe the block will
1381 * be remapped. Nothing we can do but to retry the
1382 * write and hope for the best.
1384 printk(KERN_ERR
"JBD2: previous I/O error detected "
1385 "for journal superblock update for %s.\n",
1386 journal
->j_devname
);
1387 clear_buffer_write_io_error(bh
);
1388 set_buffer_uptodate(bh
);
1390 if (jbd2_journal_has_csum_v2or3(journal
))
1391 sb
->s_checksum
= jbd2_superblock_csum(journal
, sb
);
1393 bh
->b_end_io
= end_buffer_write_sync
;
1394 ret
= submit_bh(REQ_OP_WRITE
, write_flags
, bh
);
1396 if (buffer_write_io_error(bh
)) {
1397 clear_buffer_write_io_error(bh
);
1398 set_buffer_uptodate(bh
);
1402 printk(KERN_ERR
"JBD2: Error %d detected when updating "
1403 "journal superblock for %s.\n", ret
,
1404 journal
->j_devname
);
1405 jbd2_journal_abort(journal
, ret
);
1412 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1413 * @journal: The journal to update.
1414 * @tail_tid: TID of the new transaction at the tail of the log
1415 * @tail_block: The first block of the transaction at the tail of the log
1416 * @write_op: With which operation should we write the journal sb
1418 * Update a journal's superblock information about log tail and write it to
1419 * disk, waiting for the IO to complete.
1421 int jbd2_journal_update_sb_log_tail(journal_t
*journal
, tid_t tail_tid
,
1422 unsigned long tail_block
, int write_op
)
1424 journal_superblock_t
*sb
= journal
->j_superblock
;
1427 if (is_journal_aborted(journal
))
1430 BUG_ON(!mutex_is_locked(&journal
->j_checkpoint_mutex
));
1431 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1432 tail_block
, tail_tid
);
1434 lock_buffer(journal
->j_sb_buffer
);
1435 sb
->s_sequence
= cpu_to_be32(tail_tid
);
1436 sb
->s_start
= cpu_to_be32(tail_block
);
1438 ret
= jbd2_write_superblock(journal
, write_op
);
1442 /* Log is no longer empty */
1443 write_lock(&journal
->j_state_lock
);
1444 WARN_ON(!sb
->s_sequence
);
1445 journal
->j_flags
&= ~JBD2_FLUSHED
;
1446 write_unlock(&journal
->j_state_lock
);
1453 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1454 * @journal: The journal to update.
1455 * @write_op: With which operation should we write the journal sb
1457 * Update a journal's dynamic superblock fields to show that journal is empty.
1458 * Write updated superblock to disk waiting for IO to complete.
1460 static void jbd2_mark_journal_empty(journal_t
*journal
, int write_op
)
1462 journal_superblock_t
*sb
= journal
->j_superblock
;
1464 BUG_ON(!mutex_is_locked(&journal
->j_checkpoint_mutex
));
1465 lock_buffer(journal
->j_sb_buffer
);
1466 if (sb
->s_start
== 0) { /* Is it already empty? */
1467 unlock_buffer(journal
->j_sb_buffer
);
1471 jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1472 journal
->j_tail_sequence
);
1474 sb
->s_sequence
= cpu_to_be32(journal
->j_tail_sequence
);
1475 sb
->s_start
= cpu_to_be32(0);
1477 jbd2_write_superblock(journal
, write_op
);
1479 /* Log is no longer empty */
1480 write_lock(&journal
->j_state_lock
);
1481 journal
->j_flags
|= JBD2_FLUSHED
;
1482 write_unlock(&journal
->j_state_lock
);
1487 * jbd2_journal_update_sb_errno() - Update error in the journal.
1488 * @journal: The journal to update.
1490 * Update a journal's errno. Write updated superblock to disk waiting for IO
1493 void jbd2_journal_update_sb_errno(journal_t
*journal
)
1495 journal_superblock_t
*sb
= journal
->j_superblock
;
1498 lock_buffer(journal
->j_sb_buffer
);
1499 errcode
= journal
->j_errno
;
1500 if (errcode
== -ESHUTDOWN
)
1502 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode
);
1503 sb
->s_errno
= cpu_to_be32(errcode
);
1505 jbd2_write_superblock(journal
, REQ_SYNC
| REQ_FUA
);
1507 EXPORT_SYMBOL(jbd2_journal_update_sb_errno
);
1509 static int journal_revoke_records_per_block(journal_t
*journal
)
1512 int space
= journal
->j_blocksize
- sizeof(jbd2_journal_revoke_header_t
);
1514 if (jbd2_has_feature_64bit(journal
))
1519 if (jbd2_journal_has_csum_v2or3(journal
))
1520 space
-= sizeof(struct jbd2_journal_block_tail
);
1521 return space
/ record_size
;
1525 * Read the superblock for a given journal, performing initial
1526 * validation of the format.
1528 static int journal_get_superblock(journal_t
*journal
)
1530 struct buffer_head
*bh
;
1531 journal_superblock_t
*sb
;
1534 bh
= journal
->j_sb_buffer
;
1536 J_ASSERT(bh
!= NULL
);
1537 if (!buffer_uptodate(bh
)) {
1538 ll_rw_block(REQ_OP_READ
, 0, 1, &bh
);
1540 if (!buffer_uptodate(bh
)) {
1542 "JBD2: IO error reading journal superblock\n");
1547 if (buffer_verified(bh
))
1550 sb
= journal
->j_superblock
;
1554 if (sb
->s_header
.h_magic
!= cpu_to_be32(JBD2_MAGIC_NUMBER
) ||
1555 sb
->s_blocksize
!= cpu_to_be32(journal
->j_blocksize
)) {
1556 printk(KERN_WARNING
"JBD2: no valid journal superblock found\n");
1560 switch(be32_to_cpu(sb
->s_header
.h_blocktype
)) {
1561 case JBD2_SUPERBLOCK_V1
:
1562 journal
->j_format_version
= 1;
1564 case JBD2_SUPERBLOCK_V2
:
1565 journal
->j_format_version
= 2;
1568 printk(KERN_WARNING
"JBD2: unrecognised superblock format ID\n");
1572 if (be32_to_cpu(sb
->s_maxlen
) < journal
->j_maxlen
)
1573 journal
->j_maxlen
= be32_to_cpu(sb
->s_maxlen
);
1574 else if (be32_to_cpu(sb
->s_maxlen
) > journal
->j_maxlen
) {
1575 printk(KERN_WARNING
"JBD2: journal file too short\n");
1579 if (be32_to_cpu(sb
->s_first
) == 0 ||
1580 be32_to_cpu(sb
->s_first
) >= journal
->j_maxlen
) {
1582 "JBD2: Invalid start block of journal: %u\n",
1583 be32_to_cpu(sb
->s_first
));
1587 if (jbd2_has_feature_csum2(journal
) &&
1588 jbd2_has_feature_csum3(journal
)) {
1589 /* Can't have checksum v2 and v3 at the same time! */
1590 printk(KERN_ERR
"JBD2: Can't enable checksumming v2 and v3 "
1591 "at the same time!\n");
1595 if (jbd2_journal_has_csum_v2or3_feature(journal
) &&
1596 jbd2_has_feature_checksum(journal
)) {
1597 /* Can't have checksum v1 and v2 on at the same time! */
1598 printk(KERN_ERR
"JBD2: Can't enable checksumming v1 and v2/3 "
1599 "at the same time!\n");
1603 if (!jbd2_verify_csum_type(journal
, sb
)) {
1604 printk(KERN_ERR
"JBD2: Unknown checksum type\n");
1608 /* Load the checksum driver */
1609 if (jbd2_journal_has_csum_v2or3_feature(journal
)) {
1610 journal
->j_chksum_driver
= crypto_alloc_shash("crc32c", 0, 0);
1611 if (IS_ERR(journal
->j_chksum_driver
)) {
1612 printk(KERN_ERR
"JBD2: Cannot load crc32c driver.\n");
1613 err
= PTR_ERR(journal
->j_chksum_driver
);
1614 journal
->j_chksum_driver
= NULL
;
1619 if (jbd2_journal_has_csum_v2or3(journal
)) {
1620 /* Check superblock checksum */
1621 if (sb
->s_checksum
!= jbd2_superblock_csum(journal
, sb
)) {
1622 printk(KERN_ERR
"JBD2: journal checksum error\n");
1627 /* Precompute checksum seed for all metadata */
1628 journal
->j_csum_seed
= jbd2_chksum(journal
, ~0, sb
->s_uuid
,
1629 sizeof(sb
->s_uuid
));
1632 journal
->j_revoke_records_per_block
=
1633 journal_revoke_records_per_block(journal
);
1634 set_buffer_verified(bh
);
1639 journal_fail_superblock(journal
);
1644 * Load the on-disk journal superblock and read the key fields into the
1648 static int load_superblock(journal_t
*journal
)
1651 journal_superblock_t
*sb
;
1653 err
= journal_get_superblock(journal
);
1657 sb
= journal
->j_superblock
;
1659 journal
->j_tail_sequence
= be32_to_cpu(sb
->s_sequence
);
1660 journal
->j_tail
= be32_to_cpu(sb
->s_start
);
1661 journal
->j_first
= be32_to_cpu(sb
->s_first
);
1662 journal
->j_last
= be32_to_cpu(sb
->s_maxlen
);
1663 journal
->j_errno
= be32_to_cpu(sb
->s_errno
);
1670 * int jbd2_journal_load() - Read journal from disk.
1671 * @journal: Journal to act on.
1673 * Given a journal_t structure which tells us which disk blocks contain
1674 * a journal, read the journal from disk to initialise the in-memory
1677 int jbd2_journal_load(journal_t
*journal
)
1680 journal_superblock_t
*sb
;
1682 err
= load_superblock(journal
);
1686 sb
= journal
->j_superblock
;
1687 /* If this is a V2 superblock, then we have to check the
1688 * features flags on it. */
1690 if (journal
->j_format_version
>= 2) {
1691 if ((sb
->s_feature_ro_compat
&
1692 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES
)) ||
1693 (sb
->s_feature_incompat
&
1694 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES
))) {
1696 "JBD2: Unrecognised features on journal\n");
1702 * Create a slab for this blocksize
1704 err
= jbd2_journal_create_slab(be32_to_cpu(sb
->s_blocksize
));
1708 /* Let the recovery code check whether it needs to recover any
1709 * data from the journal. */
1710 if (jbd2_journal_recover(journal
))
1711 goto recovery_error
;
1713 if (journal
->j_failed_commit
) {
1714 printk(KERN_ERR
"JBD2: journal transaction %u on %s "
1715 "is corrupt.\n", journal
->j_failed_commit
,
1716 journal
->j_devname
);
1717 return -EFSCORRUPTED
;
1720 * clear JBD2_ABORT flag initialized in journal_init_common
1721 * here to update log tail information with the newest seq.
1723 journal
->j_flags
&= ~JBD2_ABORT
;
1725 /* OK, we've finished with the dynamic journal bits:
1726 * reinitialise the dynamic contents of the superblock in memory
1727 * and reset them on disk. */
1728 if (journal_reset(journal
))
1729 goto recovery_error
;
1731 journal
->j_flags
|= JBD2_LOADED
;
1735 printk(KERN_WARNING
"JBD2: recovery failed\n");
1740 * void jbd2_journal_destroy() - Release a journal_t structure.
1741 * @journal: Journal to act on.
1743 * Release a journal_t structure once it is no longer in use by the
1745 * Return <0 if we couldn't clean up the journal.
1747 int jbd2_journal_destroy(journal_t
*journal
)
1751 /* Wait for the commit thread to wake up and die. */
1752 journal_kill_thread(journal
);
1754 /* Force a final log commit */
1755 if (journal
->j_running_transaction
)
1756 jbd2_journal_commit_transaction(journal
);
1758 /* Force any old transactions to disk */
1760 /* Totally anal locking here... */
1761 spin_lock(&journal
->j_list_lock
);
1762 while (journal
->j_checkpoint_transactions
!= NULL
) {
1763 spin_unlock(&journal
->j_list_lock
);
1764 mutex_lock_io(&journal
->j_checkpoint_mutex
);
1765 err
= jbd2_log_do_checkpoint(journal
);
1766 mutex_unlock(&journal
->j_checkpoint_mutex
);
1768 * If checkpointing failed, just free the buffers to avoid
1772 jbd2_journal_destroy_checkpoint(journal
);
1773 spin_lock(&journal
->j_list_lock
);
1776 spin_lock(&journal
->j_list_lock
);
1779 J_ASSERT(journal
->j_running_transaction
== NULL
);
1780 J_ASSERT(journal
->j_committing_transaction
== NULL
);
1781 J_ASSERT(journal
->j_checkpoint_transactions
== NULL
);
1782 spin_unlock(&journal
->j_list_lock
);
1784 if (journal
->j_sb_buffer
) {
1785 if (!is_journal_aborted(journal
)) {
1786 mutex_lock_io(&journal
->j_checkpoint_mutex
);
1788 write_lock(&journal
->j_state_lock
);
1789 journal
->j_tail_sequence
=
1790 ++journal
->j_transaction_sequence
;
1791 write_unlock(&journal
->j_state_lock
);
1793 jbd2_mark_journal_empty(journal
,
1794 REQ_SYNC
| REQ_PREFLUSH
| REQ_FUA
);
1795 mutex_unlock(&journal
->j_checkpoint_mutex
);
1798 brelse(journal
->j_sb_buffer
);
1801 if (journal
->j_proc_entry
)
1802 jbd2_stats_proc_exit(journal
);
1803 iput(journal
->j_inode
);
1804 if (journal
->j_revoke
)
1805 jbd2_journal_destroy_revoke(journal
);
1806 if (journal
->j_chksum_driver
)
1807 crypto_free_shash(journal
->j_chksum_driver
);
1808 kfree(journal
->j_wbuf
);
1816 *int jbd2_journal_check_used_features () - Check if features specified are used.
1817 * @journal: Journal to check.
1818 * @compat: bitmask of compatible features
1819 * @ro: bitmask of features that force read-only mount
1820 * @incompat: bitmask of incompatible features
1822 * Check whether the journal uses all of a given set of
1823 * features. Return true (non-zero) if it does.
1826 int jbd2_journal_check_used_features (journal_t
*journal
, unsigned long compat
,
1827 unsigned long ro
, unsigned long incompat
)
1829 journal_superblock_t
*sb
;
1831 if (!compat
&& !ro
&& !incompat
)
1833 /* Load journal superblock if it is not loaded yet. */
1834 if (journal
->j_format_version
== 0 &&
1835 journal_get_superblock(journal
) != 0)
1837 if (journal
->j_format_version
== 1)
1840 sb
= journal
->j_superblock
;
1842 if (((be32_to_cpu(sb
->s_feature_compat
) & compat
) == compat
) &&
1843 ((be32_to_cpu(sb
->s_feature_ro_compat
) & ro
) == ro
) &&
1844 ((be32_to_cpu(sb
->s_feature_incompat
) & incompat
) == incompat
))
1851 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1852 * @journal: Journal to check.
1853 * @compat: bitmask of compatible features
1854 * @ro: bitmask of features that force read-only mount
1855 * @incompat: bitmask of incompatible features
1857 * Check whether the journaling code supports the use of
1858 * all of a given set of features on this journal. Return true
1859 * (non-zero) if it can. */
1861 int jbd2_journal_check_available_features (journal_t
*journal
, unsigned long compat
,
1862 unsigned long ro
, unsigned long incompat
)
1864 if (!compat
&& !ro
&& !incompat
)
1867 /* We can support any known requested features iff the
1868 * superblock is in version 2. Otherwise we fail to support any
1869 * extended sb features. */
1871 if (journal
->j_format_version
!= 2)
1874 if ((compat
& JBD2_KNOWN_COMPAT_FEATURES
) == compat
&&
1875 (ro
& JBD2_KNOWN_ROCOMPAT_FEATURES
) == ro
&&
1876 (incompat
& JBD2_KNOWN_INCOMPAT_FEATURES
) == incompat
)
1883 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1884 * @journal: Journal to act on.
1885 * @compat: bitmask of compatible features
1886 * @ro: bitmask of features that force read-only mount
1887 * @incompat: bitmask of incompatible features
1889 * Mark a given journal feature as present on the
1890 * superblock. Returns true if the requested features could be set.
1894 int jbd2_journal_set_features (journal_t
*journal
, unsigned long compat
,
1895 unsigned long ro
, unsigned long incompat
)
1897 #define INCOMPAT_FEATURE_ON(f) \
1898 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1899 #define COMPAT_FEATURE_ON(f) \
1900 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1901 journal_superblock_t
*sb
;
1903 if (jbd2_journal_check_used_features(journal
, compat
, ro
, incompat
))
1906 if (!jbd2_journal_check_available_features(journal
, compat
, ro
, incompat
))
1909 /* If enabling v2 checksums, turn on v3 instead */
1910 if (incompat
& JBD2_FEATURE_INCOMPAT_CSUM_V2
) {
1911 incompat
&= ~JBD2_FEATURE_INCOMPAT_CSUM_V2
;
1912 incompat
|= JBD2_FEATURE_INCOMPAT_CSUM_V3
;
1915 /* Asking for checksumming v3 and v1? Only give them v3. */
1916 if (incompat
& JBD2_FEATURE_INCOMPAT_CSUM_V3
&&
1917 compat
& JBD2_FEATURE_COMPAT_CHECKSUM
)
1918 compat
&= ~JBD2_FEATURE_COMPAT_CHECKSUM
;
1920 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1921 compat
, ro
, incompat
);
1923 sb
= journal
->j_superblock
;
1925 /* Load the checksum driver if necessary */
1926 if ((journal
->j_chksum_driver
== NULL
) &&
1927 INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3
)) {
1928 journal
->j_chksum_driver
= crypto_alloc_shash("crc32c", 0, 0);
1929 if (IS_ERR(journal
->j_chksum_driver
)) {
1930 printk(KERN_ERR
"JBD2: Cannot load crc32c driver.\n");
1931 journal
->j_chksum_driver
= NULL
;
1934 /* Precompute checksum seed for all metadata */
1935 journal
->j_csum_seed
= jbd2_chksum(journal
, ~0, sb
->s_uuid
,
1936 sizeof(sb
->s_uuid
));
1939 lock_buffer(journal
->j_sb_buffer
);
1941 /* If enabling v3 checksums, update superblock */
1942 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3
)) {
1943 sb
->s_checksum_type
= JBD2_CRC32C_CHKSUM
;
1944 sb
->s_feature_compat
&=
1945 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM
);
1948 /* If enabling v1 checksums, downgrade superblock */
1949 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM
))
1950 sb
->s_feature_incompat
&=
1951 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2
|
1952 JBD2_FEATURE_INCOMPAT_CSUM_V3
);
1954 sb
->s_feature_compat
|= cpu_to_be32(compat
);
1955 sb
->s_feature_ro_compat
|= cpu_to_be32(ro
);
1956 sb
->s_feature_incompat
|= cpu_to_be32(incompat
);
1957 unlock_buffer(journal
->j_sb_buffer
);
1958 journal
->j_revoke_records_per_block
=
1959 journal_revoke_records_per_block(journal
);
1962 #undef COMPAT_FEATURE_ON
1963 #undef INCOMPAT_FEATURE_ON
1967 * jbd2_journal_clear_features () - Clear a given journal feature in the
1969 * @journal: Journal to act on.
1970 * @compat: bitmask of compatible features
1971 * @ro: bitmask of features that force read-only mount
1972 * @incompat: bitmask of incompatible features
1974 * Clear a given journal feature as present on the
1977 void jbd2_journal_clear_features(journal_t
*journal
, unsigned long compat
,
1978 unsigned long ro
, unsigned long incompat
)
1980 journal_superblock_t
*sb
;
1982 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1983 compat
, ro
, incompat
);
1985 sb
= journal
->j_superblock
;
1987 sb
->s_feature_compat
&= ~cpu_to_be32(compat
);
1988 sb
->s_feature_ro_compat
&= ~cpu_to_be32(ro
);
1989 sb
->s_feature_incompat
&= ~cpu_to_be32(incompat
);
1990 journal
->j_revoke_records_per_block
=
1991 journal_revoke_records_per_block(journal
);
1993 EXPORT_SYMBOL(jbd2_journal_clear_features
);
1996 * int jbd2_journal_flush () - Flush journal
1997 * @journal: Journal to act on.
1999 * Flush all data for a given journal to disk and empty the journal.
2000 * Filesystems can use this when remounting readonly to ensure that
2001 * recovery does not need to happen on remount.
2004 int jbd2_journal_flush(journal_t
*journal
)
2007 transaction_t
*transaction
= NULL
;
2009 write_lock(&journal
->j_state_lock
);
2011 /* Force everything buffered to the log... */
2012 if (journal
->j_running_transaction
) {
2013 transaction
= journal
->j_running_transaction
;
2014 __jbd2_log_start_commit(journal
, transaction
->t_tid
);
2015 } else if (journal
->j_committing_transaction
)
2016 transaction
= journal
->j_committing_transaction
;
2018 /* Wait for the log commit to complete... */
2020 tid_t tid
= transaction
->t_tid
;
2022 write_unlock(&journal
->j_state_lock
);
2023 jbd2_log_wait_commit(journal
, tid
);
2025 write_unlock(&journal
->j_state_lock
);
2028 /* ...and flush everything in the log out to disk. */
2029 spin_lock(&journal
->j_list_lock
);
2030 while (!err
&& journal
->j_checkpoint_transactions
!= NULL
) {
2031 spin_unlock(&journal
->j_list_lock
);
2032 mutex_lock_io(&journal
->j_checkpoint_mutex
);
2033 err
= jbd2_log_do_checkpoint(journal
);
2034 mutex_unlock(&journal
->j_checkpoint_mutex
);
2035 spin_lock(&journal
->j_list_lock
);
2037 spin_unlock(&journal
->j_list_lock
);
2039 if (is_journal_aborted(journal
))
2042 mutex_lock_io(&journal
->j_checkpoint_mutex
);
2044 err
= jbd2_cleanup_journal_tail(journal
);
2046 mutex_unlock(&journal
->j_checkpoint_mutex
);
2052 /* Finally, mark the journal as really needing no recovery.
2053 * This sets s_start==0 in the underlying superblock, which is
2054 * the magic code for a fully-recovered superblock. Any future
2055 * commits of data to the journal will restore the current
2057 jbd2_mark_journal_empty(journal
, REQ_SYNC
| REQ_FUA
);
2058 mutex_unlock(&journal
->j_checkpoint_mutex
);
2059 write_lock(&journal
->j_state_lock
);
2060 J_ASSERT(!journal
->j_running_transaction
);
2061 J_ASSERT(!journal
->j_committing_transaction
);
2062 J_ASSERT(!journal
->j_checkpoint_transactions
);
2063 J_ASSERT(journal
->j_head
== journal
->j_tail
);
2064 J_ASSERT(journal
->j_tail_sequence
== journal
->j_transaction_sequence
);
2065 write_unlock(&journal
->j_state_lock
);
2071 * int jbd2_journal_wipe() - Wipe journal contents
2072 * @journal: Journal to act on.
2073 * @write: flag (see below)
2075 * Wipe out all of the contents of a journal, safely. This will produce
2076 * a warning if the journal contains any valid recovery information.
2077 * Must be called between journal_init_*() and jbd2_journal_load().
2079 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2080 * we merely suppress recovery.
2083 int jbd2_journal_wipe(journal_t
*journal
, int write
)
2087 J_ASSERT (!(journal
->j_flags
& JBD2_LOADED
));
2089 err
= load_superblock(journal
);
2093 if (!journal
->j_tail
)
2096 printk(KERN_WARNING
"JBD2: %s recovery information on journal\n",
2097 write
? "Clearing" : "Ignoring");
2099 err
= jbd2_journal_skip_recovery(journal
);
2101 /* Lock to make assertions happy... */
2102 mutex_lock_io(&journal
->j_checkpoint_mutex
);
2103 jbd2_mark_journal_empty(journal
, REQ_SYNC
| REQ_FUA
);
2104 mutex_unlock(&journal
->j_checkpoint_mutex
);
2112 * void jbd2_journal_abort () - Shutdown the journal immediately.
2113 * @journal: the journal to shutdown.
2114 * @errno: an error number to record in the journal indicating
2115 * the reason for the shutdown.
2117 * Perform a complete, immediate shutdown of the ENTIRE
2118 * journal (not of a single transaction). This operation cannot be
2119 * undone without closing and reopening the journal.
2121 * The jbd2_journal_abort function is intended to support higher level error
2122 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2125 * Journal abort has very specific semantics. Any existing dirty,
2126 * unjournaled buffers in the main filesystem will still be written to
2127 * disk by bdflush, but the journaling mechanism will be suspended
2128 * immediately and no further transaction commits will be honoured.
2130 * Any dirty, journaled buffers will be written back to disk without
2131 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2132 * filesystem, but we _do_ attempt to leave as much data as possible
2133 * behind for fsck to use for cleanup.
2135 * Any attempt to get a new transaction handle on a journal which is in
2136 * ABORT state will just result in an -EROFS error return. A
2137 * jbd2_journal_stop on an existing handle will return -EIO if we have
2138 * entered abort state during the update.
2140 * Recursive transactions are not disturbed by journal abort until the
2141 * final jbd2_journal_stop, which will receive the -EIO error.
2143 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2144 * which will be recorded (if possible) in the journal superblock. This
2145 * allows a client to record failure conditions in the middle of a
2146 * transaction without having to complete the transaction to record the
2147 * failure to disk. ext3_error, for example, now uses this
2152 void jbd2_journal_abort(journal_t
*journal
, int errno
)
2154 transaction_t
*transaction
;
2157 * ESHUTDOWN always takes precedence because a file system check
2158 * caused by any other journal abort error is not required after
2159 * a shutdown triggered.
2161 write_lock(&journal
->j_state_lock
);
2162 if (journal
->j_flags
& JBD2_ABORT
) {
2163 int old_errno
= journal
->j_errno
;
2165 write_unlock(&journal
->j_state_lock
);
2166 if (old_errno
!= -ESHUTDOWN
&& errno
== -ESHUTDOWN
) {
2167 journal
->j_errno
= errno
;
2168 jbd2_journal_update_sb_errno(journal
);
2174 * Mark the abort as occurred and start current running transaction
2175 * to release all journaled buffer.
2177 pr_err("Aborting journal on device %s.\n", journal
->j_devname
);
2179 journal
->j_flags
|= JBD2_ABORT
;
2180 journal
->j_errno
= errno
;
2181 transaction
= journal
->j_running_transaction
;
2183 __jbd2_log_start_commit(journal
, transaction
->t_tid
);
2184 write_unlock(&journal
->j_state_lock
);
2187 * Record errno to the journal super block, so that fsck and jbd2
2188 * layer could realise that a filesystem check is needed.
2190 jbd2_journal_update_sb_errno(journal
);
2192 write_lock(&journal
->j_state_lock
);
2193 journal
->j_flags
|= JBD2_REC_ERR
;
2194 write_unlock(&journal
->j_state_lock
);
2198 * int jbd2_journal_errno () - returns the journal's error state.
2199 * @journal: journal to examine.
2201 * This is the errno number set with jbd2_journal_abort(), the last
2202 * time the journal was mounted - if the journal was stopped
2203 * without calling abort this will be 0.
2205 * If the journal has been aborted on this mount time -EROFS will
2208 int jbd2_journal_errno(journal_t
*journal
)
2212 read_lock(&journal
->j_state_lock
);
2213 if (journal
->j_flags
& JBD2_ABORT
)
2216 err
= journal
->j_errno
;
2217 read_unlock(&journal
->j_state_lock
);
2222 * int jbd2_journal_clear_err () - clears the journal's error state
2223 * @journal: journal to act on.
2225 * An error must be cleared or acked to take a FS out of readonly
2228 int jbd2_journal_clear_err(journal_t
*journal
)
2232 write_lock(&journal
->j_state_lock
);
2233 if (journal
->j_flags
& JBD2_ABORT
)
2236 journal
->j_errno
= 0;
2237 write_unlock(&journal
->j_state_lock
);
2242 * void jbd2_journal_ack_err() - Ack journal err.
2243 * @journal: journal to act on.
2245 * An error must be cleared or acked to take a FS out of readonly
2248 void jbd2_journal_ack_err(journal_t
*journal
)
2250 write_lock(&journal
->j_state_lock
);
2251 if (journal
->j_errno
)
2252 journal
->j_flags
|= JBD2_ACK_ERR
;
2253 write_unlock(&journal
->j_state_lock
);
2256 int jbd2_journal_blocks_per_page(struct inode
*inode
)
2258 return 1 << (PAGE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
2262 * helper functions to deal with 32 or 64bit block numbers.
2264 size_t journal_tag_bytes(journal_t
*journal
)
2268 if (jbd2_has_feature_csum3(journal
))
2269 return sizeof(journal_block_tag3_t
);
2271 sz
= sizeof(journal_block_tag_t
);
2273 if (jbd2_has_feature_csum2(journal
))
2274 sz
+= sizeof(__u16
);
2276 if (jbd2_has_feature_64bit(journal
))
2279 return sz
- sizeof(__u32
);
2283 * JBD memory management
2285 * These functions are used to allocate block-sized chunks of memory
2286 * used for making copies of buffer_head data. Very often it will be
2287 * page-sized chunks of data, but sometimes it will be in
2288 * sub-page-size chunks. (For example, 16k pages on Power systems
2289 * with a 4k block file system.) For blocks smaller than a page, we
2290 * use a SLAB allocator. There are slab caches for each block size,
2291 * which are allocated at mount time, if necessary, and we only free
2292 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2293 * this reason we don't need to a mutex to protect access to
2294 * jbd2_slab[] allocating or releasing memory; only in
2295 * jbd2_journal_create_slab().
2297 #define JBD2_MAX_SLABS 8
2298 static struct kmem_cache
*jbd2_slab
[JBD2_MAX_SLABS
];
2300 static const char *jbd2_slab_names
[JBD2_MAX_SLABS
] = {
2301 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2302 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2306 static void jbd2_journal_destroy_slabs(void)
2310 for (i
= 0; i
< JBD2_MAX_SLABS
; i
++) {
2311 kmem_cache_destroy(jbd2_slab
[i
]);
2312 jbd2_slab
[i
] = NULL
;
2316 static int jbd2_journal_create_slab(size_t size
)
2318 static DEFINE_MUTEX(jbd2_slab_create_mutex
);
2319 int i
= order_base_2(size
) - 10;
2322 if (size
== PAGE_SIZE
)
2325 if (i
>= JBD2_MAX_SLABS
)
2328 if (unlikely(i
< 0))
2330 mutex_lock(&jbd2_slab_create_mutex
);
2332 mutex_unlock(&jbd2_slab_create_mutex
);
2333 return 0; /* Already created */
2336 slab_size
= 1 << (i
+10);
2337 jbd2_slab
[i
] = kmem_cache_create(jbd2_slab_names
[i
], slab_size
,
2338 slab_size
, 0, NULL
);
2339 mutex_unlock(&jbd2_slab_create_mutex
);
2340 if (!jbd2_slab
[i
]) {
2341 printk(KERN_EMERG
"JBD2: no memory for jbd2_slab cache\n");
2347 static struct kmem_cache
*get_slab(size_t size
)
2349 int i
= order_base_2(size
) - 10;
2351 BUG_ON(i
>= JBD2_MAX_SLABS
);
2352 if (unlikely(i
< 0))
2354 BUG_ON(jbd2_slab
[i
] == NULL
);
2355 return jbd2_slab
[i
];
2358 void *jbd2_alloc(size_t size
, gfp_t flags
)
2362 BUG_ON(size
& (size
-1)); /* Must be a power of 2 */
2364 if (size
< PAGE_SIZE
)
2365 ptr
= kmem_cache_alloc(get_slab(size
), flags
);
2367 ptr
= (void *)__get_free_pages(flags
, get_order(size
));
2369 /* Check alignment; SLUB has gotten this wrong in the past,
2370 * and this can lead to user data corruption! */
2371 BUG_ON(((unsigned long) ptr
) & (size
-1));
2376 void jbd2_free(void *ptr
, size_t size
)
2378 if (size
< PAGE_SIZE
)
2379 kmem_cache_free(get_slab(size
), ptr
);
2381 free_pages((unsigned long)ptr
, get_order(size
));
2385 * Journal_head storage management
2387 static struct kmem_cache
*jbd2_journal_head_cache
;
2388 #ifdef CONFIG_JBD2_DEBUG
2389 static atomic_t nr_journal_heads
= ATOMIC_INIT(0);
2392 static int __init
jbd2_journal_init_journal_head_cache(void)
2394 J_ASSERT(!jbd2_journal_head_cache
);
2395 jbd2_journal_head_cache
= kmem_cache_create("jbd2_journal_head",
2396 sizeof(struct journal_head
),
2398 SLAB_TEMPORARY
| SLAB_TYPESAFE_BY_RCU
,
2400 if (!jbd2_journal_head_cache
) {
2401 printk(KERN_EMERG
"JBD2: no memory for journal_head cache\n");
2407 static void jbd2_journal_destroy_journal_head_cache(void)
2409 kmem_cache_destroy(jbd2_journal_head_cache
);
2410 jbd2_journal_head_cache
= NULL
;
2414 * journal_head splicing and dicing
2416 static struct journal_head
*journal_alloc_journal_head(void)
2418 struct journal_head
*ret
;
2420 #ifdef CONFIG_JBD2_DEBUG
2421 atomic_inc(&nr_journal_heads
);
2423 ret
= kmem_cache_zalloc(jbd2_journal_head_cache
, GFP_NOFS
);
2425 jbd_debug(1, "out of memory for journal_head\n");
2426 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__
);
2427 ret
= kmem_cache_zalloc(jbd2_journal_head_cache
,
2428 GFP_NOFS
| __GFP_NOFAIL
);
2431 spin_lock_init(&ret
->b_state_lock
);
2435 static void journal_free_journal_head(struct journal_head
*jh
)
2437 #ifdef CONFIG_JBD2_DEBUG
2438 atomic_dec(&nr_journal_heads
);
2439 memset(jh
, JBD2_POISON_FREE
, sizeof(*jh
));
2441 kmem_cache_free(jbd2_journal_head_cache
, jh
);
2445 * A journal_head is attached to a buffer_head whenever JBD has an
2446 * interest in the buffer.
2448 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2449 * is set. This bit is tested in core kernel code where we need to take
2450 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2453 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2455 * When a buffer has its BH_JBD bit set it is immune from being released by
2456 * core kernel code, mainly via ->b_count.
2458 * A journal_head is detached from its buffer_head when the journal_head's
2459 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2460 * transaction (b_cp_transaction) hold their references to b_jcount.
2462 * Various places in the kernel want to attach a journal_head to a buffer_head
2463 * _before_ attaching the journal_head to a transaction. To protect the
2464 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2465 * journal_head's b_jcount refcount by one. The caller must call
2466 * jbd2_journal_put_journal_head() to undo this.
2468 * So the typical usage would be:
2470 * (Attach a journal_head if needed. Increments b_jcount)
2471 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2473 * (Get another reference for transaction)
2474 * jbd2_journal_grab_journal_head(bh);
2475 * jh->b_transaction = xxx;
2476 * (Put original reference)
2477 * jbd2_journal_put_journal_head(jh);
2481 * Give a buffer_head a journal_head.
2485 struct journal_head
*jbd2_journal_add_journal_head(struct buffer_head
*bh
)
2487 struct journal_head
*jh
;
2488 struct journal_head
*new_jh
= NULL
;
2491 if (!buffer_jbd(bh
))
2492 new_jh
= journal_alloc_journal_head();
2494 jbd_lock_bh_journal_head(bh
);
2495 if (buffer_jbd(bh
)) {
2499 (atomic_read(&bh
->b_count
) > 0) ||
2500 (bh
->b_page
&& bh
->b_page
->mapping
));
2503 jbd_unlock_bh_journal_head(bh
);
2508 new_jh
= NULL
; /* We consumed it */
2513 BUFFER_TRACE(bh
, "added journal_head");
2516 jbd_unlock_bh_journal_head(bh
);
2518 journal_free_journal_head(new_jh
);
2519 return bh
->b_private
;
2523 * Grab a ref against this buffer_head's journal_head. If it ended up not
2524 * having a journal_head, return NULL
2526 struct journal_head
*jbd2_journal_grab_journal_head(struct buffer_head
*bh
)
2528 struct journal_head
*jh
= NULL
;
2530 jbd_lock_bh_journal_head(bh
);
2531 if (buffer_jbd(bh
)) {
2535 jbd_unlock_bh_journal_head(bh
);
2539 static void __journal_remove_journal_head(struct buffer_head
*bh
)
2541 struct journal_head
*jh
= bh2jh(bh
);
2543 J_ASSERT_JH(jh
, jh
->b_transaction
== NULL
);
2544 J_ASSERT_JH(jh
, jh
->b_next_transaction
== NULL
);
2545 J_ASSERT_JH(jh
, jh
->b_cp_transaction
== NULL
);
2546 J_ASSERT_JH(jh
, jh
->b_jlist
== BJ_None
);
2547 J_ASSERT_BH(bh
, buffer_jbd(bh
));
2548 J_ASSERT_BH(bh
, jh2bh(jh
) == bh
);
2549 BUFFER_TRACE(bh
, "remove journal_head");
2551 /* Unlink before dropping the lock */
2552 bh
->b_private
= NULL
;
2553 jh
->b_bh
= NULL
; /* debug, really */
2554 clear_buffer_jbd(bh
);
2557 static void journal_release_journal_head(struct journal_head
*jh
, size_t b_size
)
2559 if (jh
->b_frozen_data
) {
2560 printk(KERN_WARNING
"%s: freeing b_frozen_data\n", __func__
);
2561 jbd2_free(jh
->b_frozen_data
, b_size
);
2563 if (jh
->b_committed_data
) {
2564 printk(KERN_WARNING
"%s: freeing b_committed_data\n", __func__
);
2565 jbd2_free(jh
->b_committed_data
, b_size
);
2567 journal_free_journal_head(jh
);
2571 * Drop a reference on the passed journal_head. If it fell to zero then
2572 * release the journal_head from the buffer_head.
2574 void jbd2_journal_put_journal_head(struct journal_head
*jh
)
2576 struct buffer_head
*bh
= jh2bh(jh
);
2578 jbd_lock_bh_journal_head(bh
);
2579 J_ASSERT_JH(jh
, jh
->b_jcount
> 0);
2581 if (!jh
->b_jcount
) {
2582 __journal_remove_journal_head(bh
);
2583 jbd_unlock_bh_journal_head(bh
);
2584 journal_release_journal_head(jh
, bh
->b_size
);
2587 jbd_unlock_bh_journal_head(bh
);
2592 * Initialize jbd inode head
2594 void jbd2_journal_init_jbd_inode(struct jbd2_inode
*jinode
, struct inode
*inode
)
2596 jinode
->i_transaction
= NULL
;
2597 jinode
->i_next_transaction
= NULL
;
2598 jinode
->i_vfs_inode
= inode
;
2599 jinode
->i_flags
= 0;
2600 jinode
->i_dirty_start
= 0;
2601 jinode
->i_dirty_end
= 0;
2602 INIT_LIST_HEAD(&jinode
->i_list
);
2606 * Function to be called before we start removing inode from memory (i.e.,
2607 * clear_inode() is a fine place to be called from). It removes inode from
2608 * transaction's lists.
2610 void jbd2_journal_release_jbd_inode(journal_t
*journal
,
2611 struct jbd2_inode
*jinode
)
2616 spin_lock(&journal
->j_list_lock
);
2617 /* Is commit writing out inode - we have to wait */
2618 if (jinode
->i_flags
& JI_COMMIT_RUNNING
) {
2619 wait_queue_head_t
*wq
;
2620 DEFINE_WAIT_BIT(wait
, &jinode
->i_flags
, __JI_COMMIT_RUNNING
);
2621 wq
= bit_waitqueue(&jinode
->i_flags
, __JI_COMMIT_RUNNING
);
2622 prepare_to_wait(wq
, &wait
.wq_entry
, TASK_UNINTERRUPTIBLE
);
2623 spin_unlock(&journal
->j_list_lock
);
2625 finish_wait(wq
, &wait
.wq_entry
);
2629 if (jinode
->i_transaction
) {
2630 list_del(&jinode
->i_list
);
2631 jinode
->i_transaction
= NULL
;
2633 spin_unlock(&journal
->j_list_lock
);
2637 #ifdef CONFIG_PROC_FS
2639 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2641 static void __init
jbd2_create_jbd_stats_proc_entry(void)
2643 proc_jbd2_stats
= proc_mkdir(JBD2_STATS_PROC_NAME
, NULL
);
2646 static void __exit
jbd2_remove_jbd_stats_proc_entry(void)
2648 if (proc_jbd2_stats
)
2649 remove_proc_entry(JBD2_STATS_PROC_NAME
, NULL
);
2654 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2655 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2659 struct kmem_cache
*jbd2_handle_cache
, *jbd2_inode_cache
;
2661 static int __init
jbd2_journal_init_inode_cache(void)
2663 J_ASSERT(!jbd2_inode_cache
);
2664 jbd2_inode_cache
= KMEM_CACHE(jbd2_inode
, 0);
2665 if (!jbd2_inode_cache
) {
2666 pr_emerg("JBD2: failed to create inode cache\n");
2672 static int __init
jbd2_journal_init_handle_cache(void)
2674 J_ASSERT(!jbd2_handle_cache
);
2675 jbd2_handle_cache
= KMEM_CACHE(jbd2_journal_handle
, SLAB_TEMPORARY
);
2676 if (!jbd2_handle_cache
) {
2677 printk(KERN_EMERG
"JBD2: failed to create handle cache\n");
2683 static void jbd2_journal_destroy_inode_cache(void)
2685 kmem_cache_destroy(jbd2_inode_cache
);
2686 jbd2_inode_cache
= NULL
;
2689 static void jbd2_journal_destroy_handle_cache(void)
2691 kmem_cache_destroy(jbd2_handle_cache
);
2692 jbd2_handle_cache
= NULL
;
2696 * Module startup and shutdown
2699 static int __init
journal_init_caches(void)
2703 ret
= jbd2_journal_init_revoke_record_cache();
2705 ret
= jbd2_journal_init_revoke_table_cache();
2707 ret
= jbd2_journal_init_journal_head_cache();
2709 ret
= jbd2_journal_init_handle_cache();
2711 ret
= jbd2_journal_init_inode_cache();
2713 ret
= jbd2_journal_init_transaction_cache();
2717 static void jbd2_journal_destroy_caches(void)
2719 jbd2_journal_destroy_revoke_record_cache();
2720 jbd2_journal_destroy_revoke_table_cache();
2721 jbd2_journal_destroy_journal_head_cache();
2722 jbd2_journal_destroy_handle_cache();
2723 jbd2_journal_destroy_inode_cache();
2724 jbd2_journal_destroy_transaction_cache();
2725 jbd2_journal_destroy_slabs();
2728 static int __init
journal_init(void)
2732 BUILD_BUG_ON(sizeof(struct journal_superblock_s
) != 1024);
2734 ret
= journal_init_caches();
2736 jbd2_create_jbd_stats_proc_entry();
2738 jbd2_journal_destroy_caches();
2743 static void __exit
journal_exit(void)
2745 #ifdef CONFIG_JBD2_DEBUG
2746 int n
= atomic_read(&nr_journal_heads
);
2748 printk(KERN_ERR
"JBD2: leaked %d journal_heads!\n", n
);
2750 jbd2_remove_jbd_stats_proc_entry();
2751 jbd2_journal_destroy_caches();
2754 MODULE_LICENSE("GPL");
2755 module_init(journal_init
);
2756 module_exit(journal_exit
);