1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Routines having to do with the 'struct sk_buff' memory handlers.
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
9 * Alan Cox : Fixed the worst of the load
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
32 * The functions in this file will not compile correctly with gcc 2.4.x
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
41 #include <linux/interrupt.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
64 #include <net/protocol.h>
67 #include <net/checksum.h>
68 #include <net/ip6_checksum.h>
71 #include <net/mptcp.h>
73 #include <linux/uaccess.h>
74 #include <trace/events/skb.h>
75 #include <linux/highmem.h>
76 #include <linux/capability.h>
77 #include <linux/user_namespace.h>
78 #include <linux/indirect_call_wrapper.h>
82 struct kmem_cache
*skbuff_head_cache __ro_after_init
;
83 static struct kmem_cache
*skbuff_fclone_cache __ro_after_init
;
84 #ifdef CONFIG_SKB_EXTENSIONS
85 static struct kmem_cache
*skbuff_ext_cache __ro_after_init
;
87 int sysctl_max_skb_frags __read_mostly
= MAX_SKB_FRAGS
;
88 EXPORT_SYMBOL(sysctl_max_skb_frags
);
91 * skb_panic - private function for out-of-line support
95 * @msg: skb_over_panic or skb_under_panic
97 * Out-of-line support for skb_put() and skb_push().
98 * Called via the wrapper skb_over_panic() or skb_under_panic().
99 * Keep out of line to prevent kernel bloat.
100 * __builtin_return_address is not used because it is not always reliable.
102 static void skb_panic(struct sk_buff
*skb
, unsigned int sz
, void *addr
,
105 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
106 msg
, addr
, skb
->len
, sz
, skb
->head
, skb
->data
,
107 (unsigned long)skb
->tail
, (unsigned long)skb
->end
,
108 skb
->dev
? skb
->dev
->name
: "<NULL>");
112 static void skb_over_panic(struct sk_buff
*skb
, unsigned int sz
, void *addr
)
114 skb_panic(skb
, sz
, addr
, __func__
);
117 static void skb_under_panic(struct sk_buff
*skb
, unsigned int sz
, void *addr
)
119 skb_panic(skb
, sz
, addr
, __func__
);
123 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
124 * the caller if emergency pfmemalloc reserves are being used. If it is and
125 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
126 * may be used. Otherwise, the packet data may be discarded until enough
129 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
130 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
132 static void *__kmalloc_reserve(size_t size
, gfp_t flags
, int node
,
133 unsigned long ip
, bool *pfmemalloc
)
136 bool ret_pfmemalloc
= false;
139 * Try a regular allocation, when that fails and we're not entitled
140 * to the reserves, fail.
142 obj
= kmalloc_node_track_caller(size
,
143 flags
| __GFP_NOMEMALLOC
| __GFP_NOWARN
,
145 if (obj
|| !(gfp_pfmemalloc_allowed(flags
)))
148 /* Try again but now we are using pfmemalloc reserves */
149 ret_pfmemalloc
= true;
150 obj
= kmalloc_node_track_caller(size
, flags
, node
);
154 *pfmemalloc
= ret_pfmemalloc
;
159 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
160 * 'private' fields and also do memory statistics to find all the
166 * __alloc_skb - allocate a network buffer
167 * @size: size to allocate
168 * @gfp_mask: allocation mask
169 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
170 * instead of head cache and allocate a cloned (child) skb.
171 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
172 * allocations in case the data is required for writeback
173 * @node: numa node to allocate memory on
175 * Allocate a new &sk_buff. The returned buffer has no headroom and a
176 * tail room of at least size bytes. The object has a reference count
177 * of one. The return is the buffer. On a failure the return is %NULL.
179 * Buffers may only be allocated from interrupts using a @gfp_mask of
182 struct sk_buff
*__alloc_skb(unsigned int size
, gfp_t gfp_mask
,
185 struct kmem_cache
*cache
;
186 struct skb_shared_info
*shinfo
;
191 cache
= (flags
& SKB_ALLOC_FCLONE
)
192 ? skbuff_fclone_cache
: skbuff_head_cache
;
194 if (sk_memalloc_socks() && (flags
& SKB_ALLOC_RX
))
195 gfp_mask
|= __GFP_MEMALLOC
;
198 skb
= kmem_cache_alloc_node(cache
, gfp_mask
& ~__GFP_DMA
, node
);
203 /* We do our best to align skb_shared_info on a separate cache
204 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
205 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
206 * Both skb->head and skb_shared_info are cache line aligned.
208 size
= SKB_DATA_ALIGN(size
);
209 size
+= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
210 data
= kmalloc_reserve(size
, gfp_mask
, node
, &pfmemalloc
);
213 /* kmalloc(size) might give us more room than requested.
214 * Put skb_shared_info exactly at the end of allocated zone,
215 * to allow max possible filling before reallocation.
217 size
= SKB_WITH_OVERHEAD(ksize(data
));
218 prefetchw(data
+ size
);
221 * Only clear those fields we need to clear, not those that we will
222 * actually initialise below. Hence, don't put any more fields after
223 * the tail pointer in struct sk_buff!
225 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
226 /* Account for allocated memory : skb + skb->head */
227 skb
->truesize
= SKB_TRUESIZE(size
);
228 skb
->pfmemalloc
= pfmemalloc
;
229 refcount_set(&skb
->users
, 1);
232 skb_reset_tail_pointer(skb
);
233 skb
->end
= skb
->tail
+ size
;
234 skb
->mac_header
= (typeof(skb
->mac_header
))~0U;
235 skb
->transport_header
= (typeof(skb
->transport_header
))~0U;
237 /* make sure we initialize shinfo sequentially */
238 shinfo
= skb_shinfo(skb
);
239 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
240 atomic_set(&shinfo
->dataref
, 1);
242 if (flags
& SKB_ALLOC_FCLONE
) {
243 struct sk_buff_fclones
*fclones
;
245 fclones
= container_of(skb
, struct sk_buff_fclones
, skb1
);
247 skb
->fclone
= SKB_FCLONE_ORIG
;
248 refcount_set(&fclones
->fclone_ref
, 1);
250 fclones
->skb2
.fclone
= SKB_FCLONE_CLONE
;
255 kmem_cache_free(cache
, skb
);
259 EXPORT_SYMBOL(__alloc_skb
);
261 /* Caller must provide SKB that is memset cleared */
262 static struct sk_buff
*__build_skb_around(struct sk_buff
*skb
,
263 void *data
, unsigned int frag_size
)
265 struct skb_shared_info
*shinfo
;
266 unsigned int size
= frag_size
? : ksize(data
);
268 size
-= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
270 /* Assumes caller memset cleared SKB */
271 skb
->truesize
= SKB_TRUESIZE(size
);
272 refcount_set(&skb
->users
, 1);
275 skb_reset_tail_pointer(skb
);
276 skb
->end
= skb
->tail
+ size
;
277 skb
->mac_header
= (typeof(skb
->mac_header
))~0U;
278 skb
->transport_header
= (typeof(skb
->transport_header
))~0U;
280 /* make sure we initialize shinfo sequentially */
281 shinfo
= skb_shinfo(skb
);
282 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
283 atomic_set(&shinfo
->dataref
, 1);
289 * __build_skb - build a network buffer
290 * @data: data buffer provided by caller
291 * @frag_size: size of data, or 0 if head was kmalloced
293 * Allocate a new &sk_buff. Caller provides space holding head and
294 * skb_shared_info. @data must have been allocated by kmalloc() only if
295 * @frag_size is 0, otherwise data should come from the page allocator
297 * The return is the new skb buffer.
298 * On a failure the return is %NULL, and @data is not freed.
300 * Before IO, driver allocates only data buffer where NIC put incoming frame
301 * Driver should add room at head (NET_SKB_PAD) and
302 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
303 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
304 * before giving packet to stack.
305 * RX rings only contains data buffers, not full skbs.
307 struct sk_buff
*__build_skb(void *data
, unsigned int frag_size
)
311 skb
= kmem_cache_alloc(skbuff_head_cache
, GFP_ATOMIC
);
315 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
317 return __build_skb_around(skb
, data
, frag_size
);
320 /* build_skb() is wrapper over __build_skb(), that specifically
321 * takes care of skb->head and skb->pfmemalloc
322 * This means that if @frag_size is not zero, then @data must be backed
323 * by a page fragment, not kmalloc() or vmalloc()
325 struct sk_buff
*build_skb(void *data
, unsigned int frag_size
)
327 struct sk_buff
*skb
= __build_skb(data
, frag_size
);
329 if (skb
&& frag_size
) {
331 if (page_is_pfmemalloc(virt_to_head_page(data
)))
336 EXPORT_SYMBOL(build_skb
);
339 * build_skb_around - build a network buffer around provided skb
340 * @skb: sk_buff provide by caller, must be memset cleared
341 * @data: data buffer provided by caller
342 * @frag_size: size of data, or 0 if head was kmalloced
344 struct sk_buff
*build_skb_around(struct sk_buff
*skb
,
345 void *data
, unsigned int frag_size
)
350 skb
= __build_skb_around(skb
, data
, frag_size
);
352 if (skb
&& frag_size
) {
354 if (page_is_pfmemalloc(virt_to_head_page(data
)))
359 EXPORT_SYMBOL(build_skb_around
);
361 #define NAPI_SKB_CACHE_SIZE 64
363 struct napi_alloc_cache
{
364 struct page_frag_cache page
;
365 unsigned int skb_count
;
366 void *skb_cache
[NAPI_SKB_CACHE_SIZE
];
369 static DEFINE_PER_CPU(struct page_frag_cache
, netdev_alloc_cache
);
370 static DEFINE_PER_CPU(struct napi_alloc_cache
, napi_alloc_cache
);
372 static void *__napi_alloc_frag(unsigned int fragsz
, gfp_t gfp_mask
)
374 struct napi_alloc_cache
*nc
= this_cpu_ptr(&napi_alloc_cache
);
376 return page_frag_alloc(&nc
->page
, fragsz
, gfp_mask
);
379 void *napi_alloc_frag(unsigned int fragsz
)
381 fragsz
= SKB_DATA_ALIGN(fragsz
);
383 return __napi_alloc_frag(fragsz
, GFP_ATOMIC
);
385 EXPORT_SYMBOL(napi_alloc_frag
);
388 * netdev_alloc_frag - allocate a page fragment
389 * @fragsz: fragment size
391 * Allocates a frag from a page for receive buffer.
392 * Uses GFP_ATOMIC allocations.
394 void *netdev_alloc_frag(unsigned int fragsz
)
396 struct page_frag_cache
*nc
;
399 fragsz
= SKB_DATA_ALIGN(fragsz
);
400 if (in_irq() || irqs_disabled()) {
401 nc
= this_cpu_ptr(&netdev_alloc_cache
);
402 data
= page_frag_alloc(nc
, fragsz
, GFP_ATOMIC
);
405 data
= __napi_alloc_frag(fragsz
, GFP_ATOMIC
);
410 EXPORT_SYMBOL(netdev_alloc_frag
);
413 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
414 * @dev: network device to receive on
415 * @len: length to allocate
416 * @gfp_mask: get_free_pages mask, passed to alloc_skb
418 * Allocate a new &sk_buff and assign it a usage count of one. The
419 * buffer has NET_SKB_PAD headroom built in. Users should allocate
420 * the headroom they think they need without accounting for the
421 * built in space. The built in space is used for optimisations.
423 * %NULL is returned if there is no free memory.
425 struct sk_buff
*__netdev_alloc_skb(struct net_device
*dev
, unsigned int len
,
428 struct page_frag_cache
*nc
;
435 if ((len
> SKB_WITH_OVERHEAD(PAGE_SIZE
)) ||
436 (gfp_mask
& (__GFP_DIRECT_RECLAIM
| GFP_DMA
))) {
437 skb
= __alloc_skb(len
, gfp_mask
, SKB_ALLOC_RX
, NUMA_NO_NODE
);
443 len
+= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
444 len
= SKB_DATA_ALIGN(len
);
446 if (sk_memalloc_socks())
447 gfp_mask
|= __GFP_MEMALLOC
;
449 if (in_irq() || irqs_disabled()) {
450 nc
= this_cpu_ptr(&netdev_alloc_cache
);
451 data
= page_frag_alloc(nc
, len
, gfp_mask
);
452 pfmemalloc
= nc
->pfmemalloc
;
455 nc
= this_cpu_ptr(&napi_alloc_cache
.page
);
456 data
= page_frag_alloc(nc
, len
, gfp_mask
);
457 pfmemalloc
= nc
->pfmemalloc
;
464 skb
= __build_skb(data
, len
);
465 if (unlikely(!skb
)) {
475 skb_reserve(skb
, NET_SKB_PAD
);
481 EXPORT_SYMBOL(__netdev_alloc_skb
);
484 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
485 * @napi: napi instance this buffer was allocated for
486 * @len: length to allocate
487 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
489 * Allocate a new sk_buff for use in NAPI receive. This buffer will
490 * attempt to allocate the head from a special reserved region used
491 * only for NAPI Rx allocation. By doing this we can save several
492 * CPU cycles by avoiding having to disable and re-enable IRQs.
494 * %NULL is returned if there is no free memory.
496 struct sk_buff
*__napi_alloc_skb(struct napi_struct
*napi
, unsigned int len
,
499 struct napi_alloc_cache
*nc
= this_cpu_ptr(&napi_alloc_cache
);
503 len
+= NET_SKB_PAD
+ NET_IP_ALIGN
;
505 if ((len
> SKB_WITH_OVERHEAD(PAGE_SIZE
)) ||
506 (gfp_mask
& (__GFP_DIRECT_RECLAIM
| GFP_DMA
))) {
507 skb
= __alloc_skb(len
, gfp_mask
, SKB_ALLOC_RX
, NUMA_NO_NODE
);
513 len
+= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
514 len
= SKB_DATA_ALIGN(len
);
516 if (sk_memalloc_socks())
517 gfp_mask
|= __GFP_MEMALLOC
;
519 data
= page_frag_alloc(&nc
->page
, len
, gfp_mask
);
523 skb
= __build_skb(data
, len
);
524 if (unlikely(!skb
)) {
529 if (nc
->page
.pfmemalloc
)
534 skb_reserve(skb
, NET_SKB_PAD
+ NET_IP_ALIGN
);
535 skb
->dev
= napi
->dev
;
540 EXPORT_SYMBOL(__napi_alloc_skb
);
542 void skb_add_rx_frag(struct sk_buff
*skb
, int i
, struct page
*page
, int off
,
543 int size
, unsigned int truesize
)
545 skb_fill_page_desc(skb
, i
, page
, off
, size
);
547 skb
->data_len
+= size
;
548 skb
->truesize
+= truesize
;
550 EXPORT_SYMBOL(skb_add_rx_frag
);
552 void skb_coalesce_rx_frag(struct sk_buff
*skb
, int i
, int size
,
553 unsigned int truesize
)
555 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
557 skb_frag_size_add(frag
, size
);
559 skb
->data_len
+= size
;
560 skb
->truesize
+= truesize
;
562 EXPORT_SYMBOL(skb_coalesce_rx_frag
);
564 static void skb_drop_list(struct sk_buff
**listp
)
566 kfree_skb_list(*listp
);
570 static inline void skb_drop_fraglist(struct sk_buff
*skb
)
572 skb_drop_list(&skb_shinfo(skb
)->frag_list
);
575 static void skb_clone_fraglist(struct sk_buff
*skb
)
577 struct sk_buff
*list
;
579 skb_walk_frags(skb
, list
)
583 static void skb_free_head(struct sk_buff
*skb
)
585 unsigned char *head
= skb
->head
;
593 static void skb_release_data(struct sk_buff
*skb
)
595 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
599 atomic_sub_return(skb
->nohdr
? (1 << SKB_DATAREF_SHIFT
) + 1 : 1,
603 for (i
= 0; i
< shinfo
->nr_frags
; i
++)
604 __skb_frag_unref(&shinfo
->frags
[i
]);
606 if (shinfo
->frag_list
)
607 kfree_skb_list(shinfo
->frag_list
);
609 skb_zcopy_clear(skb
, true);
614 * Free an skbuff by memory without cleaning the state.
616 static void kfree_skbmem(struct sk_buff
*skb
)
618 struct sk_buff_fclones
*fclones
;
620 switch (skb
->fclone
) {
621 case SKB_FCLONE_UNAVAILABLE
:
622 kmem_cache_free(skbuff_head_cache
, skb
);
625 case SKB_FCLONE_ORIG
:
626 fclones
= container_of(skb
, struct sk_buff_fclones
, skb1
);
628 /* We usually free the clone (TX completion) before original skb
629 * This test would have no chance to be true for the clone,
630 * while here, branch prediction will be good.
632 if (refcount_read(&fclones
->fclone_ref
) == 1)
636 default: /* SKB_FCLONE_CLONE */
637 fclones
= container_of(skb
, struct sk_buff_fclones
, skb2
);
640 if (!refcount_dec_and_test(&fclones
->fclone_ref
))
643 kmem_cache_free(skbuff_fclone_cache
, fclones
);
646 void skb_release_head_state(struct sk_buff
*skb
)
649 if (skb
->destructor
) {
651 skb
->destructor(skb
);
653 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
654 nf_conntrack_put(skb_nfct(skb
));
659 /* Free everything but the sk_buff shell. */
660 static void skb_release_all(struct sk_buff
*skb
)
662 skb_release_head_state(skb
);
663 if (likely(skb
->head
))
664 skb_release_data(skb
);
668 * __kfree_skb - private function
671 * Free an sk_buff. Release anything attached to the buffer.
672 * Clean the state. This is an internal helper function. Users should
673 * always call kfree_skb
676 void __kfree_skb(struct sk_buff
*skb
)
678 skb_release_all(skb
);
681 EXPORT_SYMBOL(__kfree_skb
);
684 * kfree_skb - free an sk_buff
685 * @skb: buffer to free
687 * Drop a reference to the buffer and free it if the usage count has
690 void kfree_skb(struct sk_buff
*skb
)
695 trace_kfree_skb(skb
, __builtin_return_address(0));
698 EXPORT_SYMBOL(kfree_skb
);
700 void kfree_skb_list(struct sk_buff
*segs
)
703 struct sk_buff
*next
= segs
->next
;
709 EXPORT_SYMBOL(kfree_skb_list
);
711 /* Dump skb information and contents.
713 * Must only be called from net_ratelimit()-ed paths.
715 * Dumps up to can_dump_full whole packets if full_pkt, headers otherwise.
717 void skb_dump(const char *level
, const struct sk_buff
*skb
, bool full_pkt
)
719 static atomic_t can_dump_full
= ATOMIC_INIT(5);
720 struct skb_shared_info
*sh
= skb_shinfo(skb
);
721 struct net_device
*dev
= skb
->dev
;
722 struct sock
*sk
= skb
->sk
;
723 struct sk_buff
*list_skb
;
724 bool has_mac
, has_trans
;
725 int headroom
, tailroom
;
729 full_pkt
= atomic_dec_if_positive(&can_dump_full
) >= 0;
734 len
= min_t(int, skb
->len
, MAX_HEADER
+ 128);
736 headroom
= skb_headroom(skb
);
737 tailroom
= skb_tailroom(skb
);
739 has_mac
= skb_mac_header_was_set(skb
);
740 has_trans
= skb_transport_header_was_set(skb
);
742 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
743 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
744 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
745 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
746 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
747 level
, skb
->len
, headroom
, skb_headlen(skb
), tailroom
,
748 has_mac
? skb
->mac_header
: -1,
749 has_mac
? skb_mac_header_len(skb
) : -1,
751 has_trans
? skb_network_header_len(skb
) : -1,
752 has_trans
? skb
->transport_header
: -1,
753 sh
->tx_flags
, sh
->nr_frags
,
754 sh
->gso_size
, sh
->gso_type
, sh
->gso_segs
,
755 skb
->csum
, skb
->ip_summed
, skb
->csum_complete_sw
,
756 skb
->csum_valid
, skb
->csum_level
,
757 skb
->hash
, skb
->sw_hash
, skb
->l4_hash
,
758 ntohs(skb
->protocol
), skb
->pkt_type
, skb
->skb_iif
);
761 printk("%sdev name=%s feat=0x%pNF\n",
762 level
, dev
->name
, &dev
->features
);
764 printk("%ssk family=%hu type=%u proto=%u\n",
765 level
, sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
);
767 if (full_pkt
&& headroom
)
768 print_hex_dump(level
, "skb headroom: ", DUMP_PREFIX_OFFSET
,
769 16, 1, skb
->head
, headroom
, false);
771 seg_len
= min_t(int, skb_headlen(skb
), len
);
773 print_hex_dump(level
, "skb linear: ", DUMP_PREFIX_OFFSET
,
774 16, 1, skb
->data
, seg_len
, false);
777 if (full_pkt
&& tailroom
)
778 print_hex_dump(level
, "skb tailroom: ", DUMP_PREFIX_OFFSET
,
779 16, 1, skb_tail_pointer(skb
), tailroom
, false);
781 for (i
= 0; len
&& i
< skb_shinfo(skb
)->nr_frags
; i
++) {
782 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
783 u32 p_off
, p_len
, copied
;
787 skb_frag_foreach_page(frag
, skb_frag_off(frag
),
788 skb_frag_size(frag
), p
, p_off
, p_len
,
790 seg_len
= min_t(int, p_len
, len
);
791 vaddr
= kmap_atomic(p
);
792 print_hex_dump(level
, "skb frag: ",
794 16, 1, vaddr
+ p_off
, seg_len
, false);
795 kunmap_atomic(vaddr
);
802 if (full_pkt
&& skb_has_frag_list(skb
)) {
803 printk("skb fraglist:\n");
804 skb_walk_frags(skb
, list_skb
)
805 skb_dump(level
, list_skb
, true);
808 EXPORT_SYMBOL(skb_dump
);
811 * skb_tx_error - report an sk_buff xmit error
812 * @skb: buffer that triggered an error
814 * Report xmit error if a device callback is tracking this skb.
815 * skb must be freed afterwards.
817 void skb_tx_error(struct sk_buff
*skb
)
819 skb_zcopy_clear(skb
, true);
821 EXPORT_SYMBOL(skb_tx_error
);
824 * consume_skb - free an skbuff
825 * @skb: buffer to free
827 * Drop a ref to the buffer and free it if the usage count has hit zero
828 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
829 * is being dropped after a failure and notes that
831 void consume_skb(struct sk_buff
*skb
)
836 trace_consume_skb(skb
);
839 EXPORT_SYMBOL(consume_skb
);
842 * consume_stateless_skb - free an skbuff, assuming it is stateless
843 * @skb: buffer to free
845 * Alike consume_skb(), but this variant assumes that this is the last
846 * skb reference and all the head states have been already dropped
848 void __consume_stateless_skb(struct sk_buff
*skb
)
850 trace_consume_skb(skb
);
851 skb_release_data(skb
);
855 void __kfree_skb_flush(void)
857 struct napi_alloc_cache
*nc
= this_cpu_ptr(&napi_alloc_cache
);
859 /* flush skb_cache if containing objects */
861 kmem_cache_free_bulk(skbuff_head_cache
, nc
->skb_count
,
867 static inline void _kfree_skb_defer(struct sk_buff
*skb
)
869 struct napi_alloc_cache
*nc
= this_cpu_ptr(&napi_alloc_cache
);
871 /* drop skb->head and call any destructors for packet */
872 skb_release_all(skb
);
874 /* record skb to CPU local list */
875 nc
->skb_cache
[nc
->skb_count
++] = skb
;
878 /* SLUB writes into objects when freeing */
882 /* flush skb_cache if it is filled */
883 if (unlikely(nc
->skb_count
== NAPI_SKB_CACHE_SIZE
)) {
884 kmem_cache_free_bulk(skbuff_head_cache
, NAPI_SKB_CACHE_SIZE
,
889 void __kfree_skb_defer(struct sk_buff
*skb
)
891 _kfree_skb_defer(skb
);
894 void napi_consume_skb(struct sk_buff
*skb
, int budget
)
899 /* Zero budget indicate non-NAPI context called us, like netpoll */
900 if (unlikely(!budget
)) {
901 dev_consume_skb_any(skb
);
908 /* if reaching here SKB is ready to free */
909 trace_consume_skb(skb
);
911 /* if SKB is a clone, don't handle this case */
912 if (skb
->fclone
!= SKB_FCLONE_UNAVAILABLE
) {
917 _kfree_skb_defer(skb
);
919 EXPORT_SYMBOL(napi_consume_skb
);
921 /* Make sure a field is enclosed inside headers_start/headers_end section */
922 #define CHECK_SKB_FIELD(field) \
923 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
924 offsetof(struct sk_buff, headers_start)); \
925 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
926 offsetof(struct sk_buff, headers_end)); \
928 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
930 new->tstamp
= old
->tstamp
;
931 /* We do not copy old->sk */
933 memcpy(new->cb
, old
->cb
, sizeof(old
->cb
));
934 skb_dst_copy(new, old
);
935 __skb_ext_copy(new, old
);
936 __nf_copy(new, old
, false);
938 /* Note : this field could be in headers_start/headers_end section
939 * It is not yet because we do not want to have a 16 bit hole
941 new->queue_mapping
= old
->queue_mapping
;
943 memcpy(&new->headers_start
, &old
->headers_start
,
944 offsetof(struct sk_buff
, headers_end
) -
945 offsetof(struct sk_buff
, headers_start
));
946 CHECK_SKB_FIELD(protocol
);
947 CHECK_SKB_FIELD(csum
);
948 CHECK_SKB_FIELD(hash
);
949 CHECK_SKB_FIELD(priority
);
950 CHECK_SKB_FIELD(skb_iif
);
951 CHECK_SKB_FIELD(vlan_proto
);
952 CHECK_SKB_FIELD(vlan_tci
);
953 CHECK_SKB_FIELD(transport_header
);
954 CHECK_SKB_FIELD(network_header
);
955 CHECK_SKB_FIELD(mac_header
);
956 CHECK_SKB_FIELD(inner_protocol
);
957 CHECK_SKB_FIELD(inner_transport_header
);
958 CHECK_SKB_FIELD(inner_network_header
);
959 CHECK_SKB_FIELD(inner_mac_header
);
960 CHECK_SKB_FIELD(mark
);
961 #ifdef CONFIG_NETWORK_SECMARK
962 CHECK_SKB_FIELD(secmark
);
964 #ifdef CONFIG_NET_RX_BUSY_POLL
965 CHECK_SKB_FIELD(napi_id
);
968 CHECK_SKB_FIELD(sender_cpu
);
970 #ifdef CONFIG_NET_SCHED
971 CHECK_SKB_FIELD(tc_index
);
977 * You should not add any new code to this function. Add it to
978 * __copy_skb_header above instead.
980 static struct sk_buff
*__skb_clone(struct sk_buff
*n
, struct sk_buff
*skb
)
982 #define C(x) n->x = skb->x
984 n
->next
= n
->prev
= NULL
;
986 __copy_skb_header(n
, skb
);
991 n
->hdr_len
= skb
->nohdr
? skb_headroom(skb
) : skb
->hdr_len
;
996 n
->destructor
= NULL
;
1003 refcount_set(&n
->users
, 1);
1005 atomic_inc(&(skb_shinfo(skb
)->dataref
));
1013 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1014 * @first: first sk_buff of the msg
1016 struct sk_buff
*alloc_skb_for_msg(struct sk_buff
*first
)
1020 n
= alloc_skb(0, GFP_ATOMIC
);
1024 n
->len
= first
->len
;
1025 n
->data_len
= first
->len
;
1026 n
->truesize
= first
->truesize
;
1028 skb_shinfo(n
)->frag_list
= first
;
1030 __copy_skb_header(n
, first
);
1031 n
->destructor
= NULL
;
1035 EXPORT_SYMBOL_GPL(alloc_skb_for_msg
);
1038 * skb_morph - morph one skb into another
1039 * @dst: the skb to receive the contents
1040 * @src: the skb to supply the contents
1042 * This is identical to skb_clone except that the target skb is
1043 * supplied by the user.
1045 * The target skb is returned upon exit.
1047 struct sk_buff
*skb_morph(struct sk_buff
*dst
, struct sk_buff
*src
)
1049 skb_release_all(dst
);
1050 return __skb_clone(dst
, src
);
1052 EXPORT_SYMBOL_GPL(skb_morph
);
1054 int mm_account_pinned_pages(struct mmpin
*mmp
, size_t size
)
1056 unsigned long max_pg
, num_pg
, new_pg
, old_pg
;
1057 struct user_struct
*user
;
1059 if (capable(CAP_IPC_LOCK
) || !size
)
1062 num_pg
= (size
>> PAGE_SHIFT
) + 2; /* worst case */
1063 max_pg
= rlimit(RLIMIT_MEMLOCK
) >> PAGE_SHIFT
;
1064 user
= mmp
->user
? : current_user();
1067 old_pg
= atomic_long_read(&user
->locked_vm
);
1068 new_pg
= old_pg
+ num_pg
;
1069 if (new_pg
> max_pg
)
1071 } while (atomic_long_cmpxchg(&user
->locked_vm
, old_pg
, new_pg
) !=
1075 mmp
->user
= get_uid(user
);
1076 mmp
->num_pg
= num_pg
;
1078 mmp
->num_pg
+= num_pg
;
1083 EXPORT_SYMBOL_GPL(mm_account_pinned_pages
);
1085 void mm_unaccount_pinned_pages(struct mmpin
*mmp
)
1088 atomic_long_sub(mmp
->num_pg
, &mmp
->user
->locked_vm
);
1089 free_uid(mmp
->user
);
1092 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages
);
1094 struct ubuf_info
*sock_zerocopy_alloc(struct sock
*sk
, size_t size
)
1096 struct ubuf_info
*uarg
;
1097 struct sk_buff
*skb
;
1099 WARN_ON_ONCE(!in_task());
1101 skb
= sock_omalloc(sk
, 0, GFP_KERNEL
);
1105 BUILD_BUG_ON(sizeof(*uarg
) > sizeof(skb
->cb
));
1106 uarg
= (void *)skb
->cb
;
1107 uarg
->mmp
.user
= NULL
;
1109 if (mm_account_pinned_pages(&uarg
->mmp
, size
)) {
1114 uarg
->callback
= sock_zerocopy_callback
;
1115 uarg
->id
= ((u32
)atomic_inc_return(&sk
->sk_zckey
)) - 1;
1117 uarg
->bytelen
= size
;
1119 refcount_set(&uarg
->refcnt
, 1);
1124 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc
);
1126 static inline struct sk_buff
*skb_from_uarg(struct ubuf_info
*uarg
)
1128 return container_of((void *)uarg
, struct sk_buff
, cb
);
1131 struct ubuf_info
*sock_zerocopy_realloc(struct sock
*sk
, size_t size
,
1132 struct ubuf_info
*uarg
)
1135 const u32 byte_limit
= 1 << 19; /* limit to a few TSO */
1138 /* realloc only when socket is locked (TCP, UDP cork),
1139 * so uarg->len and sk_zckey access is serialized
1141 if (!sock_owned_by_user(sk
)) {
1146 bytelen
= uarg
->bytelen
+ size
;
1147 if (uarg
->len
== USHRT_MAX
- 1 || bytelen
> byte_limit
) {
1148 /* TCP can create new skb to attach new uarg */
1149 if (sk
->sk_type
== SOCK_STREAM
)
1154 next
= (u32
)atomic_read(&sk
->sk_zckey
);
1155 if ((u32
)(uarg
->id
+ uarg
->len
) == next
) {
1156 if (mm_account_pinned_pages(&uarg
->mmp
, size
))
1159 uarg
->bytelen
= bytelen
;
1160 atomic_set(&sk
->sk_zckey
, ++next
);
1162 /* no extra ref when appending to datagram (MSG_MORE) */
1163 if (sk
->sk_type
== SOCK_STREAM
)
1164 sock_zerocopy_get(uarg
);
1171 return sock_zerocopy_alloc(sk
, size
);
1173 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc
);
1175 static bool skb_zerocopy_notify_extend(struct sk_buff
*skb
, u32 lo
, u16 len
)
1177 struct sock_exterr_skb
*serr
= SKB_EXT_ERR(skb
);
1181 old_lo
= serr
->ee
.ee_info
;
1182 old_hi
= serr
->ee
.ee_data
;
1183 sum_len
= old_hi
- old_lo
+ 1ULL + len
;
1185 if (sum_len
>= (1ULL << 32))
1188 if (lo
!= old_hi
+ 1)
1191 serr
->ee
.ee_data
+= len
;
1195 void sock_zerocopy_callback(struct ubuf_info
*uarg
, bool success
)
1197 struct sk_buff
*tail
, *skb
= skb_from_uarg(uarg
);
1198 struct sock_exterr_skb
*serr
;
1199 struct sock
*sk
= skb
->sk
;
1200 struct sk_buff_head
*q
;
1201 unsigned long flags
;
1205 mm_unaccount_pinned_pages(&uarg
->mmp
);
1207 /* if !len, there was only 1 call, and it was aborted
1208 * so do not queue a completion notification
1210 if (!uarg
->len
|| sock_flag(sk
, SOCK_DEAD
))
1215 hi
= uarg
->id
+ len
- 1;
1217 serr
= SKB_EXT_ERR(skb
);
1218 memset(serr
, 0, sizeof(*serr
));
1219 serr
->ee
.ee_errno
= 0;
1220 serr
->ee
.ee_origin
= SO_EE_ORIGIN_ZEROCOPY
;
1221 serr
->ee
.ee_data
= hi
;
1222 serr
->ee
.ee_info
= lo
;
1224 serr
->ee
.ee_code
|= SO_EE_CODE_ZEROCOPY_COPIED
;
1226 q
= &sk
->sk_error_queue
;
1227 spin_lock_irqsave(&q
->lock
, flags
);
1228 tail
= skb_peek_tail(q
);
1229 if (!tail
|| SKB_EXT_ERR(tail
)->ee
.ee_origin
!= SO_EE_ORIGIN_ZEROCOPY
||
1230 !skb_zerocopy_notify_extend(tail
, lo
, len
)) {
1231 __skb_queue_tail(q
, skb
);
1234 spin_unlock_irqrestore(&q
->lock
, flags
);
1236 sk
->sk_error_report(sk
);
1242 EXPORT_SYMBOL_GPL(sock_zerocopy_callback
);
1244 void sock_zerocopy_put(struct ubuf_info
*uarg
)
1246 if (uarg
&& refcount_dec_and_test(&uarg
->refcnt
)) {
1248 uarg
->callback(uarg
, uarg
->zerocopy
);
1250 consume_skb(skb_from_uarg(uarg
));
1253 EXPORT_SYMBOL_GPL(sock_zerocopy_put
);
1255 void sock_zerocopy_put_abort(struct ubuf_info
*uarg
, bool have_uref
)
1258 struct sock
*sk
= skb_from_uarg(uarg
)->sk
;
1260 atomic_dec(&sk
->sk_zckey
);
1264 sock_zerocopy_put(uarg
);
1267 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort
);
1269 int skb_zerocopy_iter_dgram(struct sk_buff
*skb
, struct msghdr
*msg
, int len
)
1271 return __zerocopy_sg_from_iter(skb
->sk
, skb
, &msg
->msg_iter
, len
);
1273 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram
);
1275 int skb_zerocopy_iter_stream(struct sock
*sk
, struct sk_buff
*skb
,
1276 struct msghdr
*msg
, int len
,
1277 struct ubuf_info
*uarg
)
1279 struct ubuf_info
*orig_uarg
= skb_zcopy(skb
);
1280 struct iov_iter orig_iter
= msg
->msg_iter
;
1281 int err
, orig_len
= skb
->len
;
1283 /* An skb can only point to one uarg. This edge case happens when
1284 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1286 if (orig_uarg
&& uarg
!= orig_uarg
)
1289 err
= __zerocopy_sg_from_iter(sk
, skb
, &msg
->msg_iter
, len
);
1290 if (err
== -EFAULT
|| (err
== -EMSGSIZE
&& skb
->len
== orig_len
)) {
1291 struct sock
*save_sk
= skb
->sk
;
1293 /* Streams do not free skb on error. Reset to prev state. */
1294 msg
->msg_iter
= orig_iter
;
1296 ___pskb_trim(skb
, orig_len
);
1301 skb_zcopy_set(skb
, uarg
, NULL
);
1302 return skb
->len
- orig_len
;
1304 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream
);
1306 static int skb_zerocopy_clone(struct sk_buff
*nskb
, struct sk_buff
*orig
,
1309 if (skb_zcopy(orig
)) {
1310 if (skb_zcopy(nskb
)) {
1311 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1316 if (skb_uarg(nskb
) == skb_uarg(orig
))
1318 if (skb_copy_ubufs(nskb
, GFP_ATOMIC
))
1321 skb_zcopy_set(nskb
, skb_uarg(orig
), NULL
);
1327 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1328 * @skb: the skb to modify
1329 * @gfp_mask: allocation priority
1331 * This must be called on SKBTX_DEV_ZEROCOPY skb.
1332 * It will copy all frags into kernel and drop the reference
1333 * to userspace pages.
1335 * If this function is called from an interrupt gfp_mask() must be
1338 * Returns 0 on success or a negative error code on failure
1339 * to allocate kernel memory to copy to.
1341 int skb_copy_ubufs(struct sk_buff
*skb
, gfp_t gfp_mask
)
1343 int num_frags
= skb_shinfo(skb
)->nr_frags
;
1344 struct page
*page
, *head
= NULL
;
1348 if (skb_shared(skb
) || skb_unclone(skb
, gfp_mask
))
1354 new_frags
= (__skb_pagelen(skb
) + PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1355 for (i
= 0; i
< new_frags
; i
++) {
1356 page
= alloc_page(gfp_mask
);
1359 struct page
*next
= (struct page
*)page_private(head
);
1365 set_page_private(page
, (unsigned long)head
);
1371 for (i
= 0; i
< num_frags
; i
++) {
1372 skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[i
];
1373 u32 p_off
, p_len
, copied
;
1377 skb_frag_foreach_page(f
, skb_frag_off(f
), skb_frag_size(f
),
1378 p
, p_off
, p_len
, copied
) {
1380 vaddr
= kmap_atomic(p
);
1382 while (done
< p_len
) {
1383 if (d_off
== PAGE_SIZE
) {
1385 page
= (struct page
*)page_private(page
);
1387 copy
= min_t(u32
, PAGE_SIZE
- d_off
, p_len
- done
);
1388 memcpy(page_address(page
) + d_off
,
1389 vaddr
+ p_off
+ done
, copy
);
1393 kunmap_atomic(vaddr
);
1397 /* skb frags release userspace buffers */
1398 for (i
= 0; i
< num_frags
; i
++)
1399 skb_frag_unref(skb
, i
);
1401 /* skb frags point to kernel buffers */
1402 for (i
= 0; i
< new_frags
- 1; i
++) {
1403 __skb_fill_page_desc(skb
, i
, head
, 0, PAGE_SIZE
);
1404 head
= (struct page
*)page_private(head
);
1406 __skb_fill_page_desc(skb
, new_frags
- 1, head
, 0, d_off
);
1407 skb_shinfo(skb
)->nr_frags
= new_frags
;
1410 skb_zcopy_clear(skb
, false);
1413 EXPORT_SYMBOL_GPL(skb_copy_ubufs
);
1416 * skb_clone - duplicate an sk_buff
1417 * @skb: buffer to clone
1418 * @gfp_mask: allocation priority
1420 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1421 * copies share the same packet data but not structure. The new
1422 * buffer has a reference count of 1. If the allocation fails the
1423 * function returns %NULL otherwise the new buffer is returned.
1425 * If this function is called from an interrupt gfp_mask() must be
1429 struct sk_buff
*skb_clone(struct sk_buff
*skb
, gfp_t gfp_mask
)
1431 struct sk_buff_fclones
*fclones
= container_of(skb
,
1432 struct sk_buff_fclones
,
1436 if (skb_orphan_frags(skb
, gfp_mask
))
1439 if (skb
->fclone
== SKB_FCLONE_ORIG
&&
1440 refcount_read(&fclones
->fclone_ref
) == 1) {
1442 refcount_set(&fclones
->fclone_ref
, 2);
1444 if (skb_pfmemalloc(skb
))
1445 gfp_mask
|= __GFP_MEMALLOC
;
1447 n
= kmem_cache_alloc(skbuff_head_cache
, gfp_mask
);
1451 n
->fclone
= SKB_FCLONE_UNAVAILABLE
;
1454 return __skb_clone(n
, skb
);
1456 EXPORT_SYMBOL(skb_clone
);
1458 void skb_headers_offset_update(struct sk_buff
*skb
, int off
)
1460 /* Only adjust this if it actually is csum_start rather than csum */
1461 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
1462 skb
->csum_start
+= off
;
1463 /* {transport,network,mac}_header and tail are relative to skb->head */
1464 skb
->transport_header
+= off
;
1465 skb
->network_header
+= off
;
1466 if (skb_mac_header_was_set(skb
))
1467 skb
->mac_header
+= off
;
1468 skb
->inner_transport_header
+= off
;
1469 skb
->inner_network_header
+= off
;
1470 skb
->inner_mac_header
+= off
;
1472 EXPORT_SYMBOL(skb_headers_offset_update
);
1474 void skb_copy_header(struct sk_buff
*new, const struct sk_buff
*old
)
1476 __copy_skb_header(new, old
);
1478 skb_shinfo(new)->gso_size
= skb_shinfo(old
)->gso_size
;
1479 skb_shinfo(new)->gso_segs
= skb_shinfo(old
)->gso_segs
;
1480 skb_shinfo(new)->gso_type
= skb_shinfo(old
)->gso_type
;
1482 EXPORT_SYMBOL(skb_copy_header
);
1484 static inline int skb_alloc_rx_flag(const struct sk_buff
*skb
)
1486 if (skb_pfmemalloc(skb
))
1487 return SKB_ALLOC_RX
;
1492 * skb_copy - create private copy of an sk_buff
1493 * @skb: buffer to copy
1494 * @gfp_mask: allocation priority
1496 * Make a copy of both an &sk_buff and its data. This is used when the
1497 * caller wishes to modify the data and needs a private copy of the
1498 * data to alter. Returns %NULL on failure or the pointer to the buffer
1499 * on success. The returned buffer has a reference count of 1.
1501 * As by-product this function converts non-linear &sk_buff to linear
1502 * one, so that &sk_buff becomes completely private and caller is allowed
1503 * to modify all the data of returned buffer. This means that this
1504 * function is not recommended for use in circumstances when only
1505 * header is going to be modified. Use pskb_copy() instead.
1508 struct sk_buff
*skb_copy(const struct sk_buff
*skb
, gfp_t gfp_mask
)
1510 int headerlen
= skb_headroom(skb
);
1511 unsigned int size
= skb_end_offset(skb
) + skb
->data_len
;
1512 struct sk_buff
*n
= __alloc_skb(size
, gfp_mask
,
1513 skb_alloc_rx_flag(skb
), NUMA_NO_NODE
);
1518 /* Set the data pointer */
1519 skb_reserve(n
, headerlen
);
1520 /* Set the tail pointer and length */
1521 skb_put(n
, skb
->len
);
1523 BUG_ON(skb_copy_bits(skb
, -headerlen
, n
->head
, headerlen
+ skb
->len
));
1525 skb_copy_header(n
, skb
);
1528 EXPORT_SYMBOL(skb_copy
);
1531 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1532 * @skb: buffer to copy
1533 * @headroom: headroom of new skb
1534 * @gfp_mask: allocation priority
1535 * @fclone: if true allocate the copy of the skb from the fclone
1536 * cache instead of the head cache; it is recommended to set this
1537 * to true for the cases where the copy will likely be cloned
1539 * Make a copy of both an &sk_buff and part of its data, located
1540 * in header. Fragmented data remain shared. This is used when
1541 * the caller wishes to modify only header of &sk_buff and needs
1542 * private copy of the header to alter. Returns %NULL on failure
1543 * or the pointer to the buffer on success.
1544 * The returned buffer has a reference count of 1.
1547 struct sk_buff
*__pskb_copy_fclone(struct sk_buff
*skb
, int headroom
,
1548 gfp_t gfp_mask
, bool fclone
)
1550 unsigned int size
= skb_headlen(skb
) + headroom
;
1551 int flags
= skb_alloc_rx_flag(skb
) | (fclone
? SKB_ALLOC_FCLONE
: 0);
1552 struct sk_buff
*n
= __alloc_skb(size
, gfp_mask
, flags
, NUMA_NO_NODE
);
1557 /* Set the data pointer */
1558 skb_reserve(n
, headroom
);
1559 /* Set the tail pointer and length */
1560 skb_put(n
, skb_headlen(skb
));
1561 /* Copy the bytes */
1562 skb_copy_from_linear_data(skb
, n
->data
, n
->len
);
1564 n
->truesize
+= skb
->data_len
;
1565 n
->data_len
= skb
->data_len
;
1568 if (skb_shinfo(skb
)->nr_frags
) {
1571 if (skb_orphan_frags(skb
, gfp_mask
) ||
1572 skb_zerocopy_clone(n
, skb
, gfp_mask
)) {
1577 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1578 skb_shinfo(n
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
1579 skb_frag_ref(skb
, i
);
1581 skb_shinfo(n
)->nr_frags
= i
;
1584 if (skb_has_frag_list(skb
)) {
1585 skb_shinfo(n
)->frag_list
= skb_shinfo(skb
)->frag_list
;
1586 skb_clone_fraglist(n
);
1589 skb_copy_header(n
, skb
);
1593 EXPORT_SYMBOL(__pskb_copy_fclone
);
1596 * pskb_expand_head - reallocate header of &sk_buff
1597 * @skb: buffer to reallocate
1598 * @nhead: room to add at head
1599 * @ntail: room to add at tail
1600 * @gfp_mask: allocation priority
1602 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1603 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1604 * reference count of 1. Returns zero in the case of success or error,
1605 * if expansion failed. In the last case, &sk_buff is not changed.
1607 * All the pointers pointing into skb header may change and must be
1608 * reloaded after call to this function.
1611 int pskb_expand_head(struct sk_buff
*skb
, int nhead
, int ntail
,
1614 int i
, osize
= skb_end_offset(skb
);
1615 int size
= osize
+ nhead
+ ntail
;
1621 BUG_ON(skb_shared(skb
));
1623 size
= SKB_DATA_ALIGN(size
);
1625 if (skb_pfmemalloc(skb
))
1626 gfp_mask
|= __GFP_MEMALLOC
;
1627 data
= kmalloc_reserve(size
+ SKB_DATA_ALIGN(sizeof(struct skb_shared_info
)),
1628 gfp_mask
, NUMA_NO_NODE
, NULL
);
1631 size
= SKB_WITH_OVERHEAD(ksize(data
));
1633 /* Copy only real data... and, alas, header. This should be
1634 * optimized for the cases when header is void.
1636 memcpy(data
+ nhead
, skb
->head
, skb_tail_pointer(skb
) - skb
->head
);
1638 memcpy((struct skb_shared_info
*)(data
+ size
),
1640 offsetof(struct skb_shared_info
, frags
[skb_shinfo(skb
)->nr_frags
]));
1643 * if shinfo is shared we must drop the old head gracefully, but if it
1644 * is not we can just drop the old head and let the existing refcount
1645 * be since all we did is relocate the values
1647 if (skb_cloned(skb
)) {
1648 if (skb_orphan_frags(skb
, gfp_mask
))
1651 refcount_inc(&skb_uarg(skb
)->refcnt
);
1652 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
1653 skb_frag_ref(skb
, i
);
1655 if (skb_has_frag_list(skb
))
1656 skb_clone_fraglist(skb
);
1658 skb_release_data(skb
);
1662 off
= (data
+ nhead
) - skb
->head
;
1667 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1671 skb
->end
= skb
->head
+ size
;
1674 skb_headers_offset_update(skb
, nhead
);
1678 atomic_set(&skb_shinfo(skb
)->dataref
, 1);
1680 skb_metadata_clear(skb
);
1682 /* It is not generally safe to change skb->truesize.
1683 * For the moment, we really care of rx path, or
1684 * when skb is orphaned (not attached to a socket).
1686 if (!skb
->sk
|| skb
->destructor
== sock_edemux
)
1687 skb
->truesize
+= size
- osize
;
1696 EXPORT_SYMBOL(pskb_expand_head
);
1698 /* Make private copy of skb with writable head and some headroom */
1700 struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
, unsigned int headroom
)
1702 struct sk_buff
*skb2
;
1703 int delta
= headroom
- skb_headroom(skb
);
1706 skb2
= pskb_copy(skb
, GFP_ATOMIC
);
1708 skb2
= skb_clone(skb
, GFP_ATOMIC
);
1709 if (skb2
&& pskb_expand_head(skb2
, SKB_DATA_ALIGN(delta
), 0,
1717 EXPORT_SYMBOL(skb_realloc_headroom
);
1720 * skb_copy_expand - copy and expand sk_buff
1721 * @skb: buffer to copy
1722 * @newheadroom: new free bytes at head
1723 * @newtailroom: new free bytes at tail
1724 * @gfp_mask: allocation priority
1726 * Make a copy of both an &sk_buff and its data and while doing so
1727 * allocate additional space.
1729 * This is used when the caller wishes to modify the data and needs a
1730 * private copy of the data to alter as well as more space for new fields.
1731 * Returns %NULL on failure or the pointer to the buffer
1732 * on success. The returned buffer has a reference count of 1.
1734 * You must pass %GFP_ATOMIC as the allocation priority if this function
1735 * is called from an interrupt.
1737 struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
1738 int newheadroom
, int newtailroom
,
1742 * Allocate the copy buffer
1744 struct sk_buff
*n
= __alloc_skb(newheadroom
+ skb
->len
+ newtailroom
,
1745 gfp_mask
, skb_alloc_rx_flag(skb
),
1747 int oldheadroom
= skb_headroom(skb
);
1748 int head_copy_len
, head_copy_off
;
1753 skb_reserve(n
, newheadroom
);
1755 /* Set the tail pointer and length */
1756 skb_put(n
, skb
->len
);
1758 head_copy_len
= oldheadroom
;
1760 if (newheadroom
<= head_copy_len
)
1761 head_copy_len
= newheadroom
;
1763 head_copy_off
= newheadroom
- head_copy_len
;
1765 /* Copy the linear header and data. */
1766 BUG_ON(skb_copy_bits(skb
, -head_copy_len
, n
->head
+ head_copy_off
,
1767 skb
->len
+ head_copy_len
));
1769 skb_copy_header(n
, skb
);
1771 skb_headers_offset_update(n
, newheadroom
- oldheadroom
);
1775 EXPORT_SYMBOL(skb_copy_expand
);
1778 * __skb_pad - zero pad the tail of an skb
1779 * @skb: buffer to pad
1780 * @pad: space to pad
1781 * @free_on_error: free buffer on error
1783 * Ensure that a buffer is followed by a padding area that is zero
1784 * filled. Used by network drivers which may DMA or transfer data
1785 * beyond the buffer end onto the wire.
1787 * May return error in out of memory cases. The skb is freed on error
1788 * if @free_on_error is true.
1791 int __skb_pad(struct sk_buff
*skb
, int pad
, bool free_on_error
)
1796 /* If the skbuff is non linear tailroom is always zero.. */
1797 if (!skb_cloned(skb
) && skb_tailroom(skb
) >= pad
) {
1798 memset(skb
->data
+skb
->len
, 0, pad
);
1802 ntail
= skb
->data_len
+ pad
- (skb
->end
- skb
->tail
);
1803 if (likely(skb_cloned(skb
) || ntail
> 0)) {
1804 err
= pskb_expand_head(skb
, 0, ntail
, GFP_ATOMIC
);
1809 /* FIXME: The use of this function with non-linear skb's really needs
1812 err
= skb_linearize(skb
);
1816 memset(skb
->data
+ skb
->len
, 0, pad
);
1824 EXPORT_SYMBOL(__skb_pad
);
1827 * pskb_put - add data to the tail of a potentially fragmented buffer
1828 * @skb: start of the buffer to use
1829 * @tail: tail fragment of the buffer to use
1830 * @len: amount of data to add
1832 * This function extends the used data area of the potentially
1833 * fragmented buffer. @tail must be the last fragment of @skb -- or
1834 * @skb itself. If this would exceed the total buffer size the kernel
1835 * will panic. A pointer to the first byte of the extra data is
1839 void *pskb_put(struct sk_buff
*skb
, struct sk_buff
*tail
, int len
)
1842 skb
->data_len
+= len
;
1845 return skb_put(tail
, len
);
1847 EXPORT_SYMBOL_GPL(pskb_put
);
1850 * skb_put - add data to a buffer
1851 * @skb: buffer to use
1852 * @len: amount of data to add
1854 * This function extends the used data area of the buffer. If this would
1855 * exceed the total buffer size the kernel will panic. A pointer to the
1856 * first byte of the extra data is returned.
1858 void *skb_put(struct sk_buff
*skb
, unsigned int len
)
1860 void *tmp
= skb_tail_pointer(skb
);
1861 SKB_LINEAR_ASSERT(skb
);
1864 if (unlikely(skb
->tail
> skb
->end
))
1865 skb_over_panic(skb
, len
, __builtin_return_address(0));
1868 EXPORT_SYMBOL(skb_put
);
1871 * skb_push - add data to the start of a buffer
1872 * @skb: buffer to use
1873 * @len: amount of data to add
1875 * This function extends the used data area of the buffer at the buffer
1876 * start. If this would exceed the total buffer headroom the kernel will
1877 * panic. A pointer to the first byte of the extra data is returned.
1879 void *skb_push(struct sk_buff
*skb
, unsigned int len
)
1883 if (unlikely(skb
->data
< skb
->head
))
1884 skb_under_panic(skb
, len
, __builtin_return_address(0));
1887 EXPORT_SYMBOL(skb_push
);
1890 * skb_pull - remove data from the start of a buffer
1891 * @skb: buffer to use
1892 * @len: amount of data to remove
1894 * This function removes data from the start of a buffer, returning
1895 * the memory to the headroom. A pointer to the next data in the buffer
1896 * is returned. Once the data has been pulled future pushes will overwrite
1899 void *skb_pull(struct sk_buff
*skb
, unsigned int len
)
1901 return skb_pull_inline(skb
, len
);
1903 EXPORT_SYMBOL(skb_pull
);
1906 * skb_trim - remove end from a buffer
1907 * @skb: buffer to alter
1910 * Cut the length of a buffer down by removing data from the tail. If
1911 * the buffer is already under the length specified it is not modified.
1912 * The skb must be linear.
1914 void skb_trim(struct sk_buff
*skb
, unsigned int len
)
1917 __skb_trim(skb
, len
);
1919 EXPORT_SYMBOL(skb_trim
);
1921 /* Trims skb to length len. It can change skb pointers.
1924 int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1926 struct sk_buff
**fragp
;
1927 struct sk_buff
*frag
;
1928 int offset
= skb_headlen(skb
);
1929 int nfrags
= skb_shinfo(skb
)->nr_frags
;
1933 if (skb_cloned(skb
) &&
1934 unlikely((err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))))
1941 for (; i
< nfrags
; i
++) {
1942 int end
= offset
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1949 skb_frag_size_set(&skb_shinfo(skb
)->frags
[i
++], len
- offset
);
1952 skb_shinfo(skb
)->nr_frags
= i
;
1954 for (; i
< nfrags
; i
++)
1955 skb_frag_unref(skb
, i
);
1957 if (skb_has_frag_list(skb
))
1958 skb_drop_fraglist(skb
);
1962 for (fragp
= &skb_shinfo(skb
)->frag_list
; (frag
= *fragp
);
1963 fragp
= &frag
->next
) {
1964 int end
= offset
+ frag
->len
;
1966 if (skb_shared(frag
)) {
1967 struct sk_buff
*nfrag
;
1969 nfrag
= skb_clone(frag
, GFP_ATOMIC
);
1970 if (unlikely(!nfrag
))
1973 nfrag
->next
= frag
->next
;
1985 unlikely((err
= pskb_trim(frag
, len
- offset
))))
1989 skb_drop_list(&frag
->next
);
1994 if (len
> skb_headlen(skb
)) {
1995 skb
->data_len
-= skb
->len
- len
;
2000 skb_set_tail_pointer(skb
, len
);
2003 if (!skb
->sk
|| skb
->destructor
== sock_edemux
)
2007 EXPORT_SYMBOL(___pskb_trim
);
2009 /* Note : use pskb_trim_rcsum() instead of calling this directly
2011 int pskb_trim_rcsum_slow(struct sk_buff
*skb
, unsigned int len
)
2013 if (skb
->ip_summed
== CHECKSUM_COMPLETE
) {
2014 int delta
= skb
->len
- len
;
2016 skb
->csum
= csum_block_sub(skb
->csum
,
2017 skb_checksum(skb
, len
, delta
, 0),
2020 return __pskb_trim(skb
, len
);
2022 EXPORT_SYMBOL(pskb_trim_rcsum_slow
);
2025 * __pskb_pull_tail - advance tail of skb header
2026 * @skb: buffer to reallocate
2027 * @delta: number of bytes to advance tail
2029 * The function makes a sense only on a fragmented &sk_buff,
2030 * it expands header moving its tail forward and copying necessary
2031 * data from fragmented part.
2033 * &sk_buff MUST have reference count of 1.
2035 * Returns %NULL (and &sk_buff does not change) if pull failed
2036 * or value of new tail of skb in the case of success.
2038 * All the pointers pointing into skb header may change and must be
2039 * reloaded after call to this function.
2042 /* Moves tail of skb head forward, copying data from fragmented part,
2043 * when it is necessary.
2044 * 1. It may fail due to malloc failure.
2045 * 2. It may change skb pointers.
2047 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2049 void *__pskb_pull_tail(struct sk_buff
*skb
, int delta
)
2051 /* If skb has not enough free space at tail, get new one
2052 * plus 128 bytes for future expansions. If we have enough
2053 * room at tail, reallocate without expansion only if skb is cloned.
2055 int i
, k
, eat
= (skb
->tail
+ delta
) - skb
->end
;
2057 if (eat
> 0 || skb_cloned(skb
)) {
2058 if (pskb_expand_head(skb
, 0, eat
> 0 ? eat
+ 128 : 0,
2063 BUG_ON(skb_copy_bits(skb
, skb_headlen(skb
),
2064 skb_tail_pointer(skb
), delta
));
2066 /* Optimization: no fragments, no reasons to preestimate
2067 * size of pulled pages. Superb.
2069 if (!skb_has_frag_list(skb
))
2072 /* Estimate size of pulled pages. */
2074 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2075 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
2082 /* If we need update frag list, we are in troubles.
2083 * Certainly, it is possible to add an offset to skb data,
2084 * but taking into account that pulling is expected to
2085 * be very rare operation, it is worth to fight against
2086 * further bloating skb head and crucify ourselves here instead.
2087 * Pure masohism, indeed. 8)8)
2090 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
2091 struct sk_buff
*clone
= NULL
;
2092 struct sk_buff
*insp
= NULL
;
2095 if (list
->len
<= eat
) {
2096 /* Eaten as whole. */
2101 /* Eaten partially. */
2103 if (skb_shared(list
)) {
2104 /* Sucks! We need to fork list. :-( */
2105 clone
= skb_clone(list
, GFP_ATOMIC
);
2111 /* This may be pulled without
2115 if (!pskb_pull(list
, eat
)) {
2123 /* Free pulled out fragments. */
2124 while ((list
= skb_shinfo(skb
)->frag_list
) != insp
) {
2125 skb_shinfo(skb
)->frag_list
= list
->next
;
2128 /* And insert new clone at head. */
2131 skb_shinfo(skb
)->frag_list
= clone
;
2134 /* Success! Now we may commit changes to skb data. */
2139 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2140 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
2143 skb_frag_unref(skb
, i
);
2146 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[k
];
2148 *frag
= skb_shinfo(skb
)->frags
[i
];
2150 skb_frag_off_add(frag
, eat
);
2151 skb_frag_size_sub(frag
, eat
);
2159 skb_shinfo(skb
)->nr_frags
= k
;
2163 skb
->data_len
-= delta
;
2166 skb_zcopy_clear(skb
, false);
2168 return skb_tail_pointer(skb
);
2170 EXPORT_SYMBOL(__pskb_pull_tail
);
2173 * skb_copy_bits - copy bits from skb to kernel buffer
2175 * @offset: offset in source
2176 * @to: destination buffer
2177 * @len: number of bytes to copy
2179 * Copy the specified number of bytes from the source skb to the
2180 * destination buffer.
2183 * If its prototype is ever changed,
2184 * check arch/{*}/net/{*}.S files,
2185 * since it is called from BPF assembly code.
2187 int skb_copy_bits(const struct sk_buff
*skb
, int offset
, void *to
, int len
)
2189 int start
= skb_headlen(skb
);
2190 struct sk_buff
*frag_iter
;
2193 if (offset
> (int)skb
->len
- len
)
2197 if ((copy
= start
- offset
) > 0) {
2200 skb_copy_from_linear_data_offset(skb
, offset
, to
, copy
);
2201 if ((len
-= copy
) == 0)
2207 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2209 skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[i
];
2211 WARN_ON(start
> offset
+ len
);
2213 end
= start
+ skb_frag_size(f
);
2214 if ((copy
= end
- offset
) > 0) {
2215 u32 p_off
, p_len
, copied
;
2222 skb_frag_foreach_page(f
,
2223 skb_frag_off(f
) + offset
- start
,
2224 copy
, p
, p_off
, p_len
, copied
) {
2225 vaddr
= kmap_atomic(p
);
2226 memcpy(to
+ copied
, vaddr
+ p_off
, p_len
);
2227 kunmap_atomic(vaddr
);
2230 if ((len
-= copy
) == 0)
2238 skb_walk_frags(skb
, frag_iter
) {
2241 WARN_ON(start
> offset
+ len
);
2243 end
= start
+ frag_iter
->len
;
2244 if ((copy
= end
- offset
) > 0) {
2247 if (skb_copy_bits(frag_iter
, offset
- start
, to
, copy
))
2249 if ((len
-= copy
) == 0)
2263 EXPORT_SYMBOL(skb_copy_bits
);
2266 * Callback from splice_to_pipe(), if we need to release some pages
2267 * at the end of the spd in case we error'ed out in filling the pipe.
2269 static void sock_spd_release(struct splice_pipe_desc
*spd
, unsigned int i
)
2271 put_page(spd
->pages
[i
]);
2274 static struct page
*linear_to_page(struct page
*page
, unsigned int *len
,
2275 unsigned int *offset
,
2278 struct page_frag
*pfrag
= sk_page_frag(sk
);
2280 if (!sk_page_frag_refill(sk
, pfrag
))
2283 *len
= min_t(unsigned int, *len
, pfrag
->size
- pfrag
->offset
);
2285 memcpy(page_address(pfrag
->page
) + pfrag
->offset
,
2286 page_address(page
) + *offset
, *len
);
2287 *offset
= pfrag
->offset
;
2288 pfrag
->offset
+= *len
;
2293 static bool spd_can_coalesce(const struct splice_pipe_desc
*spd
,
2295 unsigned int offset
)
2297 return spd
->nr_pages
&&
2298 spd
->pages
[spd
->nr_pages
- 1] == page
&&
2299 (spd
->partial
[spd
->nr_pages
- 1].offset
+
2300 spd
->partial
[spd
->nr_pages
- 1].len
== offset
);
2304 * Fill page/offset/length into spd, if it can hold more pages.
2306 static bool spd_fill_page(struct splice_pipe_desc
*spd
,
2307 struct pipe_inode_info
*pipe
, struct page
*page
,
2308 unsigned int *len
, unsigned int offset
,
2312 if (unlikely(spd
->nr_pages
== MAX_SKB_FRAGS
))
2316 page
= linear_to_page(page
, len
, &offset
, sk
);
2320 if (spd_can_coalesce(spd
, page
, offset
)) {
2321 spd
->partial
[spd
->nr_pages
- 1].len
+= *len
;
2325 spd
->pages
[spd
->nr_pages
] = page
;
2326 spd
->partial
[spd
->nr_pages
].len
= *len
;
2327 spd
->partial
[spd
->nr_pages
].offset
= offset
;
2333 static bool __splice_segment(struct page
*page
, unsigned int poff
,
2334 unsigned int plen
, unsigned int *off
,
2336 struct splice_pipe_desc
*spd
, bool linear
,
2338 struct pipe_inode_info
*pipe
)
2343 /* skip this segment if already processed */
2349 /* ignore any bits we already processed */
2355 unsigned int flen
= min(*len
, plen
);
2357 if (spd_fill_page(spd
, pipe
, page
, &flen
, poff
,
2363 } while (*len
&& plen
);
2369 * Map linear and fragment data from the skb to spd. It reports true if the
2370 * pipe is full or if we already spliced the requested length.
2372 static bool __skb_splice_bits(struct sk_buff
*skb
, struct pipe_inode_info
*pipe
,
2373 unsigned int *offset
, unsigned int *len
,
2374 struct splice_pipe_desc
*spd
, struct sock
*sk
)
2377 struct sk_buff
*iter
;
2379 /* map the linear part :
2380 * If skb->head_frag is set, this 'linear' part is backed by a
2381 * fragment, and if the head is not shared with any clones then
2382 * we can avoid a copy since we own the head portion of this page.
2384 if (__splice_segment(virt_to_page(skb
->data
),
2385 (unsigned long) skb
->data
& (PAGE_SIZE
- 1),
2388 skb_head_is_locked(skb
),
2393 * then map the fragments
2395 for (seg
= 0; seg
< skb_shinfo(skb
)->nr_frags
; seg
++) {
2396 const skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[seg
];
2398 if (__splice_segment(skb_frag_page(f
),
2399 skb_frag_off(f
), skb_frag_size(f
),
2400 offset
, len
, spd
, false, sk
, pipe
))
2404 skb_walk_frags(skb
, iter
) {
2405 if (*offset
>= iter
->len
) {
2406 *offset
-= iter
->len
;
2409 /* __skb_splice_bits() only fails if the output has no room
2410 * left, so no point in going over the frag_list for the error
2413 if (__skb_splice_bits(iter
, pipe
, offset
, len
, spd
, sk
))
2421 * Map data from the skb to a pipe. Should handle both the linear part,
2422 * the fragments, and the frag list.
2424 int skb_splice_bits(struct sk_buff
*skb
, struct sock
*sk
, unsigned int offset
,
2425 struct pipe_inode_info
*pipe
, unsigned int tlen
,
2428 struct partial_page partial
[MAX_SKB_FRAGS
];
2429 struct page
*pages
[MAX_SKB_FRAGS
];
2430 struct splice_pipe_desc spd
= {
2433 .nr_pages_max
= MAX_SKB_FRAGS
,
2434 .ops
= &nosteal_pipe_buf_ops
,
2435 .spd_release
= sock_spd_release
,
2439 __skb_splice_bits(skb
, pipe
, &offset
, &tlen
, &spd
, sk
);
2442 ret
= splice_to_pipe(pipe
, &spd
);
2446 EXPORT_SYMBOL_GPL(skb_splice_bits
);
2448 /* Send skb data on a socket. Socket must be locked. */
2449 int skb_send_sock_locked(struct sock
*sk
, struct sk_buff
*skb
, int offset
,
2452 unsigned int orig_len
= len
;
2453 struct sk_buff
*head
= skb
;
2454 unsigned short fragidx
;
2459 /* Deal with head data */
2460 while (offset
< skb_headlen(skb
) && len
) {
2464 slen
= min_t(int, len
, skb_headlen(skb
) - offset
);
2465 kv
.iov_base
= skb
->data
+ offset
;
2467 memset(&msg
, 0, sizeof(msg
));
2468 msg
.msg_flags
= MSG_DONTWAIT
;
2470 ret
= kernel_sendmsg_locked(sk
, &msg
, &kv
, 1, slen
);
2478 /* All the data was skb head? */
2482 /* Make offset relative to start of frags */
2483 offset
-= skb_headlen(skb
);
2485 /* Find where we are in frag list */
2486 for (fragidx
= 0; fragidx
< skb_shinfo(skb
)->nr_frags
; fragidx
++) {
2487 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[fragidx
];
2489 if (offset
< skb_frag_size(frag
))
2492 offset
-= skb_frag_size(frag
);
2495 for (; len
&& fragidx
< skb_shinfo(skb
)->nr_frags
; fragidx
++) {
2496 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[fragidx
];
2498 slen
= min_t(size_t, len
, skb_frag_size(frag
) - offset
);
2501 ret
= kernel_sendpage_locked(sk
, skb_frag_page(frag
),
2502 skb_frag_off(frag
) + offset
,
2503 slen
, MSG_DONTWAIT
);
2516 /* Process any frag lists */
2519 if (skb_has_frag_list(skb
)) {
2520 skb
= skb_shinfo(skb
)->frag_list
;
2523 } else if (skb
->next
) {
2530 return orig_len
- len
;
2533 return orig_len
== len
? ret
: orig_len
- len
;
2535 EXPORT_SYMBOL_GPL(skb_send_sock_locked
);
2538 * skb_store_bits - store bits from kernel buffer to skb
2539 * @skb: destination buffer
2540 * @offset: offset in destination
2541 * @from: source buffer
2542 * @len: number of bytes to copy
2544 * Copy the specified number of bytes from the source buffer to the
2545 * destination skb. This function handles all the messy bits of
2546 * traversing fragment lists and such.
2549 int skb_store_bits(struct sk_buff
*skb
, int offset
, const void *from
, int len
)
2551 int start
= skb_headlen(skb
);
2552 struct sk_buff
*frag_iter
;
2555 if (offset
> (int)skb
->len
- len
)
2558 if ((copy
= start
- offset
) > 0) {
2561 skb_copy_to_linear_data_offset(skb
, offset
, from
, copy
);
2562 if ((len
-= copy
) == 0)
2568 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2569 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2572 WARN_ON(start
> offset
+ len
);
2574 end
= start
+ skb_frag_size(frag
);
2575 if ((copy
= end
- offset
) > 0) {
2576 u32 p_off
, p_len
, copied
;
2583 skb_frag_foreach_page(frag
,
2584 skb_frag_off(frag
) + offset
- start
,
2585 copy
, p
, p_off
, p_len
, copied
) {
2586 vaddr
= kmap_atomic(p
);
2587 memcpy(vaddr
+ p_off
, from
+ copied
, p_len
);
2588 kunmap_atomic(vaddr
);
2591 if ((len
-= copy
) == 0)
2599 skb_walk_frags(skb
, frag_iter
) {
2602 WARN_ON(start
> offset
+ len
);
2604 end
= start
+ frag_iter
->len
;
2605 if ((copy
= end
- offset
) > 0) {
2608 if (skb_store_bits(frag_iter
, offset
- start
,
2611 if ((len
-= copy
) == 0)
2624 EXPORT_SYMBOL(skb_store_bits
);
2626 /* Checksum skb data. */
2627 __wsum
__skb_checksum(const struct sk_buff
*skb
, int offset
, int len
,
2628 __wsum csum
, const struct skb_checksum_ops
*ops
)
2630 int start
= skb_headlen(skb
);
2631 int i
, copy
= start
- offset
;
2632 struct sk_buff
*frag_iter
;
2635 /* Checksum header. */
2639 csum
= INDIRECT_CALL_1(ops
->update
, csum_partial_ext
,
2640 skb
->data
+ offset
, copy
, csum
);
2641 if ((len
-= copy
) == 0)
2647 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2649 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2651 WARN_ON(start
> offset
+ len
);
2653 end
= start
+ skb_frag_size(frag
);
2654 if ((copy
= end
- offset
) > 0) {
2655 u32 p_off
, p_len
, copied
;
2663 skb_frag_foreach_page(frag
,
2664 skb_frag_off(frag
) + offset
- start
,
2665 copy
, p
, p_off
, p_len
, copied
) {
2666 vaddr
= kmap_atomic(p
);
2667 csum2
= INDIRECT_CALL_1(ops
->update
,
2669 vaddr
+ p_off
, p_len
, 0);
2670 kunmap_atomic(vaddr
);
2671 csum
= INDIRECT_CALL_1(ops
->combine
,
2672 csum_block_add_ext
, csum
,
2684 skb_walk_frags(skb
, frag_iter
) {
2687 WARN_ON(start
> offset
+ len
);
2689 end
= start
+ frag_iter
->len
;
2690 if ((copy
= end
- offset
) > 0) {
2694 csum2
= __skb_checksum(frag_iter
, offset
- start
,
2696 csum
= INDIRECT_CALL_1(ops
->combine
, csum_block_add_ext
,
2697 csum
, csum2
, pos
, copy
);
2698 if ((len
-= copy
) == 0)
2709 EXPORT_SYMBOL(__skb_checksum
);
2711 __wsum
skb_checksum(const struct sk_buff
*skb
, int offset
,
2712 int len
, __wsum csum
)
2714 const struct skb_checksum_ops ops
= {
2715 .update
= csum_partial_ext
,
2716 .combine
= csum_block_add_ext
,
2719 return __skb_checksum(skb
, offset
, len
, csum
, &ops
);
2721 EXPORT_SYMBOL(skb_checksum
);
2723 /* Both of above in one bottle. */
2725 __wsum
skb_copy_and_csum_bits(const struct sk_buff
*skb
, int offset
,
2726 u8
*to
, int len
, __wsum csum
)
2728 int start
= skb_headlen(skb
);
2729 int i
, copy
= start
- offset
;
2730 struct sk_buff
*frag_iter
;
2737 csum
= csum_partial_copy_nocheck(skb
->data
+ offset
, to
,
2739 if ((len
-= copy
) == 0)
2746 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2749 WARN_ON(start
> offset
+ len
);
2751 end
= start
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
2752 if ((copy
= end
- offset
) > 0) {
2753 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2754 u32 p_off
, p_len
, copied
;
2762 skb_frag_foreach_page(frag
,
2763 skb_frag_off(frag
) + offset
- start
,
2764 copy
, p
, p_off
, p_len
, copied
) {
2765 vaddr
= kmap_atomic(p
);
2766 csum2
= csum_partial_copy_nocheck(vaddr
+ p_off
,
2769 kunmap_atomic(vaddr
);
2770 csum
= csum_block_add(csum
, csum2
, pos
);
2782 skb_walk_frags(skb
, frag_iter
) {
2786 WARN_ON(start
> offset
+ len
);
2788 end
= start
+ frag_iter
->len
;
2789 if ((copy
= end
- offset
) > 0) {
2792 csum2
= skb_copy_and_csum_bits(frag_iter
,
2795 csum
= csum_block_add(csum
, csum2
, pos
);
2796 if ((len
-= copy
) == 0)
2807 EXPORT_SYMBOL(skb_copy_and_csum_bits
);
2809 __sum16
__skb_checksum_complete_head(struct sk_buff
*skb
, int len
)
2813 sum
= csum_fold(skb_checksum(skb
, 0, len
, skb
->csum
));
2814 /* See comments in __skb_checksum_complete(). */
2816 if (unlikely(skb
->ip_summed
== CHECKSUM_COMPLETE
) &&
2817 !skb
->csum_complete_sw
)
2818 netdev_rx_csum_fault(skb
->dev
, skb
);
2820 if (!skb_shared(skb
))
2821 skb
->csum_valid
= !sum
;
2824 EXPORT_SYMBOL(__skb_checksum_complete_head
);
2826 /* This function assumes skb->csum already holds pseudo header's checksum,
2827 * which has been changed from the hardware checksum, for example, by
2828 * __skb_checksum_validate_complete(). And, the original skb->csum must
2829 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2831 * It returns non-zero if the recomputed checksum is still invalid, otherwise
2832 * zero. The new checksum is stored back into skb->csum unless the skb is
2835 __sum16
__skb_checksum_complete(struct sk_buff
*skb
)
2840 csum
= skb_checksum(skb
, 0, skb
->len
, 0);
2842 sum
= csum_fold(csum_add(skb
->csum
, csum
));
2843 /* This check is inverted, because we already knew the hardware
2844 * checksum is invalid before calling this function. So, if the
2845 * re-computed checksum is valid instead, then we have a mismatch
2846 * between the original skb->csum and skb_checksum(). This means either
2847 * the original hardware checksum is incorrect or we screw up skb->csum
2848 * when moving skb->data around.
2851 if (unlikely(skb
->ip_summed
== CHECKSUM_COMPLETE
) &&
2852 !skb
->csum_complete_sw
)
2853 netdev_rx_csum_fault(skb
->dev
, skb
);
2856 if (!skb_shared(skb
)) {
2857 /* Save full packet checksum */
2859 skb
->ip_summed
= CHECKSUM_COMPLETE
;
2860 skb
->csum_complete_sw
= 1;
2861 skb
->csum_valid
= !sum
;
2866 EXPORT_SYMBOL(__skb_checksum_complete
);
2868 static __wsum
warn_crc32c_csum_update(const void *buff
, int len
, __wsum sum
)
2870 net_warn_ratelimited(
2871 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2876 static __wsum
warn_crc32c_csum_combine(__wsum csum
, __wsum csum2
,
2877 int offset
, int len
)
2879 net_warn_ratelimited(
2880 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2885 static const struct skb_checksum_ops default_crc32c_ops
= {
2886 .update
= warn_crc32c_csum_update
,
2887 .combine
= warn_crc32c_csum_combine
,
2890 const struct skb_checksum_ops
*crc32c_csum_stub __read_mostly
=
2891 &default_crc32c_ops
;
2892 EXPORT_SYMBOL(crc32c_csum_stub
);
2895 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2896 * @from: source buffer
2898 * Calculates the amount of linear headroom needed in the 'to' skb passed
2899 * into skb_zerocopy().
2902 skb_zerocopy_headlen(const struct sk_buff
*from
)
2904 unsigned int hlen
= 0;
2906 if (!from
->head_frag
||
2907 skb_headlen(from
) < L1_CACHE_BYTES
||
2908 skb_shinfo(from
)->nr_frags
>= MAX_SKB_FRAGS
)
2909 hlen
= skb_headlen(from
);
2911 if (skb_has_frag_list(from
))
2916 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen
);
2919 * skb_zerocopy - Zero copy skb to skb
2920 * @to: destination buffer
2921 * @from: source buffer
2922 * @len: number of bytes to copy from source buffer
2923 * @hlen: size of linear headroom in destination buffer
2925 * Copies up to `len` bytes from `from` to `to` by creating references
2926 * to the frags in the source buffer.
2928 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2929 * headroom in the `to` buffer.
2932 * 0: everything is OK
2933 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2934 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2937 skb_zerocopy(struct sk_buff
*to
, struct sk_buff
*from
, int len
, int hlen
)
2940 int plen
= 0; /* length of skb->head fragment */
2943 unsigned int offset
;
2945 BUG_ON(!from
->head_frag
&& !hlen
);
2947 /* dont bother with small payloads */
2948 if (len
<= skb_tailroom(to
))
2949 return skb_copy_bits(from
, 0, skb_put(to
, len
), len
);
2952 ret
= skb_copy_bits(from
, 0, skb_put(to
, hlen
), hlen
);
2957 plen
= min_t(int, skb_headlen(from
), len
);
2959 page
= virt_to_head_page(from
->head
);
2960 offset
= from
->data
- (unsigned char *)page_address(page
);
2961 __skb_fill_page_desc(to
, 0, page
, offset
, plen
);
2968 to
->truesize
+= len
+ plen
;
2969 to
->len
+= len
+ plen
;
2970 to
->data_len
+= len
+ plen
;
2972 if (unlikely(skb_orphan_frags(from
, GFP_ATOMIC
))) {
2976 skb_zerocopy_clone(to
, from
, GFP_ATOMIC
);
2978 for (i
= 0; i
< skb_shinfo(from
)->nr_frags
; i
++) {
2983 skb_shinfo(to
)->frags
[j
] = skb_shinfo(from
)->frags
[i
];
2984 size
= min_t(int, skb_frag_size(&skb_shinfo(to
)->frags
[j
]),
2986 skb_frag_size_set(&skb_shinfo(to
)->frags
[j
], size
);
2988 skb_frag_ref(to
, j
);
2991 skb_shinfo(to
)->nr_frags
= j
;
2995 EXPORT_SYMBOL_GPL(skb_zerocopy
);
2997 void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
)
3002 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
3003 csstart
= skb_checksum_start_offset(skb
);
3005 csstart
= skb_headlen(skb
);
3007 BUG_ON(csstart
> skb_headlen(skb
));
3009 skb_copy_from_linear_data(skb
, to
, csstart
);
3012 if (csstart
!= skb
->len
)
3013 csum
= skb_copy_and_csum_bits(skb
, csstart
, to
+ csstart
,
3014 skb
->len
- csstart
, 0);
3016 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
3017 long csstuff
= csstart
+ skb
->csum_offset
;
3019 *((__sum16
*)(to
+ csstuff
)) = csum_fold(csum
);
3022 EXPORT_SYMBOL(skb_copy_and_csum_dev
);
3025 * skb_dequeue - remove from the head of the queue
3026 * @list: list to dequeue from
3028 * Remove the head of the list. The list lock is taken so the function
3029 * may be used safely with other locking list functions. The head item is
3030 * returned or %NULL if the list is empty.
3033 struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
)
3035 unsigned long flags
;
3036 struct sk_buff
*result
;
3038 spin_lock_irqsave(&list
->lock
, flags
);
3039 result
= __skb_dequeue(list
);
3040 spin_unlock_irqrestore(&list
->lock
, flags
);
3043 EXPORT_SYMBOL(skb_dequeue
);
3046 * skb_dequeue_tail - remove from the tail of the queue
3047 * @list: list to dequeue from
3049 * Remove the tail of the list. The list lock is taken so the function
3050 * may be used safely with other locking list functions. The tail item is
3051 * returned or %NULL if the list is empty.
3053 struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
)
3055 unsigned long flags
;
3056 struct sk_buff
*result
;
3058 spin_lock_irqsave(&list
->lock
, flags
);
3059 result
= __skb_dequeue_tail(list
);
3060 spin_unlock_irqrestore(&list
->lock
, flags
);
3063 EXPORT_SYMBOL(skb_dequeue_tail
);
3066 * skb_queue_purge - empty a list
3067 * @list: list to empty
3069 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3070 * the list and one reference dropped. This function takes the list
3071 * lock and is atomic with respect to other list locking functions.
3073 void skb_queue_purge(struct sk_buff_head
*list
)
3075 struct sk_buff
*skb
;
3076 while ((skb
= skb_dequeue(list
)) != NULL
)
3079 EXPORT_SYMBOL(skb_queue_purge
);
3082 * skb_rbtree_purge - empty a skb rbtree
3083 * @root: root of the rbtree to empty
3084 * Return value: the sum of truesizes of all purged skbs.
3086 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3087 * the list and one reference dropped. This function does not take
3088 * any lock. Synchronization should be handled by the caller (e.g., TCP
3089 * out-of-order queue is protected by the socket lock).
3091 unsigned int skb_rbtree_purge(struct rb_root
*root
)
3093 struct rb_node
*p
= rb_first(root
);
3094 unsigned int sum
= 0;
3097 struct sk_buff
*skb
= rb_entry(p
, struct sk_buff
, rbnode
);
3100 rb_erase(&skb
->rbnode
, root
);
3101 sum
+= skb
->truesize
;
3108 * skb_queue_head - queue a buffer at the list head
3109 * @list: list to use
3110 * @newsk: buffer to queue
3112 * Queue a buffer at the start of the list. This function takes the
3113 * list lock and can be used safely with other locking &sk_buff functions
3116 * A buffer cannot be placed on two lists at the same time.
3118 void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
3120 unsigned long flags
;
3122 spin_lock_irqsave(&list
->lock
, flags
);
3123 __skb_queue_head(list
, newsk
);
3124 spin_unlock_irqrestore(&list
->lock
, flags
);
3126 EXPORT_SYMBOL(skb_queue_head
);
3129 * skb_queue_tail - queue a buffer at the list tail
3130 * @list: list to use
3131 * @newsk: buffer to queue
3133 * Queue a buffer at the tail of the list. This function takes the
3134 * list lock and can be used safely with other locking &sk_buff functions
3137 * A buffer cannot be placed on two lists at the same time.
3139 void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
3141 unsigned long flags
;
3143 spin_lock_irqsave(&list
->lock
, flags
);
3144 __skb_queue_tail(list
, newsk
);
3145 spin_unlock_irqrestore(&list
->lock
, flags
);
3147 EXPORT_SYMBOL(skb_queue_tail
);
3150 * skb_unlink - remove a buffer from a list
3151 * @skb: buffer to remove
3152 * @list: list to use
3154 * Remove a packet from a list. The list locks are taken and this
3155 * function is atomic with respect to other list locked calls
3157 * You must know what list the SKB is on.
3159 void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
3161 unsigned long flags
;
3163 spin_lock_irqsave(&list
->lock
, flags
);
3164 __skb_unlink(skb
, list
);
3165 spin_unlock_irqrestore(&list
->lock
, flags
);
3167 EXPORT_SYMBOL(skb_unlink
);
3170 * skb_append - append a buffer
3171 * @old: buffer to insert after
3172 * @newsk: buffer to insert
3173 * @list: list to use
3175 * Place a packet after a given packet in a list. The list locks are taken
3176 * and this function is atomic with respect to other list locked calls.
3177 * A buffer cannot be placed on two lists at the same time.
3179 void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
3181 unsigned long flags
;
3183 spin_lock_irqsave(&list
->lock
, flags
);
3184 __skb_queue_after(list
, old
, newsk
);
3185 spin_unlock_irqrestore(&list
->lock
, flags
);
3187 EXPORT_SYMBOL(skb_append
);
3189 static inline void skb_split_inside_header(struct sk_buff
*skb
,
3190 struct sk_buff
* skb1
,
3191 const u32 len
, const int pos
)
3195 skb_copy_from_linear_data_offset(skb
, len
, skb_put(skb1
, pos
- len
),
3197 /* And move data appendix as is. */
3198 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
3199 skb_shinfo(skb1
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
3201 skb_shinfo(skb1
)->nr_frags
= skb_shinfo(skb
)->nr_frags
;
3202 skb_shinfo(skb
)->nr_frags
= 0;
3203 skb1
->data_len
= skb
->data_len
;
3204 skb1
->len
+= skb1
->data_len
;
3207 skb_set_tail_pointer(skb
, len
);
3210 static inline void skb_split_no_header(struct sk_buff
*skb
,
3211 struct sk_buff
* skb1
,
3212 const u32 len
, int pos
)
3215 const int nfrags
= skb_shinfo(skb
)->nr_frags
;
3217 skb_shinfo(skb
)->nr_frags
= 0;
3218 skb1
->len
= skb1
->data_len
= skb
->len
- len
;
3220 skb
->data_len
= len
- pos
;
3222 for (i
= 0; i
< nfrags
; i
++) {
3223 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
3225 if (pos
+ size
> len
) {
3226 skb_shinfo(skb1
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
3230 * We have two variants in this case:
3231 * 1. Move all the frag to the second
3232 * part, if it is possible. F.e.
3233 * this approach is mandatory for TUX,
3234 * where splitting is expensive.
3235 * 2. Split is accurately. We make this.
3237 skb_frag_ref(skb
, i
);
3238 skb_frag_off_add(&skb_shinfo(skb1
)->frags
[0], len
- pos
);
3239 skb_frag_size_sub(&skb_shinfo(skb1
)->frags
[0], len
- pos
);
3240 skb_frag_size_set(&skb_shinfo(skb
)->frags
[i
], len
- pos
);
3241 skb_shinfo(skb
)->nr_frags
++;
3245 skb_shinfo(skb
)->nr_frags
++;
3248 skb_shinfo(skb1
)->nr_frags
= k
;
3252 * skb_split - Split fragmented skb to two parts at length len.
3253 * @skb: the buffer to split
3254 * @skb1: the buffer to receive the second part
3255 * @len: new length for skb
3257 void skb_split(struct sk_buff
*skb
, struct sk_buff
*skb1
, const u32 len
)
3259 int pos
= skb_headlen(skb
);
3261 skb_shinfo(skb1
)->tx_flags
|= skb_shinfo(skb
)->tx_flags
&
3263 skb_zerocopy_clone(skb1
, skb
, 0);
3264 if (len
< pos
) /* Split line is inside header. */
3265 skb_split_inside_header(skb
, skb1
, len
, pos
);
3266 else /* Second chunk has no header, nothing to copy. */
3267 skb_split_no_header(skb
, skb1
, len
, pos
);
3269 EXPORT_SYMBOL(skb_split
);
3271 /* Shifting from/to a cloned skb is a no-go.
3273 * Caller cannot keep skb_shinfo related pointers past calling here!
3275 static int skb_prepare_for_shift(struct sk_buff
*skb
)
3277 return skb_cloned(skb
) && pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
3281 * skb_shift - Shifts paged data partially from skb to another
3282 * @tgt: buffer into which tail data gets added
3283 * @skb: buffer from which the paged data comes from
3284 * @shiftlen: shift up to this many bytes
3286 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3287 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3288 * It's up to caller to free skb if everything was shifted.
3290 * If @tgt runs out of frags, the whole operation is aborted.
3292 * Skb cannot include anything else but paged data while tgt is allowed
3293 * to have non-paged data as well.
3295 * TODO: full sized shift could be optimized but that would need
3296 * specialized skb free'er to handle frags without up-to-date nr_frags.
3298 int skb_shift(struct sk_buff
*tgt
, struct sk_buff
*skb
, int shiftlen
)
3300 int from
, to
, merge
, todo
;
3301 skb_frag_t
*fragfrom
, *fragto
;
3303 BUG_ON(shiftlen
> skb
->len
);
3305 if (skb_headlen(skb
))
3307 if (skb_zcopy(tgt
) || skb_zcopy(skb
))
3312 to
= skb_shinfo(tgt
)->nr_frags
;
3313 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
3315 /* Actual merge is delayed until the point when we know we can
3316 * commit all, so that we don't have to undo partial changes
3319 !skb_can_coalesce(tgt
, to
, skb_frag_page(fragfrom
),
3320 skb_frag_off(fragfrom
))) {
3325 todo
-= skb_frag_size(fragfrom
);
3327 if (skb_prepare_for_shift(skb
) ||
3328 skb_prepare_for_shift(tgt
))
3331 /* All previous frag pointers might be stale! */
3332 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
3333 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
3335 skb_frag_size_add(fragto
, shiftlen
);
3336 skb_frag_size_sub(fragfrom
, shiftlen
);
3337 skb_frag_off_add(fragfrom
, shiftlen
);
3345 /* Skip full, not-fitting skb to avoid expensive operations */
3346 if ((shiftlen
== skb
->len
) &&
3347 (skb_shinfo(skb
)->nr_frags
- from
) > (MAX_SKB_FRAGS
- to
))
3350 if (skb_prepare_for_shift(skb
) || skb_prepare_for_shift(tgt
))
3353 while ((todo
> 0) && (from
< skb_shinfo(skb
)->nr_frags
)) {
3354 if (to
== MAX_SKB_FRAGS
)
3357 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
3358 fragto
= &skb_shinfo(tgt
)->frags
[to
];
3360 if (todo
>= skb_frag_size(fragfrom
)) {
3361 *fragto
= *fragfrom
;
3362 todo
-= skb_frag_size(fragfrom
);
3367 __skb_frag_ref(fragfrom
);
3368 skb_frag_page_copy(fragto
, fragfrom
);
3369 skb_frag_off_copy(fragto
, fragfrom
);
3370 skb_frag_size_set(fragto
, todo
);
3372 skb_frag_off_add(fragfrom
, todo
);
3373 skb_frag_size_sub(fragfrom
, todo
);
3381 /* Ready to "commit" this state change to tgt */
3382 skb_shinfo(tgt
)->nr_frags
= to
;
3385 fragfrom
= &skb_shinfo(skb
)->frags
[0];
3386 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
3388 skb_frag_size_add(fragto
, skb_frag_size(fragfrom
));
3389 __skb_frag_unref(fragfrom
);
3392 /* Reposition in the original skb */
3394 while (from
< skb_shinfo(skb
)->nr_frags
)
3395 skb_shinfo(skb
)->frags
[to
++] = skb_shinfo(skb
)->frags
[from
++];
3396 skb_shinfo(skb
)->nr_frags
= to
;
3398 BUG_ON(todo
> 0 && !skb_shinfo(skb
)->nr_frags
);
3401 /* Most likely the tgt won't ever need its checksum anymore, skb on
3402 * the other hand might need it if it needs to be resent
3404 tgt
->ip_summed
= CHECKSUM_PARTIAL
;
3405 skb
->ip_summed
= CHECKSUM_PARTIAL
;
3407 /* Yak, is it really working this way? Some helper please? */
3408 skb
->len
-= shiftlen
;
3409 skb
->data_len
-= shiftlen
;
3410 skb
->truesize
-= shiftlen
;
3411 tgt
->len
+= shiftlen
;
3412 tgt
->data_len
+= shiftlen
;
3413 tgt
->truesize
+= shiftlen
;
3419 * skb_prepare_seq_read - Prepare a sequential read of skb data
3420 * @skb: the buffer to read
3421 * @from: lower offset of data to be read
3422 * @to: upper offset of data to be read
3423 * @st: state variable
3425 * Initializes the specified state variable. Must be called before
3426 * invoking skb_seq_read() for the first time.
3428 void skb_prepare_seq_read(struct sk_buff
*skb
, unsigned int from
,
3429 unsigned int to
, struct skb_seq_state
*st
)
3431 st
->lower_offset
= from
;
3432 st
->upper_offset
= to
;
3433 st
->root_skb
= st
->cur_skb
= skb
;
3434 st
->frag_idx
= st
->stepped_offset
= 0;
3435 st
->frag_data
= NULL
;
3437 EXPORT_SYMBOL(skb_prepare_seq_read
);
3440 * skb_seq_read - Sequentially read skb data
3441 * @consumed: number of bytes consumed by the caller so far
3442 * @data: destination pointer for data to be returned
3443 * @st: state variable
3445 * Reads a block of skb data at @consumed relative to the
3446 * lower offset specified to skb_prepare_seq_read(). Assigns
3447 * the head of the data block to @data and returns the length
3448 * of the block or 0 if the end of the skb data or the upper
3449 * offset has been reached.
3451 * The caller is not required to consume all of the data
3452 * returned, i.e. @consumed is typically set to the number
3453 * of bytes already consumed and the next call to
3454 * skb_seq_read() will return the remaining part of the block.
3456 * Note 1: The size of each block of data returned can be arbitrary,
3457 * this limitation is the cost for zerocopy sequential
3458 * reads of potentially non linear data.
3460 * Note 2: Fragment lists within fragments are not implemented
3461 * at the moment, state->root_skb could be replaced with
3462 * a stack for this purpose.
3464 unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
3465 struct skb_seq_state
*st
)
3467 unsigned int block_limit
, abs_offset
= consumed
+ st
->lower_offset
;
3470 if (unlikely(abs_offset
>= st
->upper_offset
)) {
3471 if (st
->frag_data
) {
3472 kunmap_atomic(st
->frag_data
);
3473 st
->frag_data
= NULL
;
3479 block_limit
= skb_headlen(st
->cur_skb
) + st
->stepped_offset
;
3481 if (abs_offset
< block_limit
&& !st
->frag_data
) {
3482 *data
= st
->cur_skb
->data
+ (abs_offset
- st
->stepped_offset
);
3483 return block_limit
- abs_offset
;
3486 if (st
->frag_idx
== 0 && !st
->frag_data
)
3487 st
->stepped_offset
+= skb_headlen(st
->cur_skb
);
3489 while (st
->frag_idx
< skb_shinfo(st
->cur_skb
)->nr_frags
) {
3490 frag
= &skb_shinfo(st
->cur_skb
)->frags
[st
->frag_idx
];
3491 block_limit
= skb_frag_size(frag
) + st
->stepped_offset
;
3493 if (abs_offset
< block_limit
) {
3495 st
->frag_data
= kmap_atomic(skb_frag_page(frag
));
3497 *data
= (u8
*) st
->frag_data
+ skb_frag_off(frag
) +
3498 (abs_offset
- st
->stepped_offset
);
3500 return block_limit
- abs_offset
;
3503 if (st
->frag_data
) {
3504 kunmap_atomic(st
->frag_data
);
3505 st
->frag_data
= NULL
;
3509 st
->stepped_offset
+= skb_frag_size(frag
);
3512 if (st
->frag_data
) {
3513 kunmap_atomic(st
->frag_data
);
3514 st
->frag_data
= NULL
;
3517 if (st
->root_skb
== st
->cur_skb
&& skb_has_frag_list(st
->root_skb
)) {
3518 st
->cur_skb
= skb_shinfo(st
->root_skb
)->frag_list
;
3521 } else if (st
->cur_skb
->next
) {
3522 st
->cur_skb
= st
->cur_skb
->next
;
3529 EXPORT_SYMBOL(skb_seq_read
);
3532 * skb_abort_seq_read - Abort a sequential read of skb data
3533 * @st: state variable
3535 * Must be called if skb_seq_read() was not called until it
3538 void skb_abort_seq_read(struct skb_seq_state
*st
)
3541 kunmap_atomic(st
->frag_data
);
3543 EXPORT_SYMBOL(skb_abort_seq_read
);
3545 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3547 static unsigned int skb_ts_get_next_block(unsigned int offset
, const u8
**text
,
3548 struct ts_config
*conf
,
3549 struct ts_state
*state
)
3551 return skb_seq_read(offset
, text
, TS_SKB_CB(state
));
3554 static void skb_ts_finish(struct ts_config
*conf
, struct ts_state
*state
)
3556 skb_abort_seq_read(TS_SKB_CB(state
));
3560 * skb_find_text - Find a text pattern in skb data
3561 * @skb: the buffer to look in
3562 * @from: search offset
3564 * @config: textsearch configuration
3566 * Finds a pattern in the skb data according to the specified
3567 * textsearch configuration. Use textsearch_next() to retrieve
3568 * subsequent occurrences of the pattern. Returns the offset
3569 * to the first occurrence or UINT_MAX if no match was found.
3571 unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
3572 unsigned int to
, struct ts_config
*config
)
3574 struct ts_state state
;
3577 config
->get_next_block
= skb_ts_get_next_block
;
3578 config
->finish
= skb_ts_finish
;
3580 skb_prepare_seq_read(skb
, from
, to
, TS_SKB_CB(&state
));
3582 ret
= textsearch_find(config
, &state
);
3583 return (ret
<= to
- from
? ret
: UINT_MAX
);
3585 EXPORT_SYMBOL(skb_find_text
);
3587 int skb_append_pagefrags(struct sk_buff
*skb
, struct page
*page
,
3588 int offset
, size_t size
)
3590 int i
= skb_shinfo(skb
)->nr_frags
;
3592 if (skb_can_coalesce(skb
, i
, page
, offset
)) {
3593 skb_frag_size_add(&skb_shinfo(skb
)->frags
[i
- 1], size
);
3594 } else if (i
< MAX_SKB_FRAGS
) {
3596 skb_fill_page_desc(skb
, i
, page
, offset
, size
);
3603 EXPORT_SYMBOL_GPL(skb_append_pagefrags
);
3606 * skb_pull_rcsum - pull skb and update receive checksum
3607 * @skb: buffer to update
3608 * @len: length of data pulled
3610 * This function performs an skb_pull on the packet and updates
3611 * the CHECKSUM_COMPLETE checksum. It should be used on
3612 * receive path processing instead of skb_pull unless you know
3613 * that the checksum difference is zero (e.g., a valid IP header)
3614 * or you are setting ip_summed to CHECKSUM_NONE.
3616 void *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
)
3618 unsigned char *data
= skb
->data
;
3620 BUG_ON(len
> skb
->len
);
3621 __skb_pull(skb
, len
);
3622 skb_postpull_rcsum(skb
, data
, len
);
3625 EXPORT_SYMBOL_GPL(skb_pull_rcsum
);
3627 static inline skb_frag_t
skb_head_frag_to_page_desc(struct sk_buff
*frag_skb
)
3629 skb_frag_t head_frag
;
3632 page
= virt_to_head_page(frag_skb
->head
);
3633 __skb_frag_set_page(&head_frag
, page
);
3634 skb_frag_off_set(&head_frag
, frag_skb
->data
-
3635 (unsigned char *)page_address(page
));
3636 skb_frag_size_set(&head_frag
, skb_headlen(frag_skb
));
3640 struct sk_buff
*skb_segment_list(struct sk_buff
*skb
,
3641 netdev_features_t features
,
3642 unsigned int offset
)
3644 struct sk_buff
*list_skb
= skb_shinfo(skb
)->frag_list
;
3645 unsigned int tnl_hlen
= skb_tnl_header_len(skb
);
3646 unsigned int delta_truesize
= 0;
3647 unsigned int delta_len
= 0;
3648 struct sk_buff
*tail
= NULL
;
3649 struct sk_buff
*nskb
;
3651 skb_push(skb
, -skb_network_offset(skb
) + offset
);
3653 skb_shinfo(skb
)->frag_list
= NULL
;
3657 list_skb
= list_skb
->next
;
3666 delta_len
+= nskb
->len
;
3667 delta_truesize
+= nskb
->truesize
;
3669 skb_push(nskb
, -skb_network_offset(nskb
) + offset
);
3671 skb_release_head_state(nskb
);
3672 __copy_skb_header(nskb
, skb
);
3674 skb_headers_offset_update(nskb
, skb_headroom(nskb
) - skb_headroom(skb
));
3675 skb_copy_from_linear_data_offset(skb
, -tnl_hlen
,
3676 nskb
->data
- tnl_hlen
,
3679 if (skb_needs_linearize(nskb
, features
) &&
3680 __skb_linearize(nskb
))
3685 skb
->truesize
= skb
->truesize
- delta_truesize
;
3686 skb
->data_len
= skb
->data_len
- delta_len
;
3687 skb
->len
= skb
->len
- delta_len
;
3693 if (skb_needs_linearize(skb
, features
) &&
3694 __skb_linearize(skb
))
3702 kfree_skb_list(skb
->next
);
3704 return ERR_PTR(-ENOMEM
);
3706 EXPORT_SYMBOL_GPL(skb_segment_list
);
3708 int skb_gro_receive_list(struct sk_buff
*p
, struct sk_buff
*skb
)
3710 if (unlikely(p
->len
+ skb
->len
>= 65536))
3713 if (NAPI_GRO_CB(p
)->last
== p
)
3714 skb_shinfo(p
)->frag_list
= skb
;
3716 NAPI_GRO_CB(p
)->last
->next
= skb
;
3718 skb_pull(skb
, skb_gro_offset(skb
));
3720 NAPI_GRO_CB(p
)->last
= skb
;
3721 NAPI_GRO_CB(p
)->count
++;
3722 p
->data_len
+= skb
->len
;
3723 p
->truesize
+= skb
->truesize
;
3726 NAPI_GRO_CB(skb
)->same_flow
= 1;
3730 EXPORT_SYMBOL_GPL(skb_gro_receive_list
);
3733 * skb_segment - Perform protocol segmentation on skb.
3734 * @head_skb: buffer to segment
3735 * @features: features for the output path (see dev->features)
3737 * This function performs segmentation on the given skb. It returns
3738 * a pointer to the first in a list of new skbs for the segments.
3739 * In case of error it returns ERR_PTR(err).
3741 struct sk_buff
*skb_segment(struct sk_buff
*head_skb
,
3742 netdev_features_t features
)
3744 struct sk_buff
*segs
= NULL
;
3745 struct sk_buff
*tail
= NULL
;
3746 struct sk_buff
*list_skb
= skb_shinfo(head_skb
)->frag_list
;
3747 skb_frag_t
*frag
= skb_shinfo(head_skb
)->frags
;
3748 unsigned int mss
= skb_shinfo(head_skb
)->gso_size
;
3749 unsigned int doffset
= head_skb
->data
- skb_mac_header(head_skb
);
3750 struct sk_buff
*frag_skb
= head_skb
;
3751 unsigned int offset
= doffset
;
3752 unsigned int tnl_hlen
= skb_tnl_header_len(head_skb
);
3753 unsigned int partial_segs
= 0;
3754 unsigned int headroom
;
3755 unsigned int len
= head_skb
->len
;
3758 int nfrags
= skb_shinfo(head_skb
)->nr_frags
;
3764 if (list_skb
&& !list_skb
->head_frag
&& skb_headlen(list_skb
) &&
3765 (skb_shinfo(head_skb
)->gso_type
& SKB_GSO_DODGY
)) {
3766 /* gso_size is untrusted, and we have a frag_list with a linear
3767 * non head_frag head.
3769 * (we assume checking the first list_skb member suffices;
3770 * i.e if either of the list_skb members have non head_frag
3771 * head, then the first one has too).
3773 * If head_skb's headlen does not fit requested gso_size, it
3774 * means that the frag_list members do NOT terminate on exact
3775 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3776 * sharing. Therefore we must fallback to copying the frag_list
3777 * skbs; we do so by disabling SG.
3779 if (mss
!= GSO_BY_FRAGS
&& mss
!= skb_headlen(head_skb
))
3780 features
&= ~NETIF_F_SG
;
3783 __skb_push(head_skb
, doffset
);
3784 proto
= skb_network_protocol(head_skb
, &dummy
);
3785 if (unlikely(!proto
))
3786 return ERR_PTR(-EINVAL
);
3788 sg
= !!(features
& NETIF_F_SG
);
3789 csum
= !!can_checksum_protocol(features
, proto
);
3791 if (sg
&& csum
&& (mss
!= GSO_BY_FRAGS
)) {
3792 if (!(features
& NETIF_F_GSO_PARTIAL
)) {
3793 struct sk_buff
*iter
;
3794 unsigned int frag_len
;
3797 !net_gso_ok(features
, skb_shinfo(head_skb
)->gso_type
))
3800 /* If we get here then all the required
3801 * GSO features except frag_list are supported.
3802 * Try to split the SKB to multiple GSO SKBs
3803 * with no frag_list.
3804 * Currently we can do that only when the buffers don't
3805 * have a linear part and all the buffers except
3806 * the last are of the same length.
3808 frag_len
= list_skb
->len
;
3809 skb_walk_frags(head_skb
, iter
) {
3810 if (frag_len
!= iter
->len
&& iter
->next
)
3812 if (skb_headlen(iter
) && !iter
->head_frag
)
3818 if (len
!= frag_len
)
3822 /* GSO partial only requires that we trim off any excess that
3823 * doesn't fit into an MSS sized block, so take care of that
3826 partial_segs
= len
/ mss
;
3827 if (partial_segs
> 1)
3828 mss
*= partial_segs
;
3834 headroom
= skb_headroom(head_skb
);
3835 pos
= skb_headlen(head_skb
);
3838 struct sk_buff
*nskb
;
3839 skb_frag_t
*nskb_frag
;
3843 if (unlikely(mss
== GSO_BY_FRAGS
)) {
3844 len
= list_skb
->len
;
3846 len
= head_skb
->len
- offset
;
3851 hsize
= skb_headlen(head_skb
) - offset
;
3854 if (hsize
> len
|| !sg
)
3857 if (!hsize
&& i
>= nfrags
&& skb_headlen(list_skb
) &&
3858 (skb_headlen(list_skb
) == len
|| sg
)) {
3859 BUG_ON(skb_headlen(list_skb
) > len
);
3862 nfrags
= skb_shinfo(list_skb
)->nr_frags
;
3863 frag
= skb_shinfo(list_skb
)->frags
;
3864 frag_skb
= list_skb
;
3865 pos
+= skb_headlen(list_skb
);
3867 while (pos
< offset
+ len
) {
3868 BUG_ON(i
>= nfrags
);
3870 size
= skb_frag_size(frag
);
3871 if (pos
+ size
> offset
+ len
)
3879 nskb
= skb_clone(list_skb
, GFP_ATOMIC
);
3880 list_skb
= list_skb
->next
;
3882 if (unlikely(!nskb
))
3885 if (unlikely(pskb_trim(nskb
, len
))) {
3890 hsize
= skb_end_offset(nskb
);
3891 if (skb_cow_head(nskb
, doffset
+ headroom
)) {
3896 nskb
->truesize
+= skb_end_offset(nskb
) - hsize
;
3897 skb_release_head_state(nskb
);
3898 __skb_push(nskb
, doffset
);
3900 nskb
= __alloc_skb(hsize
+ doffset
+ headroom
,
3901 GFP_ATOMIC
, skb_alloc_rx_flag(head_skb
),
3904 if (unlikely(!nskb
))
3907 skb_reserve(nskb
, headroom
);
3908 __skb_put(nskb
, doffset
);
3917 __copy_skb_header(nskb
, head_skb
);
3919 skb_headers_offset_update(nskb
, skb_headroom(nskb
) - headroom
);
3920 skb_reset_mac_len(nskb
);
3922 skb_copy_from_linear_data_offset(head_skb
, -tnl_hlen
,
3923 nskb
->data
- tnl_hlen
,
3924 doffset
+ tnl_hlen
);
3926 if (nskb
->len
== len
+ doffset
)
3927 goto perform_csum_check
;
3931 if (!nskb
->remcsum_offload
)
3932 nskb
->ip_summed
= CHECKSUM_NONE
;
3933 SKB_GSO_CB(nskb
)->csum
=
3934 skb_copy_and_csum_bits(head_skb
, offset
,
3938 SKB_GSO_CB(nskb
)->csum_start
=
3939 skb_headroom(nskb
) + doffset
;
3941 skb_copy_bits(head_skb
, offset
,
3948 nskb_frag
= skb_shinfo(nskb
)->frags
;
3950 skb_copy_from_linear_data_offset(head_skb
, offset
,
3951 skb_put(nskb
, hsize
), hsize
);
3953 skb_shinfo(nskb
)->tx_flags
|= skb_shinfo(head_skb
)->tx_flags
&
3956 if (skb_orphan_frags(frag_skb
, GFP_ATOMIC
) ||
3957 skb_zerocopy_clone(nskb
, frag_skb
, GFP_ATOMIC
))
3960 while (pos
< offset
+ len
) {
3963 nfrags
= skb_shinfo(list_skb
)->nr_frags
;
3964 frag
= skb_shinfo(list_skb
)->frags
;
3965 frag_skb
= list_skb
;
3966 if (!skb_headlen(list_skb
)) {
3969 BUG_ON(!list_skb
->head_frag
);
3971 /* to make room for head_frag. */
3975 if (skb_orphan_frags(frag_skb
, GFP_ATOMIC
) ||
3976 skb_zerocopy_clone(nskb
, frag_skb
,
3980 list_skb
= list_skb
->next
;
3983 if (unlikely(skb_shinfo(nskb
)->nr_frags
>=
3985 net_warn_ratelimited(
3986 "skb_segment: too many frags: %u %u\n",
3992 *nskb_frag
= (i
< 0) ? skb_head_frag_to_page_desc(frag_skb
) : *frag
;
3993 __skb_frag_ref(nskb_frag
);
3994 size
= skb_frag_size(nskb_frag
);
3997 skb_frag_off_add(nskb_frag
, offset
- pos
);
3998 skb_frag_size_sub(nskb_frag
, offset
- pos
);
4001 skb_shinfo(nskb
)->nr_frags
++;
4003 if (pos
+ size
<= offset
+ len
) {
4008 skb_frag_size_sub(nskb_frag
, pos
+ size
- (offset
+ len
));
4016 nskb
->data_len
= len
- hsize
;
4017 nskb
->len
+= nskb
->data_len
;
4018 nskb
->truesize
+= nskb
->data_len
;
4022 if (skb_has_shared_frag(nskb
) &&
4023 __skb_linearize(nskb
))
4026 if (!nskb
->remcsum_offload
)
4027 nskb
->ip_summed
= CHECKSUM_NONE
;
4028 SKB_GSO_CB(nskb
)->csum
=
4029 skb_checksum(nskb
, doffset
,
4030 nskb
->len
- doffset
, 0);
4031 SKB_GSO_CB(nskb
)->csum_start
=
4032 skb_headroom(nskb
) + doffset
;
4034 } while ((offset
+= len
) < head_skb
->len
);
4036 /* Some callers want to get the end of the list.
4037 * Put it in segs->prev to avoid walking the list.
4038 * (see validate_xmit_skb_list() for example)
4043 struct sk_buff
*iter
;
4044 int type
= skb_shinfo(head_skb
)->gso_type
;
4045 unsigned short gso_size
= skb_shinfo(head_skb
)->gso_size
;
4047 /* Update type to add partial and then remove dodgy if set */
4048 type
|= (features
& NETIF_F_GSO_PARTIAL
) / NETIF_F_GSO_PARTIAL
* SKB_GSO_PARTIAL
;
4049 type
&= ~SKB_GSO_DODGY
;
4051 /* Update GSO info and prepare to start updating headers on
4052 * our way back down the stack of protocols.
4054 for (iter
= segs
; iter
; iter
= iter
->next
) {
4055 skb_shinfo(iter
)->gso_size
= gso_size
;
4056 skb_shinfo(iter
)->gso_segs
= partial_segs
;
4057 skb_shinfo(iter
)->gso_type
= type
;
4058 SKB_GSO_CB(iter
)->data_offset
= skb_headroom(iter
) + doffset
;
4061 if (tail
->len
- doffset
<= gso_size
)
4062 skb_shinfo(tail
)->gso_size
= 0;
4063 else if (tail
!= segs
)
4064 skb_shinfo(tail
)->gso_segs
= DIV_ROUND_UP(tail
->len
- doffset
, gso_size
);
4067 /* Following permits correct backpressure, for protocols
4068 * using skb_set_owner_w().
4069 * Idea is to tranfert ownership from head_skb to last segment.
4071 if (head_skb
->destructor
== sock_wfree
) {
4072 swap(tail
->truesize
, head_skb
->truesize
);
4073 swap(tail
->destructor
, head_skb
->destructor
);
4074 swap(tail
->sk
, head_skb
->sk
);
4079 kfree_skb_list(segs
);
4080 return ERR_PTR(err
);
4082 EXPORT_SYMBOL_GPL(skb_segment
);
4084 int skb_gro_receive(struct sk_buff
*p
, struct sk_buff
*skb
)
4086 struct skb_shared_info
*pinfo
, *skbinfo
= skb_shinfo(skb
);
4087 unsigned int offset
= skb_gro_offset(skb
);
4088 unsigned int headlen
= skb_headlen(skb
);
4089 unsigned int len
= skb_gro_len(skb
);
4090 unsigned int delta_truesize
;
4093 if (unlikely(p
->len
+ len
>= 65536 || NAPI_GRO_CB(skb
)->flush
))
4096 lp
= NAPI_GRO_CB(p
)->last
;
4097 pinfo
= skb_shinfo(lp
);
4099 if (headlen
<= offset
) {
4102 int i
= skbinfo
->nr_frags
;
4103 int nr_frags
= pinfo
->nr_frags
+ i
;
4105 if (nr_frags
> MAX_SKB_FRAGS
)
4109 pinfo
->nr_frags
= nr_frags
;
4110 skbinfo
->nr_frags
= 0;
4112 frag
= pinfo
->frags
+ nr_frags
;
4113 frag2
= skbinfo
->frags
+ i
;
4118 skb_frag_off_add(frag
, offset
);
4119 skb_frag_size_sub(frag
, offset
);
4121 /* all fragments truesize : remove (head size + sk_buff) */
4122 delta_truesize
= skb
->truesize
-
4123 SKB_TRUESIZE(skb_end_offset(skb
));
4125 skb
->truesize
-= skb
->data_len
;
4126 skb
->len
-= skb
->data_len
;
4129 NAPI_GRO_CB(skb
)->free
= NAPI_GRO_FREE
;
4131 } else if (skb
->head_frag
) {
4132 int nr_frags
= pinfo
->nr_frags
;
4133 skb_frag_t
*frag
= pinfo
->frags
+ nr_frags
;
4134 struct page
*page
= virt_to_head_page(skb
->head
);
4135 unsigned int first_size
= headlen
- offset
;
4136 unsigned int first_offset
;
4138 if (nr_frags
+ 1 + skbinfo
->nr_frags
> MAX_SKB_FRAGS
)
4141 first_offset
= skb
->data
-
4142 (unsigned char *)page_address(page
) +
4145 pinfo
->nr_frags
= nr_frags
+ 1 + skbinfo
->nr_frags
;
4147 __skb_frag_set_page(frag
, page
);
4148 skb_frag_off_set(frag
, first_offset
);
4149 skb_frag_size_set(frag
, first_size
);
4151 memcpy(frag
+ 1, skbinfo
->frags
, sizeof(*frag
) * skbinfo
->nr_frags
);
4152 /* We dont need to clear skbinfo->nr_frags here */
4154 delta_truesize
= skb
->truesize
- SKB_DATA_ALIGN(sizeof(struct sk_buff
));
4155 NAPI_GRO_CB(skb
)->free
= NAPI_GRO_FREE_STOLEN_HEAD
;
4160 delta_truesize
= skb
->truesize
;
4161 if (offset
> headlen
) {
4162 unsigned int eat
= offset
- headlen
;
4164 skb_frag_off_add(&skbinfo
->frags
[0], eat
);
4165 skb_frag_size_sub(&skbinfo
->frags
[0], eat
);
4166 skb
->data_len
-= eat
;
4171 __skb_pull(skb
, offset
);
4173 if (NAPI_GRO_CB(p
)->last
== p
)
4174 skb_shinfo(p
)->frag_list
= skb
;
4176 NAPI_GRO_CB(p
)->last
->next
= skb
;
4177 NAPI_GRO_CB(p
)->last
= skb
;
4178 __skb_header_release(skb
);
4182 NAPI_GRO_CB(p
)->count
++;
4184 p
->truesize
+= delta_truesize
;
4187 lp
->data_len
+= len
;
4188 lp
->truesize
+= delta_truesize
;
4191 NAPI_GRO_CB(skb
)->same_flow
= 1;
4194 EXPORT_SYMBOL_GPL(skb_gro_receive
);
4196 #ifdef CONFIG_SKB_EXTENSIONS
4197 #define SKB_EXT_ALIGN_VALUE 8
4198 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4200 static const u8 skb_ext_type_len
[] = {
4201 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4202 [SKB_EXT_BRIDGE_NF
] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info
),
4205 [SKB_EXT_SEC_PATH
] = SKB_EXT_CHUNKSIZEOF(struct sec_path
),
4207 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4208 [TC_SKB_EXT
] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext
),
4210 #if IS_ENABLED(CONFIG_MPTCP)
4211 [SKB_EXT_MPTCP
] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext
),
4215 static __always_inline
unsigned int skb_ext_total_length(void)
4217 return SKB_EXT_CHUNKSIZEOF(struct skb_ext
) +
4218 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4219 skb_ext_type_len
[SKB_EXT_BRIDGE_NF
] +
4222 skb_ext_type_len
[SKB_EXT_SEC_PATH
] +
4224 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4225 skb_ext_type_len
[TC_SKB_EXT
] +
4227 #if IS_ENABLED(CONFIG_MPTCP)
4228 skb_ext_type_len
[SKB_EXT_MPTCP
] +
4233 static void skb_extensions_init(void)
4235 BUILD_BUG_ON(SKB_EXT_NUM
>= 8);
4236 BUILD_BUG_ON(skb_ext_total_length() > 255);
4238 skbuff_ext_cache
= kmem_cache_create("skbuff_ext_cache",
4239 SKB_EXT_ALIGN_VALUE
* skb_ext_total_length(),
4241 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
4245 static void skb_extensions_init(void) {}
4248 void __init
skb_init(void)
4250 skbuff_head_cache
= kmem_cache_create_usercopy("skbuff_head_cache",
4251 sizeof(struct sk_buff
),
4253 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
4254 offsetof(struct sk_buff
, cb
),
4255 sizeof_field(struct sk_buff
, cb
),
4257 skbuff_fclone_cache
= kmem_cache_create("skbuff_fclone_cache",
4258 sizeof(struct sk_buff_fclones
),
4260 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
4262 skb_extensions_init();
4266 __skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
,
4267 unsigned int recursion_level
)
4269 int start
= skb_headlen(skb
);
4270 int i
, copy
= start
- offset
;
4271 struct sk_buff
*frag_iter
;
4274 if (unlikely(recursion_level
>= 24))
4280 sg_set_buf(sg
, skb
->data
+ offset
, copy
);
4282 if ((len
-= copy
) == 0)
4287 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
4290 WARN_ON(start
> offset
+ len
);
4292 end
= start
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
4293 if ((copy
= end
- offset
) > 0) {
4294 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
4295 if (unlikely(elt
&& sg_is_last(&sg
[elt
- 1])))
4300 sg_set_page(&sg
[elt
], skb_frag_page(frag
), copy
,
4301 skb_frag_off(frag
) + offset
- start
);
4310 skb_walk_frags(skb
, frag_iter
) {
4313 WARN_ON(start
> offset
+ len
);
4315 end
= start
+ frag_iter
->len
;
4316 if ((copy
= end
- offset
) > 0) {
4317 if (unlikely(elt
&& sg_is_last(&sg
[elt
- 1])))
4322 ret
= __skb_to_sgvec(frag_iter
, sg
+elt
, offset
- start
,
4323 copy
, recursion_level
+ 1);
4324 if (unlikely(ret
< 0))
4327 if ((len
-= copy
) == 0)
4338 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4339 * @skb: Socket buffer containing the buffers to be mapped
4340 * @sg: The scatter-gather list to map into
4341 * @offset: The offset into the buffer's contents to start mapping
4342 * @len: Length of buffer space to be mapped
4344 * Fill the specified scatter-gather list with mappings/pointers into a
4345 * region of the buffer space attached to a socket buffer. Returns either
4346 * the number of scatterlist items used, or -EMSGSIZE if the contents
4349 int skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
4351 int nsg
= __skb_to_sgvec(skb
, sg
, offset
, len
, 0);
4356 sg_mark_end(&sg
[nsg
- 1]);
4360 EXPORT_SYMBOL_GPL(skb_to_sgvec
);
4362 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4363 * sglist without mark the sg which contain last skb data as the end.
4364 * So the caller can mannipulate sg list as will when padding new data after
4365 * the first call without calling sg_unmark_end to expend sg list.
4367 * Scenario to use skb_to_sgvec_nomark:
4369 * 2. skb_to_sgvec_nomark(payload1)
4370 * 3. skb_to_sgvec_nomark(payload2)
4372 * This is equivalent to:
4374 * 2. skb_to_sgvec(payload1)
4376 * 4. skb_to_sgvec(payload2)
4378 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4379 * is more preferable.
4381 int skb_to_sgvec_nomark(struct sk_buff
*skb
, struct scatterlist
*sg
,
4382 int offset
, int len
)
4384 return __skb_to_sgvec(skb
, sg
, offset
, len
, 0);
4386 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark
);
4391 * skb_cow_data - Check that a socket buffer's data buffers are writable
4392 * @skb: The socket buffer to check.
4393 * @tailbits: Amount of trailing space to be added
4394 * @trailer: Returned pointer to the skb where the @tailbits space begins
4396 * Make sure that the data buffers attached to a socket buffer are
4397 * writable. If they are not, private copies are made of the data buffers
4398 * and the socket buffer is set to use these instead.
4400 * If @tailbits is given, make sure that there is space to write @tailbits
4401 * bytes of data beyond current end of socket buffer. @trailer will be
4402 * set to point to the skb in which this space begins.
4404 * The number of scatterlist elements required to completely map the
4405 * COW'd and extended socket buffer will be returned.
4407 int skb_cow_data(struct sk_buff
*skb
, int tailbits
, struct sk_buff
**trailer
)
4411 struct sk_buff
*skb1
, **skb_p
;
4413 /* If skb is cloned or its head is paged, reallocate
4414 * head pulling out all the pages (pages are considered not writable
4415 * at the moment even if they are anonymous).
4417 if ((skb_cloned(skb
) || skb_shinfo(skb
)->nr_frags
) &&
4418 __pskb_pull_tail(skb
, skb_pagelen(skb
)-skb_headlen(skb
)) == NULL
)
4421 /* Easy case. Most of packets will go this way. */
4422 if (!skb_has_frag_list(skb
)) {
4423 /* A little of trouble, not enough of space for trailer.
4424 * This should not happen, when stack is tuned to generate
4425 * good frames. OK, on miss we reallocate and reserve even more
4426 * space, 128 bytes is fair. */
4428 if (skb_tailroom(skb
) < tailbits
&&
4429 pskb_expand_head(skb
, 0, tailbits
-skb_tailroom(skb
)+128, GFP_ATOMIC
))
4437 /* Misery. We are in troubles, going to mincer fragments... */
4440 skb_p
= &skb_shinfo(skb
)->frag_list
;
4443 while ((skb1
= *skb_p
) != NULL
) {
4446 /* The fragment is partially pulled by someone,
4447 * this can happen on input. Copy it and everything
4450 if (skb_shared(skb1
))
4453 /* If the skb is the last, worry about trailer. */
4455 if (skb1
->next
== NULL
&& tailbits
) {
4456 if (skb_shinfo(skb1
)->nr_frags
||
4457 skb_has_frag_list(skb1
) ||
4458 skb_tailroom(skb1
) < tailbits
)
4459 ntail
= tailbits
+ 128;
4465 skb_shinfo(skb1
)->nr_frags
||
4466 skb_has_frag_list(skb1
)) {
4467 struct sk_buff
*skb2
;
4469 /* Fuck, we are miserable poor guys... */
4471 skb2
= skb_copy(skb1
, GFP_ATOMIC
);
4473 skb2
= skb_copy_expand(skb1
,
4477 if (unlikely(skb2
== NULL
))
4481 skb_set_owner_w(skb2
, skb1
->sk
);
4483 /* Looking around. Are we still alive?
4484 * OK, link new skb, drop old one */
4486 skb2
->next
= skb1
->next
;
4493 skb_p
= &skb1
->next
;
4498 EXPORT_SYMBOL_GPL(skb_cow_data
);
4500 static void sock_rmem_free(struct sk_buff
*skb
)
4502 struct sock
*sk
= skb
->sk
;
4504 atomic_sub(skb
->truesize
, &sk
->sk_rmem_alloc
);
4507 static void skb_set_err_queue(struct sk_buff
*skb
)
4509 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4510 * So, it is safe to (mis)use it to mark skbs on the error queue.
4512 skb
->pkt_type
= PACKET_OUTGOING
;
4513 BUILD_BUG_ON(PACKET_OUTGOING
== 0);
4517 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4519 int sock_queue_err_skb(struct sock
*sk
, struct sk_buff
*skb
)
4521 if (atomic_read(&sk
->sk_rmem_alloc
) + skb
->truesize
>=
4522 (unsigned int)READ_ONCE(sk
->sk_rcvbuf
))
4527 skb
->destructor
= sock_rmem_free
;
4528 atomic_add(skb
->truesize
, &sk
->sk_rmem_alloc
);
4529 skb_set_err_queue(skb
);
4531 /* before exiting rcu section, make sure dst is refcounted */
4534 skb_queue_tail(&sk
->sk_error_queue
, skb
);
4535 if (!sock_flag(sk
, SOCK_DEAD
))
4536 sk
->sk_error_report(sk
);
4539 EXPORT_SYMBOL(sock_queue_err_skb
);
4541 static bool is_icmp_err_skb(const struct sk_buff
*skb
)
4543 return skb
&& (SKB_EXT_ERR(skb
)->ee
.ee_origin
== SO_EE_ORIGIN_ICMP
||
4544 SKB_EXT_ERR(skb
)->ee
.ee_origin
== SO_EE_ORIGIN_ICMP6
);
4547 struct sk_buff
*sock_dequeue_err_skb(struct sock
*sk
)
4549 struct sk_buff_head
*q
= &sk
->sk_error_queue
;
4550 struct sk_buff
*skb
, *skb_next
= NULL
;
4551 bool icmp_next
= false;
4552 unsigned long flags
;
4554 spin_lock_irqsave(&q
->lock
, flags
);
4555 skb
= __skb_dequeue(q
);
4556 if (skb
&& (skb_next
= skb_peek(q
))) {
4557 icmp_next
= is_icmp_err_skb(skb_next
);
4559 sk
->sk_err
= SKB_EXT_ERR(skb_next
)->ee
.ee_origin
;
4561 spin_unlock_irqrestore(&q
->lock
, flags
);
4563 if (is_icmp_err_skb(skb
) && !icmp_next
)
4567 sk
->sk_error_report(sk
);
4571 EXPORT_SYMBOL(sock_dequeue_err_skb
);
4574 * skb_clone_sk - create clone of skb, and take reference to socket
4575 * @skb: the skb to clone
4577 * This function creates a clone of a buffer that holds a reference on
4578 * sk_refcnt. Buffers created via this function are meant to be
4579 * returned using sock_queue_err_skb, or free via kfree_skb.
4581 * When passing buffers allocated with this function to sock_queue_err_skb
4582 * it is necessary to wrap the call with sock_hold/sock_put in order to
4583 * prevent the socket from being released prior to being enqueued on
4584 * the sk_error_queue.
4586 struct sk_buff
*skb_clone_sk(struct sk_buff
*skb
)
4588 struct sock
*sk
= skb
->sk
;
4589 struct sk_buff
*clone
;
4591 if (!sk
|| !refcount_inc_not_zero(&sk
->sk_refcnt
))
4594 clone
= skb_clone(skb
, GFP_ATOMIC
);
4601 clone
->destructor
= sock_efree
;
4605 EXPORT_SYMBOL(skb_clone_sk
);
4607 static void __skb_complete_tx_timestamp(struct sk_buff
*skb
,
4612 struct sock_exterr_skb
*serr
;
4615 BUILD_BUG_ON(sizeof(struct sock_exterr_skb
) > sizeof(skb
->cb
));
4617 serr
= SKB_EXT_ERR(skb
);
4618 memset(serr
, 0, sizeof(*serr
));
4619 serr
->ee
.ee_errno
= ENOMSG
;
4620 serr
->ee
.ee_origin
= SO_EE_ORIGIN_TIMESTAMPING
;
4621 serr
->ee
.ee_info
= tstype
;
4622 serr
->opt_stats
= opt_stats
;
4623 serr
->header
.h4
.iif
= skb
->dev
? skb
->dev
->ifindex
: 0;
4624 if (sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_ID
) {
4625 serr
->ee
.ee_data
= skb_shinfo(skb
)->tskey
;
4626 if (sk
->sk_protocol
== IPPROTO_TCP
&&
4627 sk
->sk_type
== SOCK_STREAM
)
4628 serr
->ee
.ee_data
-= sk
->sk_tskey
;
4631 err
= sock_queue_err_skb(sk
, skb
);
4637 static bool skb_may_tx_timestamp(struct sock
*sk
, bool tsonly
)
4641 if (likely(sysctl_tstamp_allow_data
|| tsonly
))
4644 read_lock_bh(&sk
->sk_callback_lock
);
4645 ret
= sk
->sk_socket
&& sk
->sk_socket
->file
&&
4646 file_ns_capable(sk
->sk_socket
->file
, &init_user_ns
, CAP_NET_RAW
);
4647 read_unlock_bh(&sk
->sk_callback_lock
);
4651 void skb_complete_tx_timestamp(struct sk_buff
*skb
,
4652 struct skb_shared_hwtstamps
*hwtstamps
)
4654 struct sock
*sk
= skb
->sk
;
4656 if (!skb_may_tx_timestamp(sk
, false))
4659 /* Take a reference to prevent skb_orphan() from freeing the socket,
4660 * but only if the socket refcount is not zero.
4662 if (likely(refcount_inc_not_zero(&sk
->sk_refcnt
))) {
4663 *skb_hwtstamps(skb
) = *hwtstamps
;
4664 __skb_complete_tx_timestamp(skb
, sk
, SCM_TSTAMP_SND
, false);
4672 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp
);
4674 void __skb_tstamp_tx(struct sk_buff
*orig_skb
,
4675 struct skb_shared_hwtstamps
*hwtstamps
,
4676 struct sock
*sk
, int tstype
)
4678 struct sk_buff
*skb
;
4679 bool tsonly
, opt_stats
= false;
4684 if (!hwtstamps
&& !(sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_TX_SWHW
) &&
4685 skb_shinfo(orig_skb
)->tx_flags
& SKBTX_IN_PROGRESS
)
4688 tsonly
= sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_TSONLY
;
4689 if (!skb_may_tx_timestamp(sk
, tsonly
))
4694 if ((sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_STATS
) &&
4695 sk
->sk_protocol
== IPPROTO_TCP
&&
4696 sk
->sk_type
== SOCK_STREAM
) {
4697 skb
= tcp_get_timestamping_opt_stats(sk
);
4701 skb
= alloc_skb(0, GFP_ATOMIC
);
4703 skb
= skb_clone(orig_skb
, GFP_ATOMIC
);
4709 skb_shinfo(skb
)->tx_flags
|= skb_shinfo(orig_skb
)->tx_flags
&
4711 skb_shinfo(skb
)->tskey
= skb_shinfo(orig_skb
)->tskey
;
4715 *skb_hwtstamps(skb
) = *hwtstamps
;
4717 skb
->tstamp
= ktime_get_real();
4719 __skb_complete_tx_timestamp(skb
, sk
, tstype
, opt_stats
);
4721 EXPORT_SYMBOL_GPL(__skb_tstamp_tx
);
4723 void skb_tstamp_tx(struct sk_buff
*orig_skb
,
4724 struct skb_shared_hwtstamps
*hwtstamps
)
4726 return __skb_tstamp_tx(orig_skb
, hwtstamps
, orig_skb
->sk
,
4729 EXPORT_SYMBOL_GPL(skb_tstamp_tx
);
4731 void skb_complete_wifi_ack(struct sk_buff
*skb
, bool acked
)
4733 struct sock
*sk
= skb
->sk
;
4734 struct sock_exterr_skb
*serr
;
4737 skb
->wifi_acked_valid
= 1;
4738 skb
->wifi_acked
= acked
;
4740 serr
= SKB_EXT_ERR(skb
);
4741 memset(serr
, 0, sizeof(*serr
));
4742 serr
->ee
.ee_errno
= ENOMSG
;
4743 serr
->ee
.ee_origin
= SO_EE_ORIGIN_TXSTATUS
;
4745 /* Take a reference to prevent skb_orphan() from freeing the socket,
4746 * but only if the socket refcount is not zero.
4748 if (likely(refcount_inc_not_zero(&sk
->sk_refcnt
))) {
4749 err
= sock_queue_err_skb(sk
, skb
);
4755 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack
);
4758 * skb_partial_csum_set - set up and verify partial csum values for packet
4759 * @skb: the skb to set
4760 * @start: the number of bytes after skb->data to start checksumming.
4761 * @off: the offset from start to place the checksum.
4763 * For untrusted partially-checksummed packets, we need to make sure the values
4764 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4766 * This function checks and sets those values and skb->ip_summed: if this
4767 * returns false you should drop the packet.
4769 bool skb_partial_csum_set(struct sk_buff
*skb
, u16 start
, u16 off
)
4771 u32 csum_end
= (u32
)start
+ (u32
)off
+ sizeof(__sum16
);
4772 u32 csum_start
= skb_headroom(skb
) + (u32
)start
;
4774 if (unlikely(csum_start
> U16_MAX
|| csum_end
> skb_headlen(skb
))) {
4775 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4776 start
, off
, skb_headroom(skb
), skb_headlen(skb
));
4779 skb
->ip_summed
= CHECKSUM_PARTIAL
;
4780 skb
->csum_start
= csum_start
;
4781 skb
->csum_offset
= off
;
4782 skb_set_transport_header(skb
, start
);
4785 EXPORT_SYMBOL_GPL(skb_partial_csum_set
);
4787 static int skb_maybe_pull_tail(struct sk_buff
*skb
, unsigned int len
,
4790 if (skb_headlen(skb
) >= len
)
4793 /* If we need to pullup then pullup to the max, so we
4794 * won't need to do it again.
4799 if (__pskb_pull_tail(skb
, max
- skb_headlen(skb
)) == NULL
)
4802 if (skb_headlen(skb
) < len
)
4808 #define MAX_TCP_HDR_LEN (15 * 4)
4810 static __sum16
*skb_checksum_setup_ip(struct sk_buff
*skb
,
4811 typeof(IPPROTO_IP
) proto
,
4818 err
= skb_maybe_pull_tail(skb
, off
+ sizeof(struct tcphdr
),
4819 off
+ MAX_TCP_HDR_LEN
);
4820 if (!err
&& !skb_partial_csum_set(skb
, off
,
4821 offsetof(struct tcphdr
,
4824 return err
? ERR_PTR(err
) : &tcp_hdr(skb
)->check
;
4827 err
= skb_maybe_pull_tail(skb
, off
+ sizeof(struct udphdr
),
4828 off
+ sizeof(struct udphdr
));
4829 if (!err
&& !skb_partial_csum_set(skb
, off
,
4830 offsetof(struct udphdr
,
4833 return err
? ERR_PTR(err
) : &udp_hdr(skb
)->check
;
4836 return ERR_PTR(-EPROTO
);
4839 /* This value should be large enough to cover a tagged ethernet header plus
4840 * maximally sized IP and TCP or UDP headers.
4842 #define MAX_IP_HDR_LEN 128
4844 static int skb_checksum_setup_ipv4(struct sk_buff
*skb
, bool recalculate
)
4853 err
= skb_maybe_pull_tail(skb
,
4854 sizeof(struct iphdr
),
4859 if (ip_hdr(skb
)->frag_off
& htons(IP_OFFSET
| IP_MF
))
4862 off
= ip_hdrlen(skb
);
4869 csum
= skb_checksum_setup_ip(skb
, ip_hdr(skb
)->protocol
, off
);
4871 return PTR_ERR(csum
);
4874 *csum
= ~csum_tcpudp_magic(ip_hdr(skb
)->saddr
,
4877 ip_hdr(skb
)->protocol
, 0);
4884 /* This value should be large enough to cover a tagged ethernet header plus
4885 * an IPv6 header, all options, and a maximal TCP or UDP header.
4887 #define MAX_IPV6_HDR_LEN 256
4889 #define OPT_HDR(type, skb, off) \
4890 (type *)(skb_network_header(skb) + (off))
4892 static int skb_checksum_setup_ipv6(struct sk_buff
*skb
, bool recalculate
)
4905 off
= sizeof(struct ipv6hdr
);
4907 err
= skb_maybe_pull_tail(skb
, off
, MAX_IPV6_HDR_LEN
);
4911 nexthdr
= ipv6_hdr(skb
)->nexthdr
;
4913 len
= sizeof(struct ipv6hdr
) + ntohs(ipv6_hdr(skb
)->payload_len
);
4914 while (off
<= len
&& !done
) {
4916 case IPPROTO_DSTOPTS
:
4917 case IPPROTO_HOPOPTS
:
4918 case IPPROTO_ROUTING
: {
4919 struct ipv6_opt_hdr
*hp
;
4921 err
= skb_maybe_pull_tail(skb
,
4923 sizeof(struct ipv6_opt_hdr
),
4928 hp
= OPT_HDR(struct ipv6_opt_hdr
, skb
, off
);
4929 nexthdr
= hp
->nexthdr
;
4930 off
+= ipv6_optlen(hp
);
4934 struct ip_auth_hdr
*hp
;
4936 err
= skb_maybe_pull_tail(skb
,
4938 sizeof(struct ip_auth_hdr
),
4943 hp
= OPT_HDR(struct ip_auth_hdr
, skb
, off
);
4944 nexthdr
= hp
->nexthdr
;
4945 off
+= ipv6_authlen(hp
);
4948 case IPPROTO_FRAGMENT
: {
4949 struct frag_hdr
*hp
;
4951 err
= skb_maybe_pull_tail(skb
,
4953 sizeof(struct frag_hdr
),
4958 hp
= OPT_HDR(struct frag_hdr
, skb
, off
);
4960 if (hp
->frag_off
& htons(IP6_OFFSET
| IP6_MF
))
4963 nexthdr
= hp
->nexthdr
;
4964 off
+= sizeof(struct frag_hdr
);
4975 if (!done
|| fragment
)
4978 csum
= skb_checksum_setup_ip(skb
, nexthdr
, off
);
4980 return PTR_ERR(csum
);
4983 *csum
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
4984 &ipv6_hdr(skb
)->daddr
,
4985 skb
->len
- off
, nexthdr
, 0);
4993 * skb_checksum_setup - set up partial checksum offset
4994 * @skb: the skb to set up
4995 * @recalculate: if true the pseudo-header checksum will be recalculated
4997 int skb_checksum_setup(struct sk_buff
*skb
, bool recalculate
)
5001 switch (skb
->protocol
) {
5002 case htons(ETH_P_IP
):
5003 err
= skb_checksum_setup_ipv4(skb
, recalculate
);
5006 case htons(ETH_P_IPV6
):
5007 err
= skb_checksum_setup_ipv6(skb
, recalculate
);
5017 EXPORT_SYMBOL(skb_checksum_setup
);
5020 * skb_checksum_maybe_trim - maybe trims the given skb
5021 * @skb: the skb to check
5022 * @transport_len: the data length beyond the network header
5024 * Checks whether the given skb has data beyond the given transport length.
5025 * If so, returns a cloned skb trimmed to this transport length.
5026 * Otherwise returns the provided skb. Returns NULL in error cases
5027 * (e.g. transport_len exceeds skb length or out-of-memory).
5029 * Caller needs to set the skb transport header and free any returned skb if it
5030 * differs from the provided skb.
5032 static struct sk_buff
*skb_checksum_maybe_trim(struct sk_buff
*skb
,
5033 unsigned int transport_len
)
5035 struct sk_buff
*skb_chk
;
5036 unsigned int len
= skb_transport_offset(skb
) + transport_len
;
5041 else if (skb
->len
== len
)
5044 skb_chk
= skb_clone(skb
, GFP_ATOMIC
);
5048 ret
= pskb_trim_rcsum(skb_chk
, len
);
5058 * skb_checksum_trimmed - validate checksum of an skb
5059 * @skb: the skb to check
5060 * @transport_len: the data length beyond the network header
5061 * @skb_chkf: checksum function to use
5063 * Applies the given checksum function skb_chkf to the provided skb.
5064 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5066 * If the skb has data beyond the given transport length, then a
5067 * trimmed & cloned skb is checked and returned.
5069 * Caller needs to set the skb transport header and free any returned skb if it
5070 * differs from the provided skb.
5072 struct sk_buff
*skb_checksum_trimmed(struct sk_buff
*skb
,
5073 unsigned int transport_len
,
5074 __sum16(*skb_chkf
)(struct sk_buff
*skb
))
5076 struct sk_buff
*skb_chk
;
5077 unsigned int offset
= skb_transport_offset(skb
);
5080 skb_chk
= skb_checksum_maybe_trim(skb
, transport_len
);
5084 if (!pskb_may_pull(skb_chk
, offset
))
5087 skb_pull_rcsum(skb_chk
, offset
);
5088 ret
= skb_chkf(skb_chk
);
5089 skb_push_rcsum(skb_chk
, offset
);
5097 if (skb_chk
&& skb_chk
!= skb
)
5103 EXPORT_SYMBOL(skb_checksum_trimmed
);
5105 void __skb_warn_lro_forwarding(const struct sk_buff
*skb
)
5107 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5110 EXPORT_SYMBOL(__skb_warn_lro_forwarding
);
5112 void kfree_skb_partial(struct sk_buff
*skb
, bool head_stolen
)
5115 skb_release_head_state(skb
);
5116 kmem_cache_free(skbuff_head_cache
, skb
);
5121 EXPORT_SYMBOL(kfree_skb_partial
);
5124 * skb_try_coalesce - try to merge skb to prior one
5126 * @from: buffer to add
5127 * @fragstolen: pointer to boolean
5128 * @delta_truesize: how much more was allocated than was requested
5130 bool skb_try_coalesce(struct sk_buff
*to
, struct sk_buff
*from
,
5131 bool *fragstolen
, int *delta_truesize
)
5133 struct skb_shared_info
*to_shinfo
, *from_shinfo
;
5134 int i
, delta
, len
= from
->len
;
5136 *fragstolen
= false;
5141 if (len
<= skb_tailroom(to
)) {
5143 BUG_ON(skb_copy_bits(from
, 0, skb_put(to
, len
), len
));
5144 *delta_truesize
= 0;
5148 to_shinfo
= skb_shinfo(to
);
5149 from_shinfo
= skb_shinfo(from
);
5150 if (to_shinfo
->frag_list
|| from_shinfo
->frag_list
)
5152 if (skb_zcopy(to
) || skb_zcopy(from
))
5155 if (skb_headlen(from
) != 0) {
5157 unsigned int offset
;
5159 if (to_shinfo
->nr_frags
+
5160 from_shinfo
->nr_frags
>= MAX_SKB_FRAGS
)
5163 if (skb_head_is_locked(from
))
5166 delta
= from
->truesize
- SKB_DATA_ALIGN(sizeof(struct sk_buff
));
5168 page
= virt_to_head_page(from
->head
);
5169 offset
= from
->data
- (unsigned char *)page_address(page
);
5171 skb_fill_page_desc(to
, to_shinfo
->nr_frags
,
5172 page
, offset
, skb_headlen(from
));
5175 if (to_shinfo
->nr_frags
+
5176 from_shinfo
->nr_frags
> MAX_SKB_FRAGS
)
5179 delta
= from
->truesize
- SKB_TRUESIZE(skb_end_offset(from
));
5182 WARN_ON_ONCE(delta
< len
);
5184 memcpy(to_shinfo
->frags
+ to_shinfo
->nr_frags
,
5186 from_shinfo
->nr_frags
* sizeof(skb_frag_t
));
5187 to_shinfo
->nr_frags
+= from_shinfo
->nr_frags
;
5189 if (!skb_cloned(from
))
5190 from_shinfo
->nr_frags
= 0;
5192 /* if the skb is not cloned this does nothing
5193 * since we set nr_frags to 0.
5195 for (i
= 0; i
< from_shinfo
->nr_frags
; i
++)
5196 __skb_frag_ref(&from_shinfo
->frags
[i
]);
5198 to
->truesize
+= delta
;
5200 to
->data_len
+= len
;
5202 *delta_truesize
= delta
;
5205 EXPORT_SYMBOL(skb_try_coalesce
);
5208 * skb_scrub_packet - scrub an skb
5210 * @skb: buffer to clean
5211 * @xnet: packet is crossing netns
5213 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5214 * into/from a tunnel. Some information have to be cleared during these
5216 * skb_scrub_packet can also be used to clean a skb before injecting it in
5217 * another namespace (@xnet == true). We have to clear all information in the
5218 * skb that could impact namespace isolation.
5220 void skb_scrub_packet(struct sk_buff
*skb
, bool xnet
)
5222 skb
->pkt_type
= PACKET_HOST
;
5228 nf_reset_trace(skb
);
5230 #ifdef CONFIG_NET_SWITCHDEV
5231 skb
->offload_fwd_mark
= 0;
5232 skb
->offload_l3_fwd_mark
= 0;
5242 EXPORT_SYMBOL_GPL(skb_scrub_packet
);
5245 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5249 * skb_gso_transport_seglen is used to determine the real size of the
5250 * individual segments, including Layer4 headers (TCP/UDP).
5252 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5254 static unsigned int skb_gso_transport_seglen(const struct sk_buff
*skb
)
5256 const struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
5257 unsigned int thlen
= 0;
5259 if (skb
->encapsulation
) {
5260 thlen
= skb_inner_transport_header(skb
) -
5261 skb_transport_header(skb
);
5263 if (likely(shinfo
->gso_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
)))
5264 thlen
+= inner_tcp_hdrlen(skb
);
5265 } else if (likely(shinfo
->gso_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
))) {
5266 thlen
= tcp_hdrlen(skb
);
5267 } else if (unlikely(skb_is_gso_sctp(skb
))) {
5268 thlen
= sizeof(struct sctphdr
);
5269 } else if (shinfo
->gso_type
& SKB_GSO_UDP_L4
) {
5270 thlen
= sizeof(struct udphdr
);
5272 /* UFO sets gso_size to the size of the fragmentation
5273 * payload, i.e. the size of the L4 (UDP) header is already
5276 return thlen
+ shinfo
->gso_size
;
5280 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5284 * skb_gso_network_seglen is used to determine the real size of the
5285 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5287 * The MAC/L2 header is not accounted for.
5289 static unsigned int skb_gso_network_seglen(const struct sk_buff
*skb
)
5291 unsigned int hdr_len
= skb_transport_header(skb
) -
5292 skb_network_header(skb
);
5294 return hdr_len
+ skb_gso_transport_seglen(skb
);
5298 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5302 * skb_gso_mac_seglen is used to determine the real size of the
5303 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5304 * headers (TCP/UDP).
5306 static unsigned int skb_gso_mac_seglen(const struct sk_buff
*skb
)
5308 unsigned int hdr_len
= skb_transport_header(skb
) - skb_mac_header(skb
);
5310 return hdr_len
+ skb_gso_transport_seglen(skb
);
5314 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5316 * There are a couple of instances where we have a GSO skb, and we
5317 * want to determine what size it would be after it is segmented.
5319 * We might want to check:
5320 * - L3+L4+payload size (e.g. IP forwarding)
5321 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5323 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5327 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5328 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5330 * @max_len: The maximum permissible length.
5332 * Returns true if the segmented length <= max length.
5334 static inline bool skb_gso_size_check(const struct sk_buff
*skb
,
5335 unsigned int seg_len
,
5336 unsigned int max_len
) {
5337 const struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
5338 const struct sk_buff
*iter
;
5340 if (shinfo
->gso_size
!= GSO_BY_FRAGS
)
5341 return seg_len
<= max_len
;
5343 /* Undo this so we can re-use header sizes */
5344 seg_len
-= GSO_BY_FRAGS
;
5346 skb_walk_frags(skb
, iter
) {
5347 if (seg_len
+ skb_headlen(iter
) > max_len
)
5355 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5358 * @mtu: MTU to validate against
5360 * skb_gso_validate_network_len validates if a given skb will fit a
5361 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5364 bool skb_gso_validate_network_len(const struct sk_buff
*skb
, unsigned int mtu
)
5366 return skb_gso_size_check(skb
, skb_gso_network_seglen(skb
), mtu
);
5368 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len
);
5371 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5374 * @len: length to validate against
5376 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5377 * length once split, including L2, L3 and L4 headers and the payload.
5379 bool skb_gso_validate_mac_len(const struct sk_buff
*skb
, unsigned int len
)
5381 return skb_gso_size_check(skb
, skb_gso_mac_seglen(skb
), len
);
5383 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len
);
5385 static struct sk_buff
*skb_reorder_vlan_header(struct sk_buff
*skb
)
5387 int mac_len
, meta_len
;
5390 if (skb_cow(skb
, skb_headroom(skb
)) < 0) {
5395 mac_len
= skb
->data
- skb_mac_header(skb
);
5396 if (likely(mac_len
> VLAN_HLEN
+ ETH_TLEN
)) {
5397 memmove(skb_mac_header(skb
) + VLAN_HLEN
, skb_mac_header(skb
),
5398 mac_len
- VLAN_HLEN
- ETH_TLEN
);
5401 meta_len
= skb_metadata_len(skb
);
5403 meta
= skb_metadata_end(skb
) - meta_len
;
5404 memmove(meta
+ VLAN_HLEN
, meta
, meta_len
);
5407 skb
->mac_header
+= VLAN_HLEN
;
5411 struct sk_buff
*skb_vlan_untag(struct sk_buff
*skb
)
5413 struct vlan_hdr
*vhdr
;
5416 if (unlikely(skb_vlan_tag_present(skb
))) {
5417 /* vlan_tci is already set-up so leave this for another time */
5421 skb
= skb_share_check(skb
, GFP_ATOMIC
);
5425 if (unlikely(!pskb_may_pull(skb
, VLAN_HLEN
)))
5428 vhdr
= (struct vlan_hdr
*)skb
->data
;
5429 vlan_tci
= ntohs(vhdr
->h_vlan_TCI
);
5430 __vlan_hwaccel_put_tag(skb
, skb
->protocol
, vlan_tci
);
5432 skb_pull_rcsum(skb
, VLAN_HLEN
);
5433 vlan_set_encap_proto(skb
, vhdr
);
5435 skb
= skb_reorder_vlan_header(skb
);
5439 skb_reset_network_header(skb
);
5440 skb_reset_transport_header(skb
);
5441 skb_reset_mac_len(skb
);
5449 EXPORT_SYMBOL(skb_vlan_untag
);
5451 int skb_ensure_writable(struct sk_buff
*skb
, int write_len
)
5453 if (!pskb_may_pull(skb
, write_len
))
5456 if (!skb_cloned(skb
) || skb_clone_writable(skb
, write_len
))
5459 return pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
5461 EXPORT_SYMBOL(skb_ensure_writable
);
5463 /* remove VLAN header from packet and update csum accordingly.
5464 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5466 int __skb_vlan_pop(struct sk_buff
*skb
, u16
*vlan_tci
)
5468 struct vlan_hdr
*vhdr
;
5469 int offset
= skb
->data
- skb_mac_header(skb
);
5472 if (WARN_ONCE(offset
,
5473 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5478 err
= skb_ensure_writable(skb
, VLAN_ETH_HLEN
);
5482 skb_postpull_rcsum(skb
, skb
->data
+ (2 * ETH_ALEN
), VLAN_HLEN
);
5484 vhdr
= (struct vlan_hdr
*)(skb
->data
+ ETH_HLEN
);
5485 *vlan_tci
= ntohs(vhdr
->h_vlan_TCI
);
5487 memmove(skb
->data
+ VLAN_HLEN
, skb
->data
, 2 * ETH_ALEN
);
5488 __skb_pull(skb
, VLAN_HLEN
);
5490 vlan_set_encap_proto(skb
, vhdr
);
5491 skb
->mac_header
+= VLAN_HLEN
;
5493 if (skb_network_offset(skb
) < ETH_HLEN
)
5494 skb_set_network_header(skb
, ETH_HLEN
);
5496 skb_reset_mac_len(skb
);
5500 EXPORT_SYMBOL(__skb_vlan_pop
);
5502 /* Pop a vlan tag either from hwaccel or from payload.
5503 * Expects skb->data at mac header.
5505 int skb_vlan_pop(struct sk_buff
*skb
)
5511 if (likely(skb_vlan_tag_present(skb
))) {
5512 __vlan_hwaccel_clear_tag(skb
);
5514 if (unlikely(!eth_type_vlan(skb
->protocol
)))
5517 err
= __skb_vlan_pop(skb
, &vlan_tci
);
5521 /* move next vlan tag to hw accel tag */
5522 if (likely(!eth_type_vlan(skb
->protocol
)))
5525 vlan_proto
= skb
->protocol
;
5526 err
= __skb_vlan_pop(skb
, &vlan_tci
);
5530 __vlan_hwaccel_put_tag(skb
, vlan_proto
, vlan_tci
);
5533 EXPORT_SYMBOL(skb_vlan_pop
);
5535 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5536 * Expects skb->data at mac header.
5538 int skb_vlan_push(struct sk_buff
*skb
, __be16 vlan_proto
, u16 vlan_tci
)
5540 if (skb_vlan_tag_present(skb
)) {
5541 int offset
= skb
->data
- skb_mac_header(skb
);
5544 if (WARN_ONCE(offset
,
5545 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5550 err
= __vlan_insert_tag(skb
, skb
->vlan_proto
,
5551 skb_vlan_tag_get(skb
));
5555 skb
->protocol
= skb
->vlan_proto
;
5556 skb
->mac_len
+= VLAN_HLEN
;
5558 skb_postpush_rcsum(skb
, skb
->data
+ (2 * ETH_ALEN
), VLAN_HLEN
);
5560 __vlan_hwaccel_put_tag(skb
, vlan_proto
, vlan_tci
);
5563 EXPORT_SYMBOL(skb_vlan_push
);
5565 /* Update the ethertype of hdr and the skb csum value if required. */
5566 static void skb_mod_eth_type(struct sk_buff
*skb
, struct ethhdr
*hdr
,
5569 if (skb
->ip_summed
== CHECKSUM_COMPLETE
) {
5570 __be16 diff
[] = { ~hdr
->h_proto
, ethertype
};
5572 skb
->csum
= csum_partial((char *)diff
, sizeof(diff
), skb
->csum
);
5575 hdr
->h_proto
= ethertype
;
5579 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5583 * @mpls_lse: MPLS label stack entry to push
5584 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5585 * @mac_len: length of the MAC header
5586 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5589 * Expects skb->data at mac header.
5591 * Returns 0 on success, -errno otherwise.
5593 int skb_mpls_push(struct sk_buff
*skb
, __be32 mpls_lse
, __be16 mpls_proto
,
5594 int mac_len
, bool ethernet
)
5596 struct mpls_shim_hdr
*lse
;
5599 if (unlikely(!eth_p_mpls(mpls_proto
)))
5602 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5603 if (skb
->encapsulation
)
5606 err
= skb_cow_head(skb
, MPLS_HLEN
);
5610 if (!skb
->inner_protocol
) {
5611 skb_set_inner_network_header(skb
, skb_network_offset(skb
));
5612 skb_set_inner_protocol(skb
, skb
->protocol
);
5615 skb_push(skb
, MPLS_HLEN
);
5616 memmove(skb_mac_header(skb
) - MPLS_HLEN
, skb_mac_header(skb
),
5618 skb_reset_mac_header(skb
);
5619 skb_set_network_header(skb
, mac_len
);
5620 skb_reset_mac_len(skb
);
5622 lse
= mpls_hdr(skb
);
5623 lse
->label_stack_entry
= mpls_lse
;
5624 skb_postpush_rcsum(skb
, lse
, MPLS_HLEN
);
5627 skb_mod_eth_type(skb
, eth_hdr(skb
), mpls_proto
);
5628 skb
->protocol
= mpls_proto
;
5632 EXPORT_SYMBOL_GPL(skb_mpls_push
);
5635 * skb_mpls_pop() - pop the outermost MPLS header
5638 * @next_proto: ethertype of header after popped MPLS header
5639 * @mac_len: length of the MAC header
5640 * @ethernet: flag to indicate if the packet is ethernet
5642 * Expects skb->data at mac header.
5644 * Returns 0 on success, -errno otherwise.
5646 int skb_mpls_pop(struct sk_buff
*skb
, __be16 next_proto
, int mac_len
,
5651 if (unlikely(!eth_p_mpls(skb
->protocol
)))
5654 err
= skb_ensure_writable(skb
, mac_len
+ MPLS_HLEN
);
5658 skb_postpull_rcsum(skb
, mpls_hdr(skb
), MPLS_HLEN
);
5659 memmove(skb_mac_header(skb
) + MPLS_HLEN
, skb_mac_header(skb
),
5662 __skb_pull(skb
, MPLS_HLEN
);
5663 skb_reset_mac_header(skb
);
5664 skb_set_network_header(skb
, mac_len
);
5669 /* use mpls_hdr() to get ethertype to account for VLANs. */
5670 hdr
= (struct ethhdr
*)((void *)mpls_hdr(skb
) - ETH_HLEN
);
5671 skb_mod_eth_type(skb
, hdr
, next_proto
);
5673 skb
->protocol
= next_proto
;
5677 EXPORT_SYMBOL_GPL(skb_mpls_pop
);
5680 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5683 * @mpls_lse: new MPLS label stack entry to update to
5685 * Expects skb->data at mac header.
5687 * Returns 0 on success, -errno otherwise.
5689 int skb_mpls_update_lse(struct sk_buff
*skb
, __be32 mpls_lse
)
5693 if (unlikely(!eth_p_mpls(skb
->protocol
)))
5696 err
= skb_ensure_writable(skb
, skb
->mac_len
+ MPLS_HLEN
);
5700 if (skb
->ip_summed
== CHECKSUM_COMPLETE
) {
5701 __be32 diff
[] = { ~mpls_hdr(skb
)->label_stack_entry
, mpls_lse
};
5703 skb
->csum
= csum_partial((char *)diff
, sizeof(diff
), skb
->csum
);
5706 mpls_hdr(skb
)->label_stack_entry
= mpls_lse
;
5710 EXPORT_SYMBOL_GPL(skb_mpls_update_lse
);
5713 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5717 * Expects skb->data at mac header.
5719 * Returns 0 on success, -errno otherwise.
5721 int skb_mpls_dec_ttl(struct sk_buff
*skb
)
5726 if (unlikely(!eth_p_mpls(skb
->protocol
)))
5729 lse
= be32_to_cpu(mpls_hdr(skb
)->label_stack_entry
);
5730 ttl
= (lse
& MPLS_LS_TTL_MASK
) >> MPLS_LS_TTL_SHIFT
;
5734 lse
&= ~MPLS_LS_TTL_MASK
;
5735 lse
|= ttl
<< MPLS_LS_TTL_SHIFT
;
5737 return skb_mpls_update_lse(skb
, cpu_to_be32(lse
));
5739 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl
);
5742 * alloc_skb_with_frags - allocate skb with page frags
5744 * @header_len: size of linear part
5745 * @data_len: needed length in frags
5746 * @max_page_order: max page order desired.
5747 * @errcode: pointer to error code if any
5748 * @gfp_mask: allocation mask
5750 * This can be used to allocate a paged skb, given a maximal order for frags.
5752 struct sk_buff
*alloc_skb_with_frags(unsigned long header_len
,
5753 unsigned long data_len
,
5758 int npages
= (data_len
+ (PAGE_SIZE
- 1)) >> PAGE_SHIFT
;
5759 unsigned long chunk
;
5760 struct sk_buff
*skb
;
5764 *errcode
= -EMSGSIZE
;
5765 /* Note this test could be relaxed, if we succeed to allocate
5766 * high order pages...
5768 if (npages
> MAX_SKB_FRAGS
)
5771 *errcode
= -ENOBUFS
;
5772 skb
= alloc_skb(header_len
, gfp_mask
);
5776 skb
->truesize
+= npages
<< PAGE_SHIFT
;
5778 for (i
= 0; npages
> 0; i
++) {
5779 int order
= max_page_order
;
5782 if (npages
>= 1 << order
) {
5783 page
= alloc_pages((gfp_mask
& ~__GFP_DIRECT_RECLAIM
) |
5789 /* Do not retry other high order allocations */
5795 page
= alloc_page(gfp_mask
);
5799 chunk
= min_t(unsigned long, data_len
,
5800 PAGE_SIZE
<< order
);
5801 skb_fill_page_desc(skb
, i
, page
, 0, chunk
);
5803 npages
-= 1 << order
;
5811 EXPORT_SYMBOL(alloc_skb_with_frags
);
5813 /* carve out the first off bytes from skb when off < headlen */
5814 static int pskb_carve_inside_header(struct sk_buff
*skb
, const u32 off
,
5815 const int headlen
, gfp_t gfp_mask
)
5818 int size
= skb_end_offset(skb
);
5819 int new_hlen
= headlen
- off
;
5822 size
= SKB_DATA_ALIGN(size
);
5824 if (skb_pfmemalloc(skb
))
5825 gfp_mask
|= __GFP_MEMALLOC
;
5826 data
= kmalloc_reserve(size
+
5827 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
)),
5828 gfp_mask
, NUMA_NO_NODE
, NULL
);
5832 size
= SKB_WITH_OVERHEAD(ksize(data
));
5834 /* Copy real data, and all frags */
5835 skb_copy_from_linear_data_offset(skb
, off
, data
, new_hlen
);
5838 memcpy((struct skb_shared_info
*)(data
+ size
),
5840 offsetof(struct skb_shared_info
,
5841 frags
[skb_shinfo(skb
)->nr_frags
]));
5842 if (skb_cloned(skb
)) {
5843 /* drop the old head gracefully */
5844 if (skb_orphan_frags(skb
, gfp_mask
)) {
5848 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
5849 skb_frag_ref(skb
, i
);
5850 if (skb_has_frag_list(skb
))
5851 skb_clone_fraglist(skb
);
5852 skb_release_data(skb
);
5854 /* we can reuse existing recount- all we did was
5863 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5866 skb
->end
= skb
->head
+ size
;
5868 skb_set_tail_pointer(skb
, skb_headlen(skb
));
5869 skb_headers_offset_update(skb
, 0);
5873 atomic_set(&skb_shinfo(skb
)->dataref
, 1);
5878 static int pskb_carve(struct sk_buff
*skb
, const u32 off
, gfp_t gfp
);
5880 /* carve out the first eat bytes from skb's frag_list. May recurse into
5883 static int pskb_carve_frag_list(struct sk_buff
*skb
,
5884 struct skb_shared_info
*shinfo
, int eat
,
5887 struct sk_buff
*list
= shinfo
->frag_list
;
5888 struct sk_buff
*clone
= NULL
;
5889 struct sk_buff
*insp
= NULL
;
5893 pr_err("Not enough bytes to eat. Want %d\n", eat
);
5896 if (list
->len
<= eat
) {
5897 /* Eaten as whole. */
5902 /* Eaten partially. */
5903 if (skb_shared(list
)) {
5904 clone
= skb_clone(list
, gfp_mask
);
5910 /* This may be pulled without problems. */
5913 if (pskb_carve(list
, eat
, gfp_mask
) < 0) {
5921 /* Free pulled out fragments. */
5922 while ((list
= shinfo
->frag_list
) != insp
) {
5923 shinfo
->frag_list
= list
->next
;
5926 /* And insert new clone at head. */
5929 shinfo
->frag_list
= clone
;
5934 /* carve off first len bytes from skb. Split line (off) is in the
5935 * non-linear part of skb
5937 static int pskb_carve_inside_nonlinear(struct sk_buff
*skb
, const u32 off
,
5938 int pos
, gfp_t gfp_mask
)
5941 int size
= skb_end_offset(skb
);
5943 const int nfrags
= skb_shinfo(skb
)->nr_frags
;
5944 struct skb_shared_info
*shinfo
;
5946 size
= SKB_DATA_ALIGN(size
);
5948 if (skb_pfmemalloc(skb
))
5949 gfp_mask
|= __GFP_MEMALLOC
;
5950 data
= kmalloc_reserve(size
+
5951 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
)),
5952 gfp_mask
, NUMA_NO_NODE
, NULL
);
5956 size
= SKB_WITH_OVERHEAD(ksize(data
));
5958 memcpy((struct skb_shared_info
*)(data
+ size
),
5959 skb_shinfo(skb
), offsetof(struct skb_shared_info
,
5960 frags
[skb_shinfo(skb
)->nr_frags
]));
5961 if (skb_orphan_frags(skb
, gfp_mask
)) {
5965 shinfo
= (struct skb_shared_info
*)(data
+ size
);
5966 for (i
= 0; i
< nfrags
; i
++) {
5967 int fsize
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
5969 if (pos
+ fsize
> off
) {
5970 shinfo
->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
5974 * We have two variants in this case:
5975 * 1. Move all the frag to the second
5976 * part, if it is possible. F.e.
5977 * this approach is mandatory for TUX,
5978 * where splitting is expensive.
5979 * 2. Split is accurately. We make this.
5981 skb_frag_off_add(&shinfo
->frags
[0], off
- pos
);
5982 skb_frag_size_sub(&shinfo
->frags
[0], off
- pos
);
5984 skb_frag_ref(skb
, i
);
5989 shinfo
->nr_frags
= k
;
5990 if (skb_has_frag_list(skb
))
5991 skb_clone_fraglist(skb
);
5994 /* split line is in frag list */
5995 pskb_carve_frag_list(skb
, shinfo
, off
- pos
, gfp_mask
);
5997 skb_release_data(skb
);
6002 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6005 skb
->end
= skb
->head
+ size
;
6007 skb_reset_tail_pointer(skb
);
6008 skb_headers_offset_update(skb
, 0);
6013 skb
->data_len
= skb
->len
;
6014 atomic_set(&skb_shinfo(skb
)->dataref
, 1);
6018 /* remove len bytes from the beginning of the skb */
6019 static int pskb_carve(struct sk_buff
*skb
, const u32 len
, gfp_t gfp
)
6021 int headlen
= skb_headlen(skb
);
6024 return pskb_carve_inside_header(skb
, len
, headlen
, gfp
);
6026 return pskb_carve_inside_nonlinear(skb
, len
, headlen
, gfp
);
6029 /* Extract to_copy bytes starting at off from skb, and return this in
6032 struct sk_buff
*pskb_extract(struct sk_buff
*skb
, int off
,
6033 int to_copy
, gfp_t gfp
)
6035 struct sk_buff
*clone
= skb_clone(skb
, gfp
);
6040 if (pskb_carve(clone
, off
, gfp
) < 0 ||
6041 pskb_trim(clone
, to_copy
)) {
6047 EXPORT_SYMBOL(pskb_extract
);
6050 * skb_condense - try to get rid of fragments/frag_list if possible
6053 * Can be used to save memory before skb is added to a busy queue.
6054 * If packet has bytes in frags and enough tail room in skb->head,
6055 * pull all of them, so that we can free the frags right now and adjust
6058 * We do not reallocate skb->head thus can not fail.
6059 * Caller must re-evaluate skb->truesize if needed.
6061 void skb_condense(struct sk_buff
*skb
)
6063 if (skb
->data_len
) {
6064 if (skb
->data_len
> skb
->end
- skb
->tail
||
6068 /* Nice, we can free page frag(s) right now */
6069 __pskb_pull_tail(skb
, skb
->data_len
);
6071 /* At this point, skb->truesize might be over estimated,
6072 * because skb had a fragment, and fragments do not tell
6074 * When we pulled its content into skb->head, fragment
6075 * was freed, but __pskb_pull_tail() could not possibly
6076 * adjust skb->truesize, not knowing the frag truesize.
6078 skb
->truesize
= SKB_TRUESIZE(skb_end_offset(skb
));
6081 #ifdef CONFIG_SKB_EXTENSIONS
6082 static void *skb_ext_get_ptr(struct skb_ext
*ext
, enum skb_ext_id id
)
6084 return (void *)ext
+ (ext
->offset
[id
] * SKB_EXT_ALIGN_VALUE
);
6088 * __skb_ext_alloc - allocate a new skb extensions storage
6090 * Returns the newly allocated pointer. The pointer can later attached to a
6091 * skb via __skb_ext_set().
6092 * Note: caller must handle the skb_ext as an opaque data.
6094 struct skb_ext
*__skb_ext_alloc(void)
6096 struct skb_ext
*new = kmem_cache_alloc(skbuff_ext_cache
, GFP_ATOMIC
);
6099 memset(new->offset
, 0, sizeof(new->offset
));
6100 refcount_set(&new->refcnt
, 1);
6106 static struct skb_ext
*skb_ext_maybe_cow(struct skb_ext
*old
,
6107 unsigned int old_active
)
6109 struct skb_ext
*new;
6111 if (refcount_read(&old
->refcnt
) == 1)
6114 new = kmem_cache_alloc(skbuff_ext_cache
, GFP_ATOMIC
);
6118 memcpy(new, old
, old
->chunks
* SKB_EXT_ALIGN_VALUE
);
6119 refcount_set(&new->refcnt
, 1);
6122 if (old_active
& (1 << SKB_EXT_SEC_PATH
)) {
6123 struct sec_path
*sp
= skb_ext_get_ptr(old
, SKB_EXT_SEC_PATH
);
6126 for (i
= 0; i
< sp
->len
; i
++)
6127 xfrm_state_hold(sp
->xvec
[i
]);
6135 * __skb_ext_set - attach the specified extension storage to this skb
6138 * @ext: extension storage previously allocated via __skb_ext_alloc()
6140 * Existing extensions, if any, are cleared.
6142 * Returns the pointer to the extension.
6144 void *__skb_ext_set(struct sk_buff
*skb
, enum skb_ext_id id
,
6145 struct skb_ext
*ext
)
6147 unsigned int newlen
, newoff
= SKB_EXT_CHUNKSIZEOF(*ext
);
6150 newlen
= newoff
+ skb_ext_type_len
[id
];
6151 ext
->chunks
= newlen
;
6152 ext
->offset
[id
] = newoff
;
6153 skb
->extensions
= ext
;
6154 skb
->active_extensions
= 1 << id
;
6155 return skb_ext_get_ptr(ext
, id
);
6159 * skb_ext_add - allocate space for given extension, COW if needed
6161 * @id: extension to allocate space for
6163 * Allocates enough space for the given extension.
6164 * If the extension is already present, a pointer to that extension
6167 * If the skb was cloned, COW applies and the returned memory can be
6168 * modified without changing the extension space of clones buffers.
6170 * Returns pointer to the extension or NULL on allocation failure.
6172 void *skb_ext_add(struct sk_buff
*skb
, enum skb_ext_id id
)
6174 struct skb_ext
*new, *old
= NULL
;
6175 unsigned int newlen
, newoff
;
6177 if (skb
->active_extensions
) {
6178 old
= skb
->extensions
;
6180 new = skb_ext_maybe_cow(old
, skb
->active_extensions
);
6184 if (__skb_ext_exist(new, id
))
6187 newoff
= new->chunks
;
6189 newoff
= SKB_EXT_CHUNKSIZEOF(*new);
6191 new = __skb_ext_alloc();
6196 newlen
= newoff
+ skb_ext_type_len
[id
];
6197 new->chunks
= newlen
;
6198 new->offset
[id
] = newoff
;
6200 skb
->extensions
= new;
6201 skb
->active_extensions
|= 1 << id
;
6202 return skb_ext_get_ptr(new, id
);
6204 EXPORT_SYMBOL(skb_ext_add
);
6207 static void skb_ext_put_sp(struct sec_path
*sp
)
6211 for (i
= 0; i
< sp
->len
; i
++)
6212 xfrm_state_put(sp
->xvec
[i
]);
6216 void __skb_ext_del(struct sk_buff
*skb
, enum skb_ext_id id
)
6218 struct skb_ext
*ext
= skb
->extensions
;
6220 skb
->active_extensions
&= ~(1 << id
);
6221 if (skb
->active_extensions
== 0) {
6222 skb
->extensions
= NULL
;
6225 } else if (id
== SKB_EXT_SEC_PATH
&&
6226 refcount_read(&ext
->refcnt
) == 1) {
6227 struct sec_path
*sp
= skb_ext_get_ptr(ext
, SKB_EXT_SEC_PATH
);
6234 EXPORT_SYMBOL(__skb_ext_del
);
6236 void __skb_ext_put(struct skb_ext
*ext
)
6238 /* If this is last clone, nothing can increment
6239 * it after check passes. Avoids one atomic op.
6241 if (refcount_read(&ext
->refcnt
) == 1)
6244 if (!refcount_dec_and_test(&ext
->refcnt
))
6248 if (__skb_ext_exist(ext
, SKB_EXT_SEC_PATH
))
6249 skb_ext_put_sp(skb_ext_get_ptr(ext
, SKB_EXT_SEC_PATH
));
6252 kmem_cache_free(skbuff_ext_cache
, ext
);
6254 EXPORT_SYMBOL(__skb_ext_put
);
6255 #endif /* CONFIG_SKB_EXTENSIONS */