1 // SPDX-License-Identifier: GPL-2.0-only
3 * This file is part of UBIFS.
5 * Copyright (C) 2006-2008 Nokia Corporation.
7 * Authors: Adrian Hunter
8 * Artem Bityutskiy (Битюцкий Артём)
11 /* This file implements TNC functions for committing */
13 #include <linux/random.h>
17 * make_idx_node - make an index node for fill-the-gaps method of TNC commit.
18 * @c: UBIFS file-system description object
19 * @idx: buffer in which to place new index node
20 * @znode: znode from which to make new index node
21 * @lnum: LEB number where new index node will be written
22 * @offs: offset where new index node will be written
23 * @len: length of new index node
25 static int make_idx_node(struct ubifs_info
*c
, struct ubifs_idx_node
*idx
,
26 struct ubifs_znode
*znode
, int lnum
, int offs
, int len
)
28 struct ubifs_znode
*zp
;
29 u8 hash
[UBIFS_HASH_ARR_SZ
];
33 idx
->ch
.node_type
= UBIFS_IDX_NODE
;
34 idx
->child_cnt
= cpu_to_le16(znode
->child_cnt
);
35 idx
->level
= cpu_to_le16(znode
->level
);
36 for (i
= 0; i
< znode
->child_cnt
; i
++) {
37 struct ubifs_branch
*br
= ubifs_idx_branch(c
, idx
, i
);
38 struct ubifs_zbranch
*zbr
= &znode
->zbranch
[i
];
40 key_write_idx(c
, &zbr
->key
, &br
->key
);
41 br
->lnum
= cpu_to_le32(zbr
->lnum
);
42 br
->offs
= cpu_to_le32(zbr
->offs
);
43 br
->len
= cpu_to_le32(zbr
->len
);
44 ubifs_copy_hash(c
, zbr
->hash
, ubifs_branch_hash(c
, br
));
45 if (!zbr
->lnum
|| !zbr
->len
) {
46 ubifs_err(c
, "bad ref in znode");
47 ubifs_dump_znode(c
, znode
);
49 ubifs_dump_znode(c
, zbr
->znode
);
54 ubifs_prepare_node(c
, idx
, len
, 0);
55 ubifs_node_calc_hash(c
, idx
, hash
);
61 err
= insert_old_idx_znode(c
, znode
);
63 /* Update the parent */
66 struct ubifs_zbranch
*zbr
;
68 zbr
= &zp
->zbranch
[znode
->iip
];
72 ubifs_copy_hash(c
, hash
, zbr
->hash
);
77 ubifs_copy_hash(c
, hash
, c
->zroot
.hash
);
79 c
->calc_idx_sz
+= ALIGN(len
, 8);
81 atomic_long_dec(&c
->dirty_zn_cnt
);
83 ubifs_assert(c
, ubifs_zn_dirty(znode
));
84 ubifs_assert(c
, ubifs_zn_cow(znode
));
87 * Note, unlike 'write_index()' we do not add memory barriers here
88 * because this function is called with @c->tnc_mutex locked.
90 __clear_bit(DIRTY_ZNODE
, &znode
->flags
);
91 __clear_bit(COW_ZNODE
, &znode
->flags
);
97 * fill_gap - make index nodes in gaps in dirty index LEBs.
98 * @c: UBIFS file-system description object
99 * @lnum: LEB number that gap appears in
100 * @gap_start: offset of start of gap
101 * @gap_end: offset of end of gap
102 * @dirt: adds dirty space to this
104 * This function returns the number of index nodes written into the gap.
106 static int fill_gap(struct ubifs_info
*c
, int lnum
, int gap_start
, int gap_end
,
109 int len
, gap_remains
, gap_pos
, written
, pad_len
;
111 ubifs_assert(c
, (gap_start
& 7) == 0);
112 ubifs_assert(c
, (gap_end
& 7) == 0);
113 ubifs_assert(c
, gap_end
>= gap_start
);
115 gap_remains
= gap_end
- gap_start
;
121 len
= ubifs_idx_node_sz(c
, c
->enext
->child_cnt
);
122 if (len
< gap_remains
) {
123 struct ubifs_znode
*znode
= c
->enext
;
124 const int alen
= ALIGN(len
, 8);
127 ubifs_assert(c
, alen
<= gap_remains
);
128 err
= make_idx_node(c
, c
->ileb_buf
+ gap_pos
, znode
,
134 c
->enext
= znode
->cnext
;
135 if (c
->enext
== c
->cnext
)
141 if (gap_end
== c
->leb_size
) {
142 c
->ileb_len
= ALIGN(gap_pos
, c
->min_io_size
);
143 /* Pad to end of min_io_size */
144 pad_len
= c
->ileb_len
- gap_pos
;
146 /* Pad to end of gap */
147 pad_len
= gap_remains
;
148 dbg_gc("LEB %d:%d to %d len %d nodes written %d wasted bytes %d",
149 lnum
, gap_start
, gap_end
, gap_end
- gap_start
, written
, pad_len
);
150 ubifs_pad(c
, c
->ileb_buf
+ gap_pos
, pad_len
);
156 * find_old_idx - find an index node obsoleted since the last commit start.
157 * @c: UBIFS file-system description object
158 * @lnum: LEB number of obsoleted index node
159 * @offs: offset of obsoleted index node
161 * Returns %1 if found and %0 otherwise.
163 static int find_old_idx(struct ubifs_info
*c
, int lnum
, int offs
)
165 struct ubifs_old_idx
*o
;
168 p
= c
->old_idx
.rb_node
;
170 o
= rb_entry(p
, struct ubifs_old_idx
, rb
);
173 else if (lnum
> o
->lnum
)
175 else if (offs
< o
->offs
)
177 else if (offs
> o
->offs
)
186 * is_idx_node_in_use - determine if an index node can be overwritten.
187 * @c: UBIFS file-system description object
188 * @key: key of index node
189 * @level: index node level
190 * @lnum: LEB number of index node
191 * @offs: offset of index node
193 * If @key / @lnum / @offs identify an index node that was not part of the old
194 * index, then this function returns %0 (obsolete). Else if the index node was
195 * part of the old index but is now dirty %1 is returned, else if it is clean %2
196 * is returned. A negative error code is returned on failure.
198 static int is_idx_node_in_use(struct ubifs_info
*c
, union ubifs_key
*key
,
199 int level
, int lnum
, int offs
)
203 ret
= is_idx_node_in_tnc(c
, key
, level
, lnum
, offs
);
205 return ret
; /* Error code */
207 if (find_old_idx(c
, lnum
, offs
))
213 * layout_leb_in_gaps - layout index nodes using in-the-gaps method.
214 * @c: UBIFS file-system description object
215 * @p: return LEB number in @c->gap_lebs[p]
217 * This function lays out new index nodes for dirty znodes using in-the-gaps
218 * method of TNC commit.
219 * This function merely puts the next znode into the next gap, making no attempt
220 * to try to maximise the number of znodes that fit.
221 * This function returns the number of index nodes written into the gaps, or a
222 * negative error code on failure.
224 static int layout_leb_in_gaps(struct ubifs_info
*c
, int p
)
226 struct ubifs_scan_leb
*sleb
;
227 struct ubifs_scan_node
*snod
;
228 int lnum
, dirt
= 0, gap_start
, gap_end
, err
, written
, tot_written
;
231 /* Get an index LEB with lots of obsolete index nodes */
232 lnum
= ubifs_find_dirty_idx_leb(c
);
235 * There also may be dirt in the index head that could be
236 * filled, however we do not check there at present.
238 return lnum
; /* Error code */
239 c
->gap_lebs
[p
] = lnum
;
240 dbg_gc("LEB %d", lnum
);
242 * Scan the index LEB. We use the generic scan for this even though
243 * it is more comprehensive and less efficient than is needed for this
246 sleb
= ubifs_scan(c
, lnum
, 0, c
->ileb_buf
, 0);
249 return PTR_ERR(sleb
);
251 list_for_each_entry(snod
, &sleb
->nodes
, list
) {
252 struct ubifs_idx_node
*idx
;
255 ubifs_assert(c
, snod
->type
== UBIFS_IDX_NODE
);
257 key_read(c
, ubifs_idx_key(c
, idx
), &snod
->key
);
258 level
= le16_to_cpu(idx
->level
);
259 /* Determine if the index node is in use (not obsolete) */
260 in_use
= is_idx_node_in_use(c
, &snod
->key
, level
, lnum
,
263 ubifs_scan_destroy(sleb
);
264 return in_use
; /* Error code */
268 dirt
+= ALIGN(snod
->len
, 8);
270 * The obsolete index nodes form gaps that can be
271 * overwritten. This gap has ended because we have
272 * found an index node that is still in use
275 gap_end
= snod
->offs
;
276 /* Try to fill gap */
277 written
= fill_gap(c
, lnum
, gap_start
, gap_end
, &dirt
);
279 ubifs_scan_destroy(sleb
);
280 return written
; /* Error code */
282 tot_written
+= written
;
283 gap_start
= ALIGN(snod
->offs
+ snod
->len
, 8);
286 ubifs_scan_destroy(sleb
);
287 c
->ileb_len
= c
->leb_size
;
288 gap_end
= c
->leb_size
;
289 /* Try to fill gap */
290 written
= fill_gap(c
, lnum
, gap_start
, gap_end
, &dirt
);
292 return written
; /* Error code */
293 tot_written
+= written
;
294 if (tot_written
== 0) {
295 struct ubifs_lprops lp
;
297 dbg_gc("LEB %d wrote %d index nodes", lnum
, tot_written
);
298 err
= ubifs_read_one_lp(c
, lnum
, &lp
);
301 if (lp
.free
== c
->leb_size
) {
303 * We must have snatched this LEB from the idx_gc list
304 * so we need to correct the free and dirty space.
306 err
= ubifs_change_one_lp(c
, lnum
,
307 c
->leb_size
- c
->ileb_len
,
314 err
= ubifs_change_one_lp(c
, lnum
, c
->leb_size
- c
->ileb_len
, dirt
,
318 err
= ubifs_leb_change(c
, lnum
, c
->ileb_buf
, c
->ileb_len
);
321 dbg_gc("LEB %d wrote %d index nodes", lnum
, tot_written
);
326 * get_leb_cnt - calculate the number of empty LEBs needed to commit.
327 * @c: UBIFS file-system description object
328 * @cnt: number of znodes to commit
330 * This function returns the number of empty LEBs needed to commit @cnt znodes
331 * to the current index head. The number is not exact and may be more than
334 static int get_leb_cnt(struct ubifs_info
*c
, int cnt
)
338 /* Assume maximum index node size (i.e. overestimate space needed) */
339 cnt
-= (c
->leb_size
- c
->ihead_offs
) / c
->max_idx_node_sz
;
342 d
= c
->leb_size
/ c
->max_idx_node_sz
;
343 return DIV_ROUND_UP(cnt
, d
);
347 * layout_in_gaps - in-the-gaps method of committing TNC.
348 * @c: UBIFS file-system description object
349 * @cnt: number of dirty znodes to commit.
351 * This function lays out new index nodes for dirty znodes using in-the-gaps
352 * method of TNC commit.
354 * This function returns %0 on success and a negative error code on failure.
356 static int layout_in_gaps(struct ubifs_info
*c
, int cnt
)
358 int err
, leb_needed_cnt
, written
, p
= 0, old_idx_lebs
, *gap_lebs
;
360 dbg_gc("%d znodes to write", cnt
);
362 c
->gap_lebs
= kmalloc_array(c
->lst
.idx_lebs
+ 1, sizeof(int),
367 old_idx_lebs
= c
->lst
.idx_lebs
;
369 ubifs_assert(c
, p
< c
->lst
.idx_lebs
);
370 written
= layout_leb_in_gaps(c
, p
);
373 if (err
!= -ENOSPC
) {
378 if (!dbg_is_chk_index(c
)) {
380 * Do not print scary warnings if the debugging
381 * option which forces in-the-gaps is enabled.
383 ubifs_warn(c
, "out of space");
384 ubifs_dump_budg(c
, &c
->bi
);
385 ubifs_dump_lprops(c
);
387 /* Try to commit anyway */
392 leb_needed_cnt
= get_leb_cnt(c
, cnt
);
393 dbg_gc("%d znodes remaining, need %d LEBs, have %d", cnt
,
394 leb_needed_cnt
, c
->ileb_cnt
);
396 * Dynamically change the size of @c->gap_lebs to prevent
397 * oob, because @c->lst.idx_lebs could be increased by
398 * function @get_idx_gc_leb (called by layout_leb_in_gaps->
399 * ubifs_find_dirty_idx_leb) during loop. Only enlarge
400 * @c->gap_lebs when needed.
403 if (leb_needed_cnt
> c
->ileb_cnt
&& p
>= old_idx_lebs
&&
404 old_idx_lebs
< c
->lst
.idx_lebs
) {
405 old_idx_lebs
= c
->lst
.idx_lebs
;
406 gap_lebs
= krealloc(c
->gap_lebs
, sizeof(int) *
407 (old_idx_lebs
+ 1), GFP_NOFS
);
413 c
->gap_lebs
= gap_lebs
;
415 } while (leb_needed_cnt
> c
->ileb_cnt
);
422 * layout_in_empty_space - layout index nodes in empty space.
423 * @c: UBIFS file-system description object
425 * This function lays out new index nodes for dirty znodes using empty LEBs.
427 * This function returns %0 on success and a negative error code on failure.
429 static int layout_in_empty_space(struct ubifs_info
*c
)
431 struct ubifs_znode
*znode
, *cnext
, *zp
;
432 int lnum
, offs
, len
, next_len
, buf_len
, buf_offs
, used
, avail
;
439 lnum
= c
->ihead_lnum
;
440 buf_offs
= c
->ihead_offs
;
442 buf_len
= ubifs_idx_node_sz(c
, c
->fanout
);
443 buf_len
= ALIGN(buf_len
, c
->min_io_size
);
447 /* Ensure there is enough room for first write */
448 next_len
= ubifs_idx_node_sz(c
, cnext
->child_cnt
);
449 if (buf_offs
+ next_len
> c
->leb_size
)
455 len
= ubifs_idx_node_sz(c
, znode
->child_cnt
);
457 /* Determine the index node position */
459 if (c
->ileb_nxt
>= c
->ileb_cnt
) {
460 ubifs_err(c
, "out of space");
463 lnum
= c
->ilebs
[c
->ileb_nxt
++];
469 offs
= buf_offs
+ used
;
475 /* Update the parent */
478 struct ubifs_zbranch
*zbr
;
482 zbr
= &zp
->zbranch
[i
];
487 c
->zroot
.lnum
= lnum
;
488 c
->zroot
.offs
= offs
;
491 c
->calc_idx_sz
+= ALIGN(len
, 8);
494 * Once lprops is updated, we can decrease the dirty znode count
495 * but it is easier to just do it here.
497 atomic_long_dec(&c
->dirty_zn_cnt
);
500 * Calculate the next index node length to see if there is
503 cnext
= znode
->cnext
;
504 if (cnext
== c
->cnext
)
507 next_len
= ubifs_idx_node_sz(c
, cnext
->child_cnt
);
509 /* Update buffer positions */
511 used
+= ALIGN(len
, 8);
512 avail
-= ALIGN(len
, 8);
515 buf_offs
+ used
+ next_len
<= c
->leb_size
&&
519 if (avail
<= 0 && next_len
&&
520 buf_offs
+ used
+ next_len
<= c
->leb_size
)
523 blen
= ALIGN(wlen
, c
->min_io_size
);
525 /* The buffer is full or there are no more znodes to do */
528 if (buf_offs
+ next_len
> c
->leb_size
) {
529 err
= ubifs_update_one_lp(c
, lnum
,
530 c
->leb_size
- buf_offs
, blen
- used
,
539 avail
= buf_len
- used
;
542 err
= ubifs_update_one_lp(c
, lnum
, c
->leb_size
- buf_offs
,
549 c
->dbg
->new_ihead_lnum
= lnum
;
550 c
->dbg
->new_ihead_offs
= buf_offs
;
556 * layout_commit - determine positions of index nodes to commit.
557 * @c: UBIFS file-system description object
558 * @no_space: indicates that insufficient empty LEBs were allocated
559 * @cnt: number of znodes to commit
561 * Calculate and update the positions of index nodes to commit. If there were
562 * an insufficient number of empty LEBs allocated, then index nodes are placed
563 * into the gaps created by obsolete index nodes in non-empty index LEBs. For
564 * this purpose, an obsolete index node is one that was not in the index as at
565 * the end of the last commit. To write "in-the-gaps" requires that those index
566 * LEBs are updated atomically in-place.
568 static int layout_commit(struct ubifs_info
*c
, int no_space
, int cnt
)
573 err
= layout_in_gaps(c
, cnt
);
577 err
= layout_in_empty_space(c
);
582 * find_first_dirty - find first dirty znode.
583 * @znode: znode to begin searching from
585 static struct ubifs_znode
*find_first_dirty(struct ubifs_znode
*znode
)
593 if (znode
->level
== 0) {
594 if (ubifs_zn_dirty(znode
))
599 for (i
= 0; i
< znode
->child_cnt
; i
++) {
600 struct ubifs_zbranch
*zbr
= &znode
->zbranch
[i
];
602 if (zbr
->znode
&& ubifs_zn_dirty(zbr
->znode
)) {
609 if (ubifs_zn_dirty(znode
))
617 * find_next_dirty - find next dirty znode.
618 * @znode: znode to begin searching from
620 static struct ubifs_znode
*find_next_dirty(struct ubifs_znode
*znode
)
622 int n
= znode
->iip
+ 1;
624 znode
= znode
->parent
;
627 for (; n
< znode
->child_cnt
; n
++) {
628 struct ubifs_zbranch
*zbr
= &znode
->zbranch
[n
];
630 if (zbr
->znode
&& ubifs_zn_dirty(zbr
->znode
))
631 return find_first_dirty(zbr
->znode
);
637 * get_znodes_to_commit - create list of dirty znodes to commit.
638 * @c: UBIFS file-system description object
640 * This function returns the number of znodes to commit.
642 static int get_znodes_to_commit(struct ubifs_info
*c
)
644 struct ubifs_znode
*znode
, *cnext
;
647 c
->cnext
= find_first_dirty(c
->zroot
.znode
);
648 znode
= c
->enext
= c
->cnext
;
650 dbg_cmt("no znodes to commit");
655 ubifs_assert(c
, !ubifs_zn_cow(znode
));
656 __set_bit(COW_ZNODE
, &znode
->flags
);
658 cnext
= find_next_dirty(znode
);
660 znode
->cnext
= c
->cnext
;
663 znode
->cparent
= znode
->parent
;
664 znode
->ciip
= znode
->iip
;
665 znode
->cnext
= cnext
;
669 dbg_cmt("committing %d znodes", cnt
);
670 ubifs_assert(c
, cnt
== atomic_long_read(&c
->dirty_zn_cnt
));
675 * alloc_idx_lebs - allocate empty LEBs to be used to commit.
676 * @c: UBIFS file-system description object
677 * @cnt: number of znodes to commit
679 * This function returns %-ENOSPC if it cannot allocate a sufficient number of
680 * empty LEBs. %0 is returned on success, otherwise a negative error code
683 static int alloc_idx_lebs(struct ubifs_info
*c
, int cnt
)
685 int i
, leb_cnt
, lnum
;
689 leb_cnt
= get_leb_cnt(c
, cnt
);
690 dbg_cmt("need about %d empty LEBS for TNC commit", leb_cnt
);
693 c
->ilebs
= kmalloc_array(leb_cnt
, sizeof(int), GFP_NOFS
);
696 for (i
= 0; i
< leb_cnt
; i
++) {
697 lnum
= ubifs_find_free_leb_for_idx(c
);
700 c
->ilebs
[c
->ileb_cnt
++] = lnum
;
701 dbg_cmt("LEB %d", lnum
);
703 if (dbg_is_chk_index(c
) && !(prandom_u32() & 7))
709 * free_unused_idx_lebs - free unused LEBs that were allocated for the commit.
710 * @c: UBIFS file-system description object
712 * It is possible that we allocate more empty LEBs for the commit than we need.
713 * This functions frees the surplus.
715 * This function returns %0 on success and a negative error code on failure.
717 static int free_unused_idx_lebs(struct ubifs_info
*c
)
719 int i
, err
= 0, lnum
, er
;
721 for (i
= c
->ileb_nxt
; i
< c
->ileb_cnt
; i
++) {
723 dbg_cmt("LEB %d", lnum
);
724 er
= ubifs_change_one_lp(c
, lnum
, LPROPS_NC
, LPROPS_NC
, 0,
725 LPROPS_INDEX
| LPROPS_TAKEN
, 0);
733 * free_idx_lebs - free unused LEBs after commit end.
734 * @c: UBIFS file-system description object
736 * This function returns %0 on success and a negative error code on failure.
738 static int free_idx_lebs(struct ubifs_info
*c
)
742 err
= free_unused_idx_lebs(c
);
749 * ubifs_tnc_start_commit - start TNC commit.
750 * @c: UBIFS file-system description object
751 * @zroot: new index root position is returned here
753 * This function prepares the list of indexing nodes to commit and lays out
754 * their positions on flash. If there is not enough free space it uses the
755 * in-gap commit method. Returns zero in case of success and a negative error
756 * code in case of failure.
758 int ubifs_tnc_start_commit(struct ubifs_info
*c
, struct ubifs_zbranch
*zroot
)
762 mutex_lock(&c
->tnc_mutex
);
763 err
= dbg_check_tnc(c
, 1);
766 cnt
= get_znodes_to_commit(c
);
770 err
= alloc_idx_lebs(c
, cnt
);
775 err
= layout_commit(c
, no_space
, cnt
);
778 ubifs_assert(c
, atomic_long_read(&c
->dirty_zn_cnt
) == 0);
779 err
= free_unused_idx_lebs(c
);
784 memcpy(zroot
, &c
->zroot
, sizeof(struct ubifs_zbranch
));
786 err
= ubifs_save_dirty_idx_lnums(c
);
790 spin_lock(&c
->space_lock
);
792 * Although we have not finished committing yet, update size of the
793 * committed index ('c->bi.old_idx_sz') and zero out the index growth
794 * budget. It is OK to do this now, because we've reserved all the
795 * space which is needed to commit the index, and it is save for the
796 * budgeting subsystem to assume the index is already committed,
797 * even though it is not.
799 ubifs_assert(c
, c
->bi
.min_idx_lebs
== ubifs_calc_min_idx_lebs(c
));
800 c
->bi
.old_idx_sz
= c
->calc_idx_sz
;
801 c
->bi
.uncommitted_idx
= 0;
802 c
->bi
.min_idx_lebs
= ubifs_calc_min_idx_lebs(c
);
803 spin_unlock(&c
->space_lock
);
804 mutex_unlock(&c
->tnc_mutex
);
806 dbg_cmt("number of index LEBs %d", c
->lst
.idx_lebs
);
807 dbg_cmt("size of index %llu", c
->calc_idx_sz
);
813 mutex_unlock(&c
->tnc_mutex
);
818 * write_index - write index nodes.
819 * @c: UBIFS file-system description object
821 * This function writes the index nodes whose positions were laid out in the
822 * layout_in_empty_space function.
824 static int write_index(struct ubifs_info
*c
)
826 struct ubifs_idx_node
*idx
;
827 struct ubifs_znode
*znode
, *cnext
;
828 int i
, lnum
, offs
, len
, next_len
, buf_len
, buf_offs
, used
;
829 int avail
, wlen
, err
, lnum_pos
= 0, blen
, nxt_offs
;
836 * Always write index nodes to the index head so that index nodes and
837 * other types of nodes are never mixed in the same erase block.
839 lnum
= c
->ihead_lnum
;
840 buf_offs
= c
->ihead_offs
;
842 /* Allocate commit buffer */
843 buf_len
= ALIGN(c
->max_idx_node_sz
, c
->min_io_size
);
847 /* Ensure there is enough room for first write */
848 next_len
= ubifs_idx_node_sz(c
, cnext
->child_cnt
);
849 if (buf_offs
+ next_len
> c
->leb_size
) {
850 err
= ubifs_update_one_lp(c
, lnum
, LPROPS_NC
, 0, 0,
858 u8 hash
[UBIFS_HASH_ARR_SZ
];
863 idx
= c
->cbuf
+ used
;
865 /* Make index node */
866 idx
->ch
.node_type
= UBIFS_IDX_NODE
;
867 idx
->child_cnt
= cpu_to_le16(znode
->child_cnt
);
868 idx
->level
= cpu_to_le16(znode
->level
);
869 for (i
= 0; i
< znode
->child_cnt
; i
++) {
870 struct ubifs_branch
*br
= ubifs_idx_branch(c
, idx
, i
);
871 struct ubifs_zbranch
*zbr
= &znode
->zbranch
[i
];
873 key_write_idx(c
, &zbr
->key
, &br
->key
);
874 br
->lnum
= cpu_to_le32(zbr
->lnum
);
875 br
->offs
= cpu_to_le32(zbr
->offs
);
876 br
->len
= cpu_to_le32(zbr
->len
);
877 ubifs_copy_hash(c
, zbr
->hash
, ubifs_branch_hash(c
, br
));
878 if (!zbr
->lnum
|| !zbr
->len
) {
879 ubifs_err(c
, "bad ref in znode");
880 ubifs_dump_znode(c
, znode
);
882 ubifs_dump_znode(c
, zbr
->znode
);
887 len
= ubifs_idx_node_sz(c
, znode
->child_cnt
);
888 ubifs_prepare_node(c
, idx
, len
, 0);
889 ubifs_node_calc_hash(c
, idx
, hash
);
891 mutex_lock(&c
->tnc_mutex
);
894 ubifs_copy_hash(c
, hash
,
895 znode
->cparent
->zbranch
[znode
->ciip
].hash
);
898 if (!ubifs_zn_obsolete(znode
))
899 ubifs_copy_hash(c
, hash
,
900 znode
->parent
->zbranch
[znode
->iip
].hash
);
902 ubifs_copy_hash(c
, hash
, c
->zroot
.hash
);
905 mutex_unlock(&c
->tnc_mutex
);
907 /* Determine the index node position */
909 lnum
= c
->ilebs
[lnum_pos
++];
914 offs
= buf_offs
+ used
;
916 if (lnum
!= znode
->lnum
|| offs
!= znode
->offs
||
918 ubifs_err(c
, "inconsistent znode posn");
922 /* Grab some stuff from znode while we still can */
923 cnext
= znode
->cnext
;
925 ubifs_assert(c
, ubifs_zn_dirty(znode
));
926 ubifs_assert(c
, ubifs_zn_cow(znode
));
929 * It is important that other threads should see %DIRTY_ZNODE
930 * flag cleared before %COW_ZNODE. Specifically, it matters in
931 * the 'dirty_cow_znode()' function. This is the reason for the
932 * first barrier. Also, we want the bit changes to be seen to
933 * other threads ASAP, to avoid unnecesarry copying, which is
934 * the reason for the second barrier.
936 clear_bit(DIRTY_ZNODE
, &znode
->flags
);
937 smp_mb__before_atomic();
938 clear_bit(COW_ZNODE
, &znode
->flags
);
939 smp_mb__after_atomic();
942 * We have marked the znode as clean but have not updated the
943 * @c->clean_zn_cnt counter. If this znode becomes dirty again
944 * before 'free_obsolete_znodes()' is called, then
945 * @c->clean_zn_cnt will be decremented before it gets
946 * incremented (resulting in 2 decrements for the same znode).
947 * This means that @c->clean_zn_cnt may become negative for a
950 * Q: why we cannot increment @c->clean_zn_cnt?
951 * A: because we do not have the @c->tnc_mutex locked, and the
952 * following code would be racy and buggy:
954 * if (!ubifs_zn_obsolete(znode)) {
955 * atomic_long_inc(&c->clean_zn_cnt);
956 * atomic_long_inc(&ubifs_clean_zn_cnt);
959 * Thus, we just delay the @c->clean_zn_cnt update until we
960 * have the mutex locked.
963 /* Do not access znode from this point on */
965 /* Update buffer positions */
967 used
+= ALIGN(len
, 8);
968 avail
-= ALIGN(len
, 8);
971 * Calculate the next index node length to see if there is
974 if (cnext
== c
->cnext
)
977 next_len
= ubifs_idx_node_sz(c
, cnext
->child_cnt
);
979 nxt_offs
= buf_offs
+ used
+ next_len
;
980 if (next_len
&& nxt_offs
<= c
->leb_size
) {
986 wlen
= ALIGN(wlen
, 8);
987 blen
= ALIGN(wlen
, c
->min_io_size
);
988 ubifs_pad(c
, c
->cbuf
+ wlen
, blen
- wlen
);
991 /* The buffer is full or there are no more znodes to do */
992 err
= ubifs_leb_write(c
, lnum
, c
->cbuf
, buf_offs
, blen
);
997 if (nxt_offs
> c
->leb_size
) {
998 err
= ubifs_update_one_lp(c
, lnum
, LPROPS_NC
, 0,
1007 avail
= buf_len
- used
;
1008 memmove(c
->cbuf
, c
->cbuf
+ blen
, used
);
1014 if (lnum
!= c
->dbg
->new_ihead_lnum
||
1015 buf_offs
!= c
->dbg
->new_ihead_offs
) {
1016 ubifs_err(c
, "inconsistent ihead");
1020 c
->ihead_lnum
= lnum
;
1021 c
->ihead_offs
= buf_offs
;
1027 * free_obsolete_znodes - free obsolete znodes.
1028 * @c: UBIFS file-system description object
1030 * At the end of commit end, obsolete znodes are freed.
1032 static void free_obsolete_znodes(struct ubifs_info
*c
)
1034 struct ubifs_znode
*znode
, *cnext
;
1039 cnext
= znode
->cnext
;
1040 if (ubifs_zn_obsolete(znode
))
1043 znode
->cnext
= NULL
;
1044 atomic_long_inc(&c
->clean_zn_cnt
);
1045 atomic_long_inc(&ubifs_clean_zn_cnt
);
1047 } while (cnext
!= c
->cnext
);
1051 * return_gap_lebs - return LEBs used by the in-gap commit method.
1052 * @c: UBIFS file-system description object
1054 * This function clears the "taken" flag for the LEBs which were used by the
1055 * "commit in-the-gaps" method.
1057 static int return_gap_lebs(struct ubifs_info
*c
)
1065 for (p
= c
->gap_lebs
; *p
!= -1; p
++) {
1066 err
= ubifs_change_one_lp(c
, *p
, LPROPS_NC
, LPROPS_NC
, 0,
1078 * ubifs_tnc_end_commit - update the TNC for commit end.
1079 * @c: UBIFS file-system description object
1081 * Write the dirty znodes.
1083 int ubifs_tnc_end_commit(struct ubifs_info
*c
)
1090 err
= return_gap_lebs(c
);
1094 err
= write_index(c
);
1098 mutex_lock(&c
->tnc_mutex
);
1100 dbg_cmt("TNC height is %d", c
->zroot
.znode
->level
+ 1);
1102 free_obsolete_znodes(c
);
1108 mutex_unlock(&c
->tnc_mutex
);