1 // SPDX-License-Identifier: GPL-2.0
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 #include <linux/random.h>
38 #include <trace/events/kmem.h>
44 * 1. slab_mutex (Global Mutex)
46 * 3. slab_lock(page) (Only on some arches and for debugging)
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects:
55 * A. page->freelist -> List of object free in a page
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list except per cpu partial list. The processor that froze the
62 * slab is the one who can perform list operations on the page. Other
63 * processors may put objects onto the freelist but the processor that
64 * froze the slab is the only one that can retrieve the objects from the
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
88 * freed then the slab will show up again on the partial lists.
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
96 * page->frozen The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
108 * freelist that allows lockless access to
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
112 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
113 * options set. This moves slab handling out of
114 * the fast path and disables lockless freelists.
117 static inline int kmem_cache_debug(struct kmem_cache
*s
)
119 #ifdef CONFIG_SLUB_DEBUG
120 return unlikely(s
->flags
& SLAB_DEBUG_FLAGS
);
126 void *fixup_red_left(struct kmem_cache
*s
, void *p
)
128 if (kmem_cache_debug(s
) && s
->flags
& SLAB_RED_ZONE
)
129 p
+= s
->red_left_pad
;
134 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache
*s
)
136 #ifdef CONFIG_SLUB_CPU_PARTIAL
137 return !kmem_cache_debug(s
);
144 * Issues still to be resolved:
146 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
148 * - Variable sizing of the per node arrays
151 /* Enable to test recovery from slab corruption on boot */
152 #undef SLUB_RESILIENCY_TEST
154 /* Enable to log cmpxchg failures */
155 #undef SLUB_DEBUG_CMPXCHG
158 * Mininum number of partial slabs. These will be left on the partial
159 * lists even if they are empty. kmem_cache_shrink may reclaim them.
161 #define MIN_PARTIAL 5
164 * Maximum number of desirable partial slabs.
165 * The existence of more partial slabs makes kmem_cache_shrink
166 * sort the partial list by the number of objects in use.
168 #define MAX_PARTIAL 10
170 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
171 SLAB_POISON | SLAB_STORE_USER)
174 * These debug flags cannot use CMPXCHG because there might be consistency
175 * issues when checking or reading debug information
177 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
182 * Debugging flags that require metadata to be stored in the slab. These get
183 * disabled when slub_debug=O is used and a cache's min order increases with
186 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
189 #define OO_MASK ((1 << OO_SHIFT) - 1)
190 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
192 /* Internal SLUB flags */
194 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
195 /* Use cmpxchg_double */
196 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
199 * Tracking user of a slab.
201 #define TRACK_ADDRS_COUNT 16
203 unsigned long addr
; /* Called from address */
204 #ifdef CONFIG_STACKTRACE
205 unsigned long addrs
[TRACK_ADDRS_COUNT
]; /* Called from address */
207 int cpu
; /* Was running on cpu */
208 int pid
; /* Pid context */
209 unsigned long when
; /* When did the operation occur */
212 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
215 static int sysfs_slab_add(struct kmem_cache
*);
216 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
217 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
);
218 static void sysfs_slab_remove(struct kmem_cache
*s
);
220 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
221 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
223 static inline void memcg_propagate_slab_attrs(struct kmem_cache
*s
) { }
224 static inline void sysfs_slab_remove(struct kmem_cache
*s
) { }
227 static inline void stat(const struct kmem_cache
*s
, enum stat_item si
)
229 #ifdef CONFIG_SLUB_STATS
231 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 * avoid this_cpu_add()'s irq-disable overhead.
234 raw_cpu_inc(s
->cpu_slab
->stat
[si
]);
238 /********************************************************************
239 * Core slab cache functions
240 *******************************************************************/
243 * Returns freelist pointer (ptr). With hardening, this is obfuscated
244 * with an XOR of the address where the pointer is held and a per-cache
247 static inline void *freelist_ptr(const struct kmem_cache
*s
, void *ptr
,
248 unsigned long ptr_addr
)
250 #ifdef CONFIG_SLAB_FREELIST_HARDENED
252 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
253 * Normally, this doesn't cause any issues, as both set_freepointer()
254 * and get_freepointer() are called with a pointer with the same tag.
255 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
256 * example, when __free_slub() iterates over objects in a cache, it
257 * passes untagged pointers to check_object(). check_object() in turns
258 * calls get_freepointer() with an untagged pointer, which causes the
259 * freepointer to be restored incorrectly.
261 return (void *)((unsigned long)ptr
^ s
->random
^
262 swab((unsigned long)kasan_reset_tag((void *)ptr_addr
)));
268 /* Returns the freelist pointer recorded at location ptr_addr. */
269 static inline void *freelist_dereference(const struct kmem_cache
*s
,
272 return freelist_ptr(s
, (void *)*(unsigned long *)(ptr_addr
),
273 (unsigned long)ptr_addr
);
276 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
278 return freelist_dereference(s
, object
+ s
->offset
);
281 static void prefetch_freepointer(const struct kmem_cache
*s
, void *object
)
283 prefetch(object
+ s
->offset
);
286 static inline void *get_freepointer_safe(struct kmem_cache
*s
, void *object
)
288 unsigned long freepointer_addr
;
291 if (!debug_pagealloc_enabled_static())
292 return get_freepointer(s
, object
);
294 freepointer_addr
= (unsigned long)object
+ s
->offset
;
295 probe_kernel_read(&p
, (void **)freepointer_addr
, sizeof(p
));
296 return freelist_ptr(s
, p
, freepointer_addr
);
299 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
301 unsigned long freeptr_addr
= (unsigned long)object
+ s
->offset
;
303 #ifdef CONFIG_SLAB_FREELIST_HARDENED
304 BUG_ON(object
== fp
); /* naive detection of double free or corruption */
307 *(void **)freeptr_addr
= freelist_ptr(s
, fp
, freeptr_addr
);
310 /* Loop over all objects in a slab */
311 #define for_each_object(__p, __s, __addr, __objects) \
312 for (__p = fixup_red_left(__s, __addr); \
313 __p < (__addr) + (__objects) * (__s)->size; \
316 /* Determine object index from a given position */
317 static inline unsigned int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
319 return (kasan_reset_tag(p
) - addr
) / s
->size
;
322 static inline unsigned int order_objects(unsigned int order
, unsigned int size
)
324 return ((unsigned int)PAGE_SIZE
<< order
) / size
;
327 static inline struct kmem_cache_order_objects
oo_make(unsigned int order
,
330 struct kmem_cache_order_objects x
= {
331 (order
<< OO_SHIFT
) + order_objects(order
, size
)
337 static inline unsigned int oo_order(struct kmem_cache_order_objects x
)
339 return x
.x
>> OO_SHIFT
;
342 static inline unsigned int oo_objects(struct kmem_cache_order_objects x
)
344 return x
.x
& OO_MASK
;
348 * Per slab locking using the pagelock
350 static __always_inline
void slab_lock(struct page
*page
)
352 VM_BUG_ON_PAGE(PageTail(page
), page
);
353 bit_spin_lock(PG_locked
, &page
->flags
);
356 static __always_inline
void slab_unlock(struct page
*page
)
358 VM_BUG_ON_PAGE(PageTail(page
), page
);
359 __bit_spin_unlock(PG_locked
, &page
->flags
);
362 /* Interrupts must be disabled (for the fallback code to work right) */
363 static inline bool __cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
364 void *freelist_old
, unsigned long counters_old
,
365 void *freelist_new
, unsigned long counters_new
,
368 VM_BUG_ON(!irqs_disabled());
369 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
370 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
371 if (s
->flags
& __CMPXCHG_DOUBLE
) {
372 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
373 freelist_old
, counters_old
,
374 freelist_new
, counters_new
))
380 if (page
->freelist
== freelist_old
&&
381 page
->counters
== counters_old
) {
382 page
->freelist
= freelist_new
;
383 page
->counters
= counters_new
;
391 stat(s
, CMPXCHG_DOUBLE_FAIL
);
393 #ifdef SLUB_DEBUG_CMPXCHG
394 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
400 static inline bool cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
401 void *freelist_old
, unsigned long counters_old
,
402 void *freelist_new
, unsigned long counters_new
,
405 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
406 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
407 if (s
->flags
& __CMPXCHG_DOUBLE
) {
408 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
409 freelist_old
, counters_old
,
410 freelist_new
, counters_new
))
417 local_irq_save(flags
);
419 if (page
->freelist
== freelist_old
&&
420 page
->counters
== counters_old
) {
421 page
->freelist
= freelist_new
;
422 page
->counters
= counters_new
;
424 local_irq_restore(flags
);
428 local_irq_restore(flags
);
432 stat(s
, CMPXCHG_DOUBLE_FAIL
);
434 #ifdef SLUB_DEBUG_CMPXCHG
435 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
441 #ifdef CONFIG_SLUB_DEBUG
442 static unsigned long object_map
[BITS_TO_LONGS(MAX_OBJS_PER_PAGE
)];
443 static DEFINE_SPINLOCK(object_map_lock
);
446 * Determine a map of object in use on a page.
448 * Node listlock must be held to guarantee that the page does
449 * not vanish from under us.
451 static unsigned long *get_map(struct kmem_cache
*s
, struct page
*page
)
452 __acquires(&object_map_lock
)
455 void *addr
= page_address(page
);
457 VM_BUG_ON(!irqs_disabled());
459 spin_lock(&object_map_lock
);
461 bitmap_zero(object_map
, page
->objects
);
463 for (p
= page
->freelist
; p
; p
= get_freepointer(s
, p
))
464 set_bit(slab_index(p
, s
, addr
), object_map
);
469 static void put_map(unsigned long *map
) __releases(&object_map_lock
)
471 VM_BUG_ON(map
!= object_map
);
472 lockdep_assert_held(&object_map_lock
);
474 spin_unlock(&object_map_lock
);
477 static inline unsigned int size_from_object(struct kmem_cache
*s
)
479 if (s
->flags
& SLAB_RED_ZONE
)
480 return s
->size
- s
->red_left_pad
;
485 static inline void *restore_red_left(struct kmem_cache
*s
, void *p
)
487 if (s
->flags
& SLAB_RED_ZONE
)
488 p
-= s
->red_left_pad
;
496 #if defined(CONFIG_SLUB_DEBUG_ON)
497 static slab_flags_t slub_debug
= DEBUG_DEFAULT_FLAGS
;
499 static slab_flags_t slub_debug
;
502 static char *slub_debug_slabs
;
503 static int disable_higher_order_debug
;
506 * slub is about to manipulate internal object metadata. This memory lies
507 * outside the range of the allocated object, so accessing it would normally
508 * be reported by kasan as a bounds error. metadata_access_enable() is used
509 * to tell kasan that these accesses are OK.
511 static inline void metadata_access_enable(void)
513 kasan_disable_current();
516 static inline void metadata_access_disable(void)
518 kasan_enable_current();
525 /* Verify that a pointer has an address that is valid within a slab page */
526 static inline int check_valid_pointer(struct kmem_cache
*s
,
527 struct page
*page
, void *object
)
534 base
= page_address(page
);
535 object
= kasan_reset_tag(object
);
536 object
= restore_red_left(s
, object
);
537 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
538 (object
- base
) % s
->size
) {
545 static void print_section(char *level
, char *text
, u8
*addr
,
548 metadata_access_enable();
549 print_hex_dump(level
, text
, DUMP_PREFIX_ADDRESS
, 16, 1, addr
,
551 metadata_access_disable();
554 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
555 enum track_item alloc
)
560 p
= object
+ s
->offset
+ sizeof(void *);
562 p
= object
+ s
->inuse
;
567 static void set_track(struct kmem_cache
*s
, void *object
,
568 enum track_item alloc
, unsigned long addr
)
570 struct track
*p
= get_track(s
, object
, alloc
);
573 #ifdef CONFIG_STACKTRACE
574 unsigned int nr_entries
;
576 metadata_access_enable();
577 nr_entries
= stack_trace_save(p
->addrs
, TRACK_ADDRS_COUNT
, 3);
578 metadata_access_disable();
580 if (nr_entries
< TRACK_ADDRS_COUNT
)
581 p
->addrs
[nr_entries
] = 0;
584 p
->cpu
= smp_processor_id();
585 p
->pid
= current
->pid
;
588 memset(p
, 0, sizeof(struct track
));
592 static void init_tracking(struct kmem_cache
*s
, void *object
)
594 if (!(s
->flags
& SLAB_STORE_USER
))
597 set_track(s
, object
, TRACK_FREE
, 0UL);
598 set_track(s
, object
, TRACK_ALLOC
, 0UL);
601 static void print_track(const char *s
, struct track
*t
, unsigned long pr_time
)
606 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
607 s
, (void *)t
->addr
, pr_time
- t
->when
, t
->cpu
, t
->pid
);
608 #ifdef CONFIG_STACKTRACE
611 for (i
= 0; i
< TRACK_ADDRS_COUNT
; i
++)
613 pr_err("\t%pS\n", (void *)t
->addrs
[i
]);
620 static void print_tracking(struct kmem_cache
*s
, void *object
)
622 unsigned long pr_time
= jiffies
;
623 if (!(s
->flags
& SLAB_STORE_USER
))
626 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
), pr_time
);
627 print_track("Freed", get_track(s
, object
, TRACK_FREE
), pr_time
);
630 static void print_page_info(struct page
*page
)
632 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
633 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
637 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
639 struct va_format vaf
;
645 pr_err("=============================================================================\n");
646 pr_err("BUG %s (%s): %pV\n", s
->name
, print_tainted(), &vaf
);
647 pr_err("-----------------------------------------------------------------------------\n\n");
649 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
653 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
655 struct va_format vaf
;
661 pr_err("FIX %s: %pV\n", s
->name
, &vaf
);
665 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
667 unsigned int off
; /* Offset of last byte */
668 u8
*addr
= page_address(page
);
670 print_tracking(s
, p
);
672 print_page_info(page
);
674 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
675 p
, p
- addr
, get_freepointer(s
, p
));
677 if (s
->flags
& SLAB_RED_ZONE
)
678 print_section(KERN_ERR
, "Redzone ", p
- s
->red_left_pad
,
680 else if (p
> addr
+ 16)
681 print_section(KERN_ERR
, "Bytes b4 ", p
- 16, 16);
683 print_section(KERN_ERR
, "Object ", p
,
684 min_t(unsigned int, s
->object_size
, PAGE_SIZE
));
685 if (s
->flags
& SLAB_RED_ZONE
)
686 print_section(KERN_ERR
, "Redzone ", p
+ s
->object_size
,
687 s
->inuse
- s
->object_size
);
690 off
= s
->offset
+ sizeof(void *);
694 if (s
->flags
& SLAB_STORE_USER
)
695 off
+= 2 * sizeof(struct track
);
697 off
+= kasan_metadata_size(s
);
699 if (off
!= size_from_object(s
))
700 /* Beginning of the filler is the free pointer */
701 print_section(KERN_ERR
, "Padding ", p
+ off
,
702 size_from_object(s
) - off
);
707 void object_err(struct kmem_cache
*s
, struct page
*page
,
708 u8
*object
, char *reason
)
710 slab_bug(s
, "%s", reason
);
711 print_trailer(s
, page
, object
);
714 static __printf(3, 4) void slab_err(struct kmem_cache
*s
, struct page
*page
,
715 const char *fmt
, ...)
721 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
723 slab_bug(s
, "%s", buf
);
724 print_page_info(page
);
728 static void init_object(struct kmem_cache
*s
, void *object
, u8 val
)
732 if (s
->flags
& SLAB_RED_ZONE
)
733 memset(p
- s
->red_left_pad
, val
, s
->red_left_pad
);
735 if (s
->flags
& __OBJECT_POISON
) {
736 memset(p
, POISON_FREE
, s
->object_size
- 1);
737 p
[s
->object_size
- 1] = POISON_END
;
740 if (s
->flags
& SLAB_RED_ZONE
)
741 memset(p
+ s
->object_size
, val
, s
->inuse
- s
->object_size
);
744 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
745 void *from
, void *to
)
747 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
748 memset(from
, data
, to
- from
);
751 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
752 u8
*object
, char *what
,
753 u8
*start
, unsigned int value
, unsigned int bytes
)
757 u8
*addr
= page_address(page
);
759 metadata_access_enable();
760 fault
= memchr_inv(start
, value
, bytes
);
761 metadata_access_disable();
766 while (end
> fault
&& end
[-1] == value
)
769 slab_bug(s
, "%s overwritten", what
);
770 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
771 fault
, end
- 1, fault
- addr
,
773 print_trailer(s
, page
, object
);
775 restore_bytes(s
, what
, value
, fault
, end
);
783 * Bytes of the object to be managed.
784 * If the freepointer may overlay the object then the free
785 * pointer is the first word of the object.
787 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
790 * object + s->object_size
791 * Padding to reach word boundary. This is also used for Redzoning.
792 * Padding is extended by another word if Redzoning is enabled and
793 * object_size == inuse.
795 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
796 * 0xcc (RED_ACTIVE) for objects in use.
799 * Meta data starts here.
801 * A. Free pointer (if we cannot overwrite object on free)
802 * B. Tracking data for SLAB_STORE_USER
803 * C. Padding to reach required alignment boundary or at mininum
804 * one word if debugging is on to be able to detect writes
805 * before the word boundary.
807 * Padding is done using 0x5a (POISON_INUSE)
810 * Nothing is used beyond s->size.
812 * If slabcaches are merged then the object_size and inuse boundaries are mostly
813 * ignored. And therefore no slab options that rely on these boundaries
814 * may be used with merged slabcaches.
817 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
819 unsigned long off
= s
->inuse
; /* The end of info */
822 /* Freepointer is placed after the object. */
823 off
+= sizeof(void *);
825 if (s
->flags
& SLAB_STORE_USER
)
826 /* We also have user information there */
827 off
+= 2 * sizeof(struct track
);
829 off
+= kasan_metadata_size(s
);
831 if (size_from_object(s
) == off
)
834 return check_bytes_and_report(s
, page
, p
, "Object padding",
835 p
+ off
, POISON_INUSE
, size_from_object(s
) - off
);
838 /* Check the pad bytes at the end of a slab page */
839 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
848 if (!(s
->flags
& SLAB_POISON
))
851 start
= page_address(page
);
852 length
= page_size(page
);
853 end
= start
+ length
;
854 remainder
= length
% s
->size
;
858 pad
= end
- remainder
;
859 metadata_access_enable();
860 fault
= memchr_inv(pad
, POISON_INUSE
, remainder
);
861 metadata_access_disable();
864 while (end
> fault
&& end
[-1] == POISON_INUSE
)
867 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p @offset=%tu",
868 fault
, end
- 1, fault
- start
);
869 print_section(KERN_ERR
, "Padding ", pad
, remainder
);
871 restore_bytes(s
, "slab padding", POISON_INUSE
, fault
, end
);
875 static int check_object(struct kmem_cache
*s
, struct page
*page
,
876 void *object
, u8 val
)
879 u8
*endobject
= object
+ s
->object_size
;
881 if (s
->flags
& SLAB_RED_ZONE
) {
882 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
883 object
- s
->red_left_pad
, val
, s
->red_left_pad
))
886 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
887 endobject
, val
, s
->inuse
- s
->object_size
))
890 if ((s
->flags
& SLAB_POISON
) && s
->object_size
< s
->inuse
) {
891 check_bytes_and_report(s
, page
, p
, "Alignment padding",
892 endobject
, POISON_INUSE
,
893 s
->inuse
- s
->object_size
);
897 if (s
->flags
& SLAB_POISON
) {
898 if (val
!= SLUB_RED_ACTIVE
&& (s
->flags
& __OBJECT_POISON
) &&
899 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
900 POISON_FREE
, s
->object_size
- 1) ||
901 !check_bytes_and_report(s
, page
, p
, "Poison",
902 p
+ s
->object_size
- 1, POISON_END
, 1)))
905 * check_pad_bytes cleans up on its own.
907 check_pad_bytes(s
, page
, p
);
910 if (!s
->offset
&& val
== SLUB_RED_ACTIVE
)
912 * Object and freepointer overlap. Cannot check
913 * freepointer while object is allocated.
917 /* Check free pointer validity */
918 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
919 object_err(s
, page
, p
, "Freepointer corrupt");
921 * No choice but to zap it and thus lose the remainder
922 * of the free objects in this slab. May cause
923 * another error because the object count is now wrong.
925 set_freepointer(s
, p
, NULL
);
931 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
935 VM_BUG_ON(!irqs_disabled());
937 if (!PageSlab(page
)) {
938 slab_err(s
, page
, "Not a valid slab page");
942 maxobj
= order_objects(compound_order(page
), s
->size
);
943 if (page
->objects
> maxobj
) {
944 slab_err(s
, page
, "objects %u > max %u",
945 page
->objects
, maxobj
);
948 if (page
->inuse
> page
->objects
) {
949 slab_err(s
, page
, "inuse %u > max %u",
950 page
->inuse
, page
->objects
);
953 /* Slab_pad_check fixes things up after itself */
954 slab_pad_check(s
, page
);
959 * Determine if a certain object on a page is on the freelist. Must hold the
960 * slab lock to guarantee that the chains are in a consistent state.
962 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
970 while (fp
&& nr
<= page
->objects
) {
973 if (!check_valid_pointer(s
, page
, fp
)) {
975 object_err(s
, page
, object
,
976 "Freechain corrupt");
977 set_freepointer(s
, object
, NULL
);
979 slab_err(s
, page
, "Freepointer corrupt");
980 page
->freelist
= NULL
;
981 page
->inuse
= page
->objects
;
982 slab_fix(s
, "Freelist cleared");
988 fp
= get_freepointer(s
, object
);
992 max_objects
= order_objects(compound_order(page
), s
->size
);
993 if (max_objects
> MAX_OBJS_PER_PAGE
)
994 max_objects
= MAX_OBJS_PER_PAGE
;
996 if (page
->objects
!= max_objects
) {
997 slab_err(s
, page
, "Wrong number of objects. Found %d but should be %d",
998 page
->objects
, max_objects
);
999 page
->objects
= max_objects
;
1000 slab_fix(s
, "Number of objects adjusted.");
1002 if (page
->inuse
!= page
->objects
- nr
) {
1003 slab_err(s
, page
, "Wrong object count. Counter is %d but counted were %d",
1004 page
->inuse
, page
->objects
- nr
);
1005 page
->inuse
= page
->objects
- nr
;
1006 slab_fix(s
, "Object count adjusted.");
1008 return search
== NULL
;
1011 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
1014 if (s
->flags
& SLAB_TRACE
) {
1015 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1017 alloc
? "alloc" : "free",
1018 object
, page
->inuse
,
1022 print_section(KERN_INFO
, "Object ", (void *)object
,
1030 * Tracking of fully allocated slabs for debugging purposes.
1032 static void add_full(struct kmem_cache
*s
,
1033 struct kmem_cache_node
*n
, struct page
*page
)
1035 if (!(s
->flags
& SLAB_STORE_USER
))
1038 lockdep_assert_held(&n
->list_lock
);
1039 list_add(&page
->slab_list
, &n
->full
);
1042 static void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
, struct page
*page
)
1044 if (!(s
->flags
& SLAB_STORE_USER
))
1047 lockdep_assert_held(&n
->list_lock
);
1048 list_del(&page
->slab_list
);
1051 /* Tracking of the number of slabs for debugging purposes */
1052 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1054 struct kmem_cache_node
*n
= get_node(s
, node
);
1056 return atomic_long_read(&n
->nr_slabs
);
1059 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1061 return atomic_long_read(&n
->nr_slabs
);
1064 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1066 struct kmem_cache_node
*n
= get_node(s
, node
);
1069 * May be called early in order to allocate a slab for the
1070 * kmem_cache_node structure. Solve the chicken-egg
1071 * dilemma by deferring the increment of the count during
1072 * bootstrap (see early_kmem_cache_node_alloc).
1075 atomic_long_inc(&n
->nr_slabs
);
1076 atomic_long_add(objects
, &n
->total_objects
);
1079 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1081 struct kmem_cache_node
*n
= get_node(s
, node
);
1083 atomic_long_dec(&n
->nr_slabs
);
1084 atomic_long_sub(objects
, &n
->total_objects
);
1087 /* Object debug checks for alloc/free paths */
1088 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
1091 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
1094 init_object(s
, object
, SLUB_RED_INACTIVE
);
1095 init_tracking(s
, object
);
1099 void setup_page_debug(struct kmem_cache
*s
, struct page
*page
, void *addr
)
1101 if (!(s
->flags
& SLAB_POISON
))
1104 metadata_access_enable();
1105 memset(addr
, POISON_INUSE
, page_size(page
));
1106 metadata_access_disable();
1109 static inline int alloc_consistency_checks(struct kmem_cache
*s
,
1110 struct page
*page
, void *object
)
1112 if (!check_slab(s
, page
))
1115 if (!check_valid_pointer(s
, page
, object
)) {
1116 object_err(s
, page
, object
, "Freelist Pointer check fails");
1120 if (!check_object(s
, page
, object
, SLUB_RED_INACTIVE
))
1126 static noinline
int alloc_debug_processing(struct kmem_cache
*s
,
1128 void *object
, unsigned long addr
)
1130 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1131 if (!alloc_consistency_checks(s
, page
, object
))
1135 /* Success perform special debug activities for allocs */
1136 if (s
->flags
& SLAB_STORE_USER
)
1137 set_track(s
, object
, TRACK_ALLOC
, addr
);
1138 trace(s
, page
, object
, 1);
1139 init_object(s
, object
, SLUB_RED_ACTIVE
);
1143 if (PageSlab(page
)) {
1145 * If this is a slab page then lets do the best we can
1146 * to avoid issues in the future. Marking all objects
1147 * as used avoids touching the remaining objects.
1149 slab_fix(s
, "Marking all objects used");
1150 page
->inuse
= page
->objects
;
1151 page
->freelist
= NULL
;
1156 static inline int free_consistency_checks(struct kmem_cache
*s
,
1157 struct page
*page
, void *object
, unsigned long addr
)
1159 if (!check_valid_pointer(s
, page
, object
)) {
1160 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
1164 if (on_freelist(s
, page
, object
)) {
1165 object_err(s
, page
, object
, "Object already free");
1169 if (!check_object(s
, page
, object
, SLUB_RED_ACTIVE
))
1172 if (unlikely(s
!= page
->slab_cache
)) {
1173 if (!PageSlab(page
)) {
1174 slab_err(s
, page
, "Attempt to free object(0x%p) outside of slab",
1176 } else if (!page
->slab_cache
) {
1177 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1181 object_err(s
, page
, object
,
1182 "page slab pointer corrupt.");
1188 /* Supports checking bulk free of a constructed freelist */
1189 static noinline
int free_debug_processing(
1190 struct kmem_cache
*s
, struct page
*page
,
1191 void *head
, void *tail
, int bulk_cnt
,
1194 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1195 void *object
= head
;
1197 unsigned long uninitialized_var(flags
);
1200 spin_lock_irqsave(&n
->list_lock
, flags
);
1203 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1204 if (!check_slab(s
, page
))
1211 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1212 if (!free_consistency_checks(s
, page
, object
, addr
))
1216 if (s
->flags
& SLAB_STORE_USER
)
1217 set_track(s
, object
, TRACK_FREE
, addr
);
1218 trace(s
, page
, object
, 0);
1219 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1220 init_object(s
, object
, SLUB_RED_INACTIVE
);
1222 /* Reached end of constructed freelist yet? */
1223 if (object
!= tail
) {
1224 object
= get_freepointer(s
, object
);
1230 if (cnt
!= bulk_cnt
)
1231 slab_err(s
, page
, "Bulk freelist count(%d) invalid(%d)\n",
1235 spin_unlock_irqrestore(&n
->list_lock
, flags
);
1237 slab_fix(s
, "Object at 0x%p not freed", object
);
1241 static int __init
setup_slub_debug(char *str
)
1243 slub_debug
= DEBUG_DEFAULT_FLAGS
;
1244 if (*str
++ != '=' || !*str
)
1246 * No options specified. Switch on full debugging.
1252 * No options but restriction on slabs. This means full
1253 * debugging for slabs matching a pattern.
1260 * Switch off all debugging measures.
1265 * Determine which debug features should be switched on
1267 for (; *str
&& *str
!= ','; str
++) {
1268 switch (tolower(*str
)) {
1270 slub_debug
|= SLAB_CONSISTENCY_CHECKS
;
1273 slub_debug
|= SLAB_RED_ZONE
;
1276 slub_debug
|= SLAB_POISON
;
1279 slub_debug
|= SLAB_STORE_USER
;
1282 slub_debug
|= SLAB_TRACE
;
1285 slub_debug
|= SLAB_FAILSLAB
;
1289 * Avoid enabling debugging on caches if its minimum
1290 * order would increase as a result.
1292 disable_higher_order_debug
= 1;
1295 pr_err("slub_debug option '%c' unknown. skipped\n",
1302 slub_debug_slabs
= str
+ 1;
1304 if ((static_branch_unlikely(&init_on_alloc
) ||
1305 static_branch_unlikely(&init_on_free
)) &&
1306 (slub_debug
& SLAB_POISON
))
1307 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1311 __setup("slub_debug", setup_slub_debug
);
1314 * kmem_cache_flags - apply debugging options to the cache
1315 * @object_size: the size of an object without meta data
1316 * @flags: flags to set
1317 * @name: name of the cache
1318 * @ctor: constructor function
1320 * Debug option(s) are applied to @flags. In addition to the debug
1321 * option(s), if a slab name (or multiple) is specified i.e.
1322 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1323 * then only the select slabs will receive the debug option(s).
1325 slab_flags_t
kmem_cache_flags(unsigned int object_size
,
1326 slab_flags_t flags
, const char *name
,
1327 void (*ctor
)(void *))
1332 /* If slub_debug = 0, it folds into the if conditional. */
1333 if (!slub_debug_slabs
)
1334 return flags
| slub_debug
;
1337 iter
= slub_debug_slabs
;
1342 end
= strchrnul(iter
, ',');
1344 glob
= strnchr(iter
, end
- iter
, '*');
1346 cmplen
= glob
- iter
;
1348 cmplen
= max_t(size_t, len
, (end
- iter
));
1350 if (!strncmp(name
, iter
, cmplen
)) {
1351 flags
|= slub_debug
;
1362 #else /* !CONFIG_SLUB_DEBUG */
1363 static inline void setup_object_debug(struct kmem_cache
*s
,
1364 struct page
*page
, void *object
) {}
1366 void setup_page_debug(struct kmem_cache
*s
, struct page
*page
, void *addr
) {}
1368 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1369 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1371 static inline int free_debug_processing(
1372 struct kmem_cache
*s
, struct page
*page
,
1373 void *head
, void *tail
, int bulk_cnt
,
1374 unsigned long addr
) { return 0; }
1376 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1378 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1379 void *object
, u8 val
) { return 1; }
1380 static inline void add_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1381 struct page
*page
) {}
1382 static inline void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1383 struct page
*page
) {}
1384 slab_flags_t
kmem_cache_flags(unsigned int object_size
,
1385 slab_flags_t flags
, const char *name
,
1386 void (*ctor
)(void *))
1390 #define slub_debug 0
1392 #define disable_higher_order_debug 0
1394 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1396 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1398 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1400 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1403 #endif /* CONFIG_SLUB_DEBUG */
1406 * Hooks for other subsystems that check memory allocations. In a typical
1407 * production configuration these hooks all should produce no code at all.
1409 static inline void *kmalloc_large_node_hook(void *ptr
, size_t size
, gfp_t flags
)
1411 ptr
= kasan_kmalloc_large(ptr
, size
, flags
);
1412 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1413 kmemleak_alloc(ptr
, size
, 1, flags
);
1417 static __always_inline
void kfree_hook(void *x
)
1420 kasan_kfree_large(x
, _RET_IP_
);
1423 static __always_inline
bool slab_free_hook(struct kmem_cache
*s
, void *x
)
1425 kmemleak_free_recursive(x
, s
->flags
);
1428 * Trouble is that we may no longer disable interrupts in the fast path
1429 * So in order to make the debug calls that expect irqs to be
1430 * disabled we need to disable interrupts temporarily.
1432 #ifdef CONFIG_LOCKDEP
1434 unsigned long flags
;
1436 local_irq_save(flags
);
1437 debug_check_no_locks_freed(x
, s
->object_size
);
1438 local_irq_restore(flags
);
1441 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
1442 debug_check_no_obj_freed(x
, s
->object_size
);
1444 /* KASAN might put x into memory quarantine, delaying its reuse */
1445 return kasan_slab_free(s
, x
, _RET_IP_
);
1448 static inline bool slab_free_freelist_hook(struct kmem_cache
*s
,
1449 void **head
, void **tail
)
1454 void *old_tail
= *tail
? *tail
: *head
;
1457 /* Head and tail of the reconstructed freelist */
1463 next
= get_freepointer(s
, object
);
1465 if (slab_want_init_on_free(s
)) {
1467 * Clear the object and the metadata, but don't touch
1470 memset(object
, 0, s
->object_size
);
1471 rsize
= (s
->flags
& SLAB_RED_ZONE
) ? s
->red_left_pad
1473 memset((char *)object
+ s
->inuse
, 0,
1474 s
->size
- s
->inuse
- rsize
);
1477 /* If object's reuse doesn't have to be delayed */
1478 if (!slab_free_hook(s
, object
)) {
1479 /* Move object to the new freelist */
1480 set_freepointer(s
, object
, *head
);
1485 } while (object
!= old_tail
);
1490 return *head
!= NULL
;
1493 static void *setup_object(struct kmem_cache
*s
, struct page
*page
,
1496 setup_object_debug(s
, page
, object
);
1497 object
= kasan_init_slab_obj(s
, object
);
1498 if (unlikely(s
->ctor
)) {
1499 kasan_unpoison_object_data(s
, object
);
1501 kasan_poison_object_data(s
, object
);
1507 * Slab allocation and freeing
1509 static inline struct page
*alloc_slab_page(struct kmem_cache
*s
,
1510 gfp_t flags
, int node
, struct kmem_cache_order_objects oo
)
1513 unsigned int order
= oo_order(oo
);
1515 if (node
== NUMA_NO_NODE
)
1516 page
= alloc_pages(flags
, order
);
1518 page
= __alloc_pages_node(node
, flags
, order
);
1520 if (page
&& charge_slab_page(page
, flags
, order
, s
)) {
1521 __free_pages(page
, order
);
1528 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1529 /* Pre-initialize the random sequence cache */
1530 static int init_cache_random_seq(struct kmem_cache
*s
)
1532 unsigned int count
= oo_objects(s
->oo
);
1535 /* Bailout if already initialised */
1539 err
= cache_random_seq_create(s
, count
, GFP_KERNEL
);
1541 pr_err("SLUB: Unable to initialize free list for %s\n",
1546 /* Transform to an offset on the set of pages */
1547 if (s
->random_seq
) {
1550 for (i
= 0; i
< count
; i
++)
1551 s
->random_seq
[i
] *= s
->size
;
1556 /* Initialize each random sequence freelist per cache */
1557 static void __init
init_freelist_randomization(void)
1559 struct kmem_cache
*s
;
1561 mutex_lock(&slab_mutex
);
1563 list_for_each_entry(s
, &slab_caches
, list
)
1564 init_cache_random_seq(s
);
1566 mutex_unlock(&slab_mutex
);
1569 /* Get the next entry on the pre-computed freelist randomized */
1570 static void *next_freelist_entry(struct kmem_cache
*s
, struct page
*page
,
1571 unsigned long *pos
, void *start
,
1572 unsigned long page_limit
,
1573 unsigned long freelist_count
)
1578 * If the target page allocation failed, the number of objects on the
1579 * page might be smaller than the usual size defined by the cache.
1582 idx
= s
->random_seq
[*pos
];
1584 if (*pos
>= freelist_count
)
1586 } while (unlikely(idx
>= page_limit
));
1588 return (char *)start
+ idx
;
1591 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1592 static bool shuffle_freelist(struct kmem_cache
*s
, struct page
*page
)
1597 unsigned long idx
, pos
, page_limit
, freelist_count
;
1599 if (page
->objects
< 2 || !s
->random_seq
)
1602 freelist_count
= oo_objects(s
->oo
);
1603 pos
= get_random_int() % freelist_count
;
1605 page_limit
= page
->objects
* s
->size
;
1606 start
= fixup_red_left(s
, page_address(page
));
1608 /* First entry is used as the base of the freelist */
1609 cur
= next_freelist_entry(s
, page
, &pos
, start
, page_limit
,
1611 cur
= setup_object(s
, page
, cur
);
1612 page
->freelist
= cur
;
1614 for (idx
= 1; idx
< page
->objects
; idx
++) {
1615 next
= next_freelist_entry(s
, page
, &pos
, start
, page_limit
,
1617 next
= setup_object(s
, page
, next
);
1618 set_freepointer(s
, cur
, next
);
1621 set_freepointer(s
, cur
, NULL
);
1626 static inline int init_cache_random_seq(struct kmem_cache
*s
)
1630 static inline void init_freelist_randomization(void) { }
1631 static inline bool shuffle_freelist(struct kmem_cache
*s
, struct page
*page
)
1635 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1637 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1640 struct kmem_cache_order_objects oo
= s
->oo
;
1642 void *start
, *p
, *next
;
1646 flags
&= gfp_allowed_mask
;
1648 if (gfpflags_allow_blocking(flags
))
1651 flags
|= s
->allocflags
;
1654 * Let the initial higher-order allocation fail under memory pressure
1655 * so we fall-back to the minimum order allocation.
1657 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1658 if ((alloc_gfp
& __GFP_DIRECT_RECLAIM
) && oo_order(oo
) > oo_order(s
->min
))
1659 alloc_gfp
= (alloc_gfp
| __GFP_NOMEMALLOC
) & ~(__GFP_RECLAIM
|__GFP_NOFAIL
);
1661 page
= alloc_slab_page(s
, alloc_gfp
, node
, oo
);
1662 if (unlikely(!page
)) {
1666 * Allocation may have failed due to fragmentation.
1667 * Try a lower order alloc if possible
1669 page
= alloc_slab_page(s
, alloc_gfp
, node
, oo
);
1670 if (unlikely(!page
))
1672 stat(s
, ORDER_FALLBACK
);
1675 page
->objects
= oo_objects(oo
);
1677 page
->slab_cache
= s
;
1678 __SetPageSlab(page
);
1679 if (page_is_pfmemalloc(page
))
1680 SetPageSlabPfmemalloc(page
);
1682 kasan_poison_slab(page
);
1684 start
= page_address(page
);
1686 setup_page_debug(s
, page
, start
);
1688 shuffle
= shuffle_freelist(s
, page
);
1691 start
= fixup_red_left(s
, start
);
1692 start
= setup_object(s
, page
, start
);
1693 page
->freelist
= start
;
1694 for (idx
= 0, p
= start
; idx
< page
->objects
- 1; idx
++) {
1696 next
= setup_object(s
, page
, next
);
1697 set_freepointer(s
, p
, next
);
1700 set_freepointer(s
, p
, NULL
);
1703 page
->inuse
= page
->objects
;
1707 if (gfpflags_allow_blocking(flags
))
1708 local_irq_disable();
1712 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1717 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1719 if (unlikely(flags
& GFP_SLAB_BUG_MASK
)) {
1720 gfp_t invalid_mask
= flags
& GFP_SLAB_BUG_MASK
;
1721 flags
&= ~GFP_SLAB_BUG_MASK
;
1722 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1723 invalid_mask
, &invalid_mask
, flags
, &flags
);
1727 return allocate_slab(s
,
1728 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1731 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1733 int order
= compound_order(page
);
1734 int pages
= 1 << order
;
1736 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1739 slab_pad_check(s
, page
);
1740 for_each_object(p
, s
, page_address(page
),
1742 check_object(s
, page
, p
, SLUB_RED_INACTIVE
);
1745 __ClearPageSlabPfmemalloc(page
);
1746 __ClearPageSlab(page
);
1748 page
->mapping
= NULL
;
1749 if (current
->reclaim_state
)
1750 current
->reclaim_state
->reclaimed_slab
+= pages
;
1751 uncharge_slab_page(page
, order
, s
);
1752 __free_pages(page
, order
);
1755 static void rcu_free_slab(struct rcu_head
*h
)
1757 struct page
*page
= container_of(h
, struct page
, rcu_head
);
1759 __free_slab(page
->slab_cache
, page
);
1762 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1764 if (unlikely(s
->flags
& SLAB_TYPESAFE_BY_RCU
)) {
1765 call_rcu(&page
->rcu_head
, rcu_free_slab
);
1767 __free_slab(s
, page
);
1770 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1772 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1777 * Management of partially allocated slabs.
1780 __add_partial(struct kmem_cache_node
*n
, struct page
*page
, int tail
)
1783 if (tail
== DEACTIVATE_TO_TAIL
)
1784 list_add_tail(&page
->slab_list
, &n
->partial
);
1786 list_add(&page
->slab_list
, &n
->partial
);
1789 static inline void add_partial(struct kmem_cache_node
*n
,
1790 struct page
*page
, int tail
)
1792 lockdep_assert_held(&n
->list_lock
);
1793 __add_partial(n
, page
, tail
);
1796 static inline void remove_partial(struct kmem_cache_node
*n
,
1799 lockdep_assert_held(&n
->list_lock
);
1800 list_del(&page
->slab_list
);
1805 * Remove slab from the partial list, freeze it and
1806 * return the pointer to the freelist.
1808 * Returns a list of objects or NULL if it fails.
1810 static inline void *acquire_slab(struct kmem_cache
*s
,
1811 struct kmem_cache_node
*n
, struct page
*page
,
1812 int mode
, int *objects
)
1815 unsigned long counters
;
1818 lockdep_assert_held(&n
->list_lock
);
1821 * Zap the freelist and set the frozen bit.
1822 * The old freelist is the list of objects for the
1823 * per cpu allocation list.
1825 freelist
= page
->freelist
;
1826 counters
= page
->counters
;
1827 new.counters
= counters
;
1828 *objects
= new.objects
- new.inuse
;
1830 new.inuse
= page
->objects
;
1831 new.freelist
= NULL
;
1833 new.freelist
= freelist
;
1836 VM_BUG_ON(new.frozen
);
1839 if (!__cmpxchg_double_slab(s
, page
,
1841 new.freelist
, new.counters
,
1845 remove_partial(n
, page
);
1850 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
);
1851 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
);
1854 * Try to allocate a partial slab from a specific node.
1856 static void *get_partial_node(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1857 struct kmem_cache_cpu
*c
, gfp_t flags
)
1859 struct page
*page
, *page2
;
1860 void *object
= NULL
;
1861 unsigned int available
= 0;
1865 * Racy check. If we mistakenly see no partial slabs then we
1866 * just allocate an empty slab. If we mistakenly try to get a
1867 * partial slab and there is none available then get_partials()
1870 if (!n
|| !n
->nr_partial
)
1873 spin_lock(&n
->list_lock
);
1874 list_for_each_entry_safe(page
, page2
, &n
->partial
, slab_list
) {
1877 if (!pfmemalloc_match(page
, flags
))
1880 t
= acquire_slab(s
, n
, page
, object
== NULL
, &objects
);
1884 available
+= objects
;
1887 stat(s
, ALLOC_FROM_PARTIAL
);
1890 put_cpu_partial(s
, page
, 0);
1891 stat(s
, CPU_PARTIAL_NODE
);
1893 if (!kmem_cache_has_cpu_partial(s
)
1894 || available
> slub_cpu_partial(s
) / 2)
1898 spin_unlock(&n
->list_lock
);
1903 * Get a page from somewhere. Search in increasing NUMA distances.
1905 static void *get_any_partial(struct kmem_cache
*s
, gfp_t flags
,
1906 struct kmem_cache_cpu
*c
)
1909 struct zonelist
*zonelist
;
1912 enum zone_type high_zoneidx
= gfp_zone(flags
);
1914 unsigned int cpuset_mems_cookie
;
1917 * The defrag ratio allows a configuration of the tradeoffs between
1918 * inter node defragmentation and node local allocations. A lower
1919 * defrag_ratio increases the tendency to do local allocations
1920 * instead of attempting to obtain partial slabs from other nodes.
1922 * If the defrag_ratio is set to 0 then kmalloc() always
1923 * returns node local objects. If the ratio is higher then kmalloc()
1924 * may return off node objects because partial slabs are obtained
1925 * from other nodes and filled up.
1927 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1928 * (which makes defrag_ratio = 1000) then every (well almost)
1929 * allocation will first attempt to defrag slab caches on other nodes.
1930 * This means scanning over all nodes to look for partial slabs which
1931 * may be expensive if we do it every time we are trying to find a slab
1932 * with available objects.
1934 if (!s
->remote_node_defrag_ratio
||
1935 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1939 cpuset_mems_cookie
= read_mems_allowed_begin();
1940 zonelist
= node_zonelist(mempolicy_slab_node(), flags
);
1941 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1942 struct kmem_cache_node
*n
;
1944 n
= get_node(s
, zone_to_nid(zone
));
1946 if (n
&& cpuset_zone_allowed(zone
, flags
) &&
1947 n
->nr_partial
> s
->min_partial
) {
1948 object
= get_partial_node(s
, n
, c
, flags
);
1951 * Don't check read_mems_allowed_retry()
1952 * here - if mems_allowed was updated in
1953 * parallel, that was a harmless race
1954 * between allocation and the cpuset
1961 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
1962 #endif /* CONFIG_NUMA */
1967 * Get a partial page, lock it and return it.
1969 static void *get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
,
1970 struct kmem_cache_cpu
*c
)
1973 int searchnode
= node
;
1975 if (node
== NUMA_NO_NODE
)
1976 searchnode
= numa_mem_id();
1978 object
= get_partial_node(s
, get_node(s
, searchnode
), c
, flags
);
1979 if (object
|| node
!= NUMA_NO_NODE
)
1982 return get_any_partial(s
, flags
, c
);
1985 #ifdef CONFIG_PREEMPTION
1987 * Calculate the next globally unique transaction for disambiguiation
1988 * during cmpxchg. The transactions start with the cpu number and are then
1989 * incremented by CONFIG_NR_CPUS.
1991 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1994 * No preemption supported therefore also no need to check for
2000 static inline unsigned long next_tid(unsigned long tid
)
2002 return tid
+ TID_STEP
;
2005 #ifdef SLUB_DEBUG_CMPXCHG
2006 static inline unsigned int tid_to_cpu(unsigned long tid
)
2008 return tid
% TID_STEP
;
2011 static inline unsigned long tid_to_event(unsigned long tid
)
2013 return tid
/ TID_STEP
;
2017 static inline unsigned int init_tid(int cpu
)
2022 static inline void note_cmpxchg_failure(const char *n
,
2023 const struct kmem_cache
*s
, unsigned long tid
)
2025 #ifdef SLUB_DEBUG_CMPXCHG
2026 unsigned long actual_tid
= __this_cpu_read(s
->cpu_slab
->tid
);
2028 pr_info("%s %s: cmpxchg redo ", n
, s
->name
);
2030 #ifdef CONFIG_PREEMPTION
2031 if (tid_to_cpu(tid
) != tid_to_cpu(actual_tid
))
2032 pr_warn("due to cpu change %d -> %d\n",
2033 tid_to_cpu(tid
), tid_to_cpu(actual_tid
));
2036 if (tid_to_event(tid
) != tid_to_event(actual_tid
))
2037 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2038 tid_to_event(tid
), tid_to_event(actual_tid
));
2040 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2041 actual_tid
, tid
, next_tid(tid
));
2043 stat(s
, CMPXCHG_DOUBLE_CPU_FAIL
);
2046 static void init_kmem_cache_cpus(struct kmem_cache
*s
)
2050 for_each_possible_cpu(cpu
)
2051 per_cpu_ptr(s
->cpu_slab
, cpu
)->tid
= init_tid(cpu
);
2055 * Remove the cpu slab
2057 static void deactivate_slab(struct kmem_cache
*s
, struct page
*page
,
2058 void *freelist
, struct kmem_cache_cpu
*c
)
2060 enum slab_modes
{ M_NONE
, M_PARTIAL
, M_FULL
, M_FREE
};
2061 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
2063 enum slab_modes l
= M_NONE
, m
= M_NONE
;
2065 int tail
= DEACTIVATE_TO_HEAD
;
2069 if (page
->freelist
) {
2070 stat(s
, DEACTIVATE_REMOTE_FREES
);
2071 tail
= DEACTIVATE_TO_TAIL
;
2075 * Stage one: Free all available per cpu objects back
2076 * to the page freelist while it is still frozen. Leave the
2079 * There is no need to take the list->lock because the page
2082 while (freelist
&& (nextfree
= get_freepointer(s
, freelist
))) {
2084 unsigned long counters
;
2087 prior
= page
->freelist
;
2088 counters
= page
->counters
;
2089 set_freepointer(s
, freelist
, prior
);
2090 new.counters
= counters
;
2092 VM_BUG_ON(!new.frozen
);
2094 } while (!__cmpxchg_double_slab(s
, page
,
2096 freelist
, new.counters
,
2097 "drain percpu freelist"));
2099 freelist
= nextfree
;
2103 * Stage two: Ensure that the page is unfrozen while the
2104 * list presence reflects the actual number of objects
2107 * We setup the list membership and then perform a cmpxchg
2108 * with the count. If there is a mismatch then the page
2109 * is not unfrozen but the page is on the wrong list.
2111 * Then we restart the process which may have to remove
2112 * the page from the list that we just put it on again
2113 * because the number of objects in the slab may have
2118 old
.freelist
= page
->freelist
;
2119 old
.counters
= page
->counters
;
2120 VM_BUG_ON(!old
.frozen
);
2122 /* Determine target state of the slab */
2123 new.counters
= old
.counters
;
2126 set_freepointer(s
, freelist
, old
.freelist
);
2127 new.freelist
= freelist
;
2129 new.freelist
= old
.freelist
;
2133 if (!new.inuse
&& n
->nr_partial
>= s
->min_partial
)
2135 else if (new.freelist
) {
2140 * Taking the spinlock removes the possibility
2141 * that acquire_slab() will see a slab page that
2144 spin_lock(&n
->list_lock
);
2148 if (kmem_cache_debug(s
) && !lock
) {
2151 * This also ensures that the scanning of full
2152 * slabs from diagnostic functions will not see
2155 spin_lock(&n
->list_lock
);
2161 remove_partial(n
, page
);
2162 else if (l
== M_FULL
)
2163 remove_full(s
, n
, page
);
2166 add_partial(n
, page
, tail
);
2167 else if (m
== M_FULL
)
2168 add_full(s
, n
, page
);
2172 if (!__cmpxchg_double_slab(s
, page
,
2173 old
.freelist
, old
.counters
,
2174 new.freelist
, new.counters
,
2179 spin_unlock(&n
->list_lock
);
2183 else if (m
== M_FULL
)
2184 stat(s
, DEACTIVATE_FULL
);
2185 else if (m
== M_FREE
) {
2186 stat(s
, DEACTIVATE_EMPTY
);
2187 discard_slab(s
, page
);
2196 * Unfreeze all the cpu partial slabs.
2198 * This function must be called with interrupts disabled
2199 * for the cpu using c (or some other guarantee must be there
2200 * to guarantee no concurrent accesses).
2202 static void unfreeze_partials(struct kmem_cache
*s
,
2203 struct kmem_cache_cpu
*c
)
2205 #ifdef CONFIG_SLUB_CPU_PARTIAL
2206 struct kmem_cache_node
*n
= NULL
, *n2
= NULL
;
2207 struct page
*page
, *discard_page
= NULL
;
2209 while ((page
= slub_percpu_partial(c
))) {
2213 slub_set_percpu_partial(c
, page
);
2215 n2
= get_node(s
, page_to_nid(page
));
2218 spin_unlock(&n
->list_lock
);
2221 spin_lock(&n
->list_lock
);
2226 old
.freelist
= page
->freelist
;
2227 old
.counters
= page
->counters
;
2228 VM_BUG_ON(!old
.frozen
);
2230 new.counters
= old
.counters
;
2231 new.freelist
= old
.freelist
;
2235 } while (!__cmpxchg_double_slab(s
, page
,
2236 old
.freelist
, old
.counters
,
2237 new.freelist
, new.counters
,
2238 "unfreezing slab"));
2240 if (unlikely(!new.inuse
&& n
->nr_partial
>= s
->min_partial
)) {
2241 page
->next
= discard_page
;
2242 discard_page
= page
;
2244 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2245 stat(s
, FREE_ADD_PARTIAL
);
2250 spin_unlock(&n
->list_lock
);
2252 while (discard_page
) {
2253 page
= discard_page
;
2254 discard_page
= discard_page
->next
;
2256 stat(s
, DEACTIVATE_EMPTY
);
2257 discard_slab(s
, page
);
2260 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2264 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2265 * partial page slot if available.
2267 * If we did not find a slot then simply move all the partials to the
2268 * per node partial list.
2270 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
)
2272 #ifdef CONFIG_SLUB_CPU_PARTIAL
2273 struct page
*oldpage
;
2281 oldpage
= this_cpu_read(s
->cpu_slab
->partial
);
2284 pobjects
= oldpage
->pobjects
;
2285 pages
= oldpage
->pages
;
2286 if (drain
&& pobjects
> slub_cpu_partial(s
)) {
2287 unsigned long flags
;
2289 * partial array is full. Move the existing
2290 * set to the per node partial list.
2292 local_irq_save(flags
);
2293 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
2294 local_irq_restore(flags
);
2298 stat(s
, CPU_PARTIAL_DRAIN
);
2303 pobjects
+= page
->objects
- page
->inuse
;
2305 page
->pages
= pages
;
2306 page
->pobjects
= pobjects
;
2307 page
->next
= oldpage
;
2309 } while (this_cpu_cmpxchg(s
->cpu_slab
->partial
, oldpage
, page
)
2311 if (unlikely(!slub_cpu_partial(s
))) {
2312 unsigned long flags
;
2314 local_irq_save(flags
);
2315 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
2316 local_irq_restore(flags
);
2319 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2322 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
2324 stat(s
, CPUSLAB_FLUSH
);
2325 deactivate_slab(s
, c
->page
, c
->freelist
, c
);
2327 c
->tid
= next_tid(c
->tid
);
2333 * Called from IPI handler with interrupts disabled.
2335 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
2337 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2342 unfreeze_partials(s
, c
);
2345 static void flush_cpu_slab(void *d
)
2347 struct kmem_cache
*s
= d
;
2349 __flush_cpu_slab(s
, smp_processor_id());
2352 static bool has_cpu_slab(int cpu
, void *info
)
2354 struct kmem_cache
*s
= info
;
2355 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2357 return c
->page
|| slub_percpu_partial(c
);
2360 static void flush_all(struct kmem_cache
*s
)
2362 on_each_cpu_cond(has_cpu_slab
, flush_cpu_slab
, s
, 1);
2366 * Use the cpu notifier to insure that the cpu slabs are flushed when
2369 static int slub_cpu_dead(unsigned int cpu
)
2371 struct kmem_cache
*s
;
2372 unsigned long flags
;
2374 mutex_lock(&slab_mutex
);
2375 list_for_each_entry(s
, &slab_caches
, list
) {
2376 local_irq_save(flags
);
2377 __flush_cpu_slab(s
, cpu
);
2378 local_irq_restore(flags
);
2380 mutex_unlock(&slab_mutex
);
2385 * Check if the objects in a per cpu structure fit numa
2386 * locality expectations.
2388 static inline int node_match(struct page
*page
, int node
)
2391 if (node
!= NUMA_NO_NODE
&& page_to_nid(page
) != node
)
2397 #ifdef CONFIG_SLUB_DEBUG
2398 static int count_free(struct page
*page
)
2400 return page
->objects
- page
->inuse
;
2403 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
2405 return atomic_long_read(&n
->total_objects
);
2407 #endif /* CONFIG_SLUB_DEBUG */
2409 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2410 static unsigned long count_partial(struct kmem_cache_node
*n
,
2411 int (*get_count
)(struct page
*))
2413 unsigned long flags
;
2414 unsigned long x
= 0;
2417 spin_lock_irqsave(&n
->list_lock
, flags
);
2418 list_for_each_entry(page
, &n
->partial
, slab_list
)
2419 x
+= get_count(page
);
2420 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2423 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2425 static noinline
void
2426 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
2428 #ifdef CONFIG_SLUB_DEBUG
2429 static DEFINE_RATELIMIT_STATE(slub_oom_rs
, DEFAULT_RATELIMIT_INTERVAL
,
2430 DEFAULT_RATELIMIT_BURST
);
2432 struct kmem_cache_node
*n
;
2434 if ((gfpflags
& __GFP_NOWARN
) || !__ratelimit(&slub_oom_rs
))
2437 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2438 nid
, gfpflags
, &gfpflags
);
2439 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2440 s
->name
, s
->object_size
, s
->size
, oo_order(s
->oo
),
2443 if (oo_order(s
->min
) > get_order(s
->object_size
))
2444 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2447 for_each_kmem_cache_node(s
, node
, n
) {
2448 unsigned long nr_slabs
;
2449 unsigned long nr_objs
;
2450 unsigned long nr_free
;
2452 nr_free
= count_partial(n
, count_free
);
2453 nr_slabs
= node_nr_slabs(n
);
2454 nr_objs
= node_nr_objs(n
);
2456 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2457 node
, nr_slabs
, nr_objs
, nr_free
);
2462 static inline void *new_slab_objects(struct kmem_cache
*s
, gfp_t flags
,
2463 int node
, struct kmem_cache_cpu
**pc
)
2466 struct kmem_cache_cpu
*c
= *pc
;
2469 WARN_ON_ONCE(s
->ctor
&& (flags
& __GFP_ZERO
));
2471 freelist
= get_partial(s
, flags
, node
, c
);
2476 page
= new_slab(s
, flags
, node
);
2478 c
= raw_cpu_ptr(s
->cpu_slab
);
2483 * No other reference to the page yet so we can
2484 * muck around with it freely without cmpxchg
2486 freelist
= page
->freelist
;
2487 page
->freelist
= NULL
;
2489 stat(s
, ALLOC_SLAB
);
2497 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
)
2499 if (unlikely(PageSlabPfmemalloc(page
)))
2500 return gfp_pfmemalloc_allowed(gfpflags
);
2506 * Check the page->freelist of a page and either transfer the freelist to the
2507 * per cpu freelist or deactivate the page.
2509 * The page is still frozen if the return value is not NULL.
2511 * If this function returns NULL then the page has been unfrozen.
2513 * This function must be called with interrupt disabled.
2515 static inline void *get_freelist(struct kmem_cache
*s
, struct page
*page
)
2518 unsigned long counters
;
2522 freelist
= page
->freelist
;
2523 counters
= page
->counters
;
2525 new.counters
= counters
;
2526 VM_BUG_ON(!new.frozen
);
2528 new.inuse
= page
->objects
;
2529 new.frozen
= freelist
!= NULL
;
2531 } while (!__cmpxchg_double_slab(s
, page
,
2540 * Slow path. The lockless freelist is empty or we need to perform
2543 * Processing is still very fast if new objects have been freed to the
2544 * regular freelist. In that case we simply take over the regular freelist
2545 * as the lockless freelist and zap the regular freelist.
2547 * If that is not working then we fall back to the partial lists. We take the
2548 * first element of the freelist as the object to allocate now and move the
2549 * rest of the freelist to the lockless freelist.
2551 * And if we were unable to get a new slab from the partial slab lists then
2552 * we need to allocate a new slab. This is the slowest path since it involves
2553 * a call to the page allocator and the setup of a new slab.
2555 * Version of __slab_alloc to use when we know that interrupts are
2556 * already disabled (which is the case for bulk allocation).
2558 static void *___slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2559 unsigned long addr
, struct kmem_cache_cpu
*c
)
2567 * if the node is not online or has no normal memory, just
2568 * ignore the node constraint
2570 if (unlikely(node
!= NUMA_NO_NODE
&&
2571 !node_state(node
, N_NORMAL_MEMORY
)))
2572 node
= NUMA_NO_NODE
;
2577 if (unlikely(!node_match(page
, node
))) {
2579 * same as above but node_match() being false already
2580 * implies node != NUMA_NO_NODE
2582 if (!node_state(node
, N_NORMAL_MEMORY
)) {
2583 node
= NUMA_NO_NODE
;
2586 stat(s
, ALLOC_NODE_MISMATCH
);
2587 deactivate_slab(s
, page
, c
->freelist
, c
);
2593 * By rights, we should be searching for a slab page that was
2594 * PFMEMALLOC but right now, we are losing the pfmemalloc
2595 * information when the page leaves the per-cpu allocator
2597 if (unlikely(!pfmemalloc_match(page
, gfpflags
))) {
2598 deactivate_slab(s
, page
, c
->freelist
, c
);
2602 /* must check again c->freelist in case of cpu migration or IRQ */
2603 freelist
= c
->freelist
;
2607 freelist
= get_freelist(s
, page
);
2611 stat(s
, DEACTIVATE_BYPASS
);
2615 stat(s
, ALLOC_REFILL
);
2619 * freelist is pointing to the list of objects to be used.
2620 * page is pointing to the page from which the objects are obtained.
2621 * That page must be frozen for per cpu allocations to work.
2623 VM_BUG_ON(!c
->page
->frozen
);
2624 c
->freelist
= get_freepointer(s
, freelist
);
2625 c
->tid
= next_tid(c
->tid
);
2630 if (slub_percpu_partial(c
)) {
2631 page
= c
->page
= slub_percpu_partial(c
);
2632 slub_set_percpu_partial(c
, page
);
2633 stat(s
, CPU_PARTIAL_ALLOC
);
2637 freelist
= new_slab_objects(s
, gfpflags
, node
, &c
);
2639 if (unlikely(!freelist
)) {
2640 slab_out_of_memory(s
, gfpflags
, node
);
2645 if (likely(!kmem_cache_debug(s
) && pfmemalloc_match(page
, gfpflags
)))
2648 /* Only entered in the debug case */
2649 if (kmem_cache_debug(s
) &&
2650 !alloc_debug_processing(s
, page
, freelist
, addr
))
2651 goto new_slab
; /* Slab failed checks. Next slab needed */
2653 deactivate_slab(s
, page
, get_freepointer(s
, freelist
), c
);
2658 * Another one that disabled interrupt and compensates for possible
2659 * cpu changes by refetching the per cpu area pointer.
2661 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2662 unsigned long addr
, struct kmem_cache_cpu
*c
)
2665 unsigned long flags
;
2667 local_irq_save(flags
);
2668 #ifdef CONFIG_PREEMPTION
2670 * We may have been preempted and rescheduled on a different
2671 * cpu before disabling interrupts. Need to reload cpu area
2674 c
= this_cpu_ptr(s
->cpu_slab
);
2677 p
= ___slab_alloc(s
, gfpflags
, node
, addr
, c
);
2678 local_irq_restore(flags
);
2683 * If the object has been wiped upon free, make sure it's fully initialized by
2684 * zeroing out freelist pointer.
2686 static __always_inline
void maybe_wipe_obj_freeptr(struct kmem_cache
*s
,
2689 if (unlikely(slab_want_init_on_free(s
)) && obj
)
2690 memset((void *)((char *)obj
+ s
->offset
), 0, sizeof(void *));
2694 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2695 * have the fastpath folded into their functions. So no function call
2696 * overhead for requests that can be satisfied on the fastpath.
2698 * The fastpath works by first checking if the lockless freelist can be used.
2699 * If not then __slab_alloc is called for slow processing.
2701 * Otherwise we can simply pick the next object from the lockless free list.
2703 static __always_inline
void *slab_alloc_node(struct kmem_cache
*s
,
2704 gfp_t gfpflags
, int node
, unsigned long addr
)
2707 struct kmem_cache_cpu
*c
;
2711 s
= slab_pre_alloc_hook(s
, gfpflags
);
2716 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2717 * enabled. We may switch back and forth between cpus while
2718 * reading from one cpu area. That does not matter as long
2719 * as we end up on the original cpu again when doing the cmpxchg.
2721 * We should guarantee that tid and kmem_cache are retrieved on
2722 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2723 * to check if it is matched or not.
2726 tid
= this_cpu_read(s
->cpu_slab
->tid
);
2727 c
= raw_cpu_ptr(s
->cpu_slab
);
2728 } while (IS_ENABLED(CONFIG_PREEMPTION
) &&
2729 unlikely(tid
!= READ_ONCE(c
->tid
)));
2732 * Irqless object alloc/free algorithm used here depends on sequence
2733 * of fetching cpu_slab's data. tid should be fetched before anything
2734 * on c to guarantee that object and page associated with previous tid
2735 * won't be used with current tid. If we fetch tid first, object and
2736 * page could be one associated with next tid and our alloc/free
2737 * request will be failed. In this case, we will retry. So, no problem.
2742 * The transaction ids are globally unique per cpu and per operation on
2743 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2744 * occurs on the right processor and that there was no operation on the
2745 * linked list in between.
2748 object
= c
->freelist
;
2750 if (unlikely(!object
|| !node_match(page
, node
))) {
2751 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
2752 stat(s
, ALLOC_SLOWPATH
);
2754 void *next_object
= get_freepointer_safe(s
, object
);
2757 * The cmpxchg will only match if there was no additional
2758 * operation and if we are on the right processor.
2760 * The cmpxchg does the following atomically (without lock
2762 * 1. Relocate first pointer to the current per cpu area.
2763 * 2. Verify that tid and freelist have not been changed
2764 * 3. If they were not changed replace tid and freelist
2766 * Since this is without lock semantics the protection is only
2767 * against code executing on this cpu *not* from access by
2770 if (unlikely(!this_cpu_cmpxchg_double(
2771 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2773 next_object
, next_tid(tid
)))) {
2775 note_cmpxchg_failure("slab_alloc", s
, tid
);
2778 prefetch_freepointer(s
, next_object
);
2779 stat(s
, ALLOC_FASTPATH
);
2782 maybe_wipe_obj_freeptr(s
, object
);
2784 if (unlikely(slab_want_init_on_alloc(gfpflags
, s
)) && object
)
2785 memset(object
, 0, s
->object_size
);
2787 slab_post_alloc_hook(s
, gfpflags
, 1, &object
);
2792 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
2793 gfp_t gfpflags
, unsigned long addr
)
2795 return slab_alloc_node(s
, gfpflags
, NUMA_NO_NODE
, addr
);
2798 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
2800 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2802 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->object_size
,
2807 EXPORT_SYMBOL(kmem_cache_alloc
);
2809 #ifdef CONFIG_TRACING
2810 void *kmem_cache_alloc_trace(struct kmem_cache
*s
, gfp_t gfpflags
, size_t size
)
2812 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2813 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, gfpflags
);
2814 ret
= kasan_kmalloc(s
, ret
, size
, gfpflags
);
2817 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
2821 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
2823 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2825 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
2826 s
->object_size
, s
->size
, gfpflags
, node
);
2830 EXPORT_SYMBOL(kmem_cache_alloc_node
);
2832 #ifdef CONFIG_TRACING
2833 void *kmem_cache_alloc_node_trace(struct kmem_cache
*s
,
2835 int node
, size_t size
)
2837 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2839 trace_kmalloc_node(_RET_IP_
, ret
,
2840 size
, s
->size
, gfpflags
, node
);
2842 ret
= kasan_kmalloc(s
, ret
, size
, gfpflags
);
2845 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
2847 #endif /* CONFIG_NUMA */
2850 * Slow path handling. This may still be called frequently since objects
2851 * have a longer lifetime than the cpu slabs in most processing loads.
2853 * So we still attempt to reduce cache line usage. Just take the slab
2854 * lock and free the item. If there is no additional partial page
2855 * handling required then we can return immediately.
2857 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
2858 void *head
, void *tail
, int cnt
,
2865 unsigned long counters
;
2866 struct kmem_cache_node
*n
= NULL
;
2867 unsigned long uninitialized_var(flags
);
2869 stat(s
, FREE_SLOWPATH
);
2871 if (kmem_cache_debug(s
) &&
2872 !free_debug_processing(s
, page
, head
, tail
, cnt
, addr
))
2877 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2880 prior
= page
->freelist
;
2881 counters
= page
->counters
;
2882 set_freepointer(s
, tail
, prior
);
2883 new.counters
= counters
;
2884 was_frozen
= new.frozen
;
2886 if ((!new.inuse
|| !prior
) && !was_frozen
) {
2888 if (kmem_cache_has_cpu_partial(s
) && !prior
) {
2891 * Slab was on no list before and will be
2893 * We can defer the list move and instead
2898 } else { /* Needs to be taken off a list */
2900 n
= get_node(s
, page_to_nid(page
));
2902 * Speculatively acquire the list_lock.
2903 * If the cmpxchg does not succeed then we may
2904 * drop the list_lock without any processing.
2906 * Otherwise the list_lock will synchronize with
2907 * other processors updating the list of slabs.
2909 spin_lock_irqsave(&n
->list_lock
, flags
);
2914 } while (!cmpxchg_double_slab(s
, page
,
2922 * If we just froze the page then put it onto the
2923 * per cpu partial list.
2925 if (new.frozen
&& !was_frozen
) {
2926 put_cpu_partial(s
, page
, 1);
2927 stat(s
, CPU_PARTIAL_FREE
);
2930 * The list lock was not taken therefore no list
2931 * activity can be necessary.
2934 stat(s
, FREE_FROZEN
);
2938 if (unlikely(!new.inuse
&& n
->nr_partial
>= s
->min_partial
))
2942 * Objects left in the slab. If it was not on the partial list before
2945 if (!kmem_cache_has_cpu_partial(s
) && unlikely(!prior
)) {
2946 remove_full(s
, n
, page
);
2947 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2948 stat(s
, FREE_ADD_PARTIAL
);
2950 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2956 * Slab on the partial list.
2958 remove_partial(n
, page
);
2959 stat(s
, FREE_REMOVE_PARTIAL
);
2961 /* Slab must be on the full list */
2962 remove_full(s
, n
, page
);
2965 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2967 discard_slab(s
, page
);
2971 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2972 * can perform fastpath freeing without additional function calls.
2974 * The fastpath is only possible if we are freeing to the current cpu slab
2975 * of this processor. This typically the case if we have just allocated
2978 * If fastpath is not possible then fall back to __slab_free where we deal
2979 * with all sorts of special processing.
2981 * Bulk free of a freelist with several objects (all pointing to the
2982 * same page) possible by specifying head and tail ptr, plus objects
2983 * count (cnt). Bulk free indicated by tail pointer being set.
2985 static __always_inline
void do_slab_free(struct kmem_cache
*s
,
2986 struct page
*page
, void *head
, void *tail
,
2987 int cnt
, unsigned long addr
)
2989 void *tail_obj
= tail
? : head
;
2990 struct kmem_cache_cpu
*c
;
2994 * Determine the currently cpus per cpu slab.
2995 * The cpu may change afterward. However that does not matter since
2996 * data is retrieved via this pointer. If we are on the same cpu
2997 * during the cmpxchg then the free will succeed.
3000 tid
= this_cpu_read(s
->cpu_slab
->tid
);
3001 c
= raw_cpu_ptr(s
->cpu_slab
);
3002 } while (IS_ENABLED(CONFIG_PREEMPTION
) &&
3003 unlikely(tid
!= READ_ONCE(c
->tid
)));
3005 /* Same with comment on barrier() in slab_alloc_node() */
3008 if (likely(page
== c
->page
)) {
3009 void **freelist
= READ_ONCE(c
->freelist
);
3011 set_freepointer(s
, tail_obj
, freelist
);
3013 if (unlikely(!this_cpu_cmpxchg_double(
3014 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
3016 head
, next_tid(tid
)))) {
3018 note_cmpxchg_failure("slab_free", s
, tid
);
3021 stat(s
, FREE_FASTPATH
);
3023 __slab_free(s
, page
, head
, tail_obj
, cnt
, addr
);
3027 static __always_inline
void slab_free(struct kmem_cache
*s
, struct page
*page
,
3028 void *head
, void *tail
, int cnt
,
3032 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3033 * to remove objects, whose reuse must be delayed.
3035 if (slab_free_freelist_hook(s
, &head
, &tail
))
3036 do_slab_free(s
, page
, head
, tail
, cnt
, addr
);
3039 #ifdef CONFIG_KASAN_GENERIC
3040 void ___cache_free(struct kmem_cache
*cache
, void *x
, unsigned long addr
)
3042 do_slab_free(cache
, virt_to_head_page(x
), x
, NULL
, 1, addr
);
3046 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
3048 s
= cache_from_obj(s
, x
);
3051 slab_free(s
, virt_to_head_page(x
), x
, NULL
, 1, _RET_IP_
);
3052 trace_kmem_cache_free(_RET_IP_
, x
);
3054 EXPORT_SYMBOL(kmem_cache_free
);
3056 struct detached_freelist
{
3061 struct kmem_cache
*s
;
3065 * This function progressively scans the array with free objects (with
3066 * a limited look ahead) and extract objects belonging to the same
3067 * page. It builds a detached freelist directly within the given
3068 * page/objects. This can happen without any need for
3069 * synchronization, because the objects are owned by running process.
3070 * The freelist is build up as a single linked list in the objects.
3071 * The idea is, that this detached freelist can then be bulk
3072 * transferred to the real freelist(s), but only requiring a single
3073 * synchronization primitive. Look ahead in the array is limited due
3074 * to performance reasons.
3077 int build_detached_freelist(struct kmem_cache
*s
, size_t size
,
3078 void **p
, struct detached_freelist
*df
)
3080 size_t first_skipped_index
= 0;
3085 /* Always re-init detached_freelist */
3090 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3091 } while (!object
&& size
);
3096 page
= virt_to_head_page(object
);
3098 /* Handle kalloc'ed objects */
3099 if (unlikely(!PageSlab(page
))) {
3100 BUG_ON(!PageCompound(page
));
3102 __free_pages(page
, compound_order(page
));
3103 p
[size
] = NULL
; /* mark object processed */
3106 /* Derive kmem_cache from object */
3107 df
->s
= page
->slab_cache
;
3109 df
->s
= cache_from_obj(s
, object
); /* Support for memcg */
3112 /* Start new detached freelist */
3114 set_freepointer(df
->s
, object
, NULL
);
3116 df
->freelist
= object
;
3117 p
[size
] = NULL
; /* mark object processed */
3123 continue; /* Skip processed objects */
3125 /* df->page is always set at this point */
3126 if (df
->page
== virt_to_head_page(object
)) {
3127 /* Opportunity build freelist */
3128 set_freepointer(df
->s
, object
, df
->freelist
);
3129 df
->freelist
= object
;
3131 p
[size
] = NULL
; /* mark object processed */
3136 /* Limit look ahead search */
3140 if (!first_skipped_index
)
3141 first_skipped_index
= size
+ 1;
3144 return first_skipped_index
;
3147 /* Note that interrupts must be enabled when calling this function. */
3148 void kmem_cache_free_bulk(struct kmem_cache
*s
, size_t size
, void **p
)
3154 struct detached_freelist df
;
3156 size
= build_detached_freelist(s
, size
, p
, &df
);
3160 slab_free(df
.s
, df
.page
, df
.freelist
, df
.tail
, df
.cnt
,_RET_IP_
);
3161 } while (likely(size
));
3163 EXPORT_SYMBOL(kmem_cache_free_bulk
);
3165 /* Note that interrupts must be enabled when calling this function. */
3166 int kmem_cache_alloc_bulk(struct kmem_cache
*s
, gfp_t flags
, size_t size
,
3169 struct kmem_cache_cpu
*c
;
3172 /* memcg and kmem_cache debug support */
3173 s
= slab_pre_alloc_hook(s
, flags
);
3177 * Drain objects in the per cpu slab, while disabling local
3178 * IRQs, which protects against PREEMPT and interrupts
3179 * handlers invoking normal fastpath.
3181 local_irq_disable();
3182 c
= this_cpu_ptr(s
->cpu_slab
);
3184 for (i
= 0; i
< size
; i
++) {
3185 void *object
= c
->freelist
;
3187 if (unlikely(!object
)) {
3189 * We may have removed an object from c->freelist using
3190 * the fastpath in the previous iteration; in that case,
3191 * c->tid has not been bumped yet.
3192 * Since ___slab_alloc() may reenable interrupts while
3193 * allocating memory, we should bump c->tid now.
3195 c
->tid
= next_tid(c
->tid
);
3198 * Invoking slow path likely have side-effect
3199 * of re-populating per CPU c->freelist
3201 p
[i
] = ___slab_alloc(s
, flags
, NUMA_NO_NODE
,
3203 if (unlikely(!p
[i
]))
3206 c
= this_cpu_ptr(s
->cpu_slab
);
3207 maybe_wipe_obj_freeptr(s
, p
[i
]);
3209 continue; /* goto for-loop */
3211 c
->freelist
= get_freepointer(s
, object
);
3213 maybe_wipe_obj_freeptr(s
, p
[i
]);
3215 c
->tid
= next_tid(c
->tid
);
3218 /* Clear memory outside IRQ disabled fastpath loop */
3219 if (unlikely(slab_want_init_on_alloc(flags
, s
))) {
3222 for (j
= 0; j
< i
; j
++)
3223 memset(p
[j
], 0, s
->object_size
);
3226 /* memcg and kmem_cache debug support */
3227 slab_post_alloc_hook(s
, flags
, size
, p
);
3231 slab_post_alloc_hook(s
, flags
, i
, p
);
3232 __kmem_cache_free_bulk(s
, i
, p
);
3235 EXPORT_SYMBOL(kmem_cache_alloc_bulk
);
3239 * Object placement in a slab is made very easy because we always start at
3240 * offset 0. If we tune the size of the object to the alignment then we can
3241 * get the required alignment by putting one properly sized object after
3244 * Notice that the allocation order determines the sizes of the per cpu
3245 * caches. Each processor has always one slab available for allocations.
3246 * Increasing the allocation order reduces the number of times that slabs
3247 * must be moved on and off the partial lists and is therefore a factor in
3252 * Mininum / Maximum order of slab pages. This influences locking overhead
3253 * and slab fragmentation. A higher order reduces the number of partial slabs
3254 * and increases the number of allocations possible without having to
3255 * take the list_lock.
3257 static unsigned int slub_min_order
;
3258 static unsigned int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
3259 static unsigned int slub_min_objects
;
3262 * Calculate the order of allocation given an slab object size.
3264 * The order of allocation has significant impact on performance and other
3265 * system components. Generally order 0 allocations should be preferred since
3266 * order 0 does not cause fragmentation in the page allocator. Larger objects
3267 * be problematic to put into order 0 slabs because there may be too much
3268 * unused space left. We go to a higher order if more than 1/16th of the slab
3271 * In order to reach satisfactory performance we must ensure that a minimum
3272 * number of objects is in one slab. Otherwise we may generate too much
3273 * activity on the partial lists which requires taking the list_lock. This is
3274 * less a concern for large slabs though which are rarely used.
3276 * slub_max_order specifies the order where we begin to stop considering the
3277 * number of objects in a slab as critical. If we reach slub_max_order then
3278 * we try to keep the page order as low as possible. So we accept more waste
3279 * of space in favor of a small page order.
3281 * Higher order allocations also allow the placement of more objects in a
3282 * slab and thereby reduce object handling overhead. If the user has
3283 * requested a higher mininum order then we start with that one instead of
3284 * the smallest order which will fit the object.
3286 static inline unsigned int slab_order(unsigned int size
,
3287 unsigned int min_objects
, unsigned int max_order
,
3288 unsigned int fract_leftover
)
3290 unsigned int min_order
= slub_min_order
;
3293 if (order_objects(min_order
, size
) > MAX_OBJS_PER_PAGE
)
3294 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
3296 for (order
= max(min_order
, (unsigned int)get_order(min_objects
* size
));
3297 order
<= max_order
; order
++) {
3299 unsigned int slab_size
= (unsigned int)PAGE_SIZE
<< order
;
3302 rem
= slab_size
% size
;
3304 if (rem
<= slab_size
/ fract_leftover
)
3311 static inline int calculate_order(unsigned int size
)
3314 unsigned int min_objects
;
3315 unsigned int max_objects
;
3318 * Attempt to find best configuration for a slab. This
3319 * works by first attempting to generate a layout with
3320 * the best configuration and backing off gradually.
3322 * First we increase the acceptable waste in a slab. Then
3323 * we reduce the minimum objects required in a slab.
3325 min_objects
= slub_min_objects
;
3327 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
3328 max_objects
= order_objects(slub_max_order
, size
);
3329 min_objects
= min(min_objects
, max_objects
);
3331 while (min_objects
> 1) {
3332 unsigned int fraction
;
3335 while (fraction
>= 4) {
3336 order
= slab_order(size
, min_objects
,
3337 slub_max_order
, fraction
);
3338 if (order
<= slub_max_order
)
3346 * We were unable to place multiple objects in a slab. Now
3347 * lets see if we can place a single object there.
3349 order
= slab_order(size
, 1, slub_max_order
, 1);
3350 if (order
<= slub_max_order
)
3354 * Doh this slab cannot be placed using slub_max_order.
3356 order
= slab_order(size
, 1, MAX_ORDER
, 1);
3357 if (order
< MAX_ORDER
)
3363 init_kmem_cache_node(struct kmem_cache_node
*n
)
3366 spin_lock_init(&n
->list_lock
);
3367 INIT_LIST_HEAD(&n
->partial
);
3368 #ifdef CONFIG_SLUB_DEBUG
3369 atomic_long_set(&n
->nr_slabs
, 0);
3370 atomic_long_set(&n
->total_objects
, 0);
3371 INIT_LIST_HEAD(&n
->full
);
3375 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
)
3377 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE
<
3378 KMALLOC_SHIFT_HIGH
* sizeof(struct kmem_cache_cpu
));
3381 * Must align to double word boundary for the double cmpxchg
3382 * instructions to work; see __pcpu_double_call_return_bool().
3384 s
->cpu_slab
= __alloc_percpu(sizeof(struct kmem_cache_cpu
),
3385 2 * sizeof(void *));
3390 init_kmem_cache_cpus(s
);
3395 static struct kmem_cache
*kmem_cache_node
;
3398 * No kmalloc_node yet so do it by hand. We know that this is the first
3399 * slab on the node for this slabcache. There are no concurrent accesses
3402 * Note that this function only works on the kmem_cache_node
3403 * when allocating for the kmem_cache_node. This is used for bootstrapping
3404 * memory on a fresh node that has no slab structures yet.
3406 static void early_kmem_cache_node_alloc(int node
)
3409 struct kmem_cache_node
*n
;
3411 BUG_ON(kmem_cache_node
->size
< sizeof(struct kmem_cache_node
));
3413 page
= new_slab(kmem_cache_node
, GFP_NOWAIT
, node
);
3416 if (page_to_nid(page
) != node
) {
3417 pr_err("SLUB: Unable to allocate memory from node %d\n", node
);
3418 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3423 #ifdef CONFIG_SLUB_DEBUG
3424 init_object(kmem_cache_node
, n
, SLUB_RED_ACTIVE
);
3425 init_tracking(kmem_cache_node
, n
);
3427 n
= kasan_kmalloc(kmem_cache_node
, n
, sizeof(struct kmem_cache_node
),
3429 page
->freelist
= get_freepointer(kmem_cache_node
, n
);
3432 kmem_cache_node
->node
[node
] = n
;
3433 init_kmem_cache_node(n
);
3434 inc_slabs_node(kmem_cache_node
, node
, page
->objects
);
3437 * No locks need to be taken here as it has just been
3438 * initialized and there is no concurrent access.
3440 __add_partial(n
, page
, DEACTIVATE_TO_HEAD
);
3443 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
3446 struct kmem_cache_node
*n
;
3448 for_each_kmem_cache_node(s
, node
, n
) {
3449 s
->node
[node
] = NULL
;
3450 kmem_cache_free(kmem_cache_node
, n
);
3454 void __kmem_cache_release(struct kmem_cache
*s
)
3456 cache_random_seq_destroy(s
);
3457 free_percpu(s
->cpu_slab
);
3458 free_kmem_cache_nodes(s
);
3461 static int init_kmem_cache_nodes(struct kmem_cache
*s
)
3465 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3466 struct kmem_cache_node
*n
;
3468 if (slab_state
== DOWN
) {
3469 early_kmem_cache_node_alloc(node
);
3472 n
= kmem_cache_alloc_node(kmem_cache_node
,
3476 free_kmem_cache_nodes(s
);
3480 init_kmem_cache_node(n
);
3486 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
3488 if (min
< MIN_PARTIAL
)
3490 else if (min
> MAX_PARTIAL
)
3492 s
->min_partial
= min
;
3495 static void set_cpu_partial(struct kmem_cache
*s
)
3497 #ifdef CONFIG_SLUB_CPU_PARTIAL
3499 * cpu_partial determined the maximum number of objects kept in the
3500 * per cpu partial lists of a processor.
3502 * Per cpu partial lists mainly contain slabs that just have one
3503 * object freed. If they are used for allocation then they can be
3504 * filled up again with minimal effort. The slab will never hit the
3505 * per node partial lists and therefore no locking will be required.
3507 * This setting also determines
3509 * A) The number of objects from per cpu partial slabs dumped to the
3510 * per node list when we reach the limit.
3511 * B) The number of objects in cpu partial slabs to extract from the
3512 * per node list when we run out of per cpu objects. We only fetch
3513 * 50% to keep some capacity around for frees.
3515 if (!kmem_cache_has_cpu_partial(s
))
3516 slub_set_cpu_partial(s
, 0);
3517 else if (s
->size
>= PAGE_SIZE
)
3518 slub_set_cpu_partial(s
, 2);
3519 else if (s
->size
>= 1024)
3520 slub_set_cpu_partial(s
, 6);
3521 else if (s
->size
>= 256)
3522 slub_set_cpu_partial(s
, 13);
3524 slub_set_cpu_partial(s
, 30);
3529 * calculate_sizes() determines the order and the distribution of data within
3532 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
3534 slab_flags_t flags
= s
->flags
;
3535 unsigned int size
= s
->object_size
;
3539 * Round up object size to the next word boundary. We can only
3540 * place the free pointer at word boundaries and this determines
3541 * the possible location of the free pointer.
3543 size
= ALIGN(size
, sizeof(void *));
3545 #ifdef CONFIG_SLUB_DEBUG
3547 * Determine if we can poison the object itself. If the user of
3548 * the slab may touch the object after free or before allocation
3549 * then we should never poison the object itself.
3551 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_TYPESAFE_BY_RCU
) &&
3553 s
->flags
|= __OBJECT_POISON
;
3555 s
->flags
&= ~__OBJECT_POISON
;
3559 * If we are Redzoning then check if there is some space between the
3560 * end of the object and the free pointer. If not then add an
3561 * additional word to have some bytes to store Redzone information.
3563 if ((flags
& SLAB_RED_ZONE
) && size
== s
->object_size
)
3564 size
+= sizeof(void *);
3568 * With that we have determined the number of bytes in actual use
3569 * by the object. This is the potential offset to the free pointer.
3573 if (((flags
& (SLAB_TYPESAFE_BY_RCU
| SLAB_POISON
)) ||
3576 * Relocate free pointer after the object if it is not
3577 * permitted to overwrite the first word of the object on
3580 * This is the case if we do RCU, have a constructor or
3581 * destructor or are poisoning the objects.
3584 size
+= sizeof(void *);
3585 } else if (size
> sizeof(void *)) {
3587 * Store freelist pointer near middle of object to keep
3588 * it away from the edges of the object to avoid small
3589 * sized over/underflows from neighboring allocations.
3591 s
->offset
= ALIGN(size
/ 2, sizeof(void *));
3594 #ifdef CONFIG_SLUB_DEBUG
3595 if (flags
& SLAB_STORE_USER
)
3597 * Need to store information about allocs and frees after
3600 size
+= 2 * sizeof(struct track
);
3603 kasan_cache_create(s
, &size
, &s
->flags
);
3604 #ifdef CONFIG_SLUB_DEBUG
3605 if (flags
& SLAB_RED_ZONE
) {
3607 * Add some empty padding so that we can catch
3608 * overwrites from earlier objects rather than let
3609 * tracking information or the free pointer be
3610 * corrupted if a user writes before the start
3613 size
+= sizeof(void *);
3615 s
->red_left_pad
= sizeof(void *);
3616 s
->red_left_pad
= ALIGN(s
->red_left_pad
, s
->align
);
3617 size
+= s
->red_left_pad
;
3622 * SLUB stores one object immediately after another beginning from
3623 * offset 0. In order to align the objects we have to simply size
3624 * each object to conform to the alignment.
3626 size
= ALIGN(size
, s
->align
);
3628 if (forced_order
>= 0)
3629 order
= forced_order
;
3631 order
= calculate_order(size
);
3638 s
->allocflags
|= __GFP_COMP
;
3640 if (s
->flags
& SLAB_CACHE_DMA
)
3641 s
->allocflags
|= GFP_DMA
;
3643 if (s
->flags
& SLAB_CACHE_DMA32
)
3644 s
->allocflags
|= GFP_DMA32
;
3646 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
3647 s
->allocflags
|= __GFP_RECLAIMABLE
;
3650 * Determine the number of objects per slab
3652 s
->oo
= oo_make(order
, size
);
3653 s
->min
= oo_make(get_order(size
), size
);
3654 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
3657 return !!oo_objects(s
->oo
);
3660 static int kmem_cache_open(struct kmem_cache
*s
, slab_flags_t flags
)
3662 s
->flags
= kmem_cache_flags(s
->size
, flags
, s
->name
, s
->ctor
);
3663 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3664 s
->random
= get_random_long();
3667 if (!calculate_sizes(s
, -1))
3669 if (disable_higher_order_debug
) {
3671 * Disable debugging flags that store metadata if the min slab
3674 if (get_order(s
->size
) > get_order(s
->object_size
)) {
3675 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
3677 if (!calculate_sizes(s
, -1))
3682 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3683 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3684 if (system_has_cmpxchg_double() && (s
->flags
& SLAB_NO_CMPXCHG
) == 0)
3685 /* Enable fast mode */
3686 s
->flags
|= __CMPXCHG_DOUBLE
;
3690 * The larger the object size is, the more pages we want on the partial
3691 * list to avoid pounding the page allocator excessively.
3693 set_min_partial(s
, ilog2(s
->size
) / 2);
3698 s
->remote_node_defrag_ratio
= 1000;
3701 /* Initialize the pre-computed randomized freelist if slab is up */
3702 if (slab_state
>= UP
) {
3703 if (init_cache_random_seq(s
))
3707 if (!init_kmem_cache_nodes(s
))
3710 if (alloc_kmem_cache_cpus(s
))
3713 free_kmem_cache_nodes(s
);
3718 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
3721 #ifdef CONFIG_SLUB_DEBUG
3722 void *addr
= page_address(page
);
3726 slab_err(s
, page
, text
, s
->name
);
3729 map
= get_map(s
, page
);
3730 for_each_object(p
, s
, addr
, page
->objects
) {
3732 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
3733 pr_err("INFO: Object 0x%p @offset=%tu\n", p
, p
- addr
);
3734 print_tracking(s
, p
);
3744 * Attempt to free all partial slabs on a node.
3745 * This is called from __kmem_cache_shutdown(). We must take list_lock
3746 * because sysfs file might still access partial list after the shutdowning.
3748 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
3751 struct page
*page
, *h
;
3753 BUG_ON(irqs_disabled());
3754 spin_lock_irq(&n
->list_lock
);
3755 list_for_each_entry_safe(page
, h
, &n
->partial
, slab_list
) {
3757 remove_partial(n
, page
);
3758 list_add(&page
->slab_list
, &discard
);
3760 list_slab_objects(s
, page
,
3761 "Objects remaining in %s on __kmem_cache_shutdown()");
3764 spin_unlock_irq(&n
->list_lock
);
3766 list_for_each_entry_safe(page
, h
, &discard
, slab_list
)
3767 discard_slab(s
, page
);
3770 bool __kmem_cache_empty(struct kmem_cache
*s
)
3773 struct kmem_cache_node
*n
;
3775 for_each_kmem_cache_node(s
, node
, n
)
3776 if (n
->nr_partial
|| slabs_node(s
, node
))
3782 * Release all resources used by a slab cache.
3784 int __kmem_cache_shutdown(struct kmem_cache
*s
)
3787 struct kmem_cache_node
*n
;
3790 /* Attempt to free all objects */
3791 for_each_kmem_cache_node(s
, node
, n
) {
3793 if (n
->nr_partial
|| slabs_node(s
, node
))
3796 sysfs_slab_remove(s
);
3800 /********************************************************************
3802 *******************************************************************/
3804 static int __init
setup_slub_min_order(char *str
)
3806 get_option(&str
, (int *)&slub_min_order
);
3811 __setup("slub_min_order=", setup_slub_min_order
);
3813 static int __init
setup_slub_max_order(char *str
)
3815 get_option(&str
, (int *)&slub_max_order
);
3816 slub_max_order
= min(slub_max_order
, (unsigned int)MAX_ORDER
- 1);
3821 __setup("slub_max_order=", setup_slub_max_order
);
3823 static int __init
setup_slub_min_objects(char *str
)
3825 get_option(&str
, (int *)&slub_min_objects
);
3830 __setup("slub_min_objects=", setup_slub_min_objects
);
3832 void *__kmalloc(size_t size
, gfp_t flags
)
3834 struct kmem_cache
*s
;
3837 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
3838 return kmalloc_large(size
, flags
);
3840 s
= kmalloc_slab(size
, flags
);
3842 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3845 ret
= slab_alloc(s
, flags
, _RET_IP_
);
3847 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
3849 ret
= kasan_kmalloc(s
, ret
, size
, flags
);
3853 EXPORT_SYMBOL(__kmalloc
);
3856 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
3860 unsigned int order
= get_order(size
);
3862 flags
|= __GFP_COMP
;
3863 page
= alloc_pages_node(node
, flags
, order
);
3865 ptr
= page_address(page
);
3866 mod_node_page_state(page_pgdat(page
), NR_SLAB_UNRECLAIMABLE
,
3870 return kmalloc_large_node_hook(ptr
, size
, flags
);
3873 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3875 struct kmem_cache
*s
;
3878 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
3879 ret
= kmalloc_large_node(size
, flags
, node
);
3881 trace_kmalloc_node(_RET_IP_
, ret
,
3882 size
, PAGE_SIZE
<< get_order(size
),
3888 s
= kmalloc_slab(size
, flags
);
3890 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3893 ret
= slab_alloc_node(s
, flags
, node
, _RET_IP_
);
3895 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
3897 ret
= kasan_kmalloc(s
, ret
, size
, flags
);
3901 EXPORT_SYMBOL(__kmalloc_node
);
3902 #endif /* CONFIG_NUMA */
3904 #ifdef CONFIG_HARDENED_USERCOPY
3906 * Rejects incorrectly sized objects and objects that are to be copied
3907 * to/from userspace but do not fall entirely within the containing slab
3908 * cache's usercopy region.
3910 * Returns NULL if check passes, otherwise const char * to name of cache
3911 * to indicate an error.
3913 void __check_heap_object(const void *ptr
, unsigned long n
, struct page
*page
,
3916 struct kmem_cache
*s
;
3917 unsigned int offset
;
3920 ptr
= kasan_reset_tag(ptr
);
3922 /* Find object and usable object size. */
3923 s
= page
->slab_cache
;
3925 /* Reject impossible pointers. */
3926 if (ptr
< page_address(page
))
3927 usercopy_abort("SLUB object not in SLUB page?!", NULL
,
3930 /* Find offset within object. */
3931 offset
= (ptr
- page_address(page
)) % s
->size
;
3933 /* Adjust for redzone and reject if within the redzone. */
3934 if (kmem_cache_debug(s
) && s
->flags
& SLAB_RED_ZONE
) {
3935 if (offset
< s
->red_left_pad
)
3936 usercopy_abort("SLUB object in left red zone",
3937 s
->name
, to_user
, offset
, n
);
3938 offset
-= s
->red_left_pad
;
3941 /* Allow address range falling entirely within usercopy region. */
3942 if (offset
>= s
->useroffset
&&
3943 offset
- s
->useroffset
<= s
->usersize
&&
3944 n
<= s
->useroffset
- offset
+ s
->usersize
)
3948 * If the copy is still within the allocated object, produce
3949 * a warning instead of rejecting the copy. This is intended
3950 * to be a temporary method to find any missing usercopy
3953 object_size
= slab_ksize(s
);
3954 if (usercopy_fallback
&&
3955 offset
<= object_size
&& n
<= object_size
- offset
) {
3956 usercopy_warn("SLUB object", s
->name
, to_user
, offset
, n
);
3960 usercopy_abort("SLUB object", s
->name
, to_user
, offset
, n
);
3962 #endif /* CONFIG_HARDENED_USERCOPY */
3964 size_t __ksize(const void *object
)
3968 if (unlikely(object
== ZERO_SIZE_PTR
))
3971 page
= virt_to_head_page(object
);
3973 if (unlikely(!PageSlab(page
))) {
3974 WARN_ON(!PageCompound(page
));
3975 return page_size(page
);
3978 return slab_ksize(page
->slab_cache
);
3980 EXPORT_SYMBOL(__ksize
);
3982 void kfree(const void *x
)
3985 void *object
= (void *)x
;
3987 trace_kfree(_RET_IP_
, x
);
3989 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3992 page
= virt_to_head_page(x
);
3993 if (unlikely(!PageSlab(page
))) {
3994 unsigned int order
= compound_order(page
);
3996 BUG_ON(!PageCompound(page
));
3998 mod_node_page_state(page_pgdat(page
), NR_SLAB_UNRECLAIMABLE
,
4000 __free_pages(page
, order
);
4003 slab_free(page
->slab_cache
, page
, object
, NULL
, 1, _RET_IP_
);
4005 EXPORT_SYMBOL(kfree
);
4007 #define SHRINK_PROMOTE_MAX 32
4010 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4011 * up most to the head of the partial lists. New allocations will then
4012 * fill those up and thus they can be removed from the partial lists.
4014 * The slabs with the least items are placed last. This results in them
4015 * being allocated from last increasing the chance that the last objects
4016 * are freed in them.
4018 int __kmem_cache_shrink(struct kmem_cache
*s
)
4022 struct kmem_cache_node
*n
;
4025 struct list_head discard
;
4026 struct list_head promote
[SHRINK_PROMOTE_MAX
];
4027 unsigned long flags
;
4031 for_each_kmem_cache_node(s
, node
, n
) {
4032 INIT_LIST_HEAD(&discard
);
4033 for (i
= 0; i
< SHRINK_PROMOTE_MAX
; i
++)
4034 INIT_LIST_HEAD(promote
+ i
);
4036 spin_lock_irqsave(&n
->list_lock
, flags
);
4039 * Build lists of slabs to discard or promote.
4041 * Note that concurrent frees may occur while we hold the
4042 * list_lock. page->inuse here is the upper limit.
4044 list_for_each_entry_safe(page
, t
, &n
->partial
, slab_list
) {
4045 int free
= page
->objects
- page
->inuse
;
4047 /* Do not reread page->inuse */
4050 /* We do not keep full slabs on the list */
4053 if (free
== page
->objects
) {
4054 list_move(&page
->slab_list
, &discard
);
4056 } else if (free
<= SHRINK_PROMOTE_MAX
)
4057 list_move(&page
->slab_list
, promote
+ free
- 1);
4061 * Promote the slabs filled up most to the head of the
4064 for (i
= SHRINK_PROMOTE_MAX
- 1; i
>= 0; i
--)
4065 list_splice(promote
+ i
, &n
->partial
);
4067 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4069 /* Release empty slabs */
4070 list_for_each_entry_safe(page
, t
, &discard
, slab_list
)
4071 discard_slab(s
, page
);
4073 if (slabs_node(s
, node
))
4081 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache
*s
)
4084 * Called with all the locks held after a sched RCU grace period.
4085 * Even if @s becomes empty after shrinking, we can't know that @s
4086 * doesn't have allocations already in-flight and thus can't
4087 * destroy @s until the associated memcg is released.
4089 * However, let's remove the sysfs files for empty caches here.
4090 * Each cache has a lot of interface files which aren't
4091 * particularly useful for empty draining caches; otherwise, we can
4092 * easily end up with millions of unnecessary sysfs files on
4093 * systems which have a lot of memory and transient cgroups.
4095 if (!__kmem_cache_shrink(s
))
4096 sysfs_slab_remove(s
);
4099 void __kmemcg_cache_deactivate(struct kmem_cache
*s
)
4102 * Disable empty slabs caching. Used to avoid pinning offline
4103 * memory cgroups by kmem pages that can be freed.
4105 slub_set_cpu_partial(s
, 0);
4108 #endif /* CONFIG_MEMCG */
4110 static int slab_mem_going_offline_callback(void *arg
)
4112 struct kmem_cache
*s
;
4114 mutex_lock(&slab_mutex
);
4115 list_for_each_entry(s
, &slab_caches
, list
)
4116 __kmem_cache_shrink(s
);
4117 mutex_unlock(&slab_mutex
);
4122 static void slab_mem_offline_callback(void *arg
)
4124 struct kmem_cache_node
*n
;
4125 struct kmem_cache
*s
;
4126 struct memory_notify
*marg
= arg
;
4129 offline_node
= marg
->status_change_nid_normal
;
4132 * If the node still has available memory. we need kmem_cache_node
4135 if (offline_node
< 0)
4138 mutex_lock(&slab_mutex
);
4139 list_for_each_entry(s
, &slab_caches
, list
) {
4140 n
= get_node(s
, offline_node
);
4143 * if n->nr_slabs > 0, slabs still exist on the node
4144 * that is going down. We were unable to free them,
4145 * and offline_pages() function shouldn't call this
4146 * callback. So, we must fail.
4148 BUG_ON(slabs_node(s
, offline_node
));
4150 s
->node
[offline_node
] = NULL
;
4151 kmem_cache_free(kmem_cache_node
, n
);
4154 mutex_unlock(&slab_mutex
);
4157 static int slab_mem_going_online_callback(void *arg
)
4159 struct kmem_cache_node
*n
;
4160 struct kmem_cache
*s
;
4161 struct memory_notify
*marg
= arg
;
4162 int nid
= marg
->status_change_nid_normal
;
4166 * If the node's memory is already available, then kmem_cache_node is
4167 * already created. Nothing to do.
4173 * We are bringing a node online. No memory is available yet. We must
4174 * allocate a kmem_cache_node structure in order to bring the node
4177 mutex_lock(&slab_mutex
);
4178 list_for_each_entry(s
, &slab_caches
, list
) {
4180 * XXX: kmem_cache_alloc_node will fallback to other nodes
4181 * since memory is not yet available from the node that
4184 n
= kmem_cache_alloc(kmem_cache_node
, GFP_KERNEL
);
4189 init_kmem_cache_node(n
);
4193 mutex_unlock(&slab_mutex
);
4197 static int slab_memory_callback(struct notifier_block
*self
,
4198 unsigned long action
, void *arg
)
4203 case MEM_GOING_ONLINE
:
4204 ret
= slab_mem_going_online_callback(arg
);
4206 case MEM_GOING_OFFLINE
:
4207 ret
= slab_mem_going_offline_callback(arg
);
4210 case MEM_CANCEL_ONLINE
:
4211 slab_mem_offline_callback(arg
);
4214 case MEM_CANCEL_OFFLINE
:
4218 ret
= notifier_from_errno(ret
);
4224 static struct notifier_block slab_memory_callback_nb
= {
4225 .notifier_call
= slab_memory_callback
,
4226 .priority
= SLAB_CALLBACK_PRI
,
4229 /********************************************************************
4230 * Basic setup of slabs
4231 *******************************************************************/
4234 * Used for early kmem_cache structures that were allocated using
4235 * the page allocator. Allocate them properly then fix up the pointers
4236 * that may be pointing to the wrong kmem_cache structure.
4239 static struct kmem_cache
* __init
bootstrap(struct kmem_cache
*static_cache
)
4242 struct kmem_cache
*s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
4243 struct kmem_cache_node
*n
;
4245 memcpy(s
, static_cache
, kmem_cache
->object_size
);
4248 * This runs very early, and only the boot processor is supposed to be
4249 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4252 __flush_cpu_slab(s
, smp_processor_id());
4253 for_each_kmem_cache_node(s
, node
, n
) {
4256 list_for_each_entry(p
, &n
->partial
, slab_list
)
4259 #ifdef CONFIG_SLUB_DEBUG
4260 list_for_each_entry(p
, &n
->full
, slab_list
)
4264 slab_init_memcg_params(s
);
4265 list_add(&s
->list
, &slab_caches
);
4266 memcg_link_cache(s
, NULL
);
4270 void __init
kmem_cache_init(void)
4272 static __initdata
struct kmem_cache boot_kmem_cache
,
4273 boot_kmem_cache_node
;
4275 if (debug_guardpage_minorder())
4278 kmem_cache_node
= &boot_kmem_cache_node
;
4279 kmem_cache
= &boot_kmem_cache
;
4281 create_boot_cache(kmem_cache_node
, "kmem_cache_node",
4282 sizeof(struct kmem_cache_node
), SLAB_HWCACHE_ALIGN
, 0, 0);
4284 register_hotmemory_notifier(&slab_memory_callback_nb
);
4286 /* Able to allocate the per node structures */
4287 slab_state
= PARTIAL
;
4289 create_boot_cache(kmem_cache
, "kmem_cache",
4290 offsetof(struct kmem_cache
, node
) +
4291 nr_node_ids
* sizeof(struct kmem_cache_node
*),
4292 SLAB_HWCACHE_ALIGN
, 0, 0);
4294 kmem_cache
= bootstrap(&boot_kmem_cache
);
4295 kmem_cache_node
= bootstrap(&boot_kmem_cache_node
);
4297 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4298 setup_kmalloc_cache_index_table();
4299 create_kmalloc_caches(0);
4301 /* Setup random freelists for each cache */
4302 init_freelist_randomization();
4304 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD
, "slub:dead", NULL
,
4307 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4309 slub_min_order
, slub_max_order
, slub_min_objects
,
4310 nr_cpu_ids
, nr_node_ids
);
4313 void __init
kmem_cache_init_late(void)
4318 __kmem_cache_alias(const char *name
, unsigned int size
, unsigned int align
,
4319 slab_flags_t flags
, void (*ctor
)(void *))
4321 struct kmem_cache
*s
, *c
;
4323 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
4328 * Adjust the object sizes so that we clear
4329 * the complete object on kzalloc.
4331 s
->object_size
= max(s
->object_size
, size
);
4332 s
->inuse
= max(s
->inuse
, ALIGN(size
, sizeof(void *)));
4334 for_each_memcg_cache(c
, s
) {
4335 c
->object_size
= s
->object_size
;
4336 c
->inuse
= max(c
->inuse
, ALIGN(size
, sizeof(void *)));
4339 if (sysfs_slab_alias(s
, name
)) {
4348 int __kmem_cache_create(struct kmem_cache
*s
, slab_flags_t flags
)
4352 err
= kmem_cache_open(s
, flags
);
4356 /* Mutex is not taken during early boot */
4357 if (slab_state
<= UP
)
4360 memcg_propagate_slab_attrs(s
);
4361 err
= sysfs_slab_add(s
);
4363 __kmem_cache_release(s
);
4368 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
4370 struct kmem_cache
*s
;
4373 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
4374 return kmalloc_large(size
, gfpflags
);
4376 s
= kmalloc_slab(size
, gfpflags
);
4378 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4381 ret
= slab_alloc(s
, gfpflags
, caller
);
4383 /* Honor the call site pointer we received. */
4384 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
4390 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
4391 int node
, unsigned long caller
)
4393 struct kmem_cache
*s
;
4396 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
4397 ret
= kmalloc_large_node(size
, gfpflags
, node
);
4399 trace_kmalloc_node(caller
, ret
,
4400 size
, PAGE_SIZE
<< get_order(size
),
4406 s
= kmalloc_slab(size
, gfpflags
);
4408 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4411 ret
= slab_alloc_node(s
, gfpflags
, node
, caller
);
4413 /* Honor the call site pointer we received. */
4414 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
4421 static int count_inuse(struct page
*page
)
4426 static int count_total(struct page
*page
)
4428 return page
->objects
;
4432 #ifdef CONFIG_SLUB_DEBUG
4433 static void validate_slab(struct kmem_cache
*s
, struct page
*page
)
4436 void *addr
= page_address(page
);
4441 if (!check_slab(s
, page
) || !on_freelist(s
, page
, NULL
))
4444 /* Now we know that a valid freelist exists */
4445 map
= get_map(s
, page
);
4446 for_each_object(p
, s
, addr
, page
->objects
) {
4447 u8 val
= test_bit(slab_index(p
, s
, addr
), map
) ?
4448 SLUB_RED_INACTIVE
: SLUB_RED_ACTIVE
;
4450 if (!check_object(s
, page
, p
, val
))
4458 static int validate_slab_node(struct kmem_cache
*s
,
4459 struct kmem_cache_node
*n
)
4461 unsigned long count
= 0;
4463 unsigned long flags
;
4465 spin_lock_irqsave(&n
->list_lock
, flags
);
4467 list_for_each_entry(page
, &n
->partial
, slab_list
) {
4468 validate_slab(s
, page
);
4471 if (count
!= n
->nr_partial
)
4472 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4473 s
->name
, count
, n
->nr_partial
);
4475 if (!(s
->flags
& SLAB_STORE_USER
))
4478 list_for_each_entry(page
, &n
->full
, slab_list
) {
4479 validate_slab(s
, page
);
4482 if (count
!= atomic_long_read(&n
->nr_slabs
))
4483 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4484 s
->name
, count
, atomic_long_read(&n
->nr_slabs
));
4487 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4491 static long validate_slab_cache(struct kmem_cache
*s
)
4494 unsigned long count
= 0;
4495 struct kmem_cache_node
*n
;
4498 for_each_kmem_cache_node(s
, node
, n
)
4499 count
+= validate_slab_node(s
, n
);
4504 * Generate lists of code addresses where slabcache objects are allocated
4509 unsigned long count
;
4516 DECLARE_BITMAP(cpus
, NR_CPUS
);
4522 unsigned long count
;
4523 struct location
*loc
;
4526 static void free_loc_track(struct loc_track
*t
)
4529 free_pages((unsigned long)t
->loc
,
4530 get_order(sizeof(struct location
) * t
->max
));
4533 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
4538 order
= get_order(sizeof(struct location
) * max
);
4540 l
= (void *)__get_free_pages(flags
, order
);
4545 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
4553 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
4554 const struct track
*track
)
4556 long start
, end
, pos
;
4558 unsigned long caddr
;
4559 unsigned long age
= jiffies
- track
->when
;
4565 pos
= start
+ (end
- start
+ 1) / 2;
4568 * There is nothing at "end". If we end up there
4569 * we need to add something to before end.
4574 caddr
= t
->loc
[pos
].addr
;
4575 if (track
->addr
== caddr
) {
4581 if (age
< l
->min_time
)
4583 if (age
> l
->max_time
)
4586 if (track
->pid
< l
->min_pid
)
4587 l
->min_pid
= track
->pid
;
4588 if (track
->pid
> l
->max_pid
)
4589 l
->max_pid
= track
->pid
;
4591 cpumask_set_cpu(track
->cpu
,
4592 to_cpumask(l
->cpus
));
4594 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4598 if (track
->addr
< caddr
)
4605 * Not found. Insert new tracking element.
4607 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
4613 (t
->count
- pos
) * sizeof(struct location
));
4616 l
->addr
= track
->addr
;
4620 l
->min_pid
= track
->pid
;
4621 l
->max_pid
= track
->pid
;
4622 cpumask_clear(to_cpumask(l
->cpus
));
4623 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
4624 nodes_clear(l
->nodes
);
4625 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4629 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
4630 struct page
*page
, enum track_item alloc
)
4632 void *addr
= page_address(page
);
4636 map
= get_map(s
, page
);
4637 for_each_object(p
, s
, addr
, page
->objects
)
4638 if (!test_bit(slab_index(p
, s
, addr
), map
))
4639 add_location(t
, s
, get_track(s
, p
, alloc
));
4643 static int list_locations(struct kmem_cache
*s
, char *buf
,
4644 enum track_item alloc
)
4648 struct loc_track t
= { 0, 0, NULL
};
4650 struct kmem_cache_node
*n
;
4652 if (!alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
4654 return sprintf(buf
, "Out of memory\n");
4656 /* Push back cpu slabs */
4659 for_each_kmem_cache_node(s
, node
, n
) {
4660 unsigned long flags
;
4663 if (!atomic_long_read(&n
->nr_slabs
))
4666 spin_lock_irqsave(&n
->list_lock
, flags
);
4667 list_for_each_entry(page
, &n
->partial
, slab_list
)
4668 process_slab(&t
, s
, page
, alloc
);
4669 list_for_each_entry(page
, &n
->full
, slab_list
)
4670 process_slab(&t
, s
, page
, alloc
);
4671 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4674 for (i
= 0; i
< t
.count
; i
++) {
4675 struct location
*l
= &t
.loc
[i
];
4677 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
4679 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
4682 len
+= sprintf(buf
+ len
, "%pS", (void *)l
->addr
);
4684 len
+= sprintf(buf
+ len
, "<not-available>");
4686 if (l
->sum_time
!= l
->min_time
) {
4687 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
4689 (long)div_u64(l
->sum_time
, l
->count
),
4692 len
+= sprintf(buf
+ len
, " age=%ld",
4695 if (l
->min_pid
!= l
->max_pid
)
4696 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
4697 l
->min_pid
, l
->max_pid
);
4699 len
+= sprintf(buf
+ len
, " pid=%ld",
4702 if (num_online_cpus() > 1 &&
4703 !cpumask_empty(to_cpumask(l
->cpus
)) &&
4704 len
< PAGE_SIZE
- 60)
4705 len
+= scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4707 cpumask_pr_args(to_cpumask(l
->cpus
)));
4709 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
) &&
4710 len
< PAGE_SIZE
- 60)
4711 len
+= scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4713 nodemask_pr_args(&l
->nodes
));
4715 len
+= sprintf(buf
+ len
, "\n");
4720 len
+= sprintf(buf
, "No data\n");
4723 #endif /* CONFIG_SLUB_DEBUG */
4725 #ifdef SLUB_RESILIENCY_TEST
4726 static void __init
resiliency_test(void)
4729 int type
= KMALLOC_NORMAL
;
4731 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 16 || KMALLOC_SHIFT_HIGH
< 10);
4733 pr_err("SLUB resiliency testing\n");
4734 pr_err("-----------------------\n");
4735 pr_err("A. Corruption after allocation\n");
4737 p
= kzalloc(16, GFP_KERNEL
);
4739 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4742 validate_slab_cache(kmalloc_caches
[type
][4]);
4744 /* Hmmm... The next two are dangerous */
4745 p
= kzalloc(32, GFP_KERNEL
);
4746 p
[32 + sizeof(void *)] = 0x34;
4747 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4749 pr_err("If allocated object is overwritten then not detectable\n\n");
4751 validate_slab_cache(kmalloc_caches
[type
][5]);
4752 p
= kzalloc(64, GFP_KERNEL
);
4753 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
4755 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4757 pr_err("If allocated object is overwritten then not detectable\n\n");
4758 validate_slab_cache(kmalloc_caches
[type
][6]);
4760 pr_err("\nB. Corruption after free\n");
4761 p
= kzalloc(128, GFP_KERNEL
);
4764 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
4765 validate_slab_cache(kmalloc_caches
[type
][7]);
4767 p
= kzalloc(256, GFP_KERNEL
);
4770 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p
);
4771 validate_slab_cache(kmalloc_caches
[type
][8]);
4773 p
= kzalloc(512, GFP_KERNEL
);
4776 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
4777 validate_slab_cache(kmalloc_caches
[type
][9]);
4781 static void resiliency_test(void) {};
4783 #endif /* SLUB_RESILIENCY_TEST */
4786 enum slab_stat_type
{
4787 SL_ALL
, /* All slabs */
4788 SL_PARTIAL
, /* Only partially allocated slabs */
4789 SL_CPU
, /* Only slabs used for cpu caches */
4790 SL_OBJECTS
, /* Determine allocated objects not slabs */
4791 SL_TOTAL
/* Determine object capacity not slabs */
4794 #define SO_ALL (1 << SL_ALL)
4795 #define SO_PARTIAL (1 << SL_PARTIAL)
4796 #define SO_CPU (1 << SL_CPU)
4797 #define SO_OBJECTS (1 << SL_OBJECTS)
4798 #define SO_TOTAL (1 << SL_TOTAL)
4801 static bool memcg_sysfs_enabled
= IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON
);
4803 static int __init
setup_slub_memcg_sysfs(char *str
)
4807 if (get_option(&str
, &v
) > 0)
4808 memcg_sysfs_enabled
= v
;
4813 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs
);
4816 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
4817 char *buf
, unsigned long flags
)
4819 unsigned long total
= 0;
4822 unsigned long *nodes
;
4824 nodes
= kcalloc(nr_node_ids
, sizeof(unsigned long), GFP_KERNEL
);
4828 if (flags
& SO_CPU
) {
4831 for_each_possible_cpu(cpu
) {
4832 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
,
4837 page
= READ_ONCE(c
->page
);
4841 node
= page_to_nid(page
);
4842 if (flags
& SO_TOTAL
)
4844 else if (flags
& SO_OBJECTS
)
4852 page
= slub_percpu_partial_read_once(c
);
4854 node
= page_to_nid(page
);
4855 if (flags
& SO_TOTAL
)
4857 else if (flags
& SO_OBJECTS
)
4868 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4869 * already held which will conflict with an existing lock order:
4871 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4873 * We don't really need mem_hotplug_lock (to hold off
4874 * slab_mem_going_offline_callback) here because slab's memory hot
4875 * unplug code doesn't destroy the kmem_cache->node[] data.
4878 #ifdef CONFIG_SLUB_DEBUG
4879 if (flags
& SO_ALL
) {
4880 struct kmem_cache_node
*n
;
4882 for_each_kmem_cache_node(s
, node
, n
) {
4884 if (flags
& SO_TOTAL
)
4885 x
= atomic_long_read(&n
->total_objects
);
4886 else if (flags
& SO_OBJECTS
)
4887 x
= atomic_long_read(&n
->total_objects
) -
4888 count_partial(n
, count_free
);
4890 x
= atomic_long_read(&n
->nr_slabs
);
4897 if (flags
& SO_PARTIAL
) {
4898 struct kmem_cache_node
*n
;
4900 for_each_kmem_cache_node(s
, node
, n
) {
4901 if (flags
& SO_TOTAL
)
4902 x
= count_partial(n
, count_total
);
4903 else if (flags
& SO_OBJECTS
)
4904 x
= count_partial(n
, count_inuse
);
4911 x
= sprintf(buf
, "%lu", total
);
4913 for (node
= 0; node
< nr_node_ids
; node
++)
4915 x
+= sprintf(buf
+ x
, " N%d=%lu",
4919 return x
+ sprintf(buf
+ x
, "\n");
4922 #ifdef CONFIG_SLUB_DEBUG
4923 static int any_slab_objects(struct kmem_cache
*s
)
4926 struct kmem_cache_node
*n
;
4928 for_each_kmem_cache_node(s
, node
, n
)
4929 if (atomic_long_read(&n
->total_objects
))
4936 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4937 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4939 struct slab_attribute
{
4940 struct attribute attr
;
4941 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
4942 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
4945 #define SLAB_ATTR_RO(_name) \
4946 static struct slab_attribute _name##_attr = \
4947 __ATTR(_name, 0400, _name##_show, NULL)
4949 #define SLAB_ATTR(_name) \
4950 static struct slab_attribute _name##_attr = \
4951 __ATTR(_name, 0600, _name##_show, _name##_store)
4953 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
4955 return sprintf(buf
, "%u\n", s
->size
);
4957 SLAB_ATTR_RO(slab_size
);
4959 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
4961 return sprintf(buf
, "%u\n", s
->align
);
4963 SLAB_ATTR_RO(align
);
4965 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
4967 return sprintf(buf
, "%u\n", s
->object_size
);
4969 SLAB_ATTR_RO(object_size
);
4971 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
4973 return sprintf(buf
, "%u\n", oo_objects(s
->oo
));
4975 SLAB_ATTR_RO(objs_per_slab
);
4977 static ssize_t
order_store(struct kmem_cache
*s
,
4978 const char *buf
, size_t length
)
4983 err
= kstrtouint(buf
, 10, &order
);
4987 if (order
> slub_max_order
|| order
< slub_min_order
)
4990 calculate_sizes(s
, order
);
4994 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
4996 return sprintf(buf
, "%u\n", oo_order(s
->oo
));
5000 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
5002 return sprintf(buf
, "%lu\n", s
->min_partial
);
5005 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
5011 err
= kstrtoul(buf
, 10, &min
);
5015 set_min_partial(s
, min
);
5018 SLAB_ATTR(min_partial
);
5020 static ssize_t
cpu_partial_show(struct kmem_cache
*s
, char *buf
)
5022 return sprintf(buf
, "%u\n", slub_cpu_partial(s
));
5025 static ssize_t
cpu_partial_store(struct kmem_cache
*s
, const char *buf
,
5028 unsigned int objects
;
5031 err
= kstrtouint(buf
, 10, &objects
);
5034 if (objects
&& !kmem_cache_has_cpu_partial(s
))
5037 slub_set_cpu_partial(s
, objects
);
5041 SLAB_ATTR(cpu_partial
);
5043 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
5047 return sprintf(buf
, "%pS\n", s
->ctor
);
5051 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
5053 return sprintf(buf
, "%d\n", s
->refcount
< 0 ? 0 : s
->refcount
- 1);
5055 SLAB_ATTR_RO(aliases
);
5057 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
5059 return show_slab_objects(s
, buf
, SO_PARTIAL
);
5061 SLAB_ATTR_RO(partial
);
5063 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
5065 return show_slab_objects(s
, buf
, SO_CPU
);
5067 SLAB_ATTR_RO(cpu_slabs
);
5069 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
5071 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
5073 SLAB_ATTR_RO(objects
);
5075 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
5077 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
5079 SLAB_ATTR_RO(objects_partial
);
5081 static ssize_t
slabs_cpu_partial_show(struct kmem_cache
*s
, char *buf
)
5088 for_each_online_cpu(cpu
) {
5091 page
= slub_percpu_partial(per_cpu_ptr(s
->cpu_slab
, cpu
));
5094 pages
+= page
->pages
;
5095 objects
+= page
->pobjects
;
5099 len
= sprintf(buf
, "%d(%d)", objects
, pages
);
5102 for_each_online_cpu(cpu
) {
5105 page
= slub_percpu_partial(per_cpu_ptr(s
->cpu_slab
, cpu
));
5107 if (page
&& len
< PAGE_SIZE
- 20)
5108 len
+= sprintf(buf
+ len
, " C%d=%d(%d)", cpu
,
5109 page
->pobjects
, page
->pages
);
5112 return len
+ sprintf(buf
+ len
, "\n");
5114 SLAB_ATTR_RO(slabs_cpu_partial
);
5116 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
5118 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
5121 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
5122 const char *buf
, size_t length
)
5124 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
5126 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
5129 SLAB_ATTR(reclaim_account
);
5131 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
5133 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
5135 SLAB_ATTR_RO(hwcache_align
);
5137 #ifdef CONFIG_ZONE_DMA
5138 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
5140 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
5142 SLAB_ATTR_RO(cache_dma
);
5145 static ssize_t
usersize_show(struct kmem_cache
*s
, char *buf
)
5147 return sprintf(buf
, "%u\n", s
->usersize
);
5149 SLAB_ATTR_RO(usersize
);
5151 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
5153 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TYPESAFE_BY_RCU
));
5155 SLAB_ATTR_RO(destroy_by_rcu
);
5157 #ifdef CONFIG_SLUB_DEBUG
5158 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
5160 return show_slab_objects(s
, buf
, SO_ALL
);
5162 SLAB_ATTR_RO(slabs
);
5164 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
5166 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
5168 SLAB_ATTR_RO(total_objects
);
5170 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
5172 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CONSISTENCY_CHECKS
));
5175 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
5176 const char *buf
, size_t length
)
5178 s
->flags
&= ~SLAB_CONSISTENCY_CHECKS
;
5179 if (buf
[0] == '1') {
5180 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5181 s
->flags
|= SLAB_CONSISTENCY_CHECKS
;
5185 SLAB_ATTR(sanity_checks
);
5187 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
5189 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
5192 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
5196 * Tracing a merged cache is going to give confusing results
5197 * as well as cause other issues like converting a mergeable
5198 * cache into an umergeable one.
5200 if (s
->refcount
> 1)
5203 s
->flags
&= ~SLAB_TRACE
;
5204 if (buf
[0] == '1') {
5205 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5206 s
->flags
|= SLAB_TRACE
;
5212 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
5214 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
5217 static ssize_t
red_zone_store(struct kmem_cache
*s
,
5218 const char *buf
, size_t length
)
5220 if (any_slab_objects(s
))
5223 s
->flags
&= ~SLAB_RED_ZONE
;
5224 if (buf
[0] == '1') {
5225 s
->flags
|= SLAB_RED_ZONE
;
5227 calculate_sizes(s
, -1);
5230 SLAB_ATTR(red_zone
);
5232 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
5234 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
5237 static ssize_t
poison_store(struct kmem_cache
*s
,
5238 const char *buf
, size_t length
)
5240 if (any_slab_objects(s
))
5243 s
->flags
&= ~SLAB_POISON
;
5244 if (buf
[0] == '1') {
5245 s
->flags
|= SLAB_POISON
;
5247 calculate_sizes(s
, -1);
5252 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
5254 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
5257 static ssize_t
store_user_store(struct kmem_cache
*s
,
5258 const char *buf
, size_t length
)
5260 if (any_slab_objects(s
))
5263 s
->flags
&= ~SLAB_STORE_USER
;
5264 if (buf
[0] == '1') {
5265 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5266 s
->flags
|= SLAB_STORE_USER
;
5268 calculate_sizes(s
, -1);
5271 SLAB_ATTR(store_user
);
5273 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
5278 static ssize_t
validate_store(struct kmem_cache
*s
,
5279 const char *buf
, size_t length
)
5283 if (buf
[0] == '1') {
5284 ret
= validate_slab_cache(s
);
5290 SLAB_ATTR(validate
);
5292 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
5294 if (!(s
->flags
& SLAB_STORE_USER
))
5296 return list_locations(s
, buf
, TRACK_ALLOC
);
5298 SLAB_ATTR_RO(alloc_calls
);
5300 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
5302 if (!(s
->flags
& SLAB_STORE_USER
))
5304 return list_locations(s
, buf
, TRACK_FREE
);
5306 SLAB_ATTR_RO(free_calls
);
5307 #endif /* CONFIG_SLUB_DEBUG */
5309 #ifdef CONFIG_FAILSLAB
5310 static ssize_t
failslab_show(struct kmem_cache
*s
, char *buf
)
5312 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_FAILSLAB
));
5315 static ssize_t
failslab_store(struct kmem_cache
*s
, const char *buf
,
5318 if (s
->refcount
> 1)
5321 s
->flags
&= ~SLAB_FAILSLAB
;
5323 s
->flags
|= SLAB_FAILSLAB
;
5326 SLAB_ATTR(failslab
);
5329 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
5334 static ssize_t
shrink_store(struct kmem_cache
*s
,
5335 const char *buf
, size_t length
)
5338 kmem_cache_shrink_all(s
);
5346 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
5348 return sprintf(buf
, "%u\n", s
->remote_node_defrag_ratio
/ 10);
5351 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
5352 const char *buf
, size_t length
)
5357 err
= kstrtouint(buf
, 10, &ratio
);
5363 s
->remote_node_defrag_ratio
= ratio
* 10;
5367 SLAB_ATTR(remote_node_defrag_ratio
);
5370 #ifdef CONFIG_SLUB_STATS
5371 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
5373 unsigned long sum
= 0;
5376 int *data
= kmalloc_array(nr_cpu_ids
, sizeof(int), GFP_KERNEL
);
5381 for_each_online_cpu(cpu
) {
5382 unsigned x
= per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
];
5388 len
= sprintf(buf
, "%lu", sum
);
5391 for_each_online_cpu(cpu
) {
5392 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
5393 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
5397 return len
+ sprintf(buf
+ len
, "\n");
5400 static void clear_stat(struct kmem_cache
*s
, enum stat_item si
)
5404 for_each_online_cpu(cpu
)
5405 per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
] = 0;
5408 #define STAT_ATTR(si, text) \
5409 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5411 return show_stat(s, buf, si); \
5413 static ssize_t text##_store(struct kmem_cache *s, \
5414 const char *buf, size_t length) \
5416 if (buf[0] != '0') \
5418 clear_stat(s, si); \
5423 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5424 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
5425 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
5426 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
5427 STAT_ATTR(FREE_FROZEN
, free_frozen
);
5428 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
5429 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
5430 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
5431 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
5432 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
5433 STAT_ATTR(ALLOC_NODE_MISMATCH
, alloc_node_mismatch
);
5434 STAT_ATTR(FREE_SLAB
, free_slab
);
5435 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
5436 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
5437 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
5438 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
5439 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
5440 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
5441 STAT_ATTR(DEACTIVATE_BYPASS
, deactivate_bypass
);
5442 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
5443 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL
, cmpxchg_double_cpu_fail
);
5444 STAT_ATTR(CMPXCHG_DOUBLE_FAIL
, cmpxchg_double_fail
);
5445 STAT_ATTR(CPU_PARTIAL_ALLOC
, cpu_partial_alloc
);
5446 STAT_ATTR(CPU_PARTIAL_FREE
, cpu_partial_free
);
5447 STAT_ATTR(CPU_PARTIAL_NODE
, cpu_partial_node
);
5448 STAT_ATTR(CPU_PARTIAL_DRAIN
, cpu_partial_drain
);
5449 #endif /* CONFIG_SLUB_STATS */
5451 static struct attribute
*slab_attrs
[] = {
5452 &slab_size_attr
.attr
,
5453 &object_size_attr
.attr
,
5454 &objs_per_slab_attr
.attr
,
5456 &min_partial_attr
.attr
,
5457 &cpu_partial_attr
.attr
,
5459 &objects_partial_attr
.attr
,
5461 &cpu_slabs_attr
.attr
,
5465 &hwcache_align_attr
.attr
,
5466 &reclaim_account_attr
.attr
,
5467 &destroy_by_rcu_attr
.attr
,
5469 &slabs_cpu_partial_attr
.attr
,
5470 #ifdef CONFIG_SLUB_DEBUG
5471 &total_objects_attr
.attr
,
5473 &sanity_checks_attr
.attr
,
5475 &red_zone_attr
.attr
,
5477 &store_user_attr
.attr
,
5478 &validate_attr
.attr
,
5479 &alloc_calls_attr
.attr
,
5480 &free_calls_attr
.attr
,
5482 #ifdef CONFIG_ZONE_DMA
5483 &cache_dma_attr
.attr
,
5486 &remote_node_defrag_ratio_attr
.attr
,
5488 #ifdef CONFIG_SLUB_STATS
5489 &alloc_fastpath_attr
.attr
,
5490 &alloc_slowpath_attr
.attr
,
5491 &free_fastpath_attr
.attr
,
5492 &free_slowpath_attr
.attr
,
5493 &free_frozen_attr
.attr
,
5494 &free_add_partial_attr
.attr
,
5495 &free_remove_partial_attr
.attr
,
5496 &alloc_from_partial_attr
.attr
,
5497 &alloc_slab_attr
.attr
,
5498 &alloc_refill_attr
.attr
,
5499 &alloc_node_mismatch_attr
.attr
,
5500 &free_slab_attr
.attr
,
5501 &cpuslab_flush_attr
.attr
,
5502 &deactivate_full_attr
.attr
,
5503 &deactivate_empty_attr
.attr
,
5504 &deactivate_to_head_attr
.attr
,
5505 &deactivate_to_tail_attr
.attr
,
5506 &deactivate_remote_frees_attr
.attr
,
5507 &deactivate_bypass_attr
.attr
,
5508 &order_fallback_attr
.attr
,
5509 &cmpxchg_double_fail_attr
.attr
,
5510 &cmpxchg_double_cpu_fail_attr
.attr
,
5511 &cpu_partial_alloc_attr
.attr
,
5512 &cpu_partial_free_attr
.attr
,
5513 &cpu_partial_node_attr
.attr
,
5514 &cpu_partial_drain_attr
.attr
,
5516 #ifdef CONFIG_FAILSLAB
5517 &failslab_attr
.attr
,
5519 &usersize_attr
.attr
,
5524 static const struct attribute_group slab_attr_group
= {
5525 .attrs
= slab_attrs
,
5528 static ssize_t
slab_attr_show(struct kobject
*kobj
,
5529 struct attribute
*attr
,
5532 struct slab_attribute
*attribute
;
5533 struct kmem_cache
*s
;
5536 attribute
= to_slab_attr(attr
);
5539 if (!attribute
->show
)
5542 err
= attribute
->show(s
, buf
);
5547 static ssize_t
slab_attr_store(struct kobject
*kobj
,
5548 struct attribute
*attr
,
5549 const char *buf
, size_t len
)
5551 struct slab_attribute
*attribute
;
5552 struct kmem_cache
*s
;
5555 attribute
= to_slab_attr(attr
);
5558 if (!attribute
->store
)
5561 err
= attribute
->store(s
, buf
, len
);
5563 if (slab_state
>= FULL
&& err
>= 0 && is_root_cache(s
)) {
5564 struct kmem_cache
*c
;
5566 mutex_lock(&slab_mutex
);
5567 if (s
->max_attr_size
< len
)
5568 s
->max_attr_size
= len
;
5571 * This is a best effort propagation, so this function's return
5572 * value will be determined by the parent cache only. This is
5573 * basically because not all attributes will have a well
5574 * defined semantics for rollbacks - most of the actions will
5575 * have permanent effects.
5577 * Returning the error value of any of the children that fail
5578 * is not 100 % defined, in the sense that users seeing the
5579 * error code won't be able to know anything about the state of
5582 * Only returning the error code for the parent cache at least
5583 * has well defined semantics. The cache being written to
5584 * directly either failed or succeeded, in which case we loop
5585 * through the descendants with best-effort propagation.
5587 for_each_memcg_cache(c
, s
)
5588 attribute
->store(c
, buf
, len
);
5589 mutex_unlock(&slab_mutex
);
5595 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
)
5599 char *buffer
= NULL
;
5600 struct kmem_cache
*root_cache
;
5602 if (is_root_cache(s
))
5605 root_cache
= s
->memcg_params
.root_cache
;
5608 * This mean this cache had no attribute written. Therefore, no point
5609 * in copying default values around
5611 if (!root_cache
->max_attr_size
)
5614 for (i
= 0; i
< ARRAY_SIZE(slab_attrs
); i
++) {
5617 struct slab_attribute
*attr
= to_slab_attr(slab_attrs
[i
]);
5620 if (!attr
|| !attr
->store
|| !attr
->show
)
5624 * It is really bad that we have to allocate here, so we will
5625 * do it only as a fallback. If we actually allocate, though,
5626 * we can just use the allocated buffer until the end.
5628 * Most of the slub attributes will tend to be very small in
5629 * size, but sysfs allows buffers up to a page, so they can
5630 * theoretically happen.
5634 else if (root_cache
->max_attr_size
< ARRAY_SIZE(mbuf
))
5637 buffer
= (char *) get_zeroed_page(GFP_KERNEL
);
5638 if (WARN_ON(!buffer
))
5643 len
= attr
->show(root_cache
, buf
);
5645 attr
->store(s
, buf
, len
);
5649 free_page((unsigned long)buffer
);
5650 #endif /* CONFIG_MEMCG */
5653 static void kmem_cache_release(struct kobject
*k
)
5655 slab_kmem_cache_release(to_slab(k
));
5658 static const struct sysfs_ops slab_sysfs_ops
= {
5659 .show
= slab_attr_show
,
5660 .store
= slab_attr_store
,
5663 static struct kobj_type slab_ktype
= {
5664 .sysfs_ops
= &slab_sysfs_ops
,
5665 .release
= kmem_cache_release
,
5668 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
5670 struct kobj_type
*ktype
= get_ktype(kobj
);
5672 if (ktype
== &slab_ktype
)
5677 static const struct kset_uevent_ops slab_uevent_ops
= {
5678 .filter
= uevent_filter
,
5681 static struct kset
*slab_kset
;
5683 static inline struct kset
*cache_kset(struct kmem_cache
*s
)
5686 if (!is_root_cache(s
))
5687 return s
->memcg_params
.root_cache
->memcg_kset
;
5692 #define ID_STR_LENGTH 64
5694 /* Create a unique string id for a slab cache:
5696 * Format :[flags-]size
5698 static char *create_unique_id(struct kmem_cache
*s
)
5700 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
5707 * First flags affecting slabcache operations. We will only
5708 * get here for aliasable slabs so we do not need to support
5709 * too many flags. The flags here must cover all flags that
5710 * are matched during merging to guarantee that the id is
5713 if (s
->flags
& SLAB_CACHE_DMA
)
5715 if (s
->flags
& SLAB_CACHE_DMA32
)
5717 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
5719 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
)
5721 if (s
->flags
& SLAB_ACCOUNT
)
5725 p
+= sprintf(p
, "%07u", s
->size
);
5727 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
5731 static void sysfs_slab_remove_workfn(struct work_struct
*work
)
5733 struct kmem_cache
*s
=
5734 container_of(work
, struct kmem_cache
, kobj_remove_work
);
5736 if (!s
->kobj
.state_in_sysfs
)
5738 * For a memcg cache, this may be called during
5739 * deactivation and again on shutdown. Remove only once.
5740 * A cache is never shut down before deactivation is
5741 * complete, so no need to worry about synchronization.
5746 kset_unregister(s
->memcg_kset
);
5748 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
5750 kobject_put(&s
->kobj
);
5753 static int sysfs_slab_add(struct kmem_cache
*s
)
5757 struct kset
*kset
= cache_kset(s
);
5758 int unmergeable
= slab_unmergeable(s
);
5760 INIT_WORK(&s
->kobj_remove_work
, sysfs_slab_remove_workfn
);
5763 kobject_init(&s
->kobj
, &slab_ktype
);
5767 if (!unmergeable
&& disable_higher_order_debug
&&
5768 (slub_debug
& DEBUG_METADATA_FLAGS
))
5773 * Slabcache can never be merged so we can use the name proper.
5774 * This is typically the case for debug situations. In that
5775 * case we can catch duplicate names easily.
5777 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
5781 * Create a unique name for the slab as a target
5784 name
= create_unique_id(s
);
5787 s
->kobj
.kset
= kset
;
5788 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, "%s", name
);
5792 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
5797 if (is_root_cache(s
) && memcg_sysfs_enabled
) {
5798 s
->memcg_kset
= kset_create_and_add("cgroup", NULL
, &s
->kobj
);
5799 if (!s
->memcg_kset
) {
5806 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
5808 /* Setup first alias */
5809 sysfs_slab_alias(s
, s
->name
);
5816 kobject_del(&s
->kobj
);
5820 static void sysfs_slab_remove(struct kmem_cache
*s
)
5822 if (slab_state
< FULL
)
5824 * Sysfs has not been setup yet so no need to remove the
5829 kobject_get(&s
->kobj
);
5830 schedule_work(&s
->kobj_remove_work
);
5833 void sysfs_slab_unlink(struct kmem_cache
*s
)
5835 if (slab_state
>= FULL
)
5836 kobject_del(&s
->kobj
);
5839 void sysfs_slab_release(struct kmem_cache
*s
)
5841 if (slab_state
>= FULL
)
5842 kobject_put(&s
->kobj
);
5846 * Need to buffer aliases during bootup until sysfs becomes
5847 * available lest we lose that information.
5849 struct saved_alias
{
5850 struct kmem_cache
*s
;
5852 struct saved_alias
*next
;
5855 static struct saved_alias
*alias_list
;
5857 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
5859 struct saved_alias
*al
;
5861 if (slab_state
== FULL
) {
5863 * If we have a leftover link then remove it.
5865 sysfs_remove_link(&slab_kset
->kobj
, name
);
5866 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
5869 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
5875 al
->next
= alias_list
;
5880 static int __init
slab_sysfs_init(void)
5882 struct kmem_cache
*s
;
5885 mutex_lock(&slab_mutex
);
5887 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
5889 mutex_unlock(&slab_mutex
);
5890 pr_err("Cannot register slab subsystem.\n");
5896 list_for_each_entry(s
, &slab_caches
, list
) {
5897 err
= sysfs_slab_add(s
);
5899 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5903 while (alias_list
) {
5904 struct saved_alias
*al
= alias_list
;
5906 alias_list
= alias_list
->next
;
5907 err
= sysfs_slab_alias(al
->s
, al
->name
);
5909 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5914 mutex_unlock(&slab_mutex
);
5919 __initcall(slab_sysfs_init
);
5920 #endif /* CONFIG_SYSFS */
5923 * The /proc/slabinfo ABI
5925 #ifdef CONFIG_SLUB_DEBUG
5926 void get_slabinfo(struct kmem_cache
*s
, struct slabinfo
*sinfo
)
5928 unsigned long nr_slabs
= 0;
5929 unsigned long nr_objs
= 0;
5930 unsigned long nr_free
= 0;
5932 struct kmem_cache_node
*n
;
5934 for_each_kmem_cache_node(s
, node
, n
) {
5935 nr_slabs
+= node_nr_slabs(n
);
5936 nr_objs
+= node_nr_objs(n
);
5937 nr_free
+= count_partial(n
, count_free
);
5940 sinfo
->active_objs
= nr_objs
- nr_free
;
5941 sinfo
->num_objs
= nr_objs
;
5942 sinfo
->active_slabs
= nr_slabs
;
5943 sinfo
->num_slabs
= nr_slabs
;
5944 sinfo
->objects_per_slab
= oo_objects(s
->oo
);
5945 sinfo
->cache_order
= oo_order(s
->oo
);
5948 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*s
)
5952 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
5953 size_t count
, loff_t
*ppos
)
5957 #endif /* CONFIG_SLUB_DEBUG */