gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / mm / gup.c
blob6076df8e04a4e74dbb1405aa0e28ec9c72b59c4b
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
21 #include <asm/mmu_context.h>
22 #include <asm/pgtable.h>
23 #include <asm/tlbflush.h>
25 #include "internal.h"
27 struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
32 static void hpage_pincount_add(struct page *page, int refs)
34 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
35 VM_BUG_ON_PAGE(page != compound_head(page), page);
37 atomic_add(refs, compound_pincount_ptr(page));
40 static void hpage_pincount_sub(struct page *page, int refs)
42 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
43 VM_BUG_ON_PAGE(page != compound_head(page), page);
45 atomic_sub(refs, compound_pincount_ptr(page));
49 * Return the compound head page with ref appropriately incremented,
50 * or NULL if that failed.
52 static inline struct page *try_get_compound_head(struct page *page, int refs)
54 struct page *head = compound_head(page);
56 if (WARN_ON_ONCE(page_ref_count(head) < 0))
57 return NULL;
58 if (unlikely(!page_cache_add_speculative(head, refs)))
59 return NULL;
60 return head;
64 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
65 * flags-dependent amount.
67 * "grab" names in this file mean, "look at flags to decide whether to use
68 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
70 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
71 * same time. (That's true throughout the get_user_pages*() and
72 * pin_user_pages*() APIs.) Cases:
74 * FOLL_GET: page's refcount will be incremented by 1.
75 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
77 * Return: head page (with refcount appropriately incremented) for success, or
78 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
79 * considered failure, and furthermore, a likely bug in the caller, so a warning
80 * is also emitted.
82 static __maybe_unused struct page *try_grab_compound_head(struct page *page,
83 int refs,
84 unsigned int flags)
86 if (flags & FOLL_GET)
87 return try_get_compound_head(page, refs);
88 else if (flags & FOLL_PIN) {
89 int orig_refs = refs;
92 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
93 * path, so fail and let the caller fall back to the slow path.
95 if (unlikely(flags & FOLL_LONGTERM) &&
96 is_migrate_cma_page(page))
97 return NULL;
100 * When pinning a compound page of order > 1 (which is what
101 * hpage_pincount_available() checks for), use an exact count to
102 * track it, via hpage_pincount_add/_sub().
104 * However, be sure to *also* increment the normal page refcount
105 * field at least once, so that the page really is pinned.
107 if (!hpage_pincount_available(page))
108 refs *= GUP_PIN_COUNTING_BIAS;
110 page = try_get_compound_head(page, refs);
111 if (!page)
112 return NULL;
114 if (hpage_pincount_available(page))
115 hpage_pincount_add(page, refs);
117 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
118 orig_refs);
120 return page;
123 WARN_ON_ONCE(1);
124 return NULL;
128 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
130 * This might not do anything at all, depending on the flags argument.
132 * "grab" names in this file mean, "look at flags to decide whether to use
133 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
135 * @page: pointer to page to be grabbed
136 * @flags: gup flags: these are the FOLL_* flag values.
138 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
139 * time. Cases:
141 * FOLL_GET: page's refcount will be incremented by 1.
142 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
144 * Return: true for success, or if no action was required (if neither FOLL_PIN
145 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
146 * FOLL_PIN was set, but the page could not be grabbed.
148 bool __must_check try_grab_page(struct page *page, unsigned int flags)
150 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
152 if (flags & FOLL_GET)
153 return try_get_page(page);
154 else if (flags & FOLL_PIN) {
155 int refs = 1;
157 page = compound_head(page);
159 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
160 return false;
162 if (hpage_pincount_available(page))
163 hpage_pincount_add(page, 1);
164 else
165 refs = GUP_PIN_COUNTING_BIAS;
168 * Similar to try_grab_compound_head(): even if using the
169 * hpage_pincount_add/_sub() routines, be sure to
170 * *also* increment the normal page refcount field at least
171 * once, so that the page really is pinned.
173 page_ref_add(page, refs);
175 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
178 return true;
181 #ifdef CONFIG_DEV_PAGEMAP_OPS
182 static bool __unpin_devmap_managed_user_page(struct page *page)
184 int count, refs = 1;
186 if (!page_is_devmap_managed(page))
187 return false;
189 if (hpage_pincount_available(page))
190 hpage_pincount_sub(page, 1);
191 else
192 refs = GUP_PIN_COUNTING_BIAS;
194 count = page_ref_sub_return(page, refs);
196 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
198 * devmap page refcounts are 1-based, rather than 0-based: if
199 * refcount is 1, then the page is free and the refcount is
200 * stable because nobody holds a reference on the page.
202 if (count == 1)
203 free_devmap_managed_page(page);
204 else if (!count)
205 __put_page(page);
207 return true;
209 #else
210 static bool __unpin_devmap_managed_user_page(struct page *page)
212 return false;
214 #endif /* CONFIG_DEV_PAGEMAP_OPS */
217 * unpin_user_page() - release a dma-pinned page
218 * @page: pointer to page to be released
220 * Pages that were pinned via pin_user_pages*() must be released via either
221 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
222 * that such pages can be separately tracked and uniquely handled. In
223 * particular, interactions with RDMA and filesystems need special handling.
225 void unpin_user_page(struct page *page)
227 int refs = 1;
229 page = compound_head(page);
232 * For devmap managed pages we need to catch refcount transition from
233 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the
234 * page is free and we need to inform the device driver through
235 * callback. See include/linux/memremap.h and HMM for details.
237 if (__unpin_devmap_managed_user_page(page))
238 return;
240 if (hpage_pincount_available(page))
241 hpage_pincount_sub(page, 1);
242 else
243 refs = GUP_PIN_COUNTING_BIAS;
245 if (page_ref_sub_and_test(page, refs))
246 __put_page(page);
248 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
250 EXPORT_SYMBOL(unpin_user_page);
253 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
254 * @pages: array of pages to be maybe marked dirty, and definitely released.
255 * @npages: number of pages in the @pages array.
256 * @make_dirty: whether to mark the pages dirty
258 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
259 * variants called on that page.
261 * For each page in the @pages array, make that page (or its head page, if a
262 * compound page) dirty, if @make_dirty is true, and if the page was previously
263 * listed as clean. In any case, releases all pages using unpin_user_page(),
264 * possibly via unpin_user_pages(), for the non-dirty case.
266 * Please see the unpin_user_page() documentation for details.
268 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
269 * required, then the caller should a) verify that this is really correct,
270 * because _lock() is usually required, and b) hand code it:
271 * set_page_dirty_lock(), unpin_user_page().
274 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
275 bool make_dirty)
277 unsigned long index;
280 * TODO: this can be optimized for huge pages: if a series of pages is
281 * physically contiguous and part of the same compound page, then a
282 * single operation to the head page should suffice.
285 if (!make_dirty) {
286 unpin_user_pages(pages, npages);
287 return;
290 for (index = 0; index < npages; index++) {
291 struct page *page = compound_head(pages[index]);
293 * Checking PageDirty at this point may race with
294 * clear_page_dirty_for_io(), but that's OK. Two key
295 * cases:
297 * 1) This code sees the page as already dirty, so it
298 * skips the call to set_page_dirty(). That could happen
299 * because clear_page_dirty_for_io() called
300 * page_mkclean(), followed by set_page_dirty().
301 * However, now the page is going to get written back,
302 * which meets the original intention of setting it
303 * dirty, so all is well: clear_page_dirty_for_io() goes
304 * on to call TestClearPageDirty(), and write the page
305 * back.
307 * 2) This code sees the page as clean, so it calls
308 * set_page_dirty(). The page stays dirty, despite being
309 * written back, so it gets written back again in the
310 * next writeback cycle. This is harmless.
312 if (!PageDirty(page))
313 set_page_dirty_lock(page);
314 unpin_user_page(page);
317 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
320 * unpin_user_pages() - release an array of gup-pinned pages.
321 * @pages: array of pages to be marked dirty and released.
322 * @npages: number of pages in the @pages array.
324 * For each page in the @pages array, release the page using unpin_user_page().
326 * Please see the unpin_user_page() documentation for details.
328 void unpin_user_pages(struct page **pages, unsigned long npages)
330 unsigned long index;
333 * TODO: this can be optimized for huge pages: if a series of pages is
334 * physically contiguous and part of the same compound page, then a
335 * single operation to the head page should suffice.
337 for (index = 0; index < npages; index++)
338 unpin_user_page(pages[index]);
340 EXPORT_SYMBOL(unpin_user_pages);
342 #ifdef CONFIG_MMU
343 static struct page *no_page_table(struct vm_area_struct *vma,
344 unsigned int flags)
347 * When core dumping an enormous anonymous area that nobody
348 * has touched so far, we don't want to allocate unnecessary pages or
349 * page tables. Return error instead of NULL to skip handle_mm_fault,
350 * then get_dump_page() will return NULL to leave a hole in the dump.
351 * But we can only make this optimization where a hole would surely
352 * be zero-filled if handle_mm_fault() actually did handle it.
354 if ((flags & FOLL_DUMP) &&
355 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
356 return ERR_PTR(-EFAULT);
357 return NULL;
360 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
361 pte_t *pte, unsigned int flags)
363 /* No page to get reference */
364 if (flags & FOLL_GET)
365 return -EFAULT;
367 if (flags & FOLL_TOUCH) {
368 pte_t entry = *pte;
370 if (flags & FOLL_WRITE)
371 entry = pte_mkdirty(entry);
372 entry = pte_mkyoung(entry);
374 if (!pte_same(*pte, entry)) {
375 set_pte_at(vma->vm_mm, address, pte, entry);
376 update_mmu_cache(vma, address, pte);
380 /* Proper page table entry exists, but no corresponding struct page */
381 return -EEXIST;
385 * FOLL_FORCE can write to even unwritable pte's, but only
386 * after we've gone through a COW cycle and they are dirty.
388 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
390 return pte_write(pte) ||
391 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
394 static struct page *follow_page_pte(struct vm_area_struct *vma,
395 unsigned long address, pmd_t *pmd, unsigned int flags,
396 struct dev_pagemap **pgmap)
398 struct mm_struct *mm = vma->vm_mm;
399 struct page *page;
400 spinlock_t *ptl;
401 pte_t *ptep, pte;
402 int ret;
404 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
405 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
406 (FOLL_PIN | FOLL_GET)))
407 return ERR_PTR(-EINVAL);
408 retry:
409 if (unlikely(pmd_bad(*pmd)))
410 return no_page_table(vma, flags);
412 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
413 pte = *ptep;
414 if (!pte_present(pte)) {
415 swp_entry_t entry;
417 * KSM's break_ksm() relies upon recognizing a ksm page
418 * even while it is being migrated, so for that case we
419 * need migration_entry_wait().
421 if (likely(!(flags & FOLL_MIGRATION)))
422 goto no_page;
423 if (pte_none(pte))
424 goto no_page;
425 entry = pte_to_swp_entry(pte);
426 if (!is_migration_entry(entry))
427 goto no_page;
428 pte_unmap_unlock(ptep, ptl);
429 migration_entry_wait(mm, pmd, address);
430 goto retry;
432 if ((flags & FOLL_NUMA) && pte_protnone(pte))
433 goto no_page;
434 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
435 pte_unmap_unlock(ptep, ptl);
436 return NULL;
439 page = vm_normal_page(vma, address, pte);
440 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
442 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
443 * case since they are only valid while holding the pgmap
444 * reference.
446 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
447 if (*pgmap)
448 page = pte_page(pte);
449 else
450 goto no_page;
451 } else if (unlikely(!page)) {
452 if (flags & FOLL_DUMP) {
453 /* Avoid special (like zero) pages in core dumps */
454 page = ERR_PTR(-EFAULT);
455 goto out;
458 if (is_zero_pfn(pte_pfn(pte))) {
459 page = pte_page(pte);
460 } else {
461 ret = follow_pfn_pte(vma, address, ptep, flags);
462 page = ERR_PTR(ret);
463 goto out;
467 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
468 get_page(page);
469 pte_unmap_unlock(ptep, ptl);
470 lock_page(page);
471 ret = split_huge_page(page);
472 unlock_page(page);
473 put_page(page);
474 if (ret)
475 return ERR_PTR(ret);
476 goto retry;
479 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
480 if (unlikely(!try_grab_page(page, flags))) {
481 page = ERR_PTR(-ENOMEM);
482 goto out;
485 * We need to make the page accessible if and only if we are going
486 * to access its content (the FOLL_PIN case). Please see
487 * Documentation/core-api/pin_user_pages.rst for details.
489 if (flags & FOLL_PIN) {
490 ret = arch_make_page_accessible(page);
491 if (ret) {
492 unpin_user_page(page);
493 page = ERR_PTR(ret);
494 goto out;
497 if (flags & FOLL_TOUCH) {
498 if ((flags & FOLL_WRITE) &&
499 !pte_dirty(pte) && !PageDirty(page))
500 set_page_dirty(page);
502 * pte_mkyoung() would be more correct here, but atomic care
503 * is needed to avoid losing the dirty bit: it is easier to use
504 * mark_page_accessed().
506 mark_page_accessed(page);
508 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
509 /* Do not mlock pte-mapped THP */
510 if (PageTransCompound(page))
511 goto out;
514 * The preliminary mapping check is mainly to avoid the
515 * pointless overhead of lock_page on the ZERO_PAGE
516 * which might bounce very badly if there is contention.
518 * If the page is already locked, we don't need to
519 * handle it now - vmscan will handle it later if and
520 * when it attempts to reclaim the page.
522 if (page->mapping && trylock_page(page)) {
523 lru_add_drain(); /* push cached pages to LRU */
525 * Because we lock page here, and migration is
526 * blocked by the pte's page reference, and we
527 * know the page is still mapped, we don't even
528 * need to check for file-cache page truncation.
530 mlock_vma_page(page);
531 unlock_page(page);
534 out:
535 pte_unmap_unlock(ptep, ptl);
536 return page;
537 no_page:
538 pte_unmap_unlock(ptep, ptl);
539 if (!pte_none(pte))
540 return NULL;
541 return no_page_table(vma, flags);
544 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
545 unsigned long address, pud_t *pudp,
546 unsigned int flags,
547 struct follow_page_context *ctx)
549 pmd_t *pmd, pmdval;
550 spinlock_t *ptl;
551 struct page *page;
552 struct mm_struct *mm = vma->vm_mm;
554 pmd = pmd_offset(pudp, address);
556 * The READ_ONCE() will stabilize the pmdval in a register or
557 * on the stack so that it will stop changing under the code.
559 pmdval = READ_ONCE(*pmd);
560 if (pmd_none(pmdval))
561 return no_page_table(vma, flags);
562 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
563 page = follow_huge_pmd(mm, address, pmd, flags);
564 if (page)
565 return page;
566 return no_page_table(vma, flags);
568 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
569 page = follow_huge_pd(vma, address,
570 __hugepd(pmd_val(pmdval)), flags,
571 PMD_SHIFT);
572 if (page)
573 return page;
574 return no_page_table(vma, flags);
576 retry:
577 if (!pmd_present(pmdval)) {
578 if (likely(!(flags & FOLL_MIGRATION)))
579 return no_page_table(vma, flags);
580 VM_BUG_ON(thp_migration_supported() &&
581 !is_pmd_migration_entry(pmdval));
582 if (is_pmd_migration_entry(pmdval))
583 pmd_migration_entry_wait(mm, pmd);
584 pmdval = READ_ONCE(*pmd);
586 * MADV_DONTNEED may convert the pmd to null because
587 * mmap_sem is held in read mode
589 if (pmd_none(pmdval))
590 return no_page_table(vma, flags);
591 goto retry;
593 if (pmd_devmap(pmdval)) {
594 ptl = pmd_lock(mm, pmd);
595 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
596 spin_unlock(ptl);
597 if (page)
598 return page;
600 if (likely(!pmd_trans_huge(pmdval)))
601 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
603 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
604 return no_page_table(vma, flags);
606 retry_locked:
607 ptl = pmd_lock(mm, pmd);
608 if (unlikely(pmd_none(*pmd))) {
609 spin_unlock(ptl);
610 return no_page_table(vma, flags);
612 if (unlikely(!pmd_present(*pmd))) {
613 spin_unlock(ptl);
614 if (likely(!(flags & FOLL_MIGRATION)))
615 return no_page_table(vma, flags);
616 pmd_migration_entry_wait(mm, pmd);
617 goto retry_locked;
619 if (unlikely(!pmd_trans_huge(*pmd))) {
620 spin_unlock(ptl);
621 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
623 if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
624 int ret;
625 page = pmd_page(*pmd);
626 if (is_huge_zero_page(page)) {
627 spin_unlock(ptl);
628 ret = 0;
629 split_huge_pmd(vma, pmd, address);
630 if (pmd_trans_unstable(pmd))
631 ret = -EBUSY;
632 } else if (flags & FOLL_SPLIT) {
633 if (unlikely(!try_get_page(page))) {
634 spin_unlock(ptl);
635 return ERR_PTR(-ENOMEM);
637 spin_unlock(ptl);
638 lock_page(page);
639 ret = split_huge_page(page);
640 unlock_page(page);
641 put_page(page);
642 if (pmd_none(*pmd))
643 return no_page_table(vma, flags);
644 } else { /* flags & FOLL_SPLIT_PMD */
645 spin_unlock(ptl);
646 split_huge_pmd(vma, pmd, address);
647 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
650 return ret ? ERR_PTR(ret) :
651 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
653 page = follow_trans_huge_pmd(vma, address, pmd, flags);
654 spin_unlock(ptl);
655 ctx->page_mask = HPAGE_PMD_NR - 1;
656 return page;
659 static struct page *follow_pud_mask(struct vm_area_struct *vma,
660 unsigned long address, p4d_t *p4dp,
661 unsigned int flags,
662 struct follow_page_context *ctx)
664 pud_t *pud;
665 spinlock_t *ptl;
666 struct page *page;
667 struct mm_struct *mm = vma->vm_mm;
669 pud = pud_offset(p4dp, address);
670 if (pud_none(*pud))
671 return no_page_table(vma, flags);
672 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
673 page = follow_huge_pud(mm, address, pud, flags);
674 if (page)
675 return page;
676 return no_page_table(vma, flags);
678 if (is_hugepd(__hugepd(pud_val(*pud)))) {
679 page = follow_huge_pd(vma, address,
680 __hugepd(pud_val(*pud)), flags,
681 PUD_SHIFT);
682 if (page)
683 return page;
684 return no_page_table(vma, flags);
686 if (pud_devmap(*pud)) {
687 ptl = pud_lock(mm, pud);
688 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
689 spin_unlock(ptl);
690 if (page)
691 return page;
693 if (unlikely(pud_bad(*pud)))
694 return no_page_table(vma, flags);
696 return follow_pmd_mask(vma, address, pud, flags, ctx);
699 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
700 unsigned long address, pgd_t *pgdp,
701 unsigned int flags,
702 struct follow_page_context *ctx)
704 p4d_t *p4d;
705 struct page *page;
707 p4d = p4d_offset(pgdp, address);
708 if (p4d_none(*p4d))
709 return no_page_table(vma, flags);
710 BUILD_BUG_ON(p4d_huge(*p4d));
711 if (unlikely(p4d_bad(*p4d)))
712 return no_page_table(vma, flags);
714 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
715 page = follow_huge_pd(vma, address,
716 __hugepd(p4d_val(*p4d)), flags,
717 P4D_SHIFT);
718 if (page)
719 return page;
720 return no_page_table(vma, flags);
722 return follow_pud_mask(vma, address, p4d, flags, ctx);
726 * follow_page_mask - look up a page descriptor from a user-virtual address
727 * @vma: vm_area_struct mapping @address
728 * @address: virtual address to look up
729 * @flags: flags modifying lookup behaviour
730 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
731 * pointer to output page_mask
733 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
735 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
736 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
738 * On output, the @ctx->page_mask is set according to the size of the page.
740 * Return: the mapped (struct page *), %NULL if no mapping exists, or
741 * an error pointer if there is a mapping to something not represented
742 * by a page descriptor (see also vm_normal_page()).
744 static struct page *follow_page_mask(struct vm_area_struct *vma,
745 unsigned long address, unsigned int flags,
746 struct follow_page_context *ctx)
748 pgd_t *pgd;
749 struct page *page;
750 struct mm_struct *mm = vma->vm_mm;
752 ctx->page_mask = 0;
754 /* make this handle hugepd */
755 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
756 if (!IS_ERR(page)) {
757 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
758 return page;
761 pgd = pgd_offset(mm, address);
763 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
764 return no_page_table(vma, flags);
766 if (pgd_huge(*pgd)) {
767 page = follow_huge_pgd(mm, address, pgd, flags);
768 if (page)
769 return page;
770 return no_page_table(vma, flags);
772 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
773 page = follow_huge_pd(vma, address,
774 __hugepd(pgd_val(*pgd)), flags,
775 PGDIR_SHIFT);
776 if (page)
777 return page;
778 return no_page_table(vma, flags);
781 return follow_p4d_mask(vma, address, pgd, flags, ctx);
784 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
785 unsigned int foll_flags)
787 struct follow_page_context ctx = { NULL };
788 struct page *page;
790 page = follow_page_mask(vma, address, foll_flags, &ctx);
791 if (ctx.pgmap)
792 put_dev_pagemap(ctx.pgmap);
793 return page;
796 static int get_gate_page(struct mm_struct *mm, unsigned long address,
797 unsigned int gup_flags, struct vm_area_struct **vma,
798 struct page **page)
800 pgd_t *pgd;
801 p4d_t *p4d;
802 pud_t *pud;
803 pmd_t *pmd;
804 pte_t *pte;
805 int ret = -EFAULT;
807 /* user gate pages are read-only */
808 if (gup_flags & FOLL_WRITE)
809 return -EFAULT;
810 if (address > TASK_SIZE)
811 pgd = pgd_offset_k(address);
812 else
813 pgd = pgd_offset_gate(mm, address);
814 if (pgd_none(*pgd))
815 return -EFAULT;
816 p4d = p4d_offset(pgd, address);
817 if (p4d_none(*p4d))
818 return -EFAULT;
819 pud = pud_offset(p4d, address);
820 if (pud_none(*pud))
821 return -EFAULT;
822 pmd = pmd_offset(pud, address);
823 if (!pmd_present(*pmd))
824 return -EFAULT;
825 VM_BUG_ON(pmd_trans_huge(*pmd));
826 pte = pte_offset_map(pmd, address);
827 if (pte_none(*pte))
828 goto unmap;
829 *vma = get_gate_vma(mm);
830 if (!page)
831 goto out;
832 *page = vm_normal_page(*vma, address, *pte);
833 if (!*page) {
834 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
835 goto unmap;
836 *page = pte_page(*pte);
838 if (unlikely(!try_get_page(*page))) {
839 ret = -ENOMEM;
840 goto unmap;
842 out:
843 ret = 0;
844 unmap:
845 pte_unmap(pte);
846 return ret;
850 * mmap_sem must be held on entry. If @locked != NULL and *@flags
851 * does not include FOLL_NOWAIT, the mmap_sem may be released. If it
852 * is, *@locked will be set to 0 and -EBUSY returned.
854 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
855 unsigned long address, unsigned int *flags, int *locked)
857 unsigned int fault_flags = 0;
858 vm_fault_t ret;
860 /* mlock all present pages, but do not fault in new pages */
861 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
862 return -ENOENT;
863 if (*flags & FOLL_WRITE)
864 fault_flags |= FAULT_FLAG_WRITE;
865 if (*flags & FOLL_REMOTE)
866 fault_flags |= FAULT_FLAG_REMOTE;
867 if (locked)
868 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
869 if (*flags & FOLL_NOWAIT)
870 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
871 if (*flags & FOLL_TRIED) {
873 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
874 * can co-exist
876 fault_flags |= FAULT_FLAG_TRIED;
879 ret = handle_mm_fault(vma, address, fault_flags);
880 if (ret & VM_FAULT_ERROR) {
881 int err = vm_fault_to_errno(ret, *flags);
883 if (err)
884 return err;
885 BUG();
888 if (tsk) {
889 if (ret & VM_FAULT_MAJOR)
890 tsk->maj_flt++;
891 else
892 tsk->min_flt++;
895 if (ret & VM_FAULT_RETRY) {
896 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
897 *locked = 0;
898 return -EBUSY;
902 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
903 * necessary, even if maybe_mkwrite decided not to set pte_write. We
904 * can thus safely do subsequent page lookups as if they were reads.
905 * But only do so when looping for pte_write is futile: in some cases
906 * userspace may also be wanting to write to the gotten user page,
907 * which a read fault here might prevent (a readonly page might get
908 * reCOWed by userspace write).
910 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
911 *flags |= FOLL_COW;
912 return 0;
915 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
917 vm_flags_t vm_flags = vma->vm_flags;
918 int write = (gup_flags & FOLL_WRITE);
919 int foreign = (gup_flags & FOLL_REMOTE);
921 if (vm_flags & (VM_IO | VM_PFNMAP))
922 return -EFAULT;
924 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
925 return -EFAULT;
927 if (write) {
928 if (!(vm_flags & VM_WRITE)) {
929 if (!(gup_flags & FOLL_FORCE))
930 return -EFAULT;
932 * We used to let the write,force case do COW in a
933 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
934 * set a breakpoint in a read-only mapping of an
935 * executable, without corrupting the file (yet only
936 * when that file had been opened for writing!).
937 * Anon pages in shared mappings are surprising: now
938 * just reject it.
940 if (!is_cow_mapping(vm_flags))
941 return -EFAULT;
943 } else if (!(vm_flags & VM_READ)) {
944 if (!(gup_flags & FOLL_FORCE))
945 return -EFAULT;
947 * Is there actually any vma we can reach here which does not
948 * have VM_MAYREAD set?
950 if (!(vm_flags & VM_MAYREAD))
951 return -EFAULT;
954 * gups are always data accesses, not instruction
955 * fetches, so execute=false here
957 if (!arch_vma_access_permitted(vma, write, false, foreign))
958 return -EFAULT;
959 return 0;
963 * __get_user_pages() - pin user pages in memory
964 * @tsk: task_struct of target task
965 * @mm: mm_struct of target mm
966 * @start: starting user address
967 * @nr_pages: number of pages from start to pin
968 * @gup_flags: flags modifying pin behaviour
969 * @pages: array that receives pointers to the pages pinned.
970 * Should be at least nr_pages long. Or NULL, if caller
971 * only intends to ensure the pages are faulted in.
972 * @vmas: array of pointers to vmas corresponding to each page.
973 * Or NULL if the caller does not require them.
974 * @locked: whether we're still with the mmap_sem held
976 * Returns either number of pages pinned (which may be less than the
977 * number requested), or an error. Details about the return value:
979 * -- If nr_pages is 0, returns 0.
980 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
981 * -- If nr_pages is >0, and some pages were pinned, returns the number of
982 * pages pinned. Again, this may be less than nr_pages.
984 * The caller is responsible for releasing returned @pages, via put_page().
986 * @vmas are valid only as long as mmap_sem is held.
988 * Must be called with mmap_sem held. It may be released. See below.
990 * __get_user_pages walks a process's page tables and takes a reference to
991 * each struct page that each user address corresponds to at a given
992 * instant. That is, it takes the page that would be accessed if a user
993 * thread accesses the given user virtual address at that instant.
995 * This does not guarantee that the page exists in the user mappings when
996 * __get_user_pages returns, and there may even be a completely different
997 * page there in some cases (eg. if mmapped pagecache has been invalidated
998 * and subsequently re faulted). However it does guarantee that the page
999 * won't be freed completely. And mostly callers simply care that the page
1000 * contains data that was valid *at some point in time*. Typically, an IO
1001 * or similar operation cannot guarantee anything stronger anyway because
1002 * locks can't be held over the syscall boundary.
1004 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1005 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1006 * appropriate) must be called after the page is finished with, and
1007 * before put_page is called.
1009 * If @locked != NULL, *@locked will be set to 0 when mmap_sem is
1010 * released by an up_read(). That can happen if @gup_flags does not
1011 * have FOLL_NOWAIT.
1013 * A caller using such a combination of @locked and @gup_flags
1014 * must therefore hold the mmap_sem for reading only, and recognize
1015 * when it's been released. Otherwise, it must be held for either
1016 * reading or writing and will not be released.
1018 * In most cases, get_user_pages or get_user_pages_fast should be used
1019 * instead of __get_user_pages. __get_user_pages should be used only if
1020 * you need some special @gup_flags.
1022 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1023 unsigned long start, unsigned long nr_pages,
1024 unsigned int gup_flags, struct page **pages,
1025 struct vm_area_struct **vmas, int *locked)
1027 long ret = 0, i = 0;
1028 struct vm_area_struct *vma = NULL;
1029 struct follow_page_context ctx = { NULL };
1031 if (!nr_pages)
1032 return 0;
1034 start = untagged_addr(start);
1036 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1039 * If FOLL_FORCE is set then do not force a full fault as the hinting
1040 * fault information is unrelated to the reference behaviour of a task
1041 * using the address space
1043 if (!(gup_flags & FOLL_FORCE))
1044 gup_flags |= FOLL_NUMA;
1046 do {
1047 struct page *page;
1048 unsigned int foll_flags = gup_flags;
1049 unsigned int page_increm;
1051 /* first iteration or cross vma bound */
1052 if (!vma || start >= vma->vm_end) {
1053 vma = find_extend_vma(mm, start);
1054 if (!vma && in_gate_area(mm, start)) {
1055 ret = get_gate_page(mm, start & PAGE_MASK,
1056 gup_flags, &vma,
1057 pages ? &pages[i] : NULL);
1058 if (ret)
1059 goto out;
1060 ctx.page_mask = 0;
1061 goto next_page;
1064 if (!vma || check_vma_flags(vma, gup_flags)) {
1065 ret = -EFAULT;
1066 goto out;
1068 if (is_vm_hugetlb_page(vma)) {
1069 i = follow_hugetlb_page(mm, vma, pages, vmas,
1070 &start, &nr_pages, i,
1071 gup_flags, locked);
1072 if (locked && *locked == 0) {
1074 * We've got a VM_FAULT_RETRY
1075 * and we've lost mmap_sem.
1076 * We must stop here.
1078 BUG_ON(gup_flags & FOLL_NOWAIT);
1079 BUG_ON(ret != 0);
1080 goto out;
1082 continue;
1085 retry:
1087 * If we have a pending SIGKILL, don't keep faulting pages and
1088 * potentially allocating memory.
1090 if (fatal_signal_pending(current)) {
1091 ret = -ERESTARTSYS;
1092 goto out;
1094 cond_resched();
1096 page = follow_page_mask(vma, start, foll_flags, &ctx);
1097 if (!page) {
1098 ret = faultin_page(tsk, vma, start, &foll_flags,
1099 locked);
1100 switch (ret) {
1101 case 0:
1102 goto retry;
1103 case -EBUSY:
1104 ret = 0;
1105 fallthrough;
1106 case -EFAULT:
1107 case -ENOMEM:
1108 case -EHWPOISON:
1109 goto out;
1110 case -ENOENT:
1111 goto next_page;
1113 BUG();
1114 } else if (PTR_ERR(page) == -EEXIST) {
1116 * Proper page table entry exists, but no corresponding
1117 * struct page.
1119 goto next_page;
1120 } else if (IS_ERR(page)) {
1121 ret = PTR_ERR(page);
1122 goto out;
1124 if (pages) {
1125 pages[i] = page;
1126 flush_anon_page(vma, page, start);
1127 flush_dcache_page(page);
1128 ctx.page_mask = 0;
1130 next_page:
1131 if (vmas) {
1132 vmas[i] = vma;
1133 ctx.page_mask = 0;
1135 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1136 if (page_increm > nr_pages)
1137 page_increm = nr_pages;
1138 i += page_increm;
1139 start += page_increm * PAGE_SIZE;
1140 nr_pages -= page_increm;
1141 } while (nr_pages);
1142 out:
1143 if (ctx.pgmap)
1144 put_dev_pagemap(ctx.pgmap);
1145 return i ? i : ret;
1148 static bool vma_permits_fault(struct vm_area_struct *vma,
1149 unsigned int fault_flags)
1151 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1152 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1153 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1155 if (!(vm_flags & vma->vm_flags))
1156 return false;
1159 * The architecture might have a hardware protection
1160 * mechanism other than read/write that can deny access.
1162 * gup always represents data access, not instruction
1163 * fetches, so execute=false here:
1165 if (!arch_vma_access_permitted(vma, write, false, foreign))
1166 return false;
1168 return true;
1172 * fixup_user_fault() - manually resolve a user page fault
1173 * @tsk: the task_struct to use for page fault accounting, or
1174 * NULL if faults are not to be recorded.
1175 * @mm: mm_struct of target mm
1176 * @address: user address
1177 * @fault_flags:flags to pass down to handle_mm_fault()
1178 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
1179 * does not allow retry
1181 * This is meant to be called in the specific scenario where for locking reasons
1182 * we try to access user memory in atomic context (within a pagefault_disable()
1183 * section), this returns -EFAULT, and we want to resolve the user fault before
1184 * trying again.
1186 * Typically this is meant to be used by the futex code.
1188 * The main difference with get_user_pages() is that this function will
1189 * unconditionally call handle_mm_fault() which will in turn perform all the
1190 * necessary SW fixup of the dirty and young bits in the PTE, while
1191 * get_user_pages() only guarantees to update these in the struct page.
1193 * This is important for some architectures where those bits also gate the
1194 * access permission to the page because they are maintained in software. On
1195 * such architectures, gup() will not be enough to make a subsequent access
1196 * succeed.
1198 * This function will not return with an unlocked mmap_sem. So it has not the
1199 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
1201 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1202 unsigned long address, unsigned int fault_flags,
1203 bool *unlocked)
1205 struct vm_area_struct *vma;
1206 vm_fault_t ret, major = 0;
1208 address = untagged_addr(address);
1210 if (unlocked)
1211 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1213 retry:
1214 vma = find_extend_vma(mm, address);
1215 if (!vma || address < vma->vm_start)
1216 return -EFAULT;
1218 if (!vma_permits_fault(vma, fault_flags))
1219 return -EFAULT;
1221 ret = handle_mm_fault(vma, address, fault_flags);
1222 major |= ret & VM_FAULT_MAJOR;
1223 if (ret & VM_FAULT_ERROR) {
1224 int err = vm_fault_to_errno(ret, 0);
1226 if (err)
1227 return err;
1228 BUG();
1231 if (ret & VM_FAULT_RETRY) {
1232 down_read(&mm->mmap_sem);
1233 if (!(fault_flags & FAULT_FLAG_TRIED)) {
1234 *unlocked = true;
1235 fault_flags |= FAULT_FLAG_TRIED;
1236 goto retry;
1240 if (tsk) {
1241 if (major)
1242 tsk->maj_flt++;
1243 else
1244 tsk->min_flt++;
1246 return 0;
1248 EXPORT_SYMBOL_GPL(fixup_user_fault);
1250 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
1251 struct mm_struct *mm,
1252 unsigned long start,
1253 unsigned long nr_pages,
1254 struct page **pages,
1255 struct vm_area_struct **vmas,
1256 int *locked,
1257 unsigned int flags)
1259 long ret, pages_done;
1260 bool lock_dropped;
1262 if (locked) {
1263 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1264 BUG_ON(vmas);
1265 /* check caller initialized locked */
1266 BUG_ON(*locked != 1);
1270 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1271 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1272 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1273 * for FOLL_GET, not for the newer FOLL_PIN.
1275 * FOLL_PIN always expects pages to be non-null, but no need to assert
1276 * that here, as any failures will be obvious enough.
1278 if (pages && !(flags & FOLL_PIN))
1279 flags |= FOLL_GET;
1281 pages_done = 0;
1282 lock_dropped = false;
1283 for (;;) {
1284 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
1285 vmas, locked);
1286 if (!locked)
1287 /* VM_FAULT_RETRY couldn't trigger, bypass */
1288 return ret;
1290 /* VM_FAULT_RETRY cannot return errors */
1291 if (!*locked) {
1292 BUG_ON(ret < 0);
1293 BUG_ON(ret >= nr_pages);
1296 if (ret > 0) {
1297 nr_pages -= ret;
1298 pages_done += ret;
1299 if (!nr_pages)
1300 break;
1302 if (*locked) {
1304 * VM_FAULT_RETRY didn't trigger or it was a
1305 * FOLL_NOWAIT.
1307 if (!pages_done)
1308 pages_done = ret;
1309 break;
1312 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1313 * For the prefault case (!pages) we only update counts.
1315 if (likely(pages))
1316 pages += ret;
1317 start += ret << PAGE_SHIFT;
1318 lock_dropped = true;
1320 retry:
1322 * Repeat on the address that fired VM_FAULT_RETRY
1323 * with both FAULT_FLAG_ALLOW_RETRY and
1324 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1325 * by fatal signals, so we need to check it before we
1326 * start trying again otherwise it can loop forever.
1329 if (fatal_signal_pending(current)) {
1330 if (!pages_done)
1331 pages_done = -EINTR;
1332 break;
1335 ret = down_read_killable(&mm->mmap_sem);
1336 if (ret) {
1337 BUG_ON(ret > 0);
1338 if (!pages_done)
1339 pages_done = ret;
1340 break;
1343 *locked = 1;
1344 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
1345 pages, NULL, locked);
1346 if (!*locked) {
1347 /* Continue to retry until we succeeded */
1348 BUG_ON(ret != 0);
1349 goto retry;
1351 if (ret != 1) {
1352 BUG_ON(ret > 1);
1353 if (!pages_done)
1354 pages_done = ret;
1355 break;
1357 nr_pages--;
1358 pages_done++;
1359 if (!nr_pages)
1360 break;
1361 if (likely(pages))
1362 pages++;
1363 start += PAGE_SIZE;
1365 if (lock_dropped && *locked) {
1367 * We must let the caller know we temporarily dropped the lock
1368 * and so the critical section protected by it was lost.
1370 up_read(&mm->mmap_sem);
1371 *locked = 0;
1373 return pages_done;
1377 * populate_vma_page_range() - populate a range of pages in the vma.
1378 * @vma: target vma
1379 * @start: start address
1380 * @end: end address
1381 * @locked: whether the mmap_sem is still held
1383 * This takes care of mlocking the pages too if VM_LOCKED is set.
1385 * return 0 on success, negative error code on error.
1387 * vma->vm_mm->mmap_sem must be held.
1389 * If @locked is NULL, it may be held for read or write and will
1390 * be unperturbed.
1392 * If @locked is non-NULL, it must held for read only and may be
1393 * released. If it's released, *@locked will be set to 0.
1395 long populate_vma_page_range(struct vm_area_struct *vma,
1396 unsigned long start, unsigned long end, int *locked)
1398 struct mm_struct *mm = vma->vm_mm;
1399 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1400 int gup_flags;
1402 VM_BUG_ON(start & ~PAGE_MASK);
1403 VM_BUG_ON(end & ~PAGE_MASK);
1404 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1405 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1406 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1408 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1409 if (vma->vm_flags & VM_LOCKONFAULT)
1410 gup_flags &= ~FOLL_POPULATE;
1412 * We want to touch writable mappings with a write fault in order
1413 * to break COW, except for shared mappings because these don't COW
1414 * and we would not want to dirty them for nothing.
1416 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1417 gup_flags |= FOLL_WRITE;
1420 * We want mlock to succeed for regions that have any permissions
1421 * other than PROT_NONE.
1423 if (vma_is_accessible(vma))
1424 gup_flags |= FOLL_FORCE;
1427 * We made sure addr is within a VMA, so the following will
1428 * not result in a stack expansion that recurses back here.
1430 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1431 NULL, NULL, locked);
1435 * __mm_populate - populate and/or mlock pages within a range of address space.
1437 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1438 * flags. VMAs must be already marked with the desired vm_flags, and
1439 * mmap_sem must not be held.
1441 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1443 struct mm_struct *mm = current->mm;
1444 unsigned long end, nstart, nend;
1445 struct vm_area_struct *vma = NULL;
1446 int locked = 0;
1447 long ret = 0;
1449 end = start + len;
1451 for (nstart = start; nstart < end; nstart = nend) {
1453 * We want to fault in pages for [nstart; end) address range.
1454 * Find first corresponding VMA.
1456 if (!locked) {
1457 locked = 1;
1458 down_read(&mm->mmap_sem);
1459 vma = find_vma(mm, nstart);
1460 } else if (nstart >= vma->vm_end)
1461 vma = vma->vm_next;
1462 if (!vma || vma->vm_start >= end)
1463 break;
1465 * Set [nstart; nend) to intersection of desired address
1466 * range with the first VMA. Also, skip undesirable VMA types.
1468 nend = min(end, vma->vm_end);
1469 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1470 continue;
1471 if (nstart < vma->vm_start)
1472 nstart = vma->vm_start;
1474 * Now fault in a range of pages. populate_vma_page_range()
1475 * double checks the vma flags, so that it won't mlock pages
1476 * if the vma was already munlocked.
1478 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1479 if (ret < 0) {
1480 if (ignore_errors) {
1481 ret = 0;
1482 continue; /* continue at next VMA */
1484 break;
1486 nend = nstart + ret * PAGE_SIZE;
1487 ret = 0;
1489 if (locked)
1490 up_read(&mm->mmap_sem);
1491 return ret; /* 0 or negative error code */
1495 * get_dump_page() - pin user page in memory while writing it to core dump
1496 * @addr: user address
1498 * Returns struct page pointer of user page pinned for dump,
1499 * to be freed afterwards by put_page().
1501 * Returns NULL on any kind of failure - a hole must then be inserted into
1502 * the corefile, to preserve alignment with its headers; and also returns
1503 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1504 * allowing a hole to be left in the corefile to save diskspace.
1506 * Called without mmap_sem, but after all other threads have been killed.
1508 #ifdef CONFIG_ELF_CORE
1509 struct page *get_dump_page(unsigned long addr)
1511 struct vm_area_struct *vma;
1512 struct page *page;
1514 if (__get_user_pages(current, current->mm, addr, 1,
1515 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1516 NULL) < 1)
1517 return NULL;
1518 flush_cache_page(vma, addr, page_to_pfn(page));
1519 return page;
1521 #endif /* CONFIG_ELF_CORE */
1522 #else /* CONFIG_MMU */
1523 static long __get_user_pages_locked(struct task_struct *tsk,
1524 struct mm_struct *mm, unsigned long start,
1525 unsigned long nr_pages, struct page **pages,
1526 struct vm_area_struct **vmas, int *locked,
1527 unsigned int foll_flags)
1529 struct vm_area_struct *vma;
1530 unsigned long vm_flags;
1531 int i;
1533 /* calculate required read or write permissions.
1534 * If FOLL_FORCE is set, we only require the "MAY" flags.
1536 vm_flags = (foll_flags & FOLL_WRITE) ?
1537 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1538 vm_flags &= (foll_flags & FOLL_FORCE) ?
1539 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1541 for (i = 0; i < nr_pages; i++) {
1542 vma = find_vma(mm, start);
1543 if (!vma)
1544 goto finish_or_fault;
1546 /* protect what we can, including chardevs */
1547 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1548 !(vm_flags & vma->vm_flags))
1549 goto finish_or_fault;
1551 if (pages) {
1552 pages[i] = virt_to_page(start);
1553 if (pages[i])
1554 get_page(pages[i]);
1556 if (vmas)
1557 vmas[i] = vma;
1558 start = (start + PAGE_SIZE) & PAGE_MASK;
1561 return i;
1563 finish_or_fault:
1564 return i ? : -EFAULT;
1566 #endif /* !CONFIG_MMU */
1568 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1569 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1571 long i;
1572 struct vm_area_struct *vma_prev = NULL;
1574 for (i = 0; i < nr_pages; i++) {
1575 struct vm_area_struct *vma = vmas[i];
1577 if (vma == vma_prev)
1578 continue;
1580 vma_prev = vma;
1582 if (vma_is_fsdax(vma))
1583 return true;
1585 return false;
1588 #ifdef CONFIG_CMA
1589 static struct page *new_non_cma_page(struct page *page, unsigned long private)
1592 * We want to make sure we allocate the new page from the same node
1593 * as the source page.
1595 int nid = page_to_nid(page);
1597 * Trying to allocate a page for migration. Ignore allocation
1598 * failure warnings. We don't force __GFP_THISNODE here because
1599 * this node here is the node where we have CMA reservation and
1600 * in some case these nodes will have really less non movable
1601 * allocation memory.
1603 gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;
1605 if (PageHighMem(page))
1606 gfp_mask |= __GFP_HIGHMEM;
1608 #ifdef CONFIG_HUGETLB_PAGE
1609 if (PageHuge(page)) {
1610 struct hstate *h = page_hstate(page);
1612 * We don't want to dequeue from the pool because pool pages will
1613 * mostly be from the CMA region.
1615 return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1617 #endif
1618 if (PageTransHuge(page)) {
1619 struct page *thp;
1621 * ignore allocation failure warnings
1623 gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;
1626 * Remove the movable mask so that we don't allocate from
1627 * CMA area again.
1629 thp_gfpmask &= ~__GFP_MOVABLE;
1630 thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
1631 if (!thp)
1632 return NULL;
1633 prep_transhuge_page(thp);
1634 return thp;
1637 return __alloc_pages_node(nid, gfp_mask, 0);
1640 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1641 struct mm_struct *mm,
1642 unsigned long start,
1643 unsigned long nr_pages,
1644 struct page **pages,
1645 struct vm_area_struct **vmas,
1646 unsigned int gup_flags)
1648 unsigned long i;
1649 unsigned long step;
1650 bool drain_allow = true;
1651 bool migrate_allow = true;
1652 LIST_HEAD(cma_page_list);
1653 long ret = nr_pages;
1655 check_again:
1656 for (i = 0; i < nr_pages;) {
1658 struct page *head = compound_head(pages[i]);
1661 * gup may start from a tail page. Advance step by the left
1662 * part.
1664 step = compound_nr(head) - (pages[i] - head);
1666 * If we get a page from the CMA zone, since we are going to
1667 * be pinning these entries, we might as well move them out
1668 * of the CMA zone if possible.
1670 if (is_migrate_cma_page(head)) {
1671 if (PageHuge(head))
1672 isolate_huge_page(head, &cma_page_list);
1673 else {
1674 if (!PageLRU(head) && drain_allow) {
1675 lru_add_drain_all();
1676 drain_allow = false;
1679 if (!isolate_lru_page(head)) {
1680 list_add_tail(&head->lru, &cma_page_list);
1681 mod_node_page_state(page_pgdat(head),
1682 NR_ISOLATED_ANON +
1683 page_is_file_lru(head),
1684 hpage_nr_pages(head));
1689 i += step;
1692 if (!list_empty(&cma_page_list)) {
1694 * drop the above get_user_pages reference.
1696 for (i = 0; i < nr_pages; i++)
1697 put_page(pages[i]);
1699 if (migrate_pages(&cma_page_list, new_non_cma_page,
1700 NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1702 * some of the pages failed migration. Do get_user_pages
1703 * without migration.
1705 migrate_allow = false;
1707 if (!list_empty(&cma_page_list))
1708 putback_movable_pages(&cma_page_list);
1711 * We did migrate all the pages, Try to get the page references
1712 * again migrating any new CMA pages which we failed to isolate
1713 * earlier.
1715 ret = __get_user_pages_locked(tsk, mm, start, nr_pages,
1716 pages, vmas, NULL,
1717 gup_flags);
1719 if ((ret > 0) && migrate_allow) {
1720 nr_pages = ret;
1721 drain_allow = true;
1722 goto check_again;
1726 return ret;
1728 #else
1729 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1730 struct mm_struct *mm,
1731 unsigned long start,
1732 unsigned long nr_pages,
1733 struct page **pages,
1734 struct vm_area_struct **vmas,
1735 unsigned int gup_flags)
1737 return nr_pages;
1739 #endif /* CONFIG_CMA */
1742 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1743 * allows us to process the FOLL_LONGTERM flag.
1745 static long __gup_longterm_locked(struct task_struct *tsk,
1746 struct mm_struct *mm,
1747 unsigned long start,
1748 unsigned long nr_pages,
1749 struct page **pages,
1750 struct vm_area_struct **vmas,
1751 unsigned int gup_flags)
1753 struct vm_area_struct **vmas_tmp = vmas;
1754 unsigned long flags = 0;
1755 long rc, i;
1757 if (gup_flags & FOLL_LONGTERM) {
1758 if (!pages)
1759 return -EINVAL;
1761 if (!vmas_tmp) {
1762 vmas_tmp = kcalloc(nr_pages,
1763 sizeof(struct vm_area_struct *),
1764 GFP_KERNEL);
1765 if (!vmas_tmp)
1766 return -ENOMEM;
1768 flags = memalloc_nocma_save();
1771 rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
1772 vmas_tmp, NULL, gup_flags);
1774 if (gup_flags & FOLL_LONGTERM) {
1775 memalloc_nocma_restore(flags);
1776 if (rc < 0)
1777 goto out;
1779 if (check_dax_vmas(vmas_tmp, rc)) {
1780 for (i = 0; i < rc; i++)
1781 put_page(pages[i]);
1782 rc = -EOPNOTSUPP;
1783 goto out;
1786 rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
1787 vmas_tmp, gup_flags);
1790 out:
1791 if (vmas_tmp != vmas)
1792 kfree(vmas_tmp);
1793 return rc;
1795 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1796 static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
1797 struct mm_struct *mm,
1798 unsigned long start,
1799 unsigned long nr_pages,
1800 struct page **pages,
1801 struct vm_area_struct **vmas,
1802 unsigned int flags)
1804 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1805 NULL, flags);
1807 #endif /* CONFIG_FS_DAX || CONFIG_CMA */
1809 #ifdef CONFIG_MMU
1810 static long __get_user_pages_remote(struct task_struct *tsk,
1811 struct mm_struct *mm,
1812 unsigned long start, unsigned long nr_pages,
1813 unsigned int gup_flags, struct page **pages,
1814 struct vm_area_struct **vmas, int *locked)
1817 * Parts of FOLL_LONGTERM behavior are incompatible with
1818 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1819 * vmas. However, this only comes up if locked is set, and there are
1820 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1821 * allow what we can.
1823 if (gup_flags & FOLL_LONGTERM) {
1824 if (WARN_ON_ONCE(locked))
1825 return -EINVAL;
1827 * This will check the vmas (even if our vmas arg is NULL)
1828 * and return -ENOTSUPP if DAX isn't allowed in this case:
1830 return __gup_longterm_locked(tsk, mm, start, nr_pages, pages,
1831 vmas, gup_flags | FOLL_TOUCH |
1832 FOLL_REMOTE);
1835 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1836 locked,
1837 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1841 * get_user_pages_remote() - pin user pages in memory
1842 * @tsk: the task_struct to use for page fault accounting, or
1843 * NULL if faults are not to be recorded.
1844 * @mm: mm_struct of target mm
1845 * @start: starting user address
1846 * @nr_pages: number of pages from start to pin
1847 * @gup_flags: flags modifying lookup behaviour
1848 * @pages: array that receives pointers to the pages pinned.
1849 * Should be at least nr_pages long. Or NULL, if caller
1850 * only intends to ensure the pages are faulted in.
1851 * @vmas: array of pointers to vmas corresponding to each page.
1852 * Or NULL if the caller does not require them.
1853 * @locked: pointer to lock flag indicating whether lock is held and
1854 * subsequently whether VM_FAULT_RETRY functionality can be
1855 * utilised. Lock must initially be held.
1857 * Returns either number of pages pinned (which may be less than the
1858 * number requested), or an error. Details about the return value:
1860 * -- If nr_pages is 0, returns 0.
1861 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1862 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1863 * pages pinned. Again, this may be less than nr_pages.
1865 * The caller is responsible for releasing returned @pages, via put_page().
1867 * @vmas are valid only as long as mmap_sem is held.
1869 * Must be called with mmap_sem held for read or write.
1871 * get_user_pages walks a process's page tables and takes a reference to
1872 * each struct page that each user address corresponds to at a given
1873 * instant. That is, it takes the page that would be accessed if a user
1874 * thread accesses the given user virtual address at that instant.
1876 * This does not guarantee that the page exists in the user mappings when
1877 * get_user_pages returns, and there may even be a completely different
1878 * page there in some cases (eg. if mmapped pagecache has been invalidated
1879 * and subsequently re faulted). However it does guarantee that the page
1880 * won't be freed completely. And mostly callers simply care that the page
1881 * contains data that was valid *at some point in time*. Typically, an IO
1882 * or similar operation cannot guarantee anything stronger anyway because
1883 * locks can't be held over the syscall boundary.
1885 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1886 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1887 * be called after the page is finished with, and before put_page is called.
1889 * get_user_pages is typically used for fewer-copy IO operations, to get a
1890 * handle on the memory by some means other than accesses via the user virtual
1891 * addresses. The pages may be submitted for DMA to devices or accessed via
1892 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1893 * use the correct cache flushing APIs.
1895 * See also get_user_pages_fast, for performance critical applications.
1897 * get_user_pages should be phased out in favor of
1898 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1899 * should use get_user_pages because it cannot pass
1900 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1902 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1903 unsigned long start, unsigned long nr_pages,
1904 unsigned int gup_flags, struct page **pages,
1905 struct vm_area_struct **vmas, int *locked)
1908 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1909 * never directly by the caller, so enforce that with an assertion:
1911 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1912 return -EINVAL;
1914 return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags,
1915 pages, vmas, locked);
1917 EXPORT_SYMBOL(get_user_pages_remote);
1919 #else /* CONFIG_MMU */
1920 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1921 unsigned long start, unsigned long nr_pages,
1922 unsigned int gup_flags, struct page **pages,
1923 struct vm_area_struct **vmas, int *locked)
1925 return 0;
1928 static long __get_user_pages_remote(struct task_struct *tsk,
1929 struct mm_struct *mm,
1930 unsigned long start, unsigned long nr_pages,
1931 unsigned int gup_flags, struct page **pages,
1932 struct vm_area_struct **vmas, int *locked)
1934 return 0;
1936 #endif /* !CONFIG_MMU */
1939 * This is the same as get_user_pages_remote(), just with a
1940 * less-flexible calling convention where we assume that the task
1941 * and mm being operated on are the current task's and don't allow
1942 * passing of a locked parameter. We also obviously don't pass
1943 * FOLL_REMOTE in here.
1945 long get_user_pages(unsigned long start, unsigned long nr_pages,
1946 unsigned int gup_flags, struct page **pages,
1947 struct vm_area_struct **vmas)
1950 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1951 * never directly by the caller, so enforce that with an assertion:
1953 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1954 return -EINVAL;
1956 return __gup_longterm_locked(current, current->mm, start, nr_pages,
1957 pages, vmas, gup_flags | FOLL_TOUCH);
1959 EXPORT_SYMBOL(get_user_pages);
1962 * We can leverage the VM_FAULT_RETRY functionality in the page fault
1963 * paths better by using either get_user_pages_locked() or
1964 * get_user_pages_unlocked().
1966 * get_user_pages_locked() is suitable to replace the form:
1968 * down_read(&mm->mmap_sem);
1969 * do_something()
1970 * get_user_pages(tsk, mm, ..., pages, NULL);
1971 * up_read(&mm->mmap_sem);
1973 * to:
1975 * int locked = 1;
1976 * down_read(&mm->mmap_sem);
1977 * do_something()
1978 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
1979 * if (locked)
1980 * up_read(&mm->mmap_sem);
1982 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1983 unsigned int gup_flags, struct page **pages,
1984 int *locked)
1987 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1988 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1989 * vmas. As there are no users of this flag in this call we simply
1990 * disallow this option for now.
1992 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1993 return -EINVAL;
1995 return __get_user_pages_locked(current, current->mm, start, nr_pages,
1996 pages, NULL, locked,
1997 gup_flags | FOLL_TOUCH);
1999 EXPORT_SYMBOL(get_user_pages_locked);
2002 * get_user_pages_unlocked() is suitable to replace the form:
2004 * down_read(&mm->mmap_sem);
2005 * get_user_pages(tsk, mm, ..., pages, NULL);
2006 * up_read(&mm->mmap_sem);
2008 * with:
2010 * get_user_pages_unlocked(tsk, mm, ..., pages);
2012 * It is functionally equivalent to get_user_pages_fast so
2013 * get_user_pages_fast should be used instead if specific gup_flags
2014 * (e.g. FOLL_FORCE) are not required.
2016 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2017 struct page **pages, unsigned int gup_flags)
2019 struct mm_struct *mm = current->mm;
2020 int locked = 1;
2021 long ret;
2024 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2025 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2026 * vmas. As there are no users of this flag in this call we simply
2027 * disallow this option for now.
2029 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2030 return -EINVAL;
2032 down_read(&mm->mmap_sem);
2033 ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
2034 &locked, gup_flags | FOLL_TOUCH);
2035 if (locked)
2036 up_read(&mm->mmap_sem);
2037 return ret;
2039 EXPORT_SYMBOL(get_user_pages_unlocked);
2042 * Fast GUP
2044 * get_user_pages_fast attempts to pin user pages by walking the page
2045 * tables directly and avoids taking locks. Thus the walker needs to be
2046 * protected from page table pages being freed from under it, and should
2047 * block any THP splits.
2049 * One way to achieve this is to have the walker disable interrupts, and
2050 * rely on IPIs from the TLB flushing code blocking before the page table
2051 * pages are freed. This is unsuitable for architectures that do not need
2052 * to broadcast an IPI when invalidating TLBs.
2054 * Another way to achieve this is to batch up page table containing pages
2055 * belonging to more than one mm_user, then rcu_sched a callback to free those
2056 * pages. Disabling interrupts will allow the fast_gup walker to both block
2057 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2058 * (which is a relatively rare event). The code below adopts this strategy.
2060 * Before activating this code, please be aware that the following assumptions
2061 * are currently made:
2063 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2064 * free pages containing page tables or TLB flushing requires IPI broadcast.
2066 * *) ptes can be read atomically by the architecture.
2068 * *) access_ok is sufficient to validate userspace address ranges.
2070 * The last two assumptions can be relaxed by the addition of helper functions.
2072 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2074 #ifdef CONFIG_HAVE_FAST_GUP
2076 static void put_compound_head(struct page *page, int refs, unsigned int flags)
2078 if (flags & FOLL_PIN) {
2079 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
2080 refs);
2082 if (hpage_pincount_available(page))
2083 hpage_pincount_sub(page, refs);
2084 else
2085 refs *= GUP_PIN_COUNTING_BIAS;
2088 VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
2090 * Calling put_page() for each ref is unnecessarily slow. Only the last
2091 * ref needs a put_page().
2093 if (refs > 1)
2094 page_ref_sub(page, refs - 1);
2095 put_page(page);
2098 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
2101 * WARNING: only to be used in the get_user_pages_fast() implementation.
2103 * With get_user_pages_fast(), we walk down the pagetables without taking any
2104 * locks. For this we would like to load the pointers atomically, but sometimes
2105 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What
2106 * we do have is the guarantee that a PTE will only either go from not present
2107 * to present, or present to not present or both -- it will not switch to a
2108 * completely different present page without a TLB flush in between; something
2109 * that we are blocking by holding interrupts off.
2111 * Setting ptes from not present to present goes:
2113 * ptep->pte_high = h;
2114 * smp_wmb();
2115 * ptep->pte_low = l;
2117 * And present to not present goes:
2119 * ptep->pte_low = 0;
2120 * smp_wmb();
2121 * ptep->pte_high = 0;
2123 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
2124 * We load pte_high *after* loading pte_low, which ensures we don't see an older
2125 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
2126 * picked up a changed pte high. We might have gotten rubbish values from
2127 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
2128 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
2129 * operates on present ptes we're safe.
2131 static inline pte_t gup_get_pte(pte_t *ptep)
2133 pte_t pte;
2135 do {
2136 pte.pte_low = ptep->pte_low;
2137 smp_rmb();
2138 pte.pte_high = ptep->pte_high;
2139 smp_rmb();
2140 } while (unlikely(pte.pte_low != ptep->pte_low));
2142 return pte;
2144 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2146 * We require that the PTE can be read atomically.
2148 static inline pte_t gup_get_pte(pte_t *ptep)
2150 return READ_ONCE(*ptep);
2152 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2154 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2155 unsigned int flags,
2156 struct page **pages)
2158 while ((*nr) - nr_start) {
2159 struct page *page = pages[--(*nr)];
2161 ClearPageReferenced(page);
2162 if (flags & FOLL_PIN)
2163 unpin_user_page(page);
2164 else
2165 put_page(page);
2169 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2170 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2171 unsigned int flags, struct page **pages, int *nr)
2173 struct dev_pagemap *pgmap = NULL;
2174 int nr_start = *nr, ret = 0;
2175 pte_t *ptep, *ptem;
2177 ptem = ptep = pte_offset_map(&pmd, addr);
2178 do {
2179 pte_t pte = gup_get_pte(ptep);
2180 struct page *head, *page;
2183 * Similar to the PMD case below, NUMA hinting must take slow
2184 * path using the pte_protnone check.
2186 if (pte_protnone(pte))
2187 goto pte_unmap;
2189 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2190 goto pte_unmap;
2192 if (pte_devmap(pte)) {
2193 if (unlikely(flags & FOLL_LONGTERM))
2194 goto pte_unmap;
2196 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2197 if (unlikely(!pgmap)) {
2198 undo_dev_pagemap(nr, nr_start, flags, pages);
2199 goto pte_unmap;
2201 } else if (pte_special(pte))
2202 goto pte_unmap;
2204 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2205 page = pte_page(pte);
2207 head = try_grab_compound_head(page, 1, flags);
2208 if (!head)
2209 goto pte_unmap;
2211 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2212 put_compound_head(head, 1, flags);
2213 goto pte_unmap;
2216 VM_BUG_ON_PAGE(compound_head(page) != head, page);
2219 * We need to make the page accessible if and only if we are
2220 * going to access its content (the FOLL_PIN case). Please
2221 * see Documentation/core-api/pin_user_pages.rst for
2222 * details.
2224 if (flags & FOLL_PIN) {
2225 ret = arch_make_page_accessible(page);
2226 if (ret) {
2227 unpin_user_page(page);
2228 goto pte_unmap;
2231 SetPageReferenced(page);
2232 pages[*nr] = page;
2233 (*nr)++;
2235 } while (ptep++, addr += PAGE_SIZE, addr != end);
2237 ret = 1;
2239 pte_unmap:
2240 if (pgmap)
2241 put_dev_pagemap(pgmap);
2242 pte_unmap(ptem);
2243 return ret;
2245 #else
2248 * If we can't determine whether or not a pte is special, then fail immediately
2249 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2250 * to be special.
2252 * For a futex to be placed on a THP tail page, get_futex_key requires a
2253 * __get_user_pages_fast implementation that can pin pages. Thus it's still
2254 * useful to have gup_huge_pmd even if we can't operate on ptes.
2256 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2257 unsigned int flags, struct page **pages, int *nr)
2259 return 0;
2261 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2263 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2264 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2265 unsigned long end, unsigned int flags,
2266 struct page **pages, int *nr)
2268 int nr_start = *nr;
2269 struct dev_pagemap *pgmap = NULL;
2271 do {
2272 struct page *page = pfn_to_page(pfn);
2274 pgmap = get_dev_pagemap(pfn, pgmap);
2275 if (unlikely(!pgmap)) {
2276 undo_dev_pagemap(nr, nr_start, flags, pages);
2277 return 0;
2279 SetPageReferenced(page);
2280 pages[*nr] = page;
2281 if (unlikely(!try_grab_page(page, flags))) {
2282 undo_dev_pagemap(nr, nr_start, flags, pages);
2283 return 0;
2285 (*nr)++;
2286 pfn++;
2287 } while (addr += PAGE_SIZE, addr != end);
2289 if (pgmap)
2290 put_dev_pagemap(pgmap);
2291 return 1;
2294 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2295 unsigned long end, unsigned int flags,
2296 struct page **pages, int *nr)
2298 unsigned long fault_pfn;
2299 int nr_start = *nr;
2301 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2302 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2303 return 0;
2305 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2306 undo_dev_pagemap(nr, nr_start, flags, pages);
2307 return 0;
2309 return 1;
2312 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2313 unsigned long end, unsigned int flags,
2314 struct page **pages, int *nr)
2316 unsigned long fault_pfn;
2317 int nr_start = *nr;
2319 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2320 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2321 return 0;
2323 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2324 undo_dev_pagemap(nr, nr_start, flags, pages);
2325 return 0;
2327 return 1;
2329 #else
2330 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2331 unsigned long end, unsigned int flags,
2332 struct page **pages, int *nr)
2334 BUILD_BUG();
2335 return 0;
2338 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2339 unsigned long end, unsigned int flags,
2340 struct page **pages, int *nr)
2342 BUILD_BUG();
2343 return 0;
2345 #endif
2347 static int record_subpages(struct page *page, unsigned long addr,
2348 unsigned long end, struct page **pages)
2350 int nr;
2352 for (nr = 0; addr != end; addr += PAGE_SIZE)
2353 pages[nr++] = page++;
2355 return nr;
2358 #ifdef CONFIG_ARCH_HAS_HUGEPD
2359 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2360 unsigned long sz)
2362 unsigned long __boundary = (addr + sz) & ~(sz-1);
2363 return (__boundary - 1 < end - 1) ? __boundary : end;
2366 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2367 unsigned long end, unsigned int flags,
2368 struct page **pages, int *nr)
2370 unsigned long pte_end;
2371 struct page *head, *page;
2372 pte_t pte;
2373 int refs;
2375 pte_end = (addr + sz) & ~(sz-1);
2376 if (pte_end < end)
2377 end = pte_end;
2379 pte = READ_ONCE(*ptep);
2381 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2382 return 0;
2384 /* hugepages are never "special" */
2385 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2387 head = pte_page(pte);
2388 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2389 refs = record_subpages(page, addr, end, pages + *nr);
2391 head = try_grab_compound_head(head, refs, flags);
2392 if (!head)
2393 return 0;
2395 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2396 put_compound_head(head, refs, flags);
2397 return 0;
2400 *nr += refs;
2401 SetPageReferenced(head);
2402 return 1;
2405 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2406 unsigned int pdshift, unsigned long end, unsigned int flags,
2407 struct page **pages, int *nr)
2409 pte_t *ptep;
2410 unsigned long sz = 1UL << hugepd_shift(hugepd);
2411 unsigned long next;
2413 ptep = hugepte_offset(hugepd, addr, pdshift);
2414 do {
2415 next = hugepte_addr_end(addr, end, sz);
2416 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2417 return 0;
2418 } while (ptep++, addr = next, addr != end);
2420 return 1;
2422 #else
2423 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2424 unsigned int pdshift, unsigned long end, unsigned int flags,
2425 struct page **pages, int *nr)
2427 return 0;
2429 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2431 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2432 unsigned long end, unsigned int flags,
2433 struct page **pages, int *nr)
2435 struct page *head, *page;
2436 int refs;
2438 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2439 return 0;
2441 if (pmd_devmap(orig)) {
2442 if (unlikely(flags & FOLL_LONGTERM))
2443 return 0;
2444 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2445 pages, nr);
2448 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2449 refs = record_subpages(page, addr, end, pages + *nr);
2451 head = try_grab_compound_head(pmd_page(orig), refs, flags);
2452 if (!head)
2453 return 0;
2455 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2456 put_compound_head(head, refs, flags);
2457 return 0;
2460 *nr += refs;
2461 SetPageReferenced(head);
2462 return 1;
2465 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2466 unsigned long end, unsigned int flags,
2467 struct page **pages, int *nr)
2469 struct page *head, *page;
2470 int refs;
2472 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2473 return 0;
2475 if (pud_devmap(orig)) {
2476 if (unlikely(flags & FOLL_LONGTERM))
2477 return 0;
2478 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2479 pages, nr);
2482 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2483 refs = record_subpages(page, addr, end, pages + *nr);
2485 head = try_grab_compound_head(pud_page(orig), refs, flags);
2486 if (!head)
2487 return 0;
2489 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2490 put_compound_head(head, refs, flags);
2491 return 0;
2494 *nr += refs;
2495 SetPageReferenced(head);
2496 return 1;
2499 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2500 unsigned long end, unsigned int flags,
2501 struct page **pages, int *nr)
2503 int refs;
2504 struct page *head, *page;
2506 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2507 return 0;
2509 BUILD_BUG_ON(pgd_devmap(orig));
2511 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2512 refs = record_subpages(page, addr, end, pages + *nr);
2514 head = try_grab_compound_head(pgd_page(orig), refs, flags);
2515 if (!head)
2516 return 0;
2518 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2519 put_compound_head(head, refs, flags);
2520 return 0;
2523 *nr += refs;
2524 SetPageReferenced(head);
2525 return 1;
2528 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
2529 unsigned int flags, struct page **pages, int *nr)
2531 unsigned long next;
2532 pmd_t *pmdp;
2534 pmdp = pmd_offset(&pud, addr);
2535 do {
2536 pmd_t pmd = READ_ONCE(*pmdp);
2538 next = pmd_addr_end(addr, end);
2539 if (!pmd_present(pmd))
2540 return 0;
2542 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2543 pmd_devmap(pmd))) {
2545 * NUMA hinting faults need to be handled in the GUP
2546 * slowpath for accounting purposes and so that they
2547 * can be serialised against THP migration.
2549 if (pmd_protnone(pmd))
2550 return 0;
2552 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2553 pages, nr))
2554 return 0;
2556 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2558 * architecture have different format for hugetlbfs
2559 * pmd format and THP pmd format
2561 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2562 PMD_SHIFT, next, flags, pages, nr))
2563 return 0;
2564 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2565 return 0;
2566 } while (pmdp++, addr = next, addr != end);
2568 return 1;
2571 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
2572 unsigned int flags, struct page **pages, int *nr)
2574 unsigned long next;
2575 pud_t *pudp;
2577 pudp = pud_offset(&p4d, addr);
2578 do {
2579 pud_t pud = READ_ONCE(*pudp);
2581 next = pud_addr_end(addr, end);
2582 if (unlikely(!pud_present(pud)))
2583 return 0;
2584 if (unlikely(pud_huge(pud))) {
2585 if (!gup_huge_pud(pud, pudp, addr, next, flags,
2586 pages, nr))
2587 return 0;
2588 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2589 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2590 PUD_SHIFT, next, flags, pages, nr))
2591 return 0;
2592 } else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2593 return 0;
2594 } while (pudp++, addr = next, addr != end);
2596 return 1;
2599 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
2600 unsigned int flags, struct page **pages, int *nr)
2602 unsigned long next;
2603 p4d_t *p4dp;
2605 p4dp = p4d_offset(&pgd, addr);
2606 do {
2607 p4d_t p4d = READ_ONCE(*p4dp);
2609 next = p4d_addr_end(addr, end);
2610 if (p4d_none(p4d))
2611 return 0;
2612 BUILD_BUG_ON(p4d_huge(p4d));
2613 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2614 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2615 P4D_SHIFT, next, flags, pages, nr))
2616 return 0;
2617 } else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
2618 return 0;
2619 } while (p4dp++, addr = next, addr != end);
2621 return 1;
2624 static void gup_pgd_range(unsigned long addr, unsigned long end,
2625 unsigned int flags, struct page **pages, int *nr)
2627 unsigned long next;
2628 pgd_t *pgdp;
2630 pgdp = pgd_offset(current->mm, addr);
2631 do {
2632 pgd_t pgd = READ_ONCE(*pgdp);
2634 next = pgd_addr_end(addr, end);
2635 if (pgd_none(pgd))
2636 return;
2637 if (unlikely(pgd_huge(pgd))) {
2638 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2639 pages, nr))
2640 return;
2641 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2642 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2643 PGDIR_SHIFT, next, flags, pages, nr))
2644 return;
2645 } else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
2646 return;
2647 } while (pgdp++, addr = next, addr != end);
2649 #else
2650 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2651 unsigned int flags, struct page **pages, int *nr)
2654 #endif /* CONFIG_HAVE_FAST_GUP */
2656 #ifndef gup_fast_permitted
2658 * Check if it's allowed to use __get_user_pages_fast() for the range, or
2659 * we need to fall back to the slow version:
2661 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2663 return true;
2665 #endif
2668 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2669 * the regular GUP.
2670 * Note a difference with get_user_pages_fast: this always returns the
2671 * number of pages pinned, 0 if no pages were pinned.
2673 * If the architecture does not support this function, simply return with no
2674 * pages pinned.
2676 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
2677 struct page **pages)
2679 unsigned long len, end;
2680 unsigned long flags;
2681 int nr_pinned = 0;
2683 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2684 * because gup fast is always a "pin with a +1 page refcount" request.
2686 unsigned int gup_flags = FOLL_GET;
2688 if (write)
2689 gup_flags |= FOLL_WRITE;
2691 start = untagged_addr(start) & PAGE_MASK;
2692 len = (unsigned long) nr_pages << PAGE_SHIFT;
2693 end = start + len;
2695 if (end <= start)
2696 return 0;
2697 if (unlikely(!access_ok((void __user *)start, len)))
2698 return 0;
2701 * Disable interrupts. We use the nested form as we can already have
2702 * interrupts disabled by get_futex_key.
2704 * With interrupts disabled, we block page table pages from being
2705 * freed from under us. See struct mmu_table_batch comments in
2706 * include/asm-generic/tlb.h for more details.
2708 * We do not adopt an rcu_read_lock(.) here as we also want to
2709 * block IPIs that come from THPs splitting.
2712 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2713 gup_fast_permitted(start, end)) {
2714 local_irq_save(flags);
2715 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2716 local_irq_restore(flags);
2719 return nr_pinned;
2721 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
2723 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2724 unsigned int gup_flags, struct page **pages)
2726 int ret;
2729 * FIXME: FOLL_LONGTERM does not work with
2730 * get_user_pages_unlocked() (see comments in that function)
2732 if (gup_flags & FOLL_LONGTERM) {
2733 down_read(&current->mm->mmap_sem);
2734 ret = __gup_longterm_locked(current, current->mm,
2735 start, nr_pages,
2736 pages, NULL, gup_flags);
2737 up_read(&current->mm->mmap_sem);
2738 } else {
2739 ret = get_user_pages_unlocked(start, nr_pages,
2740 pages, gup_flags);
2743 return ret;
2746 static int internal_get_user_pages_fast(unsigned long start, int nr_pages,
2747 unsigned int gup_flags,
2748 struct page **pages)
2750 unsigned long addr, len, end;
2751 int nr_pinned = 0, ret = 0;
2753 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2754 FOLL_FORCE | FOLL_PIN | FOLL_GET)))
2755 return -EINVAL;
2757 start = untagged_addr(start) & PAGE_MASK;
2758 addr = start;
2759 len = (unsigned long) nr_pages << PAGE_SHIFT;
2760 end = start + len;
2762 if (end <= start)
2763 return 0;
2764 if (unlikely(!access_ok((void __user *)start, len)))
2765 return -EFAULT;
2767 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2768 gup_fast_permitted(start, end)) {
2769 local_irq_disable();
2770 gup_pgd_range(addr, end, gup_flags, pages, &nr_pinned);
2771 local_irq_enable();
2772 ret = nr_pinned;
2775 if (nr_pinned < nr_pages) {
2776 /* Try to get the remaining pages with get_user_pages */
2777 start += nr_pinned << PAGE_SHIFT;
2778 pages += nr_pinned;
2780 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned,
2781 gup_flags, pages);
2783 /* Have to be a bit careful with return values */
2784 if (nr_pinned > 0) {
2785 if (ret < 0)
2786 ret = nr_pinned;
2787 else
2788 ret += nr_pinned;
2792 return ret;
2796 * get_user_pages_fast() - pin user pages in memory
2797 * @start: starting user address
2798 * @nr_pages: number of pages from start to pin
2799 * @gup_flags: flags modifying pin behaviour
2800 * @pages: array that receives pointers to the pages pinned.
2801 * Should be at least nr_pages long.
2803 * Attempt to pin user pages in memory without taking mm->mmap_sem.
2804 * If not successful, it will fall back to taking the lock and
2805 * calling get_user_pages().
2807 * Returns number of pages pinned. This may be fewer than the number requested.
2808 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2809 * -errno.
2811 int get_user_pages_fast(unsigned long start, int nr_pages,
2812 unsigned int gup_flags, struct page **pages)
2815 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2816 * never directly by the caller, so enforce that:
2818 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2819 return -EINVAL;
2822 * The caller may or may not have explicitly set FOLL_GET; either way is
2823 * OK. However, internally (within mm/gup.c), gup fast variants must set
2824 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2825 * request.
2827 gup_flags |= FOLL_GET;
2828 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2830 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2833 * pin_user_pages_fast() - pin user pages in memory without taking locks
2835 * @start: starting user address
2836 * @nr_pages: number of pages from start to pin
2837 * @gup_flags: flags modifying pin behaviour
2838 * @pages: array that receives pointers to the pages pinned.
2839 * Should be at least nr_pages long.
2841 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2842 * get_user_pages_fast() for documentation on the function arguments, because
2843 * the arguments here are identical.
2845 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2846 * see Documentation/vm/pin_user_pages.rst for further details.
2848 * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
2849 * is NOT intended for Case 2 (RDMA: long-term pins).
2851 int pin_user_pages_fast(unsigned long start, int nr_pages,
2852 unsigned int gup_flags, struct page **pages)
2854 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2855 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2856 return -EINVAL;
2858 gup_flags |= FOLL_PIN;
2859 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2861 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2864 * pin_user_pages_remote() - pin pages of a remote process (task != current)
2866 * @tsk: the task_struct to use for page fault accounting, or
2867 * NULL if faults are not to be recorded.
2868 * @mm: mm_struct of target mm
2869 * @start: starting user address
2870 * @nr_pages: number of pages from start to pin
2871 * @gup_flags: flags modifying lookup behaviour
2872 * @pages: array that receives pointers to the pages pinned.
2873 * Should be at least nr_pages long. Or NULL, if caller
2874 * only intends to ensure the pages are faulted in.
2875 * @vmas: array of pointers to vmas corresponding to each page.
2876 * Or NULL if the caller does not require them.
2877 * @locked: pointer to lock flag indicating whether lock is held and
2878 * subsequently whether VM_FAULT_RETRY functionality can be
2879 * utilised. Lock must initially be held.
2881 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2882 * get_user_pages_remote() for documentation on the function arguments, because
2883 * the arguments here are identical.
2885 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2886 * see Documentation/vm/pin_user_pages.rst for details.
2888 * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
2889 * is NOT intended for Case 2 (RDMA: long-term pins).
2891 long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
2892 unsigned long start, unsigned long nr_pages,
2893 unsigned int gup_flags, struct page **pages,
2894 struct vm_area_struct **vmas, int *locked)
2896 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2897 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2898 return -EINVAL;
2900 gup_flags |= FOLL_PIN;
2901 return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags,
2902 pages, vmas, locked);
2904 EXPORT_SYMBOL(pin_user_pages_remote);
2907 * pin_user_pages() - pin user pages in memory for use by other devices
2909 * @start: starting user address
2910 * @nr_pages: number of pages from start to pin
2911 * @gup_flags: flags modifying lookup behaviour
2912 * @pages: array that receives pointers to the pages pinned.
2913 * Should be at least nr_pages long. Or NULL, if caller
2914 * only intends to ensure the pages are faulted in.
2915 * @vmas: array of pointers to vmas corresponding to each page.
2916 * Or NULL if the caller does not require them.
2918 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2919 * FOLL_PIN is set.
2921 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2922 * see Documentation/vm/pin_user_pages.rst for details.
2924 * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
2925 * is NOT intended for Case 2 (RDMA: long-term pins).
2927 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2928 unsigned int gup_flags, struct page **pages,
2929 struct vm_area_struct **vmas)
2931 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2932 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2933 return -EINVAL;
2935 gup_flags |= FOLL_PIN;
2936 return __gup_longterm_locked(current, current->mm, start, nr_pages,
2937 pages, vmas, gup_flags);
2939 EXPORT_SYMBOL(pin_user_pages);