gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / net / wireless / reg.c
blobd476d4da0d096b6c77d30991cc9a9ecb3732e08c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 - 2019 Intel Corporation
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
24 /**
25 * DOC: Wireless regulatory infrastructure
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
67 * Grace period we give before making sure all current interfaces reside on
68 * channels allowed by the current regulatory domain.
70 #define REG_ENFORCE_GRACE_MS 60000
72 /**
73 * enum reg_request_treatment - regulatory request treatment
75 * @REG_REQ_OK: continue processing the regulatory request
76 * @REG_REQ_IGNORE: ignore the regulatory request
77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78 * be intersected with the current one.
79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80 * regulatory settings, and no further processing is required.
82 enum reg_request_treatment {
83 REG_REQ_OK,
84 REG_REQ_IGNORE,
85 REG_REQ_INTERSECT,
86 REG_REQ_ALREADY_SET,
89 static struct regulatory_request core_request_world = {
90 .initiator = NL80211_REGDOM_SET_BY_CORE,
91 .alpha2[0] = '0',
92 .alpha2[1] = '0',
93 .intersect = false,
94 .processed = true,
95 .country_ie_env = ENVIRON_ANY,
99 * Receipt of information from last regulatory request,
100 * protected by RTNL (and can be accessed with RCU protection)
102 static struct regulatory_request __rcu *last_request =
103 (void __force __rcu *)&core_request_world;
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
109 * Central wireless core regulatory domains, we only need two,
110 * the current one and a world regulatory domain in case we have no
111 * information to give us an alpha2.
112 * (protected by RTNL, can be read under RCU)
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
117 * Number of devices that registered to the core
118 * that support cellular base station regulatory hints
119 * (protected by RTNL)
121 static int reg_num_devs_support_basehint;
124 * State variable indicating if the platform on which the devices
125 * are attached is operating in an indoor environment. The state variable
126 * is relevant for all registered devices.
128 static bool reg_is_indoor;
129 static spinlock_t reg_indoor_lock;
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
137 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
139 return rcu_dereference_rtnl(cfg80211_regdomain);
142 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
144 return rcu_dereference_rtnl(wiphy->regd);
147 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
149 switch (dfs_region) {
150 case NL80211_DFS_UNSET:
151 return "unset";
152 case NL80211_DFS_FCC:
153 return "FCC";
154 case NL80211_DFS_ETSI:
155 return "ETSI";
156 case NL80211_DFS_JP:
157 return "JP";
159 return "Unknown";
162 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
164 const struct ieee80211_regdomain *regd = NULL;
165 const struct ieee80211_regdomain *wiphy_regd = NULL;
167 regd = get_cfg80211_regdom();
168 if (!wiphy)
169 goto out;
171 wiphy_regd = get_wiphy_regdom(wiphy);
172 if (!wiphy_regd)
173 goto out;
175 if (wiphy_regd->dfs_region == regd->dfs_region)
176 goto out;
178 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
179 dev_name(&wiphy->dev),
180 reg_dfs_region_str(wiphy_regd->dfs_region),
181 reg_dfs_region_str(regd->dfs_region));
183 out:
184 return regd->dfs_region;
187 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
189 if (!r)
190 return;
191 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
194 static struct regulatory_request *get_last_request(void)
196 return rcu_dereference_rtnl(last_request);
199 /* Used to queue up regulatory hints */
200 static LIST_HEAD(reg_requests_list);
201 static spinlock_t reg_requests_lock;
203 /* Used to queue up beacon hints for review */
204 static LIST_HEAD(reg_pending_beacons);
205 static spinlock_t reg_pending_beacons_lock;
207 /* Used to keep track of processed beacon hints */
208 static LIST_HEAD(reg_beacon_list);
210 struct reg_beacon {
211 struct list_head list;
212 struct ieee80211_channel chan;
215 static void reg_check_chans_work(struct work_struct *work);
216 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
218 static void reg_todo(struct work_struct *work);
219 static DECLARE_WORK(reg_work, reg_todo);
221 /* We keep a static world regulatory domain in case of the absence of CRDA */
222 static const struct ieee80211_regdomain world_regdom = {
223 .n_reg_rules = 8,
224 .alpha2 = "00",
225 .reg_rules = {
226 /* IEEE 802.11b/g, channels 1..11 */
227 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
228 /* IEEE 802.11b/g, channels 12..13. */
229 REG_RULE(2467-10, 2472+10, 20, 6, 20,
230 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
231 /* IEEE 802.11 channel 14 - Only JP enables
232 * this and for 802.11b only */
233 REG_RULE(2484-10, 2484+10, 20, 6, 20,
234 NL80211_RRF_NO_IR |
235 NL80211_RRF_NO_OFDM),
236 /* IEEE 802.11a, channel 36..48 */
237 REG_RULE(5180-10, 5240+10, 80, 6, 20,
238 NL80211_RRF_NO_IR |
239 NL80211_RRF_AUTO_BW),
241 /* IEEE 802.11a, channel 52..64 - DFS required */
242 REG_RULE(5260-10, 5320+10, 80, 6, 20,
243 NL80211_RRF_NO_IR |
244 NL80211_RRF_AUTO_BW |
245 NL80211_RRF_DFS),
247 /* IEEE 802.11a, channel 100..144 - DFS required */
248 REG_RULE(5500-10, 5720+10, 160, 6, 20,
249 NL80211_RRF_NO_IR |
250 NL80211_RRF_DFS),
252 /* IEEE 802.11a, channel 149..165 */
253 REG_RULE(5745-10, 5825+10, 80, 6, 20,
254 NL80211_RRF_NO_IR),
256 /* IEEE 802.11ad (60GHz), channels 1..3 */
257 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
261 /* protected by RTNL */
262 static const struct ieee80211_regdomain *cfg80211_world_regdom =
263 &world_regdom;
265 static char *ieee80211_regdom = "00";
266 static char user_alpha2[2];
267 static const struct ieee80211_regdomain *cfg80211_user_regdom;
269 module_param(ieee80211_regdom, charp, 0444);
270 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
272 static void reg_free_request(struct regulatory_request *request)
274 if (request == &core_request_world)
275 return;
277 if (request != get_last_request())
278 kfree(request);
281 static void reg_free_last_request(void)
283 struct regulatory_request *lr = get_last_request();
285 if (lr != &core_request_world && lr)
286 kfree_rcu(lr, rcu_head);
289 static void reg_update_last_request(struct regulatory_request *request)
291 struct regulatory_request *lr;
293 lr = get_last_request();
294 if (lr == request)
295 return;
297 reg_free_last_request();
298 rcu_assign_pointer(last_request, request);
301 static void reset_regdomains(bool full_reset,
302 const struct ieee80211_regdomain *new_regdom)
304 const struct ieee80211_regdomain *r;
306 ASSERT_RTNL();
308 r = get_cfg80211_regdom();
310 /* avoid freeing static information or freeing something twice */
311 if (r == cfg80211_world_regdom)
312 r = NULL;
313 if (cfg80211_world_regdom == &world_regdom)
314 cfg80211_world_regdom = NULL;
315 if (r == &world_regdom)
316 r = NULL;
318 rcu_free_regdom(r);
319 rcu_free_regdom(cfg80211_world_regdom);
321 cfg80211_world_regdom = &world_regdom;
322 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
324 if (!full_reset)
325 return;
327 reg_update_last_request(&core_request_world);
331 * Dynamic world regulatory domain requested by the wireless
332 * core upon initialization
334 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
336 struct regulatory_request *lr;
338 lr = get_last_request();
340 WARN_ON(!lr);
342 reset_regdomains(false, rd);
344 cfg80211_world_regdom = rd;
347 bool is_world_regdom(const char *alpha2)
349 if (!alpha2)
350 return false;
351 return alpha2[0] == '0' && alpha2[1] == '0';
354 static bool is_alpha2_set(const char *alpha2)
356 if (!alpha2)
357 return false;
358 return alpha2[0] && alpha2[1];
361 static bool is_unknown_alpha2(const char *alpha2)
363 if (!alpha2)
364 return false;
366 * Special case where regulatory domain was built by driver
367 * but a specific alpha2 cannot be determined
369 return alpha2[0] == '9' && alpha2[1] == '9';
372 static bool is_intersected_alpha2(const char *alpha2)
374 if (!alpha2)
375 return false;
377 * Special case where regulatory domain is the
378 * result of an intersection between two regulatory domain
379 * structures
381 return alpha2[0] == '9' && alpha2[1] == '8';
384 static bool is_an_alpha2(const char *alpha2)
386 if (!alpha2)
387 return false;
388 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
391 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
393 if (!alpha2_x || !alpha2_y)
394 return false;
395 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
398 static bool regdom_changes(const char *alpha2)
400 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
402 if (!r)
403 return true;
404 return !alpha2_equal(r->alpha2, alpha2);
408 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
409 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
410 * has ever been issued.
412 static bool is_user_regdom_saved(void)
414 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
415 return false;
417 /* This would indicate a mistake on the design */
418 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
419 "Unexpected user alpha2: %c%c\n",
420 user_alpha2[0], user_alpha2[1]))
421 return false;
423 return true;
426 static const struct ieee80211_regdomain *
427 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
429 struct ieee80211_regdomain *regd;
430 unsigned int i;
432 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
433 GFP_KERNEL);
434 if (!regd)
435 return ERR_PTR(-ENOMEM);
437 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
439 for (i = 0; i < src_regd->n_reg_rules; i++)
440 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
441 sizeof(struct ieee80211_reg_rule));
443 return regd;
446 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
448 ASSERT_RTNL();
450 if (!IS_ERR(cfg80211_user_regdom))
451 kfree(cfg80211_user_regdom);
452 cfg80211_user_regdom = reg_copy_regd(rd);
455 struct reg_regdb_apply_request {
456 struct list_head list;
457 const struct ieee80211_regdomain *regdom;
460 static LIST_HEAD(reg_regdb_apply_list);
461 static DEFINE_MUTEX(reg_regdb_apply_mutex);
463 static void reg_regdb_apply(struct work_struct *work)
465 struct reg_regdb_apply_request *request;
467 rtnl_lock();
469 mutex_lock(&reg_regdb_apply_mutex);
470 while (!list_empty(&reg_regdb_apply_list)) {
471 request = list_first_entry(&reg_regdb_apply_list,
472 struct reg_regdb_apply_request,
473 list);
474 list_del(&request->list);
476 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
477 kfree(request);
479 mutex_unlock(&reg_regdb_apply_mutex);
481 rtnl_unlock();
484 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
486 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
488 struct reg_regdb_apply_request *request;
490 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
491 if (!request) {
492 kfree(regdom);
493 return -ENOMEM;
496 request->regdom = regdom;
498 mutex_lock(&reg_regdb_apply_mutex);
499 list_add_tail(&request->list, &reg_regdb_apply_list);
500 mutex_unlock(&reg_regdb_apply_mutex);
502 schedule_work(&reg_regdb_work);
503 return 0;
506 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
507 /* Max number of consecutive attempts to communicate with CRDA */
508 #define REG_MAX_CRDA_TIMEOUTS 10
510 static u32 reg_crda_timeouts;
512 static void crda_timeout_work(struct work_struct *work);
513 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
515 static void crda_timeout_work(struct work_struct *work)
517 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
518 rtnl_lock();
519 reg_crda_timeouts++;
520 restore_regulatory_settings(true, false);
521 rtnl_unlock();
524 static void cancel_crda_timeout(void)
526 cancel_delayed_work(&crda_timeout);
529 static void cancel_crda_timeout_sync(void)
531 cancel_delayed_work_sync(&crda_timeout);
534 static void reset_crda_timeouts(void)
536 reg_crda_timeouts = 0;
540 * This lets us keep regulatory code which is updated on a regulatory
541 * basis in userspace.
543 static int call_crda(const char *alpha2)
545 char country[12];
546 char *env[] = { country, NULL };
547 int ret;
549 snprintf(country, sizeof(country), "COUNTRY=%c%c",
550 alpha2[0], alpha2[1]);
552 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
553 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
554 return -EINVAL;
557 if (!is_world_regdom((char *) alpha2))
558 pr_debug("Calling CRDA for country: %c%c\n",
559 alpha2[0], alpha2[1]);
560 else
561 pr_debug("Calling CRDA to update world regulatory domain\n");
563 ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
564 if (ret)
565 return ret;
567 queue_delayed_work(system_power_efficient_wq,
568 &crda_timeout, msecs_to_jiffies(3142));
569 return 0;
571 #else
572 static inline void cancel_crda_timeout(void) {}
573 static inline void cancel_crda_timeout_sync(void) {}
574 static inline void reset_crda_timeouts(void) {}
575 static inline int call_crda(const char *alpha2)
577 return -ENODATA;
579 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
581 /* code to directly load a firmware database through request_firmware */
582 static const struct fwdb_header *regdb;
584 struct fwdb_country {
585 u8 alpha2[2];
586 __be16 coll_ptr;
587 /* this struct cannot be extended */
588 } __packed __aligned(4);
590 struct fwdb_collection {
591 u8 len;
592 u8 n_rules;
593 u8 dfs_region;
594 /* no optional data yet */
595 /* aligned to 2, then followed by __be16 array of rule pointers */
596 } __packed __aligned(4);
598 enum fwdb_flags {
599 FWDB_FLAG_NO_OFDM = BIT(0),
600 FWDB_FLAG_NO_OUTDOOR = BIT(1),
601 FWDB_FLAG_DFS = BIT(2),
602 FWDB_FLAG_NO_IR = BIT(3),
603 FWDB_FLAG_AUTO_BW = BIT(4),
606 struct fwdb_wmm_ac {
607 u8 ecw;
608 u8 aifsn;
609 __be16 cot;
610 } __packed;
612 struct fwdb_wmm_rule {
613 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
614 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
615 } __packed;
617 struct fwdb_rule {
618 u8 len;
619 u8 flags;
620 __be16 max_eirp;
621 __be32 start, end, max_bw;
622 /* start of optional data */
623 __be16 cac_timeout;
624 __be16 wmm_ptr;
625 } __packed __aligned(4);
627 #define FWDB_MAGIC 0x52474442
628 #define FWDB_VERSION 20
630 struct fwdb_header {
631 __be32 magic;
632 __be32 version;
633 struct fwdb_country country[];
634 } __packed __aligned(4);
636 static int ecw2cw(int ecw)
638 return (1 << ecw) - 1;
641 static bool valid_wmm(struct fwdb_wmm_rule *rule)
643 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
644 int i;
646 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
647 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
648 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
649 u8 aifsn = ac[i].aifsn;
651 if (cw_min >= cw_max)
652 return false;
654 if (aifsn < 1)
655 return false;
658 return true;
661 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
663 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
665 if ((u8 *)rule + sizeof(rule->len) > data + size)
666 return false;
668 /* mandatory fields */
669 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
670 return false;
671 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
672 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
673 struct fwdb_wmm_rule *wmm;
675 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
676 return false;
678 wmm = (void *)(data + wmm_ptr);
680 if (!valid_wmm(wmm))
681 return false;
683 return true;
686 static bool valid_country(const u8 *data, unsigned int size,
687 const struct fwdb_country *country)
689 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
690 struct fwdb_collection *coll = (void *)(data + ptr);
691 __be16 *rules_ptr;
692 unsigned int i;
694 /* make sure we can read len/n_rules */
695 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
696 return false;
698 /* make sure base struct and all rules fit */
699 if ((u8 *)coll + ALIGN(coll->len, 2) +
700 (coll->n_rules * 2) > data + size)
701 return false;
703 /* mandatory fields must exist */
704 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
705 return false;
707 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
709 for (i = 0; i < coll->n_rules; i++) {
710 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
712 if (!valid_rule(data, size, rule_ptr))
713 return false;
716 return true;
719 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
720 static struct key *builtin_regdb_keys;
722 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
724 const u8 *end = p + buflen;
725 size_t plen;
726 key_ref_t key;
728 while (p < end) {
729 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
730 * than 256 bytes in size.
732 if (end - p < 4)
733 goto dodgy_cert;
734 if (p[0] != 0x30 &&
735 p[1] != 0x82)
736 goto dodgy_cert;
737 plen = (p[2] << 8) | p[3];
738 plen += 4;
739 if (plen > end - p)
740 goto dodgy_cert;
742 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
743 "asymmetric", NULL, p, plen,
744 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
745 KEY_USR_VIEW | KEY_USR_READ),
746 KEY_ALLOC_NOT_IN_QUOTA |
747 KEY_ALLOC_BUILT_IN |
748 KEY_ALLOC_BYPASS_RESTRICTION);
749 if (IS_ERR(key)) {
750 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
751 PTR_ERR(key));
752 } else {
753 pr_notice("Loaded X.509 cert '%s'\n",
754 key_ref_to_ptr(key)->description);
755 key_ref_put(key);
757 p += plen;
760 return;
762 dodgy_cert:
763 pr_err("Problem parsing in-kernel X.509 certificate list\n");
766 static int __init load_builtin_regdb_keys(void)
768 builtin_regdb_keys =
769 keyring_alloc(".builtin_regdb_keys",
770 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
771 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
772 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
773 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
774 if (IS_ERR(builtin_regdb_keys))
775 return PTR_ERR(builtin_regdb_keys);
777 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
779 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
780 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
781 #endif
782 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
783 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
784 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
785 #endif
787 return 0;
790 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
792 const struct firmware *sig;
793 bool result;
795 if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
796 return false;
798 result = verify_pkcs7_signature(data, size, sig->data, sig->size,
799 builtin_regdb_keys,
800 VERIFYING_UNSPECIFIED_SIGNATURE,
801 NULL, NULL) == 0;
803 release_firmware(sig);
805 return result;
808 static void free_regdb_keyring(void)
810 key_put(builtin_regdb_keys);
812 #else
813 static int load_builtin_regdb_keys(void)
815 return 0;
818 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
820 return true;
823 static void free_regdb_keyring(void)
826 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
828 static bool valid_regdb(const u8 *data, unsigned int size)
830 const struct fwdb_header *hdr = (void *)data;
831 const struct fwdb_country *country;
833 if (size < sizeof(*hdr))
834 return false;
836 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
837 return false;
839 if (hdr->version != cpu_to_be32(FWDB_VERSION))
840 return false;
842 if (!regdb_has_valid_signature(data, size))
843 return false;
845 country = &hdr->country[0];
846 while ((u8 *)(country + 1) <= data + size) {
847 if (!country->coll_ptr)
848 break;
849 if (!valid_country(data, size, country))
850 return false;
851 country++;
854 return true;
857 static void set_wmm_rule(const struct fwdb_header *db,
858 const struct fwdb_country *country,
859 const struct fwdb_rule *rule,
860 struct ieee80211_reg_rule *rrule)
862 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
863 struct fwdb_wmm_rule *wmm;
864 unsigned int i, wmm_ptr;
866 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
867 wmm = (void *)((u8 *)db + wmm_ptr);
869 if (!valid_wmm(wmm)) {
870 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
871 be32_to_cpu(rule->start), be32_to_cpu(rule->end),
872 country->alpha2[0], country->alpha2[1]);
873 return;
876 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
877 wmm_rule->client[i].cw_min =
878 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
879 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
880 wmm_rule->client[i].aifsn = wmm->client[i].aifsn;
881 wmm_rule->client[i].cot =
882 1000 * be16_to_cpu(wmm->client[i].cot);
883 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
884 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
885 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
886 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
889 rrule->has_wmm = true;
892 static int __regdb_query_wmm(const struct fwdb_header *db,
893 const struct fwdb_country *country, int freq,
894 struct ieee80211_reg_rule *rrule)
896 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
897 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
898 int i;
900 for (i = 0; i < coll->n_rules; i++) {
901 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
902 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
903 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
905 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
906 continue;
908 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
909 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
910 set_wmm_rule(db, country, rule, rrule);
911 return 0;
915 return -ENODATA;
918 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
920 const struct fwdb_header *hdr = regdb;
921 const struct fwdb_country *country;
923 if (!regdb)
924 return -ENODATA;
926 if (IS_ERR(regdb))
927 return PTR_ERR(regdb);
929 country = &hdr->country[0];
930 while (country->coll_ptr) {
931 if (alpha2_equal(alpha2, country->alpha2))
932 return __regdb_query_wmm(regdb, country, freq, rule);
934 country++;
937 return -ENODATA;
939 EXPORT_SYMBOL(reg_query_regdb_wmm);
941 static int regdb_query_country(const struct fwdb_header *db,
942 const struct fwdb_country *country)
944 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
945 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
946 struct ieee80211_regdomain *regdom;
947 unsigned int i;
949 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
950 GFP_KERNEL);
951 if (!regdom)
952 return -ENOMEM;
954 regdom->n_reg_rules = coll->n_rules;
955 regdom->alpha2[0] = country->alpha2[0];
956 regdom->alpha2[1] = country->alpha2[1];
957 regdom->dfs_region = coll->dfs_region;
959 for (i = 0; i < regdom->n_reg_rules; i++) {
960 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
961 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
962 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
963 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
965 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
966 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
967 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
969 rrule->power_rule.max_antenna_gain = 0;
970 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
972 rrule->flags = 0;
973 if (rule->flags & FWDB_FLAG_NO_OFDM)
974 rrule->flags |= NL80211_RRF_NO_OFDM;
975 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
976 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
977 if (rule->flags & FWDB_FLAG_DFS)
978 rrule->flags |= NL80211_RRF_DFS;
979 if (rule->flags & FWDB_FLAG_NO_IR)
980 rrule->flags |= NL80211_RRF_NO_IR;
981 if (rule->flags & FWDB_FLAG_AUTO_BW)
982 rrule->flags |= NL80211_RRF_AUTO_BW;
984 rrule->dfs_cac_ms = 0;
986 /* handle optional data */
987 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
988 rrule->dfs_cac_ms =
989 1000 * be16_to_cpu(rule->cac_timeout);
990 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
991 set_wmm_rule(db, country, rule, rrule);
994 return reg_schedule_apply(regdom);
997 static int query_regdb(const char *alpha2)
999 const struct fwdb_header *hdr = regdb;
1000 const struct fwdb_country *country;
1002 ASSERT_RTNL();
1004 if (IS_ERR(regdb))
1005 return PTR_ERR(regdb);
1007 country = &hdr->country[0];
1008 while (country->coll_ptr) {
1009 if (alpha2_equal(alpha2, country->alpha2))
1010 return regdb_query_country(regdb, country);
1011 country++;
1014 return -ENODATA;
1017 static void regdb_fw_cb(const struct firmware *fw, void *context)
1019 int set_error = 0;
1020 bool restore = true;
1021 void *db;
1023 if (!fw) {
1024 pr_info("failed to load regulatory.db\n");
1025 set_error = -ENODATA;
1026 } else if (!valid_regdb(fw->data, fw->size)) {
1027 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1028 set_error = -EINVAL;
1031 rtnl_lock();
1032 if (regdb && !IS_ERR(regdb)) {
1033 /* negative case - a bug
1034 * positive case - can happen due to race in case of multiple cb's in
1035 * queue, due to usage of asynchronous callback
1037 * Either case, just restore and free new db.
1039 } else if (set_error) {
1040 regdb = ERR_PTR(set_error);
1041 } else if (fw) {
1042 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1043 if (db) {
1044 regdb = db;
1045 restore = context && query_regdb(context);
1046 } else {
1047 restore = true;
1051 if (restore)
1052 restore_regulatory_settings(true, false);
1054 rtnl_unlock();
1056 kfree(context);
1058 release_firmware(fw);
1061 static int query_regdb_file(const char *alpha2)
1063 ASSERT_RTNL();
1065 if (regdb)
1066 return query_regdb(alpha2);
1068 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1069 if (!alpha2)
1070 return -ENOMEM;
1072 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1073 &reg_pdev->dev, GFP_KERNEL,
1074 (void *)alpha2, regdb_fw_cb);
1077 int reg_reload_regdb(void)
1079 const struct firmware *fw;
1080 void *db;
1081 int err;
1083 err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1084 if (err)
1085 return err;
1087 if (!valid_regdb(fw->data, fw->size)) {
1088 err = -ENODATA;
1089 goto out;
1092 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1093 if (!db) {
1094 err = -ENOMEM;
1095 goto out;
1098 rtnl_lock();
1099 if (!IS_ERR_OR_NULL(regdb))
1100 kfree(regdb);
1101 regdb = db;
1102 rtnl_unlock();
1104 out:
1105 release_firmware(fw);
1106 return err;
1109 static bool reg_query_database(struct regulatory_request *request)
1111 if (query_regdb_file(request->alpha2) == 0)
1112 return true;
1114 if (call_crda(request->alpha2) == 0)
1115 return true;
1117 return false;
1120 bool reg_is_valid_request(const char *alpha2)
1122 struct regulatory_request *lr = get_last_request();
1124 if (!lr || lr->processed)
1125 return false;
1127 return alpha2_equal(lr->alpha2, alpha2);
1130 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1132 struct regulatory_request *lr = get_last_request();
1135 * Follow the driver's regulatory domain, if present, unless a country
1136 * IE has been processed or a user wants to help complaince further
1138 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1139 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1140 wiphy->regd)
1141 return get_wiphy_regdom(wiphy);
1143 return get_cfg80211_regdom();
1146 static unsigned int
1147 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1148 const struct ieee80211_reg_rule *rule)
1150 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1151 const struct ieee80211_freq_range *freq_range_tmp;
1152 const struct ieee80211_reg_rule *tmp;
1153 u32 start_freq, end_freq, idx, no;
1155 for (idx = 0; idx < rd->n_reg_rules; idx++)
1156 if (rule == &rd->reg_rules[idx])
1157 break;
1159 if (idx == rd->n_reg_rules)
1160 return 0;
1162 /* get start_freq */
1163 no = idx;
1165 while (no) {
1166 tmp = &rd->reg_rules[--no];
1167 freq_range_tmp = &tmp->freq_range;
1169 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1170 break;
1172 freq_range = freq_range_tmp;
1175 start_freq = freq_range->start_freq_khz;
1177 /* get end_freq */
1178 freq_range = &rule->freq_range;
1179 no = idx;
1181 while (no < rd->n_reg_rules - 1) {
1182 tmp = &rd->reg_rules[++no];
1183 freq_range_tmp = &tmp->freq_range;
1185 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1186 break;
1188 freq_range = freq_range_tmp;
1191 end_freq = freq_range->end_freq_khz;
1193 return end_freq - start_freq;
1196 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1197 const struct ieee80211_reg_rule *rule)
1199 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1201 if (rule->flags & NL80211_RRF_NO_160MHZ)
1202 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1203 if (rule->flags & NL80211_RRF_NO_80MHZ)
1204 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1207 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1208 * are not allowed.
1210 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1211 rule->flags & NL80211_RRF_NO_HT40PLUS)
1212 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1214 return bw;
1217 /* Sanity check on a regulatory rule */
1218 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1220 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1221 u32 freq_diff;
1223 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1224 return false;
1226 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1227 return false;
1229 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1231 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1232 freq_range->max_bandwidth_khz > freq_diff)
1233 return false;
1235 return true;
1238 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1240 const struct ieee80211_reg_rule *reg_rule = NULL;
1241 unsigned int i;
1243 if (!rd->n_reg_rules)
1244 return false;
1246 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1247 return false;
1249 for (i = 0; i < rd->n_reg_rules; i++) {
1250 reg_rule = &rd->reg_rules[i];
1251 if (!is_valid_reg_rule(reg_rule))
1252 return false;
1255 return true;
1259 * freq_in_rule_band - tells us if a frequency is in a frequency band
1260 * @freq_range: frequency rule we want to query
1261 * @freq_khz: frequency we are inquiring about
1263 * This lets us know if a specific frequency rule is or is not relevant to
1264 * a specific frequency's band. Bands are device specific and artificial
1265 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1266 * however it is safe for now to assume that a frequency rule should not be
1267 * part of a frequency's band if the start freq or end freq are off by more
1268 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1269 * 60 GHz band.
1270 * This resolution can be lowered and should be considered as we add
1271 * regulatory rule support for other "bands".
1273 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1274 u32 freq_khz)
1276 #define ONE_GHZ_IN_KHZ 1000000
1278 * From 802.11ad: directional multi-gigabit (DMG):
1279 * Pertaining to operation in a frequency band containing a channel
1280 * with the Channel starting frequency above 45 GHz.
1282 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1283 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1284 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1285 return true;
1286 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1287 return true;
1288 return false;
1289 #undef ONE_GHZ_IN_KHZ
1293 * Later on we can perhaps use the more restrictive DFS
1294 * region but we don't have information for that yet so
1295 * for now simply disallow conflicts.
1297 static enum nl80211_dfs_regions
1298 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1299 const enum nl80211_dfs_regions dfs_region2)
1301 if (dfs_region1 != dfs_region2)
1302 return NL80211_DFS_UNSET;
1303 return dfs_region1;
1306 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1307 const struct ieee80211_wmm_ac *wmm_ac2,
1308 struct ieee80211_wmm_ac *intersect)
1310 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1311 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1312 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1313 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1317 * Helper for regdom_intersect(), this does the real
1318 * mathematical intersection fun
1320 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1321 const struct ieee80211_regdomain *rd2,
1322 const struct ieee80211_reg_rule *rule1,
1323 const struct ieee80211_reg_rule *rule2,
1324 struct ieee80211_reg_rule *intersected_rule)
1326 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1327 struct ieee80211_freq_range *freq_range;
1328 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1329 struct ieee80211_power_rule *power_rule;
1330 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1331 struct ieee80211_wmm_rule *wmm_rule;
1332 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1334 freq_range1 = &rule1->freq_range;
1335 freq_range2 = &rule2->freq_range;
1336 freq_range = &intersected_rule->freq_range;
1338 power_rule1 = &rule1->power_rule;
1339 power_rule2 = &rule2->power_rule;
1340 power_rule = &intersected_rule->power_rule;
1342 wmm_rule1 = &rule1->wmm_rule;
1343 wmm_rule2 = &rule2->wmm_rule;
1344 wmm_rule = &intersected_rule->wmm_rule;
1346 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1347 freq_range2->start_freq_khz);
1348 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1349 freq_range2->end_freq_khz);
1351 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1352 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1354 if (rule1->flags & NL80211_RRF_AUTO_BW)
1355 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1356 if (rule2->flags & NL80211_RRF_AUTO_BW)
1357 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1359 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1361 intersected_rule->flags = rule1->flags | rule2->flags;
1364 * In case NL80211_RRF_AUTO_BW requested for both rules
1365 * set AUTO_BW in intersected rule also. Next we will
1366 * calculate BW correctly in handle_channel function.
1367 * In other case remove AUTO_BW flag while we calculate
1368 * maximum bandwidth correctly and auto calculation is
1369 * not required.
1371 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1372 (rule2->flags & NL80211_RRF_AUTO_BW))
1373 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1374 else
1375 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1377 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1378 if (freq_range->max_bandwidth_khz > freq_diff)
1379 freq_range->max_bandwidth_khz = freq_diff;
1381 power_rule->max_eirp = min(power_rule1->max_eirp,
1382 power_rule2->max_eirp);
1383 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1384 power_rule2->max_antenna_gain);
1386 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1387 rule2->dfs_cac_ms);
1389 if (rule1->has_wmm && rule2->has_wmm) {
1390 u8 ac;
1392 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1393 reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1394 &wmm_rule2->client[ac],
1395 &wmm_rule->client[ac]);
1396 reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1397 &wmm_rule2->ap[ac],
1398 &wmm_rule->ap[ac]);
1401 intersected_rule->has_wmm = true;
1402 } else if (rule1->has_wmm) {
1403 *wmm_rule = *wmm_rule1;
1404 intersected_rule->has_wmm = true;
1405 } else if (rule2->has_wmm) {
1406 *wmm_rule = *wmm_rule2;
1407 intersected_rule->has_wmm = true;
1408 } else {
1409 intersected_rule->has_wmm = false;
1412 if (!is_valid_reg_rule(intersected_rule))
1413 return -EINVAL;
1415 return 0;
1418 /* check whether old rule contains new rule */
1419 static bool rule_contains(struct ieee80211_reg_rule *r1,
1420 struct ieee80211_reg_rule *r2)
1422 /* for simplicity, currently consider only same flags */
1423 if (r1->flags != r2->flags)
1424 return false;
1426 /* verify r1 is more restrictive */
1427 if ((r1->power_rule.max_antenna_gain >
1428 r2->power_rule.max_antenna_gain) ||
1429 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1430 return false;
1432 /* make sure r2's range is contained within r1 */
1433 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1434 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1435 return false;
1437 /* and finally verify that r1.max_bw >= r2.max_bw */
1438 if (r1->freq_range.max_bandwidth_khz <
1439 r2->freq_range.max_bandwidth_khz)
1440 return false;
1442 return true;
1445 /* add or extend current rules. do nothing if rule is already contained */
1446 static void add_rule(struct ieee80211_reg_rule *rule,
1447 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1449 struct ieee80211_reg_rule *tmp_rule;
1450 int i;
1452 for (i = 0; i < *n_rules; i++) {
1453 tmp_rule = &reg_rules[i];
1454 /* rule is already contained - do nothing */
1455 if (rule_contains(tmp_rule, rule))
1456 return;
1458 /* extend rule if possible */
1459 if (rule_contains(rule, tmp_rule)) {
1460 memcpy(tmp_rule, rule, sizeof(*rule));
1461 return;
1465 memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1466 (*n_rules)++;
1470 * regdom_intersect - do the intersection between two regulatory domains
1471 * @rd1: first regulatory domain
1472 * @rd2: second regulatory domain
1474 * Use this function to get the intersection between two regulatory domains.
1475 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1476 * as no one single alpha2 can represent this regulatory domain.
1478 * Returns a pointer to the regulatory domain structure which will hold the
1479 * resulting intersection of rules between rd1 and rd2. We will
1480 * kzalloc() this structure for you.
1482 static struct ieee80211_regdomain *
1483 regdom_intersect(const struct ieee80211_regdomain *rd1,
1484 const struct ieee80211_regdomain *rd2)
1486 int r;
1487 unsigned int x, y;
1488 unsigned int num_rules = 0;
1489 const struct ieee80211_reg_rule *rule1, *rule2;
1490 struct ieee80211_reg_rule intersected_rule;
1491 struct ieee80211_regdomain *rd;
1493 if (!rd1 || !rd2)
1494 return NULL;
1497 * First we get a count of the rules we'll need, then we actually
1498 * build them. This is to so we can malloc() and free() a
1499 * regdomain once. The reason we use reg_rules_intersect() here
1500 * is it will return -EINVAL if the rule computed makes no sense.
1501 * All rules that do check out OK are valid.
1504 for (x = 0; x < rd1->n_reg_rules; x++) {
1505 rule1 = &rd1->reg_rules[x];
1506 for (y = 0; y < rd2->n_reg_rules; y++) {
1507 rule2 = &rd2->reg_rules[y];
1508 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1509 &intersected_rule))
1510 num_rules++;
1514 if (!num_rules)
1515 return NULL;
1517 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1518 if (!rd)
1519 return NULL;
1521 for (x = 0; x < rd1->n_reg_rules; x++) {
1522 rule1 = &rd1->reg_rules[x];
1523 for (y = 0; y < rd2->n_reg_rules; y++) {
1524 rule2 = &rd2->reg_rules[y];
1525 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1526 &intersected_rule);
1528 * No need to memset here the intersected rule here as
1529 * we're not using the stack anymore
1531 if (r)
1532 continue;
1534 add_rule(&intersected_rule, rd->reg_rules,
1535 &rd->n_reg_rules);
1539 rd->alpha2[0] = '9';
1540 rd->alpha2[1] = '8';
1541 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1542 rd2->dfs_region);
1544 return rd;
1548 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1549 * want to just have the channel structure use these
1551 static u32 map_regdom_flags(u32 rd_flags)
1553 u32 channel_flags = 0;
1554 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1555 channel_flags |= IEEE80211_CHAN_NO_IR;
1556 if (rd_flags & NL80211_RRF_DFS)
1557 channel_flags |= IEEE80211_CHAN_RADAR;
1558 if (rd_flags & NL80211_RRF_NO_OFDM)
1559 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1560 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1561 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1562 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1563 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1564 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1565 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1566 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1567 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1568 if (rd_flags & NL80211_RRF_NO_80MHZ)
1569 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1570 if (rd_flags & NL80211_RRF_NO_160MHZ)
1571 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1572 if (rd_flags & NL80211_RRF_NO_HE)
1573 channel_flags |= IEEE80211_CHAN_NO_HE;
1574 return channel_flags;
1577 static const struct ieee80211_reg_rule *
1578 freq_reg_info_regd(u32 center_freq,
1579 const struct ieee80211_regdomain *regd, u32 bw)
1581 int i;
1582 bool band_rule_found = false;
1583 bool bw_fits = false;
1585 if (!regd)
1586 return ERR_PTR(-EINVAL);
1588 for (i = 0; i < regd->n_reg_rules; i++) {
1589 const struct ieee80211_reg_rule *rr;
1590 const struct ieee80211_freq_range *fr = NULL;
1592 rr = &regd->reg_rules[i];
1593 fr = &rr->freq_range;
1596 * We only need to know if one frequency rule was
1597 * was in center_freq's band, that's enough, so lets
1598 * not overwrite it once found
1600 if (!band_rule_found)
1601 band_rule_found = freq_in_rule_band(fr, center_freq);
1603 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1605 if (band_rule_found && bw_fits)
1606 return rr;
1609 if (!band_rule_found)
1610 return ERR_PTR(-ERANGE);
1612 return ERR_PTR(-EINVAL);
1615 static const struct ieee80211_reg_rule *
1616 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1618 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1619 const struct ieee80211_reg_rule *reg_rule = NULL;
1620 u32 bw;
1622 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1623 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1624 if (!IS_ERR(reg_rule))
1625 return reg_rule;
1628 return reg_rule;
1631 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1632 u32 center_freq)
1634 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1636 EXPORT_SYMBOL(freq_reg_info);
1638 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1640 switch (initiator) {
1641 case NL80211_REGDOM_SET_BY_CORE:
1642 return "core";
1643 case NL80211_REGDOM_SET_BY_USER:
1644 return "user";
1645 case NL80211_REGDOM_SET_BY_DRIVER:
1646 return "driver";
1647 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1648 return "country element";
1649 default:
1650 WARN_ON(1);
1651 return "bug";
1654 EXPORT_SYMBOL(reg_initiator_name);
1656 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1657 const struct ieee80211_reg_rule *reg_rule,
1658 const struct ieee80211_channel *chan)
1660 const struct ieee80211_freq_range *freq_range = NULL;
1661 u32 max_bandwidth_khz, bw_flags = 0;
1663 freq_range = &reg_rule->freq_range;
1665 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1666 /* Check if auto calculation requested */
1667 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1668 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1670 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1671 if (!cfg80211_does_bw_fit_range(freq_range,
1672 MHZ_TO_KHZ(chan->center_freq),
1673 MHZ_TO_KHZ(10)))
1674 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1675 if (!cfg80211_does_bw_fit_range(freq_range,
1676 MHZ_TO_KHZ(chan->center_freq),
1677 MHZ_TO_KHZ(20)))
1678 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1680 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1681 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1682 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1683 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1684 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1685 bw_flags |= IEEE80211_CHAN_NO_HT40;
1686 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1687 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1688 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1689 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1690 return bw_flags;
1694 * Note that right now we assume the desired channel bandwidth
1695 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1696 * per channel, the primary and the extension channel).
1698 static void handle_channel(struct wiphy *wiphy,
1699 enum nl80211_reg_initiator initiator,
1700 struct ieee80211_channel *chan)
1702 u32 flags, bw_flags = 0;
1703 const struct ieee80211_reg_rule *reg_rule = NULL;
1704 const struct ieee80211_power_rule *power_rule = NULL;
1705 struct wiphy *request_wiphy = NULL;
1706 struct regulatory_request *lr = get_last_request();
1707 const struct ieee80211_regdomain *regd;
1709 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1711 flags = chan->orig_flags;
1713 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1714 if (IS_ERR(reg_rule)) {
1716 * We will disable all channels that do not match our
1717 * received regulatory rule unless the hint is coming
1718 * from a Country IE and the Country IE had no information
1719 * about a band. The IEEE 802.11 spec allows for an AP
1720 * to send only a subset of the regulatory rules allowed,
1721 * so an AP in the US that only supports 2.4 GHz may only send
1722 * a country IE with information for the 2.4 GHz band
1723 * while 5 GHz is still supported.
1725 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1726 PTR_ERR(reg_rule) == -ERANGE)
1727 return;
1729 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1730 request_wiphy && request_wiphy == wiphy &&
1731 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1732 pr_debug("Disabling freq %d MHz for good\n",
1733 chan->center_freq);
1734 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1735 chan->flags = chan->orig_flags;
1736 } else {
1737 pr_debug("Disabling freq %d MHz\n",
1738 chan->center_freq);
1739 chan->flags |= IEEE80211_CHAN_DISABLED;
1741 return;
1744 regd = reg_get_regdomain(wiphy);
1746 power_rule = &reg_rule->power_rule;
1747 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1749 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1750 request_wiphy && request_wiphy == wiphy &&
1751 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1753 * This guarantees the driver's requested regulatory domain
1754 * will always be used as a base for further regulatory
1755 * settings
1757 chan->flags = chan->orig_flags =
1758 map_regdom_flags(reg_rule->flags) | bw_flags;
1759 chan->max_antenna_gain = chan->orig_mag =
1760 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1761 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1762 (int) MBM_TO_DBM(power_rule->max_eirp);
1764 if (chan->flags & IEEE80211_CHAN_RADAR) {
1765 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1766 if (reg_rule->dfs_cac_ms)
1767 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1770 return;
1773 chan->dfs_state = NL80211_DFS_USABLE;
1774 chan->dfs_state_entered = jiffies;
1776 chan->beacon_found = false;
1777 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1778 chan->max_antenna_gain =
1779 min_t(int, chan->orig_mag,
1780 MBI_TO_DBI(power_rule->max_antenna_gain));
1781 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1783 if (chan->flags & IEEE80211_CHAN_RADAR) {
1784 if (reg_rule->dfs_cac_ms)
1785 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1786 else
1787 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1790 if (chan->orig_mpwr) {
1792 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1793 * will always follow the passed country IE power settings.
1795 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1796 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1797 chan->max_power = chan->max_reg_power;
1798 else
1799 chan->max_power = min(chan->orig_mpwr,
1800 chan->max_reg_power);
1801 } else
1802 chan->max_power = chan->max_reg_power;
1805 static void handle_band(struct wiphy *wiphy,
1806 enum nl80211_reg_initiator initiator,
1807 struct ieee80211_supported_band *sband)
1809 unsigned int i;
1811 if (!sband)
1812 return;
1814 for (i = 0; i < sband->n_channels; i++)
1815 handle_channel(wiphy, initiator, &sband->channels[i]);
1818 static bool reg_request_cell_base(struct regulatory_request *request)
1820 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1821 return false;
1822 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1825 bool reg_last_request_cell_base(void)
1827 return reg_request_cell_base(get_last_request());
1830 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1831 /* Core specific check */
1832 static enum reg_request_treatment
1833 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1835 struct regulatory_request *lr = get_last_request();
1837 if (!reg_num_devs_support_basehint)
1838 return REG_REQ_IGNORE;
1840 if (reg_request_cell_base(lr) &&
1841 !regdom_changes(pending_request->alpha2))
1842 return REG_REQ_ALREADY_SET;
1844 return REG_REQ_OK;
1847 /* Device specific check */
1848 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1850 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1852 #else
1853 static enum reg_request_treatment
1854 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1856 return REG_REQ_IGNORE;
1859 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1861 return true;
1863 #endif
1865 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1867 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1868 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1869 return true;
1870 return false;
1873 static bool ignore_reg_update(struct wiphy *wiphy,
1874 enum nl80211_reg_initiator initiator)
1876 struct regulatory_request *lr = get_last_request();
1878 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1879 return true;
1881 if (!lr) {
1882 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1883 reg_initiator_name(initiator));
1884 return true;
1887 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1888 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1889 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1890 reg_initiator_name(initiator));
1891 return true;
1895 * wiphy->regd will be set once the device has its own
1896 * desired regulatory domain set
1898 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1899 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1900 !is_world_regdom(lr->alpha2)) {
1901 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1902 reg_initiator_name(initiator));
1903 return true;
1906 if (reg_request_cell_base(lr))
1907 return reg_dev_ignore_cell_hint(wiphy);
1909 return false;
1912 static bool reg_is_world_roaming(struct wiphy *wiphy)
1914 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1915 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1916 struct regulatory_request *lr = get_last_request();
1918 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1919 return true;
1921 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1922 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1923 return true;
1925 return false;
1928 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1929 struct reg_beacon *reg_beacon)
1931 struct ieee80211_supported_band *sband;
1932 struct ieee80211_channel *chan;
1933 bool channel_changed = false;
1934 struct ieee80211_channel chan_before;
1936 sband = wiphy->bands[reg_beacon->chan.band];
1937 chan = &sband->channels[chan_idx];
1939 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1940 return;
1942 if (chan->beacon_found)
1943 return;
1945 chan->beacon_found = true;
1947 if (!reg_is_world_roaming(wiphy))
1948 return;
1950 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1951 return;
1953 chan_before = *chan;
1955 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1956 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1957 channel_changed = true;
1960 if (channel_changed)
1961 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1965 * Called when a scan on a wiphy finds a beacon on
1966 * new channel
1968 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1969 struct reg_beacon *reg_beacon)
1971 unsigned int i;
1972 struct ieee80211_supported_band *sband;
1974 if (!wiphy->bands[reg_beacon->chan.band])
1975 return;
1977 sband = wiphy->bands[reg_beacon->chan.band];
1979 for (i = 0; i < sband->n_channels; i++)
1980 handle_reg_beacon(wiphy, i, reg_beacon);
1984 * Called upon reg changes or a new wiphy is added
1986 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1988 unsigned int i;
1989 struct ieee80211_supported_band *sband;
1990 struct reg_beacon *reg_beacon;
1992 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1993 if (!wiphy->bands[reg_beacon->chan.band])
1994 continue;
1995 sband = wiphy->bands[reg_beacon->chan.band];
1996 for (i = 0; i < sband->n_channels; i++)
1997 handle_reg_beacon(wiphy, i, reg_beacon);
2001 /* Reap the advantages of previously found beacons */
2002 static void reg_process_beacons(struct wiphy *wiphy)
2005 * Means we are just firing up cfg80211, so no beacons would
2006 * have been processed yet.
2008 if (!last_request)
2009 return;
2010 wiphy_update_beacon_reg(wiphy);
2013 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2015 if (!chan)
2016 return false;
2017 if (chan->flags & IEEE80211_CHAN_DISABLED)
2018 return false;
2019 /* This would happen when regulatory rules disallow HT40 completely */
2020 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2021 return false;
2022 return true;
2025 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2026 struct ieee80211_channel *channel)
2028 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2029 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2030 const struct ieee80211_regdomain *regd;
2031 unsigned int i;
2032 u32 flags;
2034 if (!is_ht40_allowed(channel)) {
2035 channel->flags |= IEEE80211_CHAN_NO_HT40;
2036 return;
2040 * We need to ensure the extension channels exist to
2041 * be able to use HT40- or HT40+, this finds them (or not)
2043 for (i = 0; i < sband->n_channels; i++) {
2044 struct ieee80211_channel *c = &sband->channels[i];
2046 if (c->center_freq == (channel->center_freq - 20))
2047 channel_before = c;
2048 if (c->center_freq == (channel->center_freq + 20))
2049 channel_after = c;
2052 flags = 0;
2053 regd = get_wiphy_regdom(wiphy);
2054 if (regd) {
2055 const struct ieee80211_reg_rule *reg_rule =
2056 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2057 regd, MHZ_TO_KHZ(20));
2059 if (!IS_ERR(reg_rule))
2060 flags = reg_rule->flags;
2064 * Please note that this assumes target bandwidth is 20 MHz,
2065 * if that ever changes we also need to change the below logic
2066 * to include that as well.
2068 if (!is_ht40_allowed(channel_before) ||
2069 flags & NL80211_RRF_NO_HT40MINUS)
2070 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2071 else
2072 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2074 if (!is_ht40_allowed(channel_after) ||
2075 flags & NL80211_RRF_NO_HT40PLUS)
2076 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2077 else
2078 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2081 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2082 struct ieee80211_supported_band *sband)
2084 unsigned int i;
2086 if (!sband)
2087 return;
2089 for (i = 0; i < sband->n_channels; i++)
2090 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2093 static void reg_process_ht_flags(struct wiphy *wiphy)
2095 enum nl80211_band band;
2097 if (!wiphy)
2098 return;
2100 for (band = 0; band < NUM_NL80211_BANDS; band++)
2101 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2104 static void reg_call_notifier(struct wiphy *wiphy,
2105 struct regulatory_request *request)
2107 if (wiphy->reg_notifier)
2108 wiphy->reg_notifier(wiphy, request);
2111 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2113 struct cfg80211_chan_def chandef = {};
2114 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2115 enum nl80211_iftype iftype;
2117 wdev_lock(wdev);
2118 iftype = wdev->iftype;
2120 /* make sure the interface is active */
2121 if (!wdev->netdev || !netif_running(wdev->netdev))
2122 goto wdev_inactive_unlock;
2124 switch (iftype) {
2125 case NL80211_IFTYPE_AP:
2126 case NL80211_IFTYPE_P2P_GO:
2127 if (!wdev->beacon_interval)
2128 goto wdev_inactive_unlock;
2129 chandef = wdev->chandef;
2130 break;
2131 case NL80211_IFTYPE_ADHOC:
2132 if (!wdev->ssid_len)
2133 goto wdev_inactive_unlock;
2134 chandef = wdev->chandef;
2135 break;
2136 case NL80211_IFTYPE_STATION:
2137 case NL80211_IFTYPE_P2P_CLIENT:
2138 if (!wdev->current_bss ||
2139 !wdev->current_bss->pub.channel)
2140 goto wdev_inactive_unlock;
2142 if (!rdev->ops->get_channel ||
2143 rdev_get_channel(rdev, wdev, &chandef))
2144 cfg80211_chandef_create(&chandef,
2145 wdev->current_bss->pub.channel,
2146 NL80211_CHAN_NO_HT);
2147 break;
2148 case NL80211_IFTYPE_MONITOR:
2149 case NL80211_IFTYPE_AP_VLAN:
2150 case NL80211_IFTYPE_P2P_DEVICE:
2151 /* no enforcement required */
2152 break;
2153 default:
2154 /* others not implemented for now */
2155 WARN_ON(1);
2156 break;
2159 wdev_unlock(wdev);
2161 switch (iftype) {
2162 case NL80211_IFTYPE_AP:
2163 case NL80211_IFTYPE_P2P_GO:
2164 case NL80211_IFTYPE_ADHOC:
2165 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2166 case NL80211_IFTYPE_STATION:
2167 case NL80211_IFTYPE_P2P_CLIENT:
2168 return cfg80211_chandef_usable(wiphy, &chandef,
2169 IEEE80211_CHAN_DISABLED);
2170 default:
2171 break;
2174 return true;
2176 wdev_inactive_unlock:
2177 wdev_unlock(wdev);
2178 return true;
2181 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2183 struct wireless_dev *wdev;
2184 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2186 ASSERT_RTNL();
2188 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2189 if (!reg_wdev_chan_valid(wiphy, wdev))
2190 cfg80211_leave(rdev, wdev);
2193 static void reg_check_chans_work(struct work_struct *work)
2195 struct cfg80211_registered_device *rdev;
2197 pr_debug("Verifying active interfaces after reg change\n");
2198 rtnl_lock();
2200 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2201 if (!(rdev->wiphy.regulatory_flags &
2202 REGULATORY_IGNORE_STALE_KICKOFF))
2203 reg_leave_invalid_chans(&rdev->wiphy);
2205 rtnl_unlock();
2208 static void reg_check_channels(void)
2211 * Give usermode a chance to do something nicer (move to another
2212 * channel, orderly disconnection), before forcing a disconnection.
2214 mod_delayed_work(system_power_efficient_wq,
2215 &reg_check_chans,
2216 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2219 static void wiphy_update_regulatory(struct wiphy *wiphy,
2220 enum nl80211_reg_initiator initiator)
2222 enum nl80211_band band;
2223 struct regulatory_request *lr = get_last_request();
2225 if (ignore_reg_update(wiphy, initiator)) {
2227 * Regulatory updates set by CORE are ignored for custom
2228 * regulatory cards. Let us notify the changes to the driver,
2229 * as some drivers used this to restore its orig_* reg domain.
2231 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2232 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2233 !(wiphy->regulatory_flags &
2234 REGULATORY_WIPHY_SELF_MANAGED))
2235 reg_call_notifier(wiphy, lr);
2236 return;
2239 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2241 for (band = 0; band < NUM_NL80211_BANDS; band++)
2242 handle_band(wiphy, initiator, wiphy->bands[band]);
2244 reg_process_beacons(wiphy);
2245 reg_process_ht_flags(wiphy);
2246 reg_call_notifier(wiphy, lr);
2249 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2251 struct cfg80211_registered_device *rdev;
2252 struct wiphy *wiphy;
2254 ASSERT_RTNL();
2256 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2257 wiphy = &rdev->wiphy;
2258 wiphy_update_regulatory(wiphy, initiator);
2261 reg_check_channels();
2264 static void handle_channel_custom(struct wiphy *wiphy,
2265 struct ieee80211_channel *chan,
2266 const struct ieee80211_regdomain *regd,
2267 u32 min_bw)
2269 u32 bw_flags = 0;
2270 const struct ieee80211_reg_rule *reg_rule = NULL;
2271 const struct ieee80211_power_rule *power_rule = NULL;
2272 u32 bw;
2274 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2275 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
2276 regd, bw);
2277 if (!IS_ERR(reg_rule))
2278 break;
2281 if (IS_ERR_OR_NULL(reg_rule)) {
2282 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2283 chan->center_freq);
2284 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2285 chan->flags |= IEEE80211_CHAN_DISABLED;
2286 } else {
2287 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2288 chan->flags = chan->orig_flags;
2290 return;
2293 power_rule = &reg_rule->power_rule;
2294 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2296 chan->dfs_state_entered = jiffies;
2297 chan->dfs_state = NL80211_DFS_USABLE;
2299 chan->beacon_found = false;
2301 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2302 chan->flags = chan->orig_flags | bw_flags |
2303 map_regdom_flags(reg_rule->flags);
2304 else
2305 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2307 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2308 chan->max_reg_power = chan->max_power =
2309 (int) MBM_TO_DBM(power_rule->max_eirp);
2311 if (chan->flags & IEEE80211_CHAN_RADAR) {
2312 if (reg_rule->dfs_cac_ms)
2313 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2314 else
2315 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2318 chan->max_power = chan->max_reg_power;
2321 static void handle_band_custom(struct wiphy *wiphy,
2322 struct ieee80211_supported_band *sband,
2323 const struct ieee80211_regdomain *regd)
2325 unsigned int i;
2327 if (!sband)
2328 return;
2331 * We currently assume that you always want at least 20 MHz,
2332 * otherwise channel 12 might get enabled if this rule is
2333 * compatible to US, which permits 2402 - 2472 MHz.
2335 for (i = 0; i < sband->n_channels; i++)
2336 handle_channel_custom(wiphy, &sband->channels[i], regd,
2337 MHZ_TO_KHZ(20));
2340 /* Used by drivers prior to wiphy registration */
2341 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2342 const struct ieee80211_regdomain *regd)
2344 enum nl80211_band band;
2345 unsigned int bands_set = 0;
2347 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2348 "wiphy should have REGULATORY_CUSTOM_REG\n");
2349 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2351 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2352 if (!wiphy->bands[band])
2353 continue;
2354 handle_band_custom(wiphy, wiphy->bands[band], regd);
2355 bands_set++;
2359 * no point in calling this if it won't have any effect
2360 * on your device's supported bands.
2362 WARN_ON(!bands_set);
2364 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2366 static void reg_set_request_processed(void)
2368 bool need_more_processing = false;
2369 struct regulatory_request *lr = get_last_request();
2371 lr->processed = true;
2373 spin_lock(&reg_requests_lock);
2374 if (!list_empty(&reg_requests_list))
2375 need_more_processing = true;
2376 spin_unlock(&reg_requests_lock);
2378 cancel_crda_timeout();
2380 if (need_more_processing)
2381 schedule_work(&reg_work);
2385 * reg_process_hint_core - process core regulatory requests
2386 * @pending_request: a pending core regulatory request
2388 * The wireless subsystem can use this function to process
2389 * a regulatory request issued by the regulatory core.
2391 static enum reg_request_treatment
2392 reg_process_hint_core(struct regulatory_request *core_request)
2394 if (reg_query_database(core_request)) {
2395 core_request->intersect = false;
2396 core_request->processed = false;
2397 reg_update_last_request(core_request);
2398 return REG_REQ_OK;
2401 return REG_REQ_IGNORE;
2404 static enum reg_request_treatment
2405 __reg_process_hint_user(struct regulatory_request *user_request)
2407 struct regulatory_request *lr = get_last_request();
2409 if (reg_request_cell_base(user_request))
2410 return reg_ignore_cell_hint(user_request);
2412 if (reg_request_cell_base(lr))
2413 return REG_REQ_IGNORE;
2415 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2416 return REG_REQ_INTERSECT;
2418 * If the user knows better the user should set the regdom
2419 * to their country before the IE is picked up
2421 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2422 lr->intersect)
2423 return REG_REQ_IGNORE;
2425 * Process user requests only after previous user/driver/core
2426 * requests have been processed
2428 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2429 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2430 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2431 regdom_changes(lr->alpha2))
2432 return REG_REQ_IGNORE;
2434 if (!regdom_changes(user_request->alpha2))
2435 return REG_REQ_ALREADY_SET;
2437 return REG_REQ_OK;
2441 * reg_process_hint_user - process user regulatory requests
2442 * @user_request: a pending user regulatory request
2444 * The wireless subsystem can use this function to process
2445 * a regulatory request initiated by userspace.
2447 static enum reg_request_treatment
2448 reg_process_hint_user(struct regulatory_request *user_request)
2450 enum reg_request_treatment treatment;
2452 treatment = __reg_process_hint_user(user_request);
2453 if (treatment == REG_REQ_IGNORE ||
2454 treatment == REG_REQ_ALREADY_SET)
2455 return REG_REQ_IGNORE;
2457 user_request->intersect = treatment == REG_REQ_INTERSECT;
2458 user_request->processed = false;
2460 if (reg_query_database(user_request)) {
2461 reg_update_last_request(user_request);
2462 user_alpha2[0] = user_request->alpha2[0];
2463 user_alpha2[1] = user_request->alpha2[1];
2464 return REG_REQ_OK;
2467 return REG_REQ_IGNORE;
2470 static enum reg_request_treatment
2471 __reg_process_hint_driver(struct regulatory_request *driver_request)
2473 struct regulatory_request *lr = get_last_request();
2475 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2476 if (regdom_changes(driver_request->alpha2))
2477 return REG_REQ_OK;
2478 return REG_REQ_ALREADY_SET;
2482 * This would happen if you unplug and plug your card
2483 * back in or if you add a new device for which the previously
2484 * loaded card also agrees on the regulatory domain.
2486 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2487 !regdom_changes(driver_request->alpha2))
2488 return REG_REQ_ALREADY_SET;
2490 return REG_REQ_INTERSECT;
2494 * reg_process_hint_driver - process driver regulatory requests
2495 * @driver_request: a pending driver regulatory request
2497 * The wireless subsystem can use this function to process
2498 * a regulatory request issued by an 802.11 driver.
2500 * Returns one of the different reg request treatment values.
2502 static enum reg_request_treatment
2503 reg_process_hint_driver(struct wiphy *wiphy,
2504 struct regulatory_request *driver_request)
2506 const struct ieee80211_regdomain *regd, *tmp;
2507 enum reg_request_treatment treatment;
2509 treatment = __reg_process_hint_driver(driver_request);
2511 switch (treatment) {
2512 case REG_REQ_OK:
2513 break;
2514 case REG_REQ_IGNORE:
2515 return REG_REQ_IGNORE;
2516 case REG_REQ_INTERSECT:
2517 case REG_REQ_ALREADY_SET:
2518 regd = reg_copy_regd(get_cfg80211_regdom());
2519 if (IS_ERR(regd))
2520 return REG_REQ_IGNORE;
2522 tmp = get_wiphy_regdom(wiphy);
2523 rcu_assign_pointer(wiphy->regd, regd);
2524 rcu_free_regdom(tmp);
2528 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2529 driver_request->processed = false;
2532 * Since CRDA will not be called in this case as we already
2533 * have applied the requested regulatory domain before we just
2534 * inform userspace we have processed the request
2536 if (treatment == REG_REQ_ALREADY_SET) {
2537 nl80211_send_reg_change_event(driver_request);
2538 reg_update_last_request(driver_request);
2539 reg_set_request_processed();
2540 return REG_REQ_ALREADY_SET;
2543 if (reg_query_database(driver_request)) {
2544 reg_update_last_request(driver_request);
2545 return REG_REQ_OK;
2548 return REG_REQ_IGNORE;
2551 static enum reg_request_treatment
2552 __reg_process_hint_country_ie(struct wiphy *wiphy,
2553 struct regulatory_request *country_ie_request)
2555 struct wiphy *last_wiphy = NULL;
2556 struct regulatory_request *lr = get_last_request();
2558 if (reg_request_cell_base(lr)) {
2559 /* Trust a Cell base station over the AP's country IE */
2560 if (regdom_changes(country_ie_request->alpha2))
2561 return REG_REQ_IGNORE;
2562 return REG_REQ_ALREADY_SET;
2563 } else {
2564 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2565 return REG_REQ_IGNORE;
2568 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2569 return -EINVAL;
2571 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2572 return REG_REQ_OK;
2574 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2576 if (last_wiphy != wiphy) {
2578 * Two cards with two APs claiming different
2579 * Country IE alpha2s. We could
2580 * intersect them, but that seems unlikely
2581 * to be correct. Reject second one for now.
2583 if (regdom_changes(country_ie_request->alpha2))
2584 return REG_REQ_IGNORE;
2585 return REG_REQ_ALREADY_SET;
2588 if (regdom_changes(country_ie_request->alpha2))
2589 return REG_REQ_OK;
2590 return REG_REQ_ALREADY_SET;
2594 * reg_process_hint_country_ie - process regulatory requests from country IEs
2595 * @country_ie_request: a regulatory request from a country IE
2597 * The wireless subsystem can use this function to process
2598 * a regulatory request issued by a country Information Element.
2600 * Returns one of the different reg request treatment values.
2602 static enum reg_request_treatment
2603 reg_process_hint_country_ie(struct wiphy *wiphy,
2604 struct regulatory_request *country_ie_request)
2606 enum reg_request_treatment treatment;
2608 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2610 switch (treatment) {
2611 case REG_REQ_OK:
2612 break;
2613 case REG_REQ_IGNORE:
2614 return REG_REQ_IGNORE;
2615 case REG_REQ_ALREADY_SET:
2616 reg_free_request(country_ie_request);
2617 return REG_REQ_ALREADY_SET;
2618 case REG_REQ_INTERSECT:
2620 * This doesn't happen yet, not sure we
2621 * ever want to support it for this case.
2623 WARN_ONCE(1, "Unexpected intersection for country elements");
2624 return REG_REQ_IGNORE;
2627 country_ie_request->intersect = false;
2628 country_ie_request->processed = false;
2630 if (reg_query_database(country_ie_request)) {
2631 reg_update_last_request(country_ie_request);
2632 return REG_REQ_OK;
2635 return REG_REQ_IGNORE;
2638 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2640 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2641 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2642 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2643 bool dfs_domain_same;
2645 rcu_read_lock();
2647 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2648 wiphy1_regd = rcu_dereference(wiphy1->regd);
2649 if (!wiphy1_regd)
2650 wiphy1_regd = cfg80211_regd;
2652 wiphy2_regd = rcu_dereference(wiphy2->regd);
2653 if (!wiphy2_regd)
2654 wiphy2_regd = cfg80211_regd;
2656 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2658 rcu_read_unlock();
2660 return dfs_domain_same;
2663 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2664 struct ieee80211_channel *src_chan)
2666 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2667 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2668 return;
2670 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2671 src_chan->flags & IEEE80211_CHAN_DISABLED)
2672 return;
2674 if (src_chan->center_freq == dst_chan->center_freq &&
2675 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2676 dst_chan->dfs_state = src_chan->dfs_state;
2677 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2681 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2682 struct wiphy *src_wiphy)
2684 struct ieee80211_supported_band *src_sband, *dst_sband;
2685 struct ieee80211_channel *src_chan, *dst_chan;
2686 int i, j, band;
2688 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2689 return;
2691 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2692 dst_sband = dst_wiphy->bands[band];
2693 src_sband = src_wiphy->bands[band];
2694 if (!dst_sband || !src_sband)
2695 continue;
2697 for (i = 0; i < dst_sband->n_channels; i++) {
2698 dst_chan = &dst_sband->channels[i];
2699 for (j = 0; j < src_sband->n_channels; j++) {
2700 src_chan = &src_sband->channels[j];
2701 reg_copy_dfs_chan_state(dst_chan, src_chan);
2707 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2709 struct cfg80211_registered_device *rdev;
2711 ASSERT_RTNL();
2713 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2714 if (wiphy == &rdev->wiphy)
2715 continue;
2716 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2720 /* This processes *all* regulatory hints */
2721 static void reg_process_hint(struct regulatory_request *reg_request)
2723 struct wiphy *wiphy = NULL;
2724 enum reg_request_treatment treatment;
2725 enum nl80211_reg_initiator initiator = reg_request->initiator;
2727 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2728 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2730 switch (initiator) {
2731 case NL80211_REGDOM_SET_BY_CORE:
2732 treatment = reg_process_hint_core(reg_request);
2733 break;
2734 case NL80211_REGDOM_SET_BY_USER:
2735 treatment = reg_process_hint_user(reg_request);
2736 break;
2737 case NL80211_REGDOM_SET_BY_DRIVER:
2738 if (!wiphy)
2739 goto out_free;
2740 treatment = reg_process_hint_driver(wiphy, reg_request);
2741 break;
2742 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2743 if (!wiphy)
2744 goto out_free;
2745 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2746 break;
2747 default:
2748 WARN(1, "invalid initiator %d\n", initiator);
2749 goto out_free;
2752 if (treatment == REG_REQ_IGNORE)
2753 goto out_free;
2755 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2756 "unexpected treatment value %d\n", treatment);
2758 /* This is required so that the orig_* parameters are saved.
2759 * NOTE: treatment must be set for any case that reaches here!
2761 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2762 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2763 wiphy_update_regulatory(wiphy, initiator);
2764 wiphy_all_share_dfs_chan_state(wiphy);
2765 reg_check_channels();
2768 return;
2770 out_free:
2771 reg_free_request(reg_request);
2774 static void notify_self_managed_wiphys(struct regulatory_request *request)
2776 struct cfg80211_registered_device *rdev;
2777 struct wiphy *wiphy;
2779 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2780 wiphy = &rdev->wiphy;
2781 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
2782 request->initiator == NL80211_REGDOM_SET_BY_USER)
2783 reg_call_notifier(wiphy, request);
2788 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2789 * Regulatory hints come on a first come first serve basis and we
2790 * must process each one atomically.
2792 static void reg_process_pending_hints(void)
2794 struct regulatory_request *reg_request, *lr;
2796 lr = get_last_request();
2798 /* When last_request->processed becomes true this will be rescheduled */
2799 if (lr && !lr->processed) {
2800 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
2801 return;
2804 spin_lock(&reg_requests_lock);
2806 if (list_empty(&reg_requests_list)) {
2807 spin_unlock(&reg_requests_lock);
2808 return;
2811 reg_request = list_first_entry(&reg_requests_list,
2812 struct regulatory_request,
2813 list);
2814 list_del_init(&reg_request->list);
2816 spin_unlock(&reg_requests_lock);
2818 notify_self_managed_wiphys(reg_request);
2820 reg_process_hint(reg_request);
2822 lr = get_last_request();
2824 spin_lock(&reg_requests_lock);
2825 if (!list_empty(&reg_requests_list) && lr && lr->processed)
2826 schedule_work(&reg_work);
2827 spin_unlock(&reg_requests_lock);
2830 /* Processes beacon hints -- this has nothing to do with country IEs */
2831 static void reg_process_pending_beacon_hints(void)
2833 struct cfg80211_registered_device *rdev;
2834 struct reg_beacon *pending_beacon, *tmp;
2836 /* This goes through the _pending_ beacon list */
2837 spin_lock_bh(&reg_pending_beacons_lock);
2839 list_for_each_entry_safe(pending_beacon, tmp,
2840 &reg_pending_beacons, list) {
2841 list_del_init(&pending_beacon->list);
2843 /* Applies the beacon hint to current wiphys */
2844 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2845 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2847 /* Remembers the beacon hint for new wiphys or reg changes */
2848 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2851 spin_unlock_bh(&reg_pending_beacons_lock);
2854 static void reg_process_self_managed_hints(void)
2856 struct cfg80211_registered_device *rdev;
2857 struct wiphy *wiphy;
2858 const struct ieee80211_regdomain *tmp;
2859 const struct ieee80211_regdomain *regd;
2860 enum nl80211_band band;
2861 struct regulatory_request request = {};
2863 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2864 wiphy = &rdev->wiphy;
2866 spin_lock(&reg_requests_lock);
2867 regd = rdev->requested_regd;
2868 rdev->requested_regd = NULL;
2869 spin_unlock(&reg_requests_lock);
2871 if (regd == NULL)
2872 continue;
2874 tmp = get_wiphy_regdom(wiphy);
2875 rcu_assign_pointer(wiphy->regd, regd);
2876 rcu_free_regdom(tmp);
2878 for (band = 0; band < NUM_NL80211_BANDS; band++)
2879 handle_band_custom(wiphy, wiphy->bands[band], regd);
2881 reg_process_ht_flags(wiphy);
2883 request.wiphy_idx = get_wiphy_idx(wiphy);
2884 request.alpha2[0] = regd->alpha2[0];
2885 request.alpha2[1] = regd->alpha2[1];
2886 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2888 nl80211_send_wiphy_reg_change_event(&request);
2891 reg_check_channels();
2894 static void reg_todo(struct work_struct *work)
2896 rtnl_lock();
2897 reg_process_pending_hints();
2898 reg_process_pending_beacon_hints();
2899 reg_process_self_managed_hints();
2900 rtnl_unlock();
2903 static void queue_regulatory_request(struct regulatory_request *request)
2905 request->alpha2[0] = toupper(request->alpha2[0]);
2906 request->alpha2[1] = toupper(request->alpha2[1]);
2908 spin_lock(&reg_requests_lock);
2909 list_add_tail(&request->list, &reg_requests_list);
2910 spin_unlock(&reg_requests_lock);
2912 schedule_work(&reg_work);
2916 * Core regulatory hint -- happens during cfg80211_init()
2917 * and when we restore regulatory settings.
2919 static int regulatory_hint_core(const char *alpha2)
2921 struct regulatory_request *request;
2923 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2924 if (!request)
2925 return -ENOMEM;
2927 request->alpha2[0] = alpha2[0];
2928 request->alpha2[1] = alpha2[1];
2929 request->initiator = NL80211_REGDOM_SET_BY_CORE;
2930 request->wiphy_idx = WIPHY_IDX_INVALID;
2932 queue_regulatory_request(request);
2934 return 0;
2937 /* User hints */
2938 int regulatory_hint_user(const char *alpha2,
2939 enum nl80211_user_reg_hint_type user_reg_hint_type)
2941 struct regulatory_request *request;
2943 if (WARN_ON(!alpha2))
2944 return -EINVAL;
2946 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2947 if (!request)
2948 return -ENOMEM;
2950 request->wiphy_idx = WIPHY_IDX_INVALID;
2951 request->alpha2[0] = alpha2[0];
2952 request->alpha2[1] = alpha2[1];
2953 request->initiator = NL80211_REGDOM_SET_BY_USER;
2954 request->user_reg_hint_type = user_reg_hint_type;
2956 /* Allow calling CRDA again */
2957 reset_crda_timeouts();
2959 queue_regulatory_request(request);
2961 return 0;
2964 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2966 spin_lock(&reg_indoor_lock);
2968 /* It is possible that more than one user space process is trying to
2969 * configure the indoor setting. To handle such cases, clear the indoor
2970 * setting in case that some process does not think that the device
2971 * is operating in an indoor environment. In addition, if a user space
2972 * process indicates that it is controlling the indoor setting, save its
2973 * portid, i.e., make it the owner.
2975 reg_is_indoor = is_indoor;
2976 if (reg_is_indoor) {
2977 if (!reg_is_indoor_portid)
2978 reg_is_indoor_portid = portid;
2979 } else {
2980 reg_is_indoor_portid = 0;
2983 spin_unlock(&reg_indoor_lock);
2985 if (!is_indoor)
2986 reg_check_channels();
2988 return 0;
2991 void regulatory_netlink_notify(u32 portid)
2993 spin_lock(&reg_indoor_lock);
2995 if (reg_is_indoor_portid != portid) {
2996 spin_unlock(&reg_indoor_lock);
2997 return;
3000 reg_is_indoor = false;
3001 reg_is_indoor_portid = 0;
3003 spin_unlock(&reg_indoor_lock);
3005 reg_check_channels();
3008 /* Driver hints */
3009 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3011 struct regulatory_request *request;
3013 if (WARN_ON(!alpha2 || !wiphy))
3014 return -EINVAL;
3016 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3018 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3019 if (!request)
3020 return -ENOMEM;
3022 request->wiphy_idx = get_wiphy_idx(wiphy);
3024 request->alpha2[0] = alpha2[0];
3025 request->alpha2[1] = alpha2[1];
3026 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3028 /* Allow calling CRDA again */
3029 reset_crda_timeouts();
3031 queue_regulatory_request(request);
3033 return 0;
3035 EXPORT_SYMBOL(regulatory_hint);
3037 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3038 const u8 *country_ie, u8 country_ie_len)
3040 char alpha2[2];
3041 enum environment_cap env = ENVIRON_ANY;
3042 struct regulatory_request *request = NULL, *lr;
3044 /* IE len must be evenly divisible by 2 */
3045 if (country_ie_len & 0x01)
3046 return;
3048 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3049 return;
3051 request = kzalloc(sizeof(*request), GFP_KERNEL);
3052 if (!request)
3053 return;
3055 alpha2[0] = country_ie[0];
3056 alpha2[1] = country_ie[1];
3058 if (country_ie[2] == 'I')
3059 env = ENVIRON_INDOOR;
3060 else if (country_ie[2] == 'O')
3061 env = ENVIRON_OUTDOOR;
3063 rcu_read_lock();
3064 lr = get_last_request();
3066 if (unlikely(!lr))
3067 goto out;
3070 * We will run this only upon a successful connection on cfg80211.
3071 * We leave conflict resolution to the workqueue, where can hold
3072 * the RTNL.
3074 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3075 lr->wiphy_idx != WIPHY_IDX_INVALID)
3076 goto out;
3078 request->wiphy_idx = get_wiphy_idx(wiphy);
3079 request->alpha2[0] = alpha2[0];
3080 request->alpha2[1] = alpha2[1];
3081 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3082 request->country_ie_env = env;
3084 /* Allow calling CRDA again */
3085 reset_crda_timeouts();
3087 queue_regulatory_request(request);
3088 request = NULL;
3089 out:
3090 kfree(request);
3091 rcu_read_unlock();
3094 static void restore_alpha2(char *alpha2, bool reset_user)
3096 /* indicates there is no alpha2 to consider for restoration */
3097 alpha2[0] = '9';
3098 alpha2[1] = '7';
3100 /* The user setting has precedence over the module parameter */
3101 if (is_user_regdom_saved()) {
3102 /* Unless we're asked to ignore it and reset it */
3103 if (reset_user) {
3104 pr_debug("Restoring regulatory settings including user preference\n");
3105 user_alpha2[0] = '9';
3106 user_alpha2[1] = '7';
3109 * If we're ignoring user settings, we still need to
3110 * check the module parameter to ensure we put things
3111 * back as they were for a full restore.
3113 if (!is_world_regdom(ieee80211_regdom)) {
3114 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3115 ieee80211_regdom[0], ieee80211_regdom[1]);
3116 alpha2[0] = ieee80211_regdom[0];
3117 alpha2[1] = ieee80211_regdom[1];
3119 } else {
3120 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3121 user_alpha2[0], user_alpha2[1]);
3122 alpha2[0] = user_alpha2[0];
3123 alpha2[1] = user_alpha2[1];
3125 } else if (!is_world_regdom(ieee80211_regdom)) {
3126 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3127 ieee80211_regdom[0], ieee80211_regdom[1]);
3128 alpha2[0] = ieee80211_regdom[0];
3129 alpha2[1] = ieee80211_regdom[1];
3130 } else
3131 pr_debug("Restoring regulatory settings\n");
3134 static void restore_custom_reg_settings(struct wiphy *wiphy)
3136 struct ieee80211_supported_band *sband;
3137 enum nl80211_band band;
3138 struct ieee80211_channel *chan;
3139 int i;
3141 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3142 sband = wiphy->bands[band];
3143 if (!sband)
3144 continue;
3145 for (i = 0; i < sband->n_channels; i++) {
3146 chan = &sband->channels[i];
3147 chan->flags = chan->orig_flags;
3148 chan->max_antenna_gain = chan->orig_mag;
3149 chan->max_power = chan->orig_mpwr;
3150 chan->beacon_found = false;
3156 * Restoring regulatory settings involves ingoring any
3157 * possibly stale country IE information and user regulatory
3158 * settings if so desired, this includes any beacon hints
3159 * learned as we could have traveled outside to another country
3160 * after disconnection. To restore regulatory settings we do
3161 * exactly what we did at bootup:
3163 * - send a core regulatory hint
3164 * - send a user regulatory hint if applicable
3166 * Device drivers that send a regulatory hint for a specific country
3167 * keep their own regulatory domain on wiphy->regd so that does does
3168 * not need to be remembered.
3170 static void restore_regulatory_settings(bool reset_user, bool cached)
3172 char alpha2[2];
3173 char world_alpha2[2];
3174 struct reg_beacon *reg_beacon, *btmp;
3175 LIST_HEAD(tmp_reg_req_list);
3176 struct cfg80211_registered_device *rdev;
3178 ASSERT_RTNL();
3181 * Clear the indoor setting in case that it is not controlled by user
3182 * space, as otherwise there is no guarantee that the device is still
3183 * operating in an indoor environment.
3185 spin_lock(&reg_indoor_lock);
3186 if (reg_is_indoor && !reg_is_indoor_portid) {
3187 reg_is_indoor = false;
3188 reg_check_channels();
3190 spin_unlock(&reg_indoor_lock);
3192 reset_regdomains(true, &world_regdom);
3193 restore_alpha2(alpha2, reset_user);
3196 * If there's any pending requests we simply
3197 * stash them to a temporary pending queue and
3198 * add then after we've restored regulatory
3199 * settings.
3201 spin_lock(&reg_requests_lock);
3202 list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3203 spin_unlock(&reg_requests_lock);
3205 /* Clear beacon hints */
3206 spin_lock_bh(&reg_pending_beacons_lock);
3207 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3208 list_del(&reg_beacon->list);
3209 kfree(reg_beacon);
3211 spin_unlock_bh(&reg_pending_beacons_lock);
3213 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3214 list_del(&reg_beacon->list);
3215 kfree(reg_beacon);
3218 /* First restore to the basic regulatory settings */
3219 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3220 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3222 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3223 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3224 continue;
3225 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3226 restore_custom_reg_settings(&rdev->wiphy);
3229 if (cached && (!is_an_alpha2(alpha2) ||
3230 !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3231 reset_regdomains(false, cfg80211_world_regdom);
3232 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3233 print_regdomain(get_cfg80211_regdom());
3234 nl80211_send_reg_change_event(&core_request_world);
3235 reg_set_request_processed();
3237 if (is_an_alpha2(alpha2) &&
3238 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3239 struct regulatory_request *ureq;
3241 spin_lock(&reg_requests_lock);
3242 ureq = list_last_entry(&reg_requests_list,
3243 struct regulatory_request,
3244 list);
3245 list_del(&ureq->list);
3246 spin_unlock(&reg_requests_lock);
3248 notify_self_managed_wiphys(ureq);
3249 reg_update_last_request(ureq);
3250 set_regdom(reg_copy_regd(cfg80211_user_regdom),
3251 REGD_SOURCE_CACHED);
3253 } else {
3254 regulatory_hint_core(world_alpha2);
3257 * This restores the ieee80211_regdom module parameter
3258 * preference or the last user requested regulatory
3259 * settings, user regulatory settings takes precedence.
3261 if (is_an_alpha2(alpha2))
3262 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3265 spin_lock(&reg_requests_lock);
3266 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3267 spin_unlock(&reg_requests_lock);
3269 pr_debug("Kicking the queue\n");
3271 schedule_work(&reg_work);
3274 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3276 struct cfg80211_registered_device *rdev;
3277 struct wireless_dev *wdev;
3279 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3280 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3281 wdev_lock(wdev);
3282 if (!(wdev->wiphy->regulatory_flags & flag)) {
3283 wdev_unlock(wdev);
3284 return false;
3286 wdev_unlock(wdev);
3290 return true;
3293 void regulatory_hint_disconnect(void)
3295 /* Restore of regulatory settings is not required when wiphy(s)
3296 * ignore IE from connected access point but clearance of beacon hints
3297 * is required when wiphy(s) supports beacon hints.
3299 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3300 struct reg_beacon *reg_beacon, *btmp;
3302 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3303 return;
3305 spin_lock_bh(&reg_pending_beacons_lock);
3306 list_for_each_entry_safe(reg_beacon, btmp,
3307 &reg_pending_beacons, list) {
3308 list_del(&reg_beacon->list);
3309 kfree(reg_beacon);
3311 spin_unlock_bh(&reg_pending_beacons_lock);
3313 list_for_each_entry_safe(reg_beacon, btmp,
3314 &reg_beacon_list, list) {
3315 list_del(&reg_beacon->list);
3316 kfree(reg_beacon);
3319 return;
3322 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3323 restore_regulatory_settings(false, true);
3326 static bool freq_is_chan_12_13_14(u32 freq)
3328 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3329 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3330 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3331 return true;
3332 return false;
3335 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3337 struct reg_beacon *pending_beacon;
3339 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3340 if (beacon_chan->center_freq ==
3341 pending_beacon->chan.center_freq)
3342 return true;
3343 return false;
3346 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3347 struct ieee80211_channel *beacon_chan,
3348 gfp_t gfp)
3350 struct reg_beacon *reg_beacon;
3351 bool processing;
3353 if (beacon_chan->beacon_found ||
3354 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3355 (beacon_chan->band == NL80211_BAND_2GHZ &&
3356 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3357 return 0;
3359 spin_lock_bh(&reg_pending_beacons_lock);
3360 processing = pending_reg_beacon(beacon_chan);
3361 spin_unlock_bh(&reg_pending_beacons_lock);
3363 if (processing)
3364 return 0;
3366 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3367 if (!reg_beacon)
3368 return -ENOMEM;
3370 pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3371 beacon_chan->center_freq,
3372 ieee80211_frequency_to_channel(beacon_chan->center_freq),
3373 wiphy_name(wiphy));
3375 memcpy(&reg_beacon->chan, beacon_chan,
3376 sizeof(struct ieee80211_channel));
3379 * Since we can be called from BH or and non-BH context
3380 * we must use spin_lock_bh()
3382 spin_lock_bh(&reg_pending_beacons_lock);
3383 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3384 spin_unlock_bh(&reg_pending_beacons_lock);
3386 schedule_work(&reg_work);
3388 return 0;
3391 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3393 unsigned int i;
3394 const struct ieee80211_reg_rule *reg_rule = NULL;
3395 const struct ieee80211_freq_range *freq_range = NULL;
3396 const struct ieee80211_power_rule *power_rule = NULL;
3397 char bw[32], cac_time[32];
3399 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3401 for (i = 0; i < rd->n_reg_rules; i++) {
3402 reg_rule = &rd->reg_rules[i];
3403 freq_range = &reg_rule->freq_range;
3404 power_rule = &reg_rule->power_rule;
3406 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3407 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
3408 freq_range->max_bandwidth_khz,
3409 reg_get_max_bandwidth(rd, reg_rule));
3410 else
3411 snprintf(bw, sizeof(bw), "%d KHz",
3412 freq_range->max_bandwidth_khz);
3414 if (reg_rule->flags & NL80211_RRF_DFS)
3415 scnprintf(cac_time, sizeof(cac_time), "%u s",
3416 reg_rule->dfs_cac_ms/1000);
3417 else
3418 scnprintf(cac_time, sizeof(cac_time), "N/A");
3422 * There may not be documentation for max antenna gain
3423 * in certain regions
3425 if (power_rule->max_antenna_gain)
3426 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3427 freq_range->start_freq_khz,
3428 freq_range->end_freq_khz,
3430 power_rule->max_antenna_gain,
3431 power_rule->max_eirp,
3432 cac_time);
3433 else
3434 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3435 freq_range->start_freq_khz,
3436 freq_range->end_freq_khz,
3438 power_rule->max_eirp,
3439 cac_time);
3443 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3445 switch (dfs_region) {
3446 case NL80211_DFS_UNSET:
3447 case NL80211_DFS_FCC:
3448 case NL80211_DFS_ETSI:
3449 case NL80211_DFS_JP:
3450 return true;
3451 default:
3452 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3453 return false;
3457 static void print_regdomain(const struct ieee80211_regdomain *rd)
3459 struct regulatory_request *lr = get_last_request();
3461 if (is_intersected_alpha2(rd->alpha2)) {
3462 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3463 struct cfg80211_registered_device *rdev;
3464 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3465 if (rdev) {
3466 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3467 rdev->country_ie_alpha2[0],
3468 rdev->country_ie_alpha2[1]);
3469 } else
3470 pr_debug("Current regulatory domain intersected:\n");
3471 } else
3472 pr_debug("Current regulatory domain intersected:\n");
3473 } else if (is_world_regdom(rd->alpha2)) {
3474 pr_debug("World regulatory domain updated:\n");
3475 } else {
3476 if (is_unknown_alpha2(rd->alpha2))
3477 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3478 else {
3479 if (reg_request_cell_base(lr))
3480 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3481 rd->alpha2[0], rd->alpha2[1]);
3482 else
3483 pr_debug("Regulatory domain changed to country: %c%c\n",
3484 rd->alpha2[0], rd->alpha2[1]);
3488 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3489 print_rd_rules(rd);
3492 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3494 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3495 print_rd_rules(rd);
3498 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3500 if (!is_world_regdom(rd->alpha2))
3501 return -EINVAL;
3502 update_world_regdomain(rd);
3503 return 0;
3506 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3507 struct regulatory_request *user_request)
3509 const struct ieee80211_regdomain *intersected_rd = NULL;
3511 if (!regdom_changes(rd->alpha2))
3512 return -EALREADY;
3514 if (!is_valid_rd(rd)) {
3515 pr_err("Invalid regulatory domain detected: %c%c\n",
3516 rd->alpha2[0], rd->alpha2[1]);
3517 print_regdomain_info(rd);
3518 return -EINVAL;
3521 if (!user_request->intersect) {
3522 reset_regdomains(false, rd);
3523 return 0;
3526 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3527 if (!intersected_rd)
3528 return -EINVAL;
3530 kfree(rd);
3531 rd = NULL;
3532 reset_regdomains(false, intersected_rd);
3534 return 0;
3537 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3538 struct regulatory_request *driver_request)
3540 const struct ieee80211_regdomain *regd;
3541 const struct ieee80211_regdomain *intersected_rd = NULL;
3542 const struct ieee80211_regdomain *tmp;
3543 struct wiphy *request_wiphy;
3545 if (is_world_regdom(rd->alpha2))
3546 return -EINVAL;
3548 if (!regdom_changes(rd->alpha2))
3549 return -EALREADY;
3551 if (!is_valid_rd(rd)) {
3552 pr_err("Invalid regulatory domain detected: %c%c\n",
3553 rd->alpha2[0], rd->alpha2[1]);
3554 print_regdomain_info(rd);
3555 return -EINVAL;
3558 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3559 if (!request_wiphy)
3560 return -ENODEV;
3562 if (!driver_request->intersect) {
3563 if (request_wiphy->regd)
3564 return -EALREADY;
3566 regd = reg_copy_regd(rd);
3567 if (IS_ERR(regd))
3568 return PTR_ERR(regd);
3570 rcu_assign_pointer(request_wiphy->regd, regd);
3571 reset_regdomains(false, rd);
3572 return 0;
3575 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3576 if (!intersected_rd)
3577 return -EINVAL;
3580 * We can trash what CRDA provided now.
3581 * However if a driver requested this specific regulatory
3582 * domain we keep it for its private use
3584 tmp = get_wiphy_regdom(request_wiphy);
3585 rcu_assign_pointer(request_wiphy->regd, rd);
3586 rcu_free_regdom(tmp);
3588 rd = NULL;
3590 reset_regdomains(false, intersected_rd);
3592 return 0;
3595 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3596 struct regulatory_request *country_ie_request)
3598 struct wiphy *request_wiphy;
3600 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3601 !is_unknown_alpha2(rd->alpha2))
3602 return -EINVAL;
3605 * Lets only bother proceeding on the same alpha2 if the current
3606 * rd is non static (it means CRDA was present and was used last)
3607 * and the pending request came in from a country IE
3610 if (!is_valid_rd(rd)) {
3611 pr_err("Invalid regulatory domain detected: %c%c\n",
3612 rd->alpha2[0], rd->alpha2[1]);
3613 print_regdomain_info(rd);
3614 return -EINVAL;
3617 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3618 if (!request_wiphy)
3619 return -ENODEV;
3621 if (country_ie_request->intersect)
3622 return -EINVAL;
3624 reset_regdomains(false, rd);
3625 return 0;
3629 * Use this call to set the current regulatory domain. Conflicts with
3630 * multiple drivers can be ironed out later. Caller must've already
3631 * kmalloc'd the rd structure.
3633 int set_regdom(const struct ieee80211_regdomain *rd,
3634 enum ieee80211_regd_source regd_src)
3636 struct regulatory_request *lr;
3637 bool user_reset = false;
3638 int r;
3640 if (IS_ERR_OR_NULL(rd))
3641 return -ENODATA;
3643 if (!reg_is_valid_request(rd->alpha2)) {
3644 kfree(rd);
3645 return -EINVAL;
3648 if (regd_src == REGD_SOURCE_CRDA)
3649 reset_crda_timeouts();
3651 lr = get_last_request();
3653 /* Note that this doesn't update the wiphys, this is done below */
3654 switch (lr->initiator) {
3655 case NL80211_REGDOM_SET_BY_CORE:
3656 r = reg_set_rd_core(rd);
3657 break;
3658 case NL80211_REGDOM_SET_BY_USER:
3659 cfg80211_save_user_regdom(rd);
3660 r = reg_set_rd_user(rd, lr);
3661 user_reset = true;
3662 break;
3663 case NL80211_REGDOM_SET_BY_DRIVER:
3664 r = reg_set_rd_driver(rd, lr);
3665 break;
3666 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3667 r = reg_set_rd_country_ie(rd, lr);
3668 break;
3669 default:
3670 WARN(1, "invalid initiator %d\n", lr->initiator);
3671 kfree(rd);
3672 return -EINVAL;
3675 if (r) {
3676 switch (r) {
3677 case -EALREADY:
3678 reg_set_request_processed();
3679 break;
3680 default:
3681 /* Back to world regulatory in case of errors */
3682 restore_regulatory_settings(user_reset, false);
3685 kfree(rd);
3686 return r;
3689 /* This would make this whole thing pointless */
3690 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3691 return -EINVAL;
3693 /* update all wiphys now with the new established regulatory domain */
3694 update_all_wiphy_regulatory(lr->initiator);
3696 print_regdomain(get_cfg80211_regdom());
3698 nl80211_send_reg_change_event(lr);
3700 reg_set_request_processed();
3702 return 0;
3705 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3706 struct ieee80211_regdomain *rd)
3708 const struct ieee80211_regdomain *regd;
3709 const struct ieee80211_regdomain *prev_regd;
3710 struct cfg80211_registered_device *rdev;
3712 if (WARN_ON(!wiphy || !rd))
3713 return -EINVAL;
3715 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3716 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3717 return -EPERM;
3719 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3720 print_regdomain_info(rd);
3721 return -EINVAL;
3724 regd = reg_copy_regd(rd);
3725 if (IS_ERR(regd))
3726 return PTR_ERR(regd);
3728 rdev = wiphy_to_rdev(wiphy);
3730 spin_lock(&reg_requests_lock);
3731 prev_regd = rdev->requested_regd;
3732 rdev->requested_regd = regd;
3733 spin_unlock(&reg_requests_lock);
3735 kfree(prev_regd);
3736 return 0;
3739 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3740 struct ieee80211_regdomain *rd)
3742 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3744 if (ret)
3745 return ret;
3747 schedule_work(&reg_work);
3748 return 0;
3750 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3752 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3753 struct ieee80211_regdomain *rd)
3755 int ret;
3757 ASSERT_RTNL();
3759 ret = __regulatory_set_wiphy_regd(wiphy, rd);
3760 if (ret)
3761 return ret;
3763 /* process the request immediately */
3764 reg_process_self_managed_hints();
3765 return 0;
3767 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3769 void wiphy_regulatory_register(struct wiphy *wiphy)
3771 struct regulatory_request *lr = get_last_request();
3773 /* self-managed devices ignore beacon hints and country IE */
3774 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
3775 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3776 REGULATORY_COUNTRY_IE_IGNORE;
3779 * The last request may have been received before this
3780 * registration call. Call the driver notifier if
3781 * initiator is USER.
3783 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
3784 reg_call_notifier(wiphy, lr);
3787 if (!reg_dev_ignore_cell_hint(wiphy))
3788 reg_num_devs_support_basehint++;
3790 wiphy_update_regulatory(wiphy, lr->initiator);
3791 wiphy_all_share_dfs_chan_state(wiphy);
3794 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3796 struct wiphy *request_wiphy = NULL;
3797 struct regulatory_request *lr;
3799 lr = get_last_request();
3801 if (!reg_dev_ignore_cell_hint(wiphy))
3802 reg_num_devs_support_basehint--;
3804 rcu_free_regdom(get_wiphy_regdom(wiphy));
3805 RCU_INIT_POINTER(wiphy->regd, NULL);
3807 if (lr)
3808 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3810 if (!request_wiphy || request_wiphy != wiphy)
3811 return;
3813 lr->wiphy_idx = WIPHY_IDX_INVALID;
3814 lr->country_ie_env = ENVIRON_ANY;
3818 * See FCC notices for UNII band definitions
3819 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
3820 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
3822 int cfg80211_get_unii(int freq)
3824 /* UNII-1 */
3825 if (freq >= 5150 && freq <= 5250)
3826 return 0;
3828 /* UNII-2A */
3829 if (freq > 5250 && freq <= 5350)
3830 return 1;
3832 /* UNII-2B */
3833 if (freq > 5350 && freq <= 5470)
3834 return 2;
3836 /* UNII-2C */
3837 if (freq > 5470 && freq <= 5725)
3838 return 3;
3840 /* UNII-3 */
3841 if (freq > 5725 && freq <= 5825)
3842 return 4;
3844 /* UNII-5 */
3845 if (freq > 5925 && freq <= 6425)
3846 return 5;
3848 /* UNII-6 */
3849 if (freq > 6425 && freq <= 6525)
3850 return 6;
3852 /* UNII-7 */
3853 if (freq > 6525 && freq <= 6875)
3854 return 7;
3856 /* UNII-8 */
3857 if (freq > 6875 && freq <= 7125)
3858 return 8;
3860 return -EINVAL;
3863 bool regulatory_indoor_allowed(void)
3865 return reg_is_indoor;
3868 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3870 const struct ieee80211_regdomain *regd = NULL;
3871 const struct ieee80211_regdomain *wiphy_regd = NULL;
3872 bool pre_cac_allowed = false;
3874 rcu_read_lock();
3876 regd = rcu_dereference(cfg80211_regdomain);
3877 wiphy_regd = rcu_dereference(wiphy->regd);
3878 if (!wiphy_regd) {
3879 if (regd->dfs_region == NL80211_DFS_ETSI)
3880 pre_cac_allowed = true;
3882 rcu_read_unlock();
3884 return pre_cac_allowed;
3887 if (regd->dfs_region == wiphy_regd->dfs_region &&
3888 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3889 pre_cac_allowed = true;
3891 rcu_read_unlock();
3893 return pre_cac_allowed;
3895 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
3897 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
3899 struct wireless_dev *wdev;
3900 /* If we finished CAC or received radar, we should end any
3901 * CAC running on the same channels.
3902 * the check !cfg80211_chandef_dfs_usable contain 2 options:
3903 * either all channels are available - those the CAC_FINISHED
3904 * event has effected another wdev state, or there is a channel
3905 * in unavailable state in wdev chandef - those the RADAR_DETECTED
3906 * event has effected another wdev state.
3907 * In both cases we should end the CAC on the wdev.
3909 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3910 if (wdev->cac_started &&
3911 !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef))
3912 rdev_end_cac(rdev, wdev->netdev);
3916 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3917 struct cfg80211_chan_def *chandef,
3918 enum nl80211_dfs_state dfs_state,
3919 enum nl80211_radar_event event)
3921 struct cfg80211_registered_device *rdev;
3923 ASSERT_RTNL();
3925 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3926 return;
3928 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3929 if (wiphy == &rdev->wiphy)
3930 continue;
3932 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3933 continue;
3935 if (!ieee80211_get_channel(&rdev->wiphy,
3936 chandef->chan->center_freq))
3937 continue;
3939 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3941 if (event == NL80211_RADAR_DETECTED ||
3942 event == NL80211_RADAR_CAC_FINISHED) {
3943 cfg80211_sched_dfs_chan_update(rdev);
3944 cfg80211_check_and_end_cac(rdev);
3947 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3951 static int __init regulatory_init_db(void)
3953 int err;
3956 * It's possible that - due to other bugs/issues - cfg80211
3957 * never called regulatory_init() below, or that it failed;
3958 * in that case, don't try to do any further work here as
3959 * it's doomed to lead to crashes.
3961 if (IS_ERR_OR_NULL(reg_pdev))
3962 return -EINVAL;
3964 err = load_builtin_regdb_keys();
3965 if (err)
3966 return err;
3968 /* We always try to get an update for the static regdomain */
3969 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3970 if (err) {
3971 if (err == -ENOMEM) {
3972 platform_device_unregister(reg_pdev);
3973 return err;
3976 * N.B. kobject_uevent_env() can fail mainly for when we're out
3977 * memory which is handled and propagated appropriately above
3978 * but it can also fail during a netlink_broadcast() or during
3979 * early boot for call_usermodehelper(). For now treat these
3980 * errors as non-fatal.
3982 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3986 * Finally, if the user set the module parameter treat it
3987 * as a user hint.
3989 if (!is_world_regdom(ieee80211_regdom))
3990 regulatory_hint_user(ieee80211_regdom,
3991 NL80211_USER_REG_HINT_USER);
3993 return 0;
3995 #ifndef MODULE
3996 late_initcall(regulatory_init_db);
3997 #endif
3999 int __init regulatory_init(void)
4001 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4002 if (IS_ERR(reg_pdev))
4003 return PTR_ERR(reg_pdev);
4005 spin_lock_init(&reg_requests_lock);
4006 spin_lock_init(&reg_pending_beacons_lock);
4007 spin_lock_init(&reg_indoor_lock);
4009 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4011 user_alpha2[0] = '9';
4012 user_alpha2[1] = '7';
4014 #ifdef MODULE
4015 return regulatory_init_db();
4016 #else
4017 return 0;
4018 #endif
4021 void regulatory_exit(void)
4023 struct regulatory_request *reg_request, *tmp;
4024 struct reg_beacon *reg_beacon, *btmp;
4026 cancel_work_sync(&reg_work);
4027 cancel_crda_timeout_sync();
4028 cancel_delayed_work_sync(&reg_check_chans);
4030 /* Lock to suppress warnings */
4031 rtnl_lock();
4032 reset_regdomains(true, NULL);
4033 rtnl_unlock();
4035 dev_set_uevent_suppress(&reg_pdev->dev, true);
4037 platform_device_unregister(reg_pdev);
4039 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4040 list_del(&reg_beacon->list);
4041 kfree(reg_beacon);
4044 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4045 list_del(&reg_beacon->list);
4046 kfree(reg_beacon);
4049 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4050 list_del(&reg_request->list);
4051 kfree(reg_request);
4054 if (!IS_ERR_OR_NULL(regdb))
4055 kfree(regdb);
4056 if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4057 kfree(cfg80211_user_regdom);
4059 free_regdb_keyring();