gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / mm / kasan / common.c
blob2906358e42f05287731deb8f2c7e86ddbc5b4a59
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This file contains common generic and tag-based KASAN code.
5 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
8 * Some code borrowed from https://github.com/xairy/kasan-prototype by
9 * Andrey Konovalov <andreyknvl@gmail.com>
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2 as
13 * published by the Free Software Foundation.
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/kasan.h>
20 #include <linux/kernel.h>
21 #include <linux/kmemleak.h>
22 #include <linux/linkage.h>
23 #include <linux/memblock.h>
24 #include <linux/memory.h>
25 #include <linux/mm.h>
26 #include <linux/module.h>
27 #include <linux/printk.h>
28 #include <linux/sched.h>
29 #include <linux/sched/task_stack.h>
30 #include <linux/slab.h>
31 #include <linux/stacktrace.h>
32 #include <linux/string.h>
33 #include <linux/types.h>
34 #include <linux/vmalloc.h>
35 #include <linux/bug.h>
36 #include <linux/uaccess.h>
38 #include <asm/cacheflush.h>
39 #include <asm/tlbflush.h>
41 #include "kasan.h"
42 #include "../slab.h"
44 static inline depot_stack_handle_t save_stack(gfp_t flags)
46 unsigned long entries[KASAN_STACK_DEPTH];
47 unsigned int nr_entries;
49 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
50 nr_entries = filter_irq_stacks(entries, nr_entries);
51 return stack_depot_save(entries, nr_entries, flags);
54 static inline void set_track(struct kasan_track *track, gfp_t flags)
56 track->pid = current->pid;
57 track->stack = save_stack(flags);
60 void kasan_enable_current(void)
62 current->kasan_depth++;
65 void kasan_disable_current(void)
67 current->kasan_depth--;
70 bool __kasan_check_read(const volatile void *p, unsigned int size)
72 return check_memory_region((unsigned long)p, size, false, _RET_IP_);
74 EXPORT_SYMBOL(__kasan_check_read);
76 bool __kasan_check_write(const volatile void *p, unsigned int size)
78 return check_memory_region((unsigned long)p, size, true, _RET_IP_);
80 EXPORT_SYMBOL(__kasan_check_write);
82 #undef memset
83 void *memset(void *addr, int c, size_t len)
85 if (!check_memory_region((unsigned long)addr, len, true, _RET_IP_))
86 return NULL;
88 return __memset(addr, c, len);
91 #ifdef __HAVE_ARCH_MEMMOVE
92 #undef memmove
93 void *memmove(void *dest, const void *src, size_t len)
95 if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) ||
96 !check_memory_region((unsigned long)dest, len, true, _RET_IP_))
97 return NULL;
99 return __memmove(dest, src, len);
101 #endif
103 #undef memcpy
104 void *memcpy(void *dest, const void *src, size_t len)
106 if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) ||
107 !check_memory_region((unsigned long)dest, len, true, _RET_IP_))
108 return NULL;
110 return __memcpy(dest, src, len);
114 * Poisons the shadow memory for 'size' bytes starting from 'addr'.
115 * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
117 void kasan_poison_shadow(const void *address, size_t size, u8 value)
119 void *shadow_start, *shadow_end;
122 * Perform shadow offset calculation based on untagged address, as
123 * some of the callers (e.g. kasan_poison_object_data) pass tagged
124 * addresses to this function.
126 address = reset_tag(address);
128 shadow_start = kasan_mem_to_shadow(address);
129 shadow_end = kasan_mem_to_shadow(address + size);
131 __memset(shadow_start, value, shadow_end - shadow_start);
134 void kasan_unpoison_shadow(const void *address, size_t size)
136 u8 tag = get_tag(address);
139 * Perform shadow offset calculation based on untagged address, as
140 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
141 * addresses to this function.
143 address = reset_tag(address);
145 kasan_poison_shadow(address, size, tag);
147 if (size & KASAN_SHADOW_MASK) {
148 u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
150 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
151 *shadow = tag;
152 else
153 *shadow = size & KASAN_SHADOW_MASK;
157 static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
159 void *base = task_stack_page(task);
160 size_t size = sp - base;
162 kasan_unpoison_shadow(base, size);
165 /* Unpoison the entire stack for a task. */
166 void kasan_unpoison_task_stack(struct task_struct *task)
168 __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
171 /* Unpoison the stack for the current task beyond a watermark sp value. */
172 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
175 * Calculate the task stack base address. Avoid using 'current'
176 * because this function is called by early resume code which hasn't
177 * yet set up the percpu register (%gs).
179 void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
181 kasan_unpoison_shadow(base, watermark - base);
185 * Clear all poison for the region between the current SP and a provided
186 * watermark value, as is sometimes required prior to hand-crafted asm function
187 * returns in the middle of functions.
189 void kasan_unpoison_stack_above_sp_to(const void *watermark)
191 const void *sp = __builtin_frame_address(0);
192 size_t size = watermark - sp;
194 if (WARN_ON(sp > watermark))
195 return;
196 kasan_unpoison_shadow(sp, size);
199 void kasan_alloc_pages(struct page *page, unsigned int order)
201 u8 tag;
202 unsigned long i;
204 if (unlikely(PageHighMem(page)))
205 return;
207 tag = random_tag();
208 for (i = 0; i < (1 << order); i++)
209 page_kasan_tag_set(page + i, tag);
210 kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
213 void kasan_free_pages(struct page *page, unsigned int order)
215 if (likely(!PageHighMem(page)))
216 kasan_poison_shadow(page_address(page),
217 PAGE_SIZE << order,
218 KASAN_FREE_PAGE);
222 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
223 * For larger allocations larger redzones are used.
225 static inline unsigned int optimal_redzone(unsigned int object_size)
227 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
228 return 0;
230 return
231 object_size <= 64 - 16 ? 16 :
232 object_size <= 128 - 32 ? 32 :
233 object_size <= 512 - 64 ? 64 :
234 object_size <= 4096 - 128 ? 128 :
235 object_size <= (1 << 14) - 256 ? 256 :
236 object_size <= (1 << 15) - 512 ? 512 :
237 object_size <= (1 << 16) - 1024 ? 1024 : 2048;
240 void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
241 slab_flags_t *flags)
243 unsigned int orig_size = *size;
244 unsigned int redzone_size;
245 int redzone_adjust;
247 /* Add alloc meta. */
248 cache->kasan_info.alloc_meta_offset = *size;
249 *size += sizeof(struct kasan_alloc_meta);
251 /* Add free meta. */
252 if (IS_ENABLED(CONFIG_KASAN_GENERIC) &&
253 (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
254 cache->object_size < sizeof(struct kasan_free_meta))) {
255 cache->kasan_info.free_meta_offset = *size;
256 *size += sizeof(struct kasan_free_meta);
259 redzone_size = optimal_redzone(cache->object_size);
260 redzone_adjust = redzone_size - (*size - cache->object_size);
261 if (redzone_adjust > 0)
262 *size += redzone_adjust;
264 *size = min_t(unsigned int, KMALLOC_MAX_SIZE,
265 max(*size, cache->object_size + redzone_size));
268 * If the metadata doesn't fit, don't enable KASAN at all.
270 if (*size <= cache->kasan_info.alloc_meta_offset ||
271 *size <= cache->kasan_info.free_meta_offset) {
272 cache->kasan_info.alloc_meta_offset = 0;
273 cache->kasan_info.free_meta_offset = 0;
274 *size = orig_size;
275 return;
278 *flags |= SLAB_KASAN;
281 size_t kasan_metadata_size(struct kmem_cache *cache)
283 return (cache->kasan_info.alloc_meta_offset ?
284 sizeof(struct kasan_alloc_meta) : 0) +
285 (cache->kasan_info.free_meta_offset ?
286 sizeof(struct kasan_free_meta) : 0);
289 struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
290 const void *object)
292 return (void *)object + cache->kasan_info.alloc_meta_offset;
295 struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
296 const void *object)
298 BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
299 return (void *)object + cache->kasan_info.free_meta_offset;
303 static void kasan_set_free_info(struct kmem_cache *cache,
304 void *object, u8 tag)
306 struct kasan_alloc_meta *alloc_meta;
307 u8 idx = 0;
309 alloc_meta = get_alloc_info(cache, object);
311 #ifdef CONFIG_KASAN_SW_TAGS_IDENTIFY
312 idx = alloc_meta->free_track_idx;
313 alloc_meta->free_pointer_tag[idx] = tag;
314 alloc_meta->free_track_idx = (idx + 1) % KASAN_NR_FREE_STACKS;
315 #endif
317 set_track(&alloc_meta->free_track[idx], GFP_NOWAIT);
320 void kasan_poison_slab(struct page *page)
322 unsigned long i;
324 for (i = 0; i < compound_nr(page); i++)
325 page_kasan_tag_reset(page + i);
326 kasan_poison_shadow(page_address(page), page_size(page),
327 KASAN_KMALLOC_REDZONE);
330 void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
332 kasan_unpoison_shadow(object, cache->object_size);
335 void kasan_poison_object_data(struct kmem_cache *cache, void *object)
337 kasan_poison_shadow(object,
338 round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
339 KASAN_KMALLOC_REDZONE);
343 * This function assigns a tag to an object considering the following:
344 * 1. A cache might have a constructor, which might save a pointer to a slab
345 * object somewhere (e.g. in the object itself). We preassign a tag for
346 * each object in caches with constructors during slab creation and reuse
347 * the same tag each time a particular object is allocated.
348 * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
349 * accessed after being freed. We preassign tags for objects in these
350 * caches as well.
351 * 3. For SLAB allocator we can't preassign tags randomly since the freelist
352 * is stored as an array of indexes instead of a linked list. Assign tags
353 * based on objects indexes, so that objects that are next to each other
354 * get different tags.
356 static u8 assign_tag(struct kmem_cache *cache, const void *object,
357 bool init, bool keep_tag)
360 * 1. When an object is kmalloc()'ed, two hooks are called:
361 * kasan_slab_alloc() and kasan_kmalloc(). We assign the
362 * tag only in the first one.
363 * 2. We reuse the same tag for krealloc'ed objects.
365 if (keep_tag)
366 return get_tag(object);
369 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
370 * set, assign a tag when the object is being allocated (init == false).
372 if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
373 return init ? KASAN_TAG_KERNEL : random_tag();
375 /* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */
376 #ifdef CONFIG_SLAB
377 /* For SLAB assign tags based on the object index in the freelist. */
378 return (u8)obj_to_index(cache, virt_to_page(object), (void *)object);
379 #else
381 * For SLUB assign a random tag during slab creation, otherwise reuse
382 * the already assigned tag.
384 return init ? random_tag() : get_tag(object);
385 #endif
388 void * __must_check kasan_init_slab_obj(struct kmem_cache *cache,
389 const void *object)
391 struct kasan_alloc_meta *alloc_info;
393 if (!(cache->flags & SLAB_KASAN))
394 return (void *)object;
396 alloc_info = get_alloc_info(cache, object);
397 __memset(alloc_info, 0, sizeof(*alloc_info));
399 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
400 object = set_tag(object,
401 assign_tag(cache, object, true, false));
403 return (void *)object;
406 static inline bool shadow_invalid(u8 tag, s8 shadow_byte)
408 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
409 return shadow_byte < 0 ||
410 shadow_byte >= KASAN_SHADOW_SCALE_SIZE;
412 /* else CONFIG_KASAN_SW_TAGS: */
413 if ((u8)shadow_byte == KASAN_TAG_INVALID)
414 return true;
415 if ((tag != KASAN_TAG_KERNEL) && (tag != (u8)shadow_byte))
416 return true;
418 return false;
421 static bool __kasan_slab_free(struct kmem_cache *cache, void *object,
422 unsigned long ip, bool quarantine)
424 s8 shadow_byte;
425 u8 tag;
426 void *tagged_object;
427 unsigned long rounded_up_size;
429 tag = get_tag(object);
430 tagged_object = object;
431 object = reset_tag(object);
433 if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
434 object)) {
435 kasan_report_invalid_free(tagged_object, ip);
436 return true;
439 /* RCU slabs could be legally used after free within the RCU period */
440 if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
441 return false;
443 shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
444 if (shadow_invalid(tag, shadow_byte)) {
445 kasan_report_invalid_free(tagged_object, ip);
446 return true;
449 rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE);
450 kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
452 if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) ||
453 unlikely(!(cache->flags & SLAB_KASAN)))
454 return false;
456 kasan_set_free_info(cache, object, tag);
458 quarantine_put(get_free_info(cache, object), cache);
460 return IS_ENABLED(CONFIG_KASAN_GENERIC);
463 bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip)
465 return __kasan_slab_free(cache, object, ip, true);
468 static void *__kasan_kmalloc(struct kmem_cache *cache, const void *object,
469 size_t size, gfp_t flags, bool keep_tag)
471 unsigned long redzone_start;
472 unsigned long redzone_end;
473 u8 tag = 0xff;
475 if (gfpflags_allow_blocking(flags))
476 quarantine_reduce();
478 if (unlikely(object == NULL))
479 return NULL;
481 redzone_start = round_up((unsigned long)(object + size),
482 KASAN_SHADOW_SCALE_SIZE);
483 redzone_end = round_up((unsigned long)object + cache->object_size,
484 KASAN_SHADOW_SCALE_SIZE);
486 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
487 tag = assign_tag(cache, object, false, keep_tag);
489 /* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */
490 kasan_unpoison_shadow(set_tag(object, tag), size);
491 kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
492 KASAN_KMALLOC_REDZONE);
494 if (cache->flags & SLAB_KASAN)
495 set_track(&get_alloc_info(cache, object)->alloc_track, flags);
497 return set_tag(object, tag);
500 void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object,
501 gfp_t flags)
503 return __kasan_kmalloc(cache, object, cache->object_size, flags, false);
506 void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object,
507 size_t size, gfp_t flags)
509 return __kasan_kmalloc(cache, object, size, flags, true);
511 EXPORT_SYMBOL(kasan_kmalloc);
513 void * __must_check kasan_kmalloc_large(const void *ptr, size_t size,
514 gfp_t flags)
516 struct page *page;
517 unsigned long redzone_start;
518 unsigned long redzone_end;
520 if (gfpflags_allow_blocking(flags))
521 quarantine_reduce();
523 if (unlikely(ptr == NULL))
524 return NULL;
526 page = virt_to_page(ptr);
527 redzone_start = round_up((unsigned long)(ptr + size),
528 KASAN_SHADOW_SCALE_SIZE);
529 redzone_end = (unsigned long)ptr + page_size(page);
531 kasan_unpoison_shadow(ptr, size);
532 kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
533 KASAN_PAGE_REDZONE);
535 return (void *)ptr;
538 void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags)
540 struct page *page;
542 if (unlikely(object == ZERO_SIZE_PTR))
543 return (void *)object;
545 page = virt_to_head_page(object);
547 if (unlikely(!PageSlab(page)))
548 return kasan_kmalloc_large(object, size, flags);
549 else
550 return __kasan_kmalloc(page->slab_cache, object, size,
551 flags, true);
554 void kasan_poison_kfree(void *ptr, unsigned long ip)
556 struct page *page;
558 page = virt_to_head_page(ptr);
560 if (unlikely(!PageSlab(page))) {
561 if (ptr != page_address(page)) {
562 kasan_report_invalid_free(ptr, ip);
563 return;
565 kasan_poison_shadow(ptr, page_size(page), KASAN_FREE_PAGE);
566 } else {
567 __kasan_slab_free(page->slab_cache, ptr, ip, false);
571 void kasan_kfree_large(void *ptr, unsigned long ip)
573 if (ptr != page_address(virt_to_head_page(ptr)))
574 kasan_report_invalid_free(ptr, ip);
575 /* The object will be poisoned by page_alloc. */
578 #ifndef CONFIG_KASAN_VMALLOC
579 int kasan_module_alloc(void *addr, size_t size)
581 void *ret;
582 size_t scaled_size;
583 size_t shadow_size;
584 unsigned long shadow_start;
586 shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
587 scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT;
588 shadow_size = round_up(scaled_size, PAGE_SIZE);
590 if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
591 return -EINVAL;
593 ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
594 shadow_start + shadow_size,
595 GFP_KERNEL,
596 PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
597 __builtin_return_address(0));
599 if (ret) {
600 __memset(ret, KASAN_SHADOW_INIT, shadow_size);
601 find_vm_area(addr)->flags |= VM_KASAN;
602 kmemleak_ignore(ret);
603 return 0;
606 return -ENOMEM;
609 void kasan_free_shadow(const struct vm_struct *vm)
611 if (vm->flags & VM_KASAN)
612 vfree(kasan_mem_to_shadow(vm->addr));
614 #endif
616 extern void __kasan_report(unsigned long addr, size_t size, bool is_write, unsigned long ip);
617 extern bool report_enabled(void);
619 bool kasan_report(unsigned long addr, size_t size, bool is_write, unsigned long ip)
621 unsigned long flags = user_access_save();
622 bool ret = false;
624 if (likely(report_enabled())) {
625 __kasan_report(addr, size, is_write, ip);
626 ret = true;
629 user_access_restore(flags);
631 return ret;
634 #ifdef CONFIG_MEMORY_HOTPLUG
635 static bool shadow_mapped(unsigned long addr)
637 pgd_t *pgd = pgd_offset_k(addr);
638 p4d_t *p4d;
639 pud_t *pud;
640 pmd_t *pmd;
641 pte_t *pte;
643 if (pgd_none(*pgd))
644 return false;
645 p4d = p4d_offset(pgd, addr);
646 if (p4d_none(*p4d))
647 return false;
648 pud = pud_offset(p4d, addr);
649 if (pud_none(*pud))
650 return false;
653 * We can't use pud_large() or pud_huge(), the first one is
654 * arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse
655 * pud_bad(), if pud is bad then it's bad because it's huge.
657 if (pud_bad(*pud))
658 return true;
659 pmd = pmd_offset(pud, addr);
660 if (pmd_none(*pmd))
661 return false;
663 if (pmd_bad(*pmd))
664 return true;
665 pte = pte_offset_kernel(pmd, addr);
666 return !pte_none(*pte);
669 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
670 unsigned long action, void *data)
672 struct memory_notify *mem_data = data;
673 unsigned long nr_shadow_pages, start_kaddr, shadow_start;
674 unsigned long shadow_end, shadow_size;
676 nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
677 start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
678 shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
679 shadow_size = nr_shadow_pages << PAGE_SHIFT;
680 shadow_end = shadow_start + shadow_size;
682 if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) ||
683 WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT)))
684 return NOTIFY_BAD;
686 switch (action) {
687 case MEM_GOING_ONLINE: {
688 void *ret;
691 * If shadow is mapped already than it must have been mapped
692 * during the boot. This could happen if we onlining previously
693 * offlined memory.
695 if (shadow_mapped(shadow_start))
696 return NOTIFY_OK;
698 ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
699 shadow_end, GFP_KERNEL,
700 PAGE_KERNEL, VM_NO_GUARD,
701 pfn_to_nid(mem_data->start_pfn),
702 __builtin_return_address(0));
703 if (!ret)
704 return NOTIFY_BAD;
706 kmemleak_ignore(ret);
707 return NOTIFY_OK;
709 case MEM_CANCEL_ONLINE:
710 case MEM_OFFLINE: {
711 struct vm_struct *vm;
714 * shadow_start was either mapped during boot by kasan_init()
715 * or during memory online by __vmalloc_node_range().
716 * In the latter case we can use vfree() to free shadow.
717 * Non-NULL result of the find_vm_area() will tell us if
718 * that was the second case.
720 * Currently it's not possible to free shadow mapped
721 * during boot by kasan_init(). It's because the code
722 * to do that hasn't been written yet. So we'll just
723 * leak the memory.
725 vm = find_vm_area((void *)shadow_start);
726 if (vm)
727 vfree((void *)shadow_start);
731 return NOTIFY_OK;
734 static int __init kasan_memhotplug_init(void)
736 hotplug_memory_notifier(kasan_mem_notifier, 0);
738 return 0;
741 core_initcall(kasan_memhotplug_init);
742 #endif
744 #ifdef CONFIG_KASAN_VMALLOC
745 static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
746 void *unused)
748 unsigned long page;
749 pte_t pte;
751 if (likely(!pte_none(*ptep)))
752 return 0;
754 page = __get_free_page(GFP_KERNEL);
755 if (!page)
756 return -ENOMEM;
758 memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
759 pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
761 spin_lock(&init_mm.page_table_lock);
762 if (likely(pte_none(*ptep))) {
763 set_pte_at(&init_mm, addr, ptep, pte);
764 page = 0;
766 spin_unlock(&init_mm.page_table_lock);
767 if (page)
768 free_page(page);
769 return 0;
772 int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
774 unsigned long shadow_start, shadow_end;
775 int ret;
777 if (!is_vmalloc_or_module_addr((void *)addr))
778 return 0;
780 shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
781 shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE);
782 shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
783 shadow_end = ALIGN(shadow_end, PAGE_SIZE);
785 ret = apply_to_page_range(&init_mm, shadow_start,
786 shadow_end - shadow_start,
787 kasan_populate_vmalloc_pte, NULL);
788 if (ret)
789 return ret;
791 flush_cache_vmap(shadow_start, shadow_end);
794 * We need to be careful about inter-cpu effects here. Consider:
796 * CPU#0 CPU#1
797 * WRITE_ONCE(p, vmalloc(100)); while (x = READ_ONCE(p)) ;
798 * p[99] = 1;
800 * With compiler instrumentation, that ends up looking like this:
802 * CPU#0 CPU#1
803 * // vmalloc() allocates memory
804 * // let a = area->addr
805 * // we reach kasan_populate_vmalloc
806 * // and call kasan_unpoison_shadow:
807 * STORE shadow(a), unpoison_val
808 * ...
809 * STORE shadow(a+99), unpoison_val x = LOAD p
810 * // rest of vmalloc process <data dependency>
811 * STORE p, a LOAD shadow(x+99)
813 * If there is no barrier between the end of unpoisioning the shadow
814 * and the store of the result to p, the stores could be committed
815 * in a different order by CPU#0, and CPU#1 could erroneously observe
816 * poison in the shadow.
818 * We need some sort of barrier between the stores.
820 * In the vmalloc() case, this is provided by a smp_wmb() in
821 * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
822 * get_vm_area() and friends, the caller gets shadow allocated but
823 * doesn't have any pages mapped into the virtual address space that
824 * has been reserved. Mapping those pages in will involve taking and
825 * releasing a page-table lock, which will provide the barrier.
828 return 0;
832 * Poison the shadow for a vmalloc region. Called as part of the
833 * freeing process at the time the region is freed.
835 void kasan_poison_vmalloc(const void *start, unsigned long size)
837 if (!is_vmalloc_or_module_addr(start))
838 return;
840 size = round_up(size, KASAN_SHADOW_SCALE_SIZE);
841 kasan_poison_shadow(start, size, KASAN_VMALLOC_INVALID);
844 void kasan_unpoison_vmalloc(const void *start, unsigned long size)
846 if (!is_vmalloc_or_module_addr(start))
847 return;
849 kasan_unpoison_shadow(start, size);
852 static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
853 void *unused)
855 unsigned long page;
857 page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
859 spin_lock(&init_mm.page_table_lock);
861 if (likely(!pte_none(*ptep))) {
862 pte_clear(&init_mm, addr, ptep);
863 free_page(page);
865 spin_unlock(&init_mm.page_table_lock);
867 return 0;
871 * Release the backing for the vmalloc region [start, end), which
872 * lies within the free region [free_region_start, free_region_end).
874 * This can be run lazily, long after the region was freed. It runs
875 * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
876 * infrastructure.
878 * How does this work?
879 * -------------------
881 * We have a region that is page aligned, labelled as A.
882 * That might not map onto the shadow in a way that is page-aligned:
884 * start end
885 * v v
886 * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
887 * -------- -------- -------- -------- --------
888 * | | | | |
889 * | | | /-------/ |
890 * \-------\|/------/ |/---------------/
891 * ||| ||
892 * |??AAAAAA|AAAAAAAA|AA??????| < shadow
893 * (1) (2) (3)
895 * First we align the start upwards and the end downwards, so that the
896 * shadow of the region aligns with shadow page boundaries. In the
897 * example, this gives us the shadow page (2). This is the shadow entirely
898 * covered by this allocation.
900 * Then we have the tricky bits. We want to know if we can free the
901 * partially covered shadow pages - (1) and (3) in the example. For this,
902 * we are given the start and end of the free region that contains this
903 * allocation. Extending our previous example, we could have:
905 * free_region_start free_region_end
906 * | start end |
907 * v v v v
908 * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
909 * -------- -------- -------- -------- --------
910 * | | | | |
911 * | | | /-------/ |
912 * \-------\|/------/ |/---------------/
913 * ||| ||
914 * |FFAAAAAA|AAAAAAAA|AAF?????| < shadow
915 * (1) (2) (3)
917 * Once again, we align the start of the free region up, and the end of
918 * the free region down so that the shadow is page aligned. So we can free
919 * page (1) - we know no allocation currently uses anything in that page,
920 * because all of it is in the vmalloc free region. But we cannot free
921 * page (3), because we can't be sure that the rest of it is unused.
923 * We only consider pages that contain part of the original region for
924 * freeing: we don't try to free other pages from the free region or we'd
925 * end up trying to free huge chunks of virtual address space.
927 * Concurrency
928 * -----------
930 * How do we know that we're not freeing a page that is simultaneously
931 * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
933 * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
934 * at the same time. While we run under free_vmap_area_lock, the population
935 * code does not.
937 * free_vmap_area_lock instead operates to ensure that the larger range
938 * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
939 * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
940 * no space identified as free will become used while we are running. This
941 * means that so long as we are careful with alignment and only free shadow
942 * pages entirely covered by the free region, we will not run in to any
943 * trouble - any simultaneous allocations will be for disjoint regions.
945 void kasan_release_vmalloc(unsigned long start, unsigned long end,
946 unsigned long free_region_start,
947 unsigned long free_region_end)
949 void *shadow_start, *shadow_end;
950 unsigned long region_start, region_end;
951 unsigned long size;
953 region_start = ALIGN(start, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
954 region_end = ALIGN_DOWN(end, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
956 free_region_start = ALIGN(free_region_start,
957 PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
959 if (start != region_start &&
960 free_region_start < region_start)
961 region_start -= PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE;
963 free_region_end = ALIGN_DOWN(free_region_end,
964 PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
966 if (end != region_end &&
967 free_region_end > region_end)
968 region_end += PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE;
970 shadow_start = kasan_mem_to_shadow((void *)region_start);
971 shadow_end = kasan_mem_to_shadow((void *)region_end);
973 if (shadow_end > shadow_start) {
974 size = shadow_end - shadow_start;
975 apply_to_existing_page_range(&init_mm,
976 (unsigned long)shadow_start,
977 size, kasan_depopulate_vmalloc_pte,
978 NULL);
979 flush_tlb_kernel_range((unsigned long)shadow_start,
980 (unsigned long)shadow_end);
983 #endif