gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / net / core / skbuff.c
blob7e29590482ce509ea1d3b2306f4796f697b76d4f
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Routines having to do with the 'struct sk_buff' memory handlers.
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
8 * Fixes:
9 * Alan Cox : Fixed the worst of the load
10 * balancer bugs.
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
24 * NOTE:
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
32 * The functions in this file will not compile correctly with gcc 2.4.x
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/ip6_checksum.h>
69 #include <net/xfrm.h>
70 #include <net/mpls.h>
71 #include <net/mptcp.h>
73 #include <linux/uaccess.h>
74 #include <trace/events/skb.h>
75 #include <linux/highmem.h>
76 #include <linux/capability.h>
77 #include <linux/user_namespace.h>
78 #include <linux/indirect_call_wrapper.h>
80 #include "datagram.h"
82 struct kmem_cache *skbuff_head_cache __ro_after_init;
83 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
84 #ifdef CONFIG_SKB_EXTENSIONS
85 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
86 #endif
87 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
88 EXPORT_SYMBOL(sysctl_max_skb_frags);
90 /**
91 * skb_panic - private function for out-of-line support
92 * @skb: buffer
93 * @sz: size
94 * @addr: address
95 * @msg: skb_over_panic or skb_under_panic
97 * Out-of-line support for skb_put() and skb_push().
98 * Called via the wrapper skb_over_panic() or skb_under_panic().
99 * Keep out of line to prevent kernel bloat.
100 * __builtin_return_address is not used because it is not always reliable.
102 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
103 const char msg[])
105 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
106 msg, addr, skb->len, sz, skb->head, skb->data,
107 (unsigned long)skb->tail, (unsigned long)skb->end,
108 skb->dev ? skb->dev->name : "<NULL>");
109 BUG();
112 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
114 skb_panic(skb, sz, addr, __func__);
117 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
119 skb_panic(skb, sz, addr, __func__);
123 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
124 * the caller if emergency pfmemalloc reserves are being used. If it is and
125 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
126 * may be used. Otherwise, the packet data may be discarded until enough
127 * memory is free
129 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
130 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
132 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
133 unsigned long ip, bool *pfmemalloc)
135 void *obj;
136 bool ret_pfmemalloc = false;
139 * Try a regular allocation, when that fails and we're not entitled
140 * to the reserves, fail.
142 obj = kmalloc_node_track_caller(size,
143 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
144 node);
145 if (obj || !(gfp_pfmemalloc_allowed(flags)))
146 goto out;
148 /* Try again but now we are using pfmemalloc reserves */
149 ret_pfmemalloc = true;
150 obj = kmalloc_node_track_caller(size, flags, node);
152 out:
153 if (pfmemalloc)
154 *pfmemalloc = ret_pfmemalloc;
156 return obj;
159 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
160 * 'private' fields and also do memory statistics to find all the
161 * [BEEP] leaks.
166 * __alloc_skb - allocate a network buffer
167 * @size: size to allocate
168 * @gfp_mask: allocation mask
169 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
170 * instead of head cache and allocate a cloned (child) skb.
171 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
172 * allocations in case the data is required for writeback
173 * @node: numa node to allocate memory on
175 * Allocate a new &sk_buff. The returned buffer has no headroom and a
176 * tail room of at least size bytes. The object has a reference count
177 * of one. The return is the buffer. On a failure the return is %NULL.
179 * Buffers may only be allocated from interrupts using a @gfp_mask of
180 * %GFP_ATOMIC.
182 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
183 int flags, int node)
185 struct kmem_cache *cache;
186 struct skb_shared_info *shinfo;
187 struct sk_buff *skb;
188 u8 *data;
189 bool pfmemalloc;
191 cache = (flags & SKB_ALLOC_FCLONE)
192 ? skbuff_fclone_cache : skbuff_head_cache;
194 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
195 gfp_mask |= __GFP_MEMALLOC;
197 /* Get the HEAD */
198 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
199 if (!skb)
200 goto out;
201 prefetchw(skb);
203 /* We do our best to align skb_shared_info on a separate cache
204 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
205 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
206 * Both skb->head and skb_shared_info are cache line aligned.
208 size = SKB_DATA_ALIGN(size);
209 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
210 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
211 if (!data)
212 goto nodata;
213 /* kmalloc(size) might give us more room than requested.
214 * Put skb_shared_info exactly at the end of allocated zone,
215 * to allow max possible filling before reallocation.
217 size = SKB_WITH_OVERHEAD(ksize(data));
218 prefetchw(data + size);
221 * Only clear those fields we need to clear, not those that we will
222 * actually initialise below. Hence, don't put any more fields after
223 * the tail pointer in struct sk_buff!
225 memset(skb, 0, offsetof(struct sk_buff, tail));
226 /* Account for allocated memory : skb + skb->head */
227 skb->truesize = SKB_TRUESIZE(size);
228 skb->pfmemalloc = pfmemalloc;
229 refcount_set(&skb->users, 1);
230 skb->head = data;
231 skb->data = data;
232 skb_reset_tail_pointer(skb);
233 skb->end = skb->tail + size;
234 skb->mac_header = (typeof(skb->mac_header))~0U;
235 skb->transport_header = (typeof(skb->transport_header))~0U;
237 /* make sure we initialize shinfo sequentially */
238 shinfo = skb_shinfo(skb);
239 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
240 atomic_set(&shinfo->dataref, 1);
242 if (flags & SKB_ALLOC_FCLONE) {
243 struct sk_buff_fclones *fclones;
245 fclones = container_of(skb, struct sk_buff_fclones, skb1);
247 skb->fclone = SKB_FCLONE_ORIG;
248 refcount_set(&fclones->fclone_ref, 1);
250 fclones->skb2.fclone = SKB_FCLONE_CLONE;
252 out:
253 return skb;
254 nodata:
255 kmem_cache_free(cache, skb);
256 skb = NULL;
257 goto out;
259 EXPORT_SYMBOL(__alloc_skb);
261 /* Caller must provide SKB that is memset cleared */
262 static struct sk_buff *__build_skb_around(struct sk_buff *skb,
263 void *data, unsigned int frag_size)
265 struct skb_shared_info *shinfo;
266 unsigned int size = frag_size ? : ksize(data);
268 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
270 /* Assumes caller memset cleared SKB */
271 skb->truesize = SKB_TRUESIZE(size);
272 refcount_set(&skb->users, 1);
273 skb->head = data;
274 skb->data = data;
275 skb_reset_tail_pointer(skb);
276 skb->end = skb->tail + size;
277 skb->mac_header = (typeof(skb->mac_header))~0U;
278 skb->transport_header = (typeof(skb->transport_header))~0U;
280 /* make sure we initialize shinfo sequentially */
281 shinfo = skb_shinfo(skb);
282 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
283 atomic_set(&shinfo->dataref, 1);
285 return skb;
289 * __build_skb - build a network buffer
290 * @data: data buffer provided by caller
291 * @frag_size: size of data, or 0 if head was kmalloced
293 * Allocate a new &sk_buff. Caller provides space holding head and
294 * skb_shared_info. @data must have been allocated by kmalloc() only if
295 * @frag_size is 0, otherwise data should come from the page allocator
296 * or vmalloc()
297 * The return is the new skb buffer.
298 * On a failure the return is %NULL, and @data is not freed.
299 * Notes :
300 * Before IO, driver allocates only data buffer where NIC put incoming frame
301 * Driver should add room at head (NET_SKB_PAD) and
302 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
303 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
304 * before giving packet to stack.
305 * RX rings only contains data buffers, not full skbs.
307 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
309 struct sk_buff *skb;
311 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
312 if (unlikely(!skb))
313 return NULL;
315 memset(skb, 0, offsetof(struct sk_buff, tail));
317 return __build_skb_around(skb, data, frag_size);
320 /* build_skb() is wrapper over __build_skb(), that specifically
321 * takes care of skb->head and skb->pfmemalloc
322 * This means that if @frag_size is not zero, then @data must be backed
323 * by a page fragment, not kmalloc() or vmalloc()
325 struct sk_buff *build_skb(void *data, unsigned int frag_size)
327 struct sk_buff *skb = __build_skb(data, frag_size);
329 if (skb && frag_size) {
330 skb->head_frag = 1;
331 if (page_is_pfmemalloc(virt_to_head_page(data)))
332 skb->pfmemalloc = 1;
334 return skb;
336 EXPORT_SYMBOL(build_skb);
339 * build_skb_around - build a network buffer around provided skb
340 * @skb: sk_buff provide by caller, must be memset cleared
341 * @data: data buffer provided by caller
342 * @frag_size: size of data, or 0 if head was kmalloced
344 struct sk_buff *build_skb_around(struct sk_buff *skb,
345 void *data, unsigned int frag_size)
347 if (unlikely(!skb))
348 return NULL;
350 skb = __build_skb_around(skb, data, frag_size);
352 if (skb && frag_size) {
353 skb->head_frag = 1;
354 if (page_is_pfmemalloc(virt_to_head_page(data)))
355 skb->pfmemalloc = 1;
357 return skb;
359 EXPORT_SYMBOL(build_skb_around);
361 #define NAPI_SKB_CACHE_SIZE 64
363 struct napi_alloc_cache {
364 struct page_frag_cache page;
365 unsigned int skb_count;
366 void *skb_cache[NAPI_SKB_CACHE_SIZE];
369 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
370 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
372 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
374 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
376 return page_frag_alloc(&nc->page, fragsz, gfp_mask);
379 void *napi_alloc_frag(unsigned int fragsz)
381 fragsz = SKB_DATA_ALIGN(fragsz);
383 return __napi_alloc_frag(fragsz, GFP_ATOMIC);
385 EXPORT_SYMBOL(napi_alloc_frag);
388 * netdev_alloc_frag - allocate a page fragment
389 * @fragsz: fragment size
391 * Allocates a frag from a page for receive buffer.
392 * Uses GFP_ATOMIC allocations.
394 void *netdev_alloc_frag(unsigned int fragsz)
396 struct page_frag_cache *nc;
397 void *data;
399 fragsz = SKB_DATA_ALIGN(fragsz);
400 if (in_irq() || irqs_disabled()) {
401 nc = this_cpu_ptr(&netdev_alloc_cache);
402 data = page_frag_alloc(nc, fragsz, GFP_ATOMIC);
403 } else {
404 local_bh_disable();
405 data = __napi_alloc_frag(fragsz, GFP_ATOMIC);
406 local_bh_enable();
408 return data;
410 EXPORT_SYMBOL(netdev_alloc_frag);
413 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
414 * @dev: network device to receive on
415 * @len: length to allocate
416 * @gfp_mask: get_free_pages mask, passed to alloc_skb
418 * Allocate a new &sk_buff and assign it a usage count of one. The
419 * buffer has NET_SKB_PAD headroom built in. Users should allocate
420 * the headroom they think they need without accounting for the
421 * built in space. The built in space is used for optimisations.
423 * %NULL is returned if there is no free memory.
425 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
426 gfp_t gfp_mask)
428 struct page_frag_cache *nc;
429 struct sk_buff *skb;
430 bool pfmemalloc;
431 void *data;
433 len += NET_SKB_PAD;
435 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
436 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
437 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
438 if (!skb)
439 goto skb_fail;
440 goto skb_success;
443 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
444 len = SKB_DATA_ALIGN(len);
446 if (sk_memalloc_socks())
447 gfp_mask |= __GFP_MEMALLOC;
449 if (in_irq() || irqs_disabled()) {
450 nc = this_cpu_ptr(&netdev_alloc_cache);
451 data = page_frag_alloc(nc, len, gfp_mask);
452 pfmemalloc = nc->pfmemalloc;
453 } else {
454 local_bh_disable();
455 nc = this_cpu_ptr(&napi_alloc_cache.page);
456 data = page_frag_alloc(nc, len, gfp_mask);
457 pfmemalloc = nc->pfmemalloc;
458 local_bh_enable();
461 if (unlikely(!data))
462 return NULL;
464 skb = __build_skb(data, len);
465 if (unlikely(!skb)) {
466 skb_free_frag(data);
467 return NULL;
470 if (pfmemalloc)
471 skb->pfmemalloc = 1;
472 skb->head_frag = 1;
474 skb_success:
475 skb_reserve(skb, NET_SKB_PAD);
476 skb->dev = dev;
478 skb_fail:
479 return skb;
481 EXPORT_SYMBOL(__netdev_alloc_skb);
484 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
485 * @napi: napi instance this buffer was allocated for
486 * @len: length to allocate
487 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
489 * Allocate a new sk_buff for use in NAPI receive. This buffer will
490 * attempt to allocate the head from a special reserved region used
491 * only for NAPI Rx allocation. By doing this we can save several
492 * CPU cycles by avoiding having to disable and re-enable IRQs.
494 * %NULL is returned if there is no free memory.
496 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
497 gfp_t gfp_mask)
499 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
500 struct sk_buff *skb;
501 void *data;
503 len += NET_SKB_PAD + NET_IP_ALIGN;
505 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
506 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
507 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
508 if (!skb)
509 goto skb_fail;
510 goto skb_success;
513 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
514 len = SKB_DATA_ALIGN(len);
516 if (sk_memalloc_socks())
517 gfp_mask |= __GFP_MEMALLOC;
519 data = page_frag_alloc(&nc->page, len, gfp_mask);
520 if (unlikely(!data))
521 return NULL;
523 skb = __build_skb(data, len);
524 if (unlikely(!skb)) {
525 skb_free_frag(data);
526 return NULL;
529 if (nc->page.pfmemalloc)
530 skb->pfmemalloc = 1;
531 skb->head_frag = 1;
533 skb_success:
534 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
535 skb->dev = napi->dev;
537 skb_fail:
538 return skb;
540 EXPORT_SYMBOL(__napi_alloc_skb);
542 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
543 int size, unsigned int truesize)
545 skb_fill_page_desc(skb, i, page, off, size);
546 skb->len += size;
547 skb->data_len += size;
548 skb->truesize += truesize;
550 EXPORT_SYMBOL(skb_add_rx_frag);
552 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
553 unsigned int truesize)
555 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
557 skb_frag_size_add(frag, size);
558 skb->len += size;
559 skb->data_len += size;
560 skb->truesize += truesize;
562 EXPORT_SYMBOL(skb_coalesce_rx_frag);
564 static void skb_drop_list(struct sk_buff **listp)
566 kfree_skb_list(*listp);
567 *listp = NULL;
570 static inline void skb_drop_fraglist(struct sk_buff *skb)
572 skb_drop_list(&skb_shinfo(skb)->frag_list);
575 static void skb_clone_fraglist(struct sk_buff *skb)
577 struct sk_buff *list;
579 skb_walk_frags(skb, list)
580 skb_get(list);
583 static void skb_free_head(struct sk_buff *skb)
585 unsigned char *head = skb->head;
587 if (skb->head_frag)
588 skb_free_frag(head);
589 else
590 kfree(head);
593 static void skb_release_data(struct sk_buff *skb)
595 struct skb_shared_info *shinfo = skb_shinfo(skb);
596 int i;
598 if (skb->cloned &&
599 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
600 &shinfo->dataref))
601 return;
603 for (i = 0; i < shinfo->nr_frags; i++)
604 __skb_frag_unref(&shinfo->frags[i]);
606 if (shinfo->frag_list)
607 kfree_skb_list(shinfo->frag_list);
609 skb_zcopy_clear(skb, true);
610 skb_free_head(skb);
614 * Free an skbuff by memory without cleaning the state.
616 static void kfree_skbmem(struct sk_buff *skb)
618 struct sk_buff_fclones *fclones;
620 switch (skb->fclone) {
621 case SKB_FCLONE_UNAVAILABLE:
622 kmem_cache_free(skbuff_head_cache, skb);
623 return;
625 case SKB_FCLONE_ORIG:
626 fclones = container_of(skb, struct sk_buff_fclones, skb1);
628 /* We usually free the clone (TX completion) before original skb
629 * This test would have no chance to be true for the clone,
630 * while here, branch prediction will be good.
632 if (refcount_read(&fclones->fclone_ref) == 1)
633 goto fastpath;
634 break;
636 default: /* SKB_FCLONE_CLONE */
637 fclones = container_of(skb, struct sk_buff_fclones, skb2);
638 break;
640 if (!refcount_dec_and_test(&fclones->fclone_ref))
641 return;
642 fastpath:
643 kmem_cache_free(skbuff_fclone_cache, fclones);
646 void skb_release_head_state(struct sk_buff *skb)
648 skb_dst_drop(skb);
649 if (skb->destructor) {
650 WARN_ON(in_irq());
651 skb->destructor(skb);
653 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
654 nf_conntrack_put(skb_nfct(skb));
655 #endif
656 skb_ext_put(skb);
659 /* Free everything but the sk_buff shell. */
660 static void skb_release_all(struct sk_buff *skb)
662 skb_release_head_state(skb);
663 if (likely(skb->head))
664 skb_release_data(skb);
668 * __kfree_skb - private function
669 * @skb: buffer
671 * Free an sk_buff. Release anything attached to the buffer.
672 * Clean the state. This is an internal helper function. Users should
673 * always call kfree_skb
676 void __kfree_skb(struct sk_buff *skb)
678 skb_release_all(skb);
679 kfree_skbmem(skb);
681 EXPORT_SYMBOL(__kfree_skb);
684 * kfree_skb - free an sk_buff
685 * @skb: buffer to free
687 * Drop a reference to the buffer and free it if the usage count has
688 * hit zero.
690 void kfree_skb(struct sk_buff *skb)
692 if (!skb_unref(skb))
693 return;
695 trace_kfree_skb(skb, __builtin_return_address(0));
696 __kfree_skb(skb);
698 EXPORT_SYMBOL(kfree_skb);
700 void kfree_skb_list(struct sk_buff *segs)
702 while (segs) {
703 struct sk_buff *next = segs->next;
705 kfree_skb(segs);
706 segs = next;
709 EXPORT_SYMBOL(kfree_skb_list);
711 /* Dump skb information and contents.
713 * Must only be called from net_ratelimit()-ed paths.
715 * Dumps up to can_dump_full whole packets if full_pkt, headers otherwise.
717 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
719 static atomic_t can_dump_full = ATOMIC_INIT(5);
720 struct skb_shared_info *sh = skb_shinfo(skb);
721 struct net_device *dev = skb->dev;
722 struct sock *sk = skb->sk;
723 struct sk_buff *list_skb;
724 bool has_mac, has_trans;
725 int headroom, tailroom;
726 int i, len, seg_len;
728 if (full_pkt)
729 full_pkt = atomic_dec_if_positive(&can_dump_full) >= 0;
731 if (full_pkt)
732 len = skb->len;
733 else
734 len = min_t(int, skb->len, MAX_HEADER + 128);
736 headroom = skb_headroom(skb);
737 tailroom = skb_tailroom(skb);
739 has_mac = skb_mac_header_was_set(skb);
740 has_trans = skb_transport_header_was_set(skb);
742 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
743 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
744 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
745 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
746 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
747 level, skb->len, headroom, skb_headlen(skb), tailroom,
748 has_mac ? skb->mac_header : -1,
749 has_mac ? skb_mac_header_len(skb) : -1,
750 skb->network_header,
751 has_trans ? skb_network_header_len(skb) : -1,
752 has_trans ? skb->transport_header : -1,
753 sh->tx_flags, sh->nr_frags,
754 sh->gso_size, sh->gso_type, sh->gso_segs,
755 skb->csum, skb->ip_summed, skb->csum_complete_sw,
756 skb->csum_valid, skb->csum_level,
757 skb->hash, skb->sw_hash, skb->l4_hash,
758 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
760 if (dev)
761 printk("%sdev name=%s feat=0x%pNF\n",
762 level, dev->name, &dev->features);
763 if (sk)
764 printk("%ssk family=%hu type=%u proto=%u\n",
765 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
767 if (full_pkt && headroom)
768 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
769 16, 1, skb->head, headroom, false);
771 seg_len = min_t(int, skb_headlen(skb), len);
772 if (seg_len)
773 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
774 16, 1, skb->data, seg_len, false);
775 len -= seg_len;
777 if (full_pkt && tailroom)
778 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
779 16, 1, skb_tail_pointer(skb), tailroom, false);
781 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
782 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
783 u32 p_off, p_len, copied;
784 struct page *p;
785 u8 *vaddr;
787 skb_frag_foreach_page(frag, skb_frag_off(frag),
788 skb_frag_size(frag), p, p_off, p_len,
789 copied) {
790 seg_len = min_t(int, p_len, len);
791 vaddr = kmap_atomic(p);
792 print_hex_dump(level, "skb frag: ",
793 DUMP_PREFIX_OFFSET,
794 16, 1, vaddr + p_off, seg_len, false);
795 kunmap_atomic(vaddr);
796 len -= seg_len;
797 if (!len)
798 break;
802 if (full_pkt && skb_has_frag_list(skb)) {
803 printk("skb fraglist:\n");
804 skb_walk_frags(skb, list_skb)
805 skb_dump(level, list_skb, true);
808 EXPORT_SYMBOL(skb_dump);
811 * skb_tx_error - report an sk_buff xmit error
812 * @skb: buffer that triggered an error
814 * Report xmit error if a device callback is tracking this skb.
815 * skb must be freed afterwards.
817 void skb_tx_error(struct sk_buff *skb)
819 skb_zcopy_clear(skb, true);
821 EXPORT_SYMBOL(skb_tx_error);
824 * consume_skb - free an skbuff
825 * @skb: buffer to free
827 * Drop a ref to the buffer and free it if the usage count has hit zero
828 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
829 * is being dropped after a failure and notes that
831 void consume_skb(struct sk_buff *skb)
833 if (!skb_unref(skb))
834 return;
836 trace_consume_skb(skb);
837 __kfree_skb(skb);
839 EXPORT_SYMBOL(consume_skb);
842 * consume_stateless_skb - free an skbuff, assuming it is stateless
843 * @skb: buffer to free
845 * Alike consume_skb(), but this variant assumes that this is the last
846 * skb reference and all the head states have been already dropped
848 void __consume_stateless_skb(struct sk_buff *skb)
850 trace_consume_skb(skb);
851 skb_release_data(skb);
852 kfree_skbmem(skb);
855 void __kfree_skb_flush(void)
857 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
859 /* flush skb_cache if containing objects */
860 if (nc->skb_count) {
861 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
862 nc->skb_cache);
863 nc->skb_count = 0;
867 static inline void _kfree_skb_defer(struct sk_buff *skb)
869 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
871 /* drop skb->head and call any destructors for packet */
872 skb_release_all(skb);
874 /* record skb to CPU local list */
875 nc->skb_cache[nc->skb_count++] = skb;
877 #ifdef CONFIG_SLUB
878 /* SLUB writes into objects when freeing */
879 prefetchw(skb);
880 #endif
882 /* flush skb_cache if it is filled */
883 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
884 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
885 nc->skb_cache);
886 nc->skb_count = 0;
889 void __kfree_skb_defer(struct sk_buff *skb)
891 _kfree_skb_defer(skb);
894 void napi_consume_skb(struct sk_buff *skb, int budget)
896 if (unlikely(!skb))
897 return;
899 /* Zero budget indicate non-NAPI context called us, like netpoll */
900 if (unlikely(!budget)) {
901 dev_consume_skb_any(skb);
902 return;
905 if (!skb_unref(skb))
906 return;
908 /* if reaching here SKB is ready to free */
909 trace_consume_skb(skb);
911 /* if SKB is a clone, don't handle this case */
912 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
913 __kfree_skb(skb);
914 return;
917 _kfree_skb_defer(skb);
919 EXPORT_SYMBOL(napi_consume_skb);
921 /* Make sure a field is enclosed inside headers_start/headers_end section */
922 #define CHECK_SKB_FIELD(field) \
923 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
924 offsetof(struct sk_buff, headers_start)); \
925 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
926 offsetof(struct sk_buff, headers_end)); \
928 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
930 new->tstamp = old->tstamp;
931 /* We do not copy old->sk */
932 new->dev = old->dev;
933 memcpy(new->cb, old->cb, sizeof(old->cb));
934 skb_dst_copy(new, old);
935 __skb_ext_copy(new, old);
936 __nf_copy(new, old, false);
938 /* Note : this field could be in headers_start/headers_end section
939 * It is not yet because we do not want to have a 16 bit hole
941 new->queue_mapping = old->queue_mapping;
943 memcpy(&new->headers_start, &old->headers_start,
944 offsetof(struct sk_buff, headers_end) -
945 offsetof(struct sk_buff, headers_start));
946 CHECK_SKB_FIELD(protocol);
947 CHECK_SKB_FIELD(csum);
948 CHECK_SKB_FIELD(hash);
949 CHECK_SKB_FIELD(priority);
950 CHECK_SKB_FIELD(skb_iif);
951 CHECK_SKB_FIELD(vlan_proto);
952 CHECK_SKB_FIELD(vlan_tci);
953 CHECK_SKB_FIELD(transport_header);
954 CHECK_SKB_FIELD(network_header);
955 CHECK_SKB_FIELD(mac_header);
956 CHECK_SKB_FIELD(inner_protocol);
957 CHECK_SKB_FIELD(inner_transport_header);
958 CHECK_SKB_FIELD(inner_network_header);
959 CHECK_SKB_FIELD(inner_mac_header);
960 CHECK_SKB_FIELD(mark);
961 #ifdef CONFIG_NETWORK_SECMARK
962 CHECK_SKB_FIELD(secmark);
963 #endif
964 #ifdef CONFIG_NET_RX_BUSY_POLL
965 CHECK_SKB_FIELD(napi_id);
966 #endif
967 #ifdef CONFIG_XPS
968 CHECK_SKB_FIELD(sender_cpu);
969 #endif
970 #ifdef CONFIG_NET_SCHED
971 CHECK_SKB_FIELD(tc_index);
972 #endif
977 * You should not add any new code to this function. Add it to
978 * __copy_skb_header above instead.
980 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
982 #define C(x) n->x = skb->x
984 n->next = n->prev = NULL;
985 n->sk = NULL;
986 __copy_skb_header(n, skb);
988 C(len);
989 C(data_len);
990 C(mac_len);
991 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
992 n->cloned = 1;
993 n->nohdr = 0;
994 n->peeked = 0;
995 C(pfmemalloc);
996 n->destructor = NULL;
997 C(tail);
998 C(end);
999 C(head);
1000 C(head_frag);
1001 C(data);
1002 C(truesize);
1003 refcount_set(&n->users, 1);
1005 atomic_inc(&(skb_shinfo(skb)->dataref));
1006 skb->cloned = 1;
1008 return n;
1009 #undef C
1013 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1014 * @first: first sk_buff of the msg
1016 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1018 struct sk_buff *n;
1020 n = alloc_skb(0, GFP_ATOMIC);
1021 if (!n)
1022 return NULL;
1024 n->len = first->len;
1025 n->data_len = first->len;
1026 n->truesize = first->truesize;
1028 skb_shinfo(n)->frag_list = first;
1030 __copy_skb_header(n, first);
1031 n->destructor = NULL;
1033 return n;
1035 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1038 * skb_morph - morph one skb into another
1039 * @dst: the skb to receive the contents
1040 * @src: the skb to supply the contents
1042 * This is identical to skb_clone except that the target skb is
1043 * supplied by the user.
1045 * The target skb is returned upon exit.
1047 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1049 skb_release_all(dst);
1050 return __skb_clone(dst, src);
1052 EXPORT_SYMBOL_GPL(skb_morph);
1054 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1056 unsigned long max_pg, num_pg, new_pg, old_pg;
1057 struct user_struct *user;
1059 if (capable(CAP_IPC_LOCK) || !size)
1060 return 0;
1062 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1063 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1064 user = mmp->user ? : current_user();
1066 do {
1067 old_pg = atomic_long_read(&user->locked_vm);
1068 new_pg = old_pg + num_pg;
1069 if (new_pg > max_pg)
1070 return -ENOBUFS;
1071 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1072 old_pg);
1074 if (!mmp->user) {
1075 mmp->user = get_uid(user);
1076 mmp->num_pg = num_pg;
1077 } else {
1078 mmp->num_pg += num_pg;
1081 return 0;
1083 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1085 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1087 if (mmp->user) {
1088 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1089 free_uid(mmp->user);
1092 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1094 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
1096 struct ubuf_info *uarg;
1097 struct sk_buff *skb;
1099 WARN_ON_ONCE(!in_task());
1101 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1102 if (!skb)
1103 return NULL;
1105 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1106 uarg = (void *)skb->cb;
1107 uarg->mmp.user = NULL;
1109 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1110 kfree_skb(skb);
1111 return NULL;
1114 uarg->callback = sock_zerocopy_callback;
1115 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1116 uarg->len = 1;
1117 uarg->bytelen = size;
1118 uarg->zerocopy = 1;
1119 refcount_set(&uarg->refcnt, 1);
1120 sock_hold(sk);
1122 return uarg;
1124 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
1126 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1128 return container_of((void *)uarg, struct sk_buff, cb);
1131 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
1132 struct ubuf_info *uarg)
1134 if (uarg) {
1135 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1136 u32 bytelen, next;
1138 /* realloc only when socket is locked (TCP, UDP cork),
1139 * so uarg->len and sk_zckey access is serialized
1141 if (!sock_owned_by_user(sk)) {
1142 WARN_ON_ONCE(1);
1143 return NULL;
1146 bytelen = uarg->bytelen + size;
1147 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1148 /* TCP can create new skb to attach new uarg */
1149 if (sk->sk_type == SOCK_STREAM)
1150 goto new_alloc;
1151 return NULL;
1154 next = (u32)atomic_read(&sk->sk_zckey);
1155 if ((u32)(uarg->id + uarg->len) == next) {
1156 if (mm_account_pinned_pages(&uarg->mmp, size))
1157 return NULL;
1158 uarg->len++;
1159 uarg->bytelen = bytelen;
1160 atomic_set(&sk->sk_zckey, ++next);
1162 /* no extra ref when appending to datagram (MSG_MORE) */
1163 if (sk->sk_type == SOCK_STREAM)
1164 sock_zerocopy_get(uarg);
1166 return uarg;
1170 new_alloc:
1171 return sock_zerocopy_alloc(sk, size);
1173 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1175 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1177 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1178 u32 old_lo, old_hi;
1179 u64 sum_len;
1181 old_lo = serr->ee.ee_info;
1182 old_hi = serr->ee.ee_data;
1183 sum_len = old_hi - old_lo + 1ULL + len;
1185 if (sum_len >= (1ULL << 32))
1186 return false;
1188 if (lo != old_hi + 1)
1189 return false;
1191 serr->ee.ee_data += len;
1192 return true;
1195 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1197 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1198 struct sock_exterr_skb *serr;
1199 struct sock *sk = skb->sk;
1200 struct sk_buff_head *q;
1201 unsigned long flags;
1202 u32 lo, hi;
1203 u16 len;
1205 mm_unaccount_pinned_pages(&uarg->mmp);
1207 /* if !len, there was only 1 call, and it was aborted
1208 * so do not queue a completion notification
1210 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1211 goto release;
1213 len = uarg->len;
1214 lo = uarg->id;
1215 hi = uarg->id + len - 1;
1217 serr = SKB_EXT_ERR(skb);
1218 memset(serr, 0, sizeof(*serr));
1219 serr->ee.ee_errno = 0;
1220 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1221 serr->ee.ee_data = hi;
1222 serr->ee.ee_info = lo;
1223 if (!success)
1224 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1226 q = &sk->sk_error_queue;
1227 spin_lock_irqsave(&q->lock, flags);
1228 tail = skb_peek_tail(q);
1229 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1230 !skb_zerocopy_notify_extend(tail, lo, len)) {
1231 __skb_queue_tail(q, skb);
1232 skb = NULL;
1234 spin_unlock_irqrestore(&q->lock, flags);
1236 sk->sk_error_report(sk);
1238 release:
1239 consume_skb(skb);
1240 sock_put(sk);
1242 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1244 void sock_zerocopy_put(struct ubuf_info *uarg)
1246 if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1247 if (uarg->callback)
1248 uarg->callback(uarg, uarg->zerocopy);
1249 else
1250 consume_skb(skb_from_uarg(uarg));
1253 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1255 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1257 if (uarg) {
1258 struct sock *sk = skb_from_uarg(uarg)->sk;
1260 atomic_dec(&sk->sk_zckey);
1261 uarg->len--;
1263 if (have_uref)
1264 sock_zerocopy_put(uarg);
1267 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1269 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1271 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1273 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1275 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1276 struct msghdr *msg, int len,
1277 struct ubuf_info *uarg)
1279 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1280 struct iov_iter orig_iter = msg->msg_iter;
1281 int err, orig_len = skb->len;
1283 /* An skb can only point to one uarg. This edge case happens when
1284 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1286 if (orig_uarg && uarg != orig_uarg)
1287 return -EEXIST;
1289 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1290 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1291 struct sock *save_sk = skb->sk;
1293 /* Streams do not free skb on error. Reset to prev state. */
1294 msg->msg_iter = orig_iter;
1295 skb->sk = sk;
1296 ___pskb_trim(skb, orig_len);
1297 skb->sk = save_sk;
1298 return err;
1301 skb_zcopy_set(skb, uarg, NULL);
1302 return skb->len - orig_len;
1304 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1306 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1307 gfp_t gfp_mask)
1309 if (skb_zcopy(orig)) {
1310 if (skb_zcopy(nskb)) {
1311 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1312 if (!gfp_mask) {
1313 WARN_ON_ONCE(1);
1314 return -ENOMEM;
1316 if (skb_uarg(nskb) == skb_uarg(orig))
1317 return 0;
1318 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1319 return -EIO;
1321 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1323 return 0;
1327 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1328 * @skb: the skb to modify
1329 * @gfp_mask: allocation priority
1331 * This must be called on SKBTX_DEV_ZEROCOPY skb.
1332 * It will copy all frags into kernel and drop the reference
1333 * to userspace pages.
1335 * If this function is called from an interrupt gfp_mask() must be
1336 * %GFP_ATOMIC.
1338 * Returns 0 on success or a negative error code on failure
1339 * to allocate kernel memory to copy to.
1341 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1343 int num_frags = skb_shinfo(skb)->nr_frags;
1344 struct page *page, *head = NULL;
1345 int i, new_frags;
1346 u32 d_off;
1348 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1349 return -EINVAL;
1351 if (!num_frags)
1352 goto release;
1354 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1355 for (i = 0; i < new_frags; i++) {
1356 page = alloc_page(gfp_mask);
1357 if (!page) {
1358 while (head) {
1359 struct page *next = (struct page *)page_private(head);
1360 put_page(head);
1361 head = next;
1363 return -ENOMEM;
1365 set_page_private(page, (unsigned long)head);
1366 head = page;
1369 page = head;
1370 d_off = 0;
1371 for (i = 0; i < num_frags; i++) {
1372 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1373 u32 p_off, p_len, copied;
1374 struct page *p;
1375 u8 *vaddr;
1377 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1378 p, p_off, p_len, copied) {
1379 u32 copy, done = 0;
1380 vaddr = kmap_atomic(p);
1382 while (done < p_len) {
1383 if (d_off == PAGE_SIZE) {
1384 d_off = 0;
1385 page = (struct page *)page_private(page);
1387 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1388 memcpy(page_address(page) + d_off,
1389 vaddr + p_off + done, copy);
1390 done += copy;
1391 d_off += copy;
1393 kunmap_atomic(vaddr);
1397 /* skb frags release userspace buffers */
1398 for (i = 0; i < num_frags; i++)
1399 skb_frag_unref(skb, i);
1401 /* skb frags point to kernel buffers */
1402 for (i = 0; i < new_frags - 1; i++) {
1403 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1404 head = (struct page *)page_private(head);
1406 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1407 skb_shinfo(skb)->nr_frags = new_frags;
1409 release:
1410 skb_zcopy_clear(skb, false);
1411 return 0;
1413 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1416 * skb_clone - duplicate an sk_buff
1417 * @skb: buffer to clone
1418 * @gfp_mask: allocation priority
1420 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1421 * copies share the same packet data but not structure. The new
1422 * buffer has a reference count of 1. If the allocation fails the
1423 * function returns %NULL otherwise the new buffer is returned.
1425 * If this function is called from an interrupt gfp_mask() must be
1426 * %GFP_ATOMIC.
1429 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1431 struct sk_buff_fclones *fclones = container_of(skb,
1432 struct sk_buff_fclones,
1433 skb1);
1434 struct sk_buff *n;
1436 if (skb_orphan_frags(skb, gfp_mask))
1437 return NULL;
1439 if (skb->fclone == SKB_FCLONE_ORIG &&
1440 refcount_read(&fclones->fclone_ref) == 1) {
1441 n = &fclones->skb2;
1442 refcount_set(&fclones->fclone_ref, 2);
1443 } else {
1444 if (skb_pfmemalloc(skb))
1445 gfp_mask |= __GFP_MEMALLOC;
1447 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1448 if (!n)
1449 return NULL;
1451 n->fclone = SKB_FCLONE_UNAVAILABLE;
1454 return __skb_clone(n, skb);
1456 EXPORT_SYMBOL(skb_clone);
1458 void skb_headers_offset_update(struct sk_buff *skb, int off)
1460 /* Only adjust this if it actually is csum_start rather than csum */
1461 if (skb->ip_summed == CHECKSUM_PARTIAL)
1462 skb->csum_start += off;
1463 /* {transport,network,mac}_header and tail are relative to skb->head */
1464 skb->transport_header += off;
1465 skb->network_header += off;
1466 if (skb_mac_header_was_set(skb))
1467 skb->mac_header += off;
1468 skb->inner_transport_header += off;
1469 skb->inner_network_header += off;
1470 skb->inner_mac_header += off;
1472 EXPORT_SYMBOL(skb_headers_offset_update);
1474 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1476 __copy_skb_header(new, old);
1478 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1479 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1480 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1482 EXPORT_SYMBOL(skb_copy_header);
1484 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1486 if (skb_pfmemalloc(skb))
1487 return SKB_ALLOC_RX;
1488 return 0;
1492 * skb_copy - create private copy of an sk_buff
1493 * @skb: buffer to copy
1494 * @gfp_mask: allocation priority
1496 * Make a copy of both an &sk_buff and its data. This is used when the
1497 * caller wishes to modify the data and needs a private copy of the
1498 * data to alter. Returns %NULL on failure or the pointer to the buffer
1499 * on success. The returned buffer has a reference count of 1.
1501 * As by-product this function converts non-linear &sk_buff to linear
1502 * one, so that &sk_buff becomes completely private and caller is allowed
1503 * to modify all the data of returned buffer. This means that this
1504 * function is not recommended for use in circumstances when only
1505 * header is going to be modified. Use pskb_copy() instead.
1508 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1510 int headerlen = skb_headroom(skb);
1511 unsigned int size = skb_end_offset(skb) + skb->data_len;
1512 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1513 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1515 if (!n)
1516 return NULL;
1518 /* Set the data pointer */
1519 skb_reserve(n, headerlen);
1520 /* Set the tail pointer and length */
1521 skb_put(n, skb->len);
1523 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1525 skb_copy_header(n, skb);
1526 return n;
1528 EXPORT_SYMBOL(skb_copy);
1531 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1532 * @skb: buffer to copy
1533 * @headroom: headroom of new skb
1534 * @gfp_mask: allocation priority
1535 * @fclone: if true allocate the copy of the skb from the fclone
1536 * cache instead of the head cache; it is recommended to set this
1537 * to true for the cases where the copy will likely be cloned
1539 * Make a copy of both an &sk_buff and part of its data, located
1540 * in header. Fragmented data remain shared. This is used when
1541 * the caller wishes to modify only header of &sk_buff and needs
1542 * private copy of the header to alter. Returns %NULL on failure
1543 * or the pointer to the buffer on success.
1544 * The returned buffer has a reference count of 1.
1547 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1548 gfp_t gfp_mask, bool fclone)
1550 unsigned int size = skb_headlen(skb) + headroom;
1551 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1552 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1554 if (!n)
1555 goto out;
1557 /* Set the data pointer */
1558 skb_reserve(n, headroom);
1559 /* Set the tail pointer and length */
1560 skb_put(n, skb_headlen(skb));
1561 /* Copy the bytes */
1562 skb_copy_from_linear_data(skb, n->data, n->len);
1564 n->truesize += skb->data_len;
1565 n->data_len = skb->data_len;
1566 n->len = skb->len;
1568 if (skb_shinfo(skb)->nr_frags) {
1569 int i;
1571 if (skb_orphan_frags(skb, gfp_mask) ||
1572 skb_zerocopy_clone(n, skb, gfp_mask)) {
1573 kfree_skb(n);
1574 n = NULL;
1575 goto out;
1577 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1578 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1579 skb_frag_ref(skb, i);
1581 skb_shinfo(n)->nr_frags = i;
1584 if (skb_has_frag_list(skb)) {
1585 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1586 skb_clone_fraglist(n);
1589 skb_copy_header(n, skb);
1590 out:
1591 return n;
1593 EXPORT_SYMBOL(__pskb_copy_fclone);
1596 * pskb_expand_head - reallocate header of &sk_buff
1597 * @skb: buffer to reallocate
1598 * @nhead: room to add at head
1599 * @ntail: room to add at tail
1600 * @gfp_mask: allocation priority
1602 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1603 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1604 * reference count of 1. Returns zero in the case of success or error,
1605 * if expansion failed. In the last case, &sk_buff is not changed.
1607 * All the pointers pointing into skb header may change and must be
1608 * reloaded after call to this function.
1611 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1612 gfp_t gfp_mask)
1614 int i, osize = skb_end_offset(skb);
1615 int size = osize + nhead + ntail;
1616 long off;
1617 u8 *data;
1619 BUG_ON(nhead < 0);
1621 BUG_ON(skb_shared(skb));
1623 size = SKB_DATA_ALIGN(size);
1625 if (skb_pfmemalloc(skb))
1626 gfp_mask |= __GFP_MEMALLOC;
1627 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1628 gfp_mask, NUMA_NO_NODE, NULL);
1629 if (!data)
1630 goto nodata;
1631 size = SKB_WITH_OVERHEAD(ksize(data));
1633 /* Copy only real data... and, alas, header. This should be
1634 * optimized for the cases when header is void.
1636 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1638 memcpy((struct skb_shared_info *)(data + size),
1639 skb_shinfo(skb),
1640 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1643 * if shinfo is shared we must drop the old head gracefully, but if it
1644 * is not we can just drop the old head and let the existing refcount
1645 * be since all we did is relocate the values
1647 if (skb_cloned(skb)) {
1648 if (skb_orphan_frags(skb, gfp_mask))
1649 goto nofrags;
1650 if (skb_zcopy(skb))
1651 refcount_inc(&skb_uarg(skb)->refcnt);
1652 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1653 skb_frag_ref(skb, i);
1655 if (skb_has_frag_list(skb))
1656 skb_clone_fraglist(skb);
1658 skb_release_data(skb);
1659 } else {
1660 skb_free_head(skb);
1662 off = (data + nhead) - skb->head;
1664 skb->head = data;
1665 skb->head_frag = 0;
1666 skb->data += off;
1667 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1668 skb->end = size;
1669 off = nhead;
1670 #else
1671 skb->end = skb->head + size;
1672 #endif
1673 skb->tail += off;
1674 skb_headers_offset_update(skb, nhead);
1675 skb->cloned = 0;
1676 skb->hdr_len = 0;
1677 skb->nohdr = 0;
1678 atomic_set(&skb_shinfo(skb)->dataref, 1);
1680 skb_metadata_clear(skb);
1682 /* It is not generally safe to change skb->truesize.
1683 * For the moment, we really care of rx path, or
1684 * when skb is orphaned (not attached to a socket).
1686 if (!skb->sk || skb->destructor == sock_edemux)
1687 skb->truesize += size - osize;
1689 return 0;
1691 nofrags:
1692 kfree(data);
1693 nodata:
1694 return -ENOMEM;
1696 EXPORT_SYMBOL(pskb_expand_head);
1698 /* Make private copy of skb with writable head and some headroom */
1700 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1702 struct sk_buff *skb2;
1703 int delta = headroom - skb_headroom(skb);
1705 if (delta <= 0)
1706 skb2 = pskb_copy(skb, GFP_ATOMIC);
1707 else {
1708 skb2 = skb_clone(skb, GFP_ATOMIC);
1709 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1710 GFP_ATOMIC)) {
1711 kfree_skb(skb2);
1712 skb2 = NULL;
1715 return skb2;
1717 EXPORT_SYMBOL(skb_realloc_headroom);
1720 * skb_copy_expand - copy and expand sk_buff
1721 * @skb: buffer to copy
1722 * @newheadroom: new free bytes at head
1723 * @newtailroom: new free bytes at tail
1724 * @gfp_mask: allocation priority
1726 * Make a copy of both an &sk_buff and its data and while doing so
1727 * allocate additional space.
1729 * This is used when the caller wishes to modify the data and needs a
1730 * private copy of the data to alter as well as more space for new fields.
1731 * Returns %NULL on failure or the pointer to the buffer
1732 * on success. The returned buffer has a reference count of 1.
1734 * You must pass %GFP_ATOMIC as the allocation priority if this function
1735 * is called from an interrupt.
1737 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1738 int newheadroom, int newtailroom,
1739 gfp_t gfp_mask)
1742 * Allocate the copy buffer
1744 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1745 gfp_mask, skb_alloc_rx_flag(skb),
1746 NUMA_NO_NODE);
1747 int oldheadroom = skb_headroom(skb);
1748 int head_copy_len, head_copy_off;
1750 if (!n)
1751 return NULL;
1753 skb_reserve(n, newheadroom);
1755 /* Set the tail pointer and length */
1756 skb_put(n, skb->len);
1758 head_copy_len = oldheadroom;
1759 head_copy_off = 0;
1760 if (newheadroom <= head_copy_len)
1761 head_copy_len = newheadroom;
1762 else
1763 head_copy_off = newheadroom - head_copy_len;
1765 /* Copy the linear header and data. */
1766 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1767 skb->len + head_copy_len));
1769 skb_copy_header(n, skb);
1771 skb_headers_offset_update(n, newheadroom - oldheadroom);
1773 return n;
1775 EXPORT_SYMBOL(skb_copy_expand);
1778 * __skb_pad - zero pad the tail of an skb
1779 * @skb: buffer to pad
1780 * @pad: space to pad
1781 * @free_on_error: free buffer on error
1783 * Ensure that a buffer is followed by a padding area that is zero
1784 * filled. Used by network drivers which may DMA or transfer data
1785 * beyond the buffer end onto the wire.
1787 * May return error in out of memory cases. The skb is freed on error
1788 * if @free_on_error is true.
1791 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1793 int err;
1794 int ntail;
1796 /* If the skbuff is non linear tailroom is always zero.. */
1797 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1798 memset(skb->data+skb->len, 0, pad);
1799 return 0;
1802 ntail = skb->data_len + pad - (skb->end - skb->tail);
1803 if (likely(skb_cloned(skb) || ntail > 0)) {
1804 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1805 if (unlikely(err))
1806 goto free_skb;
1809 /* FIXME: The use of this function with non-linear skb's really needs
1810 * to be audited.
1812 err = skb_linearize(skb);
1813 if (unlikely(err))
1814 goto free_skb;
1816 memset(skb->data + skb->len, 0, pad);
1817 return 0;
1819 free_skb:
1820 if (free_on_error)
1821 kfree_skb(skb);
1822 return err;
1824 EXPORT_SYMBOL(__skb_pad);
1827 * pskb_put - add data to the tail of a potentially fragmented buffer
1828 * @skb: start of the buffer to use
1829 * @tail: tail fragment of the buffer to use
1830 * @len: amount of data to add
1832 * This function extends the used data area of the potentially
1833 * fragmented buffer. @tail must be the last fragment of @skb -- or
1834 * @skb itself. If this would exceed the total buffer size the kernel
1835 * will panic. A pointer to the first byte of the extra data is
1836 * returned.
1839 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1841 if (tail != skb) {
1842 skb->data_len += len;
1843 skb->len += len;
1845 return skb_put(tail, len);
1847 EXPORT_SYMBOL_GPL(pskb_put);
1850 * skb_put - add data to a buffer
1851 * @skb: buffer to use
1852 * @len: amount of data to add
1854 * This function extends the used data area of the buffer. If this would
1855 * exceed the total buffer size the kernel will panic. A pointer to the
1856 * first byte of the extra data is returned.
1858 void *skb_put(struct sk_buff *skb, unsigned int len)
1860 void *tmp = skb_tail_pointer(skb);
1861 SKB_LINEAR_ASSERT(skb);
1862 skb->tail += len;
1863 skb->len += len;
1864 if (unlikely(skb->tail > skb->end))
1865 skb_over_panic(skb, len, __builtin_return_address(0));
1866 return tmp;
1868 EXPORT_SYMBOL(skb_put);
1871 * skb_push - add data to the start of a buffer
1872 * @skb: buffer to use
1873 * @len: amount of data to add
1875 * This function extends the used data area of the buffer at the buffer
1876 * start. If this would exceed the total buffer headroom the kernel will
1877 * panic. A pointer to the first byte of the extra data is returned.
1879 void *skb_push(struct sk_buff *skb, unsigned int len)
1881 skb->data -= len;
1882 skb->len += len;
1883 if (unlikely(skb->data < skb->head))
1884 skb_under_panic(skb, len, __builtin_return_address(0));
1885 return skb->data;
1887 EXPORT_SYMBOL(skb_push);
1890 * skb_pull - remove data from the start of a buffer
1891 * @skb: buffer to use
1892 * @len: amount of data to remove
1894 * This function removes data from the start of a buffer, returning
1895 * the memory to the headroom. A pointer to the next data in the buffer
1896 * is returned. Once the data has been pulled future pushes will overwrite
1897 * the old data.
1899 void *skb_pull(struct sk_buff *skb, unsigned int len)
1901 return skb_pull_inline(skb, len);
1903 EXPORT_SYMBOL(skb_pull);
1906 * skb_trim - remove end from a buffer
1907 * @skb: buffer to alter
1908 * @len: new length
1910 * Cut the length of a buffer down by removing data from the tail. If
1911 * the buffer is already under the length specified it is not modified.
1912 * The skb must be linear.
1914 void skb_trim(struct sk_buff *skb, unsigned int len)
1916 if (skb->len > len)
1917 __skb_trim(skb, len);
1919 EXPORT_SYMBOL(skb_trim);
1921 /* Trims skb to length len. It can change skb pointers.
1924 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1926 struct sk_buff **fragp;
1927 struct sk_buff *frag;
1928 int offset = skb_headlen(skb);
1929 int nfrags = skb_shinfo(skb)->nr_frags;
1930 int i;
1931 int err;
1933 if (skb_cloned(skb) &&
1934 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1935 return err;
1937 i = 0;
1938 if (offset >= len)
1939 goto drop_pages;
1941 for (; i < nfrags; i++) {
1942 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1944 if (end < len) {
1945 offset = end;
1946 continue;
1949 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1951 drop_pages:
1952 skb_shinfo(skb)->nr_frags = i;
1954 for (; i < nfrags; i++)
1955 skb_frag_unref(skb, i);
1957 if (skb_has_frag_list(skb))
1958 skb_drop_fraglist(skb);
1959 goto done;
1962 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1963 fragp = &frag->next) {
1964 int end = offset + frag->len;
1966 if (skb_shared(frag)) {
1967 struct sk_buff *nfrag;
1969 nfrag = skb_clone(frag, GFP_ATOMIC);
1970 if (unlikely(!nfrag))
1971 return -ENOMEM;
1973 nfrag->next = frag->next;
1974 consume_skb(frag);
1975 frag = nfrag;
1976 *fragp = frag;
1979 if (end < len) {
1980 offset = end;
1981 continue;
1984 if (end > len &&
1985 unlikely((err = pskb_trim(frag, len - offset))))
1986 return err;
1988 if (frag->next)
1989 skb_drop_list(&frag->next);
1990 break;
1993 done:
1994 if (len > skb_headlen(skb)) {
1995 skb->data_len -= skb->len - len;
1996 skb->len = len;
1997 } else {
1998 skb->len = len;
1999 skb->data_len = 0;
2000 skb_set_tail_pointer(skb, len);
2003 if (!skb->sk || skb->destructor == sock_edemux)
2004 skb_condense(skb);
2005 return 0;
2007 EXPORT_SYMBOL(___pskb_trim);
2009 /* Note : use pskb_trim_rcsum() instead of calling this directly
2011 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2013 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2014 int delta = skb->len - len;
2016 skb->csum = csum_block_sub(skb->csum,
2017 skb_checksum(skb, len, delta, 0),
2018 len);
2020 return __pskb_trim(skb, len);
2022 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2025 * __pskb_pull_tail - advance tail of skb header
2026 * @skb: buffer to reallocate
2027 * @delta: number of bytes to advance tail
2029 * The function makes a sense only on a fragmented &sk_buff,
2030 * it expands header moving its tail forward and copying necessary
2031 * data from fragmented part.
2033 * &sk_buff MUST have reference count of 1.
2035 * Returns %NULL (and &sk_buff does not change) if pull failed
2036 * or value of new tail of skb in the case of success.
2038 * All the pointers pointing into skb header may change and must be
2039 * reloaded after call to this function.
2042 /* Moves tail of skb head forward, copying data from fragmented part,
2043 * when it is necessary.
2044 * 1. It may fail due to malloc failure.
2045 * 2. It may change skb pointers.
2047 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2049 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2051 /* If skb has not enough free space at tail, get new one
2052 * plus 128 bytes for future expansions. If we have enough
2053 * room at tail, reallocate without expansion only if skb is cloned.
2055 int i, k, eat = (skb->tail + delta) - skb->end;
2057 if (eat > 0 || skb_cloned(skb)) {
2058 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2059 GFP_ATOMIC))
2060 return NULL;
2063 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2064 skb_tail_pointer(skb), delta));
2066 /* Optimization: no fragments, no reasons to preestimate
2067 * size of pulled pages. Superb.
2069 if (!skb_has_frag_list(skb))
2070 goto pull_pages;
2072 /* Estimate size of pulled pages. */
2073 eat = delta;
2074 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2075 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2077 if (size >= eat)
2078 goto pull_pages;
2079 eat -= size;
2082 /* If we need update frag list, we are in troubles.
2083 * Certainly, it is possible to add an offset to skb data,
2084 * but taking into account that pulling is expected to
2085 * be very rare operation, it is worth to fight against
2086 * further bloating skb head and crucify ourselves here instead.
2087 * Pure masohism, indeed. 8)8)
2089 if (eat) {
2090 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2091 struct sk_buff *clone = NULL;
2092 struct sk_buff *insp = NULL;
2094 do {
2095 if (list->len <= eat) {
2096 /* Eaten as whole. */
2097 eat -= list->len;
2098 list = list->next;
2099 insp = list;
2100 } else {
2101 /* Eaten partially. */
2103 if (skb_shared(list)) {
2104 /* Sucks! We need to fork list. :-( */
2105 clone = skb_clone(list, GFP_ATOMIC);
2106 if (!clone)
2107 return NULL;
2108 insp = list->next;
2109 list = clone;
2110 } else {
2111 /* This may be pulled without
2112 * problems. */
2113 insp = list;
2115 if (!pskb_pull(list, eat)) {
2116 kfree_skb(clone);
2117 return NULL;
2119 break;
2121 } while (eat);
2123 /* Free pulled out fragments. */
2124 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2125 skb_shinfo(skb)->frag_list = list->next;
2126 kfree_skb(list);
2128 /* And insert new clone at head. */
2129 if (clone) {
2130 clone->next = list;
2131 skb_shinfo(skb)->frag_list = clone;
2134 /* Success! Now we may commit changes to skb data. */
2136 pull_pages:
2137 eat = delta;
2138 k = 0;
2139 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2140 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2142 if (size <= eat) {
2143 skb_frag_unref(skb, i);
2144 eat -= size;
2145 } else {
2146 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2148 *frag = skb_shinfo(skb)->frags[i];
2149 if (eat) {
2150 skb_frag_off_add(frag, eat);
2151 skb_frag_size_sub(frag, eat);
2152 if (!i)
2153 goto end;
2154 eat = 0;
2156 k++;
2159 skb_shinfo(skb)->nr_frags = k;
2161 end:
2162 skb->tail += delta;
2163 skb->data_len -= delta;
2165 if (!skb->data_len)
2166 skb_zcopy_clear(skb, false);
2168 return skb_tail_pointer(skb);
2170 EXPORT_SYMBOL(__pskb_pull_tail);
2173 * skb_copy_bits - copy bits from skb to kernel buffer
2174 * @skb: source skb
2175 * @offset: offset in source
2176 * @to: destination buffer
2177 * @len: number of bytes to copy
2179 * Copy the specified number of bytes from the source skb to the
2180 * destination buffer.
2182 * CAUTION ! :
2183 * If its prototype is ever changed,
2184 * check arch/{*}/net/{*}.S files,
2185 * since it is called from BPF assembly code.
2187 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2189 int start = skb_headlen(skb);
2190 struct sk_buff *frag_iter;
2191 int i, copy;
2193 if (offset > (int)skb->len - len)
2194 goto fault;
2196 /* Copy header. */
2197 if ((copy = start - offset) > 0) {
2198 if (copy > len)
2199 copy = len;
2200 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2201 if ((len -= copy) == 0)
2202 return 0;
2203 offset += copy;
2204 to += copy;
2207 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2208 int end;
2209 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2211 WARN_ON(start > offset + len);
2213 end = start + skb_frag_size(f);
2214 if ((copy = end - offset) > 0) {
2215 u32 p_off, p_len, copied;
2216 struct page *p;
2217 u8 *vaddr;
2219 if (copy > len)
2220 copy = len;
2222 skb_frag_foreach_page(f,
2223 skb_frag_off(f) + offset - start,
2224 copy, p, p_off, p_len, copied) {
2225 vaddr = kmap_atomic(p);
2226 memcpy(to + copied, vaddr + p_off, p_len);
2227 kunmap_atomic(vaddr);
2230 if ((len -= copy) == 0)
2231 return 0;
2232 offset += copy;
2233 to += copy;
2235 start = end;
2238 skb_walk_frags(skb, frag_iter) {
2239 int end;
2241 WARN_ON(start > offset + len);
2243 end = start + frag_iter->len;
2244 if ((copy = end - offset) > 0) {
2245 if (copy > len)
2246 copy = len;
2247 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2248 goto fault;
2249 if ((len -= copy) == 0)
2250 return 0;
2251 offset += copy;
2252 to += copy;
2254 start = end;
2257 if (!len)
2258 return 0;
2260 fault:
2261 return -EFAULT;
2263 EXPORT_SYMBOL(skb_copy_bits);
2266 * Callback from splice_to_pipe(), if we need to release some pages
2267 * at the end of the spd in case we error'ed out in filling the pipe.
2269 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2271 put_page(spd->pages[i]);
2274 static struct page *linear_to_page(struct page *page, unsigned int *len,
2275 unsigned int *offset,
2276 struct sock *sk)
2278 struct page_frag *pfrag = sk_page_frag(sk);
2280 if (!sk_page_frag_refill(sk, pfrag))
2281 return NULL;
2283 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2285 memcpy(page_address(pfrag->page) + pfrag->offset,
2286 page_address(page) + *offset, *len);
2287 *offset = pfrag->offset;
2288 pfrag->offset += *len;
2290 return pfrag->page;
2293 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2294 struct page *page,
2295 unsigned int offset)
2297 return spd->nr_pages &&
2298 spd->pages[spd->nr_pages - 1] == page &&
2299 (spd->partial[spd->nr_pages - 1].offset +
2300 spd->partial[spd->nr_pages - 1].len == offset);
2304 * Fill page/offset/length into spd, if it can hold more pages.
2306 static bool spd_fill_page(struct splice_pipe_desc *spd,
2307 struct pipe_inode_info *pipe, struct page *page,
2308 unsigned int *len, unsigned int offset,
2309 bool linear,
2310 struct sock *sk)
2312 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2313 return true;
2315 if (linear) {
2316 page = linear_to_page(page, len, &offset, sk);
2317 if (!page)
2318 return true;
2320 if (spd_can_coalesce(spd, page, offset)) {
2321 spd->partial[spd->nr_pages - 1].len += *len;
2322 return false;
2324 get_page(page);
2325 spd->pages[spd->nr_pages] = page;
2326 spd->partial[spd->nr_pages].len = *len;
2327 spd->partial[spd->nr_pages].offset = offset;
2328 spd->nr_pages++;
2330 return false;
2333 static bool __splice_segment(struct page *page, unsigned int poff,
2334 unsigned int plen, unsigned int *off,
2335 unsigned int *len,
2336 struct splice_pipe_desc *spd, bool linear,
2337 struct sock *sk,
2338 struct pipe_inode_info *pipe)
2340 if (!*len)
2341 return true;
2343 /* skip this segment if already processed */
2344 if (*off >= plen) {
2345 *off -= plen;
2346 return false;
2349 /* ignore any bits we already processed */
2350 poff += *off;
2351 plen -= *off;
2352 *off = 0;
2354 do {
2355 unsigned int flen = min(*len, plen);
2357 if (spd_fill_page(spd, pipe, page, &flen, poff,
2358 linear, sk))
2359 return true;
2360 poff += flen;
2361 plen -= flen;
2362 *len -= flen;
2363 } while (*len && plen);
2365 return false;
2369 * Map linear and fragment data from the skb to spd. It reports true if the
2370 * pipe is full or if we already spliced the requested length.
2372 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2373 unsigned int *offset, unsigned int *len,
2374 struct splice_pipe_desc *spd, struct sock *sk)
2376 int seg;
2377 struct sk_buff *iter;
2379 /* map the linear part :
2380 * If skb->head_frag is set, this 'linear' part is backed by a
2381 * fragment, and if the head is not shared with any clones then
2382 * we can avoid a copy since we own the head portion of this page.
2384 if (__splice_segment(virt_to_page(skb->data),
2385 (unsigned long) skb->data & (PAGE_SIZE - 1),
2386 skb_headlen(skb),
2387 offset, len, spd,
2388 skb_head_is_locked(skb),
2389 sk, pipe))
2390 return true;
2393 * then map the fragments
2395 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2396 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2398 if (__splice_segment(skb_frag_page(f),
2399 skb_frag_off(f), skb_frag_size(f),
2400 offset, len, spd, false, sk, pipe))
2401 return true;
2404 skb_walk_frags(skb, iter) {
2405 if (*offset >= iter->len) {
2406 *offset -= iter->len;
2407 continue;
2409 /* __skb_splice_bits() only fails if the output has no room
2410 * left, so no point in going over the frag_list for the error
2411 * case.
2413 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2414 return true;
2417 return false;
2421 * Map data from the skb to a pipe. Should handle both the linear part,
2422 * the fragments, and the frag list.
2424 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2425 struct pipe_inode_info *pipe, unsigned int tlen,
2426 unsigned int flags)
2428 struct partial_page partial[MAX_SKB_FRAGS];
2429 struct page *pages[MAX_SKB_FRAGS];
2430 struct splice_pipe_desc spd = {
2431 .pages = pages,
2432 .partial = partial,
2433 .nr_pages_max = MAX_SKB_FRAGS,
2434 .ops = &nosteal_pipe_buf_ops,
2435 .spd_release = sock_spd_release,
2437 int ret = 0;
2439 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2441 if (spd.nr_pages)
2442 ret = splice_to_pipe(pipe, &spd);
2444 return ret;
2446 EXPORT_SYMBOL_GPL(skb_splice_bits);
2448 /* Send skb data on a socket. Socket must be locked. */
2449 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2450 int len)
2452 unsigned int orig_len = len;
2453 struct sk_buff *head = skb;
2454 unsigned short fragidx;
2455 int slen, ret;
2457 do_frag_list:
2459 /* Deal with head data */
2460 while (offset < skb_headlen(skb) && len) {
2461 struct kvec kv;
2462 struct msghdr msg;
2464 slen = min_t(int, len, skb_headlen(skb) - offset);
2465 kv.iov_base = skb->data + offset;
2466 kv.iov_len = slen;
2467 memset(&msg, 0, sizeof(msg));
2468 msg.msg_flags = MSG_DONTWAIT;
2470 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2471 if (ret <= 0)
2472 goto error;
2474 offset += ret;
2475 len -= ret;
2478 /* All the data was skb head? */
2479 if (!len)
2480 goto out;
2482 /* Make offset relative to start of frags */
2483 offset -= skb_headlen(skb);
2485 /* Find where we are in frag list */
2486 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2487 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2489 if (offset < skb_frag_size(frag))
2490 break;
2492 offset -= skb_frag_size(frag);
2495 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2496 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2498 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2500 while (slen) {
2501 ret = kernel_sendpage_locked(sk, skb_frag_page(frag),
2502 skb_frag_off(frag) + offset,
2503 slen, MSG_DONTWAIT);
2504 if (ret <= 0)
2505 goto error;
2507 len -= ret;
2508 offset += ret;
2509 slen -= ret;
2512 offset = 0;
2515 if (len) {
2516 /* Process any frag lists */
2518 if (skb == head) {
2519 if (skb_has_frag_list(skb)) {
2520 skb = skb_shinfo(skb)->frag_list;
2521 goto do_frag_list;
2523 } else if (skb->next) {
2524 skb = skb->next;
2525 goto do_frag_list;
2529 out:
2530 return orig_len - len;
2532 error:
2533 return orig_len == len ? ret : orig_len - len;
2535 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2538 * skb_store_bits - store bits from kernel buffer to skb
2539 * @skb: destination buffer
2540 * @offset: offset in destination
2541 * @from: source buffer
2542 * @len: number of bytes to copy
2544 * Copy the specified number of bytes from the source buffer to the
2545 * destination skb. This function handles all the messy bits of
2546 * traversing fragment lists and such.
2549 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2551 int start = skb_headlen(skb);
2552 struct sk_buff *frag_iter;
2553 int i, copy;
2555 if (offset > (int)skb->len - len)
2556 goto fault;
2558 if ((copy = start - offset) > 0) {
2559 if (copy > len)
2560 copy = len;
2561 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2562 if ((len -= copy) == 0)
2563 return 0;
2564 offset += copy;
2565 from += copy;
2568 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2569 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2570 int end;
2572 WARN_ON(start > offset + len);
2574 end = start + skb_frag_size(frag);
2575 if ((copy = end - offset) > 0) {
2576 u32 p_off, p_len, copied;
2577 struct page *p;
2578 u8 *vaddr;
2580 if (copy > len)
2581 copy = len;
2583 skb_frag_foreach_page(frag,
2584 skb_frag_off(frag) + offset - start,
2585 copy, p, p_off, p_len, copied) {
2586 vaddr = kmap_atomic(p);
2587 memcpy(vaddr + p_off, from + copied, p_len);
2588 kunmap_atomic(vaddr);
2591 if ((len -= copy) == 0)
2592 return 0;
2593 offset += copy;
2594 from += copy;
2596 start = end;
2599 skb_walk_frags(skb, frag_iter) {
2600 int end;
2602 WARN_ON(start > offset + len);
2604 end = start + frag_iter->len;
2605 if ((copy = end - offset) > 0) {
2606 if (copy > len)
2607 copy = len;
2608 if (skb_store_bits(frag_iter, offset - start,
2609 from, copy))
2610 goto fault;
2611 if ((len -= copy) == 0)
2612 return 0;
2613 offset += copy;
2614 from += copy;
2616 start = end;
2618 if (!len)
2619 return 0;
2621 fault:
2622 return -EFAULT;
2624 EXPORT_SYMBOL(skb_store_bits);
2626 /* Checksum skb data. */
2627 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2628 __wsum csum, const struct skb_checksum_ops *ops)
2630 int start = skb_headlen(skb);
2631 int i, copy = start - offset;
2632 struct sk_buff *frag_iter;
2633 int pos = 0;
2635 /* Checksum header. */
2636 if (copy > 0) {
2637 if (copy > len)
2638 copy = len;
2639 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2640 skb->data + offset, copy, csum);
2641 if ((len -= copy) == 0)
2642 return csum;
2643 offset += copy;
2644 pos = copy;
2647 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2648 int end;
2649 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2651 WARN_ON(start > offset + len);
2653 end = start + skb_frag_size(frag);
2654 if ((copy = end - offset) > 0) {
2655 u32 p_off, p_len, copied;
2656 struct page *p;
2657 __wsum csum2;
2658 u8 *vaddr;
2660 if (copy > len)
2661 copy = len;
2663 skb_frag_foreach_page(frag,
2664 skb_frag_off(frag) + offset - start,
2665 copy, p, p_off, p_len, copied) {
2666 vaddr = kmap_atomic(p);
2667 csum2 = INDIRECT_CALL_1(ops->update,
2668 csum_partial_ext,
2669 vaddr + p_off, p_len, 0);
2670 kunmap_atomic(vaddr);
2671 csum = INDIRECT_CALL_1(ops->combine,
2672 csum_block_add_ext, csum,
2673 csum2, pos, p_len);
2674 pos += p_len;
2677 if (!(len -= copy))
2678 return csum;
2679 offset += copy;
2681 start = end;
2684 skb_walk_frags(skb, frag_iter) {
2685 int end;
2687 WARN_ON(start > offset + len);
2689 end = start + frag_iter->len;
2690 if ((copy = end - offset) > 0) {
2691 __wsum csum2;
2692 if (copy > len)
2693 copy = len;
2694 csum2 = __skb_checksum(frag_iter, offset - start,
2695 copy, 0, ops);
2696 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2697 csum, csum2, pos, copy);
2698 if ((len -= copy) == 0)
2699 return csum;
2700 offset += copy;
2701 pos += copy;
2703 start = end;
2705 BUG_ON(len);
2707 return csum;
2709 EXPORT_SYMBOL(__skb_checksum);
2711 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2712 int len, __wsum csum)
2714 const struct skb_checksum_ops ops = {
2715 .update = csum_partial_ext,
2716 .combine = csum_block_add_ext,
2719 return __skb_checksum(skb, offset, len, csum, &ops);
2721 EXPORT_SYMBOL(skb_checksum);
2723 /* Both of above in one bottle. */
2725 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2726 u8 *to, int len, __wsum csum)
2728 int start = skb_headlen(skb);
2729 int i, copy = start - offset;
2730 struct sk_buff *frag_iter;
2731 int pos = 0;
2733 /* Copy header. */
2734 if (copy > 0) {
2735 if (copy > len)
2736 copy = len;
2737 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2738 copy, csum);
2739 if ((len -= copy) == 0)
2740 return csum;
2741 offset += copy;
2742 to += copy;
2743 pos = copy;
2746 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2747 int end;
2749 WARN_ON(start > offset + len);
2751 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2752 if ((copy = end - offset) > 0) {
2753 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2754 u32 p_off, p_len, copied;
2755 struct page *p;
2756 __wsum csum2;
2757 u8 *vaddr;
2759 if (copy > len)
2760 copy = len;
2762 skb_frag_foreach_page(frag,
2763 skb_frag_off(frag) + offset - start,
2764 copy, p, p_off, p_len, copied) {
2765 vaddr = kmap_atomic(p);
2766 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2767 to + copied,
2768 p_len, 0);
2769 kunmap_atomic(vaddr);
2770 csum = csum_block_add(csum, csum2, pos);
2771 pos += p_len;
2774 if (!(len -= copy))
2775 return csum;
2776 offset += copy;
2777 to += copy;
2779 start = end;
2782 skb_walk_frags(skb, frag_iter) {
2783 __wsum csum2;
2784 int end;
2786 WARN_ON(start > offset + len);
2788 end = start + frag_iter->len;
2789 if ((copy = end - offset) > 0) {
2790 if (copy > len)
2791 copy = len;
2792 csum2 = skb_copy_and_csum_bits(frag_iter,
2793 offset - start,
2794 to, copy, 0);
2795 csum = csum_block_add(csum, csum2, pos);
2796 if ((len -= copy) == 0)
2797 return csum;
2798 offset += copy;
2799 to += copy;
2800 pos += copy;
2802 start = end;
2804 BUG_ON(len);
2805 return csum;
2807 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2809 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2811 __sum16 sum;
2813 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2814 /* See comments in __skb_checksum_complete(). */
2815 if (likely(!sum)) {
2816 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2817 !skb->csum_complete_sw)
2818 netdev_rx_csum_fault(skb->dev, skb);
2820 if (!skb_shared(skb))
2821 skb->csum_valid = !sum;
2822 return sum;
2824 EXPORT_SYMBOL(__skb_checksum_complete_head);
2826 /* This function assumes skb->csum already holds pseudo header's checksum,
2827 * which has been changed from the hardware checksum, for example, by
2828 * __skb_checksum_validate_complete(). And, the original skb->csum must
2829 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2831 * It returns non-zero if the recomputed checksum is still invalid, otherwise
2832 * zero. The new checksum is stored back into skb->csum unless the skb is
2833 * shared.
2835 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2837 __wsum csum;
2838 __sum16 sum;
2840 csum = skb_checksum(skb, 0, skb->len, 0);
2842 sum = csum_fold(csum_add(skb->csum, csum));
2843 /* This check is inverted, because we already knew the hardware
2844 * checksum is invalid before calling this function. So, if the
2845 * re-computed checksum is valid instead, then we have a mismatch
2846 * between the original skb->csum and skb_checksum(). This means either
2847 * the original hardware checksum is incorrect or we screw up skb->csum
2848 * when moving skb->data around.
2850 if (likely(!sum)) {
2851 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2852 !skb->csum_complete_sw)
2853 netdev_rx_csum_fault(skb->dev, skb);
2856 if (!skb_shared(skb)) {
2857 /* Save full packet checksum */
2858 skb->csum = csum;
2859 skb->ip_summed = CHECKSUM_COMPLETE;
2860 skb->csum_complete_sw = 1;
2861 skb->csum_valid = !sum;
2864 return sum;
2866 EXPORT_SYMBOL(__skb_checksum_complete);
2868 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2870 net_warn_ratelimited(
2871 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2872 __func__);
2873 return 0;
2876 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2877 int offset, int len)
2879 net_warn_ratelimited(
2880 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2881 __func__);
2882 return 0;
2885 static const struct skb_checksum_ops default_crc32c_ops = {
2886 .update = warn_crc32c_csum_update,
2887 .combine = warn_crc32c_csum_combine,
2890 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2891 &default_crc32c_ops;
2892 EXPORT_SYMBOL(crc32c_csum_stub);
2895 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2896 * @from: source buffer
2898 * Calculates the amount of linear headroom needed in the 'to' skb passed
2899 * into skb_zerocopy().
2901 unsigned int
2902 skb_zerocopy_headlen(const struct sk_buff *from)
2904 unsigned int hlen = 0;
2906 if (!from->head_frag ||
2907 skb_headlen(from) < L1_CACHE_BYTES ||
2908 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2909 hlen = skb_headlen(from);
2911 if (skb_has_frag_list(from))
2912 hlen = from->len;
2914 return hlen;
2916 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2919 * skb_zerocopy - Zero copy skb to skb
2920 * @to: destination buffer
2921 * @from: source buffer
2922 * @len: number of bytes to copy from source buffer
2923 * @hlen: size of linear headroom in destination buffer
2925 * Copies up to `len` bytes from `from` to `to` by creating references
2926 * to the frags in the source buffer.
2928 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2929 * headroom in the `to` buffer.
2931 * Return value:
2932 * 0: everything is OK
2933 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2934 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2937 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2939 int i, j = 0;
2940 int plen = 0; /* length of skb->head fragment */
2941 int ret;
2942 struct page *page;
2943 unsigned int offset;
2945 BUG_ON(!from->head_frag && !hlen);
2947 /* dont bother with small payloads */
2948 if (len <= skb_tailroom(to))
2949 return skb_copy_bits(from, 0, skb_put(to, len), len);
2951 if (hlen) {
2952 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2953 if (unlikely(ret))
2954 return ret;
2955 len -= hlen;
2956 } else {
2957 plen = min_t(int, skb_headlen(from), len);
2958 if (plen) {
2959 page = virt_to_head_page(from->head);
2960 offset = from->data - (unsigned char *)page_address(page);
2961 __skb_fill_page_desc(to, 0, page, offset, plen);
2962 get_page(page);
2963 j = 1;
2964 len -= plen;
2968 to->truesize += len + plen;
2969 to->len += len + plen;
2970 to->data_len += len + plen;
2972 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2973 skb_tx_error(from);
2974 return -ENOMEM;
2976 skb_zerocopy_clone(to, from, GFP_ATOMIC);
2978 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2979 int size;
2981 if (!len)
2982 break;
2983 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2984 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
2985 len);
2986 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
2987 len -= size;
2988 skb_frag_ref(to, j);
2989 j++;
2991 skb_shinfo(to)->nr_frags = j;
2993 return 0;
2995 EXPORT_SYMBOL_GPL(skb_zerocopy);
2997 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2999 __wsum csum;
3000 long csstart;
3002 if (skb->ip_summed == CHECKSUM_PARTIAL)
3003 csstart = skb_checksum_start_offset(skb);
3004 else
3005 csstart = skb_headlen(skb);
3007 BUG_ON(csstart > skb_headlen(skb));
3009 skb_copy_from_linear_data(skb, to, csstart);
3011 csum = 0;
3012 if (csstart != skb->len)
3013 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3014 skb->len - csstart, 0);
3016 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3017 long csstuff = csstart + skb->csum_offset;
3019 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3022 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3025 * skb_dequeue - remove from the head of the queue
3026 * @list: list to dequeue from
3028 * Remove the head of the list. The list lock is taken so the function
3029 * may be used safely with other locking list functions. The head item is
3030 * returned or %NULL if the list is empty.
3033 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3035 unsigned long flags;
3036 struct sk_buff *result;
3038 spin_lock_irqsave(&list->lock, flags);
3039 result = __skb_dequeue(list);
3040 spin_unlock_irqrestore(&list->lock, flags);
3041 return result;
3043 EXPORT_SYMBOL(skb_dequeue);
3046 * skb_dequeue_tail - remove from the tail of the queue
3047 * @list: list to dequeue from
3049 * Remove the tail of the list. The list lock is taken so the function
3050 * may be used safely with other locking list functions. The tail item is
3051 * returned or %NULL if the list is empty.
3053 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3055 unsigned long flags;
3056 struct sk_buff *result;
3058 spin_lock_irqsave(&list->lock, flags);
3059 result = __skb_dequeue_tail(list);
3060 spin_unlock_irqrestore(&list->lock, flags);
3061 return result;
3063 EXPORT_SYMBOL(skb_dequeue_tail);
3066 * skb_queue_purge - empty a list
3067 * @list: list to empty
3069 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3070 * the list and one reference dropped. This function takes the list
3071 * lock and is atomic with respect to other list locking functions.
3073 void skb_queue_purge(struct sk_buff_head *list)
3075 struct sk_buff *skb;
3076 while ((skb = skb_dequeue(list)) != NULL)
3077 kfree_skb(skb);
3079 EXPORT_SYMBOL(skb_queue_purge);
3082 * skb_rbtree_purge - empty a skb rbtree
3083 * @root: root of the rbtree to empty
3084 * Return value: the sum of truesizes of all purged skbs.
3086 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3087 * the list and one reference dropped. This function does not take
3088 * any lock. Synchronization should be handled by the caller (e.g., TCP
3089 * out-of-order queue is protected by the socket lock).
3091 unsigned int skb_rbtree_purge(struct rb_root *root)
3093 struct rb_node *p = rb_first(root);
3094 unsigned int sum = 0;
3096 while (p) {
3097 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3099 p = rb_next(p);
3100 rb_erase(&skb->rbnode, root);
3101 sum += skb->truesize;
3102 kfree_skb(skb);
3104 return sum;
3108 * skb_queue_head - queue a buffer at the list head
3109 * @list: list to use
3110 * @newsk: buffer to queue
3112 * Queue a buffer at the start of the list. This function takes the
3113 * list lock and can be used safely with other locking &sk_buff functions
3114 * safely.
3116 * A buffer cannot be placed on two lists at the same time.
3118 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3120 unsigned long flags;
3122 spin_lock_irqsave(&list->lock, flags);
3123 __skb_queue_head(list, newsk);
3124 spin_unlock_irqrestore(&list->lock, flags);
3126 EXPORT_SYMBOL(skb_queue_head);
3129 * skb_queue_tail - queue a buffer at the list tail
3130 * @list: list to use
3131 * @newsk: buffer to queue
3133 * Queue a buffer at the tail of the list. This function takes the
3134 * list lock and can be used safely with other locking &sk_buff functions
3135 * safely.
3137 * A buffer cannot be placed on two lists at the same time.
3139 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3141 unsigned long flags;
3143 spin_lock_irqsave(&list->lock, flags);
3144 __skb_queue_tail(list, newsk);
3145 spin_unlock_irqrestore(&list->lock, flags);
3147 EXPORT_SYMBOL(skb_queue_tail);
3150 * skb_unlink - remove a buffer from a list
3151 * @skb: buffer to remove
3152 * @list: list to use
3154 * Remove a packet from a list. The list locks are taken and this
3155 * function is atomic with respect to other list locked calls
3157 * You must know what list the SKB is on.
3159 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3161 unsigned long flags;
3163 spin_lock_irqsave(&list->lock, flags);
3164 __skb_unlink(skb, list);
3165 spin_unlock_irqrestore(&list->lock, flags);
3167 EXPORT_SYMBOL(skb_unlink);
3170 * skb_append - append a buffer
3171 * @old: buffer to insert after
3172 * @newsk: buffer to insert
3173 * @list: list to use
3175 * Place a packet after a given packet in a list. The list locks are taken
3176 * and this function is atomic with respect to other list locked calls.
3177 * A buffer cannot be placed on two lists at the same time.
3179 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3181 unsigned long flags;
3183 spin_lock_irqsave(&list->lock, flags);
3184 __skb_queue_after(list, old, newsk);
3185 spin_unlock_irqrestore(&list->lock, flags);
3187 EXPORT_SYMBOL(skb_append);
3189 static inline void skb_split_inside_header(struct sk_buff *skb,
3190 struct sk_buff* skb1,
3191 const u32 len, const int pos)
3193 int i;
3195 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3196 pos - len);
3197 /* And move data appendix as is. */
3198 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3199 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3201 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3202 skb_shinfo(skb)->nr_frags = 0;
3203 skb1->data_len = skb->data_len;
3204 skb1->len += skb1->data_len;
3205 skb->data_len = 0;
3206 skb->len = len;
3207 skb_set_tail_pointer(skb, len);
3210 static inline void skb_split_no_header(struct sk_buff *skb,
3211 struct sk_buff* skb1,
3212 const u32 len, int pos)
3214 int i, k = 0;
3215 const int nfrags = skb_shinfo(skb)->nr_frags;
3217 skb_shinfo(skb)->nr_frags = 0;
3218 skb1->len = skb1->data_len = skb->len - len;
3219 skb->len = len;
3220 skb->data_len = len - pos;
3222 for (i = 0; i < nfrags; i++) {
3223 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3225 if (pos + size > len) {
3226 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3228 if (pos < len) {
3229 /* Split frag.
3230 * We have two variants in this case:
3231 * 1. Move all the frag to the second
3232 * part, if it is possible. F.e.
3233 * this approach is mandatory for TUX,
3234 * where splitting is expensive.
3235 * 2. Split is accurately. We make this.
3237 skb_frag_ref(skb, i);
3238 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3239 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3240 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3241 skb_shinfo(skb)->nr_frags++;
3243 k++;
3244 } else
3245 skb_shinfo(skb)->nr_frags++;
3246 pos += size;
3248 skb_shinfo(skb1)->nr_frags = k;
3252 * skb_split - Split fragmented skb to two parts at length len.
3253 * @skb: the buffer to split
3254 * @skb1: the buffer to receive the second part
3255 * @len: new length for skb
3257 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3259 int pos = skb_headlen(skb);
3261 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3262 SKBTX_SHARED_FRAG;
3263 skb_zerocopy_clone(skb1, skb, 0);
3264 if (len < pos) /* Split line is inside header. */
3265 skb_split_inside_header(skb, skb1, len, pos);
3266 else /* Second chunk has no header, nothing to copy. */
3267 skb_split_no_header(skb, skb1, len, pos);
3269 EXPORT_SYMBOL(skb_split);
3271 /* Shifting from/to a cloned skb is a no-go.
3273 * Caller cannot keep skb_shinfo related pointers past calling here!
3275 static int skb_prepare_for_shift(struct sk_buff *skb)
3277 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3281 * skb_shift - Shifts paged data partially from skb to another
3282 * @tgt: buffer into which tail data gets added
3283 * @skb: buffer from which the paged data comes from
3284 * @shiftlen: shift up to this many bytes
3286 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3287 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3288 * It's up to caller to free skb if everything was shifted.
3290 * If @tgt runs out of frags, the whole operation is aborted.
3292 * Skb cannot include anything else but paged data while tgt is allowed
3293 * to have non-paged data as well.
3295 * TODO: full sized shift could be optimized but that would need
3296 * specialized skb free'er to handle frags without up-to-date nr_frags.
3298 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3300 int from, to, merge, todo;
3301 skb_frag_t *fragfrom, *fragto;
3303 BUG_ON(shiftlen > skb->len);
3305 if (skb_headlen(skb))
3306 return 0;
3307 if (skb_zcopy(tgt) || skb_zcopy(skb))
3308 return 0;
3310 todo = shiftlen;
3311 from = 0;
3312 to = skb_shinfo(tgt)->nr_frags;
3313 fragfrom = &skb_shinfo(skb)->frags[from];
3315 /* Actual merge is delayed until the point when we know we can
3316 * commit all, so that we don't have to undo partial changes
3318 if (!to ||
3319 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3320 skb_frag_off(fragfrom))) {
3321 merge = -1;
3322 } else {
3323 merge = to - 1;
3325 todo -= skb_frag_size(fragfrom);
3326 if (todo < 0) {
3327 if (skb_prepare_for_shift(skb) ||
3328 skb_prepare_for_shift(tgt))
3329 return 0;
3331 /* All previous frag pointers might be stale! */
3332 fragfrom = &skb_shinfo(skb)->frags[from];
3333 fragto = &skb_shinfo(tgt)->frags[merge];
3335 skb_frag_size_add(fragto, shiftlen);
3336 skb_frag_size_sub(fragfrom, shiftlen);
3337 skb_frag_off_add(fragfrom, shiftlen);
3339 goto onlymerged;
3342 from++;
3345 /* Skip full, not-fitting skb to avoid expensive operations */
3346 if ((shiftlen == skb->len) &&
3347 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3348 return 0;
3350 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3351 return 0;
3353 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3354 if (to == MAX_SKB_FRAGS)
3355 return 0;
3357 fragfrom = &skb_shinfo(skb)->frags[from];
3358 fragto = &skb_shinfo(tgt)->frags[to];
3360 if (todo >= skb_frag_size(fragfrom)) {
3361 *fragto = *fragfrom;
3362 todo -= skb_frag_size(fragfrom);
3363 from++;
3364 to++;
3366 } else {
3367 __skb_frag_ref(fragfrom);
3368 skb_frag_page_copy(fragto, fragfrom);
3369 skb_frag_off_copy(fragto, fragfrom);
3370 skb_frag_size_set(fragto, todo);
3372 skb_frag_off_add(fragfrom, todo);
3373 skb_frag_size_sub(fragfrom, todo);
3374 todo = 0;
3376 to++;
3377 break;
3381 /* Ready to "commit" this state change to tgt */
3382 skb_shinfo(tgt)->nr_frags = to;
3384 if (merge >= 0) {
3385 fragfrom = &skb_shinfo(skb)->frags[0];
3386 fragto = &skb_shinfo(tgt)->frags[merge];
3388 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3389 __skb_frag_unref(fragfrom);
3392 /* Reposition in the original skb */
3393 to = 0;
3394 while (from < skb_shinfo(skb)->nr_frags)
3395 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3396 skb_shinfo(skb)->nr_frags = to;
3398 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3400 onlymerged:
3401 /* Most likely the tgt won't ever need its checksum anymore, skb on
3402 * the other hand might need it if it needs to be resent
3404 tgt->ip_summed = CHECKSUM_PARTIAL;
3405 skb->ip_summed = CHECKSUM_PARTIAL;
3407 /* Yak, is it really working this way? Some helper please? */
3408 skb->len -= shiftlen;
3409 skb->data_len -= shiftlen;
3410 skb->truesize -= shiftlen;
3411 tgt->len += shiftlen;
3412 tgt->data_len += shiftlen;
3413 tgt->truesize += shiftlen;
3415 return shiftlen;
3419 * skb_prepare_seq_read - Prepare a sequential read of skb data
3420 * @skb: the buffer to read
3421 * @from: lower offset of data to be read
3422 * @to: upper offset of data to be read
3423 * @st: state variable
3425 * Initializes the specified state variable. Must be called before
3426 * invoking skb_seq_read() for the first time.
3428 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3429 unsigned int to, struct skb_seq_state *st)
3431 st->lower_offset = from;
3432 st->upper_offset = to;
3433 st->root_skb = st->cur_skb = skb;
3434 st->frag_idx = st->stepped_offset = 0;
3435 st->frag_data = NULL;
3437 EXPORT_SYMBOL(skb_prepare_seq_read);
3440 * skb_seq_read - Sequentially read skb data
3441 * @consumed: number of bytes consumed by the caller so far
3442 * @data: destination pointer for data to be returned
3443 * @st: state variable
3445 * Reads a block of skb data at @consumed relative to the
3446 * lower offset specified to skb_prepare_seq_read(). Assigns
3447 * the head of the data block to @data and returns the length
3448 * of the block or 0 if the end of the skb data or the upper
3449 * offset has been reached.
3451 * The caller is not required to consume all of the data
3452 * returned, i.e. @consumed is typically set to the number
3453 * of bytes already consumed and the next call to
3454 * skb_seq_read() will return the remaining part of the block.
3456 * Note 1: The size of each block of data returned can be arbitrary,
3457 * this limitation is the cost for zerocopy sequential
3458 * reads of potentially non linear data.
3460 * Note 2: Fragment lists within fragments are not implemented
3461 * at the moment, state->root_skb could be replaced with
3462 * a stack for this purpose.
3464 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3465 struct skb_seq_state *st)
3467 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3468 skb_frag_t *frag;
3470 if (unlikely(abs_offset >= st->upper_offset)) {
3471 if (st->frag_data) {
3472 kunmap_atomic(st->frag_data);
3473 st->frag_data = NULL;
3475 return 0;
3478 next_skb:
3479 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3481 if (abs_offset < block_limit && !st->frag_data) {
3482 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3483 return block_limit - abs_offset;
3486 if (st->frag_idx == 0 && !st->frag_data)
3487 st->stepped_offset += skb_headlen(st->cur_skb);
3489 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3490 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3491 block_limit = skb_frag_size(frag) + st->stepped_offset;
3493 if (abs_offset < block_limit) {
3494 if (!st->frag_data)
3495 st->frag_data = kmap_atomic(skb_frag_page(frag));
3497 *data = (u8 *) st->frag_data + skb_frag_off(frag) +
3498 (abs_offset - st->stepped_offset);
3500 return block_limit - abs_offset;
3503 if (st->frag_data) {
3504 kunmap_atomic(st->frag_data);
3505 st->frag_data = NULL;
3508 st->frag_idx++;
3509 st->stepped_offset += skb_frag_size(frag);
3512 if (st->frag_data) {
3513 kunmap_atomic(st->frag_data);
3514 st->frag_data = NULL;
3517 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3518 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3519 st->frag_idx = 0;
3520 goto next_skb;
3521 } else if (st->cur_skb->next) {
3522 st->cur_skb = st->cur_skb->next;
3523 st->frag_idx = 0;
3524 goto next_skb;
3527 return 0;
3529 EXPORT_SYMBOL(skb_seq_read);
3532 * skb_abort_seq_read - Abort a sequential read of skb data
3533 * @st: state variable
3535 * Must be called if skb_seq_read() was not called until it
3536 * returned 0.
3538 void skb_abort_seq_read(struct skb_seq_state *st)
3540 if (st->frag_data)
3541 kunmap_atomic(st->frag_data);
3543 EXPORT_SYMBOL(skb_abort_seq_read);
3545 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3547 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3548 struct ts_config *conf,
3549 struct ts_state *state)
3551 return skb_seq_read(offset, text, TS_SKB_CB(state));
3554 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3556 skb_abort_seq_read(TS_SKB_CB(state));
3560 * skb_find_text - Find a text pattern in skb data
3561 * @skb: the buffer to look in
3562 * @from: search offset
3563 * @to: search limit
3564 * @config: textsearch configuration
3566 * Finds a pattern in the skb data according to the specified
3567 * textsearch configuration. Use textsearch_next() to retrieve
3568 * subsequent occurrences of the pattern. Returns the offset
3569 * to the first occurrence or UINT_MAX if no match was found.
3571 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3572 unsigned int to, struct ts_config *config)
3574 struct ts_state state;
3575 unsigned int ret;
3577 config->get_next_block = skb_ts_get_next_block;
3578 config->finish = skb_ts_finish;
3580 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3582 ret = textsearch_find(config, &state);
3583 return (ret <= to - from ? ret : UINT_MAX);
3585 EXPORT_SYMBOL(skb_find_text);
3587 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3588 int offset, size_t size)
3590 int i = skb_shinfo(skb)->nr_frags;
3592 if (skb_can_coalesce(skb, i, page, offset)) {
3593 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3594 } else if (i < MAX_SKB_FRAGS) {
3595 get_page(page);
3596 skb_fill_page_desc(skb, i, page, offset, size);
3597 } else {
3598 return -EMSGSIZE;
3601 return 0;
3603 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3606 * skb_pull_rcsum - pull skb and update receive checksum
3607 * @skb: buffer to update
3608 * @len: length of data pulled
3610 * This function performs an skb_pull on the packet and updates
3611 * the CHECKSUM_COMPLETE checksum. It should be used on
3612 * receive path processing instead of skb_pull unless you know
3613 * that the checksum difference is zero (e.g., a valid IP header)
3614 * or you are setting ip_summed to CHECKSUM_NONE.
3616 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3618 unsigned char *data = skb->data;
3620 BUG_ON(len > skb->len);
3621 __skb_pull(skb, len);
3622 skb_postpull_rcsum(skb, data, len);
3623 return skb->data;
3625 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3627 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3629 skb_frag_t head_frag;
3630 struct page *page;
3632 page = virt_to_head_page(frag_skb->head);
3633 __skb_frag_set_page(&head_frag, page);
3634 skb_frag_off_set(&head_frag, frag_skb->data -
3635 (unsigned char *)page_address(page));
3636 skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3637 return head_frag;
3640 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3641 netdev_features_t features,
3642 unsigned int offset)
3644 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3645 unsigned int tnl_hlen = skb_tnl_header_len(skb);
3646 unsigned int delta_truesize = 0;
3647 unsigned int delta_len = 0;
3648 struct sk_buff *tail = NULL;
3649 struct sk_buff *nskb;
3651 skb_push(skb, -skb_network_offset(skb) + offset);
3653 skb_shinfo(skb)->frag_list = NULL;
3655 do {
3656 nskb = list_skb;
3657 list_skb = list_skb->next;
3659 if (!tail)
3660 skb->next = nskb;
3661 else
3662 tail->next = nskb;
3664 tail = nskb;
3666 delta_len += nskb->len;
3667 delta_truesize += nskb->truesize;
3669 skb_push(nskb, -skb_network_offset(nskb) + offset);
3671 skb_release_head_state(nskb);
3672 __copy_skb_header(nskb, skb);
3674 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3675 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3676 nskb->data - tnl_hlen,
3677 offset + tnl_hlen);
3679 if (skb_needs_linearize(nskb, features) &&
3680 __skb_linearize(nskb))
3681 goto err_linearize;
3683 } while (list_skb);
3685 skb->truesize = skb->truesize - delta_truesize;
3686 skb->data_len = skb->data_len - delta_len;
3687 skb->len = skb->len - delta_len;
3689 skb_gso_reset(skb);
3691 skb->prev = tail;
3693 if (skb_needs_linearize(skb, features) &&
3694 __skb_linearize(skb))
3695 goto err_linearize;
3697 skb_get(skb);
3699 return skb;
3701 err_linearize:
3702 kfree_skb_list(skb->next);
3703 skb->next = NULL;
3704 return ERR_PTR(-ENOMEM);
3706 EXPORT_SYMBOL_GPL(skb_segment_list);
3708 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3710 if (unlikely(p->len + skb->len >= 65536))
3711 return -E2BIG;
3713 if (NAPI_GRO_CB(p)->last == p)
3714 skb_shinfo(p)->frag_list = skb;
3715 else
3716 NAPI_GRO_CB(p)->last->next = skb;
3718 skb_pull(skb, skb_gro_offset(skb));
3720 NAPI_GRO_CB(p)->last = skb;
3721 NAPI_GRO_CB(p)->count++;
3722 p->data_len += skb->len;
3723 p->truesize += skb->truesize;
3724 p->len += skb->len;
3726 NAPI_GRO_CB(skb)->same_flow = 1;
3728 return 0;
3730 EXPORT_SYMBOL_GPL(skb_gro_receive_list);
3733 * skb_segment - Perform protocol segmentation on skb.
3734 * @head_skb: buffer to segment
3735 * @features: features for the output path (see dev->features)
3737 * This function performs segmentation on the given skb. It returns
3738 * a pointer to the first in a list of new skbs for the segments.
3739 * In case of error it returns ERR_PTR(err).
3741 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3742 netdev_features_t features)
3744 struct sk_buff *segs = NULL;
3745 struct sk_buff *tail = NULL;
3746 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3747 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3748 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3749 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3750 struct sk_buff *frag_skb = head_skb;
3751 unsigned int offset = doffset;
3752 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3753 unsigned int partial_segs = 0;
3754 unsigned int headroom;
3755 unsigned int len = head_skb->len;
3756 __be16 proto;
3757 bool csum, sg;
3758 int nfrags = skb_shinfo(head_skb)->nr_frags;
3759 int err = -ENOMEM;
3760 int i = 0;
3761 int pos;
3762 int dummy;
3764 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3765 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3766 /* gso_size is untrusted, and we have a frag_list with a linear
3767 * non head_frag head.
3769 * (we assume checking the first list_skb member suffices;
3770 * i.e if either of the list_skb members have non head_frag
3771 * head, then the first one has too).
3773 * If head_skb's headlen does not fit requested gso_size, it
3774 * means that the frag_list members do NOT terminate on exact
3775 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3776 * sharing. Therefore we must fallback to copying the frag_list
3777 * skbs; we do so by disabling SG.
3779 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3780 features &= ~NETIF_F_SG;
3783 __skb_push(head_skb, doffset);
3784 proto = skb_network_protocol(head_skb, &dummy);
3785 if (unlikely(!proto))
3786 return ERR_PTR(-EINVAL);
3788 sg = !!(features & NETIF_F_SG);
3789 csum = !!can_checksum_protocol(features, proto);
3791 if (sg && csum && (mss != GSO_BY_FRAGS)) {
3792 if (!(features & NETIF_F_GSO_PARTIAL)) {
3793 struct sk_buff *iter;
3794 unsigned int frag_len;
3796 if (!list_skb ||
3797 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3798 goto normal;
3800 /* If we get here then all the required
3801 * GSO features except frag_list are supported.
3802 * Try to split the SKB to multiple GSO SKBs
3803 * with no frag_list.
3804 * Currently we can do that only when the buffers don't
3805 * have a linear part and all the buffers except
3806 * the last are of the same length.
3808 frag_len = list_skb->len;
3809 skb_walk_frags(head_skb, iter) {
3810 if (frag_len != iter->len && iter->next)
3811 goto normal;
3812 if (skb_headlen(iter) && !iter->head_frag)
3813 goto normal;
3815 len -= iter->len;
3818 if (len != frag_len)
3819 goto normal;
3822 /* GSO partial only requires that we trim off any excess that
3823 * doesn't fit into an MSS sized block, so take care of that
3824 * now.
3826 partial_segs = len / mss;
3827 if (partial_segs > 1)
3828 mss *= partial_segs;
3829 else
3830 partial_segs = 0;
3833 normal:
3834 headroom = skb_headroom(head_skb);
3835 pos = skb_headlen(head_skb);
3837 do {
3838 struct sk_buff *nskb;
3839 skb_frag_t *nskb_frag;
3840 int hsize;
3841 int size;
3843 if (unlikely(mss == GSO_BY_FRAGS)) {
3844 len = list_skb->len;
3845 } else {
3846 len = head_skb->len - offset;
3847 if (len > mss)
3848 len = mss;
3851 hsize = skb_headlen(head_skb) - offset;
3852 if (hsize < 0)
3853 hsize = 0;
3854 if (hsize > len || !sg)
3855 hsize = len;
3857 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3858 (skb_headlen(list_skb) == len || sg)) {
3859 BUG_ON(skb_headlen(list_skb) > len);
3861 i = 0;
3862 nfrags = skb_shinfo(list_skb)->nr_frags;
3863 frag = skb_shinfo(list_skb)->frags;
3864 frag_skb = list_skb;
3865 pos += skb_headlen(list_skb);
3867 while (pos < offset + len) {
3868 BUG_ON(i >= nfrags);
3870 size = skb_frag_size(frag);
3871 if (pos + size > offset + len)
3872 break;
3874 i++;
3875 pos += size;
3876 frag++;
3879 nskb = skb_clone(list_skb, GFP_ATOMIC);
3880 list_skb = list_skb->next;
3882 if (unlikely(!nskb))
3883 goto err;
3885 if (unlikely(pskb_trim(nskb, len))) {
3886 kfree_skb(nskb);
3887 goto err;
3890 hsize = skb_end_offset(nskb);
3891 if (skb_cow_head(nskb, doffset + headroom)) {
3892 kfree_skb(nskb);
3893 goto err;
3896 nskb->truesize += skb_end_offset(nskb) - hsize;
3897 skb_release_head_state(nskb);
3898 __skb_push(nskb, doffset);
3899 } else {
3900 nskb = __alloc_skb(hsize + doffset + headroom,
3901 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3902 NUMA_NO_NODE);
3904 if (unlikely(!nskb))
3905 goto err;
3907 skb_reserve(nskb, headroom);
3908 __skb_put(nskb, doffset);
3911 if (segs)
3912 tail->next = nskb;
3913 else
3914 segs = nskb;
3915 tail = nskb;
3917 __copy_skb_header(nskb, head_skb);
3919 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3920 skb_reset_mac_len(nskb);
3922 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3923 nskb->data - tnl_hlen,
3924 doffset + tnl_hlen);
3926 if (nskb->len == len + doffset)
3927 goto perform_csum_check;
3929 if (!sg) {
3930 if (!csum) {
3931 if (!nskb->remcsum_offload)
3932 nskb->ip_summed = CHECKSUM_NONE;
3933 SKB_GSO_CB(nskb)->csum =
3934 skb_copy_and_csum_bits(head_skb, offset,
3935 skb_put(nskb,
3936 len),
3937 len, 0);
3938 SKB_GSO_CB(nskb)->csum_start =
3939 skb_headroom(nskb) + doffset;
3940 } else {
3941 skb_copy_bits(head_skb, offset,
3942 skb_put(nskb, len),
3943 len);
3945 continue;
3948 nskb_frag = skb_shinfo(nskb)->frags;
3950 skb_copy_from_linear_data_offset(head_skb, offset,
3951 skb_put(nskb, hsize), hsize);
3953 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3954 SKBTX_SHARED_FRAG;
3956 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3957 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3958 goto err;
3960 while (pos < offset + len) {
3961 if (i >= nfrags) {
3962 i = 0;
3963 nfrags = skb_shinfo(list_skb)->nr_frags;
3964 frag = skb_shinfo(list_skb)->frags;
3965 frag_skb = list_skb;
3966 if (!skb_headlen(list_skb)) {
3967 BUG_ON(!nfrags);
3968 } else {
3969 BUG_ON(!list_skb->head_frag);
3971 /* to make room for head_frag. */
3972 i--;
3973 frag--;
3975 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3976 skb_zerocopy_clone(nskb, frag_skb,
3977 GFP_ATOMIC))
3978 goto err;
3980 list_skb = list_skb->next;
3983 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3984 MAX_SKB_FRAGS)) {
3985 net_warn_ratelimited(
3986 "skb_segment: too many frags: %u %u\n",
3987 pos, mss);
3988 err = -EINVAL;
3989 goto err;
3992 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3993 __skb_frag_ref(nskb_frag);
3994 size = skb_frag_size(nskb_frag);
3996 if (pos < offset) {
3997 skb_frag_off_add(nskb_frag, offset - pos);
3998 skb_frag_size_sub(nskb_frag, offset - pos);
4001 skb_shinfo(nskb)->nr_frags++;
4003 if (pos + size <= offset + len) {
4004 i++;
4005 frag++;
4006 pos += size;
4007 } else {
4008 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4009 goto skip_fraglist;
4012 nskb_frag++;
4015 skip_fraglist:
4016 nskb->data_len = len - hsize;
4017 nskb->len += nskb->data_len;
4018 nskb->truesize += nskb->data_len;
4020 perform_csum_check:
4021 if (!csum) {
4022 if (skb_has_shared_frag(nskb) &&
4023 __skb_linearize(nskb))
4024 goto err;
4026 if (!nskb->remcsum_offload)
4027 nskb->ip_summed = CHECKSUM_NONE;
4028 SKB_GSO_CB(nskb)->csum =
4029 skb_checksum(nskb, doffset,
4030 nskb->len - doffset, 0);
4031 SKB_GSO_CB(nskb)->csum_start =
4032 skb_headroom(nskb) + doffset;
4034 } while ((offset += len) < head_skb->len);
4036 /* Some callers want to get the end of the list.
4037 * Put it in segs->prev to avoid walking the list.
4038 * (see validate_xmit_skb_list() for example)
4040 segs->prev = tail;
4042 if (partial_segs) {
4043 struct sk_buff *iter;
4044 int type = skb_shinfo(head_skb)->gso_type;
4045 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4047 /* Update type to add partial and then remove dodgy if set */
4048 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4049 type &= ~SKB_GSO_DODGY;
4051 /* Update GSO info and prepare to start updating headers on
4052 * our way back down the stack of protocols.
4054 for (iter = segs; iter; iter = iter->next) {
4055 skb_shinfo(iter)->gso_size = gso_size;
4056 skb_shinfo(iter)->gso_segs = partial_segs;
4057 skb_shinfo(iter)->gso_type = type;
4058 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4061 if (tail->len - doffset <= gso_size)
4062 skb_shinfo(tail)->gso_size = 0;
4063 else if (tail != segs)
4064 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4067 /* Following permits correct backpressure, for protocols
4068 * using skb_set_owner_w().
4069 * Idea is to tranfert ownership from head_skb to last segment.
4071 if (head_skb->destructor == sock_wfree) {
4072 swap(tail->truesize, head_skb->truesize);
4073 swap(tail->destructor, head_skb->destructor);
4074 swap(tail->sk, head_skb->sk);
4076 return segs;
4078 err:
4079 kfree_skb_list(segs);
4080 return ERR_PTR(err);
4082 EXPORT_SYMBOL_GPL(skb_segment);
4084 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4086 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4087 unsigned int offset = skb_gro_offset(skb);
4088 unsigned int headlen = skb_headlen(skb);
4089 unsigned int len = skb_gro_len(skb);
4090 unsigned int delta_truesize;
4091 struct sk_buff *lp;
4093 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4094 return -E2BIG;
4096 lp = NAPI_GRO_CB(p)->last;
4097 pinfo = skb_shinfo(lp);
4099 if (headlen <= offset) {
4100 skb_frag_t *frag;
4101 skb_frag_t *frag2;
4102 int i = skbinfo->nr_frags;
4103 int nr_frags = pinfo->nr_frags + i;
4105 if (nr_frags > MAX_SKB_FRAGS)
4106 goto merge;
4108 offset -= headlen;
4109 pinfo->nr_frags = nr_frags;
4110 skbinfo->nr_frags = 0;
4112 frag = pinfo->frags + nr_frags;
4113 frag2 = skbinfo->frags + i;
4114 do {
4115 *--frag = *--frag2;
4116 } while (--i);
4118 skb_frag_off_add(frag, offset);
4119 skb_frag_size_sub(frag, offset);
4121 /* all fragments truesize : remove (head size + sk_buff) */
4122 delta_truesize = skb->truesize -
4123 SKB_TRUESIZE(skb_end_offset(skb));
4125 skb->truesize -= skb->data_len;
4126 skb->len -= skb->data_len;
4127 skb->data_len = 0;
4129 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4130 goto done;
4131 } else if (skb->head_frag) {
4132 int nr_frags = pinfo->nr_frags;
4133 skb_frag_t *frag = pinfo->frags + nr_frags;
4134 struct page *page = virt_to_head_page(skb->head);
4135 unsigned int first_size = headlen - offset;
4136 unsigned int first_offset;
4138 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4139 goto merge;
4141 first_offset = skb->data -
4142 (unsigned char *)page_address(page) +
4143 offset;
4145 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4147 __skb_frag_set_page(frag, page);
4148 skb_frag_off_set(frag, first_offset);
4149 skb_frag_size_set(frag, first_size);
4151 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4152 /* We dont need to clear skbinfo->nr_frags here */
4154 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4155 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4156 goto done;
4159 merge:
4160 delta_truesize = skb->truesize;
4161 if (offset > headlen) {
4162 unsigned int eat = offset - headlen;
4164 skb_frag_off_add(&skbinfo->frags[0], eat);
4165 skb_frag_size_sub(&skbinfo->frags[0], eat);
4166 skb->data_len -= eat;
4167 skb->len -= eat;
4168 offset = headlen;
4171 __skb_pull(skb, offset);
4173 if (NAPI_GRO_CB(p)->last == p)
4174 skb_shinfo(p)->frag_list = skb;
4175 else
4176 NAPI_GRO_CB(p)->last->next = skb;
4177 NAPI_GRO_CB(p)->last = skb;
4178 __skb_header_release(skb);
4179 lp = p;
4181 done:
4182 NAPI_GRO_CB(p)->count++;
4183 p->data_len += len;
4184 p->truesize += delta_truesize;
4185 p->len += len;
4186 if (lp != p) {
4187 lp->data_len += len;
4188 lp->truesize += delta_truesize;
4189 lp->len += len;
4191 NAPI_GRO_CB(skb)->same_flow = 1;
4192 return 0;
4194 EXPORT_SYMBOL_GPL(skb_gro_receive);
4196 #ifdef CONFIG_SKB_EXTENSIONS
4197 #define SKB_EXT_ALIGN_VALUE 8
4198 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4200 static const u8 skb_ext_type_len[] = {
4201 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4202 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4203 #endif
4204 #ifdef CONFIG_XFRM
4205 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4206 #endif
4207 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4208 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4209 #endif
4210 #if IS_ENABLED(CONFIG_MPTCP)
4211 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4212 #endif
4215 static __always_inline unsigned int skb_ext_total_length(void)
4217 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4218 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4219 skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4220 #endif
4221 #ifdef CONFIG_XFRM
4222 skb_ext_type_len[SKB_EXT_SEC_PATH] +
4223 #endif
4224 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4225 skb_ext_type_len[TC_SKB_EXT] +
4226 #endif
4227 #if IS_ENABLED(CONFIG_MPTCP)
4228 skb_ext_type_len[SKB_EXT_MPTCP] +
4229 #endif
4233 static void skb_extensions_init(void)
4235 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4236 BUILD_BUG_ON(skb_ext_total_length() > 255);
4238 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4239 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4241 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4242 NULL);
4244 #else
4245 static void skb_extensions_init(void) {}
4246 #endif
4248 void __init skb_init(void)
4250 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4251 sizeof(struct sk_buff),
4253 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4254 offsetof(struct sk_buff, cb),
4255 sizeof_field(struct sk_buff, cb),
4256 NULL);
4257 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4258 sizeof(struct sk_buff_fclones),
4260 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4261 NULL);
4262 skb_extensions_init();
4265 static int
4266 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4267 unsigned int recursion_level)
4269 int start = skb_headlen(skb);
4270 int i, copy = start - offset;
4271 struct sk_buff *frag_iter;
4272 int elt = 0;
4274 if (unlikely(recursion_level >= 24))
4275 return -EMSGSIZE;
4277 if (copy > 0) {
4278 if (copy > len)
4279 copy = len;
4280 sg_set_buf(sg, skb->data + offset, copy);
4281 elt++;
4282 if ((len -= copy) == 0)
4283 return elt;
4284 offset += copy;
4287 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4288 int end;
4290 WARN_ON(start > offset + len);
4292 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4293 if ((copy = end - offset) > 0) {
4294 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4295 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4296 return -EMSGSIZE;
4298 if (copy > len)
4299 copy = len;
4300 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4301 skb_frag_off(frag) + offset - start);
4302 elt++;
4303 if (!(len -= copy))
4304 return elt;
4305 offset += copy;
4307 start = end;
4310 skb_walk_frags(skb, frag_iter) {
4311 int end, ret;
4313 WARN_ON(start > offset + len);
4315 end = start + frag_iter->len;
4316 if ((copy = end - offset) > 0) {
4317 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4318 return -EMSGSIZE;
4320 if (copy > len)
4321 copy = len;
4322 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4323 copy, recursion_level + 1);
4324 if (unlikely(ret < 0))
4325 return ret;
4326 elt += ret;
4327 if ((len -= copy) == 0)
4328 return elt;
4329 offset += copy;
4331 start = end;
4333 BUG_ON(len);
4334 return elt;
4338 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4339 * @skb: Socket buffer containing the buffers to be mapped
4340 * @sg: The scatter-gather list to map into
4341 * @offset: The offset into the buffer's contents to start mapping
4342 * @len: Length of buffer space to be mapped
4344 * Fill the specified scatter-gather list with mappings/pointers into a
4345 * region of the buffer space attached to a socket buffer. Returns either
4346 * the number of scatterlist items used, or -EMSGSIZE if the contents
4347 * could not fit.
4349 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4351 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4353 if (nsg <= 0)
4354 return nsg;
4356 sg_mark_end(&sg[nsg - 1]);
4358 return nsg;
4360 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4362 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4363 * sglist without mark the sg which contain last skb data as the end.
4364 * So the caller can mannipulate sg list as will when padding new data after
4365 * the first call without calling sg_unmark_end to expend sg list.
4367 * Scenario to use skb_to_sgvec_nomark:
4368 * 1. sg_init_table
4369 * 2. skb_to_sgvec_nomark(payload1)
4370 * 3. skb_to_sgvec_nomark(payload2)
4372 * This is equivalent to:
4373 * 1. sg_init_table
4374 * 2. skb_to_sgvec(payload1)
4375 * 3. sg_unmark_end
4376 * 4. skb_to_sgvec(payload2)
4378 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4379 * is more preferable.
4381 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4382 int offset, int len)
4384 return __skb_to_sgvec(skb, sg, offset, len, 0);
4386 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4391 * skb_cow_data - Check that a socket buffer's data buffers are writable
4392 * @skb: The socket buffer to check.
4393 * @tailbits: Amount of trailing space to be added
4394 * @trailer: Returned pointer to the skb where the @tailbits space begins
4396 * Make sure that the data buffers attached to a socket buffer are
4397 * writable. If they are not, private copies are made of the data buffers
4398 * and the socket buffer is set to use these instead.
4400 * If @tailbits is given, make sure that there is space to write @tailbits
4401 * bytes of data beyond current end of socket buffer. @trailer will be
4402 * set to point to the skb in which this space begins.
4404 * The number of scatterlist elements required to completely map the
4405 * COW'd and extended socket buffer will be returned.
4407 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4409 int copyflag;
4410 int elt;
4411 struct sk_buff *skb1, **skb_p;
4413 /* If skb is cloned or its head is paged, reallocate
4414 * head pulling out all the pages (pages are considered not writable
4415 * at the moment even if they are anonymous).
4417 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4418 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4419 return -ENOMEM;
4421 /* Easy case. Most of packets will go this way. */
4422 if (!skb_has_frag_list(skb)) {
4423 /* A little of trouble, not enough of space for trailer.
4424 * This should not happen, when stack is tuned to generate
4425 * good frames. OK, on miss we reallocate and reserve even more
4426 * space, 128 bytes is fair. */
4428 if (skb_tailroom(skb) < tailbits &&
4429 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4430 return -ENOMEM;
4432 /* Voila! */
4433 *trailer = skb;
4434 return 1;
4437 /* Misery. We are in troubles, going to mincer fragments... */
4439 elt = 1;
4440 skb_p = &skb_shinfo(skb)->frag_list;
4441 copyflag = 0;
4443 while ((skb1 = *skb_p) != NULL) {
4444 int ntail = 0;
4446 /* The fragment is partially pulled by someone,
4447 * this can happen on input. Copy it and everything
4448 * after it. */
4450 if (skb_shared(skb1))
4451 copyflag = 1;
4453 /* If the skb is the last, worry about trailer. */
4455 if (skb1->next == NULL && tailbits) {
4456 if (skb_shinfo(skb1)->nr_frags ||
4457 skb_has_frag_list(skb1) ||
4458 skb_tailroom(skb1) < tailbits)
4459 ntail = tailbits + 128;
4462 if (copyflag ||
4463 skb_cloned(skb1) ||
4464 ntail ||
4465 skb_shinfo(skb1)->nr_frags ||
4466 skb_has_frag_list(skb1)) {
4467 struct sk_buff *skb2;
4469 /* Fuck, we are miserable poor guys... */
4470 if (ntail == 0)
4471 skb2 = skb_copy(skb1, GFP_ATOMIC);
4472 else
4473 skb2 = skb_copy_expand(skb1,
4474 skb_headroom(skb1),
4475 ntail,
4476 GFP_ATOMIC);
4477 if (unlikely(skb2 == NULL))
4478 return -ENOMEM;
4480 if (skb1->sk)
4481 skb_set_owner_w(skb2, skb1->sk);
4483 /* Looking around. Are we still alive?
4484 * OK, link new skb, drop old one */
4486 skb2->next = skb1->next;
4487 *skb_p = skb2;
4488 kfree_skb(skb1);
4489 skb1 = skb2;
4491 elt++;
4492 *trailer = skb1;
4493 skb_p = &skb1->next;
4496 return elt;
4498 EXPORT_SYMBOL_GPL(skb_cow_data);
4500 static void sock_rmem_free(struct sk_buff *skb)
4502 struct sock *sk = skb->sk;
4504 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4507 static void skb_set_err_queue(struct sk_buff *skb)
4509 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4510 * So, it is safe to (mis)use it to mark skbs on the error queue.
4512 skb->pkt_type = PACKET_OUTGOING;
4513 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4517 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4519 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4521 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4522 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4523 return -ENOMEM;
4525 skb_orphan(skb);
4526 skb->sk = sk;
4527 skb->destructor = sock_rmem_free;
4528 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4529 skb_set_err_queue(skb);
4531 /* before exiting rcu section, make sure dst is refcounted */
4532 skb_dst_force(skb);
4534 skb_queue_tail(&sk->sk_error_queue, skb);
4535 if (!sock_flag(sk, SOCK_DEAD))
4536 sk->sk_error_report(sk);
4537 return 0;
4539 EXPORT_SYMBOL(sock_queue_err_skb);
4541 static bool is_icmp_err_skb(const struct sk_buff *skb)
4543 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4544 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4547 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4549 struct sk_buff_head *q = &sk->sk_error_queue;
4550 struct sk_buff *skb, *skb_next = NULL;
4551 bool icmp_next = false;
4552 unsigned long flags;
4554 spin_lock_irqsave(&q->lock, flags);
4555 skb = __skb_dequeue(q);
4556 if (skb && (skb_next = skb_peek(q))) {
4557 icmp_next = is_icmp_err_skb(skb_next);
4558 if (icmp_next)
4559 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4561 spin_unlock_irqrestore(&q->lock, flags);
4563 if (is_icmp_err_skb(skb) && !icmp_next)
4564 sk->sk_err = 0;
4566 if (skb_next)
4567 sk->sk_error_report(sk);
4569 return skb;
4571 EXPORT_SYMBOL(sock_dequeue_err_skb);
4574 * skb_clone_sk - create clone of skb, and take reference to socket
4575 * @skb: the skb to clone
4577 * This function creates a clone of a buffer that holds a reference on
4578 * sk_refcnt. Buffers created via this function are meant to be
4579 * returned using sock_queue_err_skb, or free via kfree_skb.
4581 * When passing buffers allocated with this function to sock_queue_err_skb
4582 * it is necessary to wrap the call with sock_hold/sock_put in order to
4583 * prevent the socket from being released prior to being enqueued on
4584 * the sk_error_queue.
4586 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4588 struct sock *sk = skb->sk;
4589 struct sk_buff *clone;
4591 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4592 return NULL;
4594 clone = skb_clone(skb, GFP_ATOMIC);
4595 if (!clone) {
4596 sock_put(sk);
4597 return NULL;
4600 clone->sk = sk;
4601 clone->destructor = sock_efree;
4603 return clone;
4605 EXPORT_SYMBOL(skb_clone_sk);
4607 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4608 struct sock *sk,
4609 int tstype,
4610 bool opt_stats)
4612 struct sock_exterr_skb *serr;
4613 int err;
4615 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4617 serr = SKB_EXT_ERR(skb);
4618 memset(serr, 0, sizeof(*serr));
4619 serr->ee.ee_errno = ENOMSG;
4620 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4621 serr->ee.ee_info = tstype;
4622 serr->opt_stats = opt_stats;
4623 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4624 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4625 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4626 if (sk->sk_protocol == IPPROTO_TCP &&
4627 sk->sk_type == SOCK_STREAM)
4628 serr->ee.ee_data -= sk->sk_tskey;
4631 err = sock_queue_err_skb(sk, skb);
4633 if (err)
4634 kfree_skb(skb);
4637 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4639 bool ret;
4641 if (likely(sysctl_tstamp_allow_data || tsonly))
4642 return true;
4644 read_lock_bh(&sk->sk_callback_lock);
4645 ret = sk->sk_socket && sk->sk_socket->file &&
4646 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4647 read_unlock_bh(&sk->sk_callback_lock);
4648 return ret;
4651 void skb_complete_tx_timestamp(struct sk_buff *skb,
4652 struct skb_shared_hwtstamps *hwtstamps)
4654 struct sock *sk = skb->sk;
4656 if (!skb_may_tx_timestamp(sk, false))
4657 goto err;
4659 /* Take a reference to prevent skb_orphan() from freeing the socket,
4660 * but only if the socket refcount is not zero.
4662 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4663 *skb_hwtstamps(skb) = *hwtstamps;
4664 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4665 sock_put(sk);
4666 return;
4669 err:
4670 kfree_skb(skb);
4672 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4674 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4675 struct skb_shared_hwtstamps *hwtstamps,
4676 struct sock *sk, int tstype)
4678 struct sk_buff *skb;
4679 bool tsonly, opt_stats = false;
4681 if (!sk)
4682 return;
4684 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4685 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4686 return;
4688 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4689 if (!skb_may_tx_timestamp(sk, tsonly))
4690 return;
4692 if (tsonly) {
4693 #ifdef CONFIG_INET
4694 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4695 sk->sk_protocol == IPPROTO_TCP &&
4696 sk->sk_type == SOCK_STREAM) {
4697 skb = tcp_get_timestamping_opt_stats(sk);
4698 opt_stats = true;
4699 } else
4700 #endif
4701 skb = alloc_skb(0, GFP_ATOMIC);
4702 } else {
4703 skb = skb_clone(orig_skb, GFP_ATOMIC);
4705 if (!skb)
4706 return;
4708 if (tsonly) {
4709 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4710 SKBTX_ANY_TSTAMP;
4711 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4714 if (hwtstamps)
4715 *skb_hwtstamps(skb) = *hwtstamps;
4716 else
4717 skb->tstamp = ktime_get_real();
4719 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4721 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4723 void skb_tstamp_tx(struct sk_buff *orig_skb,
4724 struct skb_shared_hwtstamps *hwtstamps)
4726 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4727 SCM_TSTAMP_SND);
4729 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4731 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4733 struct sock *sk = skb->sk;
4734 struct sock_exterr_skb *serr;
4735 int err = 1;
4737 skb->wifi_acked_valid = 1;
4738 skb->wifi_acked = acked;
4740 serr = SKB_EXT_ERR(skb);
4741 memset(serr, 0, sizeof(*serr));
4742 serr->ee.ee_errno = ENOMSG;
4743 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4745 /* Take a reference to prevent skb_orphan() from freeing the socket,
4746 * but only if the socket refcount is not zero.
4748 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4749 err = sock_queue_err_skb(sk, skb);
4750 sock_put(sk);
4752 if (err)
4753 kfree_skb(skb);
4755 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4758 * skb_partial_csum_set - set up and verify partial csum values for packet
4759 * @skb: the skb to set
4760 * @start: the number of bytes after skb->data to start checksumming.
4761 * @off: the offset from start to place the checksum.
4763 * For untrusted partially-checksummed packets, we need to make sure the values
4764 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4766 * This function checks and sets those values and skb->ip_summed: if this
4767 * returns false you should drop the packet.
4769 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4771 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4772 u32 csum_start = skb_headroom(skb) + (u32)start;
4774 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4775 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4776 start, off, skb_headroom(skb), skb_headlen(skb));
4777 return false;
4779 skb->ip_summed = CHECKSUM_PARTIAL;
4780 skb->csum_start = csum_start;
4781 skb->csum_offset = off;
4782 skb_set_transport_header(skb, start);
4783 return true;
4785 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4787 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4788 unsigned int max)
4790 if (skb_headlen(skb) >= len)
4791 return 0;
4793 /* If we need to pullup then pullup to the max, so we
4794 * won't need to do it again.
4796 if (max > skb->len)
4797 max = skb->len;
4799 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4800 return -ENOMEM;
4802 if (skb_headlen(skb) < len)
4803 return -EPROTO;
4805 return 0;
4808 #define MAX_TCP_HDR_LEN (15 * 4)
4810 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4811 typeof(IPPROTO_IP) proto,
4812 unsigned int off)
4814 int err;
4816 switch (proto) {
4817 case IPPROTO_TCP:
4818 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4819 off + MAX_TCP_HDR_LEN);
4820 if (!err && !skb_partial_csum_set(skb, off,
4821 offsetof(struct tcphdr,
4822 check)))
4823 err = -EPROTO;
4824 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4826 case IPPROTO_UDP:
4827 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4828 off + sizeof(struct udphdr));
4829 if (!err && !skb_partial_csum_set(skb, off,
4830 offsetof(struct udphdr,
4831 check)))
4832 err = -EPROTO;
4833 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4836 return ERR_PTR(-EPROTO);
4839 /* This value should be large enough to cover a tagged ethernet header plus
4840 * maximally sized IP and TCP or UDP headers.
4842 #define MAX_IP_HDR_LEN 128
4844 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4846 unsigned int off;
4847 bool fragment;
4848 __sum16 *csum;
4849 int err;
4851 fragment = false;
4853 err = skb_maybe_pull_tail(skb,
4854 sizeof(struct iphdr),
4855 MAX_IP_HDR_LEN);
4856 if (err < 0)
4857 goto out;
4859 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4860 fragment = true;
4862 off = ip_hdrlen(skb);
4864 err = -EPROTO;
4866 if (fragment)
4867 goto out;
4869 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4870 if (IS_ERR(csum))
4871 return PTR_ERR(csum);
4873 if (recalculate)
4874 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4875 ip_hdr(skb)->daddr,
4876 skb->len - off,
4877 ip_hdr(skb)->protocol, 0);
4878 err = 0;
4880 out:
4881 return err;
4884 /* This value should be large enough to cover a tagged ethernet header plus
4885 * an IPv6 header, all options, and a maximal TCP or UDP header.
4887 #define MAX_IPV6_HDR_LEN 256
4889 #define OPT_HDR(type, skb, off) \
4890 (type *)(skb_network_header(skb) + (off))
4892 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4894 int err;
4895 u8 nexthdr;
4896 unsigned int off;
4897 unsigned int len;
4898 bool fragment;
4899 bool done;
4900 __sum16 *csum;
4902 fragment = false;
4903 done = false;
4905 off = sizeof(struct ipv6hdr);
4907 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4908 if (err < 0)
4909 goto out;
4911 nexthdr = ipv6_hdr(skb)->nexthdr;
4913 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4914 while (off <= len && !done) {
4915 switch (nexthdr) {
4916 case IPPROTO_DSTOPTS:
4917 case IPPROTO_HOPOPTS:
4918 case IPPROTO_ROUTING: {
4919 struct ipv6_opt_hdr *hp;
4921 err = skb_maybe_pull_tail(skb,
4922 off +
4923 sizeof(struct ipv6_opt_hdr),
4924 MAX_IPV6_HDR_LEN);
4925 if (err < 0)
4926 goto out;
4928 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4929 nexthdr = hp->nexthdr;
4930 off += ipv6_optlen(hp);
4931 break;
4933 case IPPROTO_AH: {
4934 struct ip_auth_hdr *hp;
4936 err = skb_maybe_pull_tail(skb,
4937 off +
4938 sizeof(struct ip_auth_hdr),
4939 MAX_IPV6_HDR_LEN);
4940 if (err < 0)
4941 goto out;
4943 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4944 nexthdr = hp->nexthdr;
4945 off += ipv6_authlen(hp);
4946 break;
4948 case IPPROTO_FRAGMENT: {
4949 struct frag_hdr *hp;
4951 err = skb_maybe_pull_tail(skb,
4952 off +
4953 sizeof(struct frag_hdr),
4954 MAX_IPV6_HDR_LEN);
4955 if (err < 0)
4956 goto out;
4958 hp = OPT_HDR(struct frag_hdr, skb, off);
4960 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4961 fragment = true;
4963 nexthdr = hp->nexthdr;
4964 off += sizeof(struct frag_hdr);
4965 break;
4967 default:
4968 done = true;
4969 break;
4973 err = -EPROTO;
4975 if (!done || fragment)
4976 goto out;
4978 csum = skb_checksum_setup_ip(skb, nexthdr, off);
4979 if (IS_ERR(csum))
4980 return PTR_ERR(csum);
4982 if (recalculate)
4983 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4984 &ipv6_hdr(skb)->daddr,
4985 skb->len - off, nexthdr, 0);
4986 err = 0;
4988 out:
4989 return err;
4993 * skb_checksum_setup - set up partial checksum offset
4994 * @skb: the skb to set up
4995 * @recalculate: if true the pseudo-header checksum will be recalculated
4997 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4999 int err;
5001 switch (skb->protocol) {
5002 case htons(ETH_P_IP):
5003 err = skb_checksum_setup_ipv4(skb, recalculate);
5004 break;
5006 case htons(ETH_P_IPV6):
5007 err = skb_checksum_setup_ipv6(skb, recalculate);
5008 break;
5010 default:
5011 err = -EPROTO;
5012 break;
5015 return err;
5017 EXPORT_SYMBOL(skb_checksum_setup);
5020 * skb_checksum_maybe_trim - maybe trims the given skb
5021 * @skb: the skb to check
5022 * @transport_len: the data length beyond the network header
5024 * Checks whether the given skb has data beyond the given transport length.
5025 * If so, returns a cloned skb trimmed to this transport length.
5026 * Otherwise returns the provided skb. Returns NULL in error cases
5027 * (e.g. transport_len exceeds skb length or out-of-memory).
5029 * Caller needs to set the skb transport header and free any returned skb if it
5030 * differs from the provided skb.
5032 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5033 unsigned int transport_len)
5035 struct sk_buff *skb_chk;
5036 unsigned int len = skb_transport_offset(skb) + transport_len;
5037 int ret;
5039 if (skb->len < len)
5040 return NULL;
5041 else if (skb->len == len)
5042 return skb;
5044 skb_chk = skb_clone(skb, GFP_ATOMIC);
5045 if (!skb_chk)
5046 return NULL;
5048 ret = pskb_trim_rcsum(skb_chk, len);
5049 if (ret) {
5050 kfree_skb(skb_chk);
5051 return NULL;
5054 return skb_chk;
5058 * skb_checksum_trimmed - validate checksum of an skb
5059 * @skb: the skb to check
5060 * @transport_len: the data length beyond the network header
5061 * @skb_chkf: checksum function to use
5063 * Applies the given checksum function skb_chkf to the provided skb.
5064 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5066 * If the skb has data beyond the given transport length, then a
5067 * trimmed & cloned skb is checked and returned.
5069 * Caller needs to set the skb transport header and free any returned skb if it
5070 * differs from the provided skb.
5072 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5073 unsigned int transport_len,
5074 __sum16(*skb_chkf)(struct sk_buff *skb))
5076 struct sk_buff *skb_chk;
5077 unsigned int offset = skb_transport_offset(skb);
5078 __sum16 ret;
5080 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5081 if (!skb_chk)
5082 goto err;
5084 if (!pskb_may_pull(skb_chk, offset))
5085 goto err;
5087 skb_pull_rcsum(skb_chk, offset);
5088 ret = skb_chkf(skb_chk);
5089 skb_push_rcsum(skb_chk, offset);
5091 if (ret)
5092 goto err;
5094 return skb_chk;
5096 err:
5097 if (skb_chk && skb_chk != skb)
5098 kfree_skb(skb_chk);
5100 return NULL;
5103 EXPORT_SYMBOL(skb_checksum_trimmed);
5105 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5107 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5108 skb->dev->name);
5110 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5112 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5114 if (head_stolen) {
5115 skb_release_head_state(skb);
5116 kmem_cache_free(skbuff_head_cache, skb);
5117 } else {
5118 __kfree_skb(skb);
5121 EXPORT_SYMBOL(kfree_skb_partial);
5124 * skb_try_coalesce - try to merge skb to prior one
5125 * @to: prior buffer
5126 * @from: buffer to add
5127 * @fragstolen: pointer to boolean
5128 * @delta_truesize: how much more was allocated than was requested
5130 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5131 bool *fragstolen, int *delta_truesize)
5133 struct skb_shared_info *to_shinfo, *from_shinfo;
5134 int i, delta, len = from->len;
5136 *fragstolen = false;
5138 if (skb_cloned(to))
5139 return false;
5141 if (len <= skb_tailroom(to)) {
5142 if (len)
5143 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5144 *delta_truesize = 0;
5145 return true;
5148 to_shinfo = skb_shinfo(to);
5149 from_shinfo = skb_shinfo(from);
5150 if (to_shinfo->frag_list || from_shinfo->frag_list)
5151 return false;
5152 if (skb_zcopy(to) || skb_zcopy(from))
5153 return false;
5155 if (skb_headlen(from) != 0) {
5156 struct page *page;
5157 unsigned int offset;
5159 if (to_shinfo->nr_frags +
5160 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5161 return false;
5163 if (skb_head_is_locked(from))
5164 return false;
5166 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5168 page = virt_to_head_page(from->head);
5169 offset = from->data - (unsigned char *)page_address(page);
5171 skb_fill_page_desc(to, to_shinfo->nr_frags,
5172 page, offset, skb_headlen(from));
5173 *fragstolen = true;
5174 } else {
5175 if (to_shinfo->nr_frags +
5176 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5177 return false;
5179 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5182 WARN_ON_ONCE(delta < len);
5184 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5185 from_shinfo->frags,
5186 from_shinfo->nr_frags * sizeof(skb_frag_t));
5187 to_shinfo->nr_frags += from_shinfo->nr_frags;
5189 if (!skb_cloned(from))
5190 from_shinfo->nr_frags = 0;
5192 /* if the skb is not cloned this does nothing
5193 * since we set nr_frags to 0.
5195 for (i = 0; i < from_shinfo->nr_frags; i++)
5196 __skb_frag_ref(&from_shinfo->frags[i]);
5198 to->truesize += delta;
5199 to->len += len;
5200 to->data_len += len;
5202 *delta_truesize = delta;
5203 return true;
5205 EXPORT_SYMBOL(skb_try_coalesce);
5208 * skb_scrub_packet - scrub an skb
5210 * @skb: buffer to clean
5211 * @xnet: packet is crossing netns
5213 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5214 * into/from a tunnel. Some information have to be cleared during these
5215 * operations.
5216 * skb_scrub_packet can also be used to clean a skb before injecting it in
5217 * another namespace (@xnet == true). We have to clear all information in the
5218 * skb that could impact namespace isolation.
5220 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5222 skb->pkt_type = PACKET_HOST;
5223 skb->skb_iif = 0;
5224 skb->ignore_df = 0;
5225 skb_dst_drop(skb);
5226 skb_ext_reset(skb);
5227 nf_reset_ct(skb);
5228 nf_reset_trace(skb);
5230 #ifdef CONFIG_NET_SWITCHDEV
5231 skb->offload_fwd_mark = 0;
5232 skb->offload_l3_fwd_mark = 0;
5233 #endif
5235 if (!xnet)
5236 return;
5238 ipvs_reset(skb);
5239 skb->mark = 0;
5240 skb->tstamp = 0;
5242 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5245 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5247 * @skb: GSO skb
5249 * skb_gso_transport_seglen is used to determine the real size of the
5250 * individual segments, including Layer4 headers (TCP/UDP).
5252 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5254 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5256 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5257 unsigned int thlen = 0;
5259 if (skb->encapsulation) {
5260 thlen = skb_inner_transport_header(skb) -
5261 skb_transport_header(skb);
5263 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5264 thlen += inner_tcp_hdrlen(skb);
5265 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5266 thlen = tcp_hdrlen(skb);
5267 } else if (unlikely(skb_is_gso_sctp(skb))) {
5268 thlen = sizeof(struct sctphdr);
5269 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5270 thlen = sizeof(struct udphdr);
5272 /* UFO sets gso_size to the size of the fragmentation
5273 * payload, i.e. the size of the L4 (UDP) header is already
5274 * accounted for.
5276 return thlen + shinfo->gso_size;
5280 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5282 * @skb: GSO skb
5284 * skb_gso_network_seglen is used to determine the real size of the
5285 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5287 * The MAC/L2 header is not accounted for.
5289 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5291 unsigned int hdr_len = skb_transport_header(skb) -
5292 skb_network_header(skb);
5294 return hdr_len + skb_gso_transport_seglen(skb);
5298 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5300 * @skb: GSO skb
5302 * skb_gso_mac_seglen is used to determine the real size of the
5303 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5304 * headers (TCP/UDP).
5306 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5308 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5310 return hdr_len + skb_gso_transport_seglen(skb);
5314 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5316 * There are a couple of instances where we have a GSO skb, and we
5317 * want to determine what size it would be after it is segmented.
5319 * We might want to check:
5320 * - L3+L4+payload size (e.g. IP forwarding)
5321 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5323 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5325 * @skb: GSO skb
5327 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5328 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5330 * @max_len: The maximum permissible length.
5332 * Returns true if the segmented length <= max length.
5334 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5335 unsigned int seg_len,
5336 unsigned int max_len) {
5337 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5338 const struct sk_buff *iter;
5340 if (shinfo->gso_size != GSO_BY_FRAGS)
5341 return seg_len <= max_len;
5343 /* Undo this so we can re-use header sizes */
5344 seg_len -= GSO_BY_FRAGS;
5346 skb_walk_frags(skb, iter) {
5347 if (seg_len + skb_headlen(iter) > max_len)
5348 return false;
5351 return true;
5355 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5357 * @skb: GSO skb
5358 * @mtu: MTU to validate against
5360 * skb_gso_validate_network_len validates if a given skb will fit a
5361 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5362 * payload.
5364 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5366 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5368 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5371 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5373 * @skb: GSO skb
5374 * @len: length to validate against
5376 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5377 * length once split, including L2, L3 and L4 headers and the payload.
5379 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5381 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5383 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5385 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5387 int mac_len, meta_len;
5388 void *meta;
5390 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5391 kfree_skb(skb);
5392 return NULL;
5395 mac_len = skb->data - skb_mac_header(skb);
5396 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5397 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5398 mac_len - VLAN_HLEN - ETH_TLEN);
5401 meta_len = skb_metadata_len(skb);
5402 if (meta_len) {
5403 meta = skb_metadata_end(skb) - meta_len;
5404 memmove(meta + VLAN_HLEN, meta, meta_len);
5407 skb->mac_header += VLAN_HLEN;
5408 return skb;
5411 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5413 struct vlan_hdr *vhdr;
5414 u16 vlan_tci;
5416 if (unlikely(skb_vlan_tag_present(skb))) {
5417 /* vlan_tci is already set-up so leave this for another time */
5418 return skb;
5421 skb = skb_share_check(skb, GFP_ATOMIC);
5422 if (unlikely(!skb))
5423 goto err_free;
5425 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
5426 goto err_free;
5428 vhdr = (struct vlan_hdr *)skb->data;
5429 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5430 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5432 skb_pull_rcsum(skb, VLAN_HLEN);
5433 vlan_set_encap_proto(skb, vhdr);
5435 skb = skb_reorder_vlan_header(skb);
5436 if (unlikely(!skb))
5437 goto err_free;
5439 skb_reset_network_header(skb);
5440 skb_reset_transport_header(skb);
5441 skb_reset_mac_len(skb);
5443 return skb;
5445 err_free:
5446 kfree_skb(skb);
5447 return NULL;
5449 EXPORT_SYMBOL(skb_vlan_untag);
5451 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5453 if (!pskb_may_pull(skb, write_len))
5454 return -ENOMEM;
5456 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5457 return 0;
5459 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5461 EXPORT_SYMBOL(skb_ensure_writable);
5463 /* remove VLAN header from packet and update csum accordingly.
5464 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5466 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5468 struct vlan_hdr *vhdr;
5469 int offset = skb->data - skb_mac_header(skb);
5470 int err;
5472 if (WARN_ONCE(offset,
5473 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5474 offset)) {
5475 return -EINVAL;
5478 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5479 if (unlikely(err))
5480 return err;
5482 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5484 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5485 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5487 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5488 __skb_pull(skb, VLAN_HLEN);
5490 vlan_set_encap_proto(skb, vhdr);
5491 skb->mac_header += VLAN_HLEN;
5493 if (skb_network_offset(skb) < ETH_HLEN)
5494 skb_set_network_header(skb, ETH_HLEN);
5496 skb_reset_mac_len(skb);
5498 return err;
5500 EXPORT_SYMBOL(__skb_vlan_pop);
5502 /* Pop a vlan tag either from hwaccel or from payload.
5503 * Expects skb->data at mac header.
5505 int skb_vlan_pop(struct sk_buff *skb)
5507 u16 vlan_tci;
5508 __be16 vlan_proto;
5509 int err;
5511 if (likely(skb_vlan_tag_present(skb))) {
5512 __vlan_hwaccel_clear_tag(skb);
5513 } else {
5514 if (unlikely(!eth_type_vlan(skb->protocol)))
5515 return 0;
5517 err = __skb_vlan_pop(skb, &vlan_tci);
5518 if (err)
5519 return err;
5521 /* move next vlan tag to hw accel tag */
5522 if (likely(!eth_type_vlan(skb->protocol)))
5523 return 0;
5525 vlan_proto = skb->protocol;
5526 err = __skb_vlan_pop(skb, &vlan_tci);
5527 if (unlikely(err))
5528 return err;
5530 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5531 return 0;
5533 EXPORT_SYMBOL(skb_vlan_pop);
5535 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5536 * Expects skb->data at mac header.
5538 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5540 if (skb_vlan_tag_present(skb)) {
5541 int offset = skb->data - skb_mac_header(skb);
5542 int err;
5544 if (WARN_ONCE(offset,
5545 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5546 offset)) {
5547 return -EINVAL;
5550 err = __vlan_insert_tag(skb, skb->vlan_proto,
5551 skb_vlan_tag_get(skb));
5552 if (err)
5553 return err;
5555 skb->protocol = skb->vlan_proto;
5556 skb->mac_len += VLAN_HLEN;
5558 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5560 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5561 return 0;
5563 EXPORT_SYMBOL(skb_vlan_push);
5565 /* Update the ethertype of hdr and the skb csum value if required. */
5566 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5567 __be16 ethertype)
5569 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5570 __be16 diff[] = { ~hdr->h_proto, ethertype };
5572 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5575 hdr->h_proto = ethertype;
5579 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5580 * the packet
5582 * @skb: buffer
5583 * @mpls_lse: MPLS label stack entry to push
5584 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5585 * @mac_len: length of the MAC header
5586 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5587 * ethernet
5589 * Expects skb->data at mac header.
5591 * Returns 0 on success, -errno otherwise.
5593 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5594 int mac_len, bool ethernet)
5596 struct mpls_shim_hdr *lse;
5597 int err;
5599 if (unlikely(!eth_p_mpls(mpls_proto)))
5600 return -EINVAL;
5602 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5603 if (skb->encapsulation)
5604 return -EINVAL;
5606 err = skb_cow_head(skb, MPLS_HLEN);
5607 if (unlikely(err))
5608 return err;
5610 if (!skb->inner_protocol) {
5611 skb_set_inner_network_header(skb, skb_network_offset(skb));
5612 skb_set_inner_protocol(skb, skb->protocol);
5615 skb_push(skb, MPLS_HLEN);
5616 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5617 mac_len);
5618 skb_reset_mac_header(skb);
5619 skb_set_network_header(skb, mac_len);
5620 skb_reset_mac_len(skb);
5622 lse = mpls_hdr(skb);
5623 lse->label_stack_entry = mpls_lse;
5624 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5626 if (ethernet)
5627 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5628 skb->protocol = mpls_proto;
5630 return 0;
5632 EXPORT_SYMBOL_GPL(skb_mpls_push);
5635 * skb_mpls_pop() - pop the outermost MPLS header
5637 * @skb: buffer
5638 * @next_proto: ethertype of header after popped MPLS header
5639 * @mac_len: length of the MAC header
5640 * @ethernet: flag to indicate if the packet is ethernet
5642 * Expects skb->data at mac header.
5644 * Returns 0 on success, -errno otherwise.
5646 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5647 bool ethernet)
5649 int err;
5651 if (unlikely(!eth_p_mpls(skb->protocol)))
5652 return 0;
5654 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5655 if (unlikely(err))
5656 return err;
5658 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5659 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5660 mac_len);
5662 __skb_pull(skb, MPLS_HLEN);
5663 skb_reset_mac_header(skb);
5664 skb_set_network_header(skb, mac_len);
5666 if (ethernet) {
5667 struct ethhdr *hdr;
5669 /* use mpls_hdr() to get ethertype to account for VLANs. */
5670 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5671 skb_mod_eth_type(skb, hdr, next_proto);
5673 skb->protocol = next_proto;
5675 return 0;
5677 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5680 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5682 * @skb: buffer
5683 * @mpls_lse: new MPLS label stack entry to update to
5685 * Expects skb->data at mac header.
5687 * Returns 0 on success, -errno otherwise.
5689 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5691 int err;
5693 if (unlikely(!eth_p_mpls(skb->protocol)))
5694 return -EINVAL;
5696 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5697 if (unlikely(err))
5698 return err;
5700 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5701 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5703 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5706 mpls_hdr(skb)->label_stack_entry = mpls_lse;
5708 return 0;
5710 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5713 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5715 * @skb: buffer
5717 * Expects skb->data at mac header.
5719 * Returns 0 on success, -errno otherwise.
5721 int skb_mpls_dec_ttl(struct sk_buff *skb)
5723 u32 lse;
5724 u8 ttl;
5726 if (unlikely(!eth_p_mpls(skb->protocol)))
5727 return -EINVAL;
5729 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5730 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5731 if (!--ttl)
5732 return -EINVAL;
5734 lse &= ~MPLS_LS_TTL_MASK;
5735 lse |= ttl << MPLS_LS_TTL_SHIFT;
5737 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5739 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5742 * alloc_skb_with_frags - allocate skb with page frags
5744 * @header_len: size of linear part
5745 * @data_len: needed length in frags
5746 * @max_page_order: max page order desired.
5747 * @errcode: pointer to error code if any
5748 * @gfp_mask: allocation mask
5750 * This can be used to allocate a paged skb, given a maximal order for frags.
5752 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5753 unsigned long data_len,
5754 int max_page_order,
5755 int *errcode,
5756 gfp_t gfp_mask)
5758 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5759 unsigned long chunk;
5760 struct sk_buff *skb;
5761 struct page *page;
5762 int i;
5764 *errcode = -EMSGSIZE;
5765 /* Note this test could be relaxed, if we succeed to allocate
5766 * high order pages...
5768 if (npages > MAX_SKB_FRAGS)
5769 return NULL;
5771 *errcode = -ENOBUFS;
5772 skb = alloc_skb(header_len, gfp_mask);
5773 if (!skb)
5774 return NULL;
5776 skb->truesize += npages << PAGE_SHIFT;
5778 for (i = 0; npages > 0; i++) {
5779 int order = max_page_order;
5781 while (order) {
5782 if (npages >= 1 << order) {
5783 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5784 __GFP_COMP |
5785 __GFP_NOWARN,
5786 order);
5787 if (page)
5788 goto fill_page;
5789 /* Do not retry other high order allocations */
5790 order = 1;
5791 max_page_order = 0;
5793 order--;
5795 page = alloc_page(gfp_mask);
5796 if (!page)
5797 goto failure;
5798 fill_page:
5799 chunk = min_t(unsigned long, data_len,
5800 PAGE_SIZE << order);
5801 skb_fill_page_desc(skb, i, page, 0, chunk);
5802 data_len -= chunk;
5803 npages -= 1 << order;
5805 return skb;
5807 failure:
5808 kfree_skb(skb);
5809 return NULL;
5811 EXPORT_SYMBOL(alloc_skb_with_frags);
5813 /* carve out the first off bytes from skb when off < headlen */
5814 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5815 const int headlen, gfp_t gfp_mask)
5817 int i;
5818 int size = skb_end_offset(skb);
5819 int new_hlen = headlen - off;
5820 u8 *data;
5822 size = SKB_DATA_ALIGN(size);
5824 if (skb_pfmemalloc(skb))
5825 gfp_mask |= __GFP_MEMALLOC;
5826 data = kmalloc_reserve(size +
5827 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5828 gfp_mask, NUMA_NO_NODE, NULL);
5829 if (!data)
5830 return -ENOMEM;
5832 size = SKB_WITH_OVERHEAD(ksize(data));
5834 /* Copy real data, and all frags */
5835 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5836 skb->len -= off;
5838 memcpy((struct skb_shared_info *)(data + size),
5839 skb_shinfo(skb),
5840 offsetof(struct skb_shared_info,
5841 frags[skb_shinfo(skb)->nr_frags]));
5842 if (skb_cloned(skb)) {
5843 /* drop the old head gracefully */
5844 if (skb_orphan_frags(skb, gfp_mask)) {
5845 kfree(data);
5846 return -ENOMEM;
5848 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5849 skb_frag_ref(skb, i);
5850 if (skb_has_frag_list(skb))
5851 skb_clone_fraglist(skb);
5852 skb_release_data(skb);
5853 } else {
5854 /* we can reuse existing recount- all we did was
5855 * relocate values
5857 skb_free_head(skb);
5860 skb->head = data;
5861 skb->data = data;
5862 skb->head_frag = 0;
5863 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5864 skb->end = size;
5865 #else
5866 skb->end = skb->head + size;
5867 #endif
5868 skb_set_tail_pointer(skb, skb_headlen(skb));
5869 skb_headers_offset_update(skb, 0);
5870 skb->cloned = 0;
5871 skb->hdr_len = 0;
5872 skb->nohdr = 0;
5873 atomic_set(&skb_shinfo(skb)->dataref, 1);
5875 return 0;
5878 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5880 /* carve out the first eat bytes from skb's frag_list. May recurse into
5881 * pskb_carve()
5883 static int pskb_carve_frag_list(struct sk_buff *skb,
5884 struct skb_shared_info *shinfo, int eat,
5885 gfp_t gfp_mask)
5887 struct sk_buff *list = shinfo->frag_list;
5888 struct sk_buff *clone = NULL;
5889 struct sk_buff *insp = NULL;
5891 do {
5892 if (!list) {
5893 pr_err("Not enough bytes to eat. Want %d\n", eat);
5894 return -EFAULT;
5896 if (list->len <= eat) {
5897 /* Eaten as whole. */
5898 eat -= list->len;
5899 list = list->next;
5900 insp = list;
5901 } else {
5902 /* Eaten partially. */
5903 if (skb_shared(list)) {
5904 clone = skb_clone(list, gfp_mask);
5905 if (!clone)
5906 return -ENOMEM;
5907 insp = list->next;
5908 list = clone;
5909 } else {
5910 /* This may be pulled without problems. */
5911 insp = list;
5913 if (pskb_carve(list, eat, gfp_mask) < 0) {
5914 kfree_skb(clone);
5915 return -ENOMEM;
5917 break;
5919 } while (eat);
5921 /* Free pulled out fragments. */
5922 while ((list = shinfo->frag_list) != insp) {
5923 shinfo->frag_list = list->next;
5924 kfree_skb(list);
5926 /* And insert new clone at head. */
5927 if (clone) {
5928 clone->next = list;
5929 shinfo->frag_list = clone;
5931 return 0;
5934 /* carve off first len bytes from skb. Split line (off) is in the
5935 * non-linear part of skb
5937 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5938 int pos, gfp_t gfp_mask)
5940 int i, k = 0;
5941 int size = skb_end_offset(skb);
5942 u8 *data;
5943 const int nfrags = skb_shinfo(skb)->nr_frags;
5944 struct skb_shared_info *shinfo;
5946 size = SKB_DATA_ALIGN(size);
5948 if (skb_pfmemalloc(skb))
5949 gfp_mask |= __GFP_MEMALLOC;
5950 data = kmalloc_reserve(size +
5951 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5952 gfp_mask, NUMA_NO_NODE, NULL);
5953 if (!data)
5954 return -ENOMEM;
5956 size = SKB_WITH_OVERHEAD(ksize(data));
5958 memcpy((struct skb_shared_info *)(data + size),
5959 skb_shinfo(skb), offsetof(struct skb_shared_info,
5960 frags[skb_shinfo(skb)->nr_frags]));
5961 if (skb_orphan_frags(skb, gfp_mask)) {
5962 kfree(data);
5963 return -ENOMEM;
5965 shinfo = (struct skb_shared_info *)(data + size);
5966 for (i = 0; i < nfrags; i++) {
5967 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5969 if (pos + fsize > off) {
5970 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5972 if (pos < off) {
5973 /* Split frag.
5974 * We have two variants in this case:
5975 * 1. Move all the frag to the second
5976 * part, if it is possible. F.e.
5977 * this approach is mandatory for TUX,
5978 * where splitting is expensive.
5979 * 2. Split is accurately. We make this.
5981 skb_frag_off_add(&shinfo->frags[0], off - pos);
5982 skb_frag_size_sub(&shinfo->frags[0], off - pos);
5984 skb_frag_ref(skb, i);
5985 k++;
5987 pos += fsize;
5989 shinfo->nr_frags = k;
5990 if (skb_has_frag_list(skb))
5991 skb_clone_fraglist(skb);
5993 if (k == 0) {
5994 /* split line is in frag list */
5995 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5997 skb_release_data(skb);
5999 skb->head = data;
6000 skb->head_frag = 0;
6001 skb->data = data;
6002 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6003 skb->end = size;
6004 #else
6005 skb->end = skb->head + size;
6006 #endif
6007 skb_reset_tail_pointer(skb);
6008 skb_headers_offset_update(skb, 0);
6009 skb->cloned = 0;
6010 skb->hdr_len = 0;
6011 skb->nohdr = 0;
6012 skb->len -= off;
6013 skb->data_len = skb->len;
6014 atomic_set(&skb_shinfo(skb)->dataref, 1);
6015 return 0;
6018 /* remove len bytes from the beginning of the skb */
6019 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6021 int headlen = skb_headlen(skb);
6023 if (len < headlen)
6024 return pskb_carve_inside_header(skb, len, headlen, gfp);
6025 else
6026 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6029 /* Extract to_copy bytes starting at off from skb, and return this in
6030 * a new skb
6032 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6033 int to_copy, gfp_t gfp)
6035 struct sk_buff *clone = skb_clone(skb, gfp);
6037 if (!clone)
6038 return NULL;
6040 if (pskb_carve(clone, off, gfp) < 0 ||
6041 pskb_trim(clone, to_copy)) {
6042 kfree_skb(clone);
6043 return NULL;
6045 return clone;
6047 EXPORT_SYMBOL(pskb_extract);
6050 * skb_condense - try to get rid of fragments/frag_list if possible
6051 * @skb: buffer
6053 * Can be used to save memory before skb is added to a busy queue.
6054 * If packet has bytes in frags and enough tail room in skb->head,
6055 * pull all of them, so that we can free the frags right now and adjust
6056 * truesize.
6057 * Notes:
6058 * We do not reallocate skb->head thus can not fail.
6059 * Caller must re-evaluate skb->truesize if needed.
6061 void skb_condense(struct sk_buff *skb)
6063 if (skb->data_len) {
6064 if (skb->data_len > skb->end - skb->tail ||
6065 skb_cloned(skb))
6066 return;
6068 /* Nice, we can free page frag(s) right now */
6069 __pskb_pull_tail(skb, skb->data_len);
6071 /* At this point, skb->truesize might be over estimated,
6072 * because skb had a fragment, and fragments do not tell
6073 * their truesize.
6074 * When we pulled its content into skb->head, fragment
6075 * was freed, but __pskb_pull_tail() could not possibly
6076 * adjust skb->truesize, not knowing the frag truesize.
6078 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6081 #ifdef CONFIG_SKB_EXTENSIONS
6082 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6084 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6088 * __skb_ext_alloc - allocate a new skb extensions storage
6090 * Returns the newly allocated pointer. The pointer can later attached to a
6091 * skb via __skb_ext_set().
6092 * Note: caller must handle the skb_ext as an opaque data.
6094 struct skb_ext *__skb_ext_alloc(void)
6096 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6098 if (new) {
6099 memset(new->offset, 0, sizeof(new->offset));
6100 refcount_set(&new->refcnt, 1);
6103 return new;
6106 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6107 unsigned int old_active)
6109 struct skb_ext *new;
6111 if (refcount_read(&old->refcnt) == 1)
6112 return old;
6114 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6115 if (!new)
6116 return NULL;
6118 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6119 refcount_set(&new->refcnt, 1);
6121 #ifdef CONFIG_XFRM
6122 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6123 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6124 unsigned int i;
6126 for (i = 0; i < sp->len; i++)
6127 xfrm_state_hold(sp->xvec[i]);
6129 #endif
6130 __skb_ext_put(old);
6131 return new;
6135 * __skb_ext_set - attach the specified extension storage to this skb
6136 * @skb: buffer
6137 * @id: extension id
6138 * @ext: extension storage previously allocated via __skb_ext_alloc()
6140 * Existing extensions, if any, are cleared.
6142 * Returns the pointer to the extension.
6144 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6145 struct skb_ext *ext)
6147 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6149 skb_ext_put(skb);
6150 newlen = newoff + skb_ext_type_len[id];
6151 ext->chunks = newlen;
6152 ext->offset[id] = newoff;
6153 skb->extensions = ext;
6154 skb->active_extensions = 1 << id;
6155 return skb_ext_get_ptr(ext, id);
6159 * skb_ext_add - allocate space for given extension, COW if needed
6160 * @skb: buffer
6161 * @id: extension to allocate space for
6163 * Allocates enough space for the given extension.
6164 * If the extension is already present, a pointer to that extension
6165 * is returned.
6167 * If the skb was cloned, COW applies and the returned memory can be
6168 * modified without changing the extension space of clones buffers.
6170 * Returns pointer to the extension or NULL on allocation failure.
6172 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6174 struct skb_ext *new, *old = NULL;
6175 unsigned int newlen, newoff;
6177 if (skb->active_extensions) {
6178 old = skb->extensions;
6180 new = skb_ext_maybe_cow(old, skb->active_extensions);
6181 if (!new)
6182 return NULL;
6184 if (__skb_ext_exist(new, id))
6185 goto set_active;
6187 newoff = new->chunks;
6188 } else {
6189 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6191 new = __skb_ext_alloc();
6192 if (!new)
6193 return NULL;
6196 newlen = newoff + skb_ext_type_len[id];
6197 new->chunks = newlen;
6198 new->offset[id] = newoff;
6199 set_active:
6200 skb->extensions = new;
6201 skb->active_extensions |= 1 << id;
6202 return skb_ext_get_ptr(new, id);
6204 EXPORT_SYMBOL(skb_ext_add);
6206 #ifdef CONFIG_XFRM
6207 static void skb_ext_put_sp(struct sec_path *sp)
6209 unsigned int i;
6211 for (i = 0; i < sp->len; i++)
6212 xfrm_state_put(sp->xvec[i]);
6214 #endif
6216 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6218 struct skb_ext *ext = skb->extensions;
6220 skb->active_extensions &= ~(1 << id);
6221 if (skb->active_extensions == 0) {
6222 skb->extensions = NULL;
6223 __skb_ext_put(ext);
6224 #ifdef CONFIG_XFRM
6225 } else if (id == SKB_EXT_SEC_PATH &&
6226 refcount_read(&ext->refcnt) == 1) {
6227 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6229 skb_ext_put_sp(sp);
6230 sp->len = 0;
6231 #endif
6234 EXPORT_SYMBOL(__skb_ext_del);
6236 void __skb_ext_put(struct skb_ext *ext)
6238 /* If this is last clone, nothing can increment
6239 * it after check passes. Avoids one atomic op.
6241 if (refcount_read(&ext->refcnt) == 1)
6242 goto free_now;
6244 if (!refcount_dec_and_test(&ext->refcnt))
6245 return;
6246 free_now:
6247 #ifdef CONFIG_XFRM
6248 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6249 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6250 #endif
6252 kmem_cache_free(skbuff_ext_cache, ext);
6254 EXPORT_SYMBOL(__skb_ext_put);
6255 #endif /* CONFIG_SKB_EXTENSIONS */