gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / fs / proc / task_mmu.c
blob8d382d4ec0672f32549ac9b2dd9d156fb16dd1da
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/vmacache.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21 #include <linux/pkeys.h>
23 #include <asm/elf.h>
24 #include <asm/tlb.h>
25 #include <asm/tlbflush.h>
26 #include "internal.h"
28 #define SEQ_PUT_DEC(str, val) \
29 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
30 void task_mem(struct seq_file *m, struct mm_struct *mm)
32 unsigned long text, lib, swap, anon, file, shmem;
33 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
35 anon = get_mm_counter(mm, MM_ANONPAGES);
36 file = get_mm_counter(mm, MM_FILEPAGES);
37 shmem = get_mm_counter(mm, MM_SHMEMPAGES);
40 * Note: to minimize their overhead, mm maintains hiwater_vm and
41 * hiwater_rss only when about to *lower* total_vm or rss. Any
42 * collector of these hiwater stats must therefore get total_vm
43 * and rss too, which will usually be the higher. Barriers? not
44 * worth the effort, such snapshots can always be inconsistent.
46 hiwater_vm = total_vm = mm->total_vm;
47 if (hiwater_vm < mm->hiwater_vm)
48 hiwater_vm = mm->hiwater_vm;
49 hiwater_rss = total_rss = anon + file + shmem;
50 if (hiwater_rss < mm->hiwater_rss)
51 hiwater_rss = mm->hiwater_rss;
53 /* split executable areas between text and lib */
54 text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55 text = min(text, mm->exec_vm << PAGE_SHIFT);
56 lib = (mm->exec_vm << PAGE_SHIFT) - text;
58 swap = get_mm_counter(mm, MM_SWAPENTS);
59 SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60 SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61 SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62 SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
63 SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64 SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65 SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66 SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67 SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68 SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69 SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70 seq_put_decimal_ull_width(m,
71 " kB\nVmExe:\t", text >> 10, 8);
72 seq_put_decimal_ull_width(m,
73 " kB\nVmLib:\t", lib >> 10, 8);
74 seq_put_decimal_ull_width(m,
75 " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76 SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
77 seq_puts(m, " kB\n");
78 hugetlb_report_usage(m, mm);
80 #undef SEQ_PUT_DEC
82 unsigned long task_vsize(struct mm_struct *mm)
84 return PAGE_SIZE * mm->total_vm;
87 unsigned long task_statm(struct mm_struct *mm,
88 unsigned long *shared, unsigned long *text,
89 unsigned long *data, unsigned long *resident)
91 *shared = get_mm_counter(mm, MM_FILEPAGES) +
92 get_mm_counter(mm, MM_SHMEMPAGES);
93 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
94 >> PAGE_SHIFT;
95 *data = mm->data_vm + mm->stack_vm;
96 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
97 return mm->total_vm;
100 #ifdef CONFIG_NUMA
102 * Save get_task_policy() for show_numa_map().
104 static void hold_task_mempolicy(struct proc_maps_private *priv)
106 struct task_struct *task = priv->task;
108 task_lock(task);
109 priv->task_mempolicy = get_task_policy(task);
110 mpol_get(priv->task_mempolicy);
111 task_unlock(task);
113 static void release_task_mempolicy(struct proc_maps_private *priv)
115 mpol_put(priv->task_mempolicy);
117 #else
118 static void hold_task_mempolicy(struct proc_maps_private *priv)
121 static void release_task_mempolicy(struct proc_maps_private *priv)
124 #endif
126 static void *m_start(struct seq_file *m, loff_t *ppos)
128 struct proc_maps_private *priv = m->private;
129 unsigned long last_addr = *ppos;
130 struct mm_struct *mm;
131 struct vm_area_struct *vma;
133 /* See m_next(). Zero at the start or after lseek. */
134 if (last_addr == -1UL)
135 return NULL;
137 priv->task = get_proc_task(priv->inode);
138 if (!priv->task)
139 return ERR_PTR(-ESRCH);
141 mm = priv->mm;
142 if (!mm || !mmget_not_zero(mm)) {
143 put_task_struct(priv->task);
144 priv->task = NULL;
145 return NULL;
148 if (down_read_killable(&mm->mmap_sem)) {
149 mmput(mm);
150 put_task_struct(priv->task);
151 priv->task = NULL;
152 return ERR_PTR(-EINTR);
155 hold_task_mempolicy(priv);
156 priv->tail_vma = get_gate_vma(mm);
158 vma = find_vma(mm, last_addr);
159 if (vma)
160 return vma;
162 return priv->tail_vma;
165 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
167 struct proc_maps_private *priv = m->private;
168 struct vm_area_struct *next, *vma = v;
170 if (vma == priv->tail_vma)
171 next = NULL;
172 else if (vma->vm_next)
173 next = vma->vm_next;
174 else
175 next = priv->tail_vma;
177 *ppos = next ? next->vm_start : -1UL;
179 return next;
182 static void m_stop(struct seq_file *m, void *v)
184 struct proc_maps_private *priv = m->private;
185 struct mm_struct *mm = priv->mm;
187 if (!priv->task)
188 return;
190 release_task_mempolicy(priv);
191 up_read(&mm->mmap_sem);
192 mmput(mm);
193 put_task_struct(priv->task);
194 priv->task = NULL;
197 static int proc_maps_open(struct inode *inode, struct file *file,
198 const struct seq_operations *ops, int psize)
200 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
202 if (!priv)
203 return -ENOMEM;
205 priv->inode = inode;
206 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
207 if (IS_ERR(priv->mm)) {
208 int err = PTR_ERR(priv->mm);
210 seq_release_private(inode, file);
211 return err;
214 return 0;
217 static int proc_map_release(struct inode *inode, struct file *file)
219 struct seq_file *seq = file->private_data;
220 struct proc_maps_private *priv = seq->private;
222 if (priv->mm)
223 mmdrop(priv->mm);
225 return seq_release_private(inode, file);
228 static int do_maps_open(struct inode *inode, struct file *file,
229 const struct seq_operations *ops)
231 return proc_maps_open(inode, file, ops,
232 sizeof(struct proc_maps_private));
236 * Indicate if the VMA is a stack for the given task; for
237 * /proc/PID/maps that is the stack of the main task.
239 static int is_stack(struct vm_area_struct *vma)
242 * We make no effort to guess what a given thread considers to be
243 * its "stack". It's not even well-defined for programs written
244 * languages like Go.
246 return vma->vm_start <= vma->vm_mm->start_stack &&
247 vma->vm_end >= vma->vm_mm->start_stack;
250 static void show_vma_header_prefix(struct seq_file *m,
251 unsigned long start, unsigned long end,
252 vm_flags_t flags, unsigned long long pgoff,
253 dev_t dev, unsigned long ino)
255 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
256 seq_put_hex_ll(m, NULL, start, 8);
257 seq_put_hex_ll(m, "-", end, 8);
258 seq_putc(m, ' ');
259 seq_putc(m, flags & VM_READ ? 'r' : '-');
260 seq_putc(m, flags & VM_WRITE ? 'w' : '-');
261 seq_putc(m, flags & VM_EXEC ? 'x' : '-');
262 seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
263 seq_put_hex_ll(m, " ", pgoff, 8);
264 seq_put_hex_ll(m, " ", MAJOR(dev), 2);
265 seq_put_hex_ll(m, ":", MINOR(dev), 2);
266 seq_put_decimal_ull(m, " ", ino);
267 seq_putc(m, ' ');
270 static void
271 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
273 struct mm_struct *mm = vma->vm_mm;
274 struct file *file = vma->vm_file;
275 vm_flags_t flags = vma->vm_flags;
276 unsigned long ino = 0;
277 unsigned long long pgoff = 0;
278 unsigned long start, end;
279 dev_t dev = 0;
280 const char *name = NULL;
282 if (file) {
283 struct inode *inode = file_inode(vma->vm_file);
284 dev = inode->i_sb->s_dev;
285 ino = inode->i_ino;
286 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
289 start = vma->vm_start;
290 end = vma->vm_end;
291 show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
294 * Print the dentry name for named mappings, and a
295 * special [heap] marker for the heap:
297 if (file) {
298 seq_pad(m, ' ');
299 seq_file_path(m, file, "\n");
300 goto done;
303 if (vma->vm_ops && vma->vm_ops->name) {
304 name = vma->vm_ops->name(vma);
305 if (name)
306 goto done;
309 name = arch_vma_name(vma);
310 if (!name) {
311 if (!mm) {
312 name = "[vdso]";
313 goto done;
316 if (vma->vm_start <= mm->brk &&
317 vma->vm_end >= mm->start_brk) {
318 name = "[heap]";
319 goto done;
322 if (is_stack(vma))
323 name = "[stack]";
326 done:
327 if (name) {
328 seq_pad(m, ' ');
329 seq_puts(m, name);
331 seq_putc(m, '\n');
334 static int show_map(struct seq_file *m, void *v)
336 show_map_vma(m, v);
337 return 0;
340 static const struct seq_operations proc_pid_maps_op = {
341 .start = m_start,
342 .next = m_next,
343 .stop = m_stop,
344 .show = show_map
347 static int pid_maps_open(struct inode *inode, struct file *file)
349 return do_maps_open(inode, file, &proc_pid_maps_op);
352 const struct file_operations proc_pid_maps_operations = {
353 .open = pid_maps_open,
354 .read = seq_read,
355 .llseek = seq_lseek,
356 .release = proc_map_release,
360 * Proportional Set Size(PSS): my share of RSS.
362 * PSS of a process is the count of pages it has in memory, where each
363 * page is divided by the number of processes sharing it. So if a
364 * process has 1000 pages all to itself, and 1000 shared with one other
365 * process, its PSS will be 1500.
367 * To keep (accumulated) division errors low, we adopt a 64bit
368 * fixed-point pss counter to minimize division errors. So (pss >>
369 * PSS_SHIFT) would be the real byte count.
371 * A shift of 12 before division means (assuming 4K page size):
372 * - 1M 3-user-pages add up to 8KB errors;
373 * - supports mapcount up to 2^24, or 16M;
374 * - supports PSS up to 2^52 bytes, or 4PB.
376 #define PSS_SHIFT 12
378 #ifdef CONFIG_PROC_PAGE_MONITOR
379 struct mem_size_stats {
380 unsigned long resident;
381 unsigned long shared_clean;
382 unsigned long shared_dirty;
383 unsigned long private_clean;
384 unsigned long private_dirty;
385 unsigned long referenced;
386 unsigned long anonymous;
387 unsigned long lazyfree;
388 unsigned long anonymous_thp;
389 unsigned long shmem_thp;
390 unsigned long file_thp;
391 unsigned long swap;
392 unsigned long shared_hugetlb;
393 unsigned long private_hugetlb;
394 u64 pss;
395 u64 pss_anon;
396 u64 pss_file;
397 u64 pss_shmem;
398 u64 pss_locked;
399 u64 swap_pss;
400 bool check_shmem_swap;
403 static void smaps_page_accumulate(struct mem_size_stats *mss,
404 struct page *page, unsigned long size, unsigned long pss,
405 bool dirty, bool locked, bool private)
407 mss->pss += pss;
409 if (PageAnon(page))
410 mss->pss_anon += pss;
411 else if (PageSwapBacked(page))
412 mss->pss_shmem += pss;
413 else
414 mss->pss_file += pss;
416 if (locked)
417 mss->pss_locked += pss;
419 if (dirty || PageDirty(page)) {
420 if (private)
421 mss->private_dirty += size;
422 else
423 mss->shared_dirty += size;
424 } else {
425 if (private)
426 mss->private_clean += size;
427 else
428 mss->shared_clean += size;
432 static void smaps_account(struct mem_size_stats *mss, struct page *page,
433 bool compound, bool young, bool dirty, bool locked)
435 int i, nr = compound ? compound_nr(page) : 1;
436 unsigned long size = nr * PAGE_SIZE;
439 * First accumulate quantities that depend only on |size| and the type
440 * of the compound page.
442 if (PageAnon(page)) {
443 mss->anonymous += size;
444 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
445 mss->lazyfree += size;
448 mss->resident += size;
449 /* Accumulate the size in pages that have been accessed. */
450 if (young || page_is_young(page) || PageReferenced(page))
451 mss->referenced += size;
454 * Then accumulate quantities that may depend on sharing, or that may
455 * differ page-by-page.
457 * page_count(page) == 1 guarantees the page is mapped exactly once.
458 * If any subpage of the compound page mapped with PTE it would elevate
459 * page_count().
461 if (page_count(page) == 1) {
462 smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
463 locked, true);
464 return;
466 for (i = 0; i < nr; i++, page++) {
467 int mapcount = page_mapcount(page);
468 unsigned long pss = PAGE_SIZE << PSS_SHIFT;
469 if (mapcount >= 2)
470 pss /= mapcount;
471 smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
472 mapcount < 2);
476 #ifdef CONFIG_SHMEM
477 static int smaps_pte_hole(unsigned long addr, unsigned long end,
478 __always_unused int depth, struct mm_walk *walk)
480 struct mem_size_stats *mss = walk->private;
482 mss->swap += shmem_partial_swap_usage(
483 walk->vma->vm_file->f_mapping, addr, end);
485 return 0;
487 #else
488 #define smaps_pte_hole NULL
489 #endif /* CONFIG_SHMEM */
491 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
492 struct mm_walk *walk)
494 struct mem_size_stats *mss = walk->private;
495 struct vm_area_struct *vma = walk->vma;
496 bool locked = !!(vma->vm_flags & VM_LOCKED);
497 struct page *page = NULL;
499 if (pte_present(*pte)) {
500 page = vm_normal_page(vma, addr, *pte);
501 } else if (is_swap_pte(*pte)) {
502 swp_entry_t swpent = pte_to_swp_entry(*pte);
504 if (!non_swap_entry(swpent)) {
505 int mapcount;
507 mss->swap += PAGE_SIZE;
508 mapcount = swp_swapcount(swpent);
509 if (mapcount >= 2) {
510 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
512 do_div(pss_delta, mapcount);
513 mss->swap_pss += pss_delta;
514 } else {
515 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
517 } else if (is_migration_entry(swpent))
518 page = migration_entry_to_page(swpent);
519 else if (is_device_private_entry(swpent))
520 page = device_private_entry_to_page(swpent);
521 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
522 && pte_none(*pte))) {
523 page = find_get_entry(vma->vm_file->f_mapping,
524 linear_page_index(vma, addr));
525 if (!page)
526 return;
528 if (xa_is_value(page))
529 mss->swap += PAGE_SIZE;
530 else
531 put_page(page);
533 return;
536 if (!page)
537 return;
539 smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte), locked);
542 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
543 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
544 struct mm_walk *walk)
546 struct mem_size_stats *mss = walk->private;
547 struct vm_area_struct *vma = walk->vma;
548 bool locked = !!(vma->vm_flags & VM_LOCKED);
549 struct page *page;
551 /* FOLL_DUMP will return -EFAULT on huge zero page */
552 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
553 if (IS_ERR_OR_NULL(page))
554 return;
555 if (PageAnon(page))
556 mss->anonymous_thp += HPAGE_PMD_SIZE;
557 else if (PageSwapBacked(page))
558 mss->shmem_thp += HPAGE_PMD_SIZE;
559 else if (is_zone_device_page(page))
560 /* pass */;
561 else
562 mss->file_thp += HPAGE_PMD_SIZE;
563 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), locked);
565 #else
566 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
567 struct mm_walk *walk)
570 #endif
572 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
573 struct mm_walk *walk)
575 struct vm_area_struct *vma = walk->vma;
576 pte_t *pte;
577 spinlock_t *ptl;
579 ptl = pmd_trans_huge_lock(pmd, vma);
580 if (ptl) {
581 if (pmd_present(*pmd))
582 smaps_pmd_entry(pmd, addr, walk);
583 spin_unlock(ptl);
584 goto out;
587 if (pmd_trans_unstable(pmd))
588 goto out;
590 * The mmap_sem held all the way back in m_start() is what
591 * keeps khugepaged out of here and from collapsing things
592 * in here.
594 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
595 for (; addr != end; pte++, addr += PAGE_SIZE)
596 smaps_pte_entry(pte, addr, walk);
597 pte_unmap_unlock(pte - 1, ptl);
598 out:
599 cond_resched();
600 return 0;
603 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
606 * Don't forget to update Documentation/ on changes.
608 static const char mnemonics[BITS_PER_LONG][2] = {
610 * In case if we meet a flag we don't know about.
612 [0 ... (BITS_PER_LONG-1)] = "??",
614 [ilog2(VM_READ)] = "rd",
615 [ilog2(VM_WRITE)] = "wr",
616 [ilog2(VM_EXEC)] = "ex",
617 [ilog2(VM_SHARED)] = "sh",
618 [ilog2(VM_MAYREAD)] = "mr",
619 [ilog2(VM_MAYWRITE)] = "mw",
620 [ilog2(VM_MAYEXEC)] = "me",
621 [ilog2(VM_MAYSHARE)] = "ms",
622 [ilog2(VM_GROWSDOWN)] = "gd",
623 [ilog2(VM_PFNMAP)] = "pf",
624 [ilog2(VM_DENYWRITE)] = "dw",
625 #ifdef CONFIG_X86_INTEL_MPX
626 [ilog2(VM_MPX)] = "mp",
627 #endif
628 [ilog2(VM_LOCKED)] = "lo",
629 [ilog2(VM_IO)] = "io",
630 [ilog2(VM_SEQ_READ)] = "sr",
631 [ilog2(VM_RAND_READ)] = "rr",
632 [ilog2(VM_DONTCOPY)] = "dc",
633 [ilog2(VM_DONTEXPAND)] = "de",
634 [ilog2(VM_ACCOUNT)] = "ac",
635 [ilog2(VM_NORESERVE)] = "nr",
636 [ilog2(VM_HUGETLB)] = "ht",
637 [ilog2(VM_SYNC)] = "sf",
638 [ilog2(VM_ARCH_1)] = "ar",
639 [ilog2(VM_WIPEONFORK)] = "wf",
640 [ilog2(VM_DONTDUMP)] = "dd",
641 #ifdef CONFIG_MEM_SOFT_DIRTY
642 [ilog2(VM_SOFTDIRTY)] = "sd",
643 #endif
644 [ilog2(VM_MIXEDMAP)] = "mm",
645 [ilog2(VM_HUGEPAGE)] = "hg",
646 [ilog2(VM_NOHUGEPAGE)] = "nh",
647 [ilog2(VM_MERGEABLE)] = "mg",
648 [ilog2(VM_UFFD_MISSING)]= "um",
649 [ilog2(VM_UFFD_WP)] = "uw",
650 #ifdef CONFIG_ARCH_HAS_PKEYS
651 /* These come out via ProtectionKey: */
652 [ilog2(VM_PKEY_BIT0)] = "",
653 [ilog2(VM_PKEY_BIT1)] = "",
654 [ilog2(VM_PKEY_BIT2)] = "",
655 [ilog2(VM_PKEY_BIT3)] = "",
656 #if VM_PKEY_BIT4
657 [ilog2(VM_PKEY_BIT4)] = "",
658 #endif
659 #endif /* CONFIG_ARCH_HAS_PKEYS */
661 size_t i;
663 seq_puts(m, "VmFlags: ");
664 for (i = 0; i < BITS_PER_LONG; i++) {
665 if (!mnemonics[i][0])
666 continue;
667 if (vma->vm_flags & (1UL << i)) {
668 seq_putc(m, mnemonics[i][0]);
669 seq_putc(m, mnemonics[i][1]);
670 seq_putc(m, ' ');
673 seq_putc(m, '\n');
676 #ifdef CONFIG_HUGETLB_PAGE
677 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
678 unsigned long addr, unsigned long end,
679 struct mm_walk *walk)
681 struct mem_size_stats *mss = walk->private;
682 struct vm_area_struct *vma = walk->vma;
683 struct page *page = NULL;
685 if (pte_present(*pte)) {
686 page = vm_normal_page(vma, addr, *pte);
687 } else if (is_swap_pte(*pte)) {
688 swp_entry_t swpent = pte_to_swp_entry(*pte);
690 if (is_migration_entry(swpent))
691 page = migration_entry_to_page(swpent);
692 else if (is_device_private_entry(swpent))
693 page = device_private_entry_to_page(swpent);
695 if (page) {
696 int mapcount = page_mapcount(page);
698 if (mapcount >= 2)
699 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
700 else
701 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
703 return 0;
705 #else
706 #define smaps_hugetlb_range NULL
707 #endif /* HUGETLB_PAGE */
709 static const struct mm_walk_ops smaps_walk_ops = {
710 .pmd_entry = smaps_pte_range,
711 .hugetlb_entry = smaps_hugetlb_range,
714 static const struct mm_walk_ops smaps_shmem_walk_ops = {
715 .pmd_entry = smaps_pte_range,
716 .hugetlb_entry = smaps_hugetlb_range,
717 .pte_hole = smaps_pte_hole,
720 static void smap_gather_stats(struct vm_area_struct *vma,
721 struct mem_size_stats *mss)
723 #ifdef CONFIG_SHMEM
724 /* In case of smaps_rollup, reset the value from previous vma */
725 mss->check_shmem_swap = false;
726 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
728 * For shared or readonly shmem mappings we know that all
729 * swapped out pages belong to the shmem object, and we can
730 * obtain the swap value much more efficiently. For private
731 * writable mappings, we might have COW pages that are
732 * not affected by the parent swapped out pages of the shmem
733 * object, so we have to distinguish them during the page walk.
734 * Unless we know that the shmem object (or the part mapped by
735 * our VMA) has no swapped out pages at all.
737 unsigned long shmem_swapped = shmem_swap_usage(vma);
739 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
740 !(vma->vm_flags & VM_WRITE)) {
741 mss->swap += shmem_swapped;
742 } else {
743 mss->check_shmem_swap = true;
744 walk_page_vma(vma, &smaps_shmem_walk_ops, mss);
745 return;
748 #endif
749 /* mmap_sem is held in m_start */
750 walk_page_vma(vma, &smaps_walk_ops, mss);
753 #define SEQ_PUT_DEC(str, val) \
754 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
756 /* Show the contents common for smaps and smaps_rollup */
757 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
758 bool rollup_mode)
760 SEQ_PUT_DEC("Rss: ", mss->resident);
761 SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT);
762 if (rollup_mode) {
764 * These are meaningful only for smaps_rollup, otherwise two of
765 * them are zero, and the other one is the same as Pss.
767 SEQ_PUT_DEC(" kB\nPss_Anon: ",
768 mss->pss_anon >> PSS_SHIFT);
769 SEQ_PUT_DEC(" kB\nPss_File: ",
770 mss->pss_file >> PSS_SHIFT);
771 SEQ_PUT_DEC(" kB\nPss_Shmem: ",
772 mss->pss_shmem >> PSS_SHIFT);
774 SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean);
775 SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty);
776 SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean);
777 SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty);
778 SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced);
779 SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous);
780 SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree);
781 SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp);
782 SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
783 SEQ_PUT_DEC(" kB\nFilePmdMapped: ", mss->file_thp);
784 SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
785 seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
786 mss->private_hugetlb >> 10, 7);
787 SEQ_PUT_DEC(" kB\nSwap: ", mss->swap);
788 SEQ_PUT_DEC(" kB\nSwapPss: ",
789 mss->swap_pss >> PSS_SHIFT);
790 SEQ_PUT_DEC(" kB\nLocked: ",
791 mss->pss_locked >> PSS_SHIFT);
792 seq_puts(m, " kB\n");
795 static int show_smap(struct seq_file *m, void *v)
797 struct vm_area_struct *vma = v;
798 struct mem_size_stats mss;
800 memset(&mss, 0, sizeof(mss));
802 smap_gather_stats(vma, &mss);
804 show_map_vma(m, vma);
806 SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start);
807 SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
808 SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma));
809 seq_puts(m, " kB\n");
811 __show_smap(m, &mss, false);
813 seq_printf(m, "THPeligible: %d\n",
814 transparent_hugepage_enabled(vma));
816 if (arch_pkeys_enabled())
817 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
818 show_smap_vma_flags(m, vma);
820 return 0;
823 static int show_smaps_rollup(struct seq_file *m, void *v)
825 struct proc_maps_private *priv = m->private;
826 struct mem_size_stats mss;
827 struct mm_struct *mm;
828 struct vm_area_struct *vma;
829 unsigned long last_vma_end = 0;
830 int ret = 0;
832 priv->task = get_proc_task(priv->inode);
833 if (!priv->task)
834 return -ESRCH;
836 mm = priv->mm;
837 if (!mm || !mmget_not_zero(mm)) {
838 ret = -ESRCH;
839 goto out_put_task;
842 memset(&mss, 0, sizeof(mss));
844 ret = down_read_killable(&mm->mmap_sem);
845 if (ret)
846 goto out_put_mm;
848 hold_task_mempolicy(priv);
850 for (vma = priv->mm->mmap; vma; vma = vma->vm_next) {
851 smap_gather_stats(vma, &mss);
852 last_vma_end = vma->vm_end;
855 show_vma_header_prefix(m, priv->mm->mmap->vm_start,
856 last_vma_end, 0, 0, 0, 0);
857 seq_pad(m, ' ');
858 seq_puts(m, "[rollup]\n");
860 __show_smap(m, &mss, true);
862 release_task_mempolicy(priv);
863 up_read(&mm->mmap_sem);
865 out_put_mm:
866 mmput(mm);
867 out_put_task:
868 put_task_struct(priv->task);
869 priv->task = NULL;
871 return ret;
873 #undef SEQ_PUT_DEC
875 static const struct seq_operations proc_pid_smaps_op = {
876 .start = m_start,
877 .next = m_next,
878 .stop = m_stop,
879 .show = show_smap
882 static int pid_smaps_open(struct inode *inode, struct file *file)
884 return do_maps_open(inode, file, &proc_pid_smaps_op);
887 static int smaps_rollup_open(struct inode *inode, struct file *file)
889 int ret;
890 struct proc_maps_private *priv;
892 priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
893 if (!priv)
894 return -ENOMEM;
896 ret = single_open(file, show_smaps_rollup, priv);
897 if (ret)
898 goto out_free;
900 priv->inode = inode;
901 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
902 if (IS_ERR(priv->mm)) {
903 ret = PTR_ERR(priv->mm);
905 single_release(inode, file);
906 goto out_free;
909 return 0;
911 out_free:
912 kfree(priv);
913 return ret;
916 static int smaps_rollup_release(struct inode *inode, struct file *file)
918 struct seq_file *seq = file->private_data;
919 struct proc_maps_private *priv = seq->private;
921 if (priv->mm)
922 mmdrop(priv->mm);
924 kfree(priv);
925 return single_release(inode, file);
928 const struct file_operations proc_pid_smaps_operations = {
929 .open = pid_smaps_open,
930 .read = seq_read,
931 .llseek = seq_lseek,
932 .release = proc_map_release,
935 const struct file_operations proc_pid_smaps_rollup_operations = {
936 .open = smaps_rollup_open,
937 .read = seq_read,
938 .llseek = seq_lseek,
939 .release = smaps_rollup_release,
942 enum clear_refs_types {
943 CLEAR_REFS_ALL = 1,
944 CLEAR_REFS_ANON,
945 CLEAR_REFS_MAPPED,
946 CLEAR_REFS_SOFT_DIRTY,
947 CLEAR_REFS_MM_HIWATER_RSS,
948 CLEAR_REFS_LAST,
951 struct clear_refs_private {
952 enum clear_refs_types type;
955 #ifdef CONFIG_MEM_SOFT_DIRTY
956 static inline void clear_soft_dirty(struct vm_area_struct *vma,
957 unsigned long addr, pte_t *pte)
960 * The soft-dirty tracker uses #PF-s to catch writes
961 * to pages, so write-protect the pte as well. See the
962 * Documentation/admin-guide/mm/soft-dirty.rst for full description
963 * of how soft-dirty works.
965 pte_t ptent = *pte;
967 if (pte_present(ptent)) {
968 pte_t old_pte;
970 old_pte = ptep_modify_prot_start(vma, addr, pte);
971 ptent = pte_wrprotect(old_pte);
972 ptent = pte_clear_soft_dirty(ptent);
973 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
974 } else if (is_swap_pte(ptent)) {
975 ptent = pte_swp_clear_soft_dirty(ptent);
976 set_pte_at(vma->vm_mm, addr, pte, ptent);
979 #else
980 static inline void clear_soft_dirty(struct vm_area_struct *vma,
981 unsigned long addr, pte_t *pte)
984 #endif
986 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
987 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
988 unsigned long addr, pmd_t *pmdp)
990 pmd_t old, pmd = *pmdp;
992 if (pmd_present(pmd)) {
993 /* See comment in change_huge_pmd() */
994 old = pmdp_invalidate(vma, addr, pmdp);
995 if (pmd_dirty(old))
996 pmd = pmd_mkdirty(pmd);
997 if (pmd_young(old))
998 pmd = pmd_mkyoung(pmd);
1000 pmd = pmd_wrprotect(pmd);
1001 pmd = pmd_clear_soft_dirty(pmd);
1003 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1004 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1005 pmd = pmd_swp_clear_soft_dirty(pmd);
1006 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1009 #else
1010 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1011 unsigned long addr, pmd_t *pmdp)
1014 #endif
1016 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1017 unsigned long end, struct mm_walk *walk)
1019 struct clear_refs_private *cp = walk->private;
1020 struct vm_area_struct *vma = walk->vma;
1021 pte_t *pte, ptent;
1022 spinlock_t *ptl;
1023 struct page *page;
1025 ptl = pmd_trans_huge_lock(pmd, vma);
1026 if (ptl) {
1027 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1028 clear_soft_dirty_pmd(vma, addr, pmd);
1029 goto out;
1032 if (!pmd_present(*pmd))
1033 goto out;
1035 page = pmd_page(*pmd);
1037 /* Clear accessed and referenced bits. */
1038 pmdp_test_and_clear_young(vma, addr, pmd);
1039 test_and_clear_page_young(page);
1040 ClearPageReferenced(page);
1041 out:
1042 spin_unlock(ptl);
1043 return 0;
1046 if (pmd_trans_unstable(pmd))
1047 return 0;
1049 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1050 for (; addr != end; pte++, addr += PAGE_SIZE) {
1051 ptent = *pte;
1053 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1054 clear_soft_dirty(vma, addr, pte);
1055 continue;
1058 if (!pte_present(ptent))
1059 continue;
1061 page = vm_normal_page(vma, addr, ptent);
1062 if (!page)
1063 continue;
1065 /* Clear accessed and referenced bits. */
1066 ptep_test_and_clear_young(vma, addr, pte);
1067 test_and_clear_page_young(page);
1068 ClearPageReferenced(page);
1070 pte_unmap_unlock(pte - 1, ptl);
1071 cond_resched();
1072 return 0;
1075 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1076 struct mm_walk *walk)
1078 struct clear_refs_private *cp = walk->private;
1079 struct vm_area_struct *vma = walk->vma;
1081 if (vma->vm_flags & VM_PFNMAP)
1082 return 1;
1085 * Writing 1 to /proc/pid/clear_refs affects all pages.
1086 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1087 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1088 * Writing 4 to /proc/pid/clear_refs affects all pages.
1090 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1091 return 1;
1092 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1093 return 1;
1094 return 0;
1097 static const struct mm_walk_ops clear_refs_walk_ops = {
1098 .pmd_entry = clear_refs_pte_range,
1099 .test_walk = clear_refs_test_walk,
1102 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1103 size_t count, loff_t *ppos)
1105 struct task_struct *task;
1106 char buffer[PROC_NUMBUF];
1107 struct mm_struct *mm;
1108 struct vm_area_struct *vma;
1109 enum clear_refs_types type;
1110 struct mmu_gather tlb;
1111 int itype;
1112 int rv;
1114 memset(buffer, 0, sizeof(buffer));
1115 if (count > sizeof(buffer) - 1)
1116 count = sizeof(buffer) - 1;
1117 if (copy_from_user(buffer, buf, count))
1118 return -EFAULT;
1119 rv = kstrtoint(strstrip(buffer), 10, &itype);
1120 if (rv < 0)
1121 return rv;
1122 type = (enum clear_refs_types)itype;
1123 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1124 return -EINVAL;
1126 task = get_proc_task(file_inode(file));
1127 if (!task)
1128 return -ESRCH;
1129 mm = get_task_mm(task);
1130 if (mm) {
1131 struct mmu_notifier_range range;
1132 struct clear_refs_private cp = {
1133 .type = type,
1136 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1137 if (down_write_killable(&mm->mmap_sem)) {
1138 count = -EINTR;
1139 goto out_mm;
1143 * Writing 5 to /proc/pid/clear_refs resets the peak
1144 * resident set size to this mm's current rss value.
1146 reset_mm_hiwater_rss(mm);
1147 up_write(&mm->mmap_sem);
1148 goto out_mm;
1151 if (down_read_killable(&mm->mmap_sem)) {
1152 count = -EINTR;
1153 goto out_mm;
1155 tlb_gather_mmu(&tlb, mm, 0, -1);
1156 if (type == CLEAR_REFS_SOFT_DIRTY) {
1157 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1158 if (!(vma->vm_flags & VM_SOFTDIRTY))
1159 continue;
1160 up_read(&mm->mmap_sem);
1161 if (down_write_killable(&mm->mmap_sem)) {
1162 count = -EINTR;
1163 goto out_mm;
1166 * Avoid to modify vma->vm_flags
1167 * without locked ops while the
1168 * coredump reads the vm_flags.
1170 if (!mmget_still_valid(mm)) {
1172 * Silently return "count"
1173 * like if get_task_mm()
1174 * failed. FIXME: should this
1175 * function have returned
1176 * -ESRCH if get_task_mm()
1177 * failed like if
1178 * get_proc_task() fails?
1180 up_write(&mm->mmap_sem);
1181 goto out_mm;
1183 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1184 vma->vm_flags &= ~VM_SOFTDIRTY;
1185 vma_set_page_prot(vma);
1187 downgrade_write(&mm->mmap_sem);
1188 break;
1191 mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1192 0, NULL, mm, 0, -1UL);
1193 mmu_notifier_invalidate_range_start(&range);
1195 walk_page_range(mm, 0, mm->highest_vm_end, &clear_refs_walk_ops,
1196 &cp);
1197 if (type == CLEAR_REFS_SOFT_DIRTY)
1198 mmu_notifier_invalidate_range_end(&range);
1199 tlb_finish_mmu(&tlb, 0, -1);
1200 up_read(&mm->mmap_sem);
1201 out_mm:
1202 mmput(mm);
1204 put_task_struct(task);
1206 return count;
1209 const struct file_operations proc_clear_refs_operations = {
1210 .write = clear_refs_write,
1211 .llseek = noop_llseek,
1214 typedef struct {
1215 u64 pme;
1216 } pagemap_entry_t;
1218 struct pagemapread {
1219 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1220 pagemap_entry_t *buffer;
1221 bool show_pfn;
1224 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
1225 #define PAGEMAP_WALK_MASK (PMD_MASK)
1227 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1228 #define PM_PFRAME_BITS 55
1229 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1230 #define PM_SOFT_DIRTY BIT_ULL(55)
1231 #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1232 #define PM_FILE BIT_ULL(61)
1233 #define PM_SWAP BIT_ULL(62)
1234 #define PM_PRESENT BIT_ULL(63)
1236 #define PM_END_OF_BUFFER 1
1238 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1240 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1243 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1244 struct pagemapread *pm)
1246 pm->buffer[pm->pos++] = *pme;
1247 if (pm->pos >= pm->len)
1248 return PM_END_OF_BUFFER;
1249 return 0;
1252 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1253 __always_unused int depth, struct mm_walk *walk)
1255 struct pagemapread *pm = walk->private;
1256 unsigned long addr = start;
1257 int err = 0;
1259 while (addr < end) {
1260 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1261 pagemap_entry_t pme = make_pme(0, 0);
1262 /* End of address space hole, which we mark as non-present. */
1263 unsigned long hole_end;
1265 if (vma)
1266 hole_end = min(end, vma->vm_start);
1267 else
1268 hole_end = end;
1270 for (; addr < hole_end; addr += PAGE_SIZE) {
1271 err = add_to_pagemap(addr, &pme, pm);
1272 if (err)
1273 goto out;
1276 if (!vma)
1277 break;
1279 /* Addresses in the VMA. */
1280 if (vma->vm_flags & VM_SOFTDIRTY)
1281 pme = make_pme(0, PM_SOFT_DIRTY);
1282 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1283 err = add_to_pagemap(addr, &pme, pm);
1284 if (err)
1285 goto out;
1288 out:
1289 return err;
1292 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1293 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1295 u64 frame = 0, flags = 0;
1296 struct page *page = NULL;
1298 if (pte_present(pte)) {
1299 if (pm->show_pfn)
1300 frame = pte_pfn(pte);
1301 flags |= PM_PRESENT;
1302 page = vm_normal_page(vma, addr, pte);
1303 if (pte_soft_dirty(pte))
1304 flags |= PM_SOFT_DIRTY;
1305 } else if (is_swap_pte(pte)) {
1306 swp_entry_t entry;
1307 if (pte_swp_soft_dirty(pte))
1308 flags |= PM_SOFT_DIRTY;
1309 entry = pte_to_swp_entry(pte);
1310 if (pm->show_pfn)
1311 frame = swp_type(entry) |
1312 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1313 flags |= PM_SWAP;
1314 if (is_migration_entry(entry))
1315 page = migration_entry_to_page(entry);
1317 if (is_device_private_entry(entry))
1318 page = device_private_entry_to_page(entry);
1321 if (page && !PageAnon(page))
1322 flags |= PM_FILE;
1323 if (page && page_mapcount(page) == 1)
1324 flags |= PM_MMAP_EXCLUSIVE;
1325 if (vma->vm_flags & VM_SOFTDIRTY)
1326 flags |= PM_SOFT_DIRTY;
1328 return make_pme(frame, flags);
1331 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1332 struct mm_walk *walk)
1334 struct vm_area_struct *vma = walk->vma;
1335 struct pagemapread *pm = walk->private;
1336 spinlock_t *ptl;
1337 pte_t *pte, *orig_pte;
1338 int err = 0;
1340 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1341 ptl = pmd_trans_huge_lock(pmdp, vma);
1342 if (ptl) {
1343 u64 flags = 0, frame = 0;
1344 pmd_t pmd = *pmdp;
1345 struct page *page = NULL;
1347 if (vma->vm_flags & VM_SOFTDIRTY)
1348 flags |= PM_SOFT_DIRTY;
1350 if (pmd_present(pmd)) {
1351 page = pmd_page(pmd);
1353 flags |= PM_PRESENT;
1354 if (pmd_soft_dirty(pmd))
1355 flags |= PM_SOFT_DIRTY;
1356 if (pm->show_pfn)
1357 frame = pmd_pfn(pmd) +
1358 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1360 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1361 else if (is_swap_pmd(pmd)) {
1362 swp_entry_t entry = pmd_to_swp_entry(pmd);
1363 unsigned long offset;
1365 if (pm->show_pfn) {
1366 offset = swp_offset(entry) +
1367 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1368 frame = swp_type(entry) |
1369 (offset << MAX_SWAPFILES_SHIFT);
1371 flags |= PM_SWAP;
1372 if (pmd_swp_soft_dirty(pmd))
1373 flags |= PM_SOFT_DIRTY;
1374 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1375 page = migration_entry_to_page(entry);
1377 #endif
1379 if (page && page_mapcount(page) == 1)
1380 flags |= PM_MMAP_EXCLUSIVE;
1382 for (; addr != end; addr += PAGE_SIZE) {
1383 pagemap_entry_t pme = make_pme(frame, flags);
1385 err = add_to_pagemap(addr, &pme, pm);
1386 if (err)
1387 break;
1388 if (pm->show_pfn) {
1389 if (flags & PM_PRESENT)
1390 frame++;
1391 else if (flags & PM_SWAP)
1392 frame += (1 << MAX_SWAPFILES_SHIFT);
1395 spin_unlock(ptl);
1396 return err;
1399 if (pmd_trans_unstable(pmdp))
1400 return 0;
1401 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1404 * We can assume that @vma always points to a valid one and @end never
1405 * goes beyond vma->vm_end.
1407 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1408 for (; addr < end; pte++, addr += PAGE_SIZE) {
1409 pagemap_entry_t pme;
1411 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1412 err = add_to_pagemap(addr, &pme, pm);
1413 if (err)
1414 break;
1416 pte_unmap_unlock(orig_pte, ptl);
1418 cond_resched();
1420 return err;
1423 #ifdef CONFIG_HUGETLB_PAGE
1424 /* This function walks within one hugetlb entry in the single call */
1425 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1426 unsigned long addr, unsigned long end,
1427 struct mm_walk *walk)
1429 struct pagemapread *pm = walk->private;
1430 struct vm_area_struct *vma = walk->vma;
1431 u64 flags = 0, frame = 0;
1432 int err = 0;
1433 pte_t pte;
1435 if (vma->vm_flags & VM_SOFTDIRTY)
1436 flags |= PM_SOFT_DIRTY;
1438 pte = huge_ptep_get(ptep);
1439 if (pte_present(pte)) {
1440 struct page *page = pte_page(pte);
1442 if (!PageAnon(page))
1443 flags |= PM_FILE;
1445 if (page_mapcount(page) == 1)
1446 flags |= PM_MMAP_EXCLUSIVE;
1448 flags |= PM_PRESENT;
1449 if (pm->show_pfn)
1450 frame = pte_pfn(pte) +
1451 ((addr & ~hmask) >> PAGE_SHIFT);
1454 for (; addr != end; addr += PAGE_SIZE) {
1455 pagemap_entry_t pme = make_pme(frame, flags);
1457 err = add_to_pagemap(addr, &pme, pm);
1458 if (err)
1459 return err;
1460 if (pm->show_pfn && (flags & PM_PRESENT))
1461 frame++;
1464 cond_resched();
1466 return err;
1468 #else
1469 #define pagemap_hugetlb_range NULL
1470 #endif /* HUGETLB_PAGE */
1472 static const struct mm_walk_ops pagemap_ops = {
1473 .pmd_entry = pagemap_pmd_range,
1474 .pte_hole = pagemap_pte_hole,
1475 .hugetlb_entry = pagemap_hugetlb_range,
1479 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1481 * For each page in the address space, this file contains one 64-bit entry
1482 * consisting of the following:
1484 * Bits 0-54 page frame number (PFN) if present
1485 * Bits 0-4 swap type if swapped
1486 * Bits 5-54 swap offset if swapped
1487 * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1488 * Bit 56 page exclusively mapped
1489 * Bits 57-60 zero
1490 * Bit 61 page is file-page or shared-anon
1491 * Bit 62 page swapped
1492 * Bit 63 page present
1494 * If the page is not present but in swap, then the PFN contains an
1495 * encoding of the swap file number and the page's offset into the
1496 * swap. Unmapped pages return a null PFN. This allows determining
1497 * precisely which pages are mapped (or in swap) and comparing mapped
1498 * pages between processes.
1500 * Efficient users of this interface will use /proc/pid/maps to
1501 * determine which areas of memory are actually mapped and llseek to
1502 * skip over unmapped regions.
1504 static ssize_t pagemap_read(struct file *file, char __user *buf,
1505 size_t count, loff_t *ppos)
1507 struct mm_struct *mm = file->private_data;
1508 struct pagemapread pm;
1509 unsigned long src;
1510 unsigned long svpfn;
1511 unsigned long start_vaddr;
1512 unsigned long end_vaddr;
1513 int ret = 0, copied = 0;
1515 if (!mm || !mmget_not_zero(mm))
1516 goto out;
1518 ret = -EINVAL;
1519 /* file position must be aligned */
1520 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1521 goto out_mm;
1523 ret = 0;
1524 if (!count)
1525 goto out_mm;
1527 /* do not disclose physical addresses: attack vector */
1528 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1530 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1531 pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1532 ret = -ENOMEM;
1533 if (!pm.buffer)
1534 goto out_mm;
1536 src = *ppos;
1537 svpfn = src / PM_ENTRY_BYTES;
1538 start_vaddr = svpfn << PAGE_SHIFT;
1539 end_vaddr = mm->task_size;
1541 /* watch out for wraparound */
1542 if (svpfn > mm->task_size >> PAGE_SHIFT)
1543 start_vaddr = end_vaddr;
1546 * The odds are that this will stop walking way
1547 * before end_vaddr, because the length of the
1548 * user buffer is tracked in "pm", and the walk
1549 * will stop when we hit the end of the buffer.
1551 ret = 0;
1552 while (count && (start_vaddr < end_vaddr)) {
1553 int len;
1554 unsigned long end;
1556 pm.pos = 0;
1557 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1558 /* overflow ? */
1559 if (end < start_vaddr || end > end_vaddr)
1560 end = end_vaddr;
1561 ret = down_read_killable(&mm->mmap_sem);
1562 if (ret)
1563 goto out_free;
1564 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1565 up_read(&mm->mmap_sem);
1566 start_vaddr = end;
1568 len = min(count, PM_ENTRY_BYTES * pm.pos);
1569 if (copy_to_user(buf, pm.buffer, len)) {
1570 ret = -EFAULT;
1571 goto out_free;
1573 copied += len;
1574 buf += len;
1575 count -= len;
1577 *ppos += copied;
1578 if (!ret || ret == PM_END_OF_BUFFER)
1579 ret = copied;
1581 out_free:
1582 kfree(pm.buffer);
1583 out_mm:
1584 mmput(mm);
1585 out:
1586 return ret;
1589 static int pagemap_open(struct inode *inode, struct file *file)
1591 struct mm_struct *mm;
1593 mm = proc_mem_open(inode, PTRACE_MODE_READ);
1594 if (IS_ERR(mm))
1595 return PTR_ERR(mm);
1596 file->private_data = mm;
1597 return 0;
1600 static int pagemap_release(struct inode *inode, struct file *file)
1602 struct mm_struct *mm = file->private_data;
1604 if (mm)
1605 mmdrop(mm);
1606 return 0;
1609 const struct file_operations proc_pagemap_operations = {
1610 .llseek = mem_lseek, /* borrow this */
1611 .read = pagemap_read,
1612 .open = pagemap_open,
1613 .release = pagemap_release,
1615 #endif /* CONFIG_PROC_PAGE_MONITOR */
1617 #ifdef CONFIG_NUMA
1619 struct numa_maps {
1620 unsigned long pages;
1621 unsigned long anon;
1622 unsigned long active;
1623 unsigned long writeback;
1624 unsigned long mapcount_max;
1625 unsigned long dirty;
1626 unsigned long swapcache;
1627 unsigned long node[MAX_NUMNODES];
1630 struct numa_maps_private {
1631 struct proc_maps_private proc_maps;
1632 struct numa_maps md;
1635 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1636 unsigned long nr_pages)
1638 int count = page_mapcount(page);
1640 md->pages += nr_pages;
1641 if (pte_dirty || PageDirty(page))
1642 md->dirty += nr_pages;
1644 if (PageSwapCache(page))
1645 md->swapcache += nr_pages;
1647 if (PageActive(page) || PageUnevictable(page))
1648 md->active += nr_pages;
1650 if (PageWriteback(page))
1651 md->writeback += nr_pages;
1653 if (PageAnon(page))
1654 md->anon += nr_pages;
1656 if (count > md->mapcount_max)
1657 md->mapcount_max = count;
1659 md->node[page_to_nid(page)] += nr_pages;
1662 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1663 unsigned long addr)
1665 struct page *page;
1666 int nid;
1668 if (!pte_present(pte))
1669 return NULL;
1671 page = vm_normal_page(vma, addr, pte);
1672 if (!page)
1673 return NULL;
1675 if (PageReserved(page))
1676 return NULL;
1678 nid = page_to_nid(page);
1679 if (!node_isset(nid, node_states[N_MEMORY]))
1680 return NULL;
1682 return page;
1685 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1686 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1687 struct vm_area_struct *vma,
1688 unsigned long addr)
1690 struct page *page;
1691 int nid;
1693 if (!pmd_present(pmd))
1694 return NULL;
1696 page = vm_normal_page_pmd(vma, addr, pmd);
1697 if (!page)
1698 return NULL;
1700 if (PageReserved(page))
1701 return NULL;
1703 nid = page_to_nid(page);
1704 if (!node_isset(nid, node_states[N_MEMORY]))
1705 return NULL;
1707 return page;
1709 #endif
1711 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1712 unsigned long end, struct mm_walk *walk)
1714 struct numa_maps *md = walk->private;
1715 struct vm_area_struct *vma = walk->vma;
1716 spinlock_t *ptl;
1717 pte_t *orig_pte;
1718 pte_t *pte;
1720 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1721 ptl = pmd_trans_huge_lock(pmd, vma);
1722 if (ptl) {
1723 struct page *page;
1725 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1726 if (page)
1727 gather_stats(page, md, pmd_dirty(*pmd),
1728 HPAGE_PMD_SIZE/PAGE_SIZE);
1729 spin_unlock(ptl);
1730 return 0;
1733 if (pmd_trans_unstable(pmd))
1734 return 0;
1735 #endif
1736 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1737 do {
1738 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1739 if (!page)
1740 continue;
1741 gather_stats(page, md, pte_dirty(*pte), 1);
1743 } while (pte++, addr += PAGE_SIZE, addr != end);
1744 pte_unmap_unlock(orig_pte, ptl);
1745 cond_resched();
1746 return 0;
1748 #ifdef CONFIG_HUGETLB_PAGE
1749 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1750 unsigned long addr, unsigned long end, struct mm_walk *walk)
1752 pte_t huge_pte = huge_ptep_get(pte);
1753 struct numa_maps *md;
1754 struct page *page;
1756 if (!pte_present(huge_pte))
1757 return 0;
1759 page = pte_page(huge_pte);
1760 if (!page)
1761 return 0;
1763 md = walk->private;
1764 gather_stats(page, md, pte_dirty(huge_pte), 1);
1765 return 0;
1768 #else
1769 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1770 unsigned long addr, unsigned long end, struct mm_walk *walk)
1772 return 0;
1774 #endif
1776 static const struct mm_walk_ops show_numa_ops = {
1777 .hugetlb_entry = gather_hugetlb_stats,
1778 .pmd_entry = gather_pte_stats,
1782 * Display pages allocated per node and memory policy via /proc.
1784 static int show_numa_map(struct seq_file *m, void *v)
1786 struct numa_maps_private *numa_priv = m->private;
1787 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1788 struct vm_area_struct *vma = v;
1789 struct numa_maps *md = &numa_priv->md;
1790 struct file *file = vma->vm_file;
1791 struct mm_struct *mm = vma->vm_mm;
1792 struct mempolicy *pol;
1793 char buffer[64];
1794 int nid;
1796 if (!mm)
1797 return 0;
1799 /* Ensure we start with an empty set of numa_maps statistics. */
1800 memset(md, 0, sizeof(*md));
1802 pol = __get_vma_policy(vma, vma->vm_start);
1803 if (pol) {
1804 mpol_to_str(buffer, sizeof(buffer), pol);
1805 mpol_cond_put(pol);
1806 } else {
1807 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1810 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1812 if (file) {
1813 seq_puts(m, " file=");
1814 seq_file_path(m, file, "\n\t= ");
1815 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1816 seq_puts(m, " heap");
1817 } else if (is_stack(vma)) {
1818 seq_puts(m, " stack");
1821 if (is_vm_hugetlb_page(vma))
1822 seq_puts(m, " huge");
1824 /* mmap_sem is held by m_start */
1825 walk_page_vma(vma, &show_numa_ops, md);
1827 if (!md->pages)
1828 goto out;
1830 if (md->anon)
1831 seq_printf(m, " anon=%lu", md->anon);
1833 if (md->dirty)
1834 seq_printf(m, " dirty=%lu", md->dirty);
1836 if (md->pages != md->anon && md->pages != md->dirty)
1837 seq_printf(m, " mapped=%lu", md->pages);
1839 if (md->mapcount_max > 1)
1840 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1842 if (md->swapcache)
1843 seq_printf(m, " swapcache=%lu", md->swapcache);
1845 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1846 seq_printf(m, " active=%lu", md->active);
1848 if (md->writeback)
1849 seq_printf(m, " writeback=%lu", md->writeback);
1851 for_each_node_state(nid, N_MEMORY)
1852 if (md->node[nid])
1853 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1855 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1856 out:
1857 seq_putc(m, '\n');
1858 return 0;
1861 static const struct seq_operations proc_pid_numa_maps_op = {
1862 .start = m_start,
1863 .next = m_next,
1864 .stop = m_stop,
1865 .show = show_numa_map,
1868 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1870 return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1871 sizeof(struct numa_maps_private));
1874 const struct file_operations proc_pid_numa_maps_operations = {
1875 .open = pid_numa_maps_open,
1876 .read = seq_read,
1877 .llseek = seq_lseek,
1878 .release = proc_map_release,
1881 #endif /* CONFIG_NUMA */