1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1992 Rick Sladkey
7 * nfs directory handling functions
9 * 10 Apr 1996 Added silly rename for unlink --okir
10 * 28 Sep 1996 Improved directory cache --okir
11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
12 * Re-implemented silly rename for unlink, newly implemented
13 * silly rename for nfs_rename() following the suggestions
14 * of Olaf Kirch (okir) found in this file.
15 * Following Linus comments on my original hack, this version
16 * depends only on the dcache stuff and doesn't touch the inode
17 * layer (iput() and friends).
18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
21 #include <linux/module.h>
22 #include <linux/time.h>
23 #include <linux/errno.h>
24 #include <linux/stat.h>
25 #include <linux/fcntl.h>
26 #include <linux/string.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
30 #include <linux/sunrpc/clnt.h>
31 #include <linux/nfs_fs.h>
32 #include <linux/nfs_mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/pagevec.h>
35 #include <linux/namei.h>
36 #include <linux/mount.h>
37 #include <linux/swap.h>
38 #include <linux/sched.h>
39 #include <linux/kmemleak.h>
40 #include <linux/xattr.h>
42 #include "delegation.h"
49 /* #define NFS_DEBUG_VERBOSE 1 */
51 static int nfs_opendir(struct inode
*, struct file
*);
52 static int nfs_closedir(struct inode
*, struct file
*);
53 static int nfs_readdir(struct file
*, struct dir_context
*);
54 static int nfs_fsync_dir(struct file
*, loff_t
, loff_t
, int);
55 static loff_t
nfs_llseek_dir(struct file
*, loff_t
, int);
56 static void nfs_readdir_clear_array(struct page
*);
58 const struct file_operations nfs_dir_operations
= {
59 .llseek
= nfs_llseek_dir
,
60 .read
= generic_read_dir
,
61 .iterate_shared
= nfs_readdir
,
63 .release
= nfs_closedir
,
64 .fsync
= nfs_fsync_dir
,
67 const struct address_space_operations nfs_dir_aops
= {
68 .freepage
= nfs_readdir_clear_array
,
71 static struct nfs_open_dir_context
*alloc_nfs_open_dir_context(struct inode
*dir
, const struct cred
*cred
)
73 struct nfs_inode
*nfsi
= NFS_I(dir
);
74 struct nfs_open_dir_context
*ctx
;
75 ctx
= kmalloc(sizeof(*ctx
), GFP_KERNEL
);
78 ctx
->attr_gencount
= nfsi
->attr_gencount
;
81 ctx
->cred
= get_cred(cred
);
82 spin_lock(&dir
->i_lock
);
83 if (list_empty(&nfsi
->open_files
) &&
84 (nfsi
->cache_validity
& NFS_INO_DATA_INVAL_DEFER
))
85 nfsi
->cache_validity
|= NFS_INO_INVALID_DATA
|
87 list_add(&ctx
->list
, &nfsi
->open_files
);
88 spin_unlock(&dir
->i_lock
);
91 return ERR_PTR(-ENOMEM
);
94 static void put_nfs_open_dir_context(struct inode
*dir
, struct nfs_open_dir_context
*ctx
)
96 spin_lock(&dir
->i_lock
);
98 spin_unlock(&dir
->i_lock
);
107 nfs_opendir(struct inode
*inode
, struct file
*filp
)
110 struct nfs_open_dir_context
*ctx
;
112 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp
);
114 nfs_inc_stats(inode
, NFSIOS_VFSOPEN
);
116 ctx
= alloc_nfs_open_dir_context(inode
, current_cred());
121 filp
->private_data
= ctx
;
127 nfs_closedir(struct inode
*inode
, struct file
*filp
)
129 put_nfs_open_dir_context(file_inode(filp
), filp
->private_data
);
133 struct nfs_cache_array_entry
{
137 unsigned char d_type
;
140 struct nfs_cache_array
{
144 struct nfs_cache_array_entry array
[];
150 struct dir_context
*ctx
;
151 unsigned long page_index
;
154 loff_t current_index
;
157 unsigned long dir_verifier
;
158 unsigned long timestamp
;
159 unsigned long gencount
;
160 unsigned int cache_entry_index
;
163 } nfs_readdir_descriptor_t
;
166 void nfs_readdir_init_array(struct page
*page
)
168 struct nfs_cache_array
*array
;
170 array
= kmap_atomic(page
);
171 memset(array
, 0, sizeof(struct nfs_cache_array
));
172 array
->eof_index
= -1;
173 kunmap_atomic(array
);
177 * we are freeing strings created by nfs_add_to_readdir_array()
180 void nfs_readdir_clear_array(struct page
*page
)
182 struct nfs_cache_array
*array
;
185 array
= kmap_atomic(page
);
186 for (i
= 0; i
< array
->size
; i
++)
187 kfree(array
->array
[i
].string
.name
);
189 kunmap_atomic(array
);
193 * the caller is responsible for freeing qstr.name
194 * when called by nfs_readdir_add_to_array, the strings will be freed in
195 * nfs_clear_readdir_array()
198 int nfs_readdir_make_qstr(struct qstr
*string
, const char *name
, unsigned int len
)
201 string
->name
= kmemdup_nul(name
, len
, GFP_KERNEL
);
202 if (string
->name
== NULL
)
205 * Avoid a kmemleak false positive. The pointer to the name is stored
206 * in a page cache page which kmemleak does not scan.
208 kmemleak_not_leak(string
->name
);
209 string
->hash
= full_name_hash(NULL
, name
, len
);
214 int nfs_readdir_add_to_array(struct nfs_entry
*entry
, struct page
*page
)
216 struct nfs_cache_array
*array
= kmap(page
);
217 struct nfs_cache_array_entry
*cache_entry
;
220 cache_entry
= &array
->array
[array
->size
];
222 /* Check that this entry lies within the page bounds */
224 if ((char *)&cache_entry
[1] - (char *)page_address(page
) > PAGE_SIZE
)
227 cache_entry
->cookie
= entry
->prev_cookie
;
228 cache_entry
->ino
= entry
->ino
;
229 cache_entry
->d_type
= entry
->d_type
;
230 ret
= nfs_readdir_make_qstr(&cache_entry
->string
, entry
->name
, entry
->len
);
233 array
->last_cookie
= entry
->cookie
;
236 array
->eof_index
= array
->size
;
243 int is_32bit_api(void)
246 return in_compat_syscall();
248 return (BITS_PER_LONG
== 32);
253 bool nfs_readdir_use_cookie(const struct file
*filp
)
255 if ((filp
->f_mode
& FMODE_32BITHASH
) ||
256 (!(filp
->f_mode
& FMODE_64BITHASH
) && is_32bit_api()))
262 int nfs_readdir_search_for_pos(struct nfs_cache_array
*array
, nfs_readdir_descriptor_t
*desc
)
264 loff_t diff
= desc
->ctx
->pos
- desc
->current_index
;
269 if (diff
>= array
->size
) {
270 if (array
->eof_index
>= 0)
275 index
= (unsigned int)diff
;
276 *desc
->dir_cookie
= array
->array
[index
].cookie
;
277 desc
->cache_entry_index
= index
;
285 nfs_readdir_inode_mapping_valid(struct nfs_inode
*nfsi
)
287 if (nfsi
->cache_validity
& (NFS_INO_INVALID_ATTR
|NFS_INO_INVALID_DATA
))
290 return !test_bit(NFS_INO_INVALIDATING
, &nfsi
->flags
);
294 int nfs_readdir_search_for_cookie(struct nfs_cache_array
*array
, nfs_readdir_descriptor_t
*desc
)
298 int status
= -EAGAIN
;
300 for (i
= 0; i
< array
->size
; i
++) {
301 if (array
->array
[i
].cookie
== *desc
->dir_cookie
) {
302 struct nfs_inode
*nfsi
= NFS_I(file_inode(desc
->file
));
303 struct nfs_open_dir_context
*ctx
= desc
->file
->private_data
;
305 new_pos
= desc
->current_index
+ i
;
306 if (ctx
->attr_gencount
!= nfsi
->attr_gencount
||
307 !nfs_readdir_inode_mapping_valid(nfsi
)) {
309 ctx
->attr_gencount
= nfsi
->attr_gencount
;
310 } else if (new_pos
< desc
->prev_index
) {
312 && ctx
->dup_cookie
== *desc
->dir_cookie
) {
313 if (printk_ratelimit()) {
314 pr_notice("NFS: directory %pD2 contains a readdir loop."
315 "Please contact your server vendor. "
316 "The file: %.*s has duplicate cookie %llu\n",
317 desc
->file
, array
->array
[i
].string
.len
,
318 array
->array
[i
].string
.name
, *desc
->dir_cookie
);
323 ctx
->dup_cookie
= *desc
->dir_cookie
;
326 if (nfs_readdir_use_cookie(desc
->file
))
327 desc
->ctx
->pos
= *desc
->dir_cookie
;
329 desc
->ctx
->pos
= new_pos
;
330 desc
->prev_index
= new_pos
;
331 desc
->cache_entry_index
= i
;
335 if (array
->eof_index
>= 0) {
336 status
= -EBADCOOKIE
;
337 if (*desc
->dir_cookie
== array
->last_cookie
)
345 int nfs_readdir_search_array(nfs_readdir_descriptor_t
*desc
)
347 struct nfs_cache_array
*array
;
350 array
= kmap(desc
->page
);
352 if (*desc
->dir_cookie
== 0)
353 status
= nfs_readdir_search_for_pos(array
, desc
);
355 status
= nfs_readdir_search_for_cookie(array
, desc
);
357 if (status
== -EAGAIN
) {
358 desc
->last_cookie
= array
->last_cookie
;
359 desc
->current_index
+= array
->size
;
366 /* Fill a page with xdr information before transferring to the cache page */
368 int nfs_readdir_xdr_filler(struct page
**pages
, nfs_readdir_descriptor_t
*desc
,
369 struct nfs_entry
*entry
, struct file
*file
, struct inode
*inode
)
371 struct nfs_open_dir_context
*ctx
= file
->private_data
;
372 const struct cred
*cred
= ctx
->cred
;
373 unsigned long timestamp
, gencount
;
378 gencount
= nfs_inc_attr_generation_counter();
379 desc
->dir_verifier
= nfs_save_change_attribute(inode
);
380 error
= NFS_PROTO(inode
)->readdir(file_dentry(file
), cred
, entry
->cookie
, pages
,
381 NFS_SERVER(inode
)->dtsize
, desc
->plus
);
383 /* We requested READDIRPLUS, but the server doesn't grok it */
384 if (error
== -ENOTSUPP
&& desc
->plus
) {
385 NFS_SERVER(inode
)->caps
&= ~NFS_CAP_READDIRPLUS
;
386 clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(inode
)->flags
);
392 desc
->timestamp
= timestamp
;
393 desc
->gencount
= gencount
;
398 static int xdr_decode(nfs_readdir_descriptor_t
*desc
,
399 struct nfs_entry
*entry
, struct xdr_stream
*xdr
)
401 struct inode
*inode
= file_inode(desc
->file
);
404 error
= NFS_PROTO(inode
)->decode_dirent(xdr
, entry
, desc
->plus
);
407 entry
->fattr
->time_start
= desc
->timestamp
;
408 entry
->fattr
->gencount
= desc
->gencount
;
412 /* Match file and dirent using either filehandle or fileid
413 * Note: caller is responsible for checking the fsid
416 int nfs_same_file(struct dentry
*dentry
, struct nfs_entry
*entry
)
419 struct nfs_inode
*nfsi
;
421 if (d_really_is_negative(dentry
))
424 inode
= d_inode(dentry
);
425 if (is_bad_inode(inode
) || NFS_STALE(inode
))
429 if (entry
->fattr
->fileid
!= nfsi
->fileid
)
431 if (entry
->fh
->size
&& nfs_compare_fh(entry
->fh
, &nfsi
->fh
) != 0)
437 bool nfs_use_readdirplus(struct inode
*dir
, struct dir_context
*ctx
)
439 if (!nfs_server_capable(dir
, NFS_CAP_READDIRPLUS
))
441 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(dir
)->flags
))
449 * This function is called by the lookup and getattr code to request the
450 * use of readdirplus to accelerate any future lookups in the same
453 void nfs_advise_use_readdirplus(struct inode
*dir
)
455 struct nfs_inode
*nfsi
= NFS_I(dir
);
457 if (nfs_server_capable(dir
, NFS_CAP_READDIRPLUS
) &&
458 !list_empty(&nfsi
->open_files
))
459 set_bit(NFS_INO_ADVISE_RDPLUS
, &nfsi
->flags
);
463 * This function is mainly for use by nfs_getattr().
465 * If this is an 'ls -l', we want to force use of readdirplus.
466 * Do this by checking if there is an active file descriptor
467 * and calling nfs_advise_use_readdirplus, then forcing a
470 void nfs_force_use_readdirplus(struct inode
*dir
)
472 struct nfs_inode
*nfsi
= NFS_I(dir
);
474 if (nfs_server_capable(dir
, NFS_CAP_READDIRPLUS
) &&
475 !list_empty(&nfsi
->open_files
)) {
476 set_bit(NFS_INO_ADVISE_RDPLUS
, &nfsi
->flags
);
477 invalidate_mapping_pages(dir
->i_mapping
,
478 nfsi
->page_index
+ 1, -1);
483 void nfs_prime_dcache(struct dentry
*parent
, struct nfs_entry
*entry
,
484 unsigned long dir_verifier
)
486 struct qstr filename
= QSTR_INIT(entry
->name
, entry
->len
);
487 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq
);
488 struct dentry
*dentry
;
489 struct dentry
*alias
;
493 if (!(entry
->fattr
->valid
& NFS_ATTR_FATTR_FILEID
))
495 if (!(entry
->fattr
->valid
& NFS_ATTR_FATTR_FSID
))
497 if (filename
.len
== 0)
499 /* Validate that the name doesn't contain any illegal '\0' */
500 if (strnlen(filename
.name
, filename
.len
) != filename
.len
)
503 if (strnchr(filename
.name
, filename
.len
, '/'))
505 if (filename
.name
[0] == '.') {
506 if (filename
.len
== 1)
508 if (filename
.len
== 2 && filename
.name
[1] == '.')
511 filename
.hash
= full_name_hash(parent
, filename
.name
, filename
.len
);
513 dentry
= d_lookup(parent
, &filename
);
516 dentry
= d_alloc_parallel(parent
, &filename
, &wq
);
520 if (!d_in_lookup(dentry
)) {
521 /* Is there a mountpoint here? If so, just exit */
522 if (!nfs_fsid_equal(&NFS_SB(dentry
->d_sb
)->fsid
,
523 &entry
->fattr
->fsid
))
525 if (nfs_same_file(dentry
, entry
)) {
526 if (!entry
->fh
->size
)
528 nfs_set_verifier(dentry
, dir_verifier
);
529 status
= nfs_refresh_inode(d_inode(dentry
), entry
->fattr
);
531 nfs_setsecurity(d_inode(dentry
), entry
->fattr
, entry
->label
);
534 d_invalidate(dentry
);
540 if (!entry
->fh
->size
) {
541 d_lookup_done(dentry
);
545 inode
= nfs_fhget(dentry
->d_sb
, entry
->fh
, entry
->fattr
, entry
->label
);
546 alias
= d_splice_alias(inode
, dentry
);
547 d_lookup_done(dentry
);
554 nfs_set_verifier(dentry
, dir_verifier
);
559 /* Perform conversion from xdr to cache array */
561 int nfs_readdir_page_filler(nfs_readdir_descriptor_t
*desc
, struct nfs_entry
*entry
,
562 struct page
**xdr_pages
, struct page
*page
, unsigned int buflen
)
564 struct xdr_stream stream
;
566 struct page
*scratch
;
567 struct nfs_cache_array
*array
;
568 unsigned int count
= 0;
571 scratch
= alloc_page(GFP_KERNEL
);
578 xdr_init_decode_pages(&stream
, &buf
, xdr_pages
, buflen
);
579 xdr_set_scratch_buffer(&stream
, page_address(scratch
), PAGE_SIZE
);
582 status
= xdr_decode(desc
, entry
, &stream
);
584 if (status
== -EAGAIN
)
592 nfs_prime_dcache(file_dentry(desc
->file
), entry
,
595 status
= nfs_readdir_add_to_array(entry
, page
);
598 } while (!entry
->eof
);
601 if (count
== 0 || (status
== -EBADCOOKIE
&& entry
->eof
!= 0)) {
603 array
->eof_index
= array
->size
;
613 void nfs_readdir_free_pages(struct page
**pages
, unsigned int npages
)
616 for (i
= 0; i
< npages
; i
++)
621 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
622 * to nfs_readdir_free_pages()
625 int nfs_readdir_alloc_pages(struct page
**pages
, unsigned int npages
)
629 for (i
= 0; i
< npages
; i
++) {
630 struct page
*page
= alloc_page(GFP_KERNEL
);
638 nfs_readdir_free_pages(pages
, i
);
643 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t
*desc
, struct page
*page
, struct inode
*inode
)
645 struct page
*pages
[NFS_MAX_READDIR_PAGES
];
646 struct nfs_entry entry
;
647 struct file
*file
= desc
->file
;
648 struct nfs_cache_array
*array
;
649 int status
= -ENOMEM
;
650 unsigned int array_size
= ARRAY_SIZE(pages
);
652 nfs_readdir_init_array(page
);
654 entry
.prev_cookie
= 0;
655 entry
.cookie
= desc
->last_cookie
;
657 entry
.fh
= nfs_alloc_fhandle();
658 entry
.fattr
= nfs_alloc_fattr();
659 entry
.server
= NFS_SERVER(inode
);
660 if (entry
.fh
== NULL
|| entry
.fattr
== NULL
)
663 entry
.label
= nfs4_label_alloc(NFS_SERVER(inode
), GFP_NOWAIT
);
664 if (IS_ERR(entry
.label
)) {
665 status
= PTR_ERR(entry
.label
);
671 status
= nfs_readdir_alloc_pages(pages
, array_size
);
673 goto out_release_array
;
676 status
= nfs_readdir_xdr_filler(pages
, desc
, &entry
, file
, inode
);
681 status
= nfs_readdir_page_filler(desc
, &entry
, pages
, page
, pglen
);
683 if (status
== -ENOSPC
)
687 } while (array
->eof_index
< 0);
689 nfs_readdir_free_pages(pages
, array_size
);
692 nfs4_label_free(entry
.label
);
694 nfs_free_fattr(entry
.fattr
);
695 nfs_free_fhandle(entry
.fh
);
700 * Now we cache directories properly, by converting xdr information
701 * to an array that can be used for lookups later. This results in
702 * fewer cache pages, since we can store more information on each page.
703 * We only need to convert from xdr once so future lookups are much simpler
706 int nfs_readdir_filler(void *data
, struct page
* page
)
708 nfs_readdir_descriptor_t
*desc
= data
;
709 struct inode
*inode
= file_inode(desc
->file
);
712 ret
= nfs_readdir_xdr_to_array(desc
, page
, inode
);
715 SetPageUptodate(page
);
717 if (invalidate_inode_pages2_range(inode
->i_mapping
, page
->index
+ 1, -1) < 0) {
718 /* Should never happen */
719 nfs_zap_mapping(inode
, inode
->i_mapping
);
724 nfs_readdir_clear_array(page
);
730 void cache_page_release(nfs_readdir_descriptor_t
*desc
)
732 put_page(desc
->page
);
737 struct page
*get_cache_page(nfs_readdir_descriptor_t
*desc
)
739 return read_cache_page(desc
->file
->f_mapping
, desc
->page_index
,
740 nfs_readdir_filler
, desc
);
744 * Returns 0 if desc->dir_cookie was found on page desc->page_index
745 * and locks the page to prevent removal from the page cache.
748 int find_and_lock_cache_page(nfs_readdir_descriptor_t
*desc
)
750 struct inode
*inode
= file_inode(desc
->file
);
751 struct nfs_inode
*nfsi
= NFS_I(inode
);
754 desc
->page
= get_cache_page(desc
);
755 if (IS_ERR(desc
->page
))
756 return PTR_ERR(desc
->page
);
757 res
= lock_page_killable(desc
->page
);
761 if (desc
->page
->mapping
!= NULL
) {
762 res
= nfs_readdir_search_array(desc
);
764 nfsi
->page_index
= desc
->page_index
;
768 unlock_page(desc
->page
);
770 cache_page_release(desc
);
774 /* Search for desc->dir_cookie from the beginning of the page cache */
776 int readdir_search_pagecache(nfs_readdir_descriptor_t
*desc
)
780 if (desc
->page_index
== 0) {
781 desc
->current_index
= 0;
782 desc
->prev_index
= 0;
783 desc
->last_cookie
= 0;
786 res
= find_and_lock_cache_page(desc
);
787 } while (res
== -EAGAIN
);
792 * Once we've found the start of the dirent within a page: fill 'er up...
795 int nfs_do_filldir(nfs_readdir_descriptor_t
*desc
)
797 struct file
*file
= desc
->file
;
800 struct nfs_cache_array
*array
= NULL
;
801 struct nfs_open_dir_context
*ctx
= file
->private_data
;
803 array
= kmap(desc
->page
);
804 for (i
= desc
->cache_entry_index
; i
< array
->size
; i
++) {
805 struct nfs_cache_array_entry
*ent
;
807 ent
= &array
->array
[i
];
808 if (!dir_emit(desc
->ctx
, ent
->string
.name
, ent
->string
.len
,
809 nfs_compat_user_ino64(ent
->ino
), ent
->d_type
)) {
813 if (i
< (array
->size
-1))
814 *desc
->dir_cookie
= array
->array
[i
+1].cookie
;
816 *desc
->dir_cookie
= array
->last_cookie
;
817 if (nfs_readdir_use_cookie(file
))
818 desc
->ctx
->pos
= *desc
->dir_cookie
;
824 if (array
->eof_index
>= 0)
828 dfprintk(DIRCACHE
, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
829 (unsigned long long)*desc
->dir_cookie
, res
);
834 * If we cannot find a cookie in our cache, we suspect that this is
835 * because it points to a deleted file, so we ask the server to return
836 * whatever it thinks is the next entry. We then feed this to filldir.
837 * If all goes well, we should then be able to find our way round the
838 * cache on the next call to readdir_search_pagecache();
840 * NOTE: we cannot add the anonymous page to the pagecache because
841 * the data it contains might not be page aligned. Besides,
842 * we should already have a complete representation of the
843 * directory in the page cache by the time we get here.
846 int uncached_readdir(nfs_readdir_descriptor_t
*desc
)
848 struct page
*page
= NULL
;
850 struct inode
*inode
= file_inode(desc
->file
);
851 struct nfs_open_dir_context
*ctx
= desc
->file
->private_data
;
853 dfprintk(DIRCACHE
, "NFS: uncached_readdir() searching for cookie %Lu\n",
854 (unsigned long long)*desc
->dir_cookie
);
856 page
= alloc_page(GFP_HIGHUSER
);
862 desc
->page_index
= 0;
863 desc
->last_cookie
= *desc
->dir_cookie
;
867 status
= nfs_readdir_xdr_to_array(desc
, page
, inode
);
871 status
= nfs_do_filldir(desc
);
874 nfs_readdir_clear_array(desc
->page
);
875 cache_page_release(desc
);
877 dfprintk(DIRCACHE
, "NFS: %s: returns %d\n",
882 /* The file offset position represents the dirent entry number. A
883 last cookie cache takes care of the common case of reading the
886 static int nfs_readdir(struct file
*file
, struct dir_context
*ctx
)
888 struct dentry
*dentry
= file_dentry(file
);
889 struct inode
*inode
= d_inode(dentry
);
890 struct nfs_open_dir_context
*dir_ctx
= file
->private_data
;
891 nfs_readdir_descriptor_t my_desc
= {
894 .dir_cookie
= &dir_ctx
->dir_cookie
,
895 .plus
= nfs_use_readdirplus(inode
, ctx
),
900 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
901 file
, (long long)ctx
->pos
);
902 nfs_inc_stats(inode
, NFSIOS_VFSGETDENTS
);
905 * ctx->pos points to the dirent entry number.
906 * *desc->dir_cookie has the cookie for the next entry. We have
907 * to either find the entry with the appropriate number or
908 * revalidate the cookie.
910 if (ctx
->pos
== 0 || nfs_attribute_cache_expired(inode
))
911 res
= nfs_revalidate_mapping(inode
, file
->f_mapping
);
916 res
= readdir_search_pagecache(desc
);
918 if (res
== -EBADCOOKIE
) {
920 /* This means either end of directory */
921 if (*desc
->dir_cookie
&& !desc
->eof
) {
922 /* Or that the server has 'lost' a cookie */
923 res
= uncached_readdir(desc
);
929 if (res
== -ETOOSMALL
&& desc
->plus
) {
930 clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(inode
)->flags
);
931 nfs_zap_caches(inode
);
932 desc
->page_index
= 0;
940 res
= nfs_do_filldir(desc
);
941 unlock_page(desc
->page
);
942 cache_page_release(desc
);
945 } while (!desc
->eof
);
949 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file
, res
);
953 static loff_t
nfs_llseek_dir(struct file
*filp
, loff_t offset
, int whence
)
955 struct inode
*inode
= file_inode(filp
);
956 struct nfs_open_dir_context
*dir_ctx
= filp
->private_data
;
958 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
959 filp
, offset
, whence
);
973 offset
+= filp
->f_pos
;
979 if (offset
!= filp
->f_pos
) {
980 filp
->f_pos
= offset
;
981 if (nfs_readdir_use_cookie(filp
))
982 dir_ctx
->dir_cookie
= offset
;
984 dir_ctx
->dir_cookie
= 0;
992 * All directory operations under NFS are synchronous, so fsync()
993 * is a dummy operation.
995 static int nfs_fsync_dir(struct file
*filp
, loff_t start
, loff_t end
,
998 struct inode
*inode
= file_inode(filp
);
1000 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp
, datasync
);
1003 nfs_inc_stats(inode
, NFSIOS_VFSFSYNC
);
1004 inode_unlock(inode
);
1009 * nfs_force_lookup_revalidate - Mark the directory as having changed
1010 * @dir: pointer to directory inode
1012 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1013 * full lookup on all child dentries of 'dir' whenever a change occurs
1014 * on the server that might have invalidated our dcache.
1016 * Note that we reserve bit '0' as a tag to let us know when a dentry
1017 * was revalidated while holding a delegation on its inode.
1019 * The caller should be holding dir->i_lock
1021 void nfs_force_lookup_revalidate(struct inode
*dir
)
1023 NFS_I(dir
)->cache_change_attribute
+= 2;
1025 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate
);
1028 * nfs_verify_change_attribute - Detects NFS remote directory changes
1029 * @dir: pointer to parent directory inode
1030 * @verf: previously saved change attribute
1032 * Return "false" if the verifiers doesn't match the change attribute.
1033 * This would usually indicate that the directory contents have changed on
1034 * the server, and that any dentries need revalidating.
1036 static bool nfs_verify_change_attribute(struct inode
*dir
, unsigned long verf
)
1038 return (verf
& ~1UL) == nfs_save_change_attribute(dir
);
1041 static void nfs_set_verifier_delegated(unsigned long *verf
)
1046 #if IS_ENABLED(CONFIG_NFS_V4)
1047 static void nfs_unset_verifier_delegated(unsigned long *verf
)
1051 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1053 static bool nfs_test_verifier_delegated(unsigned long verf
)
1058 static bool nfs_verifier_is_delegated(struct dentry
*dentry
)
1060 return nfs_test_verifier_delegated(dentry
->d_time
);
1063 static void nfs_set_verifier_locked(struct dentry
*dentry
, unsigned long verf
)
1065 struct inode
*inode
= d_inode(dentry
);
1067 if (!nfs_verifier_is_delegated(dentry
) &&
1068 !nfs_verify_change_attribute(d_inode(dentry
->d_parent
), verf
))
1070 if (inode
&& NFS_PROTO(inode
)->have_delegation(inode
, FMODE_READ
))
1071 nfs_set_verifier_delegated(&verf
);
1073 dentry
->d_time
= verf
;
1077 * nfs_set_verifier - save a parent directory verifier in the dentry
1078 * @dentry: pointer to dentry
1079 * @verf: verifier to save
1081 * Saves the parent directory verifier in @dentry. If the inode has
1082 * a delegation, we also tag the dentry as having been revalidated
1083 * while holding a delegation so that we know we don't have to
1084 * look it up again after a directory change.
1086 void nfs_set_verifier(struct dentry
*dentry
, unsigned long verf
)
1089 spin_lock(&dentry
->d_lock
);
1090 nfs_set_verifier_locked(dentry
, verf
);
1091 spin_unlock(&dentry
->d_lock
);
1093 EXPORT_SYMBOL_GPL(nfs_set_verifier
);
1095 #if IS_ENABLED(CONFIG_NFS_V4)
1097 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1098 * @inode: pointer to inode
1100 * Iterates through the dentries in the inode alias list and clears
1101 * the tag used to indicate that the dentry has been revalidated
1102 * while holding a delegation.
1103 * This function is intended for use when the delegation is being
1104 * returned or revoked.
1106 void nfs_clear_verifier_delegated(struct inode
*inode
)
1108 struct dentry
*alias
;
1112 spin_lock(&inode
->i_lock
);
1113 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_u
.d_alias
) {
1114 spin_lock(&alias
->d_lock
);
1115 nfs_unset_verifier_delegated(&alias
->d_time
);
1116 spin_unlock(&alias
->d_lock
);
1118 spin_unlock(&inode
->i_lock
);
1120 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated
);
1121 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1124 * A check for whether or not the parent directory has changed.
1125 * In the case it has, we assume that the dentries are untrustworthy
1126 * and may need to be looked up again.
1127 * If rcu_walk prevents us from performing a full check, return 0.
1129 static int nfs_check_verifier(struct inode
*dir
, struct dentry
*dentry
,
1132 if (IS_ROOT(dentry
))
1134 if (NFS_SERVER(dir
)->flags
& NFS_MOUNT_LOOKUP_CACHE_NONE
)
1136 if (!nfs_verify_change_attribute(dir
, dentry
->d_time
))
1138 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1139 if (nfs_mapping_need_revalidate_inode(dir
)) {
1142 if (__nfs_revalidate_inode(NFS_SERVER(dir
), dir
) < 0)
1145 if (!nfs_verify_change_attribute(dir
, dentry
->d_time
))
1151 * Use intent information to check whether or not we're going to do
1152 * an O_EXCL create using this path component.
1154 static int nfs_is_exclusive_create(struct inode
*dir
, unsigned int flags
)
1156 if (NFS_PROTO(dir
)->version
== 2)
1158 return flags
& LOOKUP_EXCL
;
1162 * Inode and filehandle revalidation for lookups.
1164 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1165 * or if the intent information indicates that we're about to open this
1166 * particular file and the "nocto" mount flag is not set.
1170 int nfs_lookup_verify_inode(struct inode
*inode
, unsigned int flags
)
1172 struct nfs_server
*server
= NFS_SERVER(inode
);
1175 if (IS_AUTOMOUNT(inode
))
1178 if (flags
& LOOKUP_OPEN
) {
1179 switch (inode
->i_mode
& S_IFMT
) {
1181 /* A NFSv4 OPEN will revalidate later */
1182 if (server
->caps
& NFS_CAP_ATOMIC_OPEN
)
1186 if (server
->flags
& NFS_MOUNT_NOCTO
)
1188 /* NFS close-to-open cache consistency validation */
1193 /* VFS wants an on-the-wire revalidation */
1194 if (flags
& LOOKUP_REVAL
)
1197 return (inode
->i_nlink
== 0) ? -ESTALE
: 0;
1199 if (flags
& LOOKUP_RCU
)
1201 ret
= __nfs_revalidate_inode(server
, inode
);
1208 * We judge how long we want to trust negative
1209 * dentries by looking at the parent inode mtime.
1211 * If parent mtime has changed, we revalidate, else we wait for a
1212 * period corresponding to the parent's attribute cache timeout value.
1214 * If LOOKUP_RCU prevents us from performing a full check, return 1
1215 * suggesting a reval is needed.
1217 * Note that when creating a new file, or looking up a rename target,
1218 * then it shouldn't be necessary to revalidate a negative dentry.
1221 int nfs_neg_need_reval(struct inode
*dir
, struct dentry
*dentry
,
1224 if (flags
& (LOOKUP_CREATE
| LOOKUP_RENAME_TARGET
))
1226 if (NFS_SERVER(dir
)->flags
& NFS_MOUNT_LOOKUP_CACHE_NONEG
)
1228 return !nfs_check_verifier(dir
, dentry
, flags
& LOOKUP_RCU
);
1232 nfs_lookup_revalidate_done(struct inode
*dir
, struct dentry
*dentry
,
1233 struct inode
*inode
, int error
)
1237 dfprintk(LOOKUPCACHE
, "NFS: %s(%pd2) is valid\n",
1241 nfs_mark_for_revalidate(dir
);
1242 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1243 /* Purge readdir caches. */
1244 nfs_zap_caches(inode
);
1246 * We can't d_drop the root of a disconnected tree:
1247 * its d_hash is on the s_anon list and d_drop() would hide
1248 * it from shrink_dcache_for_unmount(), leading to busy
1249 * inodes on unmount and further oopses.
1251 if (IS_ROOT(dentry
))
1254 dfprintk(LOOKUPCACHE
, "NFS: %s(%pd2) is invalid\n",
1258 dfprintk(LOOKUPCACHE
, "NFS: %s(%pd2) lookup returned error %d\n",
1259 __func__
, dentry
, error
);
1264 nfs_lookup_revalidate_negative(struct inode
*dir
, struct dentry
*dentry
,
1268 if (nfs_neg_need_reval(dir
, dentry
, flags
)) {
1269 if (flags
& LOOKUP_RCU
)
1273 return nfs_lookup_revalidate_done(dir
, dentry
, NULL
, ret
);
1277 nfs_lookup_revalidate_delegated(struct inode
*dir
, struct dentry
*dentry
,
1278 struct inode
*inode
)
1280 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1281 return nfs_lookup_revalidate_done(dir
, dentry
, inode
, 1);
1285 nfs_lookup_revalidate_dentry(struct inode
*dir
, struct dentry
*dentry
,
1286 struct inode
*inode
)
1288 struct nfs_fh
*fhandle
;
1289 struct nfs_fattr
*fattr
;
1290 struct nfs4_label
*label
;
1291 unsigned long dir_verifier
;
1295 fhandle
= nfs_alloc_fhandle();
1296 fattr
= nfs_alloc_fattr();
1297 label
= nfs4_label_alloc(NFS_SERVER(inode
), GFP_KERNEL
);
1298 if (fhandle
== NULL
|| fattr
== NULL
|| IS_ERR(label
))
1301 dir_verifier
= nfs_save_change_attribute(dir
);
1302 ret
= NFS_PROTO(dir
)->lookup(dir
, dentry
, fhandle
, fattr
, label
);
1310 if (NFS_SERVER(inode
)->flags
& NFS_MOUNT_SOFTREVAL
)
1316 if (nfs_compare_fh(NFS_FH(inode
), fhandle
))
1318 if (nfs_refresh_inode(inode
, fattr
) < 0)
1321 nfs_setsecurity(inode
, fattr
, label
);
1322 nfs_set_verifier(dentry
, dir_verifier
);
1324 /* set a readdirplus hint that we had a cache miss */
1325 nfs_force_use_readdirplus(dir
);
1328 nfs_free_fattr(fattr
);
1329 nfs_free_fhandle(fhandle
);
1330 nfs4_label_free(label
);
1331 return nfs_lookup_revalidate_done(dir
, dentry
, inode
, ret
);
1335 * This is called every time the dcache has a lookup hit,
1336 * and we should check whether we can really trust that
1339 * NOTE! The hit can be a negative hit too, don't assume
1342 * If the parent directory is seen to have changed, we throw out the
1343 * cached dentry and do a new lookup.
1346 nfs_do_lookup_revalidate(struct inode
*dir
, struct dentry
*dentry
,
1349 struct inode
*inode
;
1352 nfs_inc_stats(dir
, NFSIOS_DENTRYREVALIDATE
);
1353 inode
= d_inode(dentry
);
1356 return nfs_lookup_revalidate_negative(dir
, dentry
, flags
);
1358 if (is_bad_inode(inode
)) {
1359 dfprintk(LOOKUPCACHE
, "%s: %pd2 has dud inode\n",
1364 if (nfs_verifier_is_delegated(dentry
))
1365 return nfs_lookup_revalidate_delegated(dir
, dentry
, inode
);
1367 /* Force a full look up iff the parent directory has changed */
1368 if (!(flags
& (LOOKUP_EXCL
| LOOKUP_REVAL
)) &&
1369 nfs_check_verifier(dir
, dentry
, flags
& LOOKUP_RCU
)) {
1370 error
= nfs_lookup_verify_inode(inode
, flags
);
1372 if (error
== -ESTALE
)
1373 nfs_zap_caches(dir
);
1376 nfs_advise_use_readdirplus(dir
);
1380 if (flags
& LOOKUP_RCU
)
1383 if (NFS_STALE(inode
))
1386 trace_nfs_lookup_revalidate_enter(dir
, dentry
, flags
);
1387 error
= nfs_lookup_revalidate_dentry(dir
, dentry
, inode
);
1388 trace_nfs_lookup_revalidate_exit(dir
, dentry
, flags
, error
);
1391 return nfs_lookup_revalidate_done(dir
, dentry
, inode
, 1);
1393 if (flags
& LOOKUP_RCU
)
1395 return nfs_lookup_revalidate_done(dir
, dentry
, inode
, 0);
1399 __nfs_lookup_revalidate(struct dentry
*dentry
, unsigned int flags
,
1400 int (*reval
)(struct inode
*, struct dentry
*, unsigned int))
1402 struct dentry
*parent
;
1406 if (flags
& LOOKUP_RCU
) {
1407 parent
= READ_ONCE(dentry
->d_parent
);
1408 dir
= d_inode_rcu(parent
);
1411 ret
= reval(dir
, dentry
, flags
);
1412 if (parent
!= READ_ONCE(dentry
->d_parent
))
1415 parent
= dget_parent(dentry
);
1416 ret
= reval(d_inode(parent
), dentry
, flags
);
1422 static int nfs_lookup_revalidate(struct dentry
*dentry
, unsigned int flags
)
1424 return __nfs_lookup_revalidate(dentry
, flags
, nfs_do_lookup_revalidate
);
1428 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1429 * when we don't really care about the dentry name. This is called when a
1430 * pathwalk ends on a dentry that was not found via a normal lookup in the
1431 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1433 * In this situation, we just want to verify that the inode itself is OK
1434 * since the dentry might have changed on the server.
1436 static int nfs_weak_revalidate(struct dentry
*dentry
, unsigned int flags
)
1438 struct inode
*inode
= d_inode(dentry
);
1442 * I believe we can only get a negative dentry here in the case of a
1443 * procfs-style symlink. Just assume it's correct for now, but we may
1444 * eventually need to do something more here.
1447 dfprintk(LOOKUPCACHE
, "%s: %pd2 has negative inode\n",
1452 if (is_bad_inode(inode
)) {
1453 dfprintk(LOOKUPCACHE
, "%s: %pd2 has dud inode\n",
1458 error
= nfs_lookup_verify_inode(inode
, flags
);
1459 dfprintk(LOOKUPCACHE
, "NFS: %s: inode %lu is %s\n",
1460 __func__
, inode
->i_ino
, error
? "invalid" : "valid");
1465 * This is called from dput() when d_count is going to 0.
1467 static int nfs_dentry_delete(const struct dentry
*dentry
)
1469 dfprintk(VFS
, "NFS: dentry_delete(%pd2, %x)\n",
1470 dentry
, dentry
->d_flags
);
1472 /* Unhash any dentry with a stale inode */
1473 if (d_really_is_positive(dentry
) && NFS_STALE(d_inode(dentry
)))
1476 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
1477 /* Unhash it, so that ->d_iput() would be called */
1480 if (!(dentry
->d_sb
->s_flags
& SB_ACTIVE
)) {
1481 /* Unhash it, so that ancestors of killed async unlink
1482 * files will be cleaned up during umount */
1489 /* Ensure that we revalidate inode->i_nlink */
1490 static void nfs_drop_nlink(struct inode
*inode
)
1492 spin_lock(&inode
->i_lock
);
1493 /* drop the inode if we're reasonably sure this is the last link */
1494 if (inode
->i_nlink
> 0)
1496 NFS_I(inode
)->attr_gencount
= nfs_inc_attr_generation_counter();
1497 NFS_I(inode
)->cache_validity
|= NFS_INO_INVALID_CHANGE
1498 | NFS_INO_INVALID_CTIME
1499 | NFS_INO_INVALID_OTHER
1500 | NFS_INO_REVAL_FORCED
;
1501 spin_unlock(&inode
->i_lock
);
1505 * Called when the dentry loses inode.
1506 * We use it to clean up silly-renamed files.
1508 static void nfs_dentry_iput(struct dentry
*dentry
, struct inode
*inode
)
1510 if (S_ISDIR(inode
->i_mode
))
1511 /* drop any readdir cache as it could easily be old */
1512 NFS_I(inode
)->cache_validity
|= NFS_INO_INVALID_DATA
;
1514 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
1515 nfs_complete_unlink(dentry
, inode
);
1516 nfs_drop_nlink(inode
);
1521 static void nfs_d_release(struct dentry
*dentry
)
1523 /* free cached devname value, if it survived that far */
1524 if (unlikely(dentry
->d_fsdata
)) {
1525 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
)
1528 kfree(dentry
->d_fsdata
);
1532 const struct dentry_operations nfs_dentry_operations
= {
1533 .d_revalidate
= nfs_lookup_revalidate
,
1534 .d_weak_revalidate
= nfs_weak_revalidate
,
1535 .d_delete
= nfs_dentry_delete
,
1536 .d_iput
= nfs_dentry_iput
,
1537 .d_automount
= nfs_d_automount
,
1538 .d_release
= nfs_d_release
,
1540 EXPORT_SYMBOL_GPL(nfs_dentry_operations
);
1542 struct dentry
*nfs_lookup(struct inode
*dir
, struct dentry
* dentry
, unsigned int flags
)
1545 struct inode
*inode
= NULL
;
1546 struct nfs_fh
*fhandle
= NULL
;
1547 struct nfs_fattr
*fattr
= NULL
;
1548 struct nfs4_label
*label
= NULL
;
1549 unsigned long dir_verifier
;
1552 dfprintk(VFS
, "NFS: lookup(%pd2)\n", dentry
);
1553 nfs_inc_stats(dir
, NFSIOS_VFSLOOKUP
);
1555 if (unlikely(dentry
->d_name
.len
> NFS_SERVER(dir
)->namelen
))
1556 return ERR_PTR(-ENAMETOOLONG
);
1559 * If we're doing an exclusive create, optimize away the lookup
1560 * but don't hash the dentry.
1562 if (nfs_is_exclusive_create(dir
, flags
) || flags
& LOOKUP_RENAME_TARGET
)
1565 res
= ERR_PTR(-ENOMEM
);
1566 fhandle
= nfs_alloc_fhandle();
1567 fattr
= nfs_alloc_fattr();
1568 if (fhandle
== NULL
|| fattr
== NULL
)
1571 label
= nfs4_label_alloc(NFS_SERVER(dir
), GFP_NOWAIT
);
1575 dir_verifier
= nfs_save_change_attribute(dir
);
1576 trace_nfs_lookup_enter(dir
, dentry
, flags
);
1577 error
= NFS_PROTO(dir
)->lookup(dir
, dentry
, fhandle
, fattr
, label
);
1578 if (error
== -ENOENT
)
1581 res
= ERR_PTR(error
);
1584 inode
= nfs_fhget(dentry
->d_sb
, fhandle
, fattr
, label
);
1585 res
= ERR_CAST(inode
);
1589 /* Notify readdir to use READDIRPLUS */
1590 nfs_force_use_readdirplus(dir
);
1593 res
= d_splice_alias(inode
, dentry
);
1599 nfs_set_verifier(dentry
, dir_verifier
);
1601 trace_nfs_lookup_exit(dir
, dentry
, flags
, error
);
1602 nfs4_label_free(label
);
1604 nfs_free_fattr(fattr
);
1605 nfs_free_fhandle(fhandle
);
1608 EXPORT_SYMBOL_GPL(nfs_lookup
);
1610 #if IS_ENABLED(CONFIG_NFS_V4)
1611 static int nfs4_lookup_revalidate(struct dentry
*, unsigned int);
1613 const struct dentry_operations nfs4_dentry_operations
= {
1614 .d_revalidate
= nfs4_lookup_revalidate
,
1615 .d_weak_revalidate
= nfs_weak_revalidate
,
1616 .d_delete
= nfs_dentry_delete
,
1617 .d_iput
= nfs_dentry_iput
,
1618 .d_automount
= nfs_d_automount
,
1619 .d_release
= nfs_d_release
,
1621 EXPORT_SYMBOL_GPL(nfs4_dentry_operations
);
1623 static fmode_t
flags_to_mode(int flags
)
1625 fmode_t res
= (__force fmode_t
)flags
& FMODE_EXEC
;
1626 if ((flags
& O_ACCMODE
) != O_WRONLY
)
1628 if ((flags
& O_ACCMODE
) != O_RDONLY
)
1633 static struct nfs_open_context
*create_nfs_open_context(struct dentry
*dentry
, int open_flags
, struct file
*filp
)
1635 return alloc_nfs_open_context(dentry
, flags_to_mode(open_flags
), filp
);
1638 static int do_open(struct inode
*inode
, struct file
*filp
)
1640 nfs_fscache_open_file(inode
, filp
);
1644 static int nfs_finish_open(struct nfs_open_context
*ctx
,
1645 struct dentry
*dentry
,
1646 struct file
*file
, unsigned open_flags
)
1650 err
= finish_open(file
, dentry
, do_open
);
1653 if (S_ISREG(file
->f_path
.dentry
->d_inode
->i_mode
))
1654 nfs_file_set_open_context(file
, ctx
);
1661 int nfs_atomic_open(struct inode
*dir
, struct dentry
*dentry
,
1662 struct file
*file
, unsigned open_flags
,
1665 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq
);
1666 struct nfs_open_context
*ctx
;
1668 struct iattr attr
= { .ia_valid
= ATTR_OPEN
};
1669 struct inode
*inode
;
1670 unsigned int lookup_flags
= 0;
1671 bool switched
= false;
1675 /* Expect a negative dentry */
1676 BUG_ON(d_inode(dentry
));
1678 dfprintk(VFS
, "NFS: atomic_open(%s/%lu), %pd\n",
1679 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1681 err
= nfs_check_flags(open_flags
);
1685 /* NFS only supports OPEN on regular files */
1686 if ((open_flags
& O_DIRECTORY
)) {
1687 if (!d_in_lookup(dentry
)) {
1689 * Hashed negative dentry with O_DIRECTORY: dentry was
1690 * revalidated and is fine, no need to perform lookup
1695 lookup_flags
= LOOKUP_OPEN
|LOOKUP_DIRECTORY
;
1699 if (dentry
->d_name
.len
> NFS_SERVER(dir
)->namelen
)
1700 return -ENAMETOOLONG
;
1702 if (open_flags
& O_CREAT
) {
1703 struct nfs_server
*server
= NFS_SERVER(dir
);
1705 if (!(server
->attr_bitmask
[2] & FATTR4_WORD2_MODE_UMASK
))
1706 mode
&= ~current_umask();
1708 attr
.ia_valid
|= ATTR_MODE
;
1709 attr
.ia_mode
= mode
;
1711 if (open_flags
& O_TRUNC
) {
1712 attr
.ia_valid
|= ATTR_SIZE
;
1716 if (!(open_flags
& O_CREAT
) && !d_in_lookup(dentry
)) {
1719 dentry
= d_alloc_parallel(dentry
->d_parent
,
1720 &dentry
->d_name
, &wq
);
1722 return PTR_ERR(dentry
);
1723 if (unlikely(!d_in_lookup(dentry
)))
1724 return finish_no_open(file
, dentry
);
1727 ctx
= create_nfs_open_context(dentry
, open_flags
, file
);
1732 trace_nfs_atomic_open_enter(dir
, ctx
, open_flags
);
1733 inode
= NFS_PROTO(dir
)->open_context(dir
, ctx
, open_flags
, &attr
, &created
);
1735 file
->f_mode
|= FMODE_CREATED
;
1736 if (IS_ERR(inode
)) {
1737 err
= PTR_ERR(inode
);
1738 trace_nfs_atomic_open_exit(dir
, ctx
, open_flags
, err
);
1739 put_nfs_open_context(ctx
);
1743 d_splice_alias(NULL
, dentry
);
1744 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1750 if (!(open_flags
& O_NOFOLLOW
))
1760 err
= nfs_finish_open(ctx
, ctx
->dentry
, file
, open_flags
);
1761 trace_nfs_atomic_open_exit(dir
, ctx
, open_flags
, err
);
1762 put_nfs_open_context(ctx
);
1764 if (unlikely(switched
)) {
1765 d_lookup_done(dentry
);
1771 res
= nfs_lookup(dir
, dentry
, lookup_flags
);
1773 d_lookup_done(dentry
);
1780 return PTR_ERR(res
);
1781 return finish_no_open(file
, res
);
1783 EXPORT_SYMBOL_GPL(nfs_atomic_open
);
1786 nfs4_do_lookup_revalidate(struct inode
*dir
, struct dentry
*dentry
,
1789 struct inode
*inode
;
1791 if (!(flags
& LOOKUP_OPEN
) || (flags
& LOOKUP_DIRECTORY
))
1793 if (d_mountpoint(dentry
))
1796 inode
= d_inode(dentry
);
1798 /* We can't create new files in nfs_open_revalidate(), so we
1799 * optimize away revalidation of negative dentries.
1804 if (nfs_verifier_is_delegated(dentry
))
1805 return nfs_lookup_revalidate_delegated(dir
, dentry
, inode
);
1807 /* NFS only supports OPEN on regular files */
1808 if (!S_ISREG(inode
->i_mode
))
1811 /* We cannot do exclusive creation on a positive dentry */
1812 if (flags
& (LOOKUP_EXCL
| LOOKUP_REVAL
))
1815 /* Check if the directory changed */
1816 if (!nfs_check_verifier(dir
, dentry
, flags
& LOOKUP_RCU
))
1819 /* Let f_op->open() actually open (and revalidate) the file */
1822 if (flags
& LOOKUP_RCU
)
1824 return nfs_lookup_revalidate_dentry(dir
, dentry
, inode
);
1827 return nfs_do_lookup_revalidate(dir
, dentry
, flags
);
1830 static int nfs4_lookup_revalidate(struct dentry
*dentry
, unsigned int flags
)
1832 return __nfs_lookup_revalidate(dentry
, flags
,
1833 nfs4_do_lookup_revalidate
);
1836 #endif /* CONFIG_NFSV4 */
1839 nfs_add_or_obtain(struct dentry
*dentry
, struct nfs_fh
*fhandle
,
1840 struct nfs_fattr
*fattr
,
1841 struct nfs4_label
*label
)
1843 struct dentry
*parent
= dget_parent(dentry
);
1844 struct inode
*dir
= d_inode(parent
);
1845 struct inode
*inode
;
1851 if (fhandle
->size
== 0) {
1852 error
= NFS_PROTO(dir
)->lookup(dir
, dentry
, fhandle
, fattr
, NULL
);
1856 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1857 if (!(fattr
->valid
& NFS_ATTR_FATTR
)) {
1858 struct nfs_server
*server
= NFS_SB(dentry
->d_sb
);
1859 error
= server
->nfs_client
->rpc_ops
->getattr(server
, fhandle
,
1864 inode
= nfs_fhget(dentry
->d_sb
, fhandle
, fattr
, label
);
1865 d
= d_splice_alias(inode
, dentry
);
1870 nfs_mark_for_revalidate(dir
);
1874 EXPORT_SYMBOL_GPL(nfs_add_or_obtain
);
1877 * Code common to create, mkdir, and mknod.
1879 int nfs_instantiate(struct dentry
*dentry
, struct nfs_fh
*fhandle
,
1880 struct nfs_fattr
*fattr
,
1881 struct nfs4_label
*label
)
1885 d
= nfs_add_or_obtain(dentry
, fhandle
, fattr
, label
);
1889 /* Callers don't care */
1893 EXPORT_SYMBOL_GPL(nfs_instantiate
);
1896 * Following a failed create operation, we drop the dentry rather
1897 * than retain a negative dentry. This avoids a problem in the event
1898 * that the operation succeeded on the server, but an error in the
1899 * reply path made it appear to have failed.
1901 int nfs_create(struct inode
*dir
, struct dentry
*dentry
,
1902 umode_t mode
, bool excl
)
1905 int open_flags
= excl
? O_CREAT
| O_EXCL
: O_CREAT
;
1908 dfprintk(VFS
, "NFS: create(%s/%lu), %pd\n",
1909 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1911 attr
.ia_mode
= mode
;
1912 attr
.ia_valid
= ATTR_MODE
;
1914 trace_nfs_create_enter(dir
, dentry
, open_flags
);
1915 error
= NFS_PROTO(dir
)->create(dir
, dentry
, &attr
, open_flags
);
1916 trace_nfs_create_exit(dir
, dentry
, open_flags
, error
);
1924 EXPORT_SYMBOL_GPL(nfs_create
);
1927 * See comments for nfs_proc_create regarding failed operations.
1930 nfs_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t rdev
)
1935 dfprintk(VFS
, "NFS: mknod(%s/%lu), %pd\n",
1936 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1938 attr
.ia_mode
= mode
;
1939 attr
.ia_valid
= ATTR_MODE
;
1941 trace_nfs_mknod_enter(dir
, dentry
);
1942 status
= NFS_PROTO(dir
)->mknod(dir
, dentry
, &attr
, rdev
);
1943 trace_nfs_mknod_exit(dir
, dentry
, status
);
1951 EXPORT_SYMBOL_GPL(nfs_mknod
);
1954 * See comments for nfs_proc_create regarding failed operations.
1956 int nfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
1961 dfprintk(VFS
, "NFS: mkdir(%s/%lu), %pd\n",
1962 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1964 attr
.ia_valid
= ATTR_MODE
;
1965 attr
.ia_mode
= mode
| S_IFDIR
;
1967 trace_nfs_mkdir_enter(dir
, dentry
);
1968 error
= NFS_PROTO(dir
)->mkdir(dir
, dentry
, &attr
);
1969 trace_nfs_mkdir_exit(dir
, dentry
, error
);
1977 EXPORT_SYMBOL_GPL(nfs_mkdir
);
1979 static void nfs_dentry_handle_enoent(struct dentry
*dentry
)
1981 if (simple_positive(dentry
))
1985 int nfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
1989 dfprintk(VFS
, "NFS: rmdir(%s/%lu), %pd\n",
1990 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1992 trace_nfs_rmdir_enter(dir
, dentry
);
1993 if (d_really_is_positive(dentry
)) {
1994 down_write(&NFS_I(d_inode(dentry
))->rmdir_sem
);
1995 error
= NFS_PROTO(dir
)->rmdir(dir
, &dentry
->d_name
);
1996 /* Ensure the VFS deletes this inode */
1999 clear_nlink(d_inode(dentry
));
2002 nfs_dentry_handle_enoent(dentry
);
2004 up_write(&NFS_I(d_inode(dentry
))->rmdir_sem
);
2006 error
= NFS_PROTO(dir
)->rmdir(dir
, &dentry
->d_name
);
2007 trace_nfs_rmdir_exit(dir
, dentry
, error
);
2011 EXPORT_SYMBOL_GPL(nfs_rmdir
);
2014 * Remove a file after making sure there are no pending writes,
2015 * and after checking that the file has only one user.
2017 * We invalidate the attribute cache and free the inode prior to the operation
2018 * to avoid possible races if the server reuses the inode.
2020 static int nfs_safe_remove(struct dentry
*dentry
)
2022 struct inode
*dir
= d_inode(dentry
->d_parent
);
2023 struct inode
*inode
= d_inode(dentry
);
2026 dfprintk(VFS
, "NFS: safe_remove(%pd2)\n", dentry
);
2028 /* If the dentry was sillyrenamed, we simply call d_delete() */
2029 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
2034 trace_nfs_remove_enter(dir
, dentry
);
2035 if (inode
!= NULL
) {
2036 error
= NFS_PROTO(dir
)->remove(dir
, dentry
);
2038 nfs_drop_nlink(inode
);
2040 error
= NFS_PROTO(dir
)->remove(dir
, dentry
);
2041 if (error
== -ENOENT
)
2042 nfs_dentry_handle_enoent(dentry
);
2043 trace_nfs_remove_exit(dir
, dentry
, error
);
2048 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
2049 * belongs to an active ".nfs..." file and we return -EBUSY.
2051 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
2053 int nfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
2056 int need_rehash
= 0;
2058 dfprintk(VFS
, "NFS: unlink(%s/%lu, %pd)\n", dir
->i_sb
->s_id
,
2059 dir
->i_ino
, dentry
);
2061 trace_nfs_unlink_enter(dir
, dentry
);
2062 spin_lock(&dentry
->d_lock
);
2063 if (d_count(dentry
) > 1) {
2064 spin_unlock(&dentry
->d_lock
);
2065 /* Start asynchronous writeout of the inode */
2066 write_inode_now(d_inode(dentry
), 0);
2067 error
= nfs_sillyrename(dir
, dentry
);
2070 if (!d_unhashed(dentry
)) {
2074 spin_unlock(&dentry
->d_lock
);
2075 error
= nfs_safe_remove(dentry
);
2076 if (!error
|| error
== -ENOENT
) {
2077 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
2078 } else if (need_rehash
)
2081 trace_nfs_unlink_exit(dir
, dentry
, error
);
2084 EXPORT_SYMBOL_GPL(nfs_unlink
);
2087 * To create a symbolic link, most file systems instantiate a new inode,
2088 * add a page to it containing the path, then write it out to the disk
2089 * using prepare_write/commit_write.
2091 * Unfortunately the NFS client can't create the in-core inode first
2092 * because it needs a file handle to create an in-core inode (see
2093 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
2094 * symlink request has completed on the server.
2096 * So instead we allocate a raw page, copy the symname into it, then do
2097 * the SYMLINK request with the page as the buffer. If it succeeds, we
2098 * now have a new file handle and can instantiate an in-core NFS inode
2099 * and move the raw page into its mapping.
2101 int nfs_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
2106 unsigned int pathlen
= strlen(symname
);
2109 dfprintk(VFS
, "NFS: symlink(%s/%lu, %pd, %s)\n", dir
->i_sb
->s_id
,
2110 dir
->i_ino
, dentry
, symname
);
2112 if (pathlen
> PAGE_SIZE
)
2113 return -ENAMETOOLONG
;
2115 attr
.ia_mode
= S_IFLNK
| S_IRWXUGO
;
2116 attr
.ia_valid
= ATTR_MODE
;
2118 page
= alloc_page(GFP_USER
);
2122 kaddr
= page_address(page
);
2123 memcpy(kaddr
, symname
, pathlen
);
2124 if (pathlen
< PAGE_SIZE
)
2125 memset(kaddr
+ pathlen
, 0, PAGE_SIZE
- pathlen
);
2127 trace_nfs_symlink_enter(dir
, dentry
);
2128 error
= NFS_PROTO(dir
)->symlink(dir
, dentry
, page
, pathlen
, &attr
);
2129 trace_nfs_symlink_exit(dir
, dentry
, error
);
2131 dfprintk(VFS
, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2132 dir
->i_sb
->s_id
, dir
->i_ino
,
2133 dentry
, symname
, error
);
2140 * No big deal if we can't add this page to the page cache here.
2141 * READLINK will get the missing page from the server if needed.
2143 if (!add_to_page_cache_lru(page
, d_inode(dentry
)->i_mapping
, 0,
2145 SetPageUptodate(page
);
2148 * add_to_page_cache_lru() grabs an extra page refcount.
2149 * Drop it here to avoid leaking this page later.
2157 EXPORT_SYMBOL_GPL(nfs_symlink
);
2160 nfs_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
2162 struct inode
*inode
= d_inode(old_dentry
);
2165 dfprintk(VFS
, "NFS: link(%pd2 -> %pd2)\n",
2166 old_dentry
, dentry
);
2168 trace_nfs_link_enter(inode
, dir
, dentry
);
2170 error
= NFS_PROTO(dir
)->link(inode
, dir
, &dentry
->d_name
);
2173 d_add(dentry
, inode
);
2175 trace_nfs_link_exit(inode
, dir
, dentry
, error
);
2178 EXPORT_SYMBOL_GPL(nfs_link
);
2182 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2183 * different file handle for the same inode after a rename (e.g. when
2184 * moving to a different directory). A fail-safe method to do so would
2185 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2186 * rename the old file using the sillyrename stuff. This way, the original
2187 * file in old_dir will go away when the last process iput()s the inode.
2191 * It actually works quite well. One needs to have the possibility for
2192 * at least one ".nfs..." file in each directory the file ever gets
2193 * moved or linked to which happens automagically with the new
2194 * implementation that only depends on the dcache stuff instead of
2195 * using the inode layer
2197 * Unfortunately, things are a little more complicated than indicated
2198 * above. For a cross-directory move, we want to make sure we can get
2199 * rid of the old inode after the operation. This means there must be
2200 * no pending writes (if it's a file), and the use count must be 1.
2201 * If these conditions are met, we can drop the dentries before doing
2204 int nfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
2205 struct inode
*new_dir
, struct dentry
*new_dentry
,
2208 struct inode
*old_inode
= d_inode(old_dentry
);
2209 struct inode
*new_inode
= d_inode(new_dentry
);
2210 struct dentry
*dentry
= NULL
, *rehash
= NULL
;
2211 struct rpc_task
*task
;
2217 dfprintk(VFS
, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2218 old_dentry
, new_dentry
,
2219 d_count(new_dentry
));
2221 trace_nfs_rename_enter(old_dir
, old_dentry
, new_dir
, new_dentry
);
2223 * For non-directories, check whether the target is busy and if so,
2224 * make a copy of the dentry and then do a silly-rename. If the
2225 * silly-rename succeeds, the copied dentry is hashed and becomes
2228 if (new_inode
&& !S_ISDIR(new_inode
->i_mode
)) {
2230 * To prevent any new references to the target during the
2231 * rename, we unhash the dentry in advance.
2233 if (!d_unhashed(new_dentry
)) {
2235 rehash
= new_dentry
;
2238 if (d_count(new_dentry
) > 2) {
2241 /* copy the target dentry's name */
2242 dentry
= d_alloc(new_dentry
->d_parent
,
2243 &new_dentry
->d_name
);
2247 /* silly-rename the existing target ... */
2248 err
= nfs_sillyrename(new_dir
, new_dentry
);
2252 new_dentry
= dentry
;
2258 task
= nfs_async_rename(old_dir
, new_dir
, old_dentry
, new_dentry
, NULL
);
2260 error
= PTR_ERR(task
);
2264 error
= rpc_wait_for_completion_task(task
);
2266 ((struct nfs_renamedata
*)task
->tk_calldata
)->cancelled
= 1;
2267 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2270 error
= task
->tk_status
;
2272 /* Ensure the inode attributes are revalidated */
2274 spin_lock(&old_inode
->i_lock
);
2275 NFS_I(old_inode
)->attr_gencount
= nfs_inc_attr_generation_counter();
2276 NFS_I(old_inode
)->cache_validity
|= NFS_INO_INVALID_CHANGE
2277 | NFS_INO_INVALID_CTIME
2278 | NFS_INO_REVAL_FORCED
;
2279 spin_unlock(&old_inode
->i_lock
);
2284 trace_nfs_rename_exit(old_dir
, old_dentry
,
2285 new_dir
, new_dentry
, error
);
2287 if (new_inode
!= NULL
)
2288 nfs_drop_nlink(new_inode
);
2290 * The d_move() should be here instead of in an async RPC completion
2291 * handler because we need the proper locks to move the dentry. If
2292 * we're interrupted by a signal, the async RPC completion handler
2293 * should mark the directories for revalidation.
2295 d_move(old_dentry
, new_dentry
);
2296 nfs_set_verifier(old_dentry
,
2297 nfs_save_change_attribute(new_dir
));
2298 } else if (error
== -ENOENT
)
2299 nfs_dentry_handle_enoent(old_dentry
);
2301 /* new dentry created? */
2306 EXPORT_SYMBOL_GPL(nfs_rename
);
2308 static DEFINE_SPINLOCK(nfs_access_lru_lock
);
2309 static LIST_HEAD(nfs_access_lru_list
);
2310 static atomic_long_t nfs_access_nr_entries
;
2312 static unsigned long nfs_access_max_cachesize
= 4*1024*1024;
2313 module_param(nfs_access_max_cachesize
, ulong
, 0644);
2314 MODULE_PARM_DESC(nfs_access_max_cachesize
, "NFS access maximum total cache length");
2316 static void nfs_access_free_entry(struct nfs_access_entry
*entry
)
2318 put_cred(entry
->cred
);
2319 kfree_rcu(entry
, rcu_head
);
2320 smp_mb__before_atomic();
2321 atomic_long_dec(&nfs_access_nr_entries
);
2322 smp_mb__after_atomic();
2325 static void nfs_access_free_list(struct list_head
*head
)
2327 struct nfs_access_entry
*cache
;
2329 while (!list_empty(head
)) {
2330 cache
= list_entry(head
->next
, struct nfs_access_entry
, lru
);
2331 list_del(&cache
->lru
);
2332 nfs_access_free_entry(cache
);
2336 static unsigned long
2337 nfs_do_access_cache_scan(unsigned int nr_to_scan
)
2340 struct nfs_inode
*nfsi
, *next
;
2341 struct nfs_access_entry
*cache
;
2344 spin_lock(&nfs_access_lru_lock
);
2345 list_for_each_entry_safe(nfsi
, next
, &nfs_access_lru_list
, access_cache_inode_lru
) {
2346 struct inode
*inode
;
2348 if (nr_to_scan
-- == 0)
2350 inode
= &nfsi
->vfs_inode
;
2351 spin_lock(&inode
->i_lock
);
2352 if (list_empty(&nfsi
->access_cache_entry_lru
))
2353 goto remove_lru_entry
;
2354 cache
= list_entry(nfsi
->access_cache_entry_lru
.next
,
2355 struct nfs_access_entry
, lru
);
2356 list_move(&cache
->lru
, &head
);
2357 rb_erase(&cache
->rb_node
, &nfsi
->access_cache
);
2359 if (!list_empty(&nfsi
->access_cache_entry_lru
))
2360 list_move_tail(&nfsi
->access_cache_inode_lru
,
2361 &nfs_access_lru_list
);
2364 list_del_init(&nfsi
->access_cache_inode_lru
);
2365 smp_mb__before_atomic();
2366 clear_bit(NFS_INO_ACL_LRU_SET
, &nfsi
->flags
);
2367 smp_mb__after_atomic();
2369 spin_unlock(&inode
->i_lock
);
2371 spin_unlock(&nfs_access_lru_lock
);
2372 nfs_access_free_list(&head
);
2377 nfs_access_cache_scan(struct shrinker
*shrink
, struct shrink_control
*sc
)
2379 int nr_to_scan
= sc
->nr_to_scan
;
2380 gfp_t gfp_mask
= sc
->gfp_mask
;
2382 if ((gfp_mask
& GFP_KERNEL
) != GFP_KERNEL
)
2384 return nfs_do_access_cache_scan(nr_to_scan
);
2389 nfs_access_cache_count(struct shrinker
*shrink
, struct shrink_control
*sc
)
2391 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries
));
2395 nfs_access_cache_enforce_limit(void)
2397 long nr_entries
= atomic_long_read(&nfs_access_nr_entries
);
2399 unsigned int nr_to_scan
;
2401 if (nr_entries
< 0 || nr_entries
<= nfs_access_max_cachesize
)
2404 diff
= nr_entries
- nfs_access_max_cachesize
;
2405 if (diff
< nr_to_scan
)
2407 nfs_do_access_cache_scan(nr_to_scan
);
2410 static void __nfs_access_zap_cache(struct nfs_inode
*nfsi
, struct list_head
*head
)
2412 struct rb_root
*root_node
= &nfsi
->access_cache
;
2414 struct nfs_access_entry
*entry
;
2416 /* Unhook entries from the cache */
2417 while ((n
= rb_first(root_node
)) != NULL
) {
2418 entry
= rb_entry(n
, struct nfs_access_entry
, rb_node
);
2419 rb_erase(n
, root_node
);
2420 list_move(&entry
->lru
, head
);
2422 nfsi
->cache_validity
&= ~NFS_INO_INVALID_ACCESS
;
2425 void nfs_access_zap_cache(struct inode
*inode
)
2429 if (test_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
) == 0)
2431 /* Remove from global LRU init */
2432 spin_lock(&nfs_access_lru_lock
);
2433 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
))
2434 list_del_init(&NFS_I(inode
)->access_cache_inode_lru
);
2436 spin_lock(&inode
->i_lock
);
2437 __nfs_access_zap_cache(NFS_I(inode
), &head
);
2438 spin_unlock(&inode
->i_lock
);
2439 spin_unlock(&nfs_access_lru_lock
);
2440 nfs_access_free_list(&head
);
2442 EXPORT_SYMBOL_GPL(nfs_access_zap_cache
);
2444 static struct nfs_access_entry
*nfs_access_search_rbtree(struct inode
*inode
, const struct cred
*cred
)
2446 struct rb_node
*n
= NFS_I(inode
)->access_cache
.rb_node
;
2449 struct nfs_access_entry
*entry
=
2450 rb_entry(n
, struct nfs_access_entry
, rb_node
);
2451 int cmp
= cred_fscmp(cred
, entry
->cred
);
2463 static int nfs_access_get_cached(struct inode
*inode
, const struct cred
*cred
, struct nfs_access_entry
*res
, bool may_block
)
2465 struct nfs_inode
*nfsi
= NFS_I(inode
);
2466 struct nfs_access_entry
*cache
;
2470 spin_lock(&inode
->i_lock
);
2472 if (nfsi
->cache_validity
& NFS_INO_INVALID_ACCESS
)
2474 cache
= nfs_access_search_rbtree(inode
, cred
);
2478 /* Found an entry, is our attribute cache valid? */
2479 if (!nfs_check_cache_invalid(inode
, NFS_INO_INVALID_ACCESS
))
2486 spin_unlock(&inode
->i_lock
);
2487 err
= __nfs_revalidate_inode(NFS_SERVER(inode
), inode
);
2490 spin_lock(&inode
->i_lock
);
2493 res
->cred
= cache
->cred
;
2494 res
->mask
= cache
->mask
;
2495 list_move_tail(&cache
->lru
, &nfsi
->access_cache_entry_lru
);
2498 spin_unlock(&inode
->i_lock
);
2501 spin_unlock(&inode
->i_lock
);
2502 nfs_access_zap_cache(inode
);
2506 static int nfs_access_get_cached_rcu(struct inode
*inode
, const struct cred
*cred
, struct nfs_access_entry
*res
)
2508 /* Only check the most recently returned cache entry,
2509 * but do it without locking.
2511 struct nfs_inode
*nfsi
= NFS_I(inode
);
2512 struct nfs_access_entry
*cache
;
2514 struct list_head
*lh
;
2517 if (nfsi
->cache_validity
& NFS_INO_INVALID_ACCESS
)
2519 lh
= rcu_dereference(list_tail_rcu(&nfsi
->access_cache_entry_lru
));
2520 cache
= list_entry(lh
, struct nfs_access_entry
, lru
);
2521 if (lh
== &nfsi
->access_cache_entry_lru
||
2522 cred_fscmp(cred
, cache
->cred
) != 0)
2526 if (nfs_check_cache_invalid(inode
, NFS_INO_INVALID_ACCESS
))
2528 res
->cred
= cache
->cred
;
2529 res
->mask
= cache
->mask
;
2536 static void nfs_access_add_rbtree(struct inode
*inode
, struct nfs_access_entry
*set
)
2538 struct nfs_inode
*nfsi
= NFS_I(inode
);
2539 struct rb_root
*root_node
= &nfsi
->access_cache
;
2540 struct rb_node
**p
= &root_node
->rb_node
;
2541 struct rb_node
*parent
= NULL
;
2542 struct nfs_access_entry
*entry
;
2545 spin_lock(&inode
->i_lock
);
2546 while (*p
!= NULL
) {
2548 entry
= rb_entry(parent
, struct nfs_access_entry
, rb_node
);
2549 cmp
= cred_fscmp(set
->cred
, entry
->cred
);
2552 p
= &parent
->rb_left
;
2554 p
= &parent
->rb_right
;
2558 rb_link_node(&set
->rb_node
, parent
, p
);
2559 rb_insert_color(&set
->rb_node
, root_node
);
2560 list_add_tail(&set
->lru
, &nfsi
->access_cache_entry_lru
);
2561 spin_unlock(&inode
->i_lock
);
2564 rb_replace_node(parent
, &set
->rb_node
, root_node
);
2565 list_add_tail(&set
->lru
, &nfsi
->access_cache_entry_lru
);
2566 list_del(&entry
->lru
);
2567 spin_unlock(&inode
->i_lock
);
2568 nfs_access_free_entry(entry
);
2571 void nfs_access_add_cache(struct inode
*inode
, struct nfs_access_entry
*set
)
2573 struct nfs_access_entry
*cache
= kmalloc(sizeof(*cache
), GFP_KERNEL
);
2576 RB_CLEAR_NODE(&cache
->rb_node
);
2577 cache
->cred
= get_cred(set
->cred
);
2578 cache
->mask
= set
->mask
;
2580 /* The above field assignments must be visible
2581 * before this item appears on the lru. We cannot easily
2582 * use rcu_assign_pointer, so just force the memory barrier.
2585 nfs_access_add_rbtree(inode
, cache
);
2587 /* Update accounting */
2588 smp_mb__before_atomic();
2589 atomic_long_inc(&nfs_access_nr_entries
);
2590 smp_mb__after_atomic();
2592 /* Add inode to global LRU list */
2593 if (!test_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
)) {
2594 spin_lock(&nfs_access_lru_lock
);
2595 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
))
2596 list_add_tail(&NFS_I(inode
)->access_cache_inode_lru
,
2597 &nfs_access_lru_list
);
2598 spin_unlock(&nfs_access_lru_lock
);
2600 nfs_access_cache_enforce_limit();
2602 EXPORT_SYMBOL_GPL(nfs_access_add_cache
);
2604 #define NFS_MAY_READ (NFS_ACCESS_READ)
2605 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2606 NFS_ACCESS_EXTEND | \
2608 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2610 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2611 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2612 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2614 nfs_access_calc_mask(u32 access_result
, umode_t umode
)
2618 if (access_result
& NFS_MAY_READ
)
2620 if (S_ISDIR(umode
)) {
2621 if ((access_result
& NFS_DIR_MAY_WRITE
) == NFS_DIR_MAY_WRITE
)
2623 if ((access_result
& NFS_MAY_LOOKUP
) == NFS_MAY_LOOKUP
)
2625 } else if (S_ISREG(umode
)) {
2626 if ((access_result
& NFS_FILE_MAY_WRITE
) == NFS_FILE_MAY_WRITE
)
2628 if ((access_result
& NFS_MAY_EXECUTE
) == NFS_MAY_EXECUTE
)
2630 } else if (access_result
& NFS_MAY_WRITE
)
2635 void nfs_access_set_mask(struct nfs_access_entry
*entry
, u32 access_result
)
2637 entry
->mask
= access_result
;
2639 EXPORT_SYMBOL_GPL(nfs_access_set_mask
);
2641 static int nfs_do_access(struct inode
*inode
, const struct cred
*cred
, int mask
)
2643 struct nfs_access_entry cache
;
2644 bool may_block
= (mask
& MAY_NOT_BLOCK
) == 0;
2645 int cache_mask
= -1;
2648 trace_nfs_access_enter(inode
);
2650 status
= nfs_access_get_cached_rcu(inode
, cred
, &cache
);
2652 status
= nfs_access_get_cached(inode
, cred
, &cache
, may_block
);
2661 * Determine which access bits we want to ask for...
2663 cache
.mask
= NFS_ACCESS_READ
| NFS_ACCESS_MODIFY
| NFS_ACCESS_EXTEND
;
2664 if (S_ISDIR(inode
->i_mode
))
2665 cache
.mask
|= NFS_ACCESS_DELETE
| NFS_ACCESS_LOOKUP
;
2667 cache
.mask
|= NFS_ACCESS_EXECUTE
;
2669 status
= NFS_PROTO(inode
)->access(inode
, &cache
);
2671 if (status
== -ESTALE
) {
2672 if (!S_ISDIR(inode
->i_mode
))
2673 nfs_set_inode_stale(inode
);
2675 nfs_zap_caches(inode
);
2679 nfs_access_add_cache(inode
, &cache
);
2681 cache_mask
= nfs_access_calc_mask(cache
.mask
, inode
->i_mode
);
2682 if ((mask
& ~cache_mask
& (MAY_READ
| MAY_WRITE
| MAY_EXEC
)) != 0)
2685 trace_nfs_access_exit(inode
, mask
, cache_mask
, status
);
2689 static int nfs_open_permission_mask(int openflags
)
2693 if (openflags
& __FMODE_EXEC
) {
2694 /* ONLY check exec rights */
2697 if ((openflags
& O_ACCMODE
) != O_WRONLY
)
2699 if ((openflags
& O_ACCMODE
) != O_RDONLY
)
2706 int nfs_may_open(struct inode
*inode
, const struct cred
*cred
, int openflags
)
2708 return nfs_do_access(inode
, cred
, nfs_open_permission_mask(openflags
));
2710 EXPORT_SYMBOL_GPL(nfs_may_open
);
2712 static int nfs_execute_ok(struct inode
*inode
, int mask
)
2714 struct nfs_server
*server
= NFS_SERVER(inode
);
2717 if (S_ISDIR(inode
->i_mode
))
2719 if (nfs_check_cache_invalid(inode
, NFS_INO_INVALID_OTHER
)) {
2720 if (mask
& MAY_NOT_BLOCK
)
2722 ret
= __nfs_revalidate_inode(server
, inode
);
2724 if (ret
== 0 && !execute_ok(inode
))
2729 int nfs_permission(struct inode
*inode
, int mask
)
2731 const struct cred
*cred
= current_cred();
2734 nfs_inc_stats(inode
, NFSIOS_VFSACCESS
);
2736 if ((mask
& (MAY_READ
| MAY_WRITE
| MAY_EXEC
)) == 0)
2738 /* Is this sys_access() ? */
2739 if (mask
& (MAY_ACCESS
| MAY_CHDIR
))
2742 switch (inode
->i_mode
& S_IFMT
) {
2746 if ((mask
& MAY_OPEN
) &&
2747 nfs_server_capable(inode
, NFS_CAP_ATOMIC_OPEN
))
2752 * Optimize away all write operations, since the server
2753 * will check permissions when we perform the op.
2755 if ((mask
& MAY_WRITE
) && !(mask
& MAY_READ
))
2760 if (!NFS_PROTO(inode
)->access
)
2763 res
= nfs_do_access(inode
, cred
, mask
);
2765 if (!res
&& (mask
& MAY_EXEC
))
2766 res
= nfs_execute_ok(inode
, mask
);
2768 dfprintk(VFS
, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2769 inode
->i_sb
->s_id
, inode
->i_ino
, mask
, res
);
2772 if (mask
& MAY_NOT_BLOCK
)
2775 res
= nfs_revalidate_inode(NFS_SERVER(inode
), inode
);
2777 res
= generic_permission(inode
, mask
);
2780 EXPORT_SYMBOL_GPL(nfs_permission
);
2784 * version-control: t
2785 * kept-new-versions: 5