gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / net / vmw_vsock / af_vsock.c
bloba5f28708e0e75402e595a38ee91c57e9637e0289
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VMware vSockets Driver
5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 */
8 /* Implementation notes:
10 * - There are two kinds of sockets: those created by user action (such as
11 * calling socket(2)) and those created by incoming connection request packets.
13 * - There are two "global" tables, one for bound sockets (sockets that have
14 * specified an address that they are responsible for) and one for connected
15 * sockets (sockets that have established a connection with another socket).
16 * These tables are "global" in that all sockets on the system are placed
17 * within them. - Note, though, that the bound table contains an extra entry
18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19 * that list. The bound table is used solely for lookup of sockets when packets
20 * are received and that's not necessary for SOCK_DGRAM sockets since we create
21 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
22 * sockets out of the bound hash buckets will reduce the chance of collisions
23 * when looking for SOCK_STREAM sockets and prevents us from having to check the
24 * socket type in the hash table lookups.
26 * - Sockets created by user action will either be "client" sockets that
27 * initiate a connection or "server" sockets that listen for connections; we do
28 * not support simultaneous connects (two "client" sockets connecting).
30 * - "Server" sockets are referred to as listener sockets throughout this
31 * implementation because they are in the TCP_LISTEN state. When a
32 * connection request is received (the second kind of socket mentioned above),
33 * we create a new socket and refer to it as a pending socket. These pending
34 * sockets are placed on the pending connection list of the listener socket.
35 * When future packets are received for the address the listener socket is
36 * bound to, we check if the source of the packet is from one that has an
37 * existing pending connection. If it does, we process the packet for the
38 * pending socket. When that socket reaches the connected state, it is removed
39 * from the listener socket's pending list and enqueued in the listener
40 * socket's accept queue. Callers of accept(2) will accept connected sockets
41 * from the listener socket's accept queue. If the socket cannot be accepted
42 * for some reason then it is marked rejected. Once the connection is
43 * accepted, it is owned by the user process and the responsibility for cleanup
44 * falls with that user process.
46 * - It is possible that these pending sockets will never reach the connected
47 * state; in fact, we may never receive another packet after the connection
48 * request. Because of this, we must schedule a cleanup function to run in the
49 * future, after some amount of time passes where a connection should have been
50 * established. This function ensures that the socket is off all lists so it
51 * cannot be retrieved, then drops all references to the socket so it is cleaned
52 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
53 * function will also cleanup rejected sockets, those that reach the connected
54 * state but leave it before they have been accepted.
56 * - Lock ordering for pending or accept queue sockets is:
58 * lock_sock(listener);
59 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
61 * Using explicit nested locking keeps lockdep happy since normally only one
62 * lock of a given class may be taken at a time.
64 * - Sockets created by user action will be cleaned up when the user process
65 * calls close(2), causing our release implementation to be called. Our release
66 * implementation will perform some cleanup then drop the last reference so our
67 * sk_destruct implementation is invoked. Our sk_destruct implementation will
68 * perform additional cleanup that's common for both types of sockets.
70 * - A socket's reference count is what ensures that the structure won't be
71 * freed. Each entry in a list (such as the "global" bound and connected tables
72 * and the listener socket's pending list and connected queue) ensures a
73 * reference. When we defer work until process context and pass a socket as our
74 * argument, we must ensure the reference count is increased to ensure the
75 * socket isn't freed before the function is run; the deferred function will
76 * then drop the reference.
78 * - sk->sk_state uses the TCP state constants because they are widely used by
79 * other address families and exposed to userspace tools like ss(8):
81 * TCP_CLOSE - unconnected
82 * TCP_SYN_SENT - connecting
83 * TCP_ESTABLISHED - connected
84 * TCP_CLOSING - disconnecting
85 * TCP_LISTEN - listening
88 #include <linux/types.h>
89 #include <linux/bitops.h>
90 #include <linux/cred.h>
91 #include <linux/init.h>
92 #include <linux/io.h>
93 #include <linux/kernel.h>
94 #include <linux/sched/signal.h>
95 #include <linux/kmod.h>
96 #include <linux/list.h>
97 #include <linux/miscdevice.h>
98 #include <linux/module.h>
99 #include <linux/mutex.h>
100 #include <linux/net.h>
101 #include <linux/poll.h>
102 #include <linux/random.h>
103 #include <linux/skbuff.h>
104 #include <linux/smp.h>
105 #include <linux/socket.h>
106 #include <linux/stddef.h>
107 #include <linux/unistd.h>
108 #include <linux/wait.h>
109 #include <linux/workqueue.h>
110 #include <net/sock.h>
111 #include <net/af_vsock.h>
113 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
114 static void vsock_sk_destruct(struct sock *sk);
115 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
117 /* Protocol family. */
118 static struct proto vsock_proto = {
119 .name = "AF_VSOCK",
120 .owner = THIS_MODULE,
121 .obj_size = sizeof(struct vsock_sock),
124 /* The default peer timeout indicates how long we will wait for a peer response
125 * to a control message.
127 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
129 #define VSOCK_DEFAULT_BUFFER_SIZE (1024 * 256)
130 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
131 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
133 /* Transport used for host->guest communication */
134 static const struct vsock_transport *transport_h2g;
135 /* Transport used for guest->host communication */
136 static const struct vsock_transport *transport_g2h;
137 /* Transport used for DGRAM communication */
138 static const struct vsock_transport *transport_dgram;
139 /* Transport used for local communication */
140 static const struct vsock_transport *transport_local;
141 static DEFINE_MUTEX(vsock_register_mutex);
143 /**** UTILS ****/
145 /* Each bound VSocket is stored in the bind hash table and each connected
146 * VSocket is stored in the connected hash table.
148 * Unbound sockets are all put on the same list attached to the end of the hash
149 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
150 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
151 * represents the list that addr hashes to).
153 * Specifically, we initialize the vsock_bind_table array to a size of
154 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
155 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
156 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
157 * mods with VSOCK_HASH_SIZE to ensure this.
159 #define MAX_PORT_RETRIES 24
161 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
162 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
163 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
165 /* XXX This can probably be implemented in a better way. */
166 #define VSOCK_CONN_HASH(src, dst) \
167 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
168 #define vsock_connected_sockets(src, dst) \
169 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
170 #define vsock_connected_sockets_vsk(vsk) \
171 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
173 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
174 EXPORT_SYMBOL_GPL(vsock_bind_table);
175 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
176 EXPORT_SYMBOL_GPL(vsock_connected_table);
177 DEFINE_SPINLOCK(vsock_table_lock);
178 EXPORT_SYMBOL_GPL(vsock_table_lock);
180 /* Autobind this socket to the local address if necessary. */
181 static int vsock_auto_bind(struct vsock_sock *vsk)
183 struct sock *sk = sk_vsock(vsk);
184 struct sockaddr_vm local_addr;
186 if (vsock_addr_bound(&vsk->local_addr))
187 return 0;
188 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
189 return __vsock_bind(sk, &local_addr);
192 static void vsock_init_tables(void)
194 int i;
196 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
197 INIT_LIST_HEAD(&vsock_bind_table[i]);
199 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
200 INIT_LIST_HEAD(&vsock_connected_table[i]);
203 static void __vsock_insert_bound(struct list_head *list,
204 struct vsock_sock *vsk)
206 sock_hold(&vsk->sk);
207 list_add(&vsk->bound_table, list);
210 static void __vsock_insert_connected(struct list_head *list,
211 struct vsock_sock *vsk)
213 sock_hold(&vsk->sk);
214 list_add(&vsk->connected_table, list);
217 static void __vsock_remove_bound(struct vsock_sock *vsk)
219 list_del_init(&vsk->bound_table);
220 sock_put(&vsk->sk);
223 static void __vsock_remove_connected(struct vsock_sock *vsk)
225 list_del_init(&vsk->connected_table);
226 sock_put(&vsk->sk);
229 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
231 struct vsock_sock *vsk;
233 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
234 if (vsock_addr_equals_addr(addr, &vsk->local_addr))
235 return sk_vsock(vsk);
237 if (addr->svm_port == vsk->local_addr.svm_port &&
238 (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
239 addr->svm_cid == VMADDR_CID_ANY))
240 return sk_vsock(vsk);
243 return NULL;
246 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
247 struct sockaddr_vm *dst)
249 struct vsock_sock *vsk;
251 list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
252 connected_table) {
253 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
254 dst->svm_port == vsk->local_addr.svm_port) {
255 return sk_vsock(vsk);
259 return NULL;
262 static void vsock_insert_unbound(struct vsock_sock *vsk)
264 spin_lock_bh(&vsock_table_lock);
265 __vsock_insert_bound(vsock_unbound_sockets, vsk);
266 spin_unlock_bh(&vsock_table_lock);
269 void vsock_insert_connected(struct vsock_sock *vsk)
271 struct list_head *list = vsock_connected_sockets(
272 &vsk->remote_addr, &vsk->local_addr);
274 spin_lock_bh(&vsock_table_lock);
275 __vsock_insert_connected(list, vsk);
276 spin_unlock_bh(&vsock_table_lock);
278 EXPORT_SYMBOL_GPL(vsock_insert_connected);
280 void vsock_remove_bound(struct vsock_sock *vsk)
282 spin_lock_bh(&vsock_table_lock);
283 if (__vsock_in_bound_table(vsk))
284 __vsock_remove_bound(vsk);
285 spin_unlock_bh(&vsock_table_lock);
287 EXPORT_SYMBOL_GPL(vsock_remove_bound);
289 void vsock_remove_connected(struct vsock_sock *vsk)
291 spin_lock_bh(&vsock_table_lock);
292 if (__vsock_in_connected_table(vsk))
293 __vsock_remove_connected(vsk);
294 spin_unlock_bh(&vsock_table_lock);
296 EXPORT_SYMBOL_GPL(vsock_remove_connected);
298 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
300 struct sock *sk;
302 spin_lock_bh(&vsock_table_lock);
303 sk = __vsock_find_bound_socket(addr);
304 if (sk)
305 sock_hold(sk);
307 spin_unlock_bh(&vsock_table_lock);
309 return sk;
311 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
313 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
314 struct sockaddr_vm *dst)
316 struct sock *sk;
318 spin_lock_bh(&vsock_table_lock);
319 sk = __vsock_find_connected_socket(src, dst);
320 if (sk)
321 sock_hold(sk);
323 spin_unlock_bh(&vsock_table_lock);
325 return sk;
327 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
329 void vsock_remove_sock(struct vsock_sock *vsk)
331 vsock_remove_bound(vsk);
332 vsock_remove_connected(vsk);
334 EXPORT_SYMBOL_GPL(vsock_remove_sock);
336 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
338 int i;
340 spin_lock_bh(&vsock_table_lock);
342 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
343 struct vsock_sock *vsk;
344 list_for_each_entry(vsk, &vsock_connected_table[i],
345 connected_table)
346 fn(sk_vsock(vsk));
349 spin_unlock_bh(&vsock_table_lock);
351 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
353 void vsock_add_pending(struct sock *listener, struct sock *pending)
355 struct vsock_sock *vlistener;
356 struct vsock_sock *vpending;
358 vlistener = vsock_sk(listener);
359 vpending = vsock_sk(pending);
361 sock_hold(pending);
362 sock_hold(listener);
363 list_add_tail(&vpending->pending_links, &vlistener->pending_links);
365 EXPORT_SYMBOL_GPL(vsock_add_pending);
367 void vsock_remove_pending(struct sock *listener, struct sock *pending)
369 struct vsock_sock *vpending = vsock_sk(pending);
371 list_del_init(&vpending->pending_links);
372 sock_put(listener);
373 sock_put(pending);
375 EXPORT_SYMBOL_GPL(vsock_remove_pending);
377 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
379 struct vsock_sock *vlistener;
380 struct vsock_sock *vconnected;
382 vlistener = vsock_sk(listener);
383 vconnected = vsock_sk(connected);
385 sock_hold(connected);
386 sock_hold(listener);
387 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
389 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
391 static bool vsock_use_local_transport(unsigned int remote_cid)
393 if (!transport_local)
394 return false;
396 if (remote_cid == VMADDR_CID_LOCAL)
397 return true;
399 if (transport_g2h) {
400 return remote_cid == transport_g2h->get_local_cid();
401 } else {
402 return remote_cid == VMADDR_CID_HOST;
406 static void vsock_deassign_transport(struct vsock_sock *vsk)
408 if (!vsk->transport)
409 return;
411 vsk->transport->destruct(vsk);
412 module_put(vsk->transport->module);
413 vsk->transport = NULL;
416 /* Assign a transport to a socket and call the .init transport callback.
418 * Note: for stream socket this must be called when vsk->remote_addr is set
419 * (e.g. during the connect() or when a connection request on a listener
420 * socket is received).
421 * The vsk->remote_addr is used to decide which transport to use:
422 * - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
423 * g2h is not loaded, will use local transport;
424 * - remote CID <= VMADDR_CID_HOST will use guest->host transport;
425 * - remote CID > VMADDR_CID_HOST will use host->guest transport;
427 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
429 const struct vsock_transport *new_transport;
430 struct sock *sk = sk_vsock(vsk);
431 unsigned int remote_cid = vsk->remote_addr.svm_cid;
432 int ret;
434 switch (sk->sk_type) {
435 case SOCK_DGRAM:
436 new_transport = transport_dgram;
437 break;
438 case SOCK_STREAM:
439 if (vsock_use_local_transport(remote_cid))
440 new_transport = transport_local;
441 else if (remote_cid <= VMADDR_CID_HOST)
442 new_transport = transport_g2h;
443 else
444 new_transport = transport_h2g;
445 break;
446 default:
447 return -ESOCKTNOSUPPORT;
450 if (vsk->transport) {
451 if (vsk->transport == new_transport)
452 return 0;
454 /* transport->release() must be called with sock lock acquired.
455 * This path can only be taken during vsock_stream_connect(),
456 * where we have already held the sock lock.
457 * In the other cases, this function is called on a new socket
458 * which is not assigned to any transport.
460 vsk->transport->release(vsk);
461 vsock_deassign_transport(vsk);
464 /* We increase the module refcnt to prevent the transport unloading
465 * while there are open sockets assigned to it.
467 if (!new_transport || !try_module_get(new_transport->module))
468 return -ENODEV;
470 ret = new_transport->init(vsk, psk);
471 if (ret) {
472 module_put(new_transport->module);
473 return ret;
476 vsk->transport = new_transport;
478 return 0;
480 EXPORT_SYMBOL_GPL(vsock_assign_transport);
482 bool vsock_find_cid(unsigned int cid)
484 if (transport_g2h && cid == transport_g2h->get_local_cid())
485 return true;
487 if (transport_h2g && cid == VMADDR_CID_HOST)
488 return true;
490 if (transport_local && cid == VMADDR_CID_LOCAL)
491 return true;
493 return false;
495 EXPORT_SYMBOL_GPL(vsock_find_cid);
497 static struct sock *vsock_dequeue_accept(struct sock *listener)
499 struct vsock_sock *vlistener;
500 struct vsock_sock *vconnected;
502 vlistener = vsock_sk(listener);
504 if (list_empty(&vlistener->accept_queue))
505 return NULL;
507 vconnected = list_entry(vlistener->accept_queue.next,
508 struct vsock_sock, accept_queue);
510 list_del_init(&vconnected->accept_queue);
511 sock_put(listener);
512 /* The caller will need a reference on the connected socket so we let
513 * it call sock_put().
516 return sk_vsock(vconnected);
519 static bool vsock_is_accept_queue_empty(struct sock *sk)
521 struct vsock_sock *vsk = vsock_sk(sk);
522 return list_empty(&vsk->accept_queue);
525 static bool vsock_is_pending(struct sock *sk)
527 struct vsock_sock *vsk = vsock_sk(sk);
528 return !list_empty(&vsk->pending_links);
531 static int vsock_send_shutdown(struct sock *sk, int mode)
533 struct vsock_sock *vsk = vsock_sk(sk);
535 if (!vsk->transport)
536 return -ENODEV;
538 return vsk->transport->shutdown(vsk, mode);
541 static void vsock_pending_work(struct work_struct *work)
543 struct sock *sk;
544 struct sock *listener;
545 struct vsock_sock *vsk;
546 bool cleanup;
548 vsk = container_of(work, struct vsock_sock, pending_work.work);
549 sk = sk_vsock(vsk);
550 listener = vsk->listener;
551 cleanup = true;
553 lock_sock(listener);
554 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
556 if (vsock_is_pending(sk)) {
557 vsock_remove_pending(listener, sk);
559 sk_acceptq_removed(listener);
560 } else if (!vsk->rejected) {
561 /* We are not on the pending list and accept() did not reject
562 * us, so we must have been accepted by our user process. We
563 * just need to drop our references to the sockets and be on
564 * our way.
566 cleanup = false;
567 goto out;
570 /* We need to remove ourself from the global connected sockets list so
571 * incoming packets can't find this socket, and to reduce the reference
572 * count.
574 vsock_remove_connected(vsk);
576 sk->sk_state = TCP_CLOSE;
578 out:
579 release_sock(sk);
580 release_sock(listener);
581 if (cleanup)
582 sock_put(sk);
584 sock_put(sk);
585 sock_put(listener);
588 /**** SOCKET OPERATIONS ****/
590 static int __vsock_bind_stream(struct vsock_sock *vsk,
591 struct sockaddr_vm *addr)
593 static u32 port;
594 struct sockaddr_vm new_addr;
596 if (!port)
597 port = LAST_RESERVED_PORT + 1 +
598 prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
600 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
602 if (addr->svm_port == VMADDR_PORT_ANY) {
603 bool found = false;
604 unsigned int i;
606 for (i = 0; i < MAX_PORT_RETRIES; i++) {
607 if (port <= LAST_RESERVED_PORT)
608 port = LAST_RESERVED_PORT + 1;
610 new_addr.svm_port = port++;
612 if (!__vsock_find_bound_socket(&new_addr)) {
613 found = true;
614 break;
618 if (!found)
619 return -EADDRNOTAVAIL;
620 } else {
621 /* If port is in reserved range, ensure caller
622 * has necessary privileges.
624 if (addr->svm_port <= LAST_RESERVED_PORT &&
625 !capable(CAP_NET_BIND_SERVICE)) {
626 return -EACCES;
629 if (__vsock_find_bound_socket(&new_addr))
630 return -EADDRINUSE;
633 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
635 /* Remove stream sockets from the unbound list and add them to the hash
636 * table for easy lookup by its address. The unbound list is simply an
637 * extra entry at the end of the hash table, a trick used by AF_UNIX.
639 __vsock_remove_bound(vsk);
640 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
642 return 0;
645 static int __vsock_bind_dgram(struct vsock_sock *vsk,
646 struct sockaddr_vm *addr)
648 return vsk->transport->dgram_bind(vsk, addr);
651 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
653 struct vsock_sock *vsk = vsock_sk(sk);
654 int retval;
656 /* First ensure this socket isn't already bound. */
657 if (vsock_addr_bound(&vsk->local_addr))
658 return -EINVAL;
660 /* Now bind to the provided address or select appropriate values if
661 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
662 * like AF_INET prevents binding to a non-local IP address (in most
663 * cases), we only allow binding to a local CID.
665 if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
666 return -EADDRNOTAVAIL;
668 switch (sk->sk_socket->type) {
669 case SOCK_STREAM:
670 spin_lock_bh(&vsock_table_lock);
671 retval = __vsock_bind_stream(vsk, addr);
672 spin_unlock_bh(&vsock_table_lock);
673 break;
675 case SOCK_DGRAM:
676 retval = __vsock_bind_dgram(vsk, addr);
677 break;
679 default:
680 retval = -EINVAL;
681 break;
684 return retval;
687 static void vsock_connect_timeout(struct work_struct *work);
689 static struct sock *__vsock_create(struct net *net,
690 struct socket *sock,
691 struct sock *parent,
692 gfp_t priority,
693 unsigned short type,
694 int kern)
696 struct sock *sk;
697 struct vsock_sock *psk;
698 struct vsock_sock *vsk;
700 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
701 if (!sk)
702 return NULL;
704 sock_init_data(sock, sk);
706 /* sk->sk_type is normally set in sock_init_data, but only if sock is
707 * non-NULL. We make sure that our sockets always have a type by
708 * setting it here if needed.
710 if (!sock)
711 sk->sk_type = type;
713 vsk = vsock_sk(sk);
714 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
715 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
717 sk->sk_destruct = vsock_sk_destruct;
718 sk->sk_backlog_rcv = vsock_queue_rcv_skb;
719 sock_reset_flag(sk, SOCK_DONE);
721 INIT_LIST_HEAD(&vsk->bound_table);
722 INIT_LIST_HEAD(&vsk->connected_table);
723 vsk->listener = NULL;
724 INIT_LIST_HEAD(&vsk->pending_links);
725 INIT_LIST_HEAD(&vsk->accept_queue);
726 vsk->rejected = false;
727 vsk->sent_request = false;
728 vsk->ignore_connecting_rst = false;
729 vsk->peer_shutdown = 0;
730 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
731 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
733 psk = parent ? vsock_sk(parent) : NULL;
734 if (parent) {
735 vsk->trusted = psk->trusted;
736 vsk->owner = get_cred(psk->owner);
737 vsk->connect_timeout = psk->connect_timeout;
738 vsk->buffer_size = psk->buffer_size;
739 vsk->buffer_min_size = psk->buffer_min_size;
740 vsk->buffer_max_size = psk->buffer_max_size;
741 } else {
742 vsk->trusted = capable(CAP_NET_ADMIN);
743 vsk->owner = get_current_cred();
744 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
745 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
746 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
747 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
750 return sk;
753 static void __vsock_release(struct sock *sk, int level)
755 if (sk) {
756 struct sock *pending;
757 struct vsock_sock *vsk;
759 vsk = vsock_sk(sk);
760 pending = NULL; /* Compiler warning. */
762 /* When "level" is SINGLE_DEPTH_NESTING, use the nested
763 * version to avoid the warning "possible recursive locking
764 * detected". When "level" is 0, lock_sock_nested(sk, level)
765 * is the same as lock_sock(sk).
767 lock_sock_nested(sk, level);
769 if (vsk->transport)
770 vsk->transport->release(vsk);
771 else if (sk->sk_type == SOCK_STREAM)
772 vsock_remove_sock(vsk);
774 sock_orphan(sk);
775 sk->sk_shutdown = SHUTDOWN_MASK;
777 skb_queue_purge(&sk->sk_receive_queue);
779 /* Clean up any sockets that never were accepted. */
780 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
781 __vsock_release(pending, SINGLE_DEPTH_NESTING);
782 sock_put(pending);
785 release_sock(sk);
786 sock_put(sk);
790 static void vsock_sk_destruct(struct sock *sk)
792 struct vsock_sock *vsk = vsock_sk(sk);
794 vsock_deassign_transport(vsk);
796 /* When clearing these addresses, there's no need to set the family and
797 * possibly register the address family with the kernel.
799 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
800 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
802 put_cred(vsk->owner);
805 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
807 int err;
809 err = sock_queue_rcv_skb(sk, skb);
810 if (err)
811 kfree_skb(skb);
813 return err;
816 struct sock *vsock_create_connected(struct sock *parent)
818 return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
819 parent->sk_type, 0);
821 EXPORT_SYMBOL_GPL(vsock_create_connected);
823 s64 vsock_stream_has_data(struct vsock_sock *vsk)
825 return vsk->transport->stream_has_data(vsk);
827 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
829 s64 vsock_stream_has_space(struct vsock_sock *vsk)
831 return vsk->transport->stream_has_space(vsk);
833 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
835 static int vsock_release(struct socket *sock)
837 __vsock_release(sock->sk, 0);
838 sock->sk = NULL;
839 sock->state = SS_FREE;
841 return 0;
844 static int
845 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
847 int err;
848 struct sock *sk;
849 struct sockaddr_vm *vm_addr;
851 sk = sock->sk;
853 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
854 return -EINVAL;
856 lock_sock(sk);
857 err = __vsock_bind(sk, vm_addr);
858 release_sock(sk);
860 return err;
863 static int vsock_getname(struct socket *sock,
864 struct sockaddr *addr, int peer)
866 int err;
867 struct sock *sk;
868 struct vsock_sock *vsk;
869 struct sockaddr_vm *vm_addr;
871 sk = sock->sk;
872 vsk = vsock_sk(sk);
873 err = 0;
875 lock_sock(sk);
877 if (peer) {
878 if (sock->state != SS_CONNECTED) {
879 err = -ENOTCONN;
880 goto out;
882 vm_addr = &vsk->remote_addr;
883 } else {
884 vm_addr = &vsk->local_addr;
887 if (!vm_addr) {
888 err = -EINVAL;
889 goto out;
892 /* sys_getsockname() and sys_getpeername() pass us a
893 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
894 * that macro is defined in socket.c instead of .h, so we hardcode its
895 * value here.
897 BUILD_BUG_ON(sizeof(*vm_addr) > 128);
898 memcpy(addr, vm_addr, sizeof(*vm_addr));
899 err = sizeof(*vm_addr);
901 out:
902 release_sock(sk);
903 return err;
906 static int vsock_shutdown(struct socket *sock, int mode)
908 int err;
909 struct sock *sk;
911 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
912 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
913 * here like the other address families do. Note also that the
914 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
915 * which is what we want.
917 mode++;
919 if ((mode & ~SHUTDOWN_MASK) || !mode)
920 return -EINVAL;
922 /* If this is a STREAM socket and it is not connected then bail out
923 * immediately. If it is a DGRAM socket then we must first kick the
924 * socket so that it wakes up from any sleeping calls, for example
925 * recv(), and then afterwards return the error.
928 sk = sock->sk;
929 if (sock->state == SS_UNCONNECTED) {
930 err = -ENOTCONN;
931 if (sk->sk_type == SOCK_STREAM)
932 return err;
933 } else {
934 sock->state = SS_DISCONNECTING;
935 err = 0;
938 /* Receive and send shutdowns are treated alike. */
939 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
940 if (mode) {
941 lock_sock(sk);
942 sk->sk_shutdown |= mode;
943 sk->sk_state_change(sk);
944 release_sock(sk);
946 if (sk->sk_type == SOCK_STREAM) {
947 sock_reset_flag(sk, SOCK_DONE);
948 vsock_send_shutdown(sk, mode);
952 return err;
955 static __poll_t vsock_poll(struct file *file, struct socket *sock,
956 poll_table *wait)
958 struct sock *sk;
959 __poll_t mask;
960 struct vsock_sock *vsk;
962 sk = sock->sk;
963 vsk = vsock_sk(sk);
965 poll_wait(file, sk_sleep(sk), wait);
966 mask = 0;
968 if (sk->sk_err)
969 /* Signify that there has been an error on this socket. */
970 mask |= EPOLLERR;
972 /* INET sockets treat local write shutdown and peer write shutdown as a
973 * case of EPOLLHUP set.
975 if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
976 ((sk->sk_shutdown & SEND_SHUTDOWN) &&
977 (vsk->peer_shutdown & SEND_SHUTDOWN))) {
978 mask |= EPOLLHUP;
981 if (sk->sk_shutdown & RCV_SHUTDOWN ||
982 vsk->peer_shutdown & SEND_SHUTDOWN) {
983 mask |= EPOLLRDHUP;
986 if (sock->type == SOCK_DGRAM) {
987 /* For datagram sockets we can read if there is something in
988 * the queue and write as long as the socket isn't shutdown for
989 * sending.
991 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
992 (sk->sk_shutdown & RCV_SHUTDOWN)) {
993 mask |= EPOLLIN | EPOLLRDNORM;
996 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
997 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
999 } else if (sock->type == SOCK_STREAM) {
1000 const struct vsock_transport *transport = vsk->transport;
1001 lock_sock(sk);
1003 /* Listening sockets that have connections in their accept
1004 * queue can be read.
1006 if (sk->sk_state == TCP_LISTEN
1007 && !vsock_is_accept_queue_empty(sk))
1008 mask |= EPOLLIN | EPOLLRDNORM;
1010 /* If there is something in the queue then we can read. */
1011 if (transport && transport->stream_is_active(vsk) &&
1012 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1013 bool data_ready_now = false;
1014 int ret = transport->notify_poll_in(
1015 vsk, 1, &data_ready_now);
1016 if (ret < 0) {
1017 mask |= EPOLLERR;
1018 } else {
1019 if (data_ready_now)
1020 mask |= EPOLLIN | EPOLLRDNORM;
1025 /* Sockets whose connections have been closed, reset, or
1026 * terminated should also be considered read, and we check the
1027 * shutdown flag for that.
1029 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1030 vsk->peer_shutdown & SEND_SHUTDOWN) {
1031 mask |= EPOLLIN | EPOLLRDNORM;
1034 /* Connected sockets that can produce data can be written. */
1035 if (sk->sk_state == TCP_ESTABLISHED) {
1036 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1037 bool space_avail_now = false;
1038 int ret = transport->notify_poll_out(
1039 vsk, 1, &space_avail_now);
1040 if (ret < 0) {
1041 mask |= EPOLLERR;
1042 } else {
1043 if (space_avail_now)
1044 /* Remove EPOLLWRBAND since INET
1045 * sockets are not setting it.
1047 mask |= EPOLLOUT | EPOLLWRNORM;
1053 /* Simulate INET socket poll behaviors, which sets
1054 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1055 * but local send is not shutdown.
1057 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1058 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1059 mask |= EPOLLOUT | EPOLLWRNORM;
1063 release_sock(sk);
1066 return mask;
1069 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1070 size_t len)
1072 int err;
1073 struct sock *sk;
1074 struct vsock_sock *vsk;
1075 struct sockaddr_vm *remote_addr;
1076 const struct vsock_transport *transport;
1078 if (msg->msg_flags & MSG_OOB)
1079 return -EOPNOTSUPP;
1081 /* For now, MSG_DONTWAIT is always assumed... */
1082 err = 0;
1083 sk = sock->sk;
1084 vsk = vsock_sk(sk);
1085 transport = vsk->transport;
1087 lock_sock(sk);
1089 err = vsock_auto_bind(vsk);
1090 if (err)
1091 goto out;
1094 /* If the provided message contains an address, use that. Otherwise
1095 * fall back on the socket's remote handle (if it has been connected).
1097 if (msg->msg_name &&
1098 vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1099 &remote_addr) == 0) {
1100 /* Ensure this address is of the right type and is a valid
1101 * destination.
1104 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1105 remote_addr->svm_cid = transport->get_local_cid();
1107 if (!vsock_addr_bound(remote_addr)) {
1108 err = -EINVAL;
1109 goto out;
1111 } else if (sock->state == SS_CONNECTED) {
1112 remote_addr = &vsk->remote_addr;
1114 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1115 remote_addr->svm_cid = transport->get_local_cid();
1117 /* XXX Should connect() or this function ensure remote_addr is
1118 * bound?
1120 if (!vsock_addr_bound(&vsk->remote_addr)) {
1121 err = -EINVAL;
1122 goto out;
1124 } else {
1125 err = -EINVAL;
1126 goto out;
1129 if (!transport->dgram_allow(remote_addr->svm_cid,
1130 remote_addr->svm_port)) {
1131 err = -EINVAL;
1132 goto out;
1135 err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1137 out:
1138 release_sock(sk);
1139 return err;
1142 static int vsock_dgram_connect(struct socket *sock,
1143 struct sockaddr *addr, int addr_len, int flags)
1145 int err;
1146 struct sock *sk;
1147 struct vsock_sock *vsk;
1148 struct sockaddr_vm *remote_addr;
1150 sk = sock->sk;
1151 vsk = vsock_sk(sk);
1153 err = vsock_addr_cast(addr, addr_len, &remote_addr);
1154 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1155 lock_sock(sk);
1156 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1157 VMADDR_PORT_ANY);
1158 sock->state = SS_UNCONNECTED;
1159 release_sock(sk);
1160 return 0;
1161 } else if (err != 0)
1162 return -EINVAL;
1164 lock_sock(sk);
1166 err = vsock_auto_bind(vsk);
1167 if (err)
1168 goto out;
1170 if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1171 remote_addr->svm_port)) {
1172 err = -EINVAL;
1173 goto out;
1176 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1177 sock->state = SS_CONNECTED;
1179 out:
1180 release_sock(sk);
1181 return err;
1184 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1185 size_t len, int flags)
1187 struct vsock_sock *vsk = vsock_sk(sock->sk);
1189 return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1192 static const struct proto_ops vsock_dgram_ops = {
1193 .family = PF_VSOCK,
1194 .owner = THIS_MODULE,
1195 .release = vsock_release,
1196 .bind = vsock_bind,
1197 .connect = vsock_dgram_connect,
1198 .socketpair = sock_no_socketpair,
1199 .accept = sock_no_accept,
1200 .getname = vsock_getname,
1201 .poll = vsock_poll,
1202 .ioctl = sock_no_ioctl,
1203 .listen = sock_no_listen,
1204 .shutdown = vsock_shutdown,
1205 .setsockopt = sock_no_setsockopt,
1206 .getsockopt = sock_no_getsockopt,
1207 .sendmsg = vsock_dgram_sendmsg,
1208 .recvmsg = vsock_dgram_recvmsg,
1209 .mmap = sock_no_mmap,
1210 .sendpage = sock_no_sendpage,
1213 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1215 const struct vsock_transport *transport = vsk->transport;
1217 if (!transport->cancel_pkt)
1218 return -EOPNOTSUPP;
1220 return transport->cancel_pkt(vsk);
1223 static void vsock_connect_timeout(struct work_struct *work)
1225 struct sock *sk;
1226 struct vsock_sock *vsk;
1227 int cancel = 0;
1229 vsk = container_of(work, struct vsock_sock, connect_work.work);
1230 sk = sk_vsock(vsk);
1232 lock_sock(sk);
1233 if (sk->sk_state == TCP_SYN_SENT &&
1234 (sk->sk_shutdown != SHUTDOWN_MASK)) {
1235 sk->sk_state = TCP_CLOSE;
1236 sk->sk_err = ETIMEDOUT;
1237 sk->sk_error_report(sk);
1238 cancel = 1;
1240 release_sock(sk);
1241 if (cancel)
1242 vsock_transport_cancel_pkt(vsk);
1244 sock_put(sk);
1247 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1248 int addr_len, int flags)
1250 int err;
1251 struct sock *sk;
1252 struct vsock_sock *vsk;
1253 const struct vsock_transport *transport;
1254 struct sockaddr_vm *remote_addr;
1255 long timeout;
1256 DEFINE_WAIT(wait);
1258 err = 0;
1259 sk = sock->sk;
1260 vsk = vsock_sk(sk);
1262 lock_sock(sk);
1264 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1265 switch (sock->state) {
1266 case SS_CONNECTED:
1267 err = -EISCONN;
1268 goto out;
1269 case SS_DISCONNECTING:
1270 err = -EINVAL;
1271 goto out;
1272 case SS_CONNECTING:
1273 /* This continues on so we can move sock into the SS_CONNECTED
1274 * state once the connection has completed (at which point err
1275 * will be set to zero also). Otherwise, we will either wait
1276 * for the connection or return -EALREADY should this be a
1277 * non-blocking call.
1279 err = -EALREADY;
1280 break;
1281 default:
1282 if ((sk->sk_state == TCP_LISTEN) ||
1283 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1284 err = -EINVAL;
1285 goto out;
1288 /* Set the remote address that we are connecting to. */
1289 memcpy(&vsk->remote_addr, remote_addr,
1290 sizeof(vsk->remote_addr));
1292 err = vsock_assign_transport(vsk, NULL);
1293 if (err)
1294 goto out;
1296 transport = vsk->transport;
1298 /* The hypervisor and well-known contexts do not have socket
1299 * endpoints.
1301 if (!transport ||
1302 !transport->stream_allow(remote_addr->svm_cid,
1303 remote_addr->svm_port)) {
1304 err = -ENETUNREACH;
1305 goto out;
1308 err = vsock_auto_bind(vsk);
1309 if (err)
1310 goto out;
1312 sk->sk_state = TCP_SYN_SENT;
1314 err = transport->connect(vsk);
1315 if (err < 0)
1316 goto out;
1318 /* Mark sock as connecting and set the error code to in
1319 * progress in case this is a non-blocking connect.
1321 sock->state = SS_CONNECTING;
1322 err = -EINPROGRESS;
1325 /* The receive path will handle all communication until we are able to
1326 * enter the connected state. Here we wait for the connection to be
1327 * completed or a notification of an error.
1329 timeout = vsk->connect_timeout;
1330 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1332 while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1333 if (flags & O_NONBLOCK) {
1334 /* If we're not going to block, we schedule a timeout
1335 * function to generate a timeout on the connection
1336 * attempt, in case the peer doesn't respond in a
1337 * timely manner. We hold on to the socket until the
1338 * timeout fires.
1340 sock_hold(sk);
1341 schedule_delayed_work(&vsk->connect_work, timeout);
1343 /* Skip ahead to preserve error code set above. */
1344 goto out_wait;
1347 release_sock(sk);
1348 timeout = schedule_timeout(timeout);
1349 lock_sock(sk);
1351 if (signal_pending(current)) {
1352 err = sock_intr_errno(timeout);
1353 sk->sk_state = TCP_CLOSE;
1354 sock->state = SS_UNCONNECTED;
1355 vsock_transport_cancel_pkt(vsk);
1356 goto out_wait;
1357 } else if (timeout == 0) {
1358 err = -ETIMEDOUT;
1359 sk->sk_state = TCP_CLOSE;
1360 sock->state = SS_UNCONNECTED;
1361 vsock_transport_cancel_pkt(vsk);
1362 goto out_wait;
1365 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1368 if (sk->sk_err) {
1369 err = -sk->sk_err;
1370 sk->sk_state = TCP_CLOSE;
1371 sock->state = SS_UNCONNECTED;
1372 } else {
1373 err = 0;
1376 out_wait:
1377 finish_wait(sk_sleep(sk), &wait);
1378 out:
1379 release_sock(sk);
1380 return err;
1383 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1384 bool kern)
1386 struct sock *listener;
1387 int err;
1388 struct sock *connected;
1389 struct vsock_sock *vconnected;
1390 long timeout;
1391 DEFINE_WAIT(wait);
1393 err = 0;
1394 listener = sock->sk;
1396 lock_sock(listener);
1398 if (sock->type != SOCK_STREAM) {
1399 err = -EOPNOTSUPP;
1400 goto out;
1403 if (listener->sk_state != TCP_LISTEN) {
1404 err = -EINVAL;
1405 goto out;
1408 /* Wait for children sockets to appear; these are the new sockets
1409 * created upon connection establishment.
1411 timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1412 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1414 while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1415 listener->sk_err == 0) {
1416 release_sock(listener);
1417 timeout = schedule_timeout(timeout);
1418 finish_wait(sk_sleep(listener), &wait);
1419 lock_sock(listener);
1421 if (signal_pending(current)) {
1422 err = sock_intr_errno(timeout);
1423 goto out;
1424 } else if (timeout == 0) {
1425 err = -EAGAIN;
1426 goto out;
1429 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1431 finish_wait(sk_sleep(listener), &wait);
1433 if (listener->sk_err)
1434 err = -listener->sk_err;
1436 if (connected) {
1437 sk_acceptq_removed(listener);
1439 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1440 vconnected = vsock_sk(connected);
1442 /* If the listener socket has received an error, then we should
1443 * reject this socket and return. Note that we simply mark the
1444 * socket rejected, drop our reference, and let the cleanup
1445 * function handle the cleanup; the fact that we found it in
1446 * the listener's accept queue guarantees that the cleanup
1447 * function hasn't run yet.
1449 if (err) {
1450 vconnected->rejected = true;
1451 } else {
1452 newsock->state = SS_CONNECTED;
1453 sock_graft(connected, newsock);
1456 release_sock(connected);
1457 sock_put(connected);
1460 out:
1461 release_sock(listener);
1462 return err;
1465 static int vsock_listen(struct socket *sock, int backlog)
1467 int err;
1468 struct sock *sk;
1469 struct vsock_sock *vsk;
1471 sk = sock->sk;
1473 lock_sock(sk);
1475 if (sock->type != SOCK_STREAM) {
1476 err = -EOPNOTSUPP;
1477 goto out;
1480 if (sock->state != SS_UNCONNECTED) {
1481 err = -EINVAL;
1482 goto out;
1485 vsk = vsock_sk(sk);
1487 if (!vsock_addr_bound(&vsk->local_addr)) {
1488 err = -EINVAL;
1489 goto out;
1492 sk->sk_max_ack_backlog = backlog;
1493 sk->sk_state = TCP_LISTEN;
1495 err = 0;
1497 out:
1498 release_sock(sk);
1499 return err;
1502 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1503 const struct vsock_transport *transport,
1504 u64 val)
1506 if (val > vsk->buffer_max_size)
1507 val = vsk->buffer_max_size;
1509 if (val < vsk->buffer_min_size)
1510 val = vsk->buffer_min_size;
1512 if (val != vsk->buffer_size &&
1513 transport && transport->notify_buffer_size)
1514 transport->notify_buffer_size(vsk, &val);
1516 vsk->buffer_size = val;
1519 static int vsock_stream_setsockopt(struct socket *sock,
1520 int level,
1521 int optname,
1522 char __user *optval,
1523 unsigned int optlen)
1525 int err;
1526 struct sock *sk;
1527 struct vsock_sock *vsk;
1528 const struct vsock_transport *transport;
1529 u64 val;
1531 if (level != AF_VSOCK)
1532 return -ENOPROTOOPT;
1534 #define COPY_IN(_v) \
1535 do { \
1536 if (optlen < sizeof(_v)) { \
1537 err = -EINVAL; \
1538 goto exit; \
1540 if (copy_from_user(&_v, optval, sizeof(_v)) != 0) { \
1541 err = -EFAULT; \
1542 goto exit; \
1544 } while (0)
1546 err = 0;
1547 sk = sock->sk;
1548 vsk = vsock_sk(sk);
1549 transport = vsk->transport;
1551 lock_sock(sk);
1553 switch (optname) {
1554 case SO_VM_SOCKETS_BUFFER_SIZE:
1555 COPY_IN(val);
1556 vsock_update_buffer_size(vsk, transport, val);
1557 break;
1559 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1560 COPY_IN(val);
1561 vsk->buffer_max_size = val;
1562 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1563 break;
1565 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1566 COPY_IN(val);
1567 vsk->buffer_min_size = val;
1568 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1569 break;
1571 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1572 struct __kernel_old_timeval tv;
1573 COPY_IN(tv);
1574 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1575 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1576 vsk->connect_timeout = tv.tv_sec * HZ +
1577 DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1578 if (vsk->connect_timeout == 0)
1579 vsk->connect_timeout =
1580 VSOCK_DEFAULT_CONNECT_TIMEOUT;
1582 } else {
1583 err = -ERANGE;
1585 break;
1588 default:
1589 err = -ENOPROTOOPT;
1590 break;
1593 #undef COPY_IN
1595 exit:
1596 release_sock(sk);
1597 return err;
1600 static int vsock_stream_getsockopt(struct socket *sock,
1601 int level, int optname,
1602 char __user *optval,
1603 int __user *optlen)
1605 int err;
1606 int len;
1607 struct sock *sk;
1608 struct vsock_sock *vsk;
1609 u64 val;
1611 if (level != AF_VSOCK)
1612 return -ENOPROTOOPT;
1614 err = get_user(len, optlen);
1615 if (err != 0)
1616 return err;
1618 #define COPY_OUT(_v) \
1619 do { \
1620 if (len < sizeof(_v)) \
1621 return -EINVAL; \
1623 len = sizeof(_v); \
1624 if (copy_to_user(optval, &_v, len) != 0) \
1625 return -EFAULT; \
1627 } while (0)
1629 err = 0;
1630 sk = sock->sk;
1631 vsk = vsock_sk(sk);
1633 switch (optname) {
1634 case SO_VM_SOCKETS_BUFFER_SIZE:
1635 val = vsk->buffer_size;
1636 COPY_OUT(val);
1637 break;
1639 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1640 val = vsk->buffer_max_size;
1641 COPY_OUT(val);
1642 break;
1644 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1645 val = vsk->buffer_min_size;
1646 COPY_OUT(val);
1647 break;
1649 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1650 struct __kernel_old_timeval tv;
1651 tv.tv_sec = vsk->connect_timeout / HZ;
1652 tv.tv_usec =
1653 (vsk->connect_timeout -
1654 tv.tv_sec * HZ) * (1000000 / HZ);
1655 COPY_OUT(tv);
1656 break;
1658 default:
1659 return -ENOPROTOOPT;
1662 err = put_user(len, optlen);
1663 if (err != 0)
1664 return -EFAULT;
1666 #undef COPY_OUT
1668 return 0;
1671 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1672 size_t len)
1674 struct sock *sk;
1675 struct vsock_sock *vsk;
1676 const struct vsock_transport *transport;
1677 ssize_t total_written;
1678 long timeout;
1679 int err;
1680 struct vsock_transport_send_notify_data send_data;
1681 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1683 sk = sock->sk;
1684 vsk = vsock_sk(sk);
1685 transport = vsk->transport;
1686 total_written = 0;
1687 err = 0;
1689 if (msg->msg_flags & MSG_OOB)
1690 return -EOPNOTSUPP;
1692 lock_sock(sk);
1694 /* Callers should not provide a destination with stream sockets. */
1695 if (msg->msg_namelen) {
1696 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1697 goto out;
1700 /* Send data only if both sides are not shutdown in the direction. */
1701 if (sk->sk_shutdown & SEND_SHUTDOWN ||
1702 vsk->peer_shutdown & RCV_SHUTDOWN) {
1703 err = -EPIPE;
1704 goto out;
1707 if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1708 !vsock_addr_bound(&vsk->local_addr)) {
1709 err = -ENOTCONN;
1710 goto out;
1713 if (!vsock_addr_bound(&vsk->remote_addr)) {
1714 err = -EDESTADDRREQ;
1715 goto out;
1718 /* Wait for room in the produce queue to enqueue our user's data. */
1719 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1721 err = transport->notify_send_init(vsk, &send_data);
1722 if (err < 0)
1723 goto out;
1725 while (total_written < len) {
1726 ssize_t written;
1728 add_wait_queue(sk_sleep(sk), &wait);
1729 while (vsock_stream_has_space(vsk) == 0 &&
1730 sk->sk_err == 0 &&
1731 !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1732 !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1734 /* Don't wait for non-blocking sockets. */
1735 if (timeout == 0) {
1736 err = -EAGAIN;
1737 remove_wait_queue(sk_sleep(sk), &wait);
1738 goto out_err;
1741 err = transport->notify_send_pre_block(vsk, &send_data);
1742 if (err < 0) {
1743 remove_wait_queue(sk_sleep(sk), &wait);
1744 goto out_err;
1747 release_sock(sk);
1748 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1749 lock_sock(sk);
1750 if (signal_pending(current)) {
1751 err = sock_intr_errno(timeout);
1752 remove_wait_queue(sk_sleep(sk), &wait);
1753 goto out_err;
1754 } else if (timeout == 0) {
1755 err = -EAGAIN;
1756 remove_wait_queue(sk_sleep(sk), &wait);
1757 goto out_err;
1760 remove_wait_queue(sk_sleep(sk), &wait);
1762 /* These checks occur both as part of and after the loop
1763 * conditional since we need to check before and after
1764 * sleeping.
1766 if (sk->sk_err) {
1767 err = -sk->sk_err;
1768 goto out_err;
1769 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1770 (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1771 err = -EPIPE;
1772 goto out_err;
1775 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1776 if (err < 0)
1777 goto out_err;
1779 /* Note that enqueue will only write as many bytes as are free
1780 * in the produce queue, so we don't need to ensure len is
1781 * smaller than the queue size. It is the caller's
1782 * responsibility to check how many bytes we were able to send.
1785 written = transport->stream_enqueue(
1786 vsk, msg,
1787 len - total_written);
1788 if (written < 0) {
1789 err = -ENOMEM;
1790 goto out_err;
1793 total_written += written;
1795 err = transport->notify_send_post_enqueue(
1796 vsk, written, &send_data);
1797 if (err < 0)
1798 goto out_err;
1802 out_err:
1803 if (total_written > 0)
1804 err = total_written;
1805 out:
1806 release_sock(sk);
1807 return err;
1811 static int
1812 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1813 int flags)
1815 struct sock *sk;
1816 struct vsock_sock *vsk;
1817 const struct vsock_transport *transport;
1818 int err;
1819 size_t target;
1820 ssize_t copied;
1821 long timeout;
1822 struct vsock_transport_recv_notify_data recv_data;
1824 DEFINE_WAIT(wait);
1826 sk = sock->sk;
1827 vsk = vsock_sk(sk);
1828 transport = vsk->transport;
1829 err = 0;
1831 lock_sock(sk);
1833 if (!transport || sk->sk_state != TCP_ESTABLISHED) {
1834 /* Recvmsg is supposed to return 0 if a peer performs an
1835 * orderly shutdown. Differentiate between that case and when a
1836 * peer has not connected or a local shutdown occured with the
1837 * SOCK_DONE flag.
1839 if (sock_flag(sk, SOCK_DONE))
1840 err = 0;
1841 else
1842 err = -ENOTCONN;
1844 goto out;
1847 if (flags & MSG_OOB) {
1848 err = -EOPNOTSUPP;
1849 goto out;
1852 /* We don't check peer_shutdown flag here since peer may actually shut
1853 * down, but there can be data in the queue that a local socket can
1854 * receive.
1856 if (sk->sk_shutdown & RCV_SHUTDOWN) {
1857 err = 0;
1858 goto out;
1861 /* It is valid on Linux to pass in a zero-length receive buffer. This
1862 * is not an error. We may as well bail out now.
1864 if (!len) {
1865 err = 0;
1866 goto out;
1869 /* We must not copy less than target bytes into the user's buffer
1870 * before returning successfully, so we wait for the consume queue to
1871 * have that much data to consume before dequeueing. Note that this
1872 * makes it impossible to handle cases where target is greater than the
1873 * queue size.
1875 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1876 if (target >= transport->stream_rcvhiwat(vsk)) {
1877 err = -ENOMEM;
1878 goto out;
1880 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1881 copied = 0;
1883 err = transport->notify_recv_init(vsk, target, &recv_data);
1884 if (err < 0)
1885 goto out;
1888 while (1) {
1889 s64 ready;
1891 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1892 ready = vsock_stream_has_data(vsk);
1894 if (ready == 0) {
1895 if (sk->sk_err != 0 ||
1896 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1897 (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1898 finish_wait(sk_sleep(sk), &wait);
1899 break;
1901 /* Don't wait for non-blocking sockets. */
1902 if (timeout == 0) {
1903 err = -EAGAIN;
1904 finish_wait(sk_sleep(sk), &wait);
1905 break;
1908 err = transport->notify_recv_pre_block(
1909 vsk, target, &recv_data);
1910 if (err < 0) {
1911 finish_wait(sk_sleep(sk), &wait);
1912 break;
1914 release_sock(sk);
1915 timeout = schedule_timeout(timeout);
1916 lock_sock(sk);
1918 if (signal_pending(current)) {
1919 err = sock_intr_errno(timeout);
1920 finish_wait(sk_sleep(sk), &wait);
1921 break;
1922 } else if (timeout == 0) {
1923 err = -EAGAIN;
1924 finish_wait(sk_sleep(sk), &wait);
1925 break;
1927 } else {
1928 ssize_t read;
1930 finish_wait(sk_sleep(sk), &wait);
1932 if (ready < 0) {
1933 /* Invalid queue pair content. XXX This should
1934 * be changed to a connection reset in a later
1935 * change.
1938 err = -ENOMEM;
1939 goto out;
1942 err = transport->notify_recv_pre_dequeue(
1943 vsk, target, &recv_data);
1944 if (err < 0)
1945 break;
1947 read = transport->stream_dequeue(
1948 vsk, msg,
1949 len - copied, flags);
1950 if (read < 0) {
1951 err = -ENOMEM;
1952 break;
1955 copied += read;
1957 err = transport->notify_recv_post_dequeue(
1958 vsk, target, read,
1959 !(flags & MSG_PEEK), &recv_data);
1960 if (err < 0)
1961 goto out;
1963 if (read >= target || flags & MSG_PEEK)
1964 break;
1966 target -= read;
1970 if (sk->sk_err)
1971 err = -sk->sk_err;
1972 else if (sk->sk_shutdown & RCV_SHUTDOWN)
1973 err = 0;
1975 if (copied > 0)
1976 err = copied;
1978 out:
1979 release_sock(sk);
1980 return err;
1983 static const struct proto_ops vsock_stream_ops = {
1984 .family = PF_VSOCK,
1985 .owner = THIS_MODULE,
1986 .release = vsock_release,
1987 .bind = vsock_bind,
1988 .connect = vsock_stream_connect,
1989 .socketpair = sock_no_socketpair,
1990 .accept = vsock_accept,
1991 .getname = vsock_getname,
1992 .poll = vsock_poll,
1993 .ioctl = sock_no_ioctl,
1994 .listen = vsock_listen,
1995 .shutdown = vsock_shutdown,
1996 .setsockopt = vsock_stream_setsockopt,
1997 .getsockopt = vsock_stream_getsockopt,
1998 .sendmsg = vsock_stream_sendmsg,
1999 .recvmsg = vsock_stream_recvmsg,
2000 .mmap = sock_no_mmap,
2001 .sendpage = sock_no_sendpage,
2004 static int vsock_create(struct net *net, struct socket *sock,
2005 int protocol, int kern)
2007 struct vsock_sock *vsk;
2008 struct sock *sk;
2009 int ret;
2011 if (!sock)
2012 return -EINVAL;
2014 if (protocol && protocol != PF_VSOCK)
2015 return -EPROTONOSUPPORT;
2017 switch (sock->type) {
2018 case SOCK_DGRAM:
2019 sock->ops = &vsock_dgram_ops;
2020 break;
2021 case SOCK_STREAM:
2022 sock->ops = &vsock_stream_ops;
2023 break;
2024 default:
2025 return -ESOCKTNOSUPPORT;
2028 sock->state = SS_UNCONNECTED;
2030 sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2031 if (!sk)
2032 return -ENOMEM;
2034 vsk = vsock_sk(sk);
2036 if (sock->type == SOCK_DGRAM) {
2037 ret = vsock_assign_transport(vsk, NULL);
2038 if (ret < 0) {
2039 sock_put(sk);
2040 return ret;
2044 vsock_insert_unbound(vsk);
2046 return 0;
2049 static const struct net_proto_family vsock_family_ops = {
2050 .family = AF_VSOCK,
2051 .create = vsock_create,
2052 .owner = THIS_MODULE,
2055 static long vsock_dev_do_ioctl(struct file *filp,
2056 unsigned int cmd, void __user *ptr)
2058 u32 __user *p = ptr;
2059 u32 cid = VMADDR_CID_ANY;
2060 int retval = 0;
2062 switch (cmd) {
2063 case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2064 /* To be compatible with the VMCI behavior, we prioritize the
2065 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2067 if (transport_g2h)
2068 cid = transport_g2h->get_local_cid();
2069 else if (transport_h2g)
2070 cid = transport_h2g->get_local_cid();
2072 if (put_user(cid, p) != 0)
2073 retval = -EFAULT;
2074 break;
2076 default:
2077 pr_err("Unknown ioctl %d\n", cmd);
2078 retval = -EINVAL;
2081 return retval;
2084 static long vsock_dev_ioctl(struct file *filp,
2085 unsigned int cmd, unsigned long arg)
2087 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2090 #ifdef CONFIG_COMPAT
2091 static long vsock_dev_compat_ioctl(struct file *filp,
2092 unsigned int cmd, unsigned long arg)
2094 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2096 #endif
2098 static const struct file_operations vsock_device_ops = {
2099 .owner = THIS_MODULE,
2100 .unlocked_ioctl = vsock_dev_ioctl,
2101 #ifdef CONFIG_COMPAT
2102 .compat_ioctl = vsock_dev_compat_ioctl,
2103 #endif
2104 .open = nonseekable_open,
2107 static struct miscdevice vsock_device = {
2108 .name = "vsock",
2109 .fops = &vsock_device_ops,
2112 static int __init vsock_init(void)
2114 int err = 0;
2116 vsock_init_tables();
2118 vsock_proto.owner = THIS_MODULE;
2119 vsock_device.minor = MISC_DYNAMIC_MINOR;
2120 err = misc_register(&vsock_device);
2121 if (err) {
2122 pr_err("Failed to register misc device\n");
2123 goto err_reset_transport;
2126 err = proto_register(&vsock_proto, 1); /* we want our slab */
2127 if (err) {
2128 pr_err("Cannot register vsock protocol\n");
2129 goto err_deregister_misc;
2132 err = sock_register(&vsock_family_ops);
2133 if (err) {
2134 pr_err("could not register af_vsock (%d) address family: %d\n",
2135 AF_VSOCK, err);
2136 goto err_unregister_proto;
2139 return 0;
2141 err_unregister_proto:
2142 proto_unregister(&vsock_proto);
2143 err_deregister_misc:
2144 misc_deregister(&vsock_device);
2145 err_reset_transport:
2146 return err;
2149 static void __exit vsock_exit(void)
2151 misc_deregister(&vsock_device);
2152 sock_unregister(AF_VSOCK);
2153 proto_unregister(&vsock_proto);
2156 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2158 return vsk->transport;
2160 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2162 int vsock_core_register(const struct vsock_transport *t, int features)
2164 const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2165 int err = mutex_lock_interruptible(&vsock_register_mutex);
2167 if (err)
2168 return err;
2170 t_h2g = transport_h2g;
2171 t_g2h = transport_g2h;
2172 t_dgram = transport_dgram;
2173 t_local = transport_local;
2175 if (features & VSOCK_TRANSPORT_F_H2G) {
2176 if (t_h2g) {
2177 err = -EBUSY;
2178 goto err_busy;
2180 t_h2g = t;
2183 if (features & VSOCK_TRANSPORT_F_G2H) {
2184 if (t_g2h) {
2185 err = -EBUSY;
2186 goto err_busy;
2188 t_g2h = t;
2191 if (features & VSOCK_TRANSPORT_F_DGRAM) {
2192 if (t_dgram) {
2193 err = -EBUSY;
2194 goto err_busy;
2196 t_dgram = t;
2199 if (features & VSOCK_TRANSPORT_F_LOCAL) {
2200 if (t_local) {
2201 err = -EBUSY;
2202 goto err_busy;
2204 t_local = t;
2207 transport_h2g = t_h2g;
2208 transport_g2h = t_g2h;
2209 transport_dgram = t_dgram;
2210 transport_local = t_local;
2212 err_busy:
2213 mutex_unlock(&vsock_register_mutex);
2214 return err;
2216 EXPORT_SYMBOL_GPL(vsock_core_register);
2218 void vsock_core_unregister(const struct vsock_transport *t)
2220 mutex_lock(&vsock_register_mutex);
2222 if (transport_h2g == t)
2223 transport_h2g = NULL;
2225 if (transport_g2h == t)
2226 transport_g2h = NULL;
2228 if (transport_dgram == t)
2229 transport_dgram = NULL;
2231 if (transport_local == t)
2232 transport_local = NULL;
2234 mutex_unlock(&vsock_register_mutex);
2236 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2238 module_init(vsock_init);
2239 module_exit(vsock_exit);
2241 MODULE_AUTHOR("VMware, Inc.");
2242 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2243 MODULE_VERSION("1.0.2.0-k");
2244 MODULE_LICENSE("GPL v2");