gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / net / sunrpc / cache.c
blobaf0ddd28b081cd166b4dc4339bfdcc0f548a6256
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * net/sunrpc/cache.c
5 * Generic code for various authentication-related caches
6 * used by sunrpc clients and servers.
8 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
9 */
11 #include <linux/types.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
15 #include <linux/signal.h>
16 #include <linux/sched.h>
17 #include <linux/kmod.h>
18 #include <linux/list.h>
19 #include <linux/module.h>
20 #include <linux/ctype.h>
21 #include <linux/string_helpers.h>
22 #include <linux/uaccess.h>
23 #include <linux/poll.h>
24 #include <linux/seq_file.h>
25 #include <linux/proc_fs.h>
26 #include <linux/net.h>
27 #include <linux/workqueue.h>
28 #include <linux/mutex.h>
29 #include <linux/pagemap.h>
30 #include <asm/ioctls.h>
31 #include <linux/sunrpc/types.h>
32 #include <linux/sunrpc/cache.h>
33 #include <linux/sunrpc/stats.h>
34 #include <linux/sunrpc/rpc_pipe_fs.h>
35 #include <trace/events/sunrpc.h>
36 #include "netns.h"
38 #define RPCDBG_FACILITY RPCDBG_CACHE
40 static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
41 static void cache_revisit_request(struct cache_head *item);
43 static void cache_init(struct cache_head *h, struct cache_detail *detail)
45 time64_t now = seconds_since_boot();
46 INIT_HLIST_NODE(&h->cache_list);
47 h->flags = 0;
48 kref_init(&h->ref);
49 h->expiry_time = now + CACHE_NEW_EXPIRY;
50 if (now <= detail->flush_time)
51 /* ensure it isn't already expired */
52 now = detail->flush_time + 1;
53 h->last_refresh = now;
56 static void cache_fresh_unlocked(struct cache_head *head,
57 struct cache_detail *detail);
59 static struct cache_head *sunrpc_cache_find_rcu(struct cache_detail *detail,
60 struct cache_head *key,
61 int hash)
63 struct hlist_head *head = &detail->hash_table[hash];
64 struct cache_head *tmp;
66 rcu_read_lock();
67 hlist_for_each_entry_rcu(tmp, head, cache_list) {
68 if (!detail->match(tmp, key))
69 continue;
70 if (test_bit(CACHE_VALID, &tmp->flags) &&
71 cache_is_expired(detail, tmp))
72 continue;
73 tmp = cache_get_rcu(tmp);
74 rcu_read_unlock();
75 return tmp;
77 rcu_read_unlock();
78 return NULL;
81 static void sunrpc_begin_cache_remove_entry(struct cache_head *ch,
82 struct cache_detail *cd)
84 /* Must be called under cd->hash_lock */
85 hlist_del_init_rcu(&ch->cache_list);
86 set_bit(CACHE_CLEANED, &ch->flags);
87 cd->entries --;
90 static void sunrpc_end_cache_remove_entry(struct cache_head *ch,
91 struct cache_detail *cd)
93 cache_fresh_unlocked(ch, cd);
94 cache_put(ch, cd);
97 static struct cache_head *sunrpc_cache_add_entry(struct cache_detail *detail,
98 struct cache_head *key,
99 int hash)
101 struct cache_head *new, *tmp, *freeme = NULL;
102 struct hlist_head *head = &detail->hash_table[hash];
104 new = detail->alloc();
105 if (!new)
106 return NULL;
107 /* must fully initialise 'new', else
108 * we might get lose if we need to
109 * cache_put it soon.
111 cache_init(new, detail);
112 detail->init(new, key);
114 spin_lock(&detail->hash_lock);
116 /* check if entry appeared while we slept */
117 hlist_for_each_entry_rcu(tmp, head, cache_list,
118 lockdep_is_held(&detail->hash_lock)) {
119 if (!detail->match(tmp, key))
120 continue;
121 if (test_bit(CACHE_VALID, &tmp->flags) &&
122 cache_is_expired(detail, tmp)) {
123 sunrpc_begin_cache_remove_entry(tmp, detail);
124 trace_cache_entry_expired(detail, tmp);
125 freeme = tmp;
126 break;
128 cache_get(tmp);
129 spin_unlock(&detail->hash_lock);
130 cache_put(new, detail);
131 return tmp;
134 hlist_add_head_rcu(&new->cache_list, head);
135 detail->entries++;
136 cache_get(new);
137 spin_unlock(&detail->hash_lock);
139 if (freeme)
140 sunrpc_end_cache_remove_entry(freeme, detail);
141 return new;
144 struct cache_head *sunrpc_cache_lookup_rcu(struct cache_detail *detail,
145 struct cache_head *key, int hash)
147 struct cache_head *ret;
149 ret = sunrpc_cache_find_rcu(detail, key, hash);
150 if (ret)
151 return ret;
152 /* Didn't find anything, insert an empty entry */
153 return sunrpc_cache_add_entry(detail, key, hash);
155 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup_rcu);
157 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
159 static void cache_fresh_locked(struct cache_head *head, time64_t expiry,
160 struct cache_detail *detail)
162 time64_t now = seconds_since_boot();
163 if (now <= detail->flush_time)
164 /* ensure it isn't immediately treated as expired */
165 now = detail->flush_time + 1;
166 head->expiry_time = expiry;
167 head->last_refresh = now;
168 smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
169 set_bit(CACHE_VALID, &head->flags);
172 static void cache_fresh_unlocked(struct cache_head *head,
173 struct cache_detail *detail)
175 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
176 cache_revisit_request(head);
177 cache_dequeue(detail, head);
181 static void cache_make_negative(struct cache_detail *detail,
182 struct cache_head *h)
184 set_bit(CACHE_NEGATIVE, &h->flags);
185 trace_cache_entry_make_negative(detail, h);
188 static void cache_entry_update(struct cache_detail *detail,
189 struct cache_head *h,
190 struct cache_head *new)
192 if (!test_bit(CACHE_NEGATIVE, &new->flags)) {
193 detail->update(h, new);
194 trace_cache_entry_update(detail, h);
195 } else {
196 cache_make_negative(detail, h);
200 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
201 struct cache_head *new, struct cache_head *old, int hash)
203 /* The 'old' entry is to be replaced by 'new'.
204 * If 'old' is not VALID, we update it directly,
205 * otherwise we need to replace it
207 struct cache_head *tmp;
209 if (!test_bit(CACHE_VALID, &old->flags)) {
210 spin_lock(&detail->hash_lock);
211 if (!test_bit(CACHE_VALID, &old->flags)) {
212 cache_entry_update(detail, old, new);
213 cache_fresh_locked(old, new->expiry_time, detail);
214 spin_unlock(&detail->hash_lock);
215 cache_fresh_unlocked(old, detail);
216 return old;
218 spin_unlock(&detail->hash_lock);
220 /* We need to insert a new entry */
221 tmp = detail->alloc();
222 if (!tmp) {
223 cache_put(old, detail);
224 return NULL;
226 cache_init(tmp, detail);
227 detail->init(tmp, old);
229 spin_lock(&detail->hash_lock);
230 cache_entry_update(detail, tmp, new);
231 hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]);
232 detail->entries++;
233 cache_get(tmp);
234 cache_fresh_locked(tmp, new->expiry_time, detail);
235 cache_fresh_locked(old, 0, detail);
236 spin_unlock(&detail->hash_lock);
237 cache_fresh_unlocked(tmp, detail);
238 cache_fresh_unlocked(old, detail);
239 cache_put(old, detail);
240 return tmp;
242 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
244 static inline int cache_is_valid(struct cache_head *h)
246 if (!test_bit(CACHE_VALID, &h->flags))
247 return -EAGAIN;
248 else {
249 /* entry is valid */
250 if (test_bit(CACHE_NEGATIVE, &h->flags))
251 return -ENOENT;
252 else {
254 * In combination with write barrier in
255 * sunrpc_cache_update, ensures that anyone
256 * using the cache entry after this sees the
257 * updated contents:
259 smp_rmb();
260 return 0;
265 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
267 int rv;
269 spin_lock(&detail->hash_lock);
270 rv = cache_is_valid(h);
271 if (rv == -EAGAIN) {
272 cache_make_negative(detail, h);
273 cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY,
274 detail);
275 rv = -ENOENT;
277 spin_unlock(&detail->hash_lock);
278 cache_fresh_unlocked(h, detail);
279 return rv;
283 * This is the generic cache management routine for all
284 * the authentication caches.
285 * It checks the currency of a cache item and will (later)
286 * initiate an upcall to fill it if needed.
289 * Returns 0 if the cache_head can be used, or cache_puts it and returns
290 * -EAGAIN if upcall is pending and request has been queued
291 * -ETIMEDOUT if upcall failed or request could not be queue or
292 * upcall completed but item is still invalid (implying that
293 * the cache item has been replaced with a newer one).
294 * -ENOENT if cache entry was negative
296 int cache_check(struct cache_detail *detail,
297 struct cache_head *h, struct cache_req *rqstp)
299 int rv;
300 time64_t refresh_age, age;
302 /* First decide return status as best we can */
303 rv = cache_is_valid(h);
305 /* now see if we want to start an upcall */
306 refresh_age = (h->expiry_time - h->last_refresh);
307 age = seconds_since_boot() - h->last_refresh;
309 if (rqstp == NULL) {
310 if (rv == -EAGAIN)
311 rv = -ENOENT;
312 } else if (rv == -EAGAIN ||
313 (h->expiry_time != 0 && age > refresh_age/2)) {
314 dprintk("RPC: Want update, refage=%lld, age=%lld\n",
315 refresh_age, age);
316 switch (detail->cache_upcall(detail, h)) {
317 case -EINVAL:
318 rv = try_to_negate_entry(detail, h);
319 break;
320 case -EAGAIN:
321 cache_fresh_unlocked(h, detail);
322 break;
326 if (rv == -EAGAIN) {
327 if (!cache_defer_req(rqstp, h)) {
329 * Request was not deferred; handle it as best
330 * we can ourselves:
332 rv = cache_is_valid(h);
333 if (rv == -EAGAIN)
334 rv = -ETIMEDOUT;
337 if (rv)
338 cache_put(h, detail);
339 return rv;
341 EXPORT_SYMBOL_GPL(cache_check);
344 * caches need to be periodically cleaned.
345 * For this we maintain a list of cache_detail and
346 * a current pointer into that list and into the table
347 * for that entry.
349 * Each time cache_clean is called it finds the next non-empty entry
350 * in the current table and walks the list in that entry
351 * looking for entries that can be removed.
353 * An entry gets removed if:
354 * - The expiry is before current time
355 * - The last_refresh time is before the flush_time for that cache
357 * later we might drop old entries with non-NEVER expiry if that table
358 * is getting 'full' for some definition of 'full'
360 * The question of "how often to scan a table" is an interesting one
361 * and is answered in part by the use of the "nextcheck" field in the
362 * cache_detail.
363 * When a scan of a table begins, the nextcheck field is set to a time
364 * that is well into the future.
365 * While scanning, if an expiry time is found that is earlier than the
366 * current nextcheck time, nextcheck is set to that expiry time.
367 * If the flush_time is ever set to a time earlier than the nextcheck
368 * time, the nextcheck time is then set to that flush_time.
370 * A table is then only scanned if the current time is at least
371 * the nextcheck time.
375 static LIST_HEAD(cache_list);
376 static DEFINE_SPINLOCK(cache_list_lock);
377 static struct cache_detail *current_detail;
378 static int current_index;
380 static void do_cache_clean(struct work_struct *work);
381 static struct delayed_work cache_cleaner;
383 void sunrpc_init_cache_detail(struct cache_detail *cd)
385 spin_lock_init(&cd->hash_lock);
386 INIT_LIST_HEAD(&cd->queue);
387 spin_lock(&cache_list_lock);
388 cd->nextcheck = 0;
389 cd->entries = 0;
390 atomic_set(&cd->writers, 0);
391 cd->last_close = 0;
392 cd->last_warn = -1;
393 list_add(&cd->others, &cache_list);
394 spin_unlock(&cache_list_lock);
396 /* start the cleaning process */
397 queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0);
399 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
401 void sunrpc_destroy_cache_detail(struct cache_detail *cd)
403 cache_purge(cd);
404 spin_lock(&cache_list_lock);
405 spin_lock(&cd->hash_lock);
406 if (current_detail == cd)
407 current_detail = NULL;
408 list_del_init(&cd->others);
409 spin_unlock(&cd->hash_lock);
410 spin_unlock(&cache_list_lock);
411 if (list_empty(&cache_list)) {
412 /* module must be being unloaded so its safe to kill the worker */
413 cancel_delayed_work_sync(&cache_cleaner);
416 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
418 /* clean cache tries to find something to clean
419 * and cleans it.
420 * It returns 1 if it cleaned something,
421 * 0 if it didn't find anything this time
422 * -1 if it fell off the end of the list.
424 static int cache_clean(void)
426 int rv = 0;
427 struct list_head *next;
429 spin_lock(&cache_list_lock);
431 /* find a suitable table if we don't already have one */
432 while (current_detail == NULL ||
433 current_index >= current_detail->hash_size) {
434 if (current_detail)
435 next = current_detail->others.next;
436 else
437 next = cache_list.next;
438 if (next == &cache_list) {
439 current_detail = NULL;
440 spin_unlock(&cache_list_lock);
441 return -1;
443 current_detail = list_entry(next, struct cache_detail, others);
444 if (current_detail->nextcheck > seconds_since_boot())
445 current_index = current_detail->hash_size;
446 else {
447 current_index = 0;
448 current_detail->nextcheck = seconds_since_boot()+30*60;
452 /* find a non-empty bucket in the table */
453 while (current_detail &&
454 current_index < current_detail->hash_size &&
455 hlist_empty(&current_detail->hash_table[current_index]))
456 current_index++;
458 /* find a cleanable entry in the bucket and clean it, or set to next bucket */
460 if (current_detail && current_index < current_detail->hash_size) {
461 struct cache_head *ch = NULL;
462 struct cache_detail *d;
463 struct hlist_head *head;
464 struct hlist_node *tmp;
466 spin_lock(&current_detail->hash_lock);
468 /* Ok, now to clean this strand */
470 head = &current_detail->hash_table[current_index];
471 hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
472 if (current_detail->nextcheck > ch->expiry_time)
473 current_detail->nextcheck = ch->expiry_time+1;
474 if (!cache_is_expired(current_detail, ch))
475 continue;
477 sunrpc_begin_cache_remove_entry(ch, current_detail);
478 trace_cache_entry_expired(current_detail, ch);
479 rv = 1;
480 break;
483 spin_unlock(&current_detail->hash_lock);
484 d = current_detail;
485 if (!ch)
486 current_index ++;
487 spin_unlock(&cache_list_lock);
488 if (ch)
489 sunrpc_end_cache_remove_entry(ch, d);
490 } else
491 spin_unlock(&cache_list_lock);
493 return rv;
497 * We want to regularly clean the cache, so we need to schedule some work ...
499 static void do_cache_clean(struct work_struct *work)
501 int delay = 5;
502 if (cache_clean() == -1)
503 delay = round_jiffies_relative(30*HZ);
505 if (list_empty(&cache_list))
506 delay = 0;
508 if (delay)
509 queue_delayed_work(system_power_efficient_wq,
510 &cache_cleaner, delay);
515 * Clean all caches promptly. This just calls cache_clean
516 * repeatedly until we are sure that every cache has had a chance to
517 * be fully cleaned
519 void cache_flush(void)
521 while (cache_clean() != -1)
522 cond_resched();
523 while (cache_clean() != -1)
524 cond_resched();
526 EXPORT_SYMBOL_GPL(cache_flush);
528 void cache_purge(struct cache_detail *detail)
530 struct cache_head *ch = NULL;
531 struct hlist_head *head = NULL;
532 struct hlist_node *tmp = NULL;
533 int i = 0;
535 spin_lock(&detail->hash_lock);
536 if (!detail->entries) {
537 spin_unlock(&detail->hash_lock);
538 return;
541 dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name);
542 for (i = 0; i < detail->hash_size; i++) {
543 head = &detail->hash_table[i];
544 hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
545 sunrpc_begin_cache_remove_entry(ch, detail);
546 spin_unlock(&detail->hash_lock);
547 sunrpc_end_cache_remove_entry(ch, detail);
548 spin_lock(&detail->hash_lock);
551 spin_unlock(&detail->hash_lock);
553 EXPORT_SYMBOL_GPL(cache_purge);
557 * Deferral and Revisiting of Requests.
559 * If a cache lookup finds a pending entry, we
560 * need to defer the request and revisit it later.
561 * All deferred requests are stored in a hash table,
562 * indexed by "struct cache_head *".
563 * As it may be wasteful to store a whole request
564 * structure, we allow the request to provide a
565 * deferred form, which must contain a
566 * 'struct cache_deferred_req'
567 * This cache_deferred_req contains a method to allow
568 * it to be revisited when cache info is available
571 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head))
572 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
574 #define DFR_MAX 300 /* ??? */
576 static DEFINE_SPINLOCK(cache_defer_lock);
577 static LIST_HEAD(cache_defer_list);
578 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
579 static int cache_defer_cnt;
581 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
583 hlist_del_init(&dreq->hash);
584 if (!list_empty(&dreq->recent)) {
585 list_del_init(&dreq->recent);
586 cache_defer_cnt--;
590 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
592 int hash = DFR_HASH(item);
594 INIT_LIST_HEAD(&dreq->recent);
595 hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
598 static void setup_deferral(struct cache_deferred_req *dreq,
599 struct cache_head *item,
600 int count_me)
603 dreq->item = item;
605 spin_lock(&cache_defer_lock);
607 __hash_deferred_req(dreq, item);
609 if (count_me) {
610 cache_defer_cnt++;
611 list_add(&dreq->recent, &cache_defer_list);
614 spin_unlock(&cache_defer_lock);
618 struct thread_deferred_req {
619 struct cache_deferred_req handle;
620 struct completion completion;
623 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
625 struct thread_deferred_req *dr =
626 container_of(dreq, struct thread_deferred_req, handle);
627 complete(&dr->completion);
630 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
632 struct thread_deferred_req sleeper;
633 struct cache_deferred_req *dreq = &sleeper.handle;
635 sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
636 dreq->revisit = cache_restart_thread;
638 setup_deferral(dreq, item, 0);
640 if (!test_bit(CACHE_PENDING, &item->flags) ||
641 wait_for_completion_interruptible_timeout(
642 &sleeper.completion, req->thread_wait) <= 0) {
643 /* The completion wasn't completed, so we need
644 * to clean up
646 spin_lock(&cache_defer_lock);
647 if (!hlist_unhashed(&sleeper.handle.hash)) {
648 __unhash_deferred_req(&sleeper.handle);
649 spin_unlock(&cache_defer_lock);
650 } else {
651 /* cache_revisit_request already removed
652 * this from the hash table, but hasn't
653 * called ->revisit yet. It will very soon
654 * and we need to wait for it.
656 spin_unlock(&cache_defer_lock);
657 wait_for_completion(&sleeper.completion);
662 static void cache_limit_defers(void)
664 /* Make sure we haven't exceed the limit of allowed deferred
665 * requests.
667 struct cache_deferred_req *discard = NULL;
669 if (cache_defer_cnt <= DFR_MAX)
670 return;
672 spin_lock(&cache_defer_lock);
674 /* Consider removing either the first or the last */
675 if (cache_defer_cnt > DFR_MAX) {
676 if (prandom_u32() & 1)
677 discard = list_entry(cache_defer_list.next,
678 struct cache_deferred_req, recent);
679 else
680 discard = list_entry(cache_defer_list.prev,
681 struct cache_deferred_req, recent);
682 __unhash_deferred_req(discard);
684 spin_unlock(&cache_defer_lock);
685 if (discard)
686 discard->revisit(discard, 1);
689 /* Return true if and only if a deferred request is queued. */
690 static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
692 struct cache_deferred_req *dreq;
694 if (req->thread_wait) {
695 cache_wait_req(req, item);
696 if (!test_bit(CACHE_PENDING, &item->flags))
697 return false;
699 dreq = req->defer(req);
700 if (dreq == NULL)
701 return false;
702 setup_deferral(dreq, item, 1);
703 if (!test_bit(CACHE_PENDING, &item->flags))
704 /* Bit could have been cleared before we managed to
705 * set up the deferral, so need to revisit just in case
707 cache_revisit_request(item);
709 cache_limit_defers();
710 return true;
713 static void cache_revisit_request(struct cache_head *item)
715 struct cache_deferred_req *dreq;
716 struct list_head pending;
717 struct hlist_node *tmp;
718 int hash = DFR_HASH(item);
720 INIT_LIST_HEAD(&pending);
721 spin_lock(&cache_defer_lock);
723 hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
724 if (dreq->item == item) {
725 __unhash_deferred_req(dreq);
726 list_add(&dreq->recent, &pending);
729 spin_unlock(&cache_defer_lock);
731 while (!list_empty(&pending)) {
732 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
733 list_del_init(&dreq->recent);
734 dreq->revisit(dreq, 0);
738 void cache_clean_deferred(void *owner)
740 struct cache_deferred_req *dreq, *tmp;
741 struct list_head pending;
744 INIT_LIST_HEAD(&pending);
745 spin_lock(&cache_defer_lock);
747 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
748 if (dreq->owner == owner) {
749 __unhash_deferred_req(dreq);
750 list_add(&dreq->recent, &pending);
753 spin_unlock(&cache_defer_lock);
755 while (!list_empty(&pending)) {
756 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
757 list_del_init(&dreq->recent);
758 dreq->revisit(dreq, 1);
763 * communicate with user-space
765 * We have a magic /proc file - /proc/net/rpc/<cachename>/channel.
766 * On read, you get a full request, or block.
767 * On write, an update request is processed.
768 * Poll works if anything to read, and always allows write.
770 * Implemented by linked list of requests. Each open file has
771 * a ->private that also exists in this list. New requests are added
772 * to the end and may wakeup and preceding readers.
773 * New readers are added to the head. If, on read, an item is found with
774 * CACHE_UPCALLING clear, we free it from the list.
778 static DEFINE_SPINLOCK(queue_lock);
779 static DEFINE_MUTEX(queue_io_mutex);
781 struct cache_queue {
782 struct list_head list;
783 int reader; /* if 0, then request */
785 struct cache_request {
786 struct cache_queue q;
787 struct cache_head *item;
788 char * buf;
789 int len;
790 int readers;
792 struct cache_reader {
793 struct cache_queue q;
794 int offset; /* if non-0, we have a refcnt on next request */
797 static int cache_request(struct cache_detail *detail,
798 struct cache_request *crq)
800 char *bp = crq->buf;
801 int len = PAGE_SIZE;
803 detail->cache_request(detail, crq->item, &bp, &len);
804 if (len < 0)
805 return -EAGAIN;
806 return PAGE_SIZE - len;
809 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
810 loff_t *ppos, struct cache_detail *cd)
812 struct cache_reader *rp = filp->private_data;
813 struct cache_request *rq;
814 struct inode *inode = file_inode(filp);
815 int err;
817 if (count == 0)
818 return 0;
820 inode_lock(inode); /* protect against multiple concurrent
821 * readers on this file */
822 again:
823 spin_lock(&queue_lock);
824 /* need to find next request */
825 while (rp->q.list.next != &cd->queue &&
826 list_entry(rp->q.list.next, struct cache_queue, list)
827 ->reader) {
828 struct list_head *next = rp->q.list.next;
829 list_move(&rp->q.list, next);
831 if (rp->q.list.next == &cd->queue) {
832 spin_unlock(&queue_lock);
833 inode_unlock(inode);
834 WARN_ON_ONCE(rp->offset);
835 return 0;
837 rq = container_of(rp->q.list.next, struct cache_request, q.list);
838 WARN_ON_ONCE(rq->q.reader);
839 if (rp->offset == 0)
840 rq->readers++;
841 spin_unlock(&queue_lock);
843 if (rq->len == 0) {
844 err = cache_request(cd, rq);
845 if (err < 0)
846 goto out;
847 rq->len = err;
850 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
851 err = -EAGAIN;
852 spin_lock(&queue_lock);
853 list_move(&rp->q.list, &rq->q.list);
854 spin_unlock(&queue_lock);
855 } else {
856 if (rp->offset + count > rq->len)
857 count = rq->len - rp->offset;
858 err = -EFAULT;
859 if (copy_to_user(buf, rq->buf + rp->offset, count))
860 goto out;
861 rp->offset += count;
862 if (rp->offset >= rq->len) {
863 rp->offset = 0;
864 spin_lock(&queue_lock);
865 list_move(&rp->q.list, &rq->q.list);
866 spin_unlock(&queue_lock);
868 err = 0;
870 out:
871 if (rp->offset == 0) {
872 /* need to release rq */
873 spin_lock(&queue_lock);
874 rq->readers--;
875 if (rq->readers == 0 &&
876 !test_bit(CACHE_PENDING, &rq->item->flags)) {
877 list_del(&rq->q.list);
878 spin_unlock(&queue_lock);
879 cache_put(rq->item, cd);
880 kfree(rq->buf);
881 kfree(rq);
882 } else
883 spin_unlock(&queue_lock);
885 if (err == -EAGAIN)
886 goto again;
887 inode_unlock(inode);
888 return err ? err : count;
891 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
892 size_t count, struct cache_detail *cd)
894 ssize_t ret;
896 if (count == 0)
897 return -EINVAL;
898 if (copy_from_user(kaddr, buf, count))
899 return -EFAULT;
900 kaddr[count] = '\0';
901 ret = cd->cache_parse(cd, kaddr, count);
902 if (!ret)
903 ret = count;
904 return ret;
907 static ssize_t cache_slow_downcall(const char __user *buf,
908 size_t count, struct cache_detail *cd)
910 static char write_buf[8192]; /* protected by queue_io_mutex */
911 ssize_t ret = -EINVAL;
913 if (count >= sizeof(write_buf))
914 goto out;
915 mutex_lock(&queue_io_mutex);
916 ret = cache_do_downcall(write_buf, buf, count, cd);
917 mutex_unlock(&queue_io_mutex);
918 out:
919 return ret;
922 static ssize_t cache_downcall(struct address_space *mapping,
923 const char __user *buf,
924 size_t count, struct cache_detail *cd)
926 struct page *page;
927 char *kaddr;
928 ssize_t ret = -ENOMEM;
930 if (count >= PAGE_SIZE)
931 goto out_slow;
933 page = find_or_create_page(mapping, 0, GFP_KERNEL);
934 if (!page)
935 goto out_slow;
937 kaddr = kmap(page);
938 ret = cache_do_downcall(kaddr, buf, count, cd);
939 kunmap(page);
940 unlock_page(page);
941 put_page(page);
942 return ret;
943 out_slow:
944 return cache_slow_downcall(buf, count, cd);
947 static ssize_t cache_write(struct file *filp, const char __user *buf,
948 size_t count, loff_t *ppos,
949 struct cache_detail *cd)
951 struct address_space *mapping = filp->f_mapping;
952 struct inode *inode = file_inode(filp);
953 ssize_t ret = -EINVAL;
955 if (!cd->cache_parse)
956 goto out;
958 inode_lock(inode);
959 ret = cache_downcall(mapping, buf, count, cd);
960 inode_unlock(inode);
961 out:
962 return ret;
965 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
967 static __poll_t cache_poll(struct file *filp, poll_table *wait,
968 struct cache_detail *cd)
970 __poll_t mask;
971 struct cache_reader *rp = filp->private_data;
972 struct cache_queue *cq;
974 poll_wait(filp, &queue_wait, wait);
976 /* alway allow write */
977 mask = EPOLLOUT | EPOLLWRNORM;
979 if (!rp)
980 return mask;
982 spin_lock(&queue_lock);
984 for (cq= &rp->q; &cq->list != &cd->queue;
985 cq = list_entry(cq->list.next, struct cache_queue, list))
986 if (!cq->reader) {
987 mask |= EPOLLIN | EPOLLRDNORM;
988 break;
990 spin_unlock(&queue_lock);
991 return mask;
994 static int cache_ioctl(struct inode *ino, struct file *filp,
995 unsigned int cmd, unsigned long arg,
996 struct cache_detail *cd)
998 int len = 0;
999 struct cache_reader *rp = filp->private_data;
1000 struct cache_queue *cq;
1002 if (cmd != FIONREAD || !rp)
1003 return -EINVAL;
1005 spin_lock(&queue_lock);
1007 /* only find the length remaining in current request,
1008 * or the length of the next request
1010 for (cq= &rp->q; &cq->list != &cd->queue;
1011 cq = list_entry(cq->list.next, struct cache_queue, list))
1012 if (!cq->reader) {
1013 struct cache_request *cr =
1014 container_of(cq, struct cache_request, q);
1015 len = cr->len - rp->offset;
1016 break;
1018 spin_unlock(&queue_lock);
1020 return put_user(len, (int __user *)arg);
1023 static int cache_open(struct inode *inode, struct file *filp,
1024 struct cache_detail *cd)
1026 struct cache_reader *rp = NULL;
1028 if (!cd || !try_module_get(cd->owner))
1029 return -EACCES;
1030 nonseekable_open(inode, filp);
1031 if (filp->f_mode & FMODE_READ) {
1032 rp = kmalloc(sizeof(*rp), GFP_KERNEL);
1033 if (!rp) {
1034 module_put(cd->owner);
1035 return -ENOMEM;
1037 rp->offset = 0;
1038 rp->q.reader = 1;
1040 spin_lock(&queue_lock);
1041 list_add(&rp->q.list, &cd->queue);
1042 spin_unlock(&queue_lock);
1044 if (filp->f_mode & FMODE_WRITE)
1045 atomic_inc(&cd->writers);
1046 filp->private_data = rp;
1047 return 0;
1050 static int cache_release(struct inode *inode, struct file *filp,
1051 struct cache_detail *cd)
1053 struct cache_reader *rp = filp->private_data;
1055 if (rp) {
1056 spin_lock(&queue_lock);
1057 if (rp->offset) {
1058 struct cache_queue *cq;
1059 for (cq= &rp->q; &cq->list != &cd->queue;
1060 cq = list_entry(cq->list.next, struct cache_queue, list))
1061 if (!cq->reader) {
1062 container_of(cq, struct cache_request, q)
1063 ->readers--;
1064 break;
1066 rp->offset = 0;
1068 list_del(&rp->q.list);
1069 spin_unlock(&queue_lock);
1071 filp->private_data = NULL;
1072 kfree(rp);
1075 if (filp->f_mode & FMODE_WRITE) {
1076 atomic_dec(&cd->writers);
1077 cd->last_close = seconds_since_boot();
1079 module_put(cd->owner);
1080 return 0;
1085 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1087 struct cache_queue *cq, *tmp;
1088 struct cache_request *cr;
1089 struct list_head dequeued;
1091 INIT_LIST_HEAD(&dequeued);
1092 spin_lock(&queue_lock);
1093 list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1094 if (!cq->reader) {
1095 cr = container_of(cq, struct cache_request, q);
1096 if (cr->item != ch)
1097 continue;
1098 if (test_bit(CACHE_PENDING, &ch->flags))
1099 /* Lost a race and it is pending again */
1100 break;
1101 if (cr->readers != 0)
1102 continue;
1103 list_move(&cr->q.list, &dequeued);
1105 spin_unlock(&queue_lock);
1106 while (!list_empty(&dequeued)) {
1107 cr = list_entry(dequeued.next, struct cache_request, q.list);
1108 list_del(&cr->q.list);
1109 cache_put(cr->item, detail);
1110 kfree(cr->buf);
1111 kfree(cr);
1116 * Support routines for text-based upcalls.
1117 * Fields are separated by spaces.
1118 * Fields are either mangled to quote space tab newline slosh with slosh
1119 * or a hexified with a leading \x
1120 * Record is terminated with newline.
1124 void qword_add(char **bpp, int *lp, char *str)
1126 char *bp = *bpp;
1127 int len = *lp;
1128 int ret;
1130 if (len < 0) return;
1132 ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t");
1133 if (ret >= len) {
1134 bp += len;
1135 len = -1;
1136 } else {
1137 bp += ret;
1138 len -= ret;
1139 *bp++ = ' ';
1140 len--;
1142 *bpp = bp;
1143 *lp = len;
1145 EXPORT_SYMBOL_GPL(qword_add);
1147 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1149 char *bp = *bpp;
1150 int len = *lp;
1152 if (len < 0) return;
1154 if (len > 2) {
1155 *bp++ = '\\';
1156 *bp++ = 'x';
1157 len -= 2;
1158 while (blen && len >= 2) {
1159 bp = hex_byte_pack(bp, *buf++);
1160 len -= 2;
1161 blen--;
1164 if (blen || len<1) len = -1;
1165 else {
1166 *bp++ = ' ';
1167 len--;
1169 *bpp = bp;
1170 *lp = len;
1172 EXPORT_SYMBOL_GPL(qword_addhex);
1174 static void warn_no_listener(struct cache_detail *detail)
1176 if (detail->last_warn != detail->last_close) {
1177 detail->last_warn = detail->last_close;
1178 if (detail->warn_no_listener)
1179 detail->warn_no_listener(detail, detail->last_close != 0);
1183 static bool cache_listeners_exist(struct cache_detail *detail)
1185 if (atomic_read(&detail->writers))
1186 return true;
1187 if (detail->last_close == 0)
1188 /* This cache was never opened */
1189 return false;
1190 if (detail->last_close < seconds_since_boot() - 30)
1192 * We allow for the possibility that someone might
1193 * restart a userspace daemon without restarting the
1194 * server; but after 30 seconds, we give up.
1196 return false;
1197 return true;
1201 * register an upcall request to user-space and queue it up for read() by the
1202 * upcall daemon.
1204 * Each request is at most one page long.
1206 static int cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1208 char *buf;
1209 struct cache_request *crq;
1210 int ret = 0;
1212 if (test_bit(CACHE_CLEANED, &h->flags))
1213 /* Too late to make an upcall */
1214 return -EAGAIN;
1216 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1217 if (!buf)
1218 return -EAGAIN;
1220 crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1221 if (!crq) {
1222 kfree(buf);
1223 return -EAGAIN;
1226 crq->q.reader = 0;
1227 crq->buf = buf;
1228 crq->len = 0;
1229 crq->readers = 0;
1230 spin_lock(&queue_lock);
1231 if (test_bit(CACHE_PENDING, &h->flags)) {
1232 crq->item = cache_get(h);
1233 list_add_tail(&crq->q.list, &detail->queue);
1234 trace_cache_entry_upcall(detail, h);
1235 } else
1236 /* Lost a race, no longer PENDING, so don't enqueue */
1237 ret = -EAGAIN;
1238 spin_unlock(&queue_lock);
1239 wake_up(&queue_wait);
1240 if (ret == -EAGAIN) {
1241 kfree(buf);
1242 kfree(crq);
1244 return ret;
1247 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1249 if (test_and_set_bit(CACHE_PENDING, &h->flags))
1250 return 0;
1251 return cache_pipe_upcall(detail, h);
1253 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1255 int sunrpc_cache_pipe_upcall_timeout(struct cache_detail *detail,
1256 struct cache_head *h)
1258 if (!cache_listeners_exist(detail)) {
1259 warn_no_listener(detail);
1260 trace_cache_entry_no_listener(detail, h);
1261 return -EINVAL;
1263 return sunrpc_cache_pipe_upcall(detail, h);
1265 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall_timeout);
1268 * parse a message from user-space and pass it
1269 * to an appropriate cache
1270 * Messages are, like requests, separated into fields by
1271 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1273 * Message is
1274 * reply cachename expiry key ... content....
1276 * key and content are both parsed by cache
1279 int qword_get(char **bpp, char *dest, int bufsize)
1281 /* return bytes copied, or -1 on error */
1282 char *bp = *bpp;
1283 int len = 0;
1285 while (*bp == ' ') bp++;
1287 if (bp[0] == '\\' && bp[1] == 'x') {
1288 /* HEX STRING */
1289 bp += 2;
1290 while (len < bufsize - 1) {
1291 int h, l;
1293 h = hex_to_bin(bp[0]);
1294 if (h < 0)
1295 break;
1297 l = hex_to_bin(bp[1]);
1298 if (l < 0)
1299 break;
1301 *dest++ = (h << 4) | l;
1302 bp += 2;
1303 len++;
1305 } else {
1306 /* text with \nnn octal quoting */
1307 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1308 if (*bp == '\\' &&
1309 isodigit(bp[1]) && (bp[1] <= '3') &&
1310 isodigit(bp[2]) &&
1311 isodigit(bp[3])) {
1312 int byte = (*++bp -'0');
1313 bp++;
1314 byte = (byte << 3) | (*bp++ - '0');
1315 byte = (byte << 3) | (*bp++ - '0');
1316 *dest++ = byte;
1317 len++;
1318 } else {
1319 *dest++ = *bp++;
1320 len++;
1325 if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1326 return -1;
1327 while (*bp == ' ') bp++;
1328 *bpp = bp;
1329 *dest = '\0';
1330 return len;
1332 EXPORT_SYMBOL_GPL(qword_get);
1336 * support /proc/net/rpc/$CACHENAME/content
1337 * as a seqfile.
1338 * We call ->cache_show passing NULL for the item to
1339 * get a header, then pass each real item in the cache
1342 static void *__cache_seq_start(struct seq_file *m, loff_t *pos)
1344 loff_t n = *pos;
1345 unsigned int hash, entry;
1346 struct cache_head *ch;
1347 struct cache_detail *cd = m->private;
1349 if (!n--)
1350 return SEQ_START_TOKEN;
1351 hash = n >> 32;
1352 entry = n & ((1LL<<32) - 1);
1354 hlist_for_each_entry_rcu(ch, &cd->hash_table[hash], cache_list)
1355 if (!entry--)
1356 return ch;
1357 n &= ~((1LL<<32) - 1);
1358 do {
1359 hash++;
1360 n += 1LL<<32;
1361 } while(hash < cd->hash_size &&
1362 hlist_empty(&cd->hash_table[hash]));
1363 if (hash >= cd->hash_size)
1364 return NULL;
1365 *pos = n+1;
1366 return hlist_entry_safe(rcu_dereference_raw(
1367 hlist_first_rcu(&cd->hash_table[hash])),
1368 struct cache_head, cache_list);
1371 static void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos)
1373 struct cache_head *ch = p;
1374 int hash = (*pos >> 32);
1375 struct cache_detail *cd = m->private;
1377 if (p == SEQ_START_TOKEN)
1378 hash = 0;
1379 else if (ch->cache_list.next == NULL) {
1380 hash++;
1381 *pos += 1LL<<32;
1382 } else {
1383 ++*pos;
1384 return hlist_entry_safe(rcu_dereference_raw(
1385 hlist_next_rcu(&ch->cache_list)),
1386 struct cache_head, cache_list);
1388 *pos &= ~((1LL<<32) - 1);
1389 while (hash < cd->hash_size &&
1390 hlist_empty(&cd->hash_table[hash])) {
1391 hash++;
1392 *pos += 1LL<<32;
1394 if (hash >= cd->hash_size)
1395 return NULL;
1396 ++*pos;
1397 return hlist_entry_safe(rcu_dereference_raw(
1398 hlist_first_rcu(&cd->hash_table[hash])),
1399 struct cache_head, cache_list);
1402 void *cache_seq_start_rcu(struct seq_file *m, loff_t *pos)
1403 __acquires(RCU)
1405 rcu_read_lock();
1406 return __cache_seq_start(m, pos);
1408 EXPORT_SYMBOL_GPL(cache_seq_start_rcu);
1410 void *cache_seq_next_rcu(struct seq_file *file, void *p, loff_t *pos)
1412 return cache_seq_next(file, p, pos);
1414 EXPORT_SYMBOL_GPL(cache_seq_next_rcu);
1416 void cache_seq_stop_rcu(struct seq_file *m, void *p)
1417 __releases(RCU)
1419 rcu_read_unlock();
1421 EXPORT_SYMBOL_GPL(cache_seq_stop_rcu);
1423 static int c_show(struct seq_file *m, void *p)
1425 struct cache_head *cp = p;
1426 struct cache_detail *cd = m->private;
1428 if (p == SEQ_START_TOKEN)
1429 return cd->cache_show(m, cd, NULL);
1431 ifdebug(CACHE)
1432 seq_printf(m, "# expiry=%lld refcnt=%d flags=%lx\n",
1433 convert_to_wallclock(cp->expiry_time),
1434 kref_read(&cp->ref), cp->flags);
1435 cache_get(cp);
1436 if (cache_check(cd, cp, NULL))
1437 /* cache_check does a cache_put on failure */
1438 seq_printf(m, "# ");
1439 else {
1440 if (cache_is_expired(cd, cp))
1441 seq_printf(m, "# ");
1442 cache_put(cp, cd);
1445 return cd->cache_show(m, cd, cp);
1448 static const struct seq_operations cache_content_op = {
1449 .start = cache_seq_start_rcu,
1450 .next = cache_seq_next_rcu,
1451 .stop = cache_seq_stop_rcu,
1452 .show = c_show,
1455 static int content_open(struct inode *inode, struct file *file,
1456 struct cache_detail *cd)
1458 struct seq_file *seq;
1459 int err;
1461 if (!cd || !try_module_get(cd->owner))
1462 return -EACCES;
1464 err = seq_open(file, &cache_content_op);
1465 if (err) {
1466 module_put(cd->owner);
1467 return err;
1470 seq = file->private_data;
1471 seq->private = cd;
1472 return 0;
1475 static int content_release(struct inode *inode, struct file *file,
1476 struct cache_detail *cd)
1478 int ret = seq_release(inode, file);
1479 module_put(cd->owner);
1480 return ret;
1483 static int open_flush(struct inode *inode, struct file *file,
1484 struct cache_detail *cd)
1486 if (!cd || !try_module_get(cd->owner))
1487 return -EACCES;
1488 return nonseekable_open(inode, file);
1491 static int release_flush(struct inode *inode, struct file *file,
1492 struct cache_detail *cd)
1494 module_put(cd->owner);
1495 return 0;
1498 static ssize_t read_flush(struct file *file, char __user *buf,
1499 size_t count, loff_t *ppos,
1500 struct cache_detail *cd)
1502 char tbuf[22];
1503 size_t len;
1505 len = snprintf(tbuf, sizeof(tbuf), "%llu\n",
1506 convert_to_wallclock(cd->flush_time));
1507 return simple_read_from_buffer(buf, count, ppos, tbuf, len);
1510 static ssize_t write_flush(struct file *file, const char __user *buf,
1511 size_t count, loff_t *ppos,
1512 struct cache_detail *cd)
1514 char tbuf[20];
1515 char *ep;
1516 time64_t now;
1518 if (*ppos || count > sizeof(tbuf)-1)
1519 return -EINVAL;
1520 if (copy_from_user(tbuf, buf, count))
1521 return -EFAULT;
1522 tbuf[count] = 0;
1523 simple_strtoul(tbuf, &ep, 0);
1524 if (*ep && *ep != '\n')
1525 return -EINVAL;
1526 /* Note that while we check that 'buf' holds a valid number,
1527 * we always ignore the value and just flush everything.
1528 * Making use of the number leads to races.
1531 now = seconds_since_boot();
1532 /* Always flush everything, so behave like cache_purge()
1533 * Do this by advancing flush_time to the current time,
1534 * or by one second if it has already reached the current time.
1535 * Newly added cache entries will always have ->last_refresh greater
1536 * that ->flush_time, so they don't get flushed prematurely.
1539 if (cd->flush_time >= now)
1540 now = cd->flush_time + 1;
1542 cd->flush_time = now;
1543 cd->nextcheck = now;
1544 cache_flush();
1546 if (cd->flush)
1547 cd->flush();
1549 *ppos += count;
1550 return count;
1553 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1554 size_t count, loff_t *ppos)
1556 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1558 return cache_read(filp, buf, count, ppos, cd);
1561 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1562 size_t count, loff_t *ppos)
1564 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1566 return cache_write(filp, buf, count, ppos, cd);
1569 static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait)
1571 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1573 return cache_poll(filp, wait, cd);
1576 static long cache_ioctl_procfs(struct file *filp,
1577 unsigned int cmd, unsigned long arg)
1579 struct inode *inode = file_inode(filp);
1580 struct cache_detail *cd = PDE_DATA(inode);
1582 return cache_ioctl(inode, filp, cmd, arg, cd);
1585 static int cache_open_procfs(struct inode *inode, struct file *filp)
1587 struct cache_detail *cd = PDE_DATA(inode);
1589 return cache_open(inode, filp, cd);
1592 static int cache_release_procfs(struct inode *inode, struct file *filp)
1594 struct cache_detail *cd = PDE_DATA(inode);
1596 return cache_release(inode, filp, cd);
1599 static const struct proc_ops cache_channel_proc_ops = {
1600 .proc_lseek = no_llseek,
1601 .proc_read = cache_read_procfs,
1602 .proc_write = cache_write_procfs,
1603 .proc_poll = cache_poll_procfs,
1604 .proc_ioctl = cache_ioctl_procfs, /* for FIONREAD */
1605 .proc_open = cache_open_procfs,
1606 .proc_release = cache_release_procfs,
1609 static int content_open_procfs(struct inode *inode, struct file *filp)
1611 struct cache_detail *cd = PDE_DATA(inode);
1613 return content_open(inode, filp, cd);
1616 static int content_release_procfs(struct inode *inode, struct file *filp)
1618 struct cache_detail *cd = PDE_DATA(inode);
1620 return content_release(inode, filp, cd);
1623 static const struct proc_ops content_proc_ops = {
1624 .proc_open = content_open_procfs,
1625 .proc_read = seq_read,
1626 .proc_lseek = seq_lseek,
1627 .proc_release = content_release_procfs,
1630 static int open_flush_procfs(struct inode *inode, struct file *filp)
1632 struct cache_detail *cd = PDE_DATA(inode);
1634 return open_flush(inode, filp, cd);
1637 static int release_flush_procfs(struct inode *inode, struct file *filp)
1639 struct cache_detail *cd = PDE_DATA(inode);
1641 return release_flush(inode, filp, cd);
1644 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1645 size_t count, loff_t *ppos)
1647 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1649 return read_flush(filp, buf, count, ppos, cd);
1652 static ssize_t write_flush_procfs(struct file *filp,
1653 const char __user *buf,
1654 size_t count, loff_t *ppos)
1656 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1658 return write_flush(filp, buf, count, ppos, cd);
1661 static const struct proc_ops cache_flush_proc_ops = {
1662 .proc_open = open_flush_procfs,
1663 .proc_read = read_flush_procfs,
1664 .proc_write = write_flush_procfs,
1665 .proc_release = release_flush_procfs,
1666 .proc_lseek = no_llseek,
1669 static void remove_cache_proc_entries(struct cache_detail *cd)
1671 if (cd->procfs) {
1672 proc_remove(cd->procfs);
1673 cd->procfs = NULL;
1677 #ifdef CONFIG_PROC_FS
1678 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1680 struct proc_dir_entry *p;
1681 struct sunrpc_net *sn;
1683 sn = net_generic(net, sunrpc_net_id);
1684 cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc);
1685 if (cd->procfs == NULL)
1686 goto out_nomem;
1688 p = proc_create_data("flush", S_IFREG | 0600,
1689 cd->procfs, &cache_flush_proc_ops, cd);
1690 if (p == NULL)
1691 goto out_nomem;
1693 if (cd->cache_request || cd->cache_parse) {
1694 p = proc_create_data("channel", S_IFREG | 0600, cd->procfs,
1695 &cache_channel_proc_ops, cd);
1696 if (p == NULL)
1697 goto out_nomem;
1699 if (cd->cache_show) {
1700 p = proc_create_data("content", S_IFREG | 0400, cd->procfs,
1701 &content_proc_ops, cd);
1702 if (p == NULL)
1703 goto out_nomem;
1705 return 0;
1706 out_nomem:
1707 remove_cache_proc_entries(cd);
1708 return -ENOMEM;
1710 #else /* CONFIG_PROC_FS */
1711 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1713 return 0;
1715 #endif
1717 void __init cache_initialize(void)
1719 INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1722 int cache_register_net(struct cache_detail *cd, struct net *net)
1724 int ret;
1726 sunrpc_init_cache_detail(cd);
1727 ret = create_cache_proc_entries(cd, net);
1728 if (ret)
1729 sunrpc_destroy_cache_detail(cd);
1730 return ret;
1732 EXPORT_SYMBOL_GPL(cache_register_net);
1734 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1736 remove_cache_proc_entries(cd);
1737 sunrpc_destroy_cache_detail(cd);
1739 EXPORT_SYMBOL_GPL(cache_unregister_net);
1741 struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net)
1743 struct cache_detail *cd;
1744 int i;
1746 cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1747 if (cd == NULL)
1748 return ERR_PTR(-ENOMEM);
1750 cd->hash_table = kcalloc(cd->hash_size, sizeof(struct hlist_head),
1751 GFP_KERNEL);
1752 if (cd->hash_table == NULL) {
1753 kfree(cd);
1754 return ERR_PTR(-ENOMEM);
1757 for (i = 0; i < cd->hash_size; i++)
1758 INIT_HLIST_HEAD(&cd->hash_table[i]);
1759 cd->net = net;
1760 return cd;
1762 EXPORT_SYMBOL_GPL(cache_create_net);
1764 void cache_destroy_net(struct cache_detail *cd, struct net *net)
1766 kfree(cd->hash_table);
1767 kfree(cd);
1769 EXPORT_SYMBOL_GPL(cache_destroy_net);
1771 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1772 size_t count, loff_t *ppos)
1774 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1776 return cache_read(filp, buf, count, ppos, cd);
1779 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1780 size_t count, loff_t *ppos)
1782 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1784 return cache_write(filp, buf, count, ppos, cd);
1787 static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait)
1789 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1791 return cache_poll(filp, wait, cd);
1794 static long cache_ioctl_pipefs(struct file *filp,
1795 unsigned int cmd, unsigned long arg)
1797 struct inode *inode = file_inode(filp);
1798 struct cache_detail *cd = RPC_I(inode)->private;
1800 return cache_ioctl(inode, filp, cmd, arg, cd);
1803 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1805 struct cache_detail *cd = RPC_I(inode)->private;
1807 return cache_open(inode, filp, cd);
1810 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1812 struct cache_detail *cd = RPC_I(inode)->private;
1814 return cache_release(inode, filp, cd);
1817 const struct file_operations cache_file_operations_pipefs = {
1818 .owner = THIS_MODULE,
1819 .llseek = no_llseek,
1820 .read = cache_read_pipefs,
1821 .write = cache_write_pipefs,
1822 .poll = cache_poll_pipefs,
1823 .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */
1824 .open = cache_open_pipefs,
1825 .release = cache_release_pipefs,
1828 static int content_open_pipefs(struct inode *inode, struct file *filp)
1830 struct cache_detail *cd = RPC_I(inode)->private;
1832 return content_open(inode, filp, cd);
1835 static int content_release_pipefs(struct inode *inode, struct file *filp)
1837 struct cache_detail *cd = RPC_I(inode)->private;
1839 return content_release(inode, filp, cd);
1842 const struct file_operations content_file_operations_pipefs = {
1843 .open = content_open_pipefs,
1844 .read = seq_read,
1845 .llseek = seq_lseek,
1846 .release = content_release_pipefs,
1849 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1851 struct cache_detail *cd = RPC_I(inode)->private;
1853 return open_flush(inode, filp, cd);
1856 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1858 struct cache_detail *cd = RPC_I(inode)->private;
1860 return release_flush(inode, filp, cd);
1863 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1864 size_t count, loff_t *ppos)
1866 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1868 return read_flush(filp, buf, count, ppos, cd);
1871 static ssize_t write_flush_pipefs(struct file *filp,
1872 const char __user *buf,
1873 size_t count, loff_t *ppos)
1875 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1877 return write_flush(filp, buf, count, ppos, cd);
1880 const struct file_operations cache_flush_operations_pipefs = {
1881 .open = open_flush_pipefs,
1882 .read = read_flush_pipefs,
1883 .write = write_flush_pipefs,
1884 .release = release_flush_pipefs,
1885 .llseek = no_llseek,
1888 int sunrpc_cache_register_pipefs(struct dentry *parent,
1889 const char *name, umode_t umode,
1890 struct cache_detail *cd)
1892 struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1893 if (IS_ERR(dir))
1894 return PTR_ERR(dir);
1895 cd->pipefs = dir;
1896 return 0;
1898 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1900 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1902 if (cd->pipefs) {
1903 rpc_remove_cache_dir(cd->pipefs);
1904 cd->pipefs = NULL;
1907 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1909 void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h)
1911 spin_lock(&cd->hash_lock);
1912 if (!hlist_unhashed(&h->cache_list)){
1913 sunrpc_begin_cache_remove_entry(h, cd);
1914 spin_unlock(&cd->hash_lock);
1915 sunrpc_end_cache_remove_entry(h, cd);
1916 } else
1917 spin_unlock(&cd->hash_lock);
1919 EXPORT_SYMBOL_GPL(sunrpc_cache_unhash);