gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / fs / xfs / xfs_mount.c
blobc5513e5a226aca54ca88f3a06c5b43a3b8d8dbc2
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
16 #include "xfs_dir2.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rtalloc.h"
20 #include "xfs_bmap.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_priv.h"
23 #include "xfs_log.h"
24 #include "xfs_error.h"
25 #include "xfs_quota.h"
26 #include "xfs_fsops.h"
27 #include "xfs_icache.h"
28 #include "xfs_sysfs.h"
29 #include "xfs_rmap_btree.h"
30 #include "xfs_refcount_btree.h"
31 #include "xfs_reflink.h"
32 #include "xfs_extent_busy.h"
33 #include "xfs_health.h"
34 #include "xfs_trace.h"
36 static DEFINE_MUTEX(xfs_uuid_table_mutex);
37 static int xfs_uuid_table_size;
38 static uuid_t *xfs_uuid_table;
40 void
41 xfs_uuid_table_free(void)
43 if (xfs_uuid_table_size == 0)
44 return;
45 kmem_free(xfs_uuid_table);
46 xfs_uuid_table = NULL;
47 xfs_uuid_table_size = 0;
51 * See if the UUID is unique among mounted XFS filesystems.
52 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
54 STATIC int
55 xfs_uuid_mount(
56 struct xfs_mount *mp)
58 uuid_t *uuid = &mp->m_sb.sb_uuid;
59 int hole, i;
61 /* Publish UUID in struct super_block */
62 uuid_copy(&mp->m_super->s_uuid, uuid);
64 if (mp->m_flags & XFS_MOUNT_NOUUID)
65 return 0;
67 if (uuid_is_null(uuid)) {
68 xfs_warn(mp, "Filesystem has null UUID - can't mount");
69 return -EINVAL;
72 mutex_lock(&xfs_uuid_table_mutex);
73 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
74 if (uuid_is_null(&xfs_uuid_table[i])) {
75 hole = i;
76 continue;
78 if (uuid_equal(uuid, &xfs_uuid_table[i]))
79 goto out_duplicate;
82 if (hole < 0) {
83 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
84 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
85 0);
86 hole = xfs_uuid_table_size++;
88 xfs_uuid_table[hole] = *uuid;
89 mutex_unlock(&xfs_uuid_table_mutex);
91 return 0;
93 out_duplicate:
94 mutex_unlock(&xfs_uuid_table_mutex);
95 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
96 return -EINVAL;
99 STATIC void
100 xfs_uuid_unmount(
101 struct xfs_mount *mp)
103 uuid_t *uuid = &mp->m_sb.sb_uuid;
104 int i;
106 if (mp->m_flags & XFS_MOUNT_NOUUID)
107 return;
109 mutex_lock(&xfs_uuid_table_mutex);
110 for (i = 0; i < xfs_uuid_table_size; i++) {
111 if (uuid_is_null(&xfs_uuid_table[i]))
112 continue;
113 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
114 continue;
115 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
116 break;
118 ASSERT(i < xfs_uuid_table_size);
119 mutex_unlock(&xfs_uuid_table_mutex);
123 STATIC void
124 __xfs_free_perag(
125 struct rcu_head *head)
127 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
129 ASSERT(atomic_read(&pag->pag_ref) == 0);
130 kmem_free(pag);
134 * Free up the per-ag resources associated with the mount structure.
136 STATIC void
137 xfs_free_perag(
138 xfs_mount_t *mp)
140 xfs_agnumber_t agno;
141 struct xfs_perag *pag;
143 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
144 spin_lock(&mp->m_perag_lock);
145 pag = radix_tree_delete(&mp->m_perag_tree, agno);
146 spin_unlock(&mp->m_perag_lock);
147 ASSERT(pag);
148 ASSERT(atomic_read(&pag->pag_ref) == 0);
149 xfs_iunlink_destroy(pag);
150 xfs_buf_hash_destroy(pag);
151 mutex_destroy(&pag->pag_ici_reclaim_lock);
152 call_rcu(&pag->rcu_head, __xfs_free_perag);
157 * Check size of device based on the (data/realtime) block count.
158 * Note: this check is used by the growfs code as well as mount.
161 xfs_sb_validate_fsb_count(
162 xfs_sb_t *sbp,
163 uint64_t nblocks)
165 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
166 ASSERT(sbp->sb_blocklog >= BBSHIFT);
168 /* Limited by ULONG_MAX of page cache index */
169 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
170 return -EFBIG;
171 return 0;
175 xfs_initialize_perag(
176 xfs_mount_t *mp,
177 xfs_agnumber_t agcount,
178 xfs_agnumber_t *maxagi)
180 xfs_agnumber_t index;
181 xfs_agnumber_t first_initialised = NULLAGNUMBER;
182 xfs_perag_t *pag;
183 int error = -ENOMEM;
186 * Walk the current per-ag tree so we don't try to initialise AGs
187 * that already exist (growfs case). Allocate and insert all the
188 * AGs we don't find ready for initialisation.
190 for (index = 0; index < agcount; index++) {
191 pag = xfs_perag_get(mp, index);
192 if (pag) {
193 xfs_perag_put(pag);
194 continue;
197 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
198 if (!pag)
199 goto out_unwind_new_pags;
200 pag->pag_agno = index;
201 pag->pag_mount = mp;
202 spin_lock_init(&pag->pag_ici_lock);
203 mutex_init(&pag->pag_ici_reclaim_lock);
204 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
205 if (xfs_buf_hash_init(pag))
206 goto out_free_pag;
207 init_waitqueue_head(&pag->pagb_wait);
208 spin_lock_init(&pag->pagb_lock);
209 pag->pagb_count = 0;
210 pag->pagb_tree = RB_ROOT;
212 if (radix_tree_preload(GFP_NOFS))
213 goto out_hash_destroy;
215 spin_lock(&mp->m_perag_lock);
216 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
217 WARN_ON_ONCE(1);
218 spin_unlock(&mp->m_perag_lock);
219 radix_tree_preload_end();
220 error = -EEXIST;
221 goto out_hash_destroy;
223 spin_unlock(&mp->m_perag_lock);
224 radix_tree_preload_end();
225 /* first new pag is fully initialized */
226 if (first_initialised == NULLAGNUMBER)
227 first_initialised = index;
228 error = xfs_iunlink_init(pag);
229 if (error)
230 goto out_hash_destroy;
231 spin_lock_init(&pag->pag_state_lock);
234 index = xfs_set_inode_alloc(mp, agcount);
236 if (maxagi)
237 *maxagi = index;
239 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
240 return 0;
242 out_hash_destroy:
243 xfs_buf_hash_destroy(pag);
244 out_free_pag:
245 mutex_destroy(&pag->pag_ici_reclaim_lock);
246 kmem_free(pag);
247 out_unwind_new_pags:
248 /* unwind any prior newly initialized pags */
249 for (index = first_initialised; index < agcount; index++) {
250 pag = radix_tree_delete(&mp->m_perag_tree, index);
251 if (!pag)
252 break;
253 xfs_buf_hash_destroy(pag);
254 xfs_iunlink_destroy(pag);
255 mutex_destroy(&pag->pag_ici_reclaim_lock);
256 kmem_free(pag);
258 return error;
262 * xfs_readsb
264 * Does the initial read of the superblock.
267 xfs_readsb(
268 struct xfs_mount *mp,
269 int flags)
271 unsigned int sector_size;
272 struct xfs_buf *bp;
273 struct xfs_sb *sbp = &mp->m_sb;
274 int error;
275 int loud = !(flags & XFS_MFSI_QUIET);
276 const struct xfs_buf_ops *buf_ops;
278 ASSERT(mp->m_sb_bp == NULL);
279 ASSERT(mp->m_ddev_targp != NULL);
282 * For the initial read, we must guess at the sector
283 * size based on the block device. It's enough to
284 * get the sb_sectsize out of the superblock and
285 * then reread with the proper length.
286 * We don't verify it yet, because it may not be complete.
288 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
289 buf_ops = NULL;
292 * Allocate a (locked) buffer to hold the superblock. This will be kept
293 * around at all times to optimize access to the superblock. Therefore,
294 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
295 * elevated.
297 reread:
298 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
299 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
300 buf_ops);
301 if (error) {
302 if (loud)
303 xfs_warn(mp, "SB validate failed with error %d.", error);
304 /* bad CRC means corrupted metadata */
305 if (error == -EFSBADCRC)
306 error = -EFSCORRUPTED;
307 return error;
311 * Initialize the mount structure from the superblock.
313 xfs_sb_from_disk(sbp, bp->b_addr);
316 * If we haven't validated the superblock, do so now before we try
317 * to check the sector size and reread the superblock appropriately.
319 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
320 if (loud)
321 xfs_warn(mp, "Invalid superblock magic number");
322 error = -EINVAL;
323 goto release_buf;
327 * We must be able to do sector-sized and sector-aligned IO.
329 if (sector_size > sbp->sb_sectsize) {
330 if (loud)
331 xfs_warn(mp, "device supports %u byte sectors (not %u)",
332 sector_size, sbp->sb_sectsize);
333 error = -ENOSYS;
334 goto release_buf;
337 if (buf_ops == NULL) {
339 * Re-read the superblock so the buffer is correctly sized,
340 * and properly verified.
342 xfs_buf_relse(bp);
343 sector_size = sbp->sb_sectsize;
344 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
345 goto reread;
348 xfs_reinit_percpu_counters(mp);
350 /* no need to be quiet anymore, so reset the buf ops */
351 bp->b_ops = &xfs_sb_buf_ops;
353 mp->m_sb_bp = bp;
354 xfs_buf_unlock(bp);
355 return 0;
357 release_buf:
358 xfs_buf_relse(bp);
359 return error;
363 * If the sunit/swidth change would move the precomputed root inode value, we
364 * must reject the ondisk change because repair will stumble over that.
365 * However, we allow the mount to proceed because we never rejected this
366 * combination before. Returns true to update the sb, false otherwise.
368 static inline int
369 xfs_check_new_dalign(
370 struct xfs_mount *mp,
371 int new_dalign,
372 bool *update_sb)
374 struct xfs_sb *sbp = &mp->m_sb;
375 xfs_ino_t calc_ino;
377 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
378 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
380 if (sbp->sb_rootino == calc_ino) {
381 *update_sb = true;
382 return 0;
385 xfs_warn(mp,
386 "Cannot change stripe alignment; would require moving root inode.");
389 * XXX: Next time we add a new incompat feature, this should start
390 * returning -EINVAL to fail the mount. Until then, spit out a warning
391 * that we're ignoring the administrator's instructions.
393 xfs_warn(mp, "Skipping superblock stripe alignment update.");
394 *update_sb = false;
395 return 0;
399 * If we were provided with new sunit/swidth values as mount options, make sure
400 * that they pass basic alignment and superblock feature checks, and convert
401 * them into the same units (FSB) that everything else expects. This step
402 * /must/ be done before computing the inode geometry.
404 STATIC int
405 xfs_validate_new_dalign(
406 struct xfs_mount *mp)
408 if (mp->m_dalign == 0)
409 return 0;
412 * If stripe unit and stripe width are not multiples
413 * of the fs blocksize turn off alignment.
415 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
416 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
417 xfs_warn(mp,
418 "alignment check failed: sunit/swidth vs. blocksize(%d)",
419 mp->m_sb.sb_blocksize);
420 return -EINVAL;
421 } else {
423 * Convert the stripe unit and width to FSBs.
425 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
426 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
427 xfs_warn(mp,
428 "alignment check failed: sunit/swidth vs. agsize(%d)",
429 mp->m_sb.sb_agblocks);
430 return -EINVAL;
431 } else if (mp->m_dalign) {
432 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
433 } else {
434 xfs_warn(mp,
435 "alignment check failed: sunit(%d) less than bsize(%d)",
436 mp->m_dalign, mp->m_sb.sb_blocksize);
437 return -EINVAL;
441 if (!xfs_sb_version_hasdalign(&mp->m_sb)) {
442 xfs_warn(mp,
443 "cannot change alignment: superblock does not support data alignment");
444 return -EINVAL;
447 return 0;
450 /* Update alignment values based on mount options and sb values. */
451 STATIC int
452 xfs_update_alignment(
453 struct xfs_mount *mp)
455 struct xfs_sb *sbp = &mp->m_sb;
457 if (mp->m_dalign) {
458 bool update_sb;
459 int error;
461 if (sbp->sb_unit == mp->m_dalign &&
462 sbp->sb_width == mp->m_swidth)
463 return 0;
465 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
466 if (error || !update_sb)
467 return error;
469 sbp->sb_unit = mp->m_dalign;
470 sbp->sb_width = mp->m_swidth;
471 mp->m_update_sb = true;
472 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
473 xfs_sb_version_hasdalign(&mp->m_sb)) {
474 mp->m_dalign = sbp->sb_unit;
475 mp->m_swidth = sbp->sb_width;
478 return 0;
482 * precalculate the low space thresholds for dynamic speculative preallocation.
484 void
485 xfs_set_low_space_thresholds(
486 struct xfs_mount *mp)
488 int i;
490 for (i = 0; i < XFS_LOWSP_MAX; i++) {
491 uint64_t space = mp->m_sb.sb_dblocks;
493 do_div(space, 100);
494 mp->m_low_space[i] = space * (i + 1);
499 * Check that the data (and log if separate) is an ok size.
501 STATIC int
502 xfs_check_sizes(
503 struct xfs_mount *mp)
505 struct xfs_buf *bp;
506 xfs_daddr_t d;
507 int error;
509 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
510 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
511 xfs_warn(mp, "filesystem size mismatch detected");
512 return -EFBIG;
514 error = xfs_buf_read_uncached(mp->m_ddev_targp,
515 d - XFS_FSS_TO_BB(mp, 1),
516 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
517 if (error) {
518 xfs_warn(mp, "last sector read failed");
519 return error;
521 xfs_buf_relse(bp);
523 if (mp->m_logdev_targp == mp->m_ddev_targp)
524 return 0;
526 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
527 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
528 xfs_warn(mp, "log size mismatch detected");
529 return -EFBIG;
531 error = xfs_buf_read_uncached(mp->m_logdev_targp,
532 d - XFS_FSB_TO_BB(mp, 1),
533 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
534 if (error) {
535 xfs_warn(mp, "log device read failed");
536 return error;
538 xfs_buf_relse(bp);
539 return 0;
543 * Clear the quotaflags in memory and in the superblock.
546 xfs_mount_reset_sbqflags(
547 struct xfs_mount *mp)
549 mp->m_qflags = 0;
551 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
552 if (mp->m_sb.sb_qflags == 0)
553 return 0;
554 spin_lock(&mp->m_sb_lock);
555 mp->m_sb.sb_qflags = 0;
556 spin_unlock(&mp->m_sb_lock);
558 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
559 return 0;
561 return xfs_sync_sb(mp, false);
564 uint64_t
565 xfs_default_resblks(xfs_mount_t *mp)
567 uint64_t resblks;
570 * We default to 5% or 8192 fsbs of space reserved, whichever is
571 * smaller. This is intended to cover concurrent allocation
572 * transactions when we initially hit enospc. These each require a 4
573 * block reservation. Hence by default we cover roughly 2000 concurrent
574 * allocation reservations.
576 resblks = mp->m_sb.sb_dblocks;
577 do_div(resblks, 20);
578 resblks = min_t(uint64_t, resblks, 8192);
579 return resblks;
582 /* Ensure the summary counts are correct. */
583 STATIC int
584 xfs_check_summary_counts(
585 struct xfs_mount *mp)
588 * The AG0 superblock verifier rejects in-progress filesystems,
589 * so we should never see the flag set this far into mounting.
591 if (mp->m_sb.sb_inprogress) {
592 xfs_err(mp, "sb_inprogress set after log recovery??");
593 WARN_ON(1);
594 return -EFSCORRUPTED;
598 * Now the log is mounted, we know if it was an unclean shutdown or
599 * not. If it was, with the first phase of recovery has completed, we
600 * have consistent AG blocks on disk. We have not recovered EFIs yet,
601 * but they are recovered transactionally in the second recovery phase
602 * later.
604 * If the log was clean when we mounted, we can check the summary
605 * counters. If any of them are obviously incorrect, we can recompute
606 * them from the AGF headers in the next step.
608 if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
609 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
610 !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
611 mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
612 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
615 * We can safely re-initialise incore superblock counters from the
616 * per-ag data. These may not be correct if the filesystem was not
617 * cleanly unmounted, so we waited for recovery to finish before doing
618 * this.
620 * If the filesystem was cleanly unmounted or the previous check did
621 * not flag anything weird, then we can trust the values in the
622 * superblock to be correct and we don't need to do anything here.
623 * Otherwise, recalculate the summary counters.
625 if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) ||
626 XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) &&
627 !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS))
628 return 0;
630 return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
634 * This function does the following on an initial mount of a file system:
635 * - reads the superblock from disk and init the mount struct
636 * - if we're a 32-bit kernel, do a size check on the superblock
637 * so we don't mount terabyte filesystems
638 * - init mount struct realtime fields
639 * - allocate inode hash table for fs
640 * - init directory manager
641 * - perform recovery and init the log manager
644 xfs_mountfs(
645 struct xfs_mount *mp)
647 struct xfs_sb *sbp = &(mp->m_sb);
648 struct xfs_inode *rip;
649 struct xfs_ino_geometry *igeo = M_IGEO(mp);
650 uint64_t resblks;
651 uint quotamount = 0;
652 uint quotaflags = 0;
653 int error = 0;
655 xfs_sb_mount_common(mp, sbp);
658 * Check for a mismatched features2 values. Older kernels read & wrote
659 * into the wrong sb offset for sb_features2 on some platforms due to
660 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
661 * which made older superblock reading/writing routines swap it as a
662 * 64-bit value.
664 * For backwards compatibility, we make both slots equal.
666 * If we detect a mismatched field, we OR the set bits into the existing
667 * features2 field in case it has already been modified; we don't want
668 * to lose any features. We then update the bad location with the ORed
669 * value so that older kernels will see any features2 flags. The
670 * superblock writeback code ensures the new sb_features2 is copied to
671 * sb_bad_features2 before it is logged or written to disk.
673 if (xfs_sb_has_mismatched_features2(sbp)) {
674 xfs_warn(mp, "correcting sb_features alignment problem");
675 sbp->sb_features2 |= sbp->sb_bad_features2;
676 mp->m_update_sb = true;
679 * Re-check for ATTR2 in case it was found in bad_features2
680 * slot.
682 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
683 !(mp->m_flags & XFS_MOUNT_NOATTR2))
684 mp->m_flags |= XFS_MOUNT_ATTR2;
687 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
688 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
689 xfs_sb_version_removeattr2(&mp->m_sb);
690 mp->m_update_sb = true;
692 /* update sb_versionnum for the clearing of the morebits */
693 if (!sbp->sb_features2)
694 mp->m_update_sb = true;
697 /* always use v2 inodes by default now */
698 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
699 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
700 mp->m_update_sb = true;
704 * If we were given new sunit/swidth options, do some basic validation
705 * checks and convert the incore dalign and swidth values to the
706 * same units (FSB) that everything else uses. This /must/ happen
707 * before computing the inode geometry.
709 error = xfs_validate_new_dalign(mp);
710 if (error)
711 goto out;
713 xfs_alloc_compute_maxlevels(mp);
714 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
715 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
716 xfs_ialloc_setup_geometry(mp);
717 xfs_rmapbt_compute_maxlevels(mp);
718 xfs_refcountbt_compute_maxlevels(mp);
721 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks
722 * is NOT aligned turn off m_dalign since allocator alignment is within
723 * an ag, therefore ag has to be aligned at stripe boundary. Note that
724 * we must compute the free space and rmap btree geometry before doing
725 * this.
727 error = xfs_update_alignment(mp);
728 if (error)
729 goto out;
731 /* enable fail_at_unmount as default */
732 mp->m_fail_unmount = true;
734 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
735 NULL, mp->m_super->s_id);
736 if (error)
737 goto out;
739 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
740 &mp->m_kobj, "stats");
741 if (error)
742 goto out_remove_sysfs;
744 error = xfs_error_sysfs_init(mp);
745 if (error)
746 goto out_del_stats;
748 error = xfs_errortag_init(mp);
749 if (error)
750 goto out_remove_error_sysfs;
752 error = xfs_uuid_mount(mp);
753 if (error)
754 goto out_remove_errortag;
757 * Update the preferred write size based on the information from the
758 * on-disk superblock.
760 mp->m_allocsize_log =
761 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
762 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
764 /* set the low space thresholds for dynamic preallocation */
765 xfs_set_low_space_thresholds(mp);
768 * If enabled, sparse inode chunk alignment is expected to match the
769 * cluster size. Full inode chunk alignment must match the chunk size,
770 * but that is checked on sb read verification...
772 if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
773 mp->m_sb.sb_spino_align !=
774 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
775 xfs_warn(mp,
776 "Sparse inode block alignment (%u) must match cluster size (%llu).",
777 mp->m_sb.sb_spino_align,
778 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
779 error = -EINVAL;
780 goto out_remove_uuid;
784 * Check that the data (and log if separate) is an ok size.
786 error = xfs_check_sizes(mp);
787 if (error)
788 goto out_remove_uuid;
791 * Initialize realtime fields in the mount structure
793 error = xfs_rtmount_init(mp);
794 if (error) {
795 xfs_warn(mp, "RT mount failed");
796 goto out_remove_uuid;
800 * Copies the low order bits of the timestamp and the randomly
801 * set "sequence" number out of a UUID.
803 mp->m_fixedfsid[0] =
804 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
805 get_unaligned_be16(&sbp->sb_uuid.b[4]);
806 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
808 error = xfs_da_mount(mp);
809 if (error) {
810 xfs_warn(mp, "Failed dir/attr init: %d", error);
811 goto out_remove_uuid;
815 * Initialize the precomputed transaction reservations values.
817 xfs_trans_init(mp);
820 * Allocate and initialize the per-ag data.
822 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
823 if (error) {
824 xfs_warn(mp, "Failed per-ag init: %d", error);
825 goto out_free_dir;
828 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
829 xfs_warn(mp, "no log defined");
830 error = -EFSCORRUPTED;
831 goto out_free_perag;
835 * Log's mount-time initialization. The first part of recovery can place
836 * some items on the AIL, to be handled when recovery is finished or
837 * cancelled.
839 error = xfs_log_mount(mp, mp->m_logdev_targp,
840 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
841 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
842 if (error) {
843 xfs_warn(mp, "log mount failed");
844 goto out_fail_wait;
847 /* Make sure the summary counts are ok. */
848 error = xfs_check_summary_counts(mp);
849 if (error)
850 goto out_log_dealloc;
853 * Get and sanity-check the root inode.
854 * Save the pointer to it in the mount structure.
856 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
857 XFS_ILOCK_EXCL, &rip);
858 if (error) {
859 xfs_warn(mp,
860 "Failed to read root inode 0x%llx, error %d",
861 sbp->sb_rootino, -error);
862 goto out_log_dealloc;
865 ASSERT(rip != NULL);
867 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
868 xfs_warn(mp, "corrupted root inode %llu: not a directory",
869 (unsigned long long)rip->i_ino);
870 xfs_iunlock(rip, XFS_ILOCK_EXCL);
871 error = -EFSCORRUPTED;
872 goto out_rele_rip;
874 mp->m_rootip = rip; /* save it */
876 xfs_iunlock(rip, XFS_ILOCK_EXCL);
879 * Initialize realtime inode pointers in the mount structure
881 error = xfs_rtmount_inodes(mp);
882 if (error) {
884 * Free up the root inode.
886 xfs_warn(mp, "failed to read RT inodes");
887 goto out_rele_rip;
891 * If this is a read-only mount defer the superblock updates until
892 * the next remount into writeable mode. Otherwise we would never
893 * perform the update e.g. for the root filesystem.
895 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
896 error = xfs_sync_sb(mp, false);
897 if (error) {
898 xfs_warn(mp, "failed to write sb changes");
899 goto out_rtunmount;
904 * Initialise the XFS quota management subsystem for this mount
906 if (XFS_IS_QUOTA_RUNNING(mp)) {
907 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
908 if (error)
909 goto out_rtunmount;
910 } else {
911 ASSERT(!XFS_IS_QUOTA_ON(mp));
914 * If a file system had quotas running earlier, but decided to
915 * mount without -o uquota/pquota/gquota options, revoke the
916 * quotachecked license.
918 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
919 xfs_notice(mp, "resetting quota flags");
920 error = xfs_mount_reset_sbqflags(mp);
921 if (error)
922 goto out_rtunmount;
927 * Finish recovering the file system. This part needed to be delayed
928 * until after the root and real-time bitmap inodes were consistently
929 * read in.
931 error = xfs_log_mount_finish(mp);
932 if (error) {
933 xfs_warn(mp, "log mount finish failed");
934 goto out_rtunmount;
938 * Now the log is fully replayed, we can transition to full read-only
939 * mode for read-only mounts. This will sync all the metadata and clean
940 * the log so that the recovery we just performed does not have to be
941 * replayed again on the next mount.
943 * We use the same quiesce mechanism as the rw->ro remount, as they are
944 * semantically identical operations.
946 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
947 XFS_MOUNT_RDONLY) {
948 xfs_quiesce_attr(mp);
952 * Complete the quota initialisation, post-log-replay component.
954 if (quotamount) {
955 ASSERT(mp->m_qflags == 0);
956 mp->m_qflags = quotaflags;
958 xfs_qm_mount_quotas(mp);
962 * Now we are mounted, reserve a small amount of unused space for
963 * privileged transactions. This is needed so that transaction
964 * space required for critical operations can dip into this pool
965 * when at ENOSPC. This is needed for operations like create with
966 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
967 * are not allowed to use this reserved space.
969 * This may drive us straight to ENOSPC on mount, but that implies
970 * we were already there on the last unmount. Warn if this occurs.
972 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
973 resblks = xfs_default_resblks(mp);
974 error = xfs_reserve_blocks(mp, &resblks, NULL);
975 if (error)
976 xfs_warn(mp,
977 "Unable to allocate reserve blocks. Continuing without reserve pool.");
979 /* Recover any CoW blocks that never got remapped. */
980 error = xfs_reflink_recover_cow(mp);
981 if (error) {
982 xfs_err(mp,
983 "Error %d recovering leftover CoW allocations.", error);
984 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
985 goto out_quota;
988 /* Reserve AG blocks for future btree expansion. */
989 error = xfs_fs_reserve_ag_blocks(mp);
990 if (error && error != -ENOSPC)
991 goto out_agresv;
994 return 0;
996 out_agresv:
997 xfs_fs_unreserve_ag_blocks(mp);
998 out_quota:
999 xfs_qm_unmount_quotas(mp);
1000 out_rtunmount:
1001 xfs_rtunmount_inodes(mp);
1002 out_rele_rip:
1003 xfs_irele(rip);
1004 /* Clean out dquots that might be in memory after quotacheck. */
1005 xfs_qm_unmount(mp);
1007 * Cancel all delayed reclaim work and reclaim the inodes directly.
1008 * We have to do this /after/ rtunmount and qm_unmount because those
1009 * two will have scheduled delayed reclaim for the rt/quota inodes.
1011 * This is slightly different from the unmountfs call sequence
1012 * because we could be tearing down a partially set up mount. In
1013 * particular, if log_mount_finish fails we bail out without calling
1014 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1015 * quota inodes.
1017 cancel_delayed_work_sync(&mp->m_reclaim_work);
1018 xfs_reclaim_inodes(mp, SYNC_WAIT);
1019 xfs_health_unmount(mp);
1020 out_log_dealloc:
1021 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1022 xfs_log_mount_cancel(mp);
1023 out_fail_wait:
1024 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1025 xfs_wait_buftarg(mp->m_logdev_targp);
1026 xfs_wait_buftarg(mp->m_ddev_targp);
1027 out_free_perag:
1028 xfs_free_perag(mp);
1029 out_free_dir:
1030 xfs_da_unmount(mp);
1031 out_remove_uuid:
1032 xfs_uuid_unmount(mp);
1033 out_remove_errortag:
1034 xfs_errortag_del(mp);
1035 out_remove_error_sysfs:
1036 xfs_error_sysfs_del(mp);
1037 out_del_stats:
1038 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1039 out_remove_sysfs:
1040 xfs_sysfs_del(&mp->m_kobj);
1041 out:
1042 return error;
1046 * This flushes out the inodes,dquots and the superblock, unmounts the
1047 * log and makes sure that incore structures are freed.
1049 void
1050 xfs_unmountfs(
1051 struct xfs_mount *mp)
1053 uint64_t resblks;
1054 int error;
1056 xfs_stop_block_reaping(mp);
1057 xfs_fs_unreserve_ag_blocks(mp);
1058 xfs_qm_unmount_quotas(mp);
1059 xfs_rtunmount_inodes(mp);
1060 xfs_irele(mp->m_rootip);
1063 * We can potentially deadlock here if we have an inode cluster
1064 * that has been freed has its buffer still pinned in memory because
1065 * the transaction is still sitting in a iclog. The stale inodes
1066 * on that buffer will have their flush locks held until the
1067 * transaction hits the disk and the callbacks run. the inode
1068 * flush takes the flush lock unconditionally and with nothing to
1069 * push out the iclog we will never get that unlocked. hence we
1070 * need to force the log first.
1072 xfs_log_force(mp, XFS_LOG_SYNC);
1075 * Wait for all busy extents to be freed, including completion of
1076 * any discard operation.
1078 xfs_extent_busy_wait_all(mp);
1079 flush_workqueue(xfs_discard_wq);
1082 * We now need to tell the world we are unmounting. This will allow
1083 * us to detect that the filesystem is going away and we should error
1084 * out anything that we have been retrying in the background. This will
1085 * prevent neverending retries in AIL pushing from hanging the unmount.
1087 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1090 * Flush all pending changes from the AIL.
1092 xfs_ail_push_all_sync(mp->m_ail);
1095 * And reclaim all inodes. At this point there should be no dirty
1096 * inodes and none should be pinned or locked, but use synchronous
1097 * reclaim just to be sure. We can stop background inode reclaim
1098 * here as well if it is still running.
1100 cancel_delayed_work_sync(&mp->m_reclaim_work);
1101 xfs_reclaim_inodes(mp, SYNC_WAIT);
1102 xfs_health_unmount(mp);
1104 xfs_qm_unmount(mp);
1107 * Unreserve any blocks we have so that when we unmount we don't account
1108 * the reserved free space as used. This is really only necessary for
1109 * lazy superblock counting because it trusts the incore superblock
1110 * counters to be absolutely correct on clean unmount.
1112 * We don't bother correcting this elsewhere for lazy superblock
1113 * counting because on mount of an unclean filesystem we reconstruct the
1114 * correct counter value and this is irrelevant.
1116 * For non-lazy counter filesystems, this doesn't matter at all because
1117 * we only every apply deltas to the superblock and hence the incore
1118 * value does not matter....
1120 resblks = 0;
1121 error = xfs_reserve_blocks(mp, &resblks, NULL);
1122 if (error)
1123 xfs_warn(mp, "Unable to free reserved block pool. "
1124 "Freespace may not be correct on next mount.");
1126 error = xfs_log_sbcount(mp);
1127 if (error)
1128 xfs_warn(mp, "Unable to update superblock counters. "
1129 "Freespace may not be correct on next mount.");
1132 xfs_log_unmount(mp);
1133 xfs_da_unmount(mp);
1134 xfs_uuid_unmount(mp);
1136 #if defined(DEBUG)
1137 xfs_errortag_clearall(mp);
1138 #endif
1139 xfs_free_perag(mp);
1141 xfs_errortag_del(mp);
1142 xfs_error_sysfs_del(mp);
1143 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1144 xfs_sysfs_del(&mp->m_kobj);
1148 * Determine whether modifications can proceed. The caller specifies the minimum
1149 * freeze level for which modifications should not be allowed. This allows
1150 * certain operations to proceed while the freeze sequence is in progress, if
1151 * necessary.
1153 bool
1154 xfs_fs_writable(
1155 struct xfs_mount *mp,
1156 int level)
1158 ASSERT(level > SB_UNFROZEN);
1159 if ((mp->m_super->s_writers.frozen >= level) ||
1160 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1161 return false;
1163 return true;
1167 * xfs_log_sbcount
1169 * Sync the superblock counters to disk.
1171 * Note this code can be called during the process of freezing, so we use the
1172 * transaction allocator that does not block when the transaction subsystem is
1173 * in its frozen state.
1176 xfs_log_sbcount(xfs_mount_t *mp)
1178 /* allow this to proceed during the freeze sequence... */
1179 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1180 return 0;
1183 * we don't need to do this if we are updating the superblock
1184 * counters on every modification.
1186 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1187 return 0;
1189 return xfs_sync_sb(mp, true);
1193 * Deltas for the inode count are +/-64, hence we use a large batch size
1194 * of 128 so we don't need to take the counter lock on every update.
1196 #define XFS_ICOUNT_BATCH 128
1198 xfs_mod_icount(
1199 struct xfs_mount *mp,
1200 int64_t delta)
1202 percpu_counter_add_batch(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1203 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1204 ASSERT(0);
1205 percpu_counter_add(&mp->m_icount, -delta);
1206 return -EINVAL;
1208 return 0;
1212 xfs_mod_ifree(
1213 struct xfs_mount *mp,
1214 int64_t delta)
1216 percpu_counter_add(&mp->m_ifree, delta);
1217 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1218 ASSERT(0);
1219 percpu_counter_add(&mp->m_ifree, -delta);
1220 return -EINVAL;
1222 return 0;
1226 * Deltas for the block count can vary from 1 to very large, but lock contention
1227 * only occurs on frequent small block count updates such as in the delayed
1228 * allocation path for buffered writes (page a time updates). Hence we set
1229 * a large batch count (1024) to minimise global counter updates except when
1230 * we get near to ENOSPC and we have to be very accurate with our updates.
1232 #define XFS_FDBLOCKS_BATCH 1024
1234 xfs_mod_fdblocks(
1235 struct xfs_mount *mp,
1236 int64_t delta,
1237 bool rsvd)
1239 int64_t lcounter;
1240 long long res_used;
1241 s32 batch;
1243 if (delta > 0) {
1245 * If the reserve pool is depleted, put blocks back into it
1246 * first. Most of the time the pool is full.
1248 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1249 percpu_counter_add(&mp->m_fdblocks, delta);
1250 return 0;
1253 spin_lock(&mp->m_sb_lock);
1254 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1256 if (res_used > delta) {
1257 mp->m_resblks_avail += delta;
1258 } else {
1259 delta -= res_used;
1260 mp->m_resblks_avail = mp->m_resblks;
1261 percpu_counter_add(&mp->m_fdblocks, delta);
1263 spin_unlock(&mp->m_sb_lock);
1264 return 0;
1268 * Taking blocks away, need to be more accurate the closer we
1269 * are to zero.
1271 * If the counter has a value of less than 2 * max batch size,
1272 * then make everything serialise as we are real close to
1273 * ENOSPC.
1275 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1276 XFS_FDBLOCKS_BATCH) < 0)
1277 batch = 1;
1278 else
1279 batch = XFS_FDBLOCKS_BATCH;
1281 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
1282 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1283 XFS_FDBLOCKS_BATCH) >= 0) {
1284 /* we had space! */
1285 return 0;
1289 * lock up the sb for dipping into reserves before releasing the space
1290 * that took us to ENOSPC.
1292 spin_lock(&mp->m_sb_lock);
1293 percpu_counter_add(&mp->m_fdblocks, -delta);
1294 if (!rsvd)
1295 goto fdblocks_enospc;
1297 lcounter = (long long)mp->m_resblks_avail + delta;
1298 if (lcounter >= 0) {
1299 mp->m_resblks_avail = lcounter;
1300 spin_unlock(&mp->m_sb_lock);
1301 return 0;
1303 printk_once(KERN_WARNING
1304 "Filesystem \"%s\": reserve blocks depleted! "
1305 "Consider increasing reserve pool size.",
1306 mp->m_super->s_id);
1307 fdblocks_enospc:
1308 spin_unlock(&mp->m_sb_lock);
1309 return -ENOSPC;
1313 xfs_mod_frextents(
1314 struct xfs_mount *mp,
1315 int64_t delta)
1317 int64_t lcounter;
1318 int ret = 0;
1320 spin_lock(&mp->m_sb_lock);
1321 lcounter = mp->m_sb.sb_frextents + delta;
1322 if (lcounter < 0)
1323 ret = -ENOSPC;
1324 else
1325 mp->m_sb.sb_frextents = lcounter;
1326 spin_unlock(&mp->m_sb_lock);
1327 return ret;
1331 * xfs_getsb() is called to obtain the buffer for the superblock.
1332 * The buffer is returned locked and read in from disk.
1333 * The buffer should be released with a call to xfs_brelse().
1335 struct xfs_buf *
1336 xfs_getsb(
1337 struct xfs_mount *mp)
1339 struct xfs_buf *bp = mp->m_sb_bp;
1341 xfs_buf_lock(bp);
1342 xfs_buf_hold(bp);
1343 ASSERT(bp->b_flags & XBF_DONE);
1344 return bp;
1348 * Used to free the superblock along various error paths.
1350 void
1351 xfs_freesb(
1352 struct xfs_mount *mp)
1354 struct xfs_buf *bp = mp->m_sb_bp;
1356 xfs_buf_lock(bp);
1357 mp->m_sb_bp = NULL;
1358 xfs_buf_relse(bp);
1362 * If the underlying (data/log/rt) device is readonly, there are some
1363 * operations that cannot proceed.
1366 xfs_dev_is_read_only(
1367 struct xfs_mount *mp,
1368 char *message)
1370 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1371 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1372 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1373 xfs_notice(mp, "%s required on read-only device.", message);
1374 xfs_notice(mp, "write access unavailable, cannot proceed.");
1375 return -EROFS;
1377 return 0;
1380 /* Force the summary counters to be recalculated at next mount. */
1381 void
1382 xfs_force_summary_recalc(
1383 struct xfs_mount *mp)
1385 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1386 return;
1388 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1392 * Update the in-core delayed block counter.
1394 * We prefer to update the counter without having to take a spinlock for every
1395 * counter update (i.e. batching). Each change to delayed allocation
1396 * reservations can change can easily exceed the default percpu counter
1397 * batching, so we use a larger batch factor here.
1399 * Note that we don't currently have any callers requiring fast summation
1400 * (e.g. percpu_counter_read) so we can use a big batch value here.
1402 #define XFS_DELALLOC_BATCH (4096)
1403 void
1404 xfs_mod_delalloc(
1405 struct xfs_mount *mp,
1406 int64_t delta)
1408 percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1409 XFS_DELALLOC_BATCH);