gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / fs / nfs / dir.c
blob5a331da5f55adb7c176f1c04af41bd76728c052e
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/nfs/dir.c
5 * Copyright (C) 1992 Rick Sladkey
7 * nfs directory handling functions
9 * 10 Apr 1996 Added silly rename for unlink --okir
10 * 28 Sep 1996 Improved directory cache --okir
11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
12 * Re-implemented silly rename for unlink, newly implemented
13 * silly rename for nfs_rename() following the suggestions
14 * of Olaf Kirch (okir) found in this file.
15 * Following Linus comments on my original hack, this version
16 * depends only on the dcache stuff and doesn't touch the inode
17 * layer (iput() and friends).
18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
21 #include <linux/module.h>
22 #include <linux/time.h>
23 #include <linux/errno.h>
24 #include <linux/stat.h>
25 #include <linux/fcntl.h>
26 #include <linux/string.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/sunrpc/clnt.h>
31 #include <linux/nfs_fs.h>
32 #include <linux/nfs_mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/pagevec.h>
35 #include <linux/namei.h>
36 #include <linux/mount.h>
37 #include <linux/swap.h>
38 #include <linux/sched.h>
39 #include <linux/kmemleak.h>
40 #include <linux/xattr.h>
42 #include "delegation.h"
43 #include "iostat.h"
44 #include "internal.h"
45 #include "fscache.h"
47 #include "nfstrace.h"
49 /* #define NFS_DEBUG_VERBOSE 1 */
51 static int nfs_opendir(struct inode *, struct file *);
52 static int nfs_closedir(struct inode *, struct file *);
53 static int nfs_readdir(struct file *, struct dir_context *);
54 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
55 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
56 static void nfs_readdir_clear_array(struct page*);
58 const struct file_operations nfs_dir_operations = {
59 .llseek = nfs_llseek_dir,
60 .read = generic_read_dir,
61 .iterate_shared = nfs_readdir,
62 .open = nfs_opendir,
63 .release = nfs_closedir,
64 .fsync = nfs_fsync_dir,
67 const struct address_space_operations nfs_dir_aops = {
68 .freepage = nfs_readdir_clear_array,
71 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred)
73 struct nfs_inode *nfsi = NFS_I(dir);
74 struct nfs_open_dir_context *ctx;
75 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
76 if (ctx != NULL) {
77 ctx->duped = 0;
78 ctx->attr_gencount = nfsi->attr_gencount;
79 ctx->dir_cookie = 0;
80 ctx->dup_cookie = 0;
81 ctx->cred = get_cred(cred);
82 spin_lock(&dir->i_lock);
83 if (list_empty(&nfsi->open_files) &&
84 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
85 nfsi->cache_validity |= NFS_INO_INVALID_DATA |
86 NFS_INO_REVAL_FORCED;
87 list_add(&ctx->list, &nfsi->open_files);
88 spin_unlock(&dir->i_lock);
89 return ctx;
91 return ERR_PTR(-ENOMEM);
94 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
96 spin_lock(&dir->i_lock);
97 list_del(&ctx->list);
98 spin_unlock(&dir->i_lock);
99 put_cred(ctx->cred);
100 kfree(ctx);
104 * Open file
106 static int
107 nfs_opendir(struct inode *inode, struct file *filp)
109 int res = 0;
110 struct nfs_open_dir_context *ctx;
112 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
114 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
116 ctx = alloc_nfs_open_dir_context(inode, current_cred());
117 if (IS_ERR(ctx)) {
118 res = PTR_ERR(ctx);
119 goto out;
121 filp->private_data = ctx;
122 out:
123 return res;
126 static int
127 nfs_closedir(struct inode *inode, struct file *filp)
129 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
130 return 0;
133 struct nfs_cache_array_entry {
134 u64 cookie;
135 u64 ino;
136 struct qstr string;
137 unsigned char d_type;
140 struct nfs_cache_array {
141 int size;
142 int eof_index;
143 u64 last_cookie;
144 struct nfs_cache_array_entry array[];
147 typedef struct {
148 struct file *file;
149 struct page *page;
150 struct dir_context *ctx;
151 unsigned long page_index;
152 u64 *dir_cookie;
153 u64 last_cookie;
154 loff_t current_index;
155 loff_t prev_index;
157 unsigned long dir_verifier;
158 unsigned long timestamp;
159 unsigned long gencount;
160 unsigned int cache_entry_index;
161 bool plus;
162 bool eof;
163 } nfs_readdir_descriptor_t;
165 static
166 void nfs_readdir_init_array(struct page *page)
168 struct nfs_cache_array *array;
170 array = kmap_atomic(page);
171 memset(array, 0, sizeof(struct nfs_cache_array));
172 array->eof_index = -1;
173 kunmap_atomic(array);
177 * we are freeing strings created by nfs_add_to_readdir_array()
179 static
180 void nfs_readdir_clear_array(struct page *page)
182 struct nfs_cache_array *array;
183 int i;
185 array = kmap_atomic(page);
186 for (i = 0; i < array->size; i++)
187 kfree(array->array[i].string.name);
188 array->size = 0;
189 kunmap_atomic(array);
193 * the caller is responsible for freeing qstr.name
194 * when called by nfs_readdir_add_to_array, the strings will be freed in
195 * nfs_clear_readdir_array()
197 static
198 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
200 string->len = len;
201 string->name = kmemdup_nul(name, len, GFP_KERNEL);
202 if (string->name == NULL)
203 return -ENOMEM;
205 * Avoid a kmemleak false positive. The pointer to the name is stored
206 * in a page cache page which kmemleak does not scan.
208 kmemleak_not_leak(string->name);
209 string->hash = full_name_hash(NULL, name, len);
210 return 0;
213 static
214 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
216 struct nfs_cache_array *array = kmap(page);
217 struct nfs_cache_array_entry *cache_entry;
218 int ret;
220 cache_entry = &array->array[array->size];
222 /* Check that this entry lies within the page bounds */
223 ret = -ENOSPC;
224 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
225 goto out;
227 cache_entry->cookie = entry->prev_cookie;
228 cache_entry->ino = entry->ino;
229 cache_entry->d_type = entry->d_type;
230 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
231 if (ret)
232 goto out;
233 array->last_cookie = entry->cookie;
234 array->size++;
235 if (entry->eof != 0)
236 array->eof_index = array->size;
237 out:
238 kunmap(page);
239 return ret;
242 static inline
243 int is_32bit_api(void)
245 #ifdef CONFIG_COMPAT
246 return in_compat_syscall();
247 #else
248 return (BITS_PER_LONG == 32);
249 #endif
252 static
253 bool nfs_readdir_use_cookie(const struct file *filp)
255 if ((filp->f_mode & FMODE_32BITHASH) ||
256 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
257 return false;
258 return true;
261 static
262 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
264 loff_t diff = desc->ctx->pos - desc->current_index;
265 unsigned int index;
267 if (diff < 0)
268 goto out_eof;
269 if (diff >= array->size) {
270 if (array->eof_index >= 0)
271 goto out_eof;
272 return -EAGAIN;
275 index = (unsigned int)diff;
276 *desc->dir_cookie = array->array[index].cookie;
277 desc->cache_entry_index = index;
278 return 0;
279 out_eof:
280 desc->eof = true;
281 return -EBADCOOKIE;
284 static bool
285 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
287 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
288 return false;
289 smp_rmb();
290 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
293 static
294 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
296 int i;
297 loff_t new_pos;
298 int status = -EAGAIN;
300 for (i = 0; i < array->size; i++) {
301 if (array->array[i].cookie == *desc->dir_cookie) {
302 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
303 struct nfs_open_dir_context *ctx = desc->file->private_data;
305 new_pos = desc->current_index + i;
306 if (ctx->attr_gencount != nfsi->attr_gencount ||
307 !nfs_readdir_inode_mapping_valid(nfsi)) {
308 ctx->duped = 0;
309 ctx->attr_gencount = nfsi->attr_gencount;
310 } else if (new_pos < desc->prev_index) {
311 if (ctx->duped > 0
312 && ctx->dup_cookie == *desc->dir_cookie) {
313 if (printk_ratelimit()) {
314 pr_notice("NFS: directory %pD2 contains a readdir loop."
315 "Please contact your server vendor. "
316 "The file: %.*s has duplicate cookie %llu\n",
317 desc->file, array->array[i].string.len,
318 array->array[i].string.name, *desc->dir_cookie);
320 status = -ELOOP;
321 goto out;
323 ctx->dup_cookie = *desc->dir_cookie;
324 ctx->duped = -1;
326 if (nfs_readdir_use_cookie(desc->file))
327 desc->ctx->pos = *desc->dir_cookie;
328 else
329 desc->ctx->pos = new_pos;
330 desc->prev_index = new_pos;
331 desc->cache_entry_index = i;
332 return 0;
335 if (array->eof_index >= 0) {
336 status = -EBADCOOKIE;
337 if (*desc->dir_cookie == array->last_cookie)
338 desc->eof = true;
340 out:
341 return status;
344 static
345 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
347 struct nfs_cache_array *array;
348 int status;
350 array = kmap(desc->page);
352 if (*desc->dir_cookie == 0)
353 status = nfs_readdir_search_for_pos(array, desc);
354 else
355 status = nfs_readdir_search_for_cookie(array, desc);
357 if (status == -EAGAIN) {
358 desc->last_cookie = array->last_cookie;
359 desc->current_index += array->size;
360 desc->page_index++;
362 kunmap(desc->page);
363 return status;
366 /* Fill a page with xdr information before transferring to the cache page */
367 static
368 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
369 struct nfs_entry *entry, struct file *file, struct inode *inode)
371 struct nfs_open_dir_context *ctx = file->private_data;
372 const struct cred *cred = ctx->cred;
373 unsigned long timestamp, gencount;
374 int error;
376 again:
377 timestamp = jiffies;
378 gencount = nfs_inc_attr_generation_counter();
379 desc->dir_verifier = nfs_save_change_attribute(inode);
380 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
381 NFS_SERVER(inode)->dtsize, desc->plus);
382 if (error < 0) {
383 /* We requested READDIRPLUS, but the server doesn't grok it */
384 if (error == -ENOTSUPP && desc->plus) {
385 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
386 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
387 desc->plus = false;
388 goto again;
390 goto error;
392 desc->timestamp = timestamp;
393 desc->gencount = gencount;
394 error:
395 return error;
398 static int xdr_decode(nfs_readdir_descriptor_t *desc,
399 struct nfs_entry *entry, struct xdr_stream *xdr)
401 struct inode *inode = file_inode(desc->file);
402 int error;
404 error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
405 if (error)
406 return error;
407 entry->fattr->time_start = desc->timestamp;
408 entry->fattr->gencount = desc->gencount;
409 return 0;
412 /* Match file and dirent using either filehandle or fileid
413 * Note: caller is responsible for checking the fsid
415 static
416 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
418 struct inode *inode;
419 struct nfs_inode *nfsi;
421 if (d_really_is_negative(dentry))
422 return 0;
424 inode = d_inode(dentry);
425 if (is_bad_inode(inode) || NFS_STALE(inode))
426 return 0;
428 nfsi = NFS_I(inode);
429 if (entry->fattr->fileid != nfsi->fileid)
430 return 0;
431 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
432 return 0;
433 return 1;
436 static
437 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
439 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
440 return false;
441 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
442 return true;
443 if (ctx->pos == 0)
444 return true;
445 return false;
449 * This function is called by the lookup and getattr code to request the
450 * use of readdirplus to accelerate any future lookups in the same
451 * directory.
453 void nfs_advise_use_readdirplus(struct inode *dir)
455 struct nfs_inode *nfsi = NFS_I(dir);
457 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
458 !list_empty(&nfsi->open_files))
459 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
463 * This function is mainly for use by nfs_getattr().
465 * If this is an 'ls -l', we want to force use of readdirplus.
466 * Do this by checking if there is an active file descriptor
467 * and calling nfs_advise_use_readdirplus, then forcing a
468 * cache flush.
470 void nfs_force_use_readdirplus(struct inode *dir)
472 struct nfs_inode *nfsi = NFS_I(dir);
474 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
475 !list_empty(&nfsi->open_files)) {
476 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
477 invalidate_mapping_pages(dir->i_mapping,
478 nfsi->page_index + 1, -1);
482 static
483 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
484 unsigned long dir_verifier)
486 struct qstr filename = QSTR_INIT(entry->name, entry->len);
487 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
488 struct dentry *dentry;
489 struct dentry *alias;
490 struct inode *inode;
491 int status;
493 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
494 return;
495 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
496 return;
497 if (filename.len == 0)
498 return;
499 /* Validate that the name doesn't contain any illegal '\0' */
500 if (strnlen(filename.name, filename.len) != filename.len)
501 return;
502 /* ...or '/' */
503 if (strnchr(filename.name, filename.len, '/'))
504 return;
505 if (filename.name[0] == '.') {
506 if (filename.len == 1)
507 return;
508 if (filename.len == 2 && filename.name[1] == '.')
509 return;
511 filename.hash = full_name_hash(parent, filename.name, filename.len);
513 dentry = d_lookup(parent, &filename);
514 again:
515 if (!dentry) {
516 dentry = d_alloc_parallel(parent, &filename, &wq);
517 if (IS_ERR(dentry))
518 return;
520 if (!d_in_lookup(dentry)) {
521 /* Is there a mountpoint here? If so, just exit */
522 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
523 &entry->fattr->fsid))
524 goto out;
525 if (nfs_same_file(dentry, entry)) {
526 if (!entry->fh->size)
527 goto out;
528 nfs_set_verifier(dentry, dir_verifier);
529 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
530 if (!status)
531 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
532 goto out;
533 } else {
534 d_invalidate(dentry);
535 dput(dentry);
536 dentry = NULL;
537 goto again;
540 if (!entry->fh->size) {
541 d_lookup_done(dentry);
542 goto out;
545 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
546 alias = d_splice_alias(inode, dentry);
547 d_lookup_done(dentry);
548 if (alias) {
549 if (IS_ERR(alias))
550 goto out;
551 dput(dentry);
552 dentry = alias;
554 nfs_set_verifier(dentry, dir_verifier);
555 out:
556 dput(dentry);
559 /* Perform conversion from xdr to cache array */
560 static
561 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
562 struct page **xdr_pages, struct page *page, unsigned int buflen)
564 struct xdr_stream stream;
565 struct xdr_buf buf;
566 struct page *scratch;
567 struct nfs_cache_array *array;
568 unsigned int count = 0;
569 int status;
571 scratch = alloc_page(GFP_KERNEL);
572 if (scratch == NULL)
573 return -ENOMEM;
575 if (buflen == 0)
576 goto out_nopages;
578 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
579 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
581 do {
582 status = xdr_decode(desc, entry, &stream);
583 if (status != 0) {
584 if (status == -EAGAIN)
585 status = 0;
586 break;
589 count++;
591 if (desc->plus)
592 nfs_prime_dcache(file_dentry(desc->file), entry,
593 desc->dir_verifier);
595 status = nfs_readdir_add_to_array(entry, page);
596 if (status != 0)
597 break;
598 } while (!entry->eof);
600 out_nopages:
601 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
602 array = kmap(page);
603 array->eof_index = array->size;
604 status = 0;
605 kunmap(page);
608 put_page(scratch);
609 return status;
612 static
613 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
615 unsigned int i;
616 for (i = 0; i < npages; i++)
617 put_page(pages[i]);
621 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
622 * to nfs_readdir_free_pages()
624 static
625 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
627 unsigned int i;
629 for (i = 0; i < npages; i++) {
630 struct page *page = alloc_page(GFP_KERNEL);
631 if (page == NULL)
632 goto out_freepages;
633 pages[i] = page;
635 return 0;
637 out_freepages:
638 nfs_readdir_free_pages(pages, i);
639 return -ENOMEM;
642 static
643 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
645 struct page *pages[NFS_MAX_READDIR_PAGES];
646 struct nfs_entry entry;
647 struct file *file = desc->file;
648 struct nfs_cache_array *array;
649 int status = -ENOMEM;
650 unsigned int array_size = ARRAY_SIZE(pages);
652 nfs_readdir_init_array(page);
654 entry.prev_cookie = 0;
655 entry.cookie = desc->last_cookie;
656 entry.eof = 0;
657 entry.fh = nfs_alloc_fhandle();
658 entry.fattr = nfs_alloc_fattr();
659 entry.server = NFS_SERVER(inode);
660 if (entry.fh == NULL || entry.fattr == NULL)
661 goto out;
663 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
664 if (IS_ERR(entry.label)) {
665 status = PTR_ERR(entry.label);
666 goto out;
669 array = kmap(page);
671 status = nfs_readdir_alloc_pages(pages, array_size);
672 if (status < 0)
673 goto out_release_array;
674 do {
675 unsigned int pglen;
676 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
678 if (status < 0)
679 break;
680 pglen = status;
681 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
682 if (status < 0) {
683 if (status == -ENOSPC)
684 status = 0;
685 break;
687 } while (array->eof_index < 0);
689 nfs_readdir_free_pages(pages, array_size);
690 out_release_array:
691 kunmap(page);
692 nfs4_label_free(entry.label);
693 out:
694 nfs_free_fattr(entry.fattr);
695 nfs_free_fhandle(entry.fh);
696 return status;
700 * Now we cache directories properly, by converting xdr information
701 * to an array that can be used for lookups later. This results in
702 * fewer cache pages, since we can store more information on each page.
703 * We only need to convert from xdr once so future lookups are much simpler
705 static
706 int nfs_readdir_filler(void *data, struct page* page)
708 nfs_readdir_descriptor_t *desc = data;
709 struct inode *inode = file_inode(desc->file);
710 int ret;
712 ret = nfs_readdir_xdr_to_array(desc, page, inode);
713 if (ret < 0)
714 goto error;
715 SetPageUptodate(page);
717 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
718 /* Should never happen */
719 nfs_zap_mapping(inode, inode->i_mapping);
721 unlock_page(page);
722 return 0;
723 error:
724 nfs_readdir_clear_array(page);
725 unlock_page(page);
726 return ret;
729 static
730 void cache_page_release(nfs_readdir_descriptor_t *desc)
732 put_page(desc->page);
733 desc->page = NULL;
736 static
737 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
739 return read_cache_page(desc->file->f_mapping, desc->page_index,
740 nfs_readdir_filler, desc);
744 * Returns 0 if desc->dir_cookie was found on page desc->page_index
745 * and locks the page to prevent removal from the page cache.
747 static
748 int find_and_lock_cache_page(nfs_readdir_descriptor_t *desc)
750 struct inode *inode = file_inode(desc->file);
751 struct nfs_inode *nfsi = NFS_I(inode);
752 int res;
754 desc->page = get_cache_page(desc);
755 if (IS_ERR(desc->page))
756 return PTR_ERR(desc->page);
757 res = lock_page_killable(desc->page);
758 if (res != 0)
759 goto error;
760 res = -EAGAIN;
761 if (desc->page->mapping != NULL) {
762 res = nfs_readdir_search_array(desc);
763 if (res == 0) {
764 nfsi->page_index = desc->page_index;
765 return 0;
768 unlock_page(desc->page);
769 error:
770 cache_page_release(desc);
771 return res;
774 /* Search for desc->dir_cookie from the beginning of the page cache */
775 static inline
776 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
778 int res;
780 if (desc->page_index == 0) {
781 desc->current_index = 0;
782 desc->prev_index = 0;
783 desc->last_cookie = 0;
785 do {
786 res = find_and_lock_cache_page(desc);
787 } while (res == -EAGAIN);
788 return res;
792 * Once we've found the start of the dirent within a page: fill 'er up...
794 static
795 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
797 struct file *file = desc->file;
798 int i = 0;
799 int res = 0;
800 struct nfs_cache_array *array = NULL;
801 struct nfs_open_dir_context *ctx = file->private_data;
803 array = kmap(desc->page);
804 for (i = desc->cache_entry_index; i < array->size; i++) {
805 struct nfs_cache_array_entry *ent;
807 ent = &array->array[i];
808 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
809 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
810 desc->eof = true;
811 break;
813 if (i < (array->size-1))
814 *desc->dir_cookie = array->array[i+1].cookie;
815 else
816 *desc->dir_cookie = array->last_cookie;
817 if (nfs_readdir_use_cookie(file))
818 desc->ctx->pos = *desc->dir_cookie;
819 else
820 desc->ctx->pos++;
821 if (ctx->duped != 0)
822 ctx->duped = 1;
824 if (array->eof_index >= 0)
825 desc->eof = true;
827 kunmap(desc->page);
828 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
829 (unsigned long long)*desc->dir_cookie, res);
830 return res;
834 * If we cannot find a cookie in our cache, we suspect that this is
835 * because it points to a deleted file, so we ask the server to return
836 * whatever it thinks is the next entry. We then feed this to filldir.
837 * If all goes well, we should then be able to find our way round the
838 * cache on the next call to readdir_search_pagecache();
840 * NOTE: we cannot add the anonymous page to the pagecache because
841 * the data it contains might not be page aligned. Besides,
842 * we should already have a complete representation of the
843 * directory in the page cache by the time we get here.
845 static inline
846 int uncached_readdir(nfs_readdir_descriptor_t *desc)
848 struct page *page = NULL;
849 int status;
850 struct inode *inode = file_inode(desc->file);
851 struct nfs_open_dir_context *ctx = desc->file->private_data;
853 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
854 (unsigned long long)*desc->dir_cookie);
856 page = alloc_page(GFP_HIGHUSER);
857 if (!page) {
858 status = -ENOMEM;
859 goto out;
862 desc->page_index = 0;
863 desc->last_cookie = *desc->dir_cookie;
864 desc->page = page;
865 ctx->duped = 0;
867 status = nfs_readdir_xdr_to_array(desc, page, inode);
868 if (status < 0)
869 goto out_release;
871 status = nfs_do_filldir(desc);
873 out_release:
874 nfs_readdir_clear_array(desc->page);
875 cache_page_release(desc);
876 out:
877 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
878 __func__, status);
879 return status;
882 /* The file offset position represents the dirent entry number. A
883 last cookie cache takes care of the common case of reading the
884 whole directory.
886 static int nfs_readdir(struct file *file, struct dir_context *ctx)
888 struct dentry *dentry = file_dentry(file);
889 struct inode *inode = d_inode(dentry);
890 struct nfs_open_dir_context *dir_ctx = file->private_data;
891 nfs_readdir_descriptor_t my_desc = {
892 .file = file,
893 .ctx = ctx,
894 .dir_cookie = &dir_ctx->dir_cookie,
895 .plus = nfs_use_readdirplus(inode, ctx),
897 *desc = &my_desc;
898 int res = 0;
900 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
901 file, (long long)ctx->pos);
902 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
905 * ctx->pos points to the dirent entry number.
906 * *desc->dir_cookie has the cookie for the next entry. We have
907 * to either find the entry with the appropriate number or
908 * revalidate the cookie.
910 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
911 res = nfs_revalidate_mapping(inode, file->f_mapping);
912 if (res < 0)
913 goto out;
915 do {
916 res = readdir_search_pagecache(desc);
918 if (res == -EBADCOOKIE) {
919 res = 0;
920 /* This means either end of directory */
921 if (*desc->dir_cookie && !desc->eof) {
922 /* Or that the server has 'lost' a cookie */
923 res = uncached_readdir(desc);
924 if (res == 0)
925 continue;
927 break;
929 if (res == -ETOOSMALL && desc->plus) {
930 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
931 nfs_zap_caches(inode);
932 desc->page_index = 0;
933 desc->plus = false;
934 desc->eof = false;
935 continue;
937 if (res < 0)
938 break;
940 res = nfs_do_filldir(desc);
941 unlock_page(desc->page);
942 cache_page_release(desc);
943 if (res < 0)
944 break;
945 } while (!desc->eof);
946 out:
947 if (res > 0)
948 res = 0;
949 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
950 return res;
953 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
955 struct inode *inode = file_inode(filp);
956 struct nfs_open_dir_context *dir_ctx = filp->private_data;
958 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
959 filp, offset, whence);
961 switch (whence) {
962 default:
963 return -EINVAL;
964 case SEEK_SET:
965 if (offset < 0)
966 return -EINVAL;
967 inode_lock(inode);
968 break;
969 case SEEK_CUR:
970 if (offset == 0)
971 return filp->f_pos;
972 inode_lock(inode);
973 offset += filp->f_pos;
974 if (offset < 0) {
975 inode_unlock(inode);
976 return -EINVAL;
979 if (offset != filp->f_pos) {
980 filp->f_pos = offset;
981 if (nfs_readdir_use_cookie(filp))
982 dir_ctx->dir_cookie = offset;
983 else
984 dir_ctx->dir_cookie = 0;
985 dir_ctx->duped = 0;
987 inode_unlock(inode);
988 return offset;
992 * All directory operations under NFS are synchronous, so fsync()
993 * is a dummy operation.
995 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
996 int datasync)
998 struct inode *inode = file_inode(filp);
1000 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1002 inode_lock(inode);
1003 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
1004 inode_unlock(inode);
1005 return 0;
1009 * nfs_force_lookup_revalidate - Mark the directory as having changed
1010 * @dir: pointer to directory inode
1012 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1013 * full lookup on all child dentries of 'dir' whenever a change occurs
1014 * on the server that might have invalidated our dcache.
1016 * Note that we reserve bit '0' as a tag to let us know when a dentry
1017 * was revalidated while holding a delegation on its inode.
1019 * The caller should be holding dir->i_lock
1021 void nfs_force_lookup_revalidate(struct inode *dir)
1023 NFS_I(dir)->cache_change_attribute += 2;
1025 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1028 * nfs_verify_change_attribute - Detects NFS remote directory changes
1029 * @dir: pointer to parent directory inode
1030 * @verf: previously saved change attribute
1032 * Return "false" if the verifiers doesn't match the change attribute.
1033 * This would usually indicate that the directory contents have changed on
1034 * the server, and that any dentries need revalidating.
1036 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1038 return (verf & ~1UL) == nfs_save_change_attribute(dir);
1041 static void nfs_set_verifier_delegated(unsigned long *verf)
1043 *verf |= 1UL;
1046 #if IS_ENABLED(CONFIG_NFS_V4)
1047 static void nfs_unset_verifier_delegated(unsigned long *verf)
1049 *verf &= ~1UL;
1051 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1053 static bool nfs_test_verifier_delegated(unsigned long verf)
1055 return verf & 1;
1058 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1060 return nfs_test_verifier_delegated(dentry->d_time);
1063 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1065 struct inode *inode = d_inode(dentry);
1067 if (!nfs_verifier_is_delegated(dentry) &&
1068 !nfs_verify_change_attribute(d_inode(dentry->d_parent), verf))
1069 goto out;
1070 if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1071 nfs_set_verifier_delegated(&verf);
1072 out:
1073 dentry->d_time = verf;
1077 * nfs_set_verifier - save a parent directory verifier in the dentry
1078 * @dentry: pointer to dentry
1079 * @verf: verifier to save
1081 * Saves the parent directory verifier in @dentry. If the inode has
1082 * a delegation, we also tag the dentry as having been revalidated
1083 * while holding a delegation so that we know we don't have to
1084 * look it up again after a directory change.
1086 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1089 spin_lock(&dentry->d_lock);
1090 nfs_set_verifier_locked(dentry, verf);
1091 spin_unlock(&dentry->d_lock);
1093 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1095 #if IS_ENABLED(CONFIG_NFS_V4)
1097 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1098 * @inode: pointer to inode
1100 * Iterates through the dentries in the inode alias list and clears
1101 * the tag used to indicate that the dentry has been revalidated
1102 * while holding a delegation.
1103 * This function is intended for use when the delegation is being
1104 * returned or revoked.
1106 void nfs_clear_verifier_delegated(struct inode *inode)
1108 struct dentry *alias;
1110 if (!inode)
1111 return;
1112 spin_lock(&inode->i_lock);
1113 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1114 spin_lock(&alias->d_lock);
1115 nfs_unset_verifier_delegated(&alias->d_time);
1116 spin_unlock(&alias->d_lock);
1118 spin_unlock(&inode->i_lock);
1120 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1121 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1124 * A check for whether or not the parent directory has changed.
1125 * In the case it has, we assume that the dentries are untrustworthy
1126 * and may need to be looked up again.
1127 * If rcu_walk prevents us from performing a full check, return 0.
1129 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1130 int rcu_walk)
1132 if (IS_ROOT(dentry))
1133 return 1;
1134 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1135 return 0;
1136 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1137 return 0;
1138 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1139 if (nfs_mapping_need_revalidate_inode(dir)) {
1140 if (rcu_walk)
1141 return 0;
1142 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1143 return 0;
1145 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1146 return 0;
1147 return 1;
1151 * Use intent information to check whether or not we're going to do
1152 * an O_EXCL create using this path component.
1154 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1156 if (NFS_PROTO(dir)->version == 2)
1157 return 0;
1158 return flags & LOOKUP_EXCL;
1162 * Inode and filehandle revalidation for lookups.
1164 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1165 * or if the intent information indicates that we're about to open this
1166 * particular file and the "nocto" mount flag is not set.
1169 static
1170 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1172 struct nfs_server *server = NFS_SERVER(inode);
1173 int ret;
1175 if (IS_AUTOMOUNT(inode))
1176 return 0;
1178 if (flags & LOOKUP_OPEN) {
1179 switch (inode->i_mode & S_IFMT) {
1180 case S_IFREG:
1181 /* A NFSv4 OPEN will revalidate later */
1182 if (server->caps & NFS_CAP_ATOMIC_OPEN)
1183 goto out;
1184 /* Fallthrough */
1185 case S_IFDIR:
1186 if (server->flags & NFS_MOUNT_NOCTO)
1187 break;
1188 /* NFS close-to-open cache consistency validation */
1189 goto out_force;
1193 /* VFS wants an on-the-wire revalidation */
1194 if (flags & LOOKUP_REVAL)
1195 goto out_force;
1196 out:
1197 return (inode->i_nlink == 0) ? -ESTALE : 0;
1198 out_force:
1199 if (flags & LOOKUP_RCU)
1200 return -ECHILD;
1201 ret = __nfs_revalidate_inode(server, inode);
1202 if (ret != 0)
1203 return ret;
1204 goto out;
1208 * We judge how long we want to trust negative
1209 * dentries by looking at the parent inode mtime.
1211 * If parent mtime has changed, we revalidate, else we wait for a
1212 * period corresponding to the parent's attribute cache timeout value.
1214 * If LOOKUP_RCU prevents us from performing a full check, return 1
1215 * suggesting a reval is needed.
1217 * Note that when creating a new file, or looking up a rename target,
1218 * then it shouldn't be necessary to revalidate a negative dentry.
1220 static inline
1221 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1222 unsigned int flags)
1224 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1225 return 0;
1226 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1227 return 1;
1228 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1231 static int
1232 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1233 struct inode *inode, int error)
1235 switch (error) {
1236 case 1:
1237 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1238 __func__, dentry);
1239 return 1;
1240 case 0:
1241 nfs_mark_for_revalidate(dir);
1242 if (inode && S_ISDIR(inode->i_mode)) {
1243 /* Purge readdir caches. */
1244 nfs_zap_caches(inode);
1246 * We can't d_drop the root of a disconnected tree:
1247 * its d_hash is on the s_anon list and d_drop() would hide
1248 * it from shrink_dcache_for_unmount(), leading to busy
1249 * inodes on unmount and further oopses.
1251 if (IS_ROOT(dentry))
1252 return 1;
1254 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1255 __func__, dentry);
1256 return 0;
1258 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1259 __func__, dentry, error);
1260 return error;
1263 static int
1264 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1265 unsigned int flags)
1267 int ret = 1;
1268 if (nfs_neg_need_reval(dir, dentry, flags)) {
1269 if (flags & LOOKUP_RCU)
1270 return -ECHILD;
1271 ret = 0;
1273 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1276 static int
1277 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1278 struct inode *inode)
1280 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1281 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1284 static int
1285 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1286 struct inode *inode)
1288 struct nfs_fh *fhandle;
1289 struct nfs_fattr *fattr;
1290 struct nfs4_label *label;
1291 unsigned long dir_verifier;
1292 int ret;
1294 ret = -ENOMEM;
1295 fhandle = nfs_alloc_fhandle();
1296 fattr = nfs_alloc_fattr();
1297 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1298 if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1299 goto out;
1301 dir_verifier = nfs_save_change_attribute(dir);
1302 ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1303 if (ret < 0) {
1304 switch (ret) {
1305 case -ESTALE:
1306 case -ENOENT:
1307 ret = 0;
1308 break;
1309 case -ETIMEDOUT:
1310 if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1311 ret = 1;
1313 goto out;
1315 ret = 0;
1316 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1317 goto out;
1318 if (nfs_refresh_inode(inode, fattr) < 0)
1319 goto out;
1321 nfs_setsecurity(inode, fattr, label);
1322 nfs_set_verifier(dentry, dir_verifier);
1324 /* set a readdirplus hint that we had a cache miss */
1325 nfs_force_use_readdirplus(dir);
1326 ret = 1;
1327 out:
1328 nfs_free_fattr(fattr);
1329 nfs_free_fhandle(fhandle);
1330 nfs4_label_free(label);
1331 return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1335 * This is called every time the dcache has a lookup hit,
1336 * and we should check whether we can really trust that
1337 * lookup.
1339 * NOTE! The hit can be a negative hit too, don't assume
1340 * we have an inode!
1342 * If the parent directory is seen to have changed, we throw out the
1343 * cached dentry and do a new lookup.
1345 static int
1346 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1347 unsigned int flags)
1349 struct inode *inode;
1350 int error;
1352 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1353 inode = d_inode(dentry);
1355 if (!inode)
1356 return nfs_lookup_revalidate_negative(dir, dentry, flags);
1358 if (is_bad_inode(inode)) {
1359 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1360 __func__, dentry);
1361 goto out_bad;
1364 if (nfs_verifier_is_delegated(dentry))
1365 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1367 /* Force a full look up iff the parent directory has changed */
1368 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1369 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1370 error = nfs_lookup_verify_inode(inode, flags);
1371 if (error) {
1372 if (error == -ESTALE)
1373 nfs_zap_caches(dir);
1374 goto out_bad;
1376 nfs_advise_use_readdirplus(dir);
1377 goto out_valid;
1380 if (flags & LOOKUP_RCU)
1381 return -ECHILD;
1383 if (NFS_STALE(inode))
1384 goto out_bad;
1386 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1387 error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1388 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1389 return error;
1390 out_valid:
1391 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1392 out_bad:
1393 if (flags & LOOKUP_RCU)
1394 return -ECHILD;
1395 return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1398 static int
1399 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1400 int (*reval)(struct inode *, struct dentry *, unsigned int))
1402 struct dentry *parent;
1403 struct inode *dir;
1404 int ret;
1406 if (flags & LOOKUP_RCU) {
1407 parent = READ_ONCE(dentry->d_parent);
1408 dir = d_inode_rcu(parent);
1409 if (!dir)
1410 return -ECHILD;
1411 ret = reval(dir, dentry, flags);
1412 if (parent != READ_ONCE(dentry->d_parent))
1413 return -ECHILD;
1414 } else {
1415 parent = dget_parent(dentry);
1416 ret = reval(d_inode(parent), dentry, flags);
1417 dput(parent);
1419 return ret;
1422 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1424 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1428 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1429 * when we don't really care about the dentry name. This is called when a
1430 * pathwalk ends on a dentry that was not found via a normal lookup in the
1431 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1433 * In this situation, we just want to verify that the inode itself is OK
1434 * since the dentry might have changed on the server.
1436 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1438 struct inode *inode = d_inode(dentry);
1439 int error = 0;
1442 * I believe we can only get a negative dentry here in the case of a
1443 * procfs-style symlink. Just assume it's correct for now, but we may
1444 * eventually need to do something more here.
1446 if (!inode) {
1447 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1448 __func__, dentry);
1449 return 1;
1452 if (is_bad_inode(inode)) {
1453 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1454 __func__, dentry);
1455 return 0;
1458 error = nfs_lookup_verify_inode(inode, flags);
1459 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1460 __func__, inode->i_ino, error ? "invalid" : "valid");
1461 return !error;
1465 * This is called from dput() when d_count is going to 0.
1467 static int nfs_dentry_delete(const struct dentry *dentry)
1469 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1470 dentry, dentry->d_flags);
1472 /* Unhash any dentry with a stale inode */
1473 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1474 return 1;
1476 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1477 /* Unhash it, so that ->d_iput() would be called */
1478 return 1;
1480 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1481 /* Unhash it, so that ancestors of killed async unlink
1482 * files will be cleaned up during umount */
1483 return 1;
1485 return 0;
1489 /* Ensure that we revalidate inode->i_nlink */
1490 static void nfs_drop_nlink(struct inode *inode)
1492 spin_lock(&inode->i_lock);
1493 /* drop the inode if we're reasonably sure this is the last link */
1494 if (inode->i_nlink > 0)
1495 drop_nlink(inode);
1496 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1497 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1498 | NFS_INO_INVALID_CTIME
1499 | NFS_INO_INVALID_OTHER
1500 | NFS_INO_REVAL_FORCED;
1501 spin_unlock(&inode->i_lock);
1505 * Called when the dentry loses inode.
1506 * We use it to clean up silly-renamed files.
1508 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1510 if (S_ISDIR(inode->i_mode))
1511 /* drop any readdir cache as it could easily be old */
1512 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1514 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1515 nfs_complete_unlink(dentry, inode);
1516 nfs_drop_nlink(inode);
1518 iput(inode);
1521 static void nfs_d_release(struct dentry *dentry)
1523 /* free cached devname value, if it survived that far */
1524 if (unlikely(dentry->d_fsdata)) {
1525 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1526 WARN_ON(1);
1527 else
1528 kfree(dentry->d_fsdata);
1532 const struct dentry_operations nfs_dentry_operations = {
1533 .d_revalidate = nfs_lookup_revalidate,
1534 .d_weak_revalidate = nfs_weak_revalidate,
1535 .d_delete = nfs_dentry_delete,
1536 .d_iput = nfs_dentry_iput,
1537 .d_automount = nfs_d_automount,
1538 .d_release = nfs_d_release,
1540 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1542 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1544 struct dentry *res;
1545 struct inode *inode = NULL;
1546 struct nfs_fh *fhandle = NULL;
1547 struct nfs_fattr *fattr = NULL;
1548 struct nfs4_label *label = NULL;
1549 unsigned long dir_verifier;
1550 int error;
1552 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1553 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1555 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1556 return ERR_PTR(-ENAMETOOLONG);
1559 * If we're doing an exclusive create, optimize away the lookup
1560 * but don't hash the dentry.
1562 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1563 return NULL;
1565 res = ERR_PTR(-ENOMEM);
1566 fhandle = nfs_alloc_fhandle();
1567 fattr = nfs_alloc_fattr();
1568 if (fhandle == NULL || fattr == NULL)
1569 goto out;
1571 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1572 if (IS_ERR(label))
1573 goto out;
1575 dir_verifier = nfs_save_change_attribute(dir);
1576 trace_nfs_lookup_enter(dir, dentry, flags);
1577 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1578 if (error == -ENOENT)
1579 goto no_entry;
1580 if (error < 0) {
1581 res = ERR_PTR(error);
1582 goto out_label;
1584 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1585 res = ERR_CAST(inode);
1586 if (IS_ERR(res))
1587 goto out_label;
1589 /* Notify readdir to use READDIRPLUS */
1590 nfs_force_use_readdirplus(dir);
1592 no_entry:
1593 res = d_splice_alias(inode, dentry);
1594 if (res != NULL) {
1595 if (IS_ERR(res))
1596 goto out_label;
1597 dentry = res;
1599 nfs_set_verifier(dentry, dir_verifier);
1600 out_label:
1601 trace_nfs_lookup_exit(dir, dentry, flags, error);
1602 nfs4_label_free(label);
1603 out:
1604 nfs_free_fattr(fattr);
1605 nfs_free_fhandle(fhandle);
1606 return res;
1608 EXPORT_SYMBOL_GPL(nfs_lookup);
1610 #if IS_ENABLED(CONFIG_NFS_V4)
1611 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1613 const struct dentry_operations nfs4_dentry_operations = {
1614 .d_revalidate = nfs4_lookup_revalidate,
1615 .d_weak_revalidate = nfs_weak_revalidate,
1616 .d_delete = nfs_dentry_delete,
1617 .d_iput = nfs_dentry_iput,
1618 .d_automount = nfs_d_automount,
1619 .d_release = nfs_d_release,
1621 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1623 static fmode_t flags_to_mode(int flags)
1625 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1626 if ((flags & O_ACCMODE) != O_WRONLY)
1627 res |= FMODE_READ;
1628 if ((flags & O_ACCMODE) != O_RDONLY)
1629 res |= FMODE_WRITE;
1630 return res;
1633 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1635 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1638 static int do_open(struct inode *inode, struct file *filp)
1640 nfs_fscache_open_file(inode, filp);
1641 return 0;
1644 static int nfs_finish_open(struct nfs_open_context *ctx,
1645 struct dentry *dentry,
1646 struct file *file, unsigned open_flags)
1648 int err;
1650 err = finish_open(file, dentry, do_open);
1651 if (err)
1652 goto out;
1653 if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1654 nfs_file_set_open_context(file, ctx);
1655 else
1656 err = -EOPENSTALE;
1657 out:
1658 return err;
1661 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1662 struct file *file, unsigned open_flags,
1663 umode_t mode)
1665 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1666 struct nfs_open_context *ctx;
1667 struct dentry *res;
1668 struct iattr attr = { .ia_valid = ATTR_OPEN };
1669 struct inode *inode;
1670 unsigned int lookup_flags = 0;
1671 bool switched = false;
1672 int created = 0;
1673 int err;
1675 /* Expect a negative dentry */
1676 BUG_ON(d_inode(dentry));
1678 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1679 dir->i_sb->s_id, dir->i_ino, dentry);
1681 err = nfs_check_flags(open_flags);
1682 if (err)
1683 return err;
1685 /* NFS only supports OPEN on regular files */
1686 if ((open_flags & O_DIRECTORY)) {
1687 if (!d_in_lookup(dentry)) {
1689 * Hashed negative dentry with O_DIRECTORY: dentry was
1690 * revalidated and is fine, no need to perform lookup
1691 * again
1693 return -ENOENT;
1695 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1696 goto no_open;
1699 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1700 return -ENAMETOOLONG;
1702 if (open_flags & O_CREAT) {
1703 struct nfs_server *server = NFS_SERVER(dir);
1705 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1706 mode &= ~current_umask();
1708 attr.ia_valid |= ATTR_MODE;
1709 attr.ia_mode = mode;
1711 if (open_flags & O_TRUNC) {
1712 attr.ia_valid |= ATTR_SIZE;
1713 attr.ia_size = 0;
1716 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1717 d_drop(dentry);
1718 switched = true;
1719 dentry = d_alloc_parallel(dentry->d_parent,
1720 &dentry->d_name, &wq);
1721 if (IS_ERR(dentry))
1722 return PTR_ERR(dentry);
1723 if (unlikely(!d_in_lookup(dentry)))
1724 return finish_no_open(file, dentry);
1727 ctx = create_nfs_open_context(dentry, open_flags, file);
1728 err = PTR_ERR(ctx);
1729 if (IS_ERR(ctx))
1730 goto out;
1732 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1733 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1734 if (created)
1735 file->f_mode |= FMODE_CREATED;
1736 if (IS_ERR(inode)) {
1737 err = PTR_ERR(inode);
1738 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1739 put_nfs_open_context(ctx);
1740 d_drop(dentry);
1741 switch (err) {
1742 case -ENOENT:
1743 d_splice_alias(NULL, dentry);
1744 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1745 break;
1746 case -EISDIR:
1747 case -ENOTDIR:
1748 goto no_open;
1749 case -ELOOP:
1750 if (!(open_flags & O_NOFOLLOW))
1751 goto no_open;
1752 break;
1753 /* case -EINVAL: */
1754 default:
1755 break;
1757 goto out;
1760 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1761 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1762 put_nfs_open_context(ctx);
1763 out:
1764 if (unlikely(switched)) {
1765 d_lookup_done(dentry);
1766 dput(dentry);
1768 return err;
1770 no_open:
1771 res = nfs_lookup(dir, dentry, lookup_flags);
1772 if (switched) {
1773 d_lookup_done(dentry);
1774 if (!res)
1775 res = dentry;
1776 else
1777 dput(dentry);
1779 if (IS_ERR(res))
1780 return PTR_ERR(res);
1781 return finish_no_open(file, res);
1783 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1785 static int
1786 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1787 unsigned int flags)
1789 struct inode *inode;
1791 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1792 goto full_reval;
1793 if (d_mountpoint(dentry))
1794 goto full_reval;
1796 inode = d_inode(dentry);
1798 /* We can't create new files in nfs_open_revalidate(), so we
1799 * optimize away revalidation of negative dentries.
1801 if (inode == NULL)
1802 goto full_reval;
1804 if (nfs_verifier_is_delegated(dentry))
1805 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1807 /* NFS only supports OPEN on regular files */
1808 if (!S_ISREG(inode->i_mode))
1809 goto full_reval;
1811 /* We cannot do exclusive creation on a positive dentry */
1812 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
1813 goto reval_dentry;
1815 /* Check if the directory changed */
1816 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
1817 goto reval_dentry;
1819 /* Let f_op->open() actually open (and revalidate) the file */
1820 return 1;
1821 reval_dentry:
1822 if (flags & LOOKUP_RCU)
1823 return -ECHILD;
1824 return nfs_lookup_revalidate_dentry(dir, dentry, inode);
1826 full_reval:
1827 return nfs_do_lookup_revalidate(dir, dentry, flags);
1830 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1832 return __nfs_lookup_revalidate(dentry, flags,
1833 nfs4_do_lookup_revalidate);
1836 #endif /* CONFIG_NFSV4 */
1838 struct dentry *
1839 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
1840 struct nfs_fattr *fattr,
1841 struct nfs4_label *label)
1843 struct dentry *parent = dget_parent(dentry);
1844 struct inode *dir = d_inode(parent);
1845 struct inode *inode;
1846 struct dentry *d;
1847 int error;
1849 d_drop(dentry);
1851 if (fhandle->size == 0) {
1852 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL);
1853 if (error)
1854 goto out_error;
1856 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1857 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1858 struct nfs_server *server = NFS_SB(dentry->d_sb);
1859 error = server->nfs_client->rpc_ops->getattr(server, fhandle,
1860 fattr, NULL, NULL);
1861 if (error < 0)
1862 goto out_error;
1864 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1865 d = d_splice_alias(inode, dentry);
1866 out:
1867 dput(parent);
1868 return d;
1869 out_error:
1870 nfs_mark_for_revalidate(dir);
1871 d = ERR_PTR(error);
1872 goto out;
1874 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
1877 * Code common to create, mkdir, and mknod.
1879 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1880 struct nfs_fattr *fattr,
1881 struct nfs4_label *label)
1883 struct dentry *d;
1885 d = nfs_add_or_obtain(dentry, fhandle, fattr, label);
1886 if (IS_ERR(d))
1887 return PTR_ERR(d);
1889 /* Callers don't care */
1890 dput(d);
1891 return 0;
1893 EXPORT_SYMBOL_GPL(nfs_instantiate);
1896 * Following a failed create operation, we drop the dentry rather
1897 * than retain a negative dentry. This avoids a problem in the event
1898 * that the operation succeeded on the server, but an error in the
1899 * reply path made it appear to have failed.
1901 int nfs_create(struct inode *dir, struct dentry *dentry,
1902 umode_t mode, bool excl)
1904 struct iattr attr;
1905 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1906 int error;
1908 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1909 dir->i_sb->s_id, dir->i_ino, dentry);
1911 attr.ia_mode = mode;
1912 attr.ia_valid = ATTR_MODE;
1914 trace_nfs_create_enter(dir, dentry, open_flags);
1915 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1916 trace_nfs_create_exit(dir, dentry, open_flags, error);
1917 if (error != 0)
1918 goto out_err;
1919 return 0;
1920 out_err:
1921 d_drop(dentry);
1922 return error;
1924 EXPORT_SYMBOL_GPL(nfs_create);
1927 * See comments for nfs_proc_create regarding failed operations.
1930 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1932 struct iattr attr;
1933 int status;
1935 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1936 dir->i_sb->s_id, dir->i_ino, dentry);
1938 attr.ia_mode = mode;
1939 attr.ia_valid = ATTR_MODE;
1941 trace_nfs_mknod_enter(dir, dentry);
1942 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1943 trace_nfs_mknod_exit(dir, dentry, status);
1944 if (status != 0)
1945 goto out_err;
1946 return 0;
1947 out_err:
1948 d_drop(dentry);
1949 return status;
1951 EXPORT_SYMBOL_GPL(nfs_mknod);
1954 * See comments for nfs_proc_create regarding failed operations.
1956 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1958 struct iattr attr;
1959 int error;
1961 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1962 dir->i_sb->s_id, dir->i_ino, dentry);
1964 attr.ia_valid = ATTR_MODE;
1965 attr.ia_mode = mode | S_IFDIR;
1967 trace_nfs_mkdir_enter(dir, dentry);
1968 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1969 trace_nfs_mkdir_exit(dir, dentry, error);
1970 if (error != 0)
1971 goto out_err;
1972 return 0;
1973 out_err:
1974 d_drop(dentry);
1975 return error;
1977 EXPORT_SYMBOL_GPL(nfs_mkdir);
1979 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1981 if (simple_positive(dentry))
1982 d_delete(dentry);
1985 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1987 int error;
1989 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1990 dir->i_sb->s_id, dir->i_ino, dentry);
1992 trace_nfs_rmdir_enter(dir, dentry);
1993 if (d_really_is_positive(dentry)) {
1994 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1995 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1996 /* Ensure the VFS deletes this inode */
1997 switch (error) {
1998 case 0:
1999 clear_nlink(d_inode(dentry));
2000 break;
2001 case -ENOENT:
2002 nfs_dentry_handle_enoent(dentry);
2004 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2005 } else
2006 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2007 trace_nfs_rmdir_exit(dir, dentry, error);
2009 return error;
2011 EXPORT_SYMBOL_GPL(nfs_rmdir);
2014 * Remove a file after making sure there are no pending writes,
2015 * and after checking that the file has only one user.
2017 * We invalidate the attribute cache and free the inode prior to the operation
2018 * to avoid possible races if the server reuses the inode.
2020 static int nfs_safe_remove(struct dentry *dentry)
2022 struct inode *dir = d_inode(dentry->d_parent);
2023 struct inode *inode = d_inode(dentry);
2024 int error = -EBUSY;
2026 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2028 /* If the dentry was sillyrenamed, we simply call d_delete() */
2029 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2030 error = 0;
2031 goto out;
2034 trace_nfs_remove_enter(dir, dentry);
2035 if (inode != NULL) {
2036 error = NFS_PROTO(dir)->remove(dir, dentry);
2037 if (error == 0)
2038 nfs_drop_nlink(inode);
2039 } else
2040 error = NFS_PROTO(dir)->remove(dir, dentry);
2041 if (error == -ENOENT)
2042 nfs_dentry_handle_enoent(dentry);
2043 trace_nfs_remove_exit(dir, dentry, error);
2044 out:
2045 return error;
2048 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
2049 * belongs to an active ".nfs..." file and we return -EBUSY.
2051 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
2053 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2055 int error;
2056 int need_rehash = 0;
2058 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2059 dir->i_ino, dentry);
2061 trace_nfs_unlink_enter(dir, dentry);
2062 spin_lock(&dentry->d_lock);
2063 if (d_count(dentry) > 1) {
2064 spin_unlock(&dentry->d_lock);
2065 /* Start asynchronous writeout of the inode */
2066 write_inode_now(d_inode(dentry), 0);
2067 error = nfs_sillyrename(dir, dentry);
2068 goto out;
2070 if (!d_unhashed(dentry)) {
2071 __d_drop(dentry);
2072 need_rehash = 1;
2074 spin_unlock(&dentry->d_lock);
2075 error = nfs_safe_remove(dentry);
2076 if (!error || error == -ENOENT) {
2077 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2078 } else if (need_rehash)
2079 d_rehash(dentry);
2080 out:
2081 trace_nfs_unlink_exit(dir, dentry, error);
2082 return error;
2084 EXPORT_SYMBOL_GPL(nfs_unlink);
2087 * To create a symbolic link, most file systems instantiate a new inode,
2088 * add a page to it containing the path, then write it out to the disk
2089 * using prepare_write/commit_write.
2091 * Unfortunately the NFS client can't create the in-core inode first
2092 * because it needs a file handle to create an in-core inode (see
2093 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
2094 * symlink request has completed on the server.
2096 * So instead we allocate a raw page, copy the symname into it, then do
2097 * the SYMLINK request with the page as the buffer. If it succeeds, we
2098 * now have a new file handle and can instantiate an in-core NFS inode
2099 * and move the raw page into its mapping.
2101 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2103 struct page *page;
2104 char *kaddr;
2105 struct iattr attr;
2106 unsigned int pathlen = strlen(symname);
2107 int error;
2109 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2110 dir->i_ino, dentry, symname);
2112 if (pathlen > PAGE_SIZE)
2113 return -ENAMETOOLONG;
2115 attr.ia_mode = S_IFLNK | S_IRWXUGO;
2116 attr.ia_valid = ATTR_MODE;
2118 page = alloc_page(GFP_USER);
2119 if (!page)
2120 return -ENOMEM;
2122 kaddr = page_address(page);
2123 memcpy(kaddr, symname, pathlen);
2124 if (pathlen < PAGE_SIZE)
2125 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2127 trace_nfs_symlink_enter(dir, dentry);
2128 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2129 trace_nfs_symlink_exit(dir, dentry, error);
2130 if (error != 0) {
2131 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2132 dir->i_sb->s_id, dir->i_ino,
2133 dentry, symname, error);
2134 d_drop(dentry);
2135 __free_page(page);
2136 return error;
2140 * No big deal if we can't add this page to the page cache here.
2141 * READLINK will get the missing page from the server if needed.
2143 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2144 GFP_KERNEL)) {
2145 SetPageUptodate(page);
2146 unlock_page(page);
2148 * add_to_page_cache_lru() grabs an extra page refcount.
2149 * Drop it here to avoid leaking this page later.
2151 put_page(page);
2152 } else
2153 __free_page(page);
2155 return 0;
2157 EXPORT_SYMBOL_GPL(nfs_symlink);
2160 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2162 struct inode *inode = d_inode(old_dentry);
2163 int error;
2165 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2166 old_dentry, dentry);
2168 trace_nfs_link_enter(inode, dir, dentry);
2169 d_drop(dentry);
2170 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2171 if (error == 0) {
2172 ihold(inode);
2173 d_add(dentry, inode);
2175 trace_nfs_link_exit(inode, dir, dentry, error);
2176 return error;
2178 EXPORT_SYMBOL_GPL(nfs_link);
2181 * RENAME
2182 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2183 * different file handle for the same inode after a rename (e.g. when
2184 * moving to a different directory). A fail-safe method to do so would
2185 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2186 * rename the old file using the sillyrename stuff. This way, the original
2187 * file in old_dir will go away when the last process iput()s the inode.
2189 * FIXED.
2191 * It actually works quite well. One needs to have the possibility for
2192 * at least one ".nfs..." file in each directory the file ever gets
2193 * moved or linked to which happens automagically with the new
2194 * implementation that only depends on the dcache stuff instead of
2195 * using the inode layer
2197 * Unfortunately, things are a little more complicated than indicated
2198 * above. For a cross-directory move, we want to make sure we can get
2199 * rid of the old inode after the operation. This means there must be
2200 * no pending writes (if it's a file), and the use count must be 1.
2201 * If these conditions are met, we can drop the dentries before doing
2202 * the rename.
2204 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2205 struct inode *new_dir, struct dentry *new_dentry,
2206 unsigned int flags)
2208 struct inode *old_inode = d_inode(old_dentry);
2209 struct inode *new_inode = d_inode(new_dentry);
2210 struct dentry *dentry = NULL, *rehash = NULL;
2211 struct rpc_task *task;
2212 int error = -EBUSY;
2214 if (flags)
2215 return -EINVAL;
2217 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2218 old_dentry, new_dentry,
2219 d_count(new_dentry));
2221 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2223 * For non-directories, check whether the target is busy and if so,
2224 * make a copy of the dentry and then do a silly-rename. If the
2225 * silly-rename succeeds, the copied dentry is hashed and becomes
2226 * the new target.
2228 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2230 * To prevent any new references to the target during the
2231 * rename, we unhash the dentry in advance.
2233 if (!d_unhashed(new_dentry)) {
2234 d_drop(new_dentry);
2235 rehash = new_dentry;
2238 if (d_count(new_dentry) > 2) {
2239 int err;
2241 /* copy the target dentry's name */
2242 dentry = d_alloc(new_dentry->d_parent,
2243 &new_dentry->d_name);
2244 if (!dentry)
2245 goto out;
2247 /* silly-rename the existing target ... */
2248 err = nfs_sillyrename(new_dir, new_dentry);
2249 if (err)
2250 goto out;
2252 new_dentry = dentry;
2253 rehash = NULL;
2254 new_inode = NULL;
2258 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2259 if (IS_ERR(task)) {
2260 error = PTR_ERR(task);
2261 goto out;
2264 error = rpc_wait_for_completion_task(task);
2265 if (error != 0) {
2266 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2267 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2268 smp_wmb();
2269 } else
2270 error = task->tk_status;
2271 rpc_put_task(task);
2272 /* Ensure the inode attributes are revalidated */
2273 if (error == 0) {
2274 spin_lock(&old_inode->i_lock);
2275 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2276 NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE
2277 | NFS_INO_INVALID_CTIME
2278 | NFS_INO_REVAL_FORCED;
2279 spin_unlock(&old_inode->i_lock);
2281 out:
2282 if (rehash)
2283 d_rehash(rehash);
2284 trace_nfs_rename_exit(old_dir, old_dentry,
2285 new_dir, new_dentry, error);
2286 if (!error) {
2287 if (new_inode != NULL)
2288 nfs_drop_nlink(new_inode);
2290 * The d_move() should be here instead of in an async RPC completion
2291 * handler because we need the proper locks to move the dentry. If
2292 * we're interrupted by a signal, the async RPC completion handler
2293 * should mark the directories for revalidation.
2295 d_move(old_dentry, new_dentry);
2296 nfs_set_verifier(old_dentry,
2297 nfs_save_change_attribute(new_dir));
2298 } else if (error == -ENOENT)
2299 nfs_dentry_handle_enoent(old_dentry);
2301 /* new dentry created? */
2302 if (dentry)
2303 dput(dentry);
2304 return error;
2306 EXPORT_SYMBOL_GPL(nfs_rename);
2308 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2309 static LIST_HEAD(nfs_access_lru_list);
2310 static atomic_long_t nfs_access_nr_entries;
2312 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2313 module_param(nfs_access_max_cachesize, ulong, 0644);
2314 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2316 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2318 put_cred(entry->cred);
2319 kfree_rcu(entry, rcu_head);
2320 smp_mb__before_atomic();
2321 atomic_long_dec(&nfs_access_nr_entries);
2322 smp_mb__after_atomic();
2325 static void nfs_access_free_list(struct list_head *head)
2327 struct nfs_access_entry *cache;
2329 while (!list_empty(head)) {
2330 cache = list_entry(head->next, struct nfs_access_entry, lru);
2331 list_del(&cache->lru);
2332 nfs_access_free_entry(cache);
2336 static unsigned long
2337 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2339 LIST_HEAD(head);
2340 struct nfs_inode *nfsi, *next;
2341 struct nfs_access_entry *cache;
2342 long freed = 0;
2344 spin_lock(&nfs_access_lru_lock);
2345 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2346 struct inode *inode;
2348 if (nr_to_scan-- == 0)
2349 break;
2350 inode = &nfsi->vfs_inode;
2351 spin_lock(&inode->i_lock);
2352 if (list_empty(&nfsi->access_cache_entry_lru))
2353 goto remove_lru_entry;
2354 cache = list_entry(nfsi->access_cache_entry_lru.next,
2355 struct nfs_access_entry, lru);
2356 list_move(&cache->lru, &head);
2357 rb_erase(&cache->rb_node, &nfsi->access_cache);
2358 freed++;
2359 if (!list_empty(&nfsi->access_cache_entry_lru))
2360 list_move_tail(&nfsi->access_cache_inode_lru,
2361 &nfs_access_lru_list);
2362 else {
2363 remove_lru_entry:
2364 list_del_init(&nfsi->access_cache_inode_lru);
2365 smp_mb__before_atomic();
2366 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2367 smp_mb__after_atomic();
2369 spin_unlock(&inode->i_lock);
2371 spin_unlock(&nfs_access_lru_lock);
2372 nfs_access_free_list(&head);
2373 return freed;
2376 unsigned long
2377 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2379 int nr_to_scan = sc->nr_to_scan;
2380 gfp_t gfp_mask = sc->gfp_mask;
2382 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2383 return SHRINK_STOP;
2384 return nfs_do_access_cache_scan(nr_to_scan);
2388 unsigned long
2389 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2391 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2394 static void
2395 nfs_access_cache_enforce_limit(void)
2397 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2398 unsigned long diff;
2399 unsigned int nr_to_scan;
2401 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2402 return;
2403 nr_to_scan = 100;
2404 diff = nr_entries - nfs_access_max_cachesize;
2405 if (diff < nr_to_scan)
2406 nr_to_scan = diff;
2407 nfs_do_access_cache_scan(nr_to_scan);
2410 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2412 struct rb_root *root_node = &nfsi->access_cache;
2413 struct rb_node *n;
2414 struct nfs_access_entry *entry;
2416 /* Unhook entries from the cache */
2417 while ((n = rb_first(root_node)) != NULL) {
2418 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2419 rb_erase(n, root_node);
2420 list_move(&entry->lru, head);
2422 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2425 void nfs_access_zap_cache(struct inode *inode)
2427 LIST_HEAD(head);
2429 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2430 return;
2431 /* Remove from global LRU init */
2432 spin_lock(&nfs_access_lru_lock);
2433 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2434 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2436 spin_lock(&inode->i_lock);
2437 __nfs_access_zap_cache(NFS_I(inode), &head);
2438 spin_unlock(&inode->i_lock);
2439 spin_unlock(&nfs_access_lru_lock);
2440 nfs_access_free_list(&head);
2442 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2444 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2446 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2448 while (n != NULL) {
2449 struct nfs_access_entry *entry =
2450 rb_entry(n, struct nfs_access_entry, rb_node);
2451 int cmp = cred_fscmp(cred, entry->cred);
2453 if (cmp < 0)
2454 n = n->rb_left;
2455 else if (cmp > 0)
2456 n = n->rb_right;
2457 else
2458 return entry;
2460 return NULL;
2463 static int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2465 struct nfs_inode *nfsi = NFS_I(inode);
2466 struct nfs_access_entry *cache;
2467 bool retry = true;
2468 int err;
2470 spin_lock(&inode->i_lock);
2471 for(;;) {
2472 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2473 goto out_zap;
2474 cache = nfs_access_search_rbtree(inode, cred);
2475 err = -ENOENT;
2476 if (cache == NULL)
2477 goto out;
2478 /* Found an entry, is our attribute cache valid? */
2479 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2480 break;
2481 if (!retry)
2482 break;
2483 err = -ECHILD;
2484 if (!may_block)
2485 goto out;
2486 spin_unlock(&inode->i_lock);
2487 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2488 if (err)
2489 return err;
2490 spin_lock(&inode->i_lock);
2491 retry = false;
2493 res->cred = cache->cred;
2494 res->mask = cache->mask;
2495 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2496 err = 0;
2497 out:
2498 spin_unlock(&inode->i_lock);
2499 return err;
2500 out_zap:
2501 spin_unlock(&inode->i_lock);
2502 nfs_access_zap_cache(inode);
2503 return -ENOENT;
2506 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2508 /* Only check the most recently returned cache entry,
2509 * but do it without locking.
2511 struct nfs_inode *nfsi = NFS_I(inode);
2512 struct nfs_access_entry *cache;
2513 int err = -ECHILD;
2514 struct list_head *lh;
2516 rcu_read_lock();
2517 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2518 goto out;
2519 lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2520 cache = list_entry(lh, struct nfs_access_entry, lru);
2521 if (lh == &nfsi->access_cache_entry_lru ||
2522 cred_fscmp(cred, cache->cred) != 0)
2523 cache = NULL;
2524 if (cache == NULL)
2525 goto out;
2526 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2527 goto out;
2528 res->cred = cache->cred;
2529 res->mask = cache->mask;
2530 err = 0;
2531 out:
2532 rcu_read_unlock();
2533 return err;
2536 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2538 struct nfs_inode *nfsi = NFS_I(inode);
2539 struct rb_root *root_node = &nfsi->access_cache;
2540 struct rb_node **p = &root_node->rb_node;
2541 struct rb_node *parent = NULL;
2542 struct nfs_access_entry *entry;
2543 int cmp;
2545 spin_lock(&inode->i_lock);
2546 while (*p != NULL) {
2547 parent = *p;
2548 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2549 cmp = cred_fscmp(set->cred, entry->cred);
2551 if (cmp < 0)
2552 p = &parent->rb_left;
2553 else if (cmp > 0)
2554 p = &parent->rb_right;
2555 else
2556 goto found;
2558 rb_link_node(&set->rb_node, parent, p);
2559 rb_insert_color(&set->rb_node, root_node);
2560 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2561 spin_unlock(&inode->i_lock);
2562 return;
2563 found:
2564 rb_replace_node(parent, &set->rb_node, root_node);
2565 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2566 list_del(&entry->lru);
2567 spin_unlock(&inode->i_lock);
2568 nfs_access_free_entry(entry);
2571 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2573 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2574 if (cache == NULL)
2575 return;
2576 RB_CLEAR_NODE(&cache->rb_node);
2577 cache->cred = get_cred(set->cred);
2578 cache->mask = set->mask;
2580 /* The above field assignments must be visible
2581 * before this item appears on the lru. We cannot easily
2582 * use rcu_assign_pointer, so just force the memory barrier.
2584 smp_wmb();
2585 nfs_access_add_rbtree(inode, cache);
2587 /* Update accounting */
2588 smp_mb__before_atomic();
2589 atomic_long_inc(&nfs_access_nr_entries);
2590 smp_mb__after_atomic();
2592 /* Add inode to global LRU list */
2593 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2594 spin_lock(&nfs_access_lru_lock);
2595 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2596 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2597 &nfs_access_lru_list);
2598 spin_unlock(&nfs_access_lru_lock);
2600 nfs_access_cache_enforce_limit();
2602 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2604 #define NFS_MAY_READ (NFS_ACCESS_READ)
2605 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2606 NFS_ACCESS_EXTEND | \
2607 NFS_ACCESS_DELETE)
2608 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2609 NFS_ACCESS_EXTEND)
2610 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2611 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2612 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2613 static int
2614 nfs_access_calc_mask(u32 access_result, umode_t umode)
2616 int mask = 0;
2618 if (access_result & NFS_MAY_READ)
2619 mask |= MAY_READ;
2620 if (S_ISDIR(umode)) {
2621 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2622 mask |= MAY_WRITE;
2623 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2624 mask |= MAY_EXEC;
2625 } else if (S_ISREG(umode)) {
2626 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2627 mask |= MAY_WRITE;
2628 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2629 mask |= MAY_EXEC;
2630 } else if (access_result & NFS_MAY_WRITE)
2631 mask |= MAY_WRITE;
2632 return mask;
2635 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2637 entry->mask = access_result;
2639 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2641 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2643 struct nfs_access_entry cache;
2644 bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2645 int cache_mask = -1;
2646 int status;
2648 trace_nfs_access_enter(inode);
2650 status = nfs_access_get_cached_rcu(inode, cred, &cache);
2651 if (status != 0)
2652 status = nfs_access_get_cached(inode, cred, &cache, may_block);
2653 if (status == 0)
2654 goto out_cached;
2656 status = -ECHILD;
2657 if (!may_block)
2658 goto out;
2661 * Determine which access bits we want to ask for...
2663 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2664 if (S_ISDIR(inode->i_mode))
2665 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2666 else
2667 cache.mask |= NFS_ACCESS_EXECUTE;
2668 cache.cred = cred;
2669 status = NFS_PROTO(inode)->access(inode, &cache);
2670 if (status != 0) {
2671 if (status == -ESTALE) {
2672 if (!S_ISDIR(inode->i_mode))
2673 nfs_set_inode_stale(inode);
2674 else
2675 nfs_zap_caches(inode);
2677 goto out;
2679 nfs_access_add_cache(inode, &cache);
2680 out_cached:
2681 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2682 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2683 status = -EACCES;
2684 out:
2685 trace_nfs_access_exit(inode, mask, cache_mask, status);
2686 return status;
2689 static int nfs_open_permission_mask(int openflags)
2691 int mask = 0;
2693 if (openflags & __FMODE_EXEC) {
2694 /* ONLY check exec rights */
2695 mask = MAY_EXEC;
2696 } else {
2697 if ((openflags & O_ACCMODE) != O_WRONLY)
2698 mask |= MAY_READ;
2699 if ((openflags & O_ACCMODE) != O_RDONLY)
2700 mask |= MAY_WRITE;
2703 return mask;
2706 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2708 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2710 EXPORT_SYMBOL_GPL(nfs_may_open);
2712 static int nfs_execute_ok(struct inode *inode, int mask)
2714 struct nfs_server *server = NFS_SERVER(inode);
2715 int ret = 0;
2717 if (S_ISDIR(inode->i_mode))
2718 return 0;
2719 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2720 if (mask & MAY_NOT_BLOCK)
2721 return -ECHILD;
2722 ret = __nfs_revalidate_inode(server, inode);
2724 if (ret == 0 && !execute_ok(inode))
2725 ret = -EACCES;
2726 return ret;
2729 int nfs_permission(struct inode *inode, int mask)
2731 const struct cred *cred = current_cred();
2732 int res = 0;
2734 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2736 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2737 goto out;
2738 /* Is this sys_access() ? */
2739 if (mask & (MAY_ACCESS | MAY_CHDIR))
2740 goto force_lookup;
2742 switch (inode->i_mode & S_IFMT) {
2743 case S_IFLNK:
2744 goto out;
2745 case S_IFREG:
2746 if ((mask & MAY_OPEN) &&
2747 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2748 return 0;
2749 break;
2750 case S_IFDIR:
2752 * Optimize away all write operations, since the server
2753 * will check permissions when we perform the op.
2755 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2756 goto out;
2759 force_lookup:
2760 if (!NFS_PROTO(inode)->access)
2761 goto out_notsup;
2763 res = nfs_do_access(inode, cred, mask);
2764 out:
2765 if (!res && (mask & MAY_EXEC))
2766 res = nfs_execute_ok(inode, mask);
2768 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2769 inode->i_sb->s_id, inode->i_ino, mask, res);
2770 return res;
2771 out_notsup:
2772 if (mask & MAY_NOT_BLOCK)
2773 return -ECHILD;
2775 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2776 if (res == 0)
2777 res = generic_permission(inode, mask);
2778 goto out;
2780 EXPORT_SYMBOL_GPL(nfs_permission);
2783 * Local variables:
2784 * version-control: t
2785 * kept-new-versions: 5
2786 * End: