gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / fs / pipe.c
blob16fb72e9abf7fde2afde2eaa8ad98fad0c620f61
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/pipe.c
5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
6 */
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
28 #include <linux/uaccess.h>
29 #include <asm/ioctls.h>
31 #include "internal.h"
34 * The max size that a non-root user is allowed to grow the pipe. Can
35 * be set by root in /proc/sys/fs/pipe-max-size
37 unsigned int pipe_max_size = 1048576;
39 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
40 * matches default values.
42 unsigned long pipe_user_pages_hard;
43 unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
46 * We use head and tail indices that aren't masked off, except at the point of
47 * dereference, but rather they're allowed to wrap naturally. This means there
48 * isn't a dead spot in the buffer, but the ring has to be a power of two and
49 * <= 2^31.
50 * -- David Howells 2019-09-23.
52 * Reads with count = 0 should always return 0.
53 * -- Julian Bradfield 1999-06-07.
55 * FIFOs and Pipes now generate SIGIO for both readers and writers.
56 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
58 * pipe_read & write cleanup
59 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
62 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
64 if (pipe->files)
65 mutex_lock_nested(&pipe->mutex, subclass);
68 void pipe_lock(struct pipe_inode_info *pipe)
71 * pipe_lock() nests non-pipe inode locks (for writing to a file)
73 pipe_lock_nested(pipe, I_MUTEX_PARENT);
75 EXPORT_SYMBOL(pipe_lock);
77 void pipe_unlock(struct pipe_inode_info *pipe)
79 if (pipe->files)
80 mutex_unlock(&pipe->mutex);
82 EXPORT_SYMBOL(pipe_unlock);
84 static inline void __pipe_lock(struct pipe_inode_info *pipe)
86 mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
89 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
91 mutex_unlock(&pipe->mutex);
94 void pipe_double_lock(struct pipe_inode_info *pipe1,
95 struct pipe_inode_info *pipe2)
97 BUG_ON(pipe1 == pipe2);
99 if (pipe1 < pipe2) {
100 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
101 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
102 } else {
103 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
104 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
108 /* Drop the inode semaphore and wait for a pipe event, atomically */
109 void pipe_wait(struct pipe_inode_info *pipe)
111 DEFINE_WAIT(rdwait);
112 DEFINE_WAIT(wrwait);
115 * Pipes are system-local resources, so sleeping on them
116 * is considered a noninteractive wait:
118 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
119 prepare_to_wait(&pipe->wr_wait, &wrwait, TASK_INTERRUPTIBLE);
120 pipe_unlock(pipe);
121 schedule();
122 finish_wait(&pipe->rd_wait, &rdwait);
123 finish_wait(&pipe->wr_wait, &wrwait);
124 pipe_lock(pipe);
127 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
128 struct pipe_buffer *buf)
130 struct page *page = buf->page;
133 * If nobody else uses this page, and we don't already have a
134 * temporary page, let's keep track of it as a one-deep
135 * allocation cache. (Otherwise just release our reference to it)
137 if (page_count(page) == 1 && !pipe->tmp_page)
138 pipe->tmp_page = page;
139 else
140 put_page(page);
143 static int anon_pipe_buf_steal(struct pipe_inode_info *pipe,
144 struct pipe_buffer *buf)
146 struct page *page = buf->page;
148 if (page_count(page) == 1) {
149 memcg_kmem_uncharge_page(page, 0);
150 __SetPageLocked(page);
151 return 0;
153 return 1;
157 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
158 * @pipe: the pipe that the buffer belongs to
159 * @buf: the buffer to attempt to steal
161 * Description:
162 * This function attempts to steal the &struct page attached to
163 * @buf. If successful, this function returns 0 and returns with
164 * the page locked. The caller may then reuse the page for whatever
165 * he wishes; the typical use is insertion into a different file
166 * page cache.
168 int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
169 struct pipe_buffer *buf)
171 struct page *page = buf->page;
174 * A reference of one is golden, that means that the owner of this
175 * page is the only one holding a reference to it. lock the page
176 * and return OK.
178 if (page_count(page) == 1) {
179 lock_page(page);
180 return 0;
183 return 1;
185 EXPORT_SYMBOL(generic_pipe_buf_steal);
188 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
189 * @pipe: the pipe that the buffer belongs to
190 * @buf: the buffer to get a reference to
192 * Description:
193 * This function grabs an extra reference to @buf. It's used in
194 * in the tee() system call, when we duplicate the buffers in one
195 * pipe into another.
197 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
199 return try_get_page(buf->page);
201 EXPORT_SYMBOL(generic_pipe_buf_get);
204 * generic_pipe_buf_confirm - verify contents of the pipe buffer
205 * @info: the pipe that the buffer belongs to
206 * @buf: the buffer to confirm
208 * Description:
209 * This function does nothing, because the generic pipe code uses
210 * pages that are always good when inserted into the pipe.
212 int generic_pipe_buf_confirm(struct pipe_inode_info *info,
213 struct pipe_buffer *buf)
215 return 0;
217 EXPORT_SYMBOL(generic_pipe_buf_confirm);
220 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
221 * @pipe: the pipe that the buffer belongs to
222 * @buf: the buffer to put a reference to
224 * Description:
225 * This function releases a reference to @buf.
227 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
228 struct pipe_buffer *buf)
230 put_page(buf->page);
232 EXPORT_SYMBOL(generic_pipe_buf_release);
234 /* New data written to a pipe may be appended to a buffer with this type. */
235 static const struct pipe_buf_operations anon_pipe_buf_ops = {
236 .confirm = generic_pipe_buf_confirm,
237 .release = anon_pipe_buf_release,
238 .steal = anon_pipe_buf_steal,
239 .get = generic_pipe_buf_get,
242 static const struct pipe_buf_operations anon_pipe_buf_nomerge_ops = {
243 .confirm = generic_pipe_buf_confirm,
244 .release = anon_pipe_buf_release,
245 .steal = anon_pipe_buf_steal,
246 .get = generic_pipe_buf_get,
249 static const struct pipe_buf_operations packet_pipe_buf_ops = {
250 .confirm = generic_pipe_buf_confirm,
251 .release = anon_pipe_buf_release,
252 .steal = anon_pipe_buf_steal,
253 .get = generic_pipe_buf_get,
257 * pipe_buf_mark_unmergeable - mark a &struct pipe_buffer as unmergeable
258 * @buf: the buffer to mark
260 * Description:
261 * This function ensures that no future writes will be merged into the
262 * given &struct pipe_buffer. This is necessary when multiple pipe buffers
263 * share the same backing page.
265 void pipe_buf_mark_unmergeable(struct pipe_buffer *buf)
267 if (buf->ops == &anon_pipe_buf_ops)
268 buf->ops = &anon_pipe_buf_nomerge_ops;
271 static bool pipe_buf_can_merge(struct pipe_buffer *buf)
273 return buf->ops == &anon_pipe_buf_ops;
276 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
277 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
279 unsigned int head = READ_ONCE(pipe->head);
280 unsigned int tail = READ_ONCE(pipe->tail);
281 unsigned int writers = READ_ONCE(pipe->writers);
283 return !pipe_empty(head, tail) || !writers;
286 static ssize_t
287 pipe_read(struct kiocb *iocb, struct iov_iter *to)
289 size_t total_len = iov_iter_count(to);
290 struct file *filp = iocb->ki_filp;
291 struct pipe_inode_info *pipe = filp->private_data;
292 bool was_full, wake_next_reader = false;
293 ssize_t ret;
295 /* Null read succeeds. */
296 if (unlikely(total_len == 0))
297 return 0;
299 ret = 0;
300 __pipe_lock(pipe);
303 * We only wake up writers if the pipe was full when we started
304 * reading in order to avoid unnecessary wakeups.
306 * But when we do wake up writers, we do so using a sync wakeup
307 * (WF_SYNC), because we want them to get going and generate more
308 * data for us.
310 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
311 for (;;) {
312 unsigned int head = pipe->head;
313 unsigned int tail = pipe->tail;
314 unsigned int mask = pipe->ring_size - 1;
316 if (!pipe_empty(head, tail)) {
317 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
318 size_t chars = buf->len;
319 size_t written;
320 int error;
322 if (chars > total_len)
323 chars = total_len;
325 error = pipe_buf_confirm(pipe, buf);
326 if (error) {
327 if (!ret)
328 ret = error;
329 break;
332 written = copy_page_to_iter(buf->page, buf->offset, chars, to);
333 if (unlikely(written < chars)) {
334 if (!ret)
335 ret = -EFAULT;
336 break;
338 ret += chars;
339 buf->offset += chars;
340 buf->len -= chars;
342 /* Was it a packet buffer? Clean up and exit */
343 if (buf->flags & PIPE_BUF_FLAG_PACKET) {
344 total_len = chars;
345 buf->len = 0;
348 if (!buf->len) {
349 pipe_buf_release(pipe, buf);
350 spin_lock_irq(&pipe->rd_wait.lock);
351 tail++;
352 pipe->tail = tail;
353 spin_unlock_irq(&pipe->rd_wait.lock);
355 total_len -= chars;
356 if (!total_len)
357 break; /* common path: read succeeded */
358 if (!pipe_empty(head, tail)) /* More to do? */
359 continue;
362 if (!pipe->writers)
363 break;
364 if (ret)
365 break;
366 if (filp->f_flags & O_NONBLOCK) {
367 ret = -EAGAIN;
368 break;
370 __pipe_unlock(pipe);
373 * We only get here if we didn't actually read anything.
375 * However, we could have seen (and removed) a zero-sized
376 * pipe buffer, and might have made space in the buffers
377 * that way.
379 * You can't make zero-sized pipe buffers by doing an empty
380 * write (not even in packet mode), but they can happen if
381 * the writer gets an EFAULT when trying to fill a buffer
382 * that already got allocated and inserted in the buffer
383 * array.
385 * So we still need to wake up any pending writers in the
386 * _very_ unlikely case that the pipe was full, but we got
387 * no data.
389 if (unlikely(was_full)) {
390 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
391 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
395 * But because we didn't read anything, at this point we can
396 * just return directly with -ERESTARTSYS if we're interrupted,
397 * since we've done any required wakeups and there's no need
398 * to mark anything accessed. And we've dropped the lock.
400 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
401 return -ERESTARTSYS;
403 __pipe_lock(pipe);
404 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
405 wake_next_reader = true;
407 if (pipe_empty(pipe->head, pipe->tail))
408 wake_next_reader = false;
409 __pipe_unlock(pipe);
411 if (was_full) {
412 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
413 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
415 if (wake_next_reader)
416 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
417 if (ret > 0)
418 file_accessed(filp);
419 return ret;
422 static inline int is_packetized(struct file *file)
424 return (file->f_flags & O_DIRECT) != 0;
427 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
428 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
430 unsigned int head = READ_ONCE(pipe->head);
431 unsigned int tail = READ_ONCE(pipe->tail);
432 unsigned int max_usage = READ_ONCE(pipe->max_usage);
434 return !pipe_full(head, tail, max_usage) ||
435 !READ_ONCE(pipe->readers);
438 static ssize_t
439 pipe_write(struct kiocb *iocb, struct iov_iter *from)
441 struct file *filp = iocb->ki_filp;
442 struct pipe_inode_info *pipe = filp->private_data;
443 unsigned int head;
444 ssize_t ret = 0;
445 size_t total_len = iov_iter_count(from);
446 ssize_t chars;
447 bool was_empty = false;
448 bool wake_next_writer = false;
450 /* Null write succeeds. */
451 if (unlikely(total_len == 0))
452 return 0;
454 __pipe_lock(pipe);
456 if (!pipe->readers) {
457 send_sig(SIGPIPE, current, 0);
458 ret = -EPIPE;
459 goto out;
463 * Only wake up if the pipe started out empty, since
464 * otherwise there should be no readers waiting.
466 * If it wasn't empty we try to merge new data into
467 * the last buffer.
469 * That naturally merges small writes, but it also
470 * page-aligs the rest of the writes for large writes
471 * spanning multiple pages.
473 head = pipe->head;
474 was_empty = pipe_empty(head, pipe->tail);
475 chars = total_len & (PAGE_SIZE-1);
476 if (chars && !was_empty) {
477 unsigned int mask = pipe->ring_size - 1;
478 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
479 int offset = buf->offset + buf->len;
481 if (pipe_buf_can_merge(buf) && offset + chars <= PAGE_SIZE) {
482 ret = pipe_buf_confirm(pipe, buf);
483 if (ret)
484 goto out;
486 ret = copy_page_from_iter(buf->page, offset, chars, from);
487 if (unlikely(ret < chars)) {
488 ret = -EFAULT;
489 goto out;
492 buf->len += ret;
493 if (!iov_iter_count(from))
494 goto out;
498 for (;;) {
499 if (!pipe->readers) {
500 send_sig(SIGPIPE, current, 0);
501 if (!ret)
502 ret = -EPIPE;
503 break;
506 head = pipe->head;
507 if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
508 unsigned int mask = pipe->ring_size - 1;
509 struct pipe_buffer *buf = &pipe->bufs[head & mask];
510 struct page *page = pipe->tmp_page;
511 int copied;
513 if (!page) {
514 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
515 if (unlikely(!page)) {
516 ret = ret ? : -ENOMEM;
517 break;
519 pipe->tmp_page = page;
522 /* Allocate a slot in the ring in advance and attach an
523 * empty buffer. If we fault or otherwise fail to use
524 * it, either the reader will consume it or it'll still
525 * be there for the next write.
527 spin_lock_irq(&pipe->rd_wait.lock);
529 head = pipe->head;
530 if (pipe_full(head, pipe->tail, pipe->max_usage)) {
531 spin_unlock_irq(&pipe->rd_wait.lock);
532 continue;
535 pipe->head = head + 1;
536 spin_unlock_irq(&pipe->rd_wait.lock);
538 /* Insert it into the buffer array */
539 buf = &pipe->bufs[head & mask];
540 buf->page = page;
541 buf->ops = &anon_pipe_buf_ops;
542 buf->offset = 0;
543 buf->len = 0;
544 buf->flags = 0;
545 if (is_packetized(filp)) {
546 buf->ops = &packet_pipe_buf_ops;
547 buf->flags = PIPE_BUF_FLAG_PACKET;
549 pipe->tmp_page = NULL;
551 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
552 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
553 if (!ret)
554 ret = -EFAULT;
555 break;
557 ret += copied;
558 buf->offset = 0;
559 buf->len = copied;
561 if (!iov_iter_count(from))
562 break;
565 if (!pipe_full(head, pipe->tail, pipe->max_usage))
566 continue;
568 /* Wait for buffer space to become available. */
569 if (filp->f_flags & O_NONBLOCK) {
570 if (!ret)
571 ret = -EAGAIN;
572 break;
574 if (signal_pending(current)) {
575 if (!ret)
576 ret = -ERESTARTSYS;
577 break;
581 * We're going to release the pipe lock and wait for more
582 * space. We wake up any readers if necessary, and then
583 * after waiting we need to re-check whether the pipe
584 * become empty while we dropped the lock.
586 __pipe_unlock(pipe);
587 if (was_empty) {
588 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
589 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
591 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
592 __pipe_lock(pipe);
593 was_empty = pipe_empty(pipe->head, pipe->tail);
594 wake_next_writer = true;
596 out:
597 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
598 wake_next_writer = false;
599 __pipe_unlock(pipe);
602 * If we do do a wakeup event, we do a 'sync' wakeup, because we
603 * want the reader to start processing things asap, rather than
604 * leave the data pending.
606 * This is particularly important for small writes, because of
607 * how (for example) the GNU make jobserver uses small writes to
608 * wake up pending jobs
610 if (was_empty) {
611 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
612 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
614 if (wake_next_writer)
615 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
616 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
617 int err = file_update_time(filp);
618 if (err)
619 ret = err;
620 sb_end_write(file_inode(filp)->i_sb);
622 return ret;
625 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
627 struct pipe_inode_info *pipe = filp->private_data;
628 int count, head, tail, mask;
630 switch (cmd) {
631 case FIONREAD:
632 __pipe_lock(pipe);
633 count = 0;
634 head = pipe->head;
635 tail = pipe->tail;
636 mask = pipe->ring_size - 1;
638 while (tail != head) {
639 count += pipe->bufs[tail & mask].len;
640 tail++;
642 __pipe_unlock(pipe);
644 return put_user(count, (int __user *)arg);
645 default:
646 return -ENOIOCTLCMD;
650 /* No kernel lock held - fine */
651 static __poll_t
652 pipe_poll(struct file *filp, poll_table *wait)
654 __poll_t mask;
655 struct pipe_inode_info *pipe = filp->private_data;
656 unsigned int head, tail;
659 * Reading pipe state only -- no need for acquiring the semaphore.
661 * But because this is racy, the code has to add the
662 * entry to the poll table _first_ ..
664 if (filp->f_mode & FMODE_READ)
665 poll_wait(filp, &pipe->rd_wait, wait);
666 if (filp->f_mode & FMODE_WRITE)
667 poll_wait(filp, &pipe->wr_wait, wait);
670 * .. and only then can you do the racy tests. That way,
671 * if something changes and you got it wrong, the poll
672 * table entry will wake you up and fix it.
674 head = READ_ONCE(pipe->head);
675 tail = READ_ONCE(pipe->tail);
677 mask = 0;
678 if (filp->f_mode & FMODE_READ) {
679 if (!pipe_empty(head, tail))
680 mask |= EPOLLIN | EPOLLRDNORM;
681 if (!pipe->writers && filp->f_version != pipe->w_counter)
682 mask |= EPOLLHUP;
685 if (filp->f_mode & FMODE_WRITE) {
686 if (!pipe_full(head, tail, pipe->max_usage))
687 mask |= EPOLLOUT | EPOLLWRNORM;
689 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
690 * behave exactly like pipes for poll().
692 if (!pipe->readers)
693 mask |= EPOLLERR;
696 return mask;
699 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
701 int kill = 0;
703 spin_lock(&inode->i_lock);
704 if (!--pipe->files) {
705 inode->i_pipe = NULL;
706 kill = 1;
708 spin_unlock(&inode->i_lock);
710 if (kill)
711 free_pipe_info(pipe);
714 static int
715 pipe_release(struct inode *inode, struct file *file)
717 struct pipe_inode_info *pipe = file->private_data;
719 __pipe_lock(pipe);
720 if (file->f_mode & FMODE_READ)
721 pipe->readers--;
722 if (file->f_mode & FMODE_WRITE)
723 pipe->writers--;
725 /* Was that the last reader or writer, but not the other side? */
726 if (!pipe->readers != !pipe->writers) {
727 wake_up_interruptible_all(&pipe->rd_wait);
728 wake_up_interruptible_all(&pipe->wr_wait);
729 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
730 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
732 __pipe_unlock(pipe);
734 put_pipe_info(inode, pipe);
735 return 0;
738 static int
739 pipe_fasync(int fd, struct file *filp, int on)
741 struct pipe_inode_info *pipe = filp->private_data;
742 int retval = 0;
744 __pipe_lock(pipe);
745 if (filp->f_mode & FMODE_READ)
746 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
747 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
748 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
749 if (retval < 0 && (filp->f_mode & FMODE_READ))
750 /* this can happen only if on == T */
751 fasync_helper(-1, filp, 0, &pipe->fasync_readers);
753 __pipe_unlock(pipe);
754 return retval;
757 static unsigned long account_pipe_buffers(struct user_struct *user,
758 unsigned long old, unsigned long new)
760 return atomic_long_add_return(new - old, &user->pipe_bufs);
763 static bool too_many_pipe_buffers_soft(unsigned long user_bufs)
765 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
767 return soft_limit && user_bufs > soft_limit;
770 static bool too_many_pipe_buffers_hard(unsigned long user_bufs)
772 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
774 return hard_limit && user_bufs > hard_limit;
777 static bool is_unprivileged_user(void)
779 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
782 struct pipe_inode_info *alloc_pipe_info(void)
784 struct pipe_inode_info *pipe;
785 unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
786 struct user_struct *user = get_current_user();
787 unsigned long user_bufs;
788 unsigned int max_size = READ_ONCE(pipe_max_size);
790 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
791 if (pipe == NULL)
792 goto out_free_uid;
794 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
795 pipe_bufs = max_size >> PAGE_SHIFT;
797 user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
799 if (too_many_pipe_buffers_soft(user_bufs) && is_unprivileged_user()) {
800 user_bufs = account_pipe_buffers(user, pipe_bufs, 1);
801 pipe_bufs = 1;
804 if (too_many_pipe_buffers_hard(user_bufs) && is_unprivileged_user())
805 goto out_revert_acct;
807 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
808 GFP_KERNEL_ACCOUNT);
810 if (pipe->bufs) {
811 init_waitqueue_head(&pipe->rd_wait);
812 init_waitqueue_head(&pipe->wr_wait);
813 pipe->r_counter = pipe->w_counter = 1;
814 pipe->max_usage = pipe_bufs;
815 pipe->ring_size = pipe_bufs;
816 pipe->user = user;
817 mutex_init(&pipe->mutex);
818 return pipe;
821 out_revert_acct:
822 (void) account_pipe_buffers(user, pipe_bufs, 0);
823 kfree(pipe);
824 out_free_uid:
825 free_uid(user);
826 return NULL;
829 void free_pipe_info(struct pipe_inode_info *pipe)
831 int i;
833 (void) account_pipe_buffers(pipe->user, pipe->ring_size, 0);
834 free_uid(pipe->user);
835 for (i = 0; i < pipe->ring_size; i++) {
836 struct pipe_buffer *buf = pipe->bufs + i;
837 if (buf->ops)
838 pipe_buf_release(pipe, buf);
840 if (pipe->tmp_page)
841 __free_page(pipe->tmp_page);
842 kfree(pipe->bufs);
843 kfree(pipe);
846 static struct vfsmount *pipe_mnt __read_mostly;
849 * pipefs_dname() is called from d_path().
851 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
853 return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
854 d_inode(dentry)->i_ino);
857 static const struct dentry_operations pipefs_dentry_operations = {
858 .d_dname = pipefs_dname,
861 static struct inode * get_pipe_inode(void)
863 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
864 struct pipe_inode_info *pipe;
866 if (!inode)
867 goto fail_inode;
869 inode->i_ino = get_next_ino();
871 pipe = alloc_pipe_info();
872 if (!pipe)
873 goto fail_iput;
875 inode->i_pipe = pipe;
876 pipe->files = 2;
877 pipe->readers = pipe->writers = 1;
878 inode->i_fop = &pipefifo_fops;
881 * Mark the inode dirty from the very beginning,
882 * that way it will never be moved to the dirty
883 * list because "mark_inode_dirty()" will think
884 * that it already _is_ on the dirty list.
886 inode->i_state = I_DIRTY;
887 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
888 inode->i_uid = current_fsuid();
889 inode->i_gid = current_fsgid();
890 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
892 return inode;
894 fail_iput:
895 iput(inode);
897 fail_inode:
898 return NULL;
901 int create_pipe_files(struct file **res, int flags)
903 struct inode *inode = get_pipe_inode();
904 struct file *f;
906 if (!inode)
907 return -ENFILE;
909 f = alloc_file_pseudo(inode, pipe_mnt, "",
910 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
911 &pipefifo_fops);
912 if (IS_ERR(f)) {
913 free_pipe_info(inode->i_pipe);
914 iput(inode);
915 return PTR_ERR(f);
918 f->private_data = inode->i_pipe;
920 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
921 &pipefifo_fops);
922 if (IS_ERR(res[0])) {
923 put_pipe_info(inode, inode->i_pipe);
924 fput(f);
925 return PTR_ERR(res[0]);
927 res[0]->private_data = inode->i_pipe;
928 res[1] = f;
929 stream_open(inode, res[0]);
930 stream_open(inode, res[1]);
931 return 0;
934 static int __do_pipe_flags(int *fd, struct file **files, int flags)
936 int error;
937 int fdw, fdr;
939 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT))
940 return -EINVAL;
942 error = create_pipe_files(files, flags);
943 if (error)
944 return error;
946 error = get_unused_fd_flags(flags);
947 if (error < 0)
948 goto err_read_pipe;
949 fdr = error;
951 error = get_unused_fd_flags(flags);
952 if (error < 0)
953 goto err_fdr;
954 fdw = error;
956 audit_fd_pair(fdr, fdw);
957 fd[0] = fdr;
958 fd[1] = fdw;
959 return 0;
961 err_fdr:
962 put_unused_fd(fdr);
963 err_read_pipe:
964 fput(files[0]);
965 fput(files[1]);
966 return error;
969 int do_pipe_flags(int *fd, int flags)
971 struct file *files[2];
972 int error = __do_pipe_flags(fd, files, flags);
973 if (!error) {
974 fd_install(fd[0], files[0]);
975 fd_install(fd[1], files[1]);
977 return error;
981 * sys_pipe() is the normal C calling standard for creating
982 * a pipe. It's not the way Unix traditionally does this, though.
984 static int do_pipe2(int __user *fildes, int flags)
986 struct file *files[2];
987 int fd[2];
988 int error;
990 error = __do_pipe_flags(fd, files, flags);
991 if (!error) {
992 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
993 fput(files[0]);
994 fput(files[1]);
995 put_unused_fd(fd[0]);
996 put_unused_fd(fd[1]);
997 error = -EFAULT;
998 } else {
999 fd_install(fd[0], files[0]);
1000 fd_install(fd[1], files[1]);
1003 return error;
1006 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1008 return do_pipe2(fildes, flags);
1011 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1013 return do_pipe2(fildes, 0);
1016 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1018 int cur = *cnt;
1020 while (cur == *cnt) {
1021 pipe_wait(pipe);
1022 if (signal_pending(current))
1023 break;
1025 return cur == *cnt ? -ERESTARTSYS : 0;
1028 static void wake_up_partner(struct pipe_inode_info *pipe)
1030 wake_up_interruptible_all(&pipe->rd_wait);
1031 wake_up_interruptible_all(&pipe->wr_wait);
1034 static int fifo_open(struct inode *inode, struct file *filp)
1036 struct pipe_inode_info *pipe;
1037 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1038 int ret;
1040 filp->f_version = 0;
1042 spin_lock(&inode->i_lock);
1043 if (inode->i_pipe) {
1044 pipe = inode->i_pipe;
1045 pipe->files++;
1046 spin_unlock(&inode->i_lock);
1047 } else {
1048 spin_unlock(&inode->i_lock);
1049 pipe = alloc_pipe_info();
1050 if (!pipe)
1051 return -ENOMEM;
1052 pipe->files = 1;
1053 spin_lock(&inode->i_lock);
1054 if (unlikely(inode->i_pipe)) {
1055 inode->i_pipe->files++;
1056 spin_unlock(&inode->i_lock);
1057 free_pipe_info(pipe);
1058 pipe = inode->i_pipe;
1059 } else {
1060 inode->i_pipe = pipe;
1061 spin_unlock(&inode->i_lock);
1064 filp->private_data = pipe;
1065 /* OK, we have a pipe and it's pinned down */
1067 __pipe_lock(pipe);
1069 /* We can only do regular read/write on fifos */
1070 stream_open(inode, filp);
1072 switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1073 case FMODE_READ:
1075 * O_RDONLY
1076 * POSIX.1 says that O_NONBLOCK means return with the FIFO
1077 * opened, even when there is no process writing the FIFO.
1079 pipe->r_counter++;
1080 if (pipe->readers++ == 0)
1081 wake_up_partner(pipe);
1083 if (!is_pipe && !pipe->writers) {
1084 if ((filp->f_flags & O_NONBLOCK)) {
1085 /* suppress EPOLLHUP until we have
1086 * seen a writer */
1087 filp->f_version = pipe->w_counter;
1088 } else {
1089 if (wait_for_partner(pipe, &pipe->w_counter))
1090 goto err_rd;
1093 break;
1095 case FMODE_WRITE:
1097 * O_WRONLY
1098 * POSIX.1 says that O_NONBLOCK means return -1 with
1099 * errno=ENXIO when there is no process reading the FIFO.
1101 ret = -ENXIO;
1102 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1103 goto err;
1105 pipe->w_counter++;
1106 if (!pipe->writers++)
1107 wake_up_partner(pipe);
1109 if (!is_pipe && !pipe->readers) {
1110 if (wait_for_partner(pipe, &pipe->r_counter))
1111 goto err_wr;
1113 break;
1115 case FMODE_READ | FMODE_WRITE:
1117 * O_RDWR
1118 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1119 * This implementation will NEVER block on a O_RDWR open, since
1120 * the process can at least talk to itself.
1123 pipe->readers++;
1124 pipe->writers++;
1125 pipe->r_counter++;
1126 pipe->w_counter++;
1127 if (pipe->readers == 1 || pipe->writers == 1)
1128 wake_up_partner(pipe);
1129 break;
1131 default:
1132 ret = -EINVAL;
1133 goto err;
1136 /* Ok! */
1137 __pipe_unlock(pipe);
1138 return 0;
1140 err_rd:
1141 if (!--pipe->readers)
1142 wake_up_interruptible(&pipe->wr_wait);
1143 ret = -ERESTARTSYS;
1144 goto err;
1146 err_wr:
1147 if (!--pipe->writers)
1148 wake_up_interruptible_all(&pipe->rd_wait);
1149 ret = -ERESTARTSYS;
1150 goto err;
1152 err:
1153 __pipe_unlock(pipe);
1155 put_pipe_info(inode, pipe);
1156 return ret;
1159 const struct file_operations pipefifo_fops = {
1160 .open = fifo_open,
1161 .llseek = no_llseek,
1162 .read_iter = pipe_read,
1163 .write_iter = pipe_write,
1164 .poll = pipe_poll,
1165 .unlocked_ioctl = pipe_ioctl,
1166 .release = pipe_release,
1167 .fasync = pipe_fasync,
1171 * Currently we rely on the pipe array holding a power-of-2 number
1172 * of pages. Returns 0 on error.
1174 unsigned int round_pipe_size(unsigned long size)
1176 if (size > (1U << 31))
1177 return 0;
1179 /* Minimum pipe size, as required by POSIX */
1180 if (size < PAGE_SIZE)
1181 return PAGE_SIZE;
1183 return roundup_pow_of_two(size);
1187 * Allocate a new array of pipe buffers and copy the info over. Returns the
1188 * pipe size if successful, or return -ERROR on error.
1190 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1192 struct pipe_buffer *bufs;
1193 unsigned int size, nr_slots, head, tail, mask, n;
1194 unsigned long user_bufs;
1195 long ret = 0;
1197 size = round_pipe_size(arg);
1198 nr_slots = size >> PAGE_SHIFT;
1200 if (!nr_slots)
1201 return -EINVAL;
1204 * If trying to increase the pipe capacity, check that an
1205 * unprivileged user is not trying to exceed various limits
1206 * (soft limit check here, hard limit check just below).
1207 * Decreasing the pipe capacity is always permitted, even
1208 * if the user is currently over a limit.
1210 if (nr_slots > pipe->ring_size &&
1211 size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1212 return -EPERM;
1214 user_bufs = account_pipe_buffers(pipe->user, pipe->ring_size, nr_slots);
1216 if (nr_slots > pipe->ring_size &&
1217 (too_many_pipe_buffers_hard(user_bufs) ||
1218 too_many_pipe_buffers_soft(user_bufs)) &&
1219 is_unprivileged_user()) {
1220 ret = -EPERM;
1221 goto out_revert_acct;
1225 * We can shrink the pipe, if arg is greater than the ring occupancy.
1226 * Since we don't expect a lot of shrink+grow operations, just free and
1227 * allocate again like we would do for growing. If the pipe currently
1228 * contains more buffers than arg, then return busy.
1230 mask = pipe->ring_size - 1;
1231 head = pipe->head;
1232 tail = pipe->tail;
1233 n = pipe_occupancy(pipe->head, pipe->tail);
1234 if (nr_slots < n) {
1235 ret = -EBUSY;
1236 goto out_revert_acct;
1239 bufs = kcalloc(nr_slots, sizeof(*bufs),
1240 GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1241 if (unlikely(!bufs)) {
1242 ret = -ENOMEM;
1243 goto out_revert_acct;
1247 * The pipe array wraps around, so just start the new one at zero
1248 * and adjust the indices.
1250 if (n > 0) {
1251 unsigned int h = head & mask;
1252 unsigned int t = tail & mask;
1253 if (h > t) {
1254 memcpy(bufs, pipe->bufs + t,
1255 n * sizeof(struct pipe_buffer));
1256 } else {
1257 unsigned int tsize = pipe->ring_size - t;
1258 if (h > 0)
1259 memcpy(bufs + tsize, pipe->bufs,
1260 h * sizeof(struct pipe_buffer));
1261 memcpy(bufs, pipe->bufs + t,
1262 tsize * sizeof(struct pipe_buffer));
1266 head = n;
1267 tail = 0;
1269 kfree(pipe->bufs);
1270 pipe->bufs = bufs;
1271 pipe->ring_size = nr_slots;
1272 pipe->max_usage = nr_slots;
1273 pipe->tail = tail;
1274 pipe->head = head;
1276 /* This might have made more room for writers */
1277 wake_up_interruptible(&pipe->wr_wait);
1278 return pipe->max_usage * PAGE_SIZE;
1280 out_revert_acct:
1281 (void) account_pipe_buffers(pipe->user, nr_slots, pipe->ring_size);
1282 return ret;
1286 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1287 * location, so checking ->i_pipe is not enough to verify that this is a
1288 * pipe.
1290 struct pipe_inode_info *get_pipe_info(struct file *file)
1292 return file->f_op == &pipefifo_fops ? file->private_data : NULL;
1295 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1297 struct pipe_inode_info *pipe;
1298 long ret;
1300 pipe = get_pipe_info(file);
1301 if (!pipe)
1302 return -EBADF;
1304 __pipe_lock(pipe);
1306 switch (cmd) {
1307 case F_SETPIPE_SZ:
1308 ret = pipe_set_size(pipe, arg);
1309 break;
1310 case F_GETPIPE_SZ:
1311 ret = pipe->max_usage * PAGE_SIZE;
1312 break;
1313 default:
1314 ret = -EINVAL;
1315 break;
1318 __pipe_unlock(pipe);
1319 return ret;
1322 static const struct super_operations pipefs_ops = {
1323 .destroy_inode = free_inode_nonrcu,
1324 .statfs = simple_statfs,
1328 * pipefs should _never_ be mounted by userland - too much of security hassle,
1329 * no real gain from having the whole whorehouse mounted. So we don't need
1330 * any operations on the root directory. However, we need a non-trivial
1331 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1334 static int pipefs_init_fs_context(struct fs_context *fc)
1336 struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1337 if (!ctx)
1338 return -ENOMEM;
1339 ctx->ops = &pipefs_ops;
1340 ctx->dops = &pipefs_dentry_operations;
1341 return 0;
1344 static struct file_system_type pipe_fs_type = {
1345 .name = "pipefs",
1346 .init_fs_context = pipefs_init_fs_context,
1347 .kill_sb = kill_anon_super,
1350 static int __init init_pipe_fs(void)
1352 int err = register_filesystem(&pipe_fs_type);
1354 if (!err) {
1355 pipe_mnt = kern_mount(&pipe_fs_type);
1356 if (IS_ERR(pipe_mnt)) {
1357 err = PTR_ERR(pipe_mnt);
1358 unregister_filesystem(&pipe_fs_type);
1361 return err;
1364 fs_initcall(init_pipe_fs);