gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / net / rds / rdma.c
blob585e6b3b69ce4c32ec9404ee5ad88065b0979f75
1 /*
2 * Copyright (c) 2007, 2017 Oracle and/or its affiliates. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/pagemap.h>
34 #include <linux/slab.h>
35 #include <linux/rbtree.h>
36 #include <linux/dma-mapping.h> /* for DMA_*_DEVICE */
38 #include "rds.h"
41 * XXX
42 * - build with sparse
43 * - should we detect duplicate keys on a socket? hmm.
44 * - an rdma is an mlock, apply rlimit?
48 * get the number of pages by looking at the page indices that the start and
49 * end addresses fall in.
51 * Returns 0 if the vec is invalid. It is invalid if the number of bytes
52 * causes the address to wrap or overflows an unsigned int. This comes
53 * from being stored in the 'length' member of 'struct scatterlist'.
55 static unsigned int rds_pages_in_vec(struct rds_iovec *vec)
57 if ((vec->addr + vec->bytes <= vec->addr) ||
58 (vec->bytes > (u64)UINT_MAX))
59 return 0;
61 return ((vec->addr + vec->bytes + PAGE_SIZE - 1) >> PAGE_SHIFT) -
62 (vec->addr >> PAGE_SHIFT);
65 static struct rds_mr *rds_mr_tree_walk(struct rb_root *root, u64 key,
66 struct rds_mr *insert)
68 struct rb_node **p = &root->rb_node;
69 struct rb_node *parent = NULL;
70 struct rds_mr *mr;
72 while (*p) {
73 parent = *p;
74 mr = rb_entry(parent, struct rds_mr, r_rb_node);
76 if (key < mr->r_key)
77 p = &(*p)->rb_left;
78 else if (key > mr->r_key)
79 p = &(*p)->rb_right;
80 else
81 return mr;
84 if (insert) {
85 rb_link_node(&insert->r_rb_node, parent, p);
86 rb_insert_color(&insert->r_rb_node, root);
87 refcount_inc(&insert->r_refcount);
89 return NULL;
93 * Destroy the transport-specific part of a MR.
95 static void rds_destroy_mr(struct rds_mr *mr)
97 struct rds_sock *rs = mr->r_sock;
98 void *trans_private = NULL;
99 unsigned long flags;
101 rdsdebug("RDS: destroy mr key is %x refcnt %u\n",
102 mr->r_key, refcount_read(&mr->r_refcount));
104 if (test_and_set_bit(RDS_MR_DEAD, &mr->r_state))
105 return;
107 spin_lock_irqsave(&rs->rs_rdma_lock, flags);
108 if (!RB_EMPTY_NODE(&mr->r_rb_node))
109 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
110 trans_private = mr->r_trans_private;
111 mr->r_trans_private = NULL;
112 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
114 if (trans_private)
115 mr->r_trans->free_mr(trans_private, mr->r_invalidate);
118 void __rds_put_mr_final(struct rds_mr *mr)
120 rds_destroy_mr(mr);
121 kfree(mr);
125 * By the time this is called we can't have any more ioctls called on
126 * the socket so we don't need to worry about racing with others.
128 void rds_rdma_drop_keys(struct rds_sock *rs)
130 struct rds_mr *mr;
131 struct rb_node *node;
132 unsigned long flags;
134 /* Release any MRs associated with this socket */
135 spin_lock_irqsave(&rs->rs_rdma_lock, flags);
136 while ((node = rb_first(&rs->rs_rdma_keys))) {
137 mr = rb_entry(node, struct rds_mr, r_rb_node);
138 if (mr->r_trans == rs->rs_transport)
139 mr->r_invalidate = 0;
140 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
141 RB_CLEAR_NODE(&mr->r_rb_node);
142 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
143 rds_destroy_mr(mr);
144 rds_mr_put(mr);
145 spin_lock_irqsave(&rs->rs_rdma_lock, flags);
147 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
149 if (rs->rs_transport && rs->rs_transport->flush_mrs)
150 rs->rs_transport->flush_mrs();
154 * Helper function to pin user pages.
156 static int rds_pin_pages(unsigned long user_addr, unsigned int nr_pages,
157 struct page **pages, int write)
159 unsigned int gup_flags = FOLL_LONGTERM;
160 int ret;
162 if (write)
163 gup_flags |= FOLL_WRITE;
165 ret = pin_user_pages_fast(user_addr, nr_pages, gup_flags, pages);
166 if (ret >= 0 && ret < nr_pages) {
167 unpin_user_pages(pages, ret);
168 ret = -EFAULT;
171 return ret;
174 static int __rds_rdma_map(struct rds_sock *rs, struct rds_get_mr_args *args,
175 u64 *cookie_ret, struct rds_mr **mr_ret,
176 struct rds_conn_path *cp)
178 struct rds_mr *mr = NULL, *found;
179 struct scatterlist *sg = NULL;
180 unsigned int nr_pages;
181 struct page **pages = NULL;
182 void *trans_private;
183 unsigned long flags;
184 rds_rdma_cookie_t cookie;
185 unsigned int nents = 0;
186 int need_odp = 0;
187 long i;
188 int ret;
190 if (ipv6_addr_any(&rs->rs_bound_addr) || !rs->rs_transport) {
191 ret = -ENOTCONN; /* XXX not a great errno */
192 goto out;
195 if (!rs->rs_transport->get_mr) {
196 ret = -EOPNOTSUPP;
197 goto out;
200 /* If the combination of the addr and size requested for this memory
201 * region causes an integer overflow, return error.
203 if (((args->vec.addr + args->vec.bytes) < args->vec.addr) ||
204 PAGE_ALIGN(args->vec.addr + args->vec.bytes) <
205 (args->vec.addr + args->vec.bytes)) {
206 ret = -EINVAL;
207 goto out;
210 if (!can_do_mlock()) {
211 ret = -EPERM;
212 goto out;
215 nr_pages = rds_pages_in_vec(&args->vec);
216 if (nr_pages == 0) {
217 ret = -EINVAL;
218 goto out;
221 /* Restrict the size of mr irrespective of underlying transport
222 * To account for unaligned mr regions, subtract one from nr_pages
224 if ((nr_pages - 1) > (RDS_MAX_MSG_SIZE >> PAGE_SHIFT)) {
225 ret = -EMSGSIZE;
226 goto out;
229 rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n",
230 args->vec.addr, args->vec.bytes, nr_pages);
232 /* XXX clamp nr_pages to limit the size of this alloc? */
233 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
234 if (!pages) {
235 ret = -ENOMEM;
236 goto out;
239 mr = kzalloc(sizeof(struct rds_mr), GFP_KERNEL);
240 if (!mr) {
241 ret = -ENOMEM;
242 goto out;
245 refcount_set(&mr->r_refcount, 1);
246 RB_CLEAR_NODE(&mr->r_rb_node);
247 mr->r_trans = rs->rs_transport;
248 mr->r_sock = rs;
250 if (args->flags & RDS_RDMA_USE_ONCE)
251 mr->r_use_once = 1;
252 if (args->flags & RDS_RDMA_INVALIDATE)
253 mr->r_invalidate = 1;
254 if (args->flags & RDS_RDMA_READWRITE)
255 mr->r_write = 1;
258 * Pin the pages that make up the user buffer and transfer the page
259 * pointers to the mr's sg array. We check to see if we've mapped
260 * the whole region after transferring the partial page references
261 * to the sg array so that we can have one page ref cleanup path.
263 * For now we have no flag that tells us whether the mapping is
264 * r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to
265 * the zero page.
267 ret = rds_pin_pages(args->vec.addr, nr_pages, pages, 1);
268 if (ret == -EOPNOTSUPP) {
269 need_odp = 1;
270 } else if (ret <= 0) {
271 goto out;
272 } else {
273 nents = ret;
274 sg = kcalloc(nents, sizeof(*sg), GFP_KERNEL);
275 if (!sg) {
276 ret = -ENOMEM;
277 goto out;
279 WARN_ON(!nents);
280 sg_init_table(sg, nents);
282 /* Stick all pages into the scatterlist */
283 for (i = 0 ; i < nents; i++)
284 sg_set_page(&sg[i], pages[i], PAGE_SIZE, 0);
286 rdsdebug("RDS: trans_private nents is %u\n", nents);
288 /* Obtain a transport specific MR. If this succeeds, the
289 * s/g list is now owned by the MR.
290 * Note that dma_map() implies that pending writes are
291 * flushed to RAM, so no dma_sync is needed here. */
292 trans_private = rs->rs_transport->get_mr(
293 sg, nents, rs, &mr->r_key, cp ? cp->cp_conn : NULL,
294 args->vec.addr, args->vec.bytes,
295 need_odp ? ODP_ZEROBASED : ODP_NOT_NEEDED);
297 if (IS_ERR(trans_private)) {
298 /* In ODP case, we don't GUP pages, so don't need
299 * to release anything.
301 if (!need_odp) {
302 unpin_user_pages(pages, nr_pages);
303 kfree(sg);
305 ret = PTR_ERR(trans_private);
306 goto out;
309 mr->r_trans_private = trans_private;
311 rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n",
312 mr->r_key, (void *)(unsigned long) args->cookie_addr);
314 /* The user may pass us an unaligned address, but we can only
315 * map page aligned regions. So we keep the offset, and build
316 * a 64bit cookie containing <R_Key, offset> and pass that
317 * around. */
318 if (need_odp)
319 cookie = rds_rdma_make_cookie(mr->r_key, 0);
320 else
321 cookie = rds_rdma_make_cookie(mr->r_key,
322 args->vec.addr & ~PAGE_MASK);
323 if (cookie_ret)
324 *cookie_ret = cookie;
326 if (args->cookie_addr &&
327 put_user(cookie, (u64 __user *)(unsigned long)args->cookie_addr)) {
328 if (!need_odp) {
329 unpin_user_pages(pages, nr_pages);
330 kfree(sg);
332 ret = -EFAULT;
333 goto out;
336 /* Inserting the new MR into the rbtree bumps its
337 * reference count. */
338 spin_lock_irqsave(&rs->rs_rdma_lock, flags);
339 found = rds_mr_tree_walk(&rs->rs_rdma_keys, mr->r_key, mr);
340 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
342 BUG_ON(found && found != mr);
344 rdsdebug("RDS: get_mr key is %x\n", mr->r_key);
345 if (mr_ret) {
346 refcount_inc(&mr->r_refcount);
347 *mr_ret = mr;
350 ret = 0;
351 out:
352 kfree(pages);
353 if (mr)
354 rds_mr_put(mr);
355 return ret;
358 int rds_get_mr(struct rds_sock *rs, char __user *optval, int optlen)
360 struct rds_get_mr_args args;
362 if (optlen != sizeof(struct rds_get_mr_args))
363 return -EINVAL;
365 if (copy_from_user(&args, (struct rds_get_mr_args __user *)optval,
366 sizeof(struct rds_get_mr_args)))
367 return -EFAULT;
369 return __rds_rdma_map(rs, &args, NULL, NULL, NULL);
372 int rds_get_mr_for_dest(struct rds_sock *rs, char __user *optval, int optlen)
374 struct rds_get_mr_for_dest_args args;
375 struct rds_get_mr_args new_args;
377 if (optlen != sizeof(struct rds_get_mr_for_dest_args))
378 return -EINVAL;
380 if (copy_from_user(&args, (struct rds_get_mr_for_dest_args __user *)optval,
381 sizeof(struct rds_get_mr_for_dest_args)))
382 return -EFAULT;
385 * Initially, just behave like get_mr().
386 * TODO: Implement get_mr as wrapper around this
387 * and deprecate it.
389 new_args.vec = args.vec;
390 new_args.cookie_addr = args.cookie_addr;
391 new_args.flags = args.flags;
393 return __rds_rdma_map(rs, &new_args, NULL, NULL, NULL);
397 * Free the MR indicated by the given R_Key
399 int rds_free_mr(struct rds_sock *rs, char __user *optval, int optlen)
401 struct rds_free_mr_args args;
402 struct rds_mr *mr;
403 unsigned long flags;
405 if (optlen != sizeof(struct rds_free_mr_args))
406 return -EINVAL;
408 if (copy_from_user(&args, (struct rds_free_mr_args __user *)optval,
409 sizeof(struct rds_free_mr_args)))
410 return -EFAULT;
412 /* Special case - a null cookie means flush all unused MRs */
413 if (args.cookie == 0) {
414 if (!rs->rs_transport || !rs->rs_transport->flush_mrs)
415 return -EINVAL;
416 rs->rs_transport->flush_mrs();
417 return 0;
420 /* Look up the MR given its R_key and remove it from the rbtree
421 * so nobody else finds it.
422 * This should also prevent races with rds_rdma_unuse.
424 spin_lock_irqsave(&rs->rs_rdma_lock, flags);
425 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, rds_rdma_cookie_key(args.cookie), NULL);
426 if (mr) {
427 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
428 RB_CLEAR_NODE(&mr->r_rb_node);
429 if (args.flags & RDS_RDMA_INVALIDATE)
430 mr->r_invalidate = 1;
432 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
434 if (!mr)
435 return -EINVAL;
438 * call rds_destroy_mr() ourselves so that we're sure it's done by the time
439 * we return. If we let rds_mr_put() do it it might not happen until
440 * someone else drops their ref.
442 rds_destroy_mr(mr);
443 rds_mr_put(mr);
444 return 0;
448 * This is called when we receive an extension header that
449 * tells us this MR was used. It allows us to implement
450 * use_once semantics
452 void rds_rdma_unuse(struct rds_sock *rs, u32 r_key, int force)
454 struct rds_mr *mr;
455 unsigned long flags;
456 int zot_me = 0;
458 spin_lock_irqsave(&rs->rs_rdma_lock, flags);
459 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
460 if (!mr) {
461 pr_debug("rds: trying to unuse MR with unknown r_key %u!\n",
462 r_key);
463 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
464 return;
467 if (mr->r_use_once || force) {
468 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
469 RB_CLEAR_NODE(&mr->r_rb_node);
470 zot_me = 1;
472 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
474 /* May have to issue a dma_sync on this memory region.
475 * Note we could avoid this if the operation was a RDMA READ,
476 * but at this point we can't tell. */
477 if (mr->r_trans->sync_mr)
478 mr->r_trans->sync_mr(mr->r_trans_private, DMA_FROM_DEVICE);
480 /* If the MR was marked as invalidate, this will
481 * trigger an async flush. */
482 if (zot_me) {
483 rds_destroy_mr(mr);
484 rds_mr_put(mr);
488 void rds_rdma_free_op(struct rm_rdma_op *ro)
490 unsigned int i;
492 if (ro->op_odp_mr) {
493 rds_mr_put(ro->op_odp_mr);
494 } else {
495 for (i = 0; i < ro->op_nents; i++) {
496 struct page *page = sg_page(&ro->op_sg[i]);
498 /* Mark page dirty if it was possibly modified, which
499 * is the case for a RDMA_READ which copies from remote
500 * to local memory
502 unpin_user_pages_dirty_lock(&page, 1, !ro->op_write);
506 kfree(ro->op_notifier);
507 ro->op_notifier = NULL;
508 ro->op_active = 0;
509 ro->op_odp_mr = NULL;
512 void rds_atomic_free_op(struct rm_atomic_op *ao)
514 struct page *page = sg_page(ao->op_sg);
516 /* Mark page dirty if it was possibly modified, which
517 * is the case for a RDMA_READ which copies from remote
518 * to local memory */
519 unpin_user_pages_dirty_lock(&page, 1, true);
521 kfree(ao->op_notifier);
522 ao->op_notifier = NULL;
523 ao->op_active = 0;
528 * Count the number of pages needed to describe an incoming iovec array.
530 static int rds_rdma_pages(struct rds_iovec iov[], int nr_iovecs)
532 int tot_pages = 0;
533 unsigned int nr_pages;
534 unsigned int i;
536 /* figure out the number of pages in the vector */
537 for (i = 0; i < nr_iovecs; i++) {
538 nr_pages = rds_pages_in_vec(&iov[i]);
539 if (nr_pages == 0)
540 return -EINVAL;
542 tot_pages += nr_pages;
545 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
546 * so tot_pages cannot overflow without first going negative.
548 if (tot_pages < 0)
549 return -EINVAL;
552 return tot_pages;
555 int rds_rdma_extra_size(struct rds_rdma_args *args,
556 struct rds_iov_vector *iov)
558 struct rds_iovec *vec;
559 struct rds_iovec __user *local_vec;
560 int tot_pages = 0;
561 unsigned int nr_pages;
562 unsigned int i;
564 local_vec = (struct rds_iovec __user *)(unsigned long) args->local_vec_addr;
566 if (args->nr_local == 0)
567 return -EINVAL;
569 iov->iov = kcalloc(args->nr_local,
570 sizeof(struct rds_iovec),
571 GFP_KERNEL);
572 if (!iov->iov)
573 return -ENOMEM;
575 vec = &iov->iov[0];
577 if (copy_from_user(vec, local_vec, args->nr_local *
578 sizeof(struct rds_iovec)))
579 return -EFAULT;
580 iov->len = args->nr_local;
582 /* figure out the number of pages in the vector */
583 for (i = 0; i < args->nr_local; i++, vec++) {
585 nr_pages = rds_pages_in_vec(vec);
586 if (nr_pages == 0)
587 return -EINVAL;
589 tot_pages += nr_pages;
592 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
593 * so tot_pages cannot overflow without first going negative.
595 if (tot_pages < 0)
596 return -EINVAL;
599 return tot_pages * sizeof(struct scatterlist);
603 * The application asks for a RDMA transfer.
604 * Extract all arguments and set up the rdma_op
606 int rds_cmsg_rdma_args(struct rds_sock *rs, struct rds_message *rm,
607 struct cmsghdr *cmsg,
608 struct rds_iov_vector *vec)
610 struct rds_rdma_args *args;
611 struct rm_rdma_op *op = &rm->rdma;
612 int nr_pages;
613 unsigned int nr_bytes;
614 struct page **pages = NULL;
615 struct rds_iovec *iovs;
616 unsigned int i, j;
617 int ret = 0;
618 bool odp_supported = true;
620 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_rdma_args))
621 || rm->rdma.op_active)
622 return -EINVAL;
624 args = CMSG_DATA(cmsg);
626 if (ipv6_addr_any(&rs->rs_bound_addr)) {
627 ret = -ENOTCONN; /* XXX not a great errno */
628 goto out_ret;
631 if (args->nr_local > UIO_MAXIOV) {
632 ret = -EMSGSIZE;
633 goto out_ret;
636 if (vec->len != args->nr_local) {
637 ret = -EINVAL;
638 goto out_ret;
640 /* odp-mr is not supported for multiple requests within one message */
641 if (args->nr_local != 1)
642 odp_supported = false;
644 iovs = vec->iov;
646 nr_pages = rds_rdma_pages(iovs, args->nr_local);
647 if (nr_pages < 0) {
648 ret = -EINVAL;
649 goto out_ret;
652 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
653 if (!pages) {
654 ret = -ENOMEM;
655 goto out_ret;
658 op->op_write = !!(args->flags & RDS_RDMA_READWRITE);
659 op->op_fence = !!(args->flags & RDS_RDMA_FENCE);
660 op->op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
661 op->op_silent = !!(args->flags & RDS_RDMA_SILENT);
662 op->op_active = 1;
663 op->op_recverr = rs->rs_recverr;
664 op->op_odp_mr = NULL;
666 WARN_ON(!nr_pages);
667 op->op_sg = rds_message_alloc_sgs(rm, nr_pages, &ret);
668 if (!op->op_sg)
669 goto out_pages;
671 if (op->op_notify || op->op_recverr) {
672 /* We allocate an uninitialized notifier here, because
673 * we don't want to do that in the completion handler. We
674 * would have to use GFP_ATOMIC there, and don't want to deal
675 * with failed allocations.
677 op->op_notifier = kmalloc(sizeof(struct rds_notifier), GFP_KERNEL);
678 if (!op->op_notifier) {
679 ret = -ENOMEM;
680 goto out_pages;
682 op->op_notifier->n_user_token = args->user_token;
683 op->op_notifier->n_status = RDS_RDMA_SUCCESS;
686 /* The cookie contains the R_Key of the remote memory region, and
687 * optionally an offset into it. This is how we implement RDMA into
688 * unaligned memory.
689 * When setting up the RDMA, we need to add that offset to the
690 * destination address (which is really an offset into the MR)
691 * FIXME: We may want to move this into ib_rdma.c
693 op->op_rkey = rds_rdma_cookie_key(args->cookie);
694 op->op_remote_addr = args->remote_vec.addr + rds_rdma_cookie_offset(args->cookie);
696 nr_bytes = 0;
698 rdsdebug("RDS: rdma prepare nr_local %llu rva %llx rkey %x\n",
699 (unsigned long long)args->nr_local,
700 (unsigned long long)args->remote_vec.addr,
701 op->op_rkey);
703 for (i = 0; i < args->nr_local; i++) {
704 struct rds_iovec *iov = &iovs[i];
705 /* don't need to check, rds_rdma_pages() verified nr will be +nonzero */
706 unsigned int nr = rds_pages_in_vec(iov);
708 rs->rs_user_addr = iov->addr;
709 rs->rs_user_bytes = iov->bytes;
711 /* If it's a WRITE operation, we want to pin the pages for reading.
712 * If it's a READ operation, we need to pin the pages for writing.
714 ret = rds_pin_pages(iov->addr, nr, pages, !op->op_write);
715 if ((!odp_supported && ret <= 0) ||
716 (odp_supported && ret <= 0 && ret != -EOPNOTSUPP))
717 goto out_pages;
719 if (ret == -EOPNOTSUPP) {
720 struct rds_mr *local_odp_mr;
722 if (!rs->rs_transport->get_mr) {
723 ret = -EOPNOTSUPP;
724 goto out_pages;
726 local_odp_mr =
727 kzalloc(sizeof(*local_odp_mr), GFP_KERNEL);
728 if (!local_odp_mr) {
729 ret = -ENOMEM;
730 goto out_pages;
732 RB_CLEAR_NODE(&local_odp_mr->r_rb_node);
733 refcount_set(&local_odp_mr->r_refcount, 1);
734 local_odp_mr->r_trans = rs->rs_transport;
735 local_odp_mr->r_sock = rs;
736 local_odp_mr->r_trans_private =
737 rs->rs_transport->get_mr(
738 NULL, 0, rs, &local_odp_mr->r_key, NULL,
739 iov->addr, iov->bytes, ODP_VIRTUAL);
740 if (IS_ERR(local_odp_mr->r_trans_private)) {
741 ret = IS_ERR(local_odp_mr->r_trans_private);
742 rdsdebug("get_mr ret %d %p\"", ret,
743 local_odp_mr->r_trans_private);
744 kfree(local_odp_mr);
745 ret = -EOPNOTSUPP;
746 goto out_pages;
748 rdsdebug("Need odp; local_odp_mr %p trans_private %p\n",
749 local_odp_mr, local_odp_mr->r_trans_private);
750 op->op_odp_mr = local_odp_mr;
751 op->op_odp_addr = iov->addr;
754 rdsdebug("RDS: nr_bytes %u nr %u iov->bytes %llu iov->addr %llx\n",
755 nr_bytes, nr, iov->bytes, iov->addr);
757 nr_bytes += iov->bytes;
759 for (j = 0; j < nr; j++) {
760 unsigned int offset = iov->addr & ~PAGE_MASK;
761 struct scatterlist *sg;
763 sg = &op->op_sg[op->op_nents + j];
764 sg_set_page(sg, pages[j],
765 min_t(unsigned int, iov->bytes, PAGE_SIZE - offset),
766 offset);
768 sg_dma_len(sg) = sg->length;
769 rdsdebug("RDS: sg->offset %x sg->len %x iov->addr %llx iov->bytes %llu\n",
770 sg->offset, sg->length, iov->addr, iov->bytes);
772 iov->addr += sg->length;
773 iov->bytes -= sg->length;
776 op->op_nents += nr;
779 if (nr_bytes > args->remote_vec.bytes) {
780 rdsdebug("RDS nr_bytes %u remote_bytes %u do not match\n",
781 nr_bytes,
782 (unsigned int) args->remote_vec.bytes);
783 ret = -EINVAL;
784 goto out_pages;
786 op->op_bytes = nr_bytes;
787 ret = 0;
789 out_pages:
790 kfree(pages);
791 out_ret:
792 if (ret)
793 rds_rdma_free_op(op);
794 else
795 rds_stats_inc(s_send_rdma);
797 return ret;
801 * The application wants us to pass an RDMA destination (aka MR)
802 * to the remote
804 int rds_cmsg_rdma_dest(struct rds_sock *rs, struct rds_message *rm,
805 struct cmsghdr *cmsg)
807 unsigned long flags;
808 struct rds_mr *mr;
809 u32 r_key;
810 int err = 0;
812 if (cmsg->cmsg_len < CMSG_LEN(sizeof(rds_rdma_cookie_t)) ||
813 rm->m_rdma_cookie != 0)
814 return -EINVAL;
816 memcpy(&rm->m_rdma_cookie, CMSG_DATA(cmsg), sizeof(rm->m_rdma_cookie));
818 /* We are reusing a previously mapped MR here. Most likely, the
819 * application has written to the buffer, so we need to explicitly
820 * flush those writes to RAM. Otherwise the HCA may not see them
821 * when doing a DMA from that buffer.
823 r_key = rds_rdma_cookie_key(rm->m_rdma_cookie);
825 spin_lock_irqsave(&rs->rs_rdma_lock, flags);
826 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
827 if (!mr)
828 err = -EINVAL; /* invalid r_key */
829 else
830 refcount_inc(&mr->r_refcount);
831 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
833 if (mr) {
834 mr->r_trans->sync_mr(mr->r_trans_private,
835 DMA_TO_DEVICE);
836 rm->rdma.op_rdma_mr = mr;
838 return err;
842 * The application passes us an address range it wants to enable RDMA
843 * to/from. We map the area, and save the <R_Key,offset> pair
844 * in rm->m_rdma_cookie. This causes it to be sent along to the peer
845 * in an extension header.
847 int rds_cmsg_rdma_map(struct rds_sock *rs, struct rds_message *rm,
848 struct cmsghdr *cmsg)
850 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_get_mr_args)) ||
851 rm->m_rdma_cookie != 0)
852 return -EINVAL;
854 return __rds_rdma_map(rs, CMSG_DATA(cmsg), &rm->m_rdma_cookie,
855 &rm->rdma.op_rdma_mr, rm->m_conn_path);
859 * Fill in rds_message for an atomic request.
861 int rds_cmsg_atomic(struct rds_sock *rs, struct rds_message *rm,
862 struct cmsghdr *cmsg)
864 struct page *page = NULL;
865 struct rds_atomic_args *args;
866 int ret = 0;
868 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_atomic_args))
869 || rm->atomic.op_active)
870 return -EINVAL;
872 args = CMSG_DATA(cmsg);
874 /* Nonmasked & masked cmsg ops converted to masked hw ops */
875 switch (cmsg->cmsg_type) {
876 case RDS_CMSG_ATOMIC_FADD:
877 rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD;
878 rm->atomic.op_m_fadd.add = args->fadd.add;
879 rm->atomic.op_m_fadd.nocarry_mask = 0;
880 break;
881 case RDS_CMSG_MASKED_ATOMIC_FADD:
882 rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD;
883 rm->atomic.op_m_fadd.add = args->m_fadd.add;
884 rm->atomic.op_m_fadd.nocarry_mask = args->m_fadd.nocarry_mask;
885 break;
886 case RDS_CMSG_ATOMIC_CSWP:
887 rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP;
888 rm->atomic.op_m_cswp.compare = args->cswp.compare;
889 rm->atomic.op_m_cswp.swap = args->cswp.swap;
890 rm->atomic.op_m_cswp.compare_mask = ~0;
891 rm->atomic.op_m_cswp.swap_mask = ~0;
892 break;
893 case RDS_CMSG_MASKED_ATOMIC_CSWP:
894 rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP;
895 rm->atomic.op_m_cswp.compare = args->m_cswp.compare;
896 rm->atomic.op_m_cswp.swap = args->m_cswp.swap;
897 rm->atomic.op_m_cswp.compare_mask = args->m_cswp.compare_mask;
898 rm->atomic.op_m_cswp.swap_mask = args->m_cswp.swap_mask;
899 break;
900 default:
901 BUG(); /* should never happen */
904 rm->atomic.op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
905 rm->atomic.op_silent = !!(args->flags & RDS_RDMA_SILENT);
906 rm->atomic.op_active = 1;
907 rm->atomic.op_recverr = rs->rs_recverr;
908 rm->atomic.op_sg = rds_message_alloc_sgs(rm, 1, &ret);
909 if (!rm->atomic.op_sg)
910 goto err;
912 /* verify 8 byte-aligned */
913 if (args->local_addr & 0x7) {
914 ret = -EFAULT;
915 goto err;
918 ret = rds_pin_pages(args->local_addr, 1, &page, 1);
919 if (ret != 1)
920 goto err;
921 ret = 0;
923 sg_set_page(rm->atomic.op_sg, page, 8, offset_in_page(args->local_addr));
925 if (rm->atomic.op_notify || rm->atomic.op_recverr) {
926 /* We allocate an uninitialized notifier here, because
927 * we don't want to do that in the completion handler. We
928 * would have to use GFP_ATOMIC there, and don't want to deal
929 * with failed allocations.
931 rm->atomic.op_notifier = kmalloc(sizeof(*rm->atomic.op_notifier), GFP_KERNEL);
932 if (!rm->atomic.op_notifier) {
933 ret = -ENOMEM;
934 goto err;
937 rm->atomic.op_notifier->n_user_token = args->user_token;
938 rm->atomic.op_notifier->n_status = RDS_RDMA_SUCCESS;
941 rm->atomic.op_rkey = rds_rdma_cookie_key(args->cookie);
942 rm->atomic.op_remote_addr = args->remote_addr + rds_rdma_cookie_offset(args->cookie);
944 return ret;
945 err:
946 if (page)
947 unpin_user_page(page);
948 rm->atomic.op_active = 0;
949 kfree(rm->atomic.op_notifier);
951 return ret;