gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / fs / ubifs / journal.c
blobe5ec1afe1c668019e72cb6341ef48598d793a491
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * This file is part of UBIFS.
5 * Copyright (C) 2006-2008 Nokia Corporation.
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
8 * Adrian Hunter
9 */
12 * This file implements UBIFS journal.
14 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
15 * length and position, while a bud logical eraseblock is any LEB in the main
16 * area. Buds contain file system data - data nodes, inode nodes, etc. The log
17 * contains only references to buds and some other stuff like commit
18 * start node. The idea is that when we commit the journal, we do
19 * not copy the data, the buds just become indexed. Since after the commit the
20 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
21 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
22 * become leafs in the future.
24 * The journal is multi-headed because we want to write data to the journal as
25 * optimally as possible. It is nice to have nodes belonging to the same inode
26 * in one LEB, so we may write data owned by different inodes to different
27 * journal heads, although at present only one data head is used.
29 * For recovery reasons, the base head contains all inode nodes, all directory
30 * entry nodes and all truncate nodes. This means that the other heads contain
31 * only data nodes.
33 * Bud LEBs may be half-indexed. For example, if the bud was not full at the
34 * time of commit, the bud is retained to continue to be used in the journal,
35 * even though the "front" of the LEB is now indexed. In that case, the log
36 * reference contains the offset where the bud starts for the purposes of the
37 * journal.
39 * The journal size has to be limited, because the larger is the journal, the
40 * longer it takes to mount UBIFS (scanning the journal) and the more memory it
41 * takes (indexing in the TNC).
43 * All the journal write operations like 'ubifs_jnl_update()' here, which write
44 * multiple UBIFS nodes to the journal at one go, are atomic with respect to
45 * unclean reboots. Should the unclean reboot happen, the recovery code drops
46 * all the nodes.
49 #include "ubifs.h"
51 /**
52 * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
53 * @ino: the inode to zero out
55 static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
57 memset(ino->padding1, 0, 4);
58 memset(ino->padding2, 0, 26);
61 /**
62 * zero_dent_node_unused - zero out unused fields of an on-flash directory
63 * entry node.
64 * @dent: the directory entry to zero out
66 static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
68 dent->padding1 = 0;
71 /**
72 * zero_trun_node_unused - zero out unused fields of an on-flash truncation
73 * node.
74 * @trun: the truncation node to zero out
76 static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
78 memset(trun->padding, 0, 12);
81 static void ubifs_add_auth_dirt(struct ubifs_info *c, int lnum)
83 if (ubifs_authenticated(c))
84 ubifs_add_dirt(c, lnum, ubifs_auth_node_sz(c));
87 /**
88 * reserve_space - reserve space in the journal.
89 * @c: UBIFS file-system description object
90 * @jhead: journal head number
91 * @len: node length
93 * This function reserves space in journal head @head. If the reservation
94 * succeeded, the journal head stays locked and later has to be unlocked using
95 * 'release_head()'. Returns zero in case of success, %-EAGAIN if commit has to
96 * be done, and other negative error codes in case of other failures.
98 static int reserve_space(struct ubifs_info *c, int jhead, int len)
100 int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
101 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
104 * Typically, the base head has smaller nodes written to it, so it is
105 * better to try to allocate space at the ends of eraseblocks. This is
106 * what the squeeze parameter does.
108 ubifs_assert(c, !c->ro_media && !c->ro_mount);
109 squeeze = (jhead == BASEHD);
110 again:
111 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
113 if (c->ro_error) {
114 err = -EROFS;
115 goto out_unlock;
118 avail = c->leb_size - wbuf->offs - wbuf->used;
119 if (wbuf->lnum != -1 && avail >= len)
120 return 0;
123 * Write buffer wasn't seek'ed or there is no enough space - look for an
124 * LEB with some empty space.
126 lnum = ubifs_find_free_space(c, len, &offs, squeeze);
127 if (lnum >= 0)
128 goto out;
130 err = lnum;
131 if (err != -ENOSPC)
132 goto out_unlock;
135 * No free space, we have to run garbage collector to make
136 * some. But the write-buffer mutex has to be unlocked because
137 * GC also takes it.
139 dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
140 mutex_unlock(&wbuf->io_mutex);
142 lnum = ubifs_garbage_collect(c, 0);
143 if (lnum < 0) {
144 err = lnum;
145 if (err != -ENOSPC)
146 return err;
149 * GC could not make a free LEB. But someone else may
150 * have allocated new bud for this journal head,
151 * because we dropped @wbuf->io_mutex, so try once
152 * again.
154 dbg_jnl("GC couldn't make a free LEB for jhead %s",
155 dbg_jhead(jhead));
156 if (retries++ < 2) {
157 dbg_jnl("retry (%d)", retries);
158 goto again;
161 dbg_jnl("return -ENOSPC");
162 return err;
165 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
166 dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
167 avail = c->leb_size - wbuf->offs - wbuf->used;
169 if (wbuf->lnum != -1 && avail >= len) {
171 * Someone else has switched the journal head and we have
172 * enough space now. This happens when more than one process is
173 * trying to write to the same journal head at the same time.
175 dbg_jnl("return LEB %d back, already have LEB %d:%d",
176 lnum, wbuf->lnum, wbuf->offs + wbuf->used);
177 err = ubifs_return_leb(c, lnum);
178 if (err)
179 goto out_unlock;
180 return 0;
183 offs = 0;
185 out:
187 * Make sure we synchronize the write-buffer before we add the new bud
188 * to the log. Otherwise we may have a power cut after the log
189 * reference node for the last bud (@lnum) is written but before the
190 * write-buffer data are written to the next-to-last bud
191 * (@wbuf->lnum). And the effect would be that the recovery would see
192 * that there is corruption in the next-to-last bud.
194 err = ubifs_wbuf_sync_nolock(wbuf);
195 if (err)
196 goto out_return;
197 err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
198 if (err)
199 goto out_return;
200 err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs);
201 if (err)
202 goto out_unlock;
204 return 0;
206 out_unlock:
207 mutex_unlock(&wbuf->io_mutex);
208 return err;
210 out_return:
211 /* An error occurred and the LEB has to be returned to lprops */
212 ubifs_assert(c, err < 0);
213 err1 = ubifs_return_leb(c, lnum);
214 if (err1 && err == -EAGAIN)
216 * Return original error code only if it is not %-EAGAIN,
217 * which is not really an error. Otherwise, return the error
218 * code of 'ubifs_return_leb()'.
220 err = err1;
221 mutex_unlock(&wbuf->io_mutex);
222 return err;
225 static int ubifs_hash_nodes(struct ubifs_info *c, void *node,
226 int len, struct shash_desc *hash)
228 int auth_node_size = ubifs_auth_node_sz(c);
229 int err;
231 while (1) {
232 const struct ubifs_ch *ch = node;
233 int nodelen = le32_to_cpu(ch->len);
235 ubifs_assert(c, len >= auth_node_size);
237 if (len == auth_node_size)
238 break;
240 ubifs_assert(c, len > nodelen);
241 ubifs_assert(c, ch->magic == cpu_to_le32(UBIFS_NODE_MAGIC));
243 err = ubifs_shash_update(c, hash, (void *)node, nodelen);
244 if (err)
245 return err;
247 node += ALIGN(nodelen, 8);
248 len -= ALIGN(nodelen, 8);
251 return ubifs_prepare_auth_node(c, node, hash);
255 * write_head - write data to a journal head.
256 * @c: UBIFS file-system description object
257 * @jhead: journal head
258 * @buf: buffer to write
259 * @len: length to write
260 * @lnum: LEB number written is returned here
261 * @offs: offset written is returned here
262 * @sync: non-zero if the write-buffer has to by synchronized
264 * This function writes data to the reserved space of journal head @jhead.
265 * Returns zero in case of success and a negative error code in case of
266 * failure.
268 static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
269 int *lnum, int *offs, int sync)
271 int err;
272 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
274 ubifs_assert(c, jhead != GCHD);
276 *lnum = c->jheads[jhead].wbuf.lnum;
277 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
278 dbg_jnl("jhead %s, LEB %d:%d, len %d",
279 dbg_jhead(jhead), *lnum, *offs, len);
281 if (ubifs_authenticated(c)) {
282 err = ubifs_hash_nodes(c, buf, len, c->jheads[jhead].log_hash);
283 if (err)
284 return err;
287 err = ubifs_wbuf_write_nolock(wbuf, buf, len);
288 if (err)
289 return err;
290 if (sync)
291 err = ubifs_wbuf_sync_nolock(wbuf);
292 return err;
296 * make_reservation - reserve journal space.
297 * @c: UBIFS file-system description object
298 * @jhead: journal head
299 * @len: how many bytes to reserve
301 * This function makes space reservation in journal head @jhead. The function
302 * takes the commit lock and locks the journal head, and the caller has to
303 * unlock the head and finish the reservation with 'finish_reservation()'.
304 * Returns zero in case of success and a negative error code in case of
305 * failure.
307 * Note, the journal head may be unlocked as soon as the data is written, while
308 * the commit lock has to be released after the data has been added to the
309 * TNC.
311 static int make_reservation(struct ubifs_info *c, int jhead, int len)
313 int err, cmt_retries = 0, nospc_retries = 0;
315 again:
316 down_read(&c->commit_sem);
317 err = reserve_space(c, jhead, len);
318 if (!err)
319 /* c->commit_sem will get released via finish_reservation(). */
320 return 0;
321 up_read(&c->commit_sem);
323 if (err == -ENOSPC) {
325 * GC could not make any progress. We should try to commit
326 * once because it could make some dirty space and GC would
327 * make progress, so make the error -EAGAIN so that the below
328 * will commit and re-try.
330 if (nospc_retries++ < 2) {
331 dbg_jnl("no space, retry");
332 err = -EAGAIN;
336 * This means that the budgeting is incorrect. We always have
337 * to be able to write to the media, because all operations are
338 * budgeted. Deletions are not budgeted, though, but we reserve
339 * an extra LEB for them.
343 if (err != -EAGAIN)
344 goto out;
347 * -EAGAIN means that the journal is full or too large, or the above
348 * code wants to do one commit. Do this and re-try.
350 if (cmt_retries > 128) {
352 * This should not happen unless the journal size limitations
353 * are too tough.
355 ubifs_err(c, "stuck in space allocation");
356 err = -ENOSPC;
357 goto out;
358 } else if (cmt_retries > 32)
359 ubifs_warn(c, "too many space allocation re-tries (%d)",
360 cmt_retries);
362 dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
363 cmt_retries);
364 cmt_retries += 1;
366 err = ubifs_run_commit(c);
367 if (err)
368 return err;
369 goto again;
371 out:
372 ubifs_err(c, "cannot reserve %d bytes in jhead %d, error %d",
373 len, jhead, err);
374 if (err == -ENOSPC) {
375 /* This are some budgeting problems, print useful information */
376 down_write(&c->commit_sem);
377 dump_stack();
378 ubifs_dump_budg(c, &c->bi);
379 ubifs_dump_lprops(c);
380 cmt_retries = dbg_check_lprops(c);
381 up_write(&c->commit_sem);
383 return err;
387 * release_head - release a journal head.
388 * @c: UBIFS file-system description object
389 * @jhead: journal head
391 * This function releases journal head @jhead which was locked by
392 * the 'make_reservation()' function. It has to be called after each successful
393 * 'make_reservation()' invocation.
395 static inline void release_head(struct ubifs_info *c, int jhead)
397 mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
401 * finish_reservation - finish a reservation.
402 * @c: UBIFS file-system description object
404 * This function finishes journal space reservation. It must be called after
405 * 'make_reservation()'.
407 static void finish_reservation(struct ubifs_info *c)
409 up_read(&c->commit_sem);
413 * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
414 * @mode: inode mode
416 static int get_dent_type(int mode)
418 switch (mode & S_IFMT) {
419 case S_IFREG:
420 return UBIFS_ITYPE_REG;
421 case S_IFDIR:
422 return UBIFS_ITYPE_DIR;
423 case S_IFLNK:
424 return UBIFS_ITYPE_LNK;
425 case S_IFBLK:
426 return UBIFS_ITYPE_BLK;
427 case S_IFCHR:
428 return UBIFS_ITYPE_CHR;
429 case S_IFIFO:
430 return UBIFS_ITYPE_FIFO;
431 case S_IFSOCK:
432 return UBIFS_ITYPE_SOCK;
433 default:
434 BUG();
436 return 0;
440 * pack_inode - pack an inode node.
441 * @c: UBIFS file-system description object
442 * @ino: buffer in which to pack inode node
443 * @inode: inode to pack
444 * @last: indicates the last node of the group
446 static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
447 const struct inode *inode, int last)
449 int data_len = 0, last_reference = !inode->i_nlink;
450 struct ubifs_inode *ui = ubifs_inode(inode);
452 ino->ch.node_type = UBIFS_INO_NODE;
453 ino_key_init_flash(c, &ino->key, inode->i_ino);
454 ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
455 ino->atime_sec = cpu_to_le64(inode->i_atime.tv_sec);
456 ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
457 ino->ctime_sec = cpu_to_le64(inode->i_ctime.tv_sec);
458 ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
459 ino->mtime_sec = cpu_to_le64(inode->i_mtime.tv_sec);
460 ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
461 ino->uid = cpu_to_le32(i_uid_read(inode));
462 ino->gid = cpu_to_le32(i_gid_read(inode));
463 ino->mode = cpu_to_le32(inode->i_mode);
464 ino->flags = cpu_to_le32(ui->flags);
465 ino->size = cpu_to_le64(ui->ui_size);
466 ino->nlink = cpu_to_le32(inode->i_nlink);
467 ino->compr_type = cpu_to_le16(ui->compr_type);
468 ino->data_len = cpu_to_le32(ui->data_len);
469 ino->xattr_cnt = cpu_to_le32(ui->xattr_cnt);
470 ino->xattr_size = cpu_to_le32(ui->xattr_size);
471 ino->xattr_names = cpu_to_le32(ui->xattr_names);
472 zero_ino_node_unused(ino);
475 * Drop the attached data if this is a deletion inode, the data is not
476 * needed anymore.
478 if (!last_reference) {
479 memcpy(ino->data, ui->data, ui->data_len);
480 data_len = ui->data_len;
483 ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
487 * mark_inode_clean - mark UBIFS inode as clean.
488 * @c: UBIFS file-system description object
489 * @ui: UBIFS inode to mark as clean
491 * This helper function marks UBIFS inode @ui as clean by cleaning the
492 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
493 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
494 * just do nothing.
496 static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
498 if (ui->dirty)
499 ubifs_release_dirty_inode_budget(c, ui);
500 ui->dirty = 0;
503 static void set_dent_cookie(struct ubifs_info *c, struct ubifs_dent_node *dent)
505 if (c->double_hash)
506 dent->cookie = (__force __le32) prandom_u32();
507 else
508 dent->cookie = 0;
512 * ubifs_jnl_update - update inode.
513 * @c: UBIFS file-system description object
514 * @dir: parent inode or host inode in case of extended attributes
515 * @nm: directory entry name
516 * @inode: inode to update
517 * @deletion: indicates a directory entry deletion i.e unlink or rmdir
518 * @xent: non-zero if the directory entry is an extended attribute entry
520 * This function updates an inode by writing a directory entry (or extended
521 * attribute entry), the inode itself, and the parent directory inode (or the
522 * host inode) to the journal.
524 * The function writes the host inode @dir last, which is important in case of
525 * extended attributes. Indeed, then we guarantee that if the host inode gets
526 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
527 * the extended attribute inode gets flushed too. And this is exactly what the
528 * user expects - synchronizing the host inode synchronizes its extended
529 * attributes. Similarly, this guarantees that if @dir is synchronized, its
530 * directory entry corresponding to @nm gets synchronized too.
532 * If the inode (@inode) or the parent directory (@dir) are synchronous, this
533 * function synchronizes the write-buffer.
535 * This function marks the @dir and @inode inodes as clean and returns zero on
536 * success. In case of failure, a negative error code is returned.
538 int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
539 const struct fscrypt_name *nm, const struct inode *inode,
540 int deletion, int xent)
542 int err, dlen, ilen, len, lnum, ino_offs, dent_offs;
543 int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
544 int last_reference = !!(deletion && inode->i_nlink == 0);
545 struct ubifs_inode *ui = ubifs_inode(inode);
546 struct ubifs_inode *host_ui = ubifs_inode(dir);
547 struct ubifs_dent_node *dent;
548 struct ubifs_ino_node *ino;
549 union ubifs_key dent_key, ino_key;
550 u8 hash_dent[UBIFS_HASH_ARR_SZ];
551 u8 hash_ino[UBIFS_HASH_ARR_SZ];
552 u8 hash_ino_host[UBIFS_HASH_ARR_SZ];
554 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
556 dlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
557 ilen = UBIFS_INO_NODE_SZ;
560 * If the last reference to the inode is being deleted, then there is
561 * no need to attach and write inode data, it is being deleted anyway.
562 * And if the inode is being deleted, no need to synchronize
563 * write-buffer even if the inode is synchronous.
565 if (!last_reference) {
566 ilen += ui->data_len;
567 sync |= IS_SYNC(inode);
570 aligned_dlen = ALIGN(dlen, 8);
571 aligned_ilen = ALIGN(ilen, 8);
573 len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
574 /* Make sure to also account for extended attributes */
575 if (ubifs_authenticated(c))
576 len += ALIGN(host_ui->data_len, 8) + ubifs_auth_node_sz(c);
577 else
578 len += host_ui->data_len;
580 dent = kzalloc(len, GFP_NOFS);
581 if (!dent)
582 return -ENOMEM;
584 /* Make reservation before allocating sequence numbers */
585 err = make_reservation(c, BASEHD, len);
586 if (err)
587 goto out_free;
589 if (!xent) {
590 dent->ch.node_type = UBIFS_DENT_NODE;
591 if (fname_name(nm) == NULL)
592 dent_key_init_hash(c, &dent_key, dir->i_ino, nm->hash);
593 else
594 dent_key_init(c, &dent_key, dir->i_ino, nm);
595 } else {
596 dent->ch.node_type = UBIFS_XENT_NODE;
597 xent_key_init(c, &dent_key, dir->i_ino, nm);
600 key_write(c, &dent_key, dent->key);
601 dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
602 dent->type = get_dent_type(inode->i_mode);
603 dent->nlen = cpu_to_le16(fname_len(nm));
604 memcpy(dent->name, fname_name(nm), fname_len(nm));
605 dent->name[fname_len(nm)] = '\0';
606 set_dent_cookie(c, dent);
608 zero_dent_node_unused(dent);
609 ubifs_prep_grp_node(c, dent, dlen, 0);
610 err = ubifs_node_calc_hash(c, dent, hash_dent);
611 if (err)
612 goto out_release;
614 ino = (void *)dent + aligned_dlen;
615 pack_inode(c, ino, inode, 0);
616 err = ubifs_node_calc_hash(c, ino, hash_ino);
617 if (err)
618 goto out_release;
620 ino = (void *)ino + aligned_ilen;
621 pack_inode(c, ino, dir, 1);
622 err = ubifs_node_calc_hash(c, ino, hash_ino_host);
623 if (err)
624 goto out_release;
626 if (last_reference) {
627 err = ubifs_add_orphan(c, inode->i_ino);
628 if (err) {
629 release_head(c, BASEHD);
630 goto out_finish;
632 ui->del_cmtno = c->cmt_no;
635 err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
636 if (err)
637 goto out_release;
638 if (!sync) {
639 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
641 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
642 ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
644 release_head(c, BASEHD);
645 kfree(dent);
646 ubifs_add_auth_dirt(c, lnum);
648 if (deletion) {
649 if (fname_name(nm) == NULL)
650 err = ubifs_tnc_remove_dh(c, &dent_key, nm->minor_hash);
651 else
652 err = ubifs_tnc_remove_nm(c, &dent_key, nm);
653 if (err)
654 goto out_ro;
655 err = ubifs_add_dirt(c, lnum, dlen);
656 } else
657 err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen,
658 hash_dent, nm);
659 if (err)
660 goto out_ro;
663 * Note, we do not remove the inode from TNC even if the last reference
664 * to it has just been deleted, because the inode may still be opened.
665 * Instead, the inode has been added to orphan lists and the orphan
666 * subsystem will take further care about it.
668 ino_key_init(c, &ino_key, inode->i_ino);
669 ino_offs = dent_offs + aligned_dlen;
670 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen, hash_ino);
671 if (err)
672 goto out_ro;
674 ino_key_init(c, &ino_key, dir->i_ino);
675 ino_offs += aligned_ilen;
676 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs,
677 UBIFS_INO_NODE_SZ + host_ui->data_len, hash_ino_host);
678 if (err)
679 goto out_ro;
681 finish_reservation(c);
682 spin_lock(&ui->ui_lock);
683 ui->synced_i_size = ui->ui_size;
684 spin_unlock(&ui->ui_lock);
685 if (xent) {
686 spin_lock(&host_ui->ui_lock);
687 host_ui->synced_i_size = host_ui->ui_size;
688 spin_unlock(&host_ui->ui_lock);
690 mark_inode_clean(c, ui);
691 mark_inode_clean(c, host_ui);
692 return 0;
694 out_finish:
695 finish_reservation(c);
696 out_free:
697 kfree(dent);
698 return err;
700 out_release:
701 release_head(c, BASEHD);
702 kfree(dent);
703 out_ro:
704 ubifs_ro_mode(c, err);
705 if (last_reference)
706 ubifs_delete_orphan(c, inode->i_ino);
707 finish_reservation(c);
708 return err;
712 * ubifs_jnl_write_data - write a data node to the journal.
713 * @c: UBIFS file-system description object
714 * @inode: inode the data node belongs to
715 * @key: node key
716 * @buf: buffer to write
717 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
719 * This function writes a data node to the journal. Returns %0 if the data node
720 * was successfully written, and a negative error code in case of failure.
722 int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
723 const union ubifs_key *key, const void *buf, int len)
725 struct ubifs_data_node *data;
726 int err, lnum, offs, compr_type, out_len, compr_len, auth_len;
727 int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1;
728 int write_len;
729 struct ubifs_inode *ui = ubifs_inode(inode);
730 bool encrypted = IS_ENCRYPTED(inode);
731 u8 hash[UBIFS_HASH_ARR_SZ];
733 dbg_jnlk(key, "ino %lu, blk %u, len %d, key ",
734 (unsigned long)key_inum(c, key), key_block(c, key), len);
735 ubifs_assert(c, len <= UBIFS_BLOCK_SIZE);
737 if (encrypted)
738 dlen += UBIFS_CIPHER_BLOCK_SIZE;
740 auth_len = ubifs_auth_node_sz(c);
742 data = kmalloc(dlen + auth_len, GFP_NOFS | __GFP_NOWARN);
743 if (!data) {
745 * Fall-back to the write reserve buffer. Note, we might be
746 * currently on the memory reclaim path, when the kernel is
747 * trying to free some memory by writing out dirty pages. The
748 * write reserve buffer helps us to guarantee that we are
749 * always able to write the data.
751 allocated = 0;
752 mutex_lock(&c->write_reserve_mutex);
753 data = c->write_reserve_buf;
756 data->ch.node_type = UBIFS_DATA_NODE;
757 key_write(c, key, &data->key);
758 data->size = cpu_to_le32(len);
760 if (!(ui->flags & UBIFS_COMPR_FL))
761 /* Compression is disabled for this inode */
762 compr_type = UBIFS_COMPR_NONE;
763 else
764 compr_type = ui->compr_type;
766 out_len = compr_len = dlen - UBIFS_DATA_NODE_SZ;
767 ubifs_compress(c, buf, len, &data->data, &compr_len, &compr_type);
768 ubifs_assert(c, compr_len <= UBIFS_BLOCK_SIZE);
770 if (encrypted) {
771 err = ubifs_encrypt(inode, data, compr_len, &out_len, key_block(c, key));
772 if (err)
773 goto out_free;
775 } else {
776 data->compr_size = 0;
777 out_len = compr_len;
780 dlen = UBIFS_DATA_NODE_SZ + out_len;
781 if (ubifs_authenticated(c))
782 write_len = ALIGN(dlen, 8) + auth_len;
783 else
784 write_len = dlen;
786 data->compr_type = cpu_to_le16(compr_type);
788 /* Make reservation before allocating sequence numbers */
789 err = make_reservation(c, DATAHD, write_len);
790 if (err)
791 goto out_free;
793 ubifs_prepare_node(c, data, dlen, 0);
794 err = write_head(c, DATAHD, data, write_len, &lnum, &offs, 0);
795 if (err)
796 goto out_release;
798 err = ubifs_node_calc_hash(c, data, hash);
799 if (err)
800 goto out_release;
802 ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
803 release_head(c, DATAHD);
805 ubifs_add_auth_dirt(c, lnum);
807 err = ubifs_tnc_add(c, key, lnum, offs, dlen, hash);
808 if (err)
809 goto out_ro;
811 finish_reservation(c);
812 if (!allocated)
813 mutex_unlock(&c->write_reserve_mutex);
814 else
815 kfree(data);
816 return 0;
818 out_release:
819 release_head(c, DATAHD);
820 out_ro:
821 ubifs_ro_mode(c, err);
822 finish_reservation(c);
823 out_free:
824 if (!allocated)
825 mutex_unlock(&c->write_reserve_mutex);
826 else
827 kfree(data);
828 return err;
832 * ubifs_jnl_write_inode - flush inode to the journal.
833 * @c: UBIFS file-system description object
834 * @inode: inode to flush
836 * This function writes inode @inode to the journal. If the inode is
837 * synchronous, it also synchronizes the write-buffer. Returns zero in case of
838 * success and a negative error code in case of failure.
840 int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
842 int err, lnum, offs;
843 struct ubifs_ino_node *ino, *ino_start;
844 struct ubifs_inode *ui = ubifs_inode(inode);
845 int sync = 0, write_len = 0, ilen = UBIFS_INO_NODE_SZ;
846 int last_reference = !inode->i_nlink;
847 int kill_xattrs = ui->xattr_cnt && last_reference;
848 u8 hash[UBIFS_HASH_ARR_SZ];
850 dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
853 * If the inode is being deleted, do not write the attached data. No
854 * need to synchronize the write-buffer either.
856 if (!last_reference) {
857 ilen += ui->data_len;
858 sync = IS_SYNC(inode);
859 } else if (kill_xattrs) {
860 write_len += UBIFS_INO_NODE_SZ * ui->xattr_cnt;
863 if (ubifs_authenticated(c))
864 write_len += ALIGN(ilen, 8) + ubifs_auth_node_sz(c);
865 else
866 write_len += ilen;
868 ino_start = ino = kmalloc(write_len, GFP_NOFS);
869 if (!ino)
870 return -ENOMEM;
872 /* Make reservation before allocating sequence numbers */
873 err = make_reservation(c, BASEHD, write_len);
874 if (err)
875 goto out_free;
877 if (kill_xattrs) {
878 union ubifs_key key;
879 struct fscrypt_name nm = {0};
880 struct inode *xino;
881 struct ubifs_dent_node *xent, *pxent = NULL;
883 if (ui->xattr_cnt >= ubifs_xattr_max_cnt(c)) {
884 ubifs_err(c, "Cannot delete inode, it has too much xattrs!");
885 goto out_release;
888 lowest_xent_key(c, &key, inode->i_ino);
889 while (1) {
890 xent = ubifs_tnc_next_ent(c, &key, &nm);
891 if (IS_ERR(xent)) {
892 err = PTR_ERR(xent);
893 if (err == -ENOENT)
894 break;
896 goto out_release;
899 fname_name(&nm) = xent->name;
900 fname_len(&nm) = le16_to_cpu(xent->nlen);
902 xino = ubifs_iget(c->vfs_sb, le64_to_cpu(xent->inum));
903 if (IS_ERR(xino)) {
904 err = PTR_ERR(xino);
905 ubifs_err(c, "dead directory entry '%s', error %d",
906 xent->name, err);
907 ubifs_ro_mode(c, err);
908 kfree(xent);
909 goto out_release;
911 ubifs_assert(c, ubifs_inode(xino)->xattr);
913 clear_nlink(xino);
914 pack_inode(c, ino, xino, 0);
915 ino = (void *)ino + UBIFS_INO_NODE_SZ;
916 iput(xino);
918 kfree(pxent);
919 pxent = xent;
920 key_read(c, &xent->key, &key);
922 kfree(pxent);
925 pack_inode(c, ino, inode, 1);
926 err = ubifs_node_calc_hash(c, ino, hash);
927 if (err)
928 goto out_release;
930 err = write_head(c, BASEHD, ino_start, write_len, &lnum, &offs, sync);
931 if (err)
932 goto out_release;
933 if (!sync)
934 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
935 inode->i_ino);
936 release_head(c, BASEHD);
938 ubifs_add_auth_dirt(c, lnum);
940 if (last_reference) {
941 err = ubifs_tnc_remove_ino(c, inode->i_ino);
942 if (err)
943 goto out_ro;
944 ubifs_delete_orphan(c, inode->i_ino);
945 err = ubifs_add_dirt(c, lnum, write_len);
946 } else {
947 union ubifs_key key;
949 ino_key_init(c, &key, inode->i_ino);
950 err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash);
952 if (err)
953 goto out_ro;
955 finish_reservation(c);
956 spin_lock(&ui->ui_lock);
957 ui->synced_i_size = ui->ui_size;
958 spin_unlock(&ui->ui_lock);
959 kfree(ino_start);
960 return 0;
962 out_release:
963 release_head(c, BASEHD);
964 out_ro:
965 ubifs_ro_mode(c, err);
966 finish_reservation(c);
967 out_free:
968 kfree(ino_start);
969 return err;
973 * ubifs_jnl_delete_inode - delete an inode.
974 * @c: UBIFS file-system description object
975 * @inode: inode to delete
977 * This function deletes inode @inode which includes removing it from orphans,
978 * deleting it from TNC and, in some cases, writing a deletion inode to the
979 * journal.
981 * When regular file inodes are unlinked or a directory inode is removed, the
982 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
983 * direntry to the media, and adds the inode to orphans. After this, when the
984 * last reference to this inode has been dropped, this function is called. In
985 * general, it has to write one more deletion inode to the media, because if
986 * a commit happened between 'ubifs_jnl_update()' and
987 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
988 * anymore, and in fact it might not be on the flash anymore, because it might
989 * have been garbage-collected already. And for optimization reasons UBIFS does
990 * not read the orphan area if it has been unmounted cleanly, so it would have
991 * no indication in the journal that there is a deleted inode which has to be
992 * removed from TNC.
994 * However, if there was no commit between 'ubifs_jnl_update()' and
995 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
996 * inode to the media for the second time. And this is quite a typical case.
998 * This function returns zero in case of success and a negative error code in
999 * case of failure.
1001 int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
1003 int err;
1004 struct ubifs_inode *ui = ubifs_inode(inode);
1006 ubifs_assert(c, inode->i_nlink == 0);
1008 if (ui->xattr_cnt || ui->del_cmtno != c->cmt_no)
1009 /* A commit happened for sure or inode hosts xattrs */
1010 return ubifs_jnl_write_inode(c, inode);
1012 down_read(&c->commit_sem);
1014 * Check commit number again, because the first test has been done
1015 * without @c->commit_sem, so a commit might have happened.
1017 if (ui->del_cmtno != c->cmt_no) {
1018 up_read(&c->commit_sem);
1019 return ubifs_jnl_write_inode(c, inode);
1022 err = ubifs_tnc_remove_ino(c, inode->i_ino);
1023 if (err)
1024 ubifs_ro_mode(c, err);
1025 else
1026 ubifs_delete_orphan(c, inode->i_ino);
1027 up_read(&c->commit_sem);
1028 return err;
1032 * ubifs_jnl_xrename - cross rename two directory entries.
1033 * @c: UBIFS file-system description object
1034 * @fst_dir: parent inode of 1st directory entry to exchange
1035 * @fst_inode: 1st inode to exchange
1036 * @fst_nm: name of 1st inode to exchange
1037 * @snd_dir: parent inode of 2nd directory entry to exchange
1038 * @snd_inode: 2nd inode to exchange
1039 * @snd_nm: name of 2nd inode to exchange
1040 * @sync: non-zero if the write-buffer has to be synchronized
1042 * This function implements the cross rename operation which may involve
1043 * writing 2 inodes and 2 directory entries. It marks the written inodes as clean
1044 * and returns zero on success. In case of failure, a negative error code is
1045 * returned.
1047 int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir,
1048 const struct inode *fst_inode,
1049 const struct fscrypt_name *fst_nm,
1050 const struct inode *snd_dir,
1051 const struct inode *snd_inode,
1052 const struct fscrypt_name *snd_nm, int sync)
1054 union ubifs_key key;
1055 struct ubifs_dent_node *dent1, *dent2;
1056 int err, dlen1, dlen2, lnum, offs, len, plen = UBIFS_INO_NODE_SZ;
1057 int aligned_dlen1, aligned_dlen2;
1058 int twoparents = (fst_dir != snd_dir);
1059 void *p;
1060 u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1061 u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1062 u8 hash_p1[UBIFS_HASH_ARR_SZ];
1063 u8 hash_p2[UBIFS_HASH_ARR_SZ];
1065 ubifs_assert(c, ubifs_inode(fst_dir)->data_len == 0);
1066 ubifs_assert(c, ubifs_inode(snd_dir)->data_len == 0);
1067 ubifs_assert(c, mutex_is_locked(&ubifs_inode(fst_dir)->ui_mutex));
1068 ubifs_assert(c, mutex_is_locked(&ubifs_inode(snd_dir)->ui_mutex));
1070 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(snd_nm) + 1;
1071 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(fst_nm) + 1;
1072 aligned_dlen1 = ALIGN(dlen1, 8);
1073 aligned_dlen2 = ALIGN(dlen2, 8);
1075 len = aligned_dlen1 + aligned_dlen2 + ALIGN(plen, 8);
1076 if (twoparents)
1077 len += plen;
1079 len += ubifs_auth_node_sz(c);
1081 dent1 = kzalloc(len, GFP_NOFS);
1082 if (!dent1)
1083 return -ENOMEM;
1085 /* Make reservation before allocating sequence numbers */
1086 err = make_reservation(c, BASEHD, len);
1087 if (err)
1088 goto out_free;
1090 /* Make new dent for 1st entry */
1091 dent1->ch.node_type = UBIFS_DENT_NODE;
1092 dent_key_init_flash(c, &dent1->key, snd_dir->i_ino, snd_nm);
1093 dent1->inum = cpu_to_le64(fst_inode->i_ino);
1094 dent1->type = get_dent_type(fst_inode->i_mode);
1095 dent1->nlen = cpu_to_le16(fname_len(snd_nm));
1096 memcpy(dent1->name, fname_name(snd_nm), fname_len(snd_nm));
1097 dent1->name[fname_len(snd_nm)] = '\0';
1098 set_dent_cookie(c, dent1);
1099 zero_dent_node_unused(dent1);
1100 ubifs_prep_grp_node(c, dent1, dlen1, 0);
1101 err = ubifs_node_calc_hash(c, dent1, hash_dent1);
1102 if (err)
1103 goto out_release;
1105 /* Make new dent for 2nd entry */
1106 dent2 = (void *)dent1 + aligned_dlen1;
1107 dent2->ch.node_type = UBIFS_DENT_NODE;
1108 dent_key_init_flash(c, &dent2->key, fst_dir->i_ino, fst_nm);
1109 dent2->inum = cpu_to_le64(snd_inode->i_ino);
1110 dent2->type = get_dent_type(snd_inode->i_mode);
1111 dent2->nlen = cpu_to_le16(fname_len(fst_nm));
1112 memcpy(dent2->name, fname_name(fst_nm), fname_len(fst_nm));
1113 dent2->name[fname_len(fst_nm)] = '\0';
1114 set_dent_cookie(c, dent2);
1115 zero_dent_node_unused(dent2);
1116 ubifs_prep_grp_node(c, dent2, dlen2, 0);
1117 err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1118 if (err)
1119 goto out_release;
1121 p = (void *)dent2 + aligned_dlen2;
1122 if (!twoparents) {
1123 pack_inode(c, p, fst_dir, 1);
1124 err = ubifs_node_calc_hash(c, p, hash_p1);
1125 if (err)
1126 goto out_release;
1127 } else {
1128 pack_inode(c, p, fst_dir, 0);
1129 err = ubifs_node_calc_hash(c, p, hash_p1);
1130 if (err)
1131 goto out_release;
1132 p += ALIGN(plen, 8);
1133 pack_inode(c, p, snd_dir, 1);
1134 err = ubifs_node_calc_hash(c, p, hash_p2);
1135 if (err)
1136 goto out_release;
1139 err = write_head(c, BASEHD, dent1, len, &lnum, &offs, sync);
1140 if (err)
1141 goto out_release;
1142 if (!sync) {
1143 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1145 ubifs_wbuf_add_ino_nolock(wbuf, fst_dir->i_ino);
1146 ubifs_wbuf_add_ino_nolock(wbuf, snd_dir->i_ino);
1148 release_head(c, BASEHD);
1150 ubifs_add_auth_dirt(c, lnum);
1152 dent_key_init(c, &key, snd_dir->i_ino, snd_nm);
1153 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, snd_nm);
1154 if (err)
1155 goto out_ro;
1157 offs += aligned_dlen1;
1158 dent_key_init(c, &key, fst_dir->i_ino, fst_nm);
1159 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, fst_nm);
1160 if (err)
1161 goto out_ro;
1163 offs += aligned_dlen2;
1165 ino_key_init(c, &key, fst_dir->i_ino);
1166 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p1);
1167 if (err)
1168 goto out_ro;
1170 if (twoparents) {
1171 offs += ALIGN(plen, 8);
1172 ino_key_init(c, &key, snd_dir->i_ino);
1173 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p2);
1174 if (err)
1175 goto out_ro;
1178 finish_reservation(c);
1180 mark_inode_clean(c, ubifs_inode(fst_dir));
1181 if (twoparents)
1182 mark_inode_clean(c, ubifs_inode(snd_dir));
1183 kfree(dent1);
1184 return 0;
1186 out_release:
1187 release_head(c, BASEHD);
1188 out_ro:
1189 ubifs_ro_mode(c, err);
1190 finish_reservation(c);
1191 out_free:
1192 kfree(dent1);
1193 return err;
1197 * ubifs_jnl_rename - rename a directory entry.
1198 * @c: UBIFS file-system description object
1199 * @old_dir: parent inode of directory entry to rename
1200 * @old_dentry: directory entry to rename
1201 * @new_dir: parent inode of directory entry to rename
1202 * @new_dentry: new directory entry (or directory entry to replace)
1203 * @sync: non-zero if the write-buffer has to be synchronized
1205 * This function implements the re-name operation which may involve writing up
1206 * to 4 inodes and 2 directory entries. It marks the written inodes as clean
1207 * and returns zero on success. In case of failure, a negative error code is
1208 * returned.
1210 int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
1211 const struct inode *old_inode,
1212 const struct fscrypt_name *old_nm,
1213 const struct inode *new_dir,
1214 const struct inode *new_inode,
1215 const struct fscrypt_name *new_nm,
1216 const struct inode *whiteout, int sync)
1218 void *p;
1219 union ubifs_key key;
1220 struct ubifs_dent_node *dent, *dent2;
1221 int err, dlen1, dlen2, ilen, lnum, offs, len;
1222 int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
1223 int last_reference = !!(new_inode && new_inode->i_nlink == 0);
1224 int move = (old_dir != new_dir);
1225 struct ubifs_inode *uninitialized_var(new_ui);
1226 u8 hash_old_dir[UBIFS_HASH_ARR_SZ];
1227 u8 hash_new_dir[UBIFS_HASH_ARR_SZ];
1228 u8 hash_new_inode[UBIFS_HASH_ARR_SZ];
1229 u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1230 u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1232 ubifs_assert(c, ubifs_inode(old_dir)->data_len == 0);
1233 ubifs_assert(c, ubifs_inode(new_dir)->data_len == 0);
1234 ubifs_assert(c, mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
1235 ubifs_assert(c, mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
1237 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(new_nm) + 1;
1238 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(old_nm) + 1;
1239 if (new_inode) {
1240 new_ui = ubifs_inode(new_inode);
1241 ubifs_assert(c, mutex_is_locked(&new_ui->ui_mutex));
1242 ilen = UBIFS_INO_NODE_SZ;
1243 if (!last_reference)
1244 ilen += new_ui->data_len;
1245 } else
1246 ilen = 0;
1248 aligned_dlen1 = ALIGN(dlen1, 8);
1249 aligned_dlen2 = ALIGN(dlen2, 8);
1250 len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8);
1251 if (move)
1252 len += plen;
1254 len += ubifs_auth_node_sz(c);
1256 dent = kzalloc(len, GFP_NOFS);
1257 if (!dent)
1258 return -ENOMEM;
1260 /* Make reservation before allocating sequence numbers */
1261 err = make_reservation(c, BASEHD, len);
1262 if (err)
1263 goto out_free;
1265 /* Make new dent */
1266 dent->ch.node_type = UBIFS_DENT_NODE;
1267 dent_key_init_flash(c, &dent->key, new_dir->i_ino, new_nm);
1268 dent->inum = cpu_to_le64(old_inode->i_ino);
1269 dent->type = get_dent_type(old_inode->i_mode);
1270 dent->nlen = cpu_to_le16(fname_len(new_nm));
1271 memcpy(dent->name, fname_name(new_nm), fname_len(new_nm));
1272 dent->name[fname_len(new_nm)] = '\0';
1273 set_dent_cookie(c, dent);
1274 zero_dent_node_unused(dent);
1275 ubifs_prep_grp_node(c, dent, dlen1, 0);
1276 err = ubifs_node_calc_hash(c, dent, hash_dent1);
1277 if (err)
1278 goto out_release;
1280 dent2 = (void *)dent + aligned_dlen1;
1281 dent2->ch.node_type = UBIFS_DENT_NODE;
1282 dent_key_init_flash(c, &dent2->key, old_dir->i_ino, old_nm);
1284 if (whiteout) {
1285 dent2->inum = cpu_to_le64(whiteout->i_ino);
1286 dent2->type = get_dent_type(whiteout->i_mode);
1287 } else {
1288 /* Make deletion dent */
1289 dent2->inum = 0;
1290 dent2->type = DT_UNKNOWN;
1292 dent2->nlen = cpu_to_le16(fname_len(old_nm));
1293 memcpy(dent2->name, fname_name(old_nm), fname_len(old_nm));
1294 dent2->name[fname_len(old_nm)] = '\0';
1295 set_dent_cookie(c, dent2);
1296 zero_dent_node_unused(dent2);
1297 ubifs_prep_grp_node(c, dent2, dlen2, 0);
1298 err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1299 if (err)
1300 goto out_release;
1302 p = (void *)dent2 + aligned_dlen2;
1303 if (new_inode) {
1304 pack_inode(c, p, new_inode, 0);
1305 err = ubifs_node_calc_hash(c, p, hash_new_inode);
1306 if (err)
1307 goto out_release;
1309 p += ALIGN(ilen, 8);
1312 if (!move) {
1313 pack_inode(c, p, old_dir, 1);
1314 err = ubifs_node_calc_hash(c, p, hash_old_dir);
1315 if (err)
1316 goto out_release;
1317 } else {
1318 pack_inode(c, p, old_dir, 0);
1319 err = ubifs_node_calc_hash(c, p, hash_old_dir);
1320 if (err)
1321 goto out_release;
1323 p += ALIGN(plen, 8);
1324 pack_inode(c, p, new_dir, 1);
1325 err = ubifs_node_calc_hash(c, p, hash_new_dir);
1326 if (err)
1327 goto out_release;
1330 if (last_reference) {
1331 err = ubifs_add_orphan(c, new_inode->i_ino);
1332 if (err) {
1333 release_head(c, BASEHD);
1334 goto out_finish;
1336 new_ui->del_cmtno = c->cmt_no;
1339 err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
1340 if (err)
1341 goto out_release;
1342 if (!sync) {
1343 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1345 ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1346 ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1347 if (new_inode)
1348 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1349 new_inode->i_ino);
1351 release_head(c, BASEHD);
1353 ubifs_add_auth_dirt(c, lnum);
1355 dent_key_init(c, &key, new_dir->i_ino, new_nm);
1356 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, new_nm);
1357 if (err)
1358 goto out_ro;
1360 offs += aligned_dlen1;
1361 if (whiteout) {
1362 dent_key_init(c, &key, old_dir->i_ino, old_nm);
1363 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, old_nm);
1364 if (err)
1365 goto out_ro;
1367 ubifs_delete_orphan(c, whiteout->i_ino);
1368 } else {
1369 err = ubifs_add_dirt(c, lnum, dlen2);
1370 if (err)
1371 goto out_ro;
1373 dent_key_init(c, &key, old_dir->i_ino, old_nm);
1374 err = ubifs_tnc_remove_nm(c, &key, old_nm);
1375 if (err)
1376 goto out_ro;
1379 offs += aligned_dlen2;
1380 if (new_inode) {
1381 ino_key_init(c, &key, new_inode->i_ino);
1382 err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash_new_inode);
1383 if (err)
1384 goto out_ro;
1385 offs += ALIGN(ilen, 8);
1388 ino_key_init(c, &key, old_dir->i_ino);
1389 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_old_dir);
1390 if (err)
1391 goto out_ro;
1393 if (move) {
1394 offs += ALIGN(plen, 8);
1395 ino_key_init(c, &key, new_dir->i_ino);
1396 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_new_dir);
1397 if (err)
1398 goto out_ro;
1401 finish_reservation(c);
1402 if (new_inode) {
1403 mark_inode_clean(c, new_ui);
1404 spin_lock(&new_ui->ui_lock);
1405 new_ui->synced_i_size = new_ui->ui_size;
1406 spin_unlock(&new_ui->ui_lock);
1408 mark_inode_clean(c, ubifs_inode(old_dir));
1409 if (move)
1410 mark_inode_clean(c, ubifs_inode(new_dir));
1411 kfree(dent);
1412 return 0;
1414 out_release:
1415 release_head(c, BASEHD);
1416 out_ro:
1417 ubifs_ro_mode(c, err);
1418 if (last_reference)
1419 ubifs_delete_orphan(c, new_inode->i_ino);
1420 out_finish:
1421 finish_reservation(c);
1422 out_free:
1423 kfree(dent);
1424 return err;
1428 * truncate_data_node - re-compress/encrypt a truncated data node.
1429 * @c: UBIFS file-system description object
1430 * @inode: inode which referes to the data node
1431 * @block: data block number
1432 * @dn: data node to re-compress
1433 * @new_len: new length
1435 * This function is used when an inode is truncated and the last data node of
1436 * the inode has to be re-compressed/encrypted and re-written.
1438 static int truncate_data_node(const struct ubifs_info *c, const struct inode *inode,
1439 unsigned int block, struct ubifs_data_node *dn,
1440 int *new_len)
1442 void *buf;
1443 int err, dlen, compr_type, out_len, old_dlen;
1445 out_len = le32_to_cpu(dn->size);
1446 buf = kmalloc_array(out_len, WORST_COMPR_FACTOR, GFP_NOFS);
1447 if (!buf)
1448 return -ENOMEM;
1450 dlen = old_dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1451 compr_type = le16_to_cpu(dn->compr_type);
1453 if (IS_ENCRYPTED(inode)) {
1454 err = ubifs_decrypt(inode, dn, &dlen, block);
1455 if (err)
1456 goto out;
1459 if (compr_type == UBIFS_COMPR_NONE) {
1460 out_len = *new_len;
1461 } else {
1462 err = ubifs_decompress(c, &dn->data, dlen, buf, &out_len, compr_type);
1463 if (err)
1464 goto out;
1466 ubifs_compress(c, buf, *new_len, &dn->data, &out_len, &compr_type);
1469 if (IS_ENCRYPTED(inode)) {
1470 err = ubifs_encrypt(inode, dn, out_len, &old_dlen, block);
1471 if (err)
1472 goto out;
1474 out_len = old_dlen;
1475 } else {
1476 dn->compr_size = 0;
1479 ubifs_assert(c, out_len <= UBIFS_BLOCK_SIZE);
1480 dn->compr_type = cpu_to_le16(compr_type);
1481 dn->size = cpu_to_le32(*new_len);
1482 *new_len = UBIFS_DATA_NODE_SZ + out_len;
1483 err = 0;
1484 out:
1485 kfree(buf);
1486 return err;
1490 * ubifs_jnl_truncate - update the journal for a truncation.
1491 * @c: UBIFS file-system description object
1492 * @inode: inode to truncate
1493 * @old_size: old size
1494 * @new_size: new size
1496 * When the size of a file decreases due to truncation, a truncation node is
1497 * written, the journal tree is updated, and the last data block is re-written
1498 * if it has been affected. The inode is also updated in order to synchronize
1499 * the new inode size.
1501 * This function marks the inode as clean and returns zero on success. In case
1502 * of failure, a negative error code is returned.
1504 int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1505 loff_t old_size, loff_t new_size)
1507 union ubifs_key key, to_key;
1508 struct ubifs_ino_node *ino;
1509 struct ubifs_trun_node *trun;
1510 struct ubifs_data_node *uninitialized_var(dn);
1511 int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1512 struct ubifs_inode *ui = ubifs_inode(inode);
1513 ino_t inum = inode->i_ino;
1514 unsigned int blk;
1515 u8 hash_ino[UBIFS_HASH_ARR_SZ];
1516 u8 hash_dn[UBIFS_HASH_ARR_SZ];
1518 dbg_jnl("ino %lu, size %lld -> %lld",
1519 (unsigned long)inum, old_size, new_size);
1520 ubifs_assert(c, !ui->data_len);
1521 ubifs_assert(c, S_ISREG(inode->i_mode));
1522 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
1524 sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1525 UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR;
1527 sz += ubifs_auth_node_sz(c);
1529 ino = kmalloc(sz, GFP_NOFS);
1530 if (!ino)
1531 return -ENOMEM;
1533 trun = (void *)ino + UBIFS_INO_NODE_SZ;
1534 trun->ch.node_type = UBIFS_TRUN_NODE;
1535 trun->inum = cpu_to_le32(inum);
1536 trun->old_size = cpu_to_le64(old_size);
1537 trun->new_size = cpu_to_le64(new_size);
1538 zero_trun_node_unused(trun);
1540 dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1541 if (dlen) {
1542 /* Get last data block so it can be truncated */
1543 dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1544 blk = new_size >> UBIFS_BLOCK_SHIFT;
1545 data_key_init(c, &key, inum, blk);
1546 dbg_jnlk(&key, "last block key ");
1547 err = ubifs_tnc_lookup(c, &key, dn);
1548 if (err == -ENOENT)
1549 dlen = 0; /* Not found (so it is a hole) */
1550 else if (err)
1551 goto out_free;
1552 else {
1553 int dn_len = le32_to_cpu(dn->size);
1555 if (dn_len <= 0 || dn_len > UBIFS_BLOCK_SIZE) {
1556 ubifs_err(c, "bad data node (block %u, inode %lu)",
1557 blk, inode->i_ino);
1558 ubifs_dump_node(c, dn);
1559 goto out_free;
1562 if (dn_len <= dlen)
1563 dlen = 0; /* Nothing to do */
1564 else {
1565 err = truncate_data_node(c, inode, blk, dn, &dlen);
1566 if (err)
1567 goto out_free;
1572 /* Must make reservation before allocating sequence numbers */
1573 len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1575 if (ubifs_authenticated(c))
1576 len += ALIGN(dlen, 8) + ubifs_auth_node_sz(c);
1577 else
1578 len += dlen;
1580 err = make_reservation(c, BASEHD, len);
1581 if (err)
1582 goto out_free;
1584 pack_inode(c, ino, inode, 0);
1585 err = ubifs_node_calc_hash(c, ino, hash_ino);
1586 if (err)
1587 goto out_release;
1589 ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1590 if (dlen) {
1591 ubifs_prep_grp_node(c, dn, dlen, 1);
1592 err = ubifs_node_calc_hash(c, dn, hash_dn);
1593 if (err)
1594 goto out_release;
1597 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1598 if (err)
1599 goto out_release;
1600 if (!sync)
1601 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1602 release_head(c, BASEHD);
1604 ubifs_add_auth_dirt(c, lnum);
1606 if (dlen) {
1607 sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1608 err = ubifs_tnc_add(c, &key, lnum, sz, dlen, hash_dn);
1609 if (err)
1610 goto out_ro;
1613 ino_key_init(c, &key, inum);
1614 err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ, hash_ino);
1615 if (err)
1616 goto out_ro;
1618 err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1619 if (err)
1620 goto out_ro;
1622 bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1623 blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1624 data_key_init(c, &key, inum, blk);
1626 bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1627 blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1628 data_key_init(c, &to_key, inum, blk);
1630 err = ubifs_tnc_remove_range(c, &key, &to_key);
1631 if (err)
1632 goto out_ro;
1634 finish_reservation(c);
1635 spin_lock(&ui->ui_lock);
1636 ui->synced_i_size = ui->ui_size;
1637 spin_unlock(&ui->ui_lock);
1638 mark_inode_clean(c, ui);
1639 kfree(ino);
1640 return 0;
1642 out_release:
1643 release_head(c, BASEHD);
1644 out_ro:
1645 ubifs_ro_mode(c, err);
1646 finish_reservation(c);
1647 out_free:
1648 kfree(ino);
1649 return err;
1654 * ubifs_jnl_delete_xattr - delete an extended attribute.
1655 * @c: UBIFS file-system description object
1656 * @host: host inode
1657 * @inode: extended attribute inode
1658 * @nm: extended attribute entry name
1660 * This function delete an extended attribute which is very similar to
1661 * un-linking regular files - it writes a deletion xentry, a deletion inode and
1662 * updates the target inode. Returns zero in case of success and a negative
1663 * error code in case of failure.
1665 int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1666 const struct inode *inode,
1667 const struct fscrypt_name *nm)
1669 int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen, write_len;
1670 struct ubifs_dent_node *xent;
1671 struct ubifs_ino_node *ino;
1672 union ubifs_key xent_key, key1, key2;
1673 int sync = IS_DIRSYNC(host);
1674 struct ubifs_inode *host_ui = ubifs_inode(host);
1675 u8 hash[UBIFS_HASH_ARR_SZ];
1677 ubifs_assert(c, inode->i_nlink == 0);
1678 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1681 * Since we are deleting the inode, we do not bother to attach any data
1682 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1684 xlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
1685 aligned_xlen = ALIGN(xlen, 8);
1686 hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1687 len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1689 write_len = len + ubifs_auth_node_sz(c);
1691 xent = kzalloc(write_len, GFP_NOFS);
1692 if (!xent)
1693 return -ENOMEM;
1695 /* Make reservation before allocating sequence numbers */
1696 err = make_reservation(c, BASEHD, write_len);
1697 if (err) {
1698 kfree(xent);
1699 return err;
1702 xent->ch.node_type = UBIFS_XENT_NODE;
1703 xent_key_init(c, &xent_key, host->i_ino, nm);
1704 key_write(c, &xent_key, xent->key);
1705 xent->inum = 0;
1706 xent->type = get_dent_type(inode->i_mode);
1707 xent->nlen = cpu_to_le16(fname_len(nm));
1708 memcpy(xent->name, fname_name(nm), fname_len(nm));
1709 xent->name[fname_len(nm)] = '\0';
1710 zero_dent_node_unused(xent);
1711 ubifs_prep_grp_node(c, xent, xlen, 0);
1713 ino = (void *)xent + aligned_xlen;
1714 pack_inode(c, ino, inode, 0);
1715 ino = (void *)ino + UBIFS_INO_NODE_SZ;
1716 pack_inode(c, ino, host, 1);
1717 err = ubifs_node_calc_hash(c, ino, hash);
1718 if (err)
1719 goto out_release;
1721 err = write_head(c, BASEHD, xent, write_len, &lnum, &xent_offs, sync);
1722 if (!sync && !err)
1723 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1724 release_head(c, BASEHD);
1726 ubifs_add_auth_dirt(c, lnum);
1727 kfree(xent);
1728 if (err)
1729 goto out_ro;
1731 /* Remove the extended attribute entry from TNC */
1732 err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1733 if (err)
1734 goto out_ro;
1735 err = ubifs_add_dirt(c, lnum, xlen);
1736 if (err)
1737 goto out_ro;
1740 * Remove all nodes belonging to the extended attribute inode from TNC.
1741 * Well, there actually must be only one node - the inode itself.
1743 lowest_ino_key(c, &key1, inode->i_ino);
1744 highest_ino_key(c, &key2, inode->i_ino);
1745 err = ubifs_tnc_remove_range(c, &key1, &key2);
1746 if (err)
1747 goto out_ro;
1748 err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1749 if (err)
1750 goto out_ro;
1752 /* And update TNC with the new host inode position */
1753 ino_key_init(c, &key1, host->i_ino);
1754 err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen, hash);
1755 if (err)
1756 goto out_ro;
1758 finish_reservation(c);
1759 spin_lock(&host_ui->ui_lock);
1760 host_ui->synced_i_size = host_ui->ui_size;
1761 spin_unlock(&host_ui->ui_lock);
1762 mark_inode_clean(c, host_ui);
1763 return 0;
1765 out_release:
1766 kfree(xent);
1767 release_head(c, BASEHD);
1768 out_ro:
1769 ubifs_ro_mode(c, err);
1770 finish_reservation(c);
1771 return err;
1775 * ubifs_jnl_change_xattr - change an extended attribute.
1776 * @c: UBIFS file-system description object
1777 * @inode: extended attribute inode
1778 * @host: host inode
1780 * This function writes the updated version of an extended attribute inode and
1781 * the host inode to the journal (to the base head). The host inode is written
1782 * after the extended attribute inode in order to guarantee that the extended
1783 * attribute will be flushed when the inode is synchronized by 'fsync()' and
1784 * consequently, the write-buffer is synchronized. This function returns zero
1785 * in case of success and a negative error code in case of failure.
1787 int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1788 const struct inode *host)
1790 int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1791 struct ubifs_inode *host_ui = ubifs_inode(host);
1792 struct ubifs_ino_node *ino;
1793 union ubifs_key key;
1794 int sync = IS_DIRSYNC(host);
1795 u8 hash_host[UBIFS_HASH_ARR_SZ];
1796 u8 hash[UBIFS_HASH_ARR_SZ];
1798 dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1799 ubifs_assert(c, host->i_nlink > 0);
1800 ubifs_assert(c, inode->i_nlink > 0);
1801 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1803 len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1804 len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1805 aligned_len1 = ALIGN(len1, 8);
1806 aligned_len = aligned_len1 + ALIGN(len2, 8);
1808 aligned_len += ubifs_auth_node_sz(c);
1810 ino = kzalloc(aligned_len, GFP_NOFS);
1811 if (!ino)
1812 return -ENOMEM;
1814 /* Make reservation before allocating sequence numbers */
1815 err = make_reservation(c, BASEHD, aligned_len);
1816 if (err)
1817 goto out_free;
1819 pack_inode(c, ino, host, 0);
1820 err = ubifs_node_calc_hash(c, ino, hash_host);
1821 if (err)
1822 goto out_release;
1823 pack_inode(c, (void *)ino + aligned_len1, inode, 1);
1824 err = ubifs_node_calc_hash(c, (void *)ino + aligned_len1, hash);
1825 if (err)
1826 goto out_release;
1828 err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
1829 if (!sync && !err) {
1830 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1832 ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
1833 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
1835 release_head(c, BASEHD);
1836 if (err)
1837 goto out_ro;
1839 ubifs_add_auth_dirt(c, lnum);
1841 ino_key_init(c, &key, host->i_ino);
1842 err = ubifs_tnc_add(c, &key, lnum, offs, len1, hash_host);
1843 if (err)
1844 goto out_ro;
1846 ino_key_init(c, &key, inode->i_ino);
1847 err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2, hash);
1848 if (err)
1849 goto out_ro;
1851 finish_reservation(c);
1852 spin_lock(&host_ui->ui_lock);
1853 host_ui->synced_i_size = host_ui->ui_size;
1854 spin_unlock(&host_ui->ui_lock);
1855 mark_inode_clean(c, host_ui);
1856 kfree(ino);
1857 return 0;
1859 out_release:
1860 release_head(c, BASEHD);
1861 out_ro:
1862 ubifs_ro_mode(c, err);
1863 finish_reservation(c);
1864 out_free:
1865 kfree(ino);
1866 return err;