2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 - 2019 Intel Corporation
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
25 * DOC: Wireless regulatory infrastructure
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
67 * Grace period we give before making sure all current interfaces reside on
68 * channels allowed by the current regulatory domain.
70 #define REG_ENFORCE_GRACE_MS 60000
73 * enum reg_request_treatment - regulatory request treatment
75 * @REG_REQ_OK: continue processing the regulatory request
76 * @REG_REQ_IGNORE: ignore the regulatory request
77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78 * be intersected with the current one.
79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80 * regulatory settings, and no further processing is required.
82 enum reg_request_treatment
{
89 static struct regulatory_request core_request_world
= {
90 .initiator
= NL80211_REGDOM_SET_BY_CORE
,
95 .country_ie_env
= ENVIRON_ANY
,
99 * Receipt of information from last regulatory request,
100 * protected by RTNL (and can be accessed with RCU protection)
102 static struct regulatory_request __rcu
*last_request
=
103 (void __force __rcu
*)&core_request_world
;
105 /* To trigger userspace events and load firmware */
106 static struct platform_device
*reg_pdev
;
109 * Central wireless core regulatory domains, we only need two,
110 * the current one and a world regulatory domain in case we have no
111 * information to give us an alpha2.
112 * (protected by RTNL, can be read under RCU)
114 const struct ieee80211_regdomain __rcu
*cfg80211_regdomain
;
117 * Number of devices that registered to the core
118 * that support cellular base station regulatory hints
119 * (protected by RTNL)
121 static int reg_num_devs_support_basehint
;
124 * State variable indicating if the platform on which the devices
125 * are attached is operating in an indoor environment. The state variable
126 * is relevant for all registered devices.
128 static bool reg_is_indoor
;
129 static spinlock_t reg_indoor_lock
;
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid
;
134 static void restore_regulatory_settings(bool reset_user
, bool cached
);
135 static void print_regdomain(const struct ieee80211_regdomain
*rd
);
137 static const struct ieee80211_regdomain
*get_cfg80211_regdom(void)
139 return rcu_dereference_rtnl(cfg80211_regdomain
);
142 const struct ieee80211_regdomain
*get_wiphy_regdom(struct wiphy
*wiphy
)
144 return rcu_dereference_rtnl(wiphy
->regd
);
147 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region
)
149 switch (dfs_region
) {
150 case NL80211_DFS_UNSET
:
152 case NL80211_DFS_FCC
:
154 case NL80211_DFS_ETSI
:
162 enum nl80211_dfs_regions
reg_get_dfs_region(struct wiphy
*wiphy
)
164 const struct ieee80211_regdomain
*regd
= NULL
;
165 const struct ieee80211_regdomain
*wiphy_regd
= NULL
;
167 regd
= get_cfg80211_regdom();
171 wiphy_regd
= get_wiphy_regdom(wiphy
);
175 if (wiphy_regd
->dfs_region
== regd
->dfs_region
)
178 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
179 dev_name(&wiphy
->dev
),
180 reg_dfs_region_str(wiphy_regd
->dfs_region
),
181 reg_dfs_region_str(regd
->dfs_region
));
184 return regd
->dfs_region
;
187 static void rcu_free_regdom(const struct ieee80211_regdomain
*r
)
191 kfree_rcu((struct ieee80211_regdomain
*)r
, rcu_head
);
194 static struct regulatory_request
*get_last_request(void)
196 return rcu_dereference_rtnl(last_request
);
199 /* Used to queue up regulatory hints */
200 static LIST_HEAD(reg_requests_list
);
201 static spinlock_t reg_requests_lock
;
203 /* Used to queue up beacon hints for review */
204 static LIST_HEAD(reg_pending_beacons
);
205 static spinlock_t reg_pending_beacons_lock
;
207 /* Used to keep track of processed beacon hints */
208 static LIST_HEAD(reg_beacon_list
);
211 struct list_head list
;
212 struct ieee80211_channel chan
;
215 static void reg_check_chans_work(struct work_struct
*work
);
216 static DECLARE_DELAYED_WORK(reg_check_chans
, reg_check_chans_work
);
218 static void reg_todo(struct work_struct
*work
);
219 static DECLARE_WORK(reg_work
, reg_todo
);
221 /* We keep a static world regulatory domain in case of the absence of CRDA */
222 static const struct ieee80211_regdomain world_regdom
= {
226 /* IEEE 802.11b/g, channels 1..11 */
227 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
228 /* IEEE 802.11b/g, channels 12..13. */
229 REG_RULE(2467-10, 2472+10, 20, 6, 20,
230 NL80211_RRF_NO_IR
| NL80211_RRF_AUTO_BW
),
231 /* IEEE 802.11 channel 14 - Only JP enables
232 * this and for 802.11b only */
233 REG_RULE(2484-10, 2484+10, 20, 6, 20,
235 NL80211_RRF_NO_OFDM
),
236 /* IEEE 802.11a, channel 36..48 */
237 REG_RULE(5180-10, 5240+10, 80, 6, 20,
239 NL80211_RRF_AUTO_BW
),
241 /* IEEE 802.11a, channel 52..64 - DFS required */
242 REG_RULE(5260-10, 5320+10, 80, 6, 20,
244 NL80211_RRF_AUTO_BW
|
247 /* IEEE 802.11a, channel 100..144 - DFS required */
248 REG_RULE(5500-10, 5720+10, 160, 6, 20,
252 /* IEEE 802.11a, channel 149..165 */
253 REG_RULE(5745-10, 5825+10, 80, 6, 20,
256 /* IEEE 802.11ad (60GHz), channels 1..3 */
257 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
261 /* protected by RTNL */
262 static const struct ieee80211_regdomain
*cfg80211_world_regdom
=
265 static char *ieee80211_regdom
= "00";
266 static char user_alpha2
[2];
267 static const struct ieee80211_regdomain
*cfg80211_user_regdom
;
269 module_param(ieee80211_regdom
, charp
, 0444);
270 MODULE_PARM_DESC(ieee80211_regdom
, "IEEE 802.11 regulatory domain code");
272 static void reg_free_request(struct regulatory_request
*request
)
274 if (request
== &core_request_world
)
277 if (request
!= get_last_request())
281 static void reg_free_last_request(void)
283 struct regulatory_request
*lr
= get_last_request();
285 if (lr
!= &core_request_world
&& lr
)
286 kfree_rcu(lr
, rcu_head
);
289 static void reg_update_last_request(struct regulatory_request
*request
)
291 struct regulatory_request
*lr
;
293 lr
= get_last_request();
297 reg_free_last_request();
298 rcu_assign_pointer(last_request
, request
);
301 static void reset_regdomains(bool full_reset
,
302 const struct ieee80211_regdomain
*new_regdom
)
304 const struct ieee80211_regdomain
*r
;
308 r
= get_cfg80211_regdom();
310 /* avoid freeing static information or freeing something twice */
311 if (r
== cfg80211_world_regdom
)
313 if (cfg80211_world_regdom
== &world_regdom
)
314 cfg80211_world_regdom
= NULL
;
315 if (r
== &world_regdom
)
319 rcu_free_regdom(cfg80211_world_regdom
);
321 cfg80211_world_regdom
= &world_regdom
;
322 rcu_assign_pointer(cfg80211_regdomain
, new_regdom
);
327 reg_update_last_request(&core_request_world
);
331 * Dynamic world regulatory domain requested by the wireless
332 * core upon initialization
334 static void update_world_regdomain(const struct ieee80211_regdomain
*rd
)
336 struct regulatory_request
*lr
;
338 lr
= get_last_request();
342 reset_regdomains(false, rd
);
344 cfg80211_world_regdom
= rd
;
347 bool is_world_regdom(const char *alpha2
)
351 return alpha2
[0] == '0' && alpha2
[1] == '0';
354 static bool is_alpha2_set(const char *alpha2
)
358 return alpha2
[0] && alpha2
[1];
361 static bool is_unknown_alpha2(const char *alpha2
)
366 * Special case where regulatory domain was built by driver
367 * but a specific alpha2 cannot be determined
369 return alpha2
[0] == '9' && alpha2
[1] == '9';
372 static bool is_intersected_alpha2(const char *alpha2
)
377 * Special case where regulatory domain is the
378 * result of an intersection between two regulatory domain
381 return alpha2
[0] == '9' && alpha2
[1] == '8';
384 static bool is_an_alpha2(const char *alpha2
)
388 return isalpha(alpha2
[0]) && isalpha(alpha2
[1]);
391 static bool alpha2_equal(const char *alpha2_x
, const char *alpha2_y
)
393 if (!alpha2_x
|| !alpha2_y
)
395 return alpha2_x
[0] == alpha2_y
[0] && alpha2_x
[1] == alpha2_y
[1];
398 static bool regdom_changes(const char *alpha2
)
400 const struct ieee80211_regdomain
*r
= get_cfg80211_regdom();
404 return !alpha2_equal(r
->alpha2
, alpha2
);
408 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
409 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
410 * has ever been issued.
412 static bool is_user_regdom_saved(void)
414 if (user_alpha2
[0] == '9' && user_alpha2
[1] == '7')
417 /* This would indicate a mistake on the design */
418 if (WARN(!is_world_regdom(user_alpha2
) && !is_an_alpha2(user_alpha2
),
419 "Unexpected user alpha2: %c%c\n",
420 user_alpha2
[0], user_alpha2
[1]))
426 static const struct ieee80211_regdomain
*
427 reg_copy_regd(const struct ieee80211_regdomain
*src_regd
)
429 struct ieee80211_regdomain
*regd
;
432 regd
= kzalloc(struct_size(regd
, reg_rules
, src_regd
->n_reg_rules
),
435 return ERR_PTR(-ENOMEM
);
437 memcpy(regd
, src_regd
, sizeof(struct ieee80211_regdomain
));
439 for (i
= 0; i
< src_regd
->n_reg_rules
; i
++)
440 memcpy(®d
->reg_rules
[i
], &src_regd
->reg_rules
[i
],
441 sizeof(struct ieee80211_reg_rule
));
446 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain
*rd
)
450 if (!IS_ERR(cfg80211_user_regdom
))
451 kfree(cfg80211_user_regdom
);
452 cfg80211_user_regdom
= reg_copy_regd(rd
);
455 struct reg_regdb_apply_request
{
456 struct list_head list
;
457 const struct ieee80211_regdomain
*regdom
;
460 static LIST_HEAD(reg_regdb_apply_list
);
461 static DEFINE_MUTEX(reg_regdb_apply_mutex
);
463 static void reg_regdb_apply(struct work_struct
*work
)
465 struct reg_regdb_apply_request
*request
;
469 mutex_lock(®_regdb_apply_mutex
);
470 while (!list_empty(®_regdb_apply_list
)) {
471 request
= list_first_entry(®_regdb_apply_list
,
472 struct reg_regdb_apply_request
,
474 list_del(&request
->list
);
476 set_regdom(request
->regdom
, REGD_SOURCE_INTERNAL_DB
);
479 mutex_unlock(®_regdb_apply_mutex
);
484 static DECLARE_WORK(reg_regdb_work
, reg_regdb_apply
);
486 static int reg_schedule_apply(const struct ieee80211_regdomain
*regdom
)
488 struct reg_regdb_apply_request
*request
;
490 request
= kzalloc(sizeof(struct reg_regdb_apply_request
), GFP_KERNEL
);
496 request
->regdom
= regdom
;
498 mutex_lock(®_regdb_apply_mutex
);
499 list_add_tail(&request
->list
, ®_regdb_apply_list
);
500 mutex_unlock(®_regdb_apply_mutex
);
502 schedule_work(®_regdb_work
);
506 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
507 /* Max number of consecutive attempts to communicate with CRDA */
508 #define REG_MAX_CRDA_TIMEOUTS 10
510 static u32 reg_crda_timeouts
;
512 static void crda_timeout_work(struct work_struct
*work
);
513 static DECLARE_DELAYED_WORK(crda_timeout
, crda_timeout_work
);
515 static void crda_timeout_work(struct work_struct
*work
)
517 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
520 restore_regulatory_settings(true, false);
524 static void cancel_crda_timeout(void)
526 cancel_delayed_work(&crda_timeout
);
529 static void cancel_crda_timeout_sync(void)
531 cancel_delayed_work_sync(&crda_timeout
);
534 static void reset_crda_timeouts(void)
536 reg_crda_timeouts
= 0;
540 * This lets us keep regulatory code which is updated on a regulatory
541 * basis in userspace.
543 static int call_crda(const char *alpha2
)
546 char *env
[] = { country
, NULL
};
549 snprintf(country
, sizeof(country
), "COUNTRY=%c%c",
550 alpha2
[0], alpha2
[1]);
552 if (reg_crda_timeouts
> REG_MAX_CRDA_TIMEOUTS
) {
553 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
557 if (!is_world_regdom((char *) alpha2
))
558 pr_debug("Calling CRDA for country: %c%c\n",
559 alpha2
[0], alpha2
[1]);
561 pr_debug("Calling CRDA to update world regulatory domain\n");
563 ret
= kobject_uevent_env(®_pdev
->dev
.kobj
, KOBJ_CHANGE
, env
);
567 queue_delayed_work(system_power_efficient_wq
,
568 &crda_timeout
, msecs_to_jiffies(3142));
572 static inline void cancel_crda_timeout(void) {}
573 static inline void cancel_crda_timeout_sync(void) {}
574 static inline void reset_crda_timeouts(void) {}
575 static inline int call_crda(const char *alpha2
)
579 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
581 /* code to directly load a firmware database through request_firmware */
582 static const struct fwdb_header
*regdb
;
584 struct fwdb_country
{
587 /* this struct cannot be extended */
588 } __packed
__aligned(4);
590 struct fwdb_collection
{
594 /* no optional data yet */
595 /* aligned to 2, then followed by __be16 array of rule pointers */
596 } __packed
__aligned(4);
599 FWDB_FLAG_NO_OFDM
= BIT(0),
600 FWDB_FLAG_NO_OUTDOOR
= BIT(1),
601 FWDB_FLAG_DFS
= BIT(2),
602 FWDB_FLAG_NO_IR
= BIT(3),
603 FWDB_FLAG_AUTO_BW
= BIT(4),
612 struct fwdb_wmm_rule
{
613 struct fwdb_wmm_ac client
[IEEE80211_NUM_ACS
];
614 struct fwdb_wmm_ac ap
[IEEE80211_NUM_ACS
];
621 __be32 start
, end
, max_bw
;
622 /* start of optional data */
625 } __packed
__aligned(4);
627 #define FWDB_MAGIC 0x52474442
628 #define FWDB_VERSION 20
633 struct fwdb_country country
[];
634 } __packed
__aligned(4);
636 static int ecw2cw(int ecw
)
638 return (1 << ecw
) - 1;
641 static bool valid_wmm(struct fwdb_wmm_rule
*rule
)
643 struct fwdb_wmm_ac
*ac
= (struct fwdb_wmm_ac
*)rule
;
646 for (i
= 0; i
< IEEE80211_NUM_ACS
* 2; i
++) {
647 u16 cw_min
= ecw2cw((ac
[i
].ecw
& 0xf0) >> 4);
648 u16 cw_max
= ecw2cw(ac
[i
].ecw
& 0x0f);
649 u8 aifsn
= ac
[i
].aifsn
;
651 if (cw_min
>= cw_max
)
661 static bool valid_rule(const u8
*data
, unsigned int size
, u16 rule_ptr
)
663 struct fwdb_rule
*rule
= (void *)(data
+ (rule_ptr
<< 2));
665 if ((u8
*)rule
+ sizeof(rule
->len
) > data
+ size
)
668 /* mandatory fields */
669 if (rule
->len
< offsetofend(struct fwdb_rule
, max_bw
))
671 if (rule
->len
>= offsetofend(struct fwdb_rule
, wmm_ptr
)) {
672 u32 wmm_ptr
= be16_to_cpu(rule
->wmm_ptr
) << 2;
673 struct fwdb_wmm_rule
*wmm
;
675 if (wmm_ptr
+ sizeof(struct fwdb_wmm_rule
) > size
)
678 wmm
= (void *)(data
+ wmm_ptr
);
686 static bool valid_country(const u8
*data
, unsigned int size
,
687 const struct fwdb_country
*country
)
689 unsigned int ptr
= be16_to_cpu(country
->coll_ptr
) << 2;
690 struct fwdb_collection
*coll
= (void *)(data
+ ptr
);
694 /* make sure we can read len/n_rules */
695 if ((u8
*)coll
+ offsetofend(typeof(*coll
), n_rules
) > data
+ size
)
698 /* make sure base struct and all rules fit */
699 if ((u8
*)coll
+ ALIGN(coll
->len
, 2) +
700 (coll
->n_rules
* 2) > data
+ size
)
703 /* mandatory fields must exist */
704 if (coll
->len
< offsetofend(struct fwdb_collection
, dfs_region
))
707 rules_ptr
= (void *)((u8
*)coll
+ ALIGN(coll
->len
, 2));
709 for (i
= 0; i
< coll
->n_rules
; i
++) {
710 u16 rule_ptr
= be16_to_cpu(rules_ptr
[i
]);
712 if (!valid_rule(data
, size
, rule_ptr
))
719 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
720 static struct key
*builtin_regdb_keys
;
722 static void __init
load_keys_from_buffer(const u8
*p
, unsigned int buflen
)
724 const u8
*end
= p
+ buflen
;
729 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
730 * than 256 bytes in size.
737 plen
= (p
[2] << 8) | p
[3];
742 key
= key_create_or_update(make_key_ref(builtin_regdb_keys
, 1),
743 "asymmetric", NULL
, p
, plen
,
744 ((KEY_POS_ALL
& ~KEY_POS_SETATTR
) |
745 KEY_USR_VIEW
| KEY_USR_READ
),
746 KEY_ALLOC_NOT_IN_QUOTA
|
748 KEY_ALLOC_BYPASS_RESTRICTION
);
750 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
753 pr_notice("Loaded X.509 cert '%s'\n",
754 key_ref_to_ptr(key
)->description
);
763 pr_err("Problem parsing in-kernel X.509 certificate list\n");
766 static int __init
load_builtin_regdb_keys(void)
769 keyring_alloc(".builtin_regdb_keys",
770 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
771 ((KEY_POS_ALL
& ~KEY_POS_SETATTR
) |
772 KEY_USR_VIEW
| KEY_USR_READ
| KEY_USR_SEARCH
),
773 KEY_ALLOC_NOT_IN_QUOTA
, NULL
, NULL
);
774 if (IS_ERR(builtin_regdb_keys
))
775 return PTR_ERR(builtin_regdb_keys
);
777 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
779 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
780 load_keys_from_buffer(shipped_regdb_certs
, shipped_regdb_certs_len
);
782 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
783 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
[0] != '\0')
784 load_keys_from_buffer(extra_regdb_certs
, extra_regdb_certs_len
);
790 static bool regdb_has_valid_signature(const u8
*data
, unsigned int size
)
792 const struct firmware
*sig
;
795 if (request_firmware(&sig
, "regulatory.db.p7s", ®_pdev
->dev
))
798 result
= verify_pkcs7_signature(data
, size
, sig
->data
, sig
->size
,
800 VERIFYING_UNSPECIFIED_SIGNATURE
,
803 release_firmware(sig
);
808 static void free_regdb_keyring(void)
810 key_put(builtin_regdb_keys
);
813 static int load_builtin_regdb_keys(void)
818 static bool regdb_has_valid_signature(const u8
*data
, unsigned int size
)
823 static void free_regdb_keyring(void)
826 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
828 static bool valid_regdb(const u8
*data
, unsigned int size
)
830 const struct fwdb_header
*hdr
= (void *)data
;
831 const struct fwdb_country
*country
;
833 if (size
< sizeof(*hdr
))
836 if (hdr
->magic
!= cpu_to_be32(FWDB_MAGIC
))
839 if (hdr
->version
!= cpu_to_be32(FWDB_VERSION
))
842 if (!regdb_has_valid_signature(data
, size
))
845 country
= &hdr
->country
[0];
846 while ((u8
*)(country
+ 1) <= data
+ size
) {
847 if (!country
->coll_ptr
)
849 if (!valid_country(data
, size
, country
))
857 static void set_wmm_rule(const struct fwdb_header
*db
,
858 const struct fwdb_country
*country
,
859 const struct fwdb_rule
*rule
,
860 struct ieee80211_reg_rule
*rrule
)
862 struct ieee80211_wmm_rule
*wmm_rule
= &rrule
->wmm_rule
;
863 struct fwdb_wmm_rule
*wmm
;
864 unsigned int i
, wmm_ptr
;
866 wmm_ptr
= be16_to_cpu(rule
->wmm_ptr
) << 2;
867 wmm
= (void *)((u8
*)db
+ wmm_ptr
);
869 if (!valid_wmm(wmm
)) {
870 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
871 be32_to_cpu(rule
->start
), be32_to_cpu(rule
->end
),
872 country
->alpha2
[0], country
->alpha2
[1]);
876 for (i
= 0; i
< IEEE80211_NUM_ACS
; i
++) {
877 wmm_rule
->client
[i
].cw_min
=
878 ecw2cw((wmm
->client
[i
].ecw
& 0xf0) >> 4);
879 wmm_rule
->client
[i
].cw_max
= ecw2cw(wmm
->client
[i
].ecw
& 0x0f);
880 wmm_rule
->client
[i
].aifsn
= wmm
->client
[i
].aifsn
;
881 wmm_rule
->client
[i
].cot
=
882 1000 * be16_to_cpu(wmm
->client
[i
].cot
);
883 wmm_rule
->ap
[i
].cw_min
= ecw2cw((wmm
->ap
[i
].ecw
& 0xf0) >> 4);
884 wmm_rule
->ap
[i
].cw_max
= ecw2cw(wmm
->ap
[i
].ecw
& 0x0f);
885 wmm_rule
->ap
[i
].aifsn
= wmm
->ap
[i
].aifsn
;
886 wmm_rule
->ap
[i
].cot
= 1000 * be16_to_cpu(wmm
->ap
[i
].cot
);
889 rrule
->has_wmm
= true;
892 static int __regdb_query_wmm(const struct fwdb_header
*db
,
893 const struct fwdb_country
*country
, int freq
,
894 struct ieee80211_reg_rule
*rrule
)
896 unsigned int ptr
= be16_to_cpu(country
->coll_ptr
) << 2;
897 struct fwdb_collection
*coll
= (void *)((u8
*)db
+ ptr
);
900 for (i
= 0; i
< coll
->n_rules
; i
++) {
901 __be16
*rules_ptr
= (void *)((u8
*)coll
+ ALIGN(coll
->len
, 2));
902 unsigned int rule_ptr
= be16_to_cpu(rules_ptr
[i
]) << 2;
903 struct fwdb_rule
*rule
= (void *)((u8
*)db
+ rule_ptr
);
905 if (rule
->len
< offsetofend(struct fwdb_rule
, wmm_ptr
))
908 if (freq
>= KHZ_TO_MHZ(be32_to_cpu(rule
->start
)) &&
909 freq
<= KHZ_TO_MHZ(be32_to_cpu(rule
->end
))) {
910 set_wmm_rule(db
, country
, rule
, rrule
);
918 int reg_query_regdb_wmm(char *alpha2
, int freq
, struct ieee80211_reg_rule
*rule
)
920 const struct fwdb_header
*hdr
= regdb
;
921 const struct fwdb_country
*country
;
927 return PTR_ERR(regdb
);
929 country
= &hdr
->country
[0];
930 while (country
->coll_ptr
) {
931 if (alpha2_equal(alpha2
, country
->alpha2
))
932 return __regdb_query_wmm(regdb
, country
, freq
, rule
);
939 EXPORT_SYMBOL(reg_query_regdb_wmm
);
941 static int regdb_query_country(const struct fwdb_header
*db
,
942 const struct fwdb_country
*country
)
944 unsigned int ptr
= be16_to_cpu(country
->coll_ptr
) << 2;
945 struct fwdb_collection
*coll
= (void *)((u8
*)db
+ ptr
);
946 struct ieee80211_regdomain
*regdom
;
949 regdom
= kzalloc(struct_size(regdom
, reg_rules
, coll
->n_rules
),
954 regdom
->n_reg_rules
= coll
->n_rules
;
955 regdom
->alpha2
[0] = country
->alpha2
[0];
956 regdom
->alpha2
[1] = country
->alpha2
[1];
957 regdom
->dfs_region
= coll
->dfs_region
;
959 for (i
= 0; i
< regdom
->n_reg_rules
; i
++) {
960 __be16
*rules_ptr
= (void *)((u8
*)coll
+ ALIGN(coll
->len
, 2));
961 unsigned int rule_ptr
= be16_to_cpu(rules_ptr
[i
]) << 2;
962 struct fwdb_rule
*rule
= (void *)((u8
*)db
+ rule_ptr
);
963 struct ieee80211_reg_rule
*rrule
= ®dom
->reg_rules
[i
];
965 rrule
->freq_range
.start_freq_khz
= be32_to_cpu(rule
->start
);
966 rrule
->freq_range
.end_freq_khz
= be32_to_cpu(rule
->end
);
967 rrule
->freq_range
.max_bandwidth_khz
= be32_to_cpu(rule
->max_bw
);
969 rrule
->power_rule
.max_antenna_gain
= 0;
970 rrule
->power_rule
.max_eirp
= be16_to_cpu(rule
->max_eirp
);
973 if (rule
->flags
& FWDB_FLAG_NO_OFDM
)
974 rrule
->flags
|= NL80211_RRF_NO_OFDM
;
975 if (rule
->flags
& FWDB_FLAG_NO_OUTDOOR
)
976 rrule
->flags
|= NL80211_RRF_NO_OUTDOOR
;
977 if (rule
->flags
& FWDB_FLAG_DFS
)
978 rrule
->flags
|= NL80211_RRF_DFS
;
979 if (rule
->flags
& FWDB_FLAG_NO_IR
)
980 rrule
->flags
|= NL80211_RRF_NO_IR
;
981 if (rule
->flags
& FWDB_FLAG_AUTO_BW
)
982 rrule
->flags
|= NL80211_RRF_AUTO_BW
;
984 rrule
->dfs_cac_ms
= 0;
986 /* handle optional data */
987 if (rule
->len
>= offsetofend(struct fwdb_rule
, cac_timeout
))
989 1000 * be16_to_cpu(rule
->cac_timeout
);
990 if (rule
->len
>= offsetofend(struct fwdb_rule
, wmm_ptr
))
991 set_wmm_rule(db
, country
, rule
, rrule
);
994 return reg_schedule_apply(regdom
);
997 static int query_regdb(const char *alpha2
)
999 const struct fwdb_header
*hdr
= regdb
;
1000 const struct fwdb_country
*country
;
1005 return PTR_ERR(regdb
);
1007 country
= &hdr
->country
[0];
1008 while (country
->coll_ptr
) {
1009 if (alpha2_equal(alpha2
, country
->alpha2
))
1010 return regdb_query_country(regdb
, country
);
1017 static void regdb_fw_cb(const struct firmware
*fw
, void *context
)
1020 bool restore
= true;
1024 pr_info("failed to load regulatory.db\n");
1025 set_error
= -ENODATA
;
1026 } else if (!valid_regdb(fw
->data
, fw
->size
)) {
1027 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1028 set_error
= -EINVAL
;
1032 if (regdb
&& !IS_ERR(regdb
)) {
1033 /* negative case - a bug
1034 * positive case - can happen due to race in case of multiple cb's in
1035 * queue, due to usage of asynchronous callback
1037 * Either case, just restore and free new db.
1039 } else if (set_error
) {
1040 regdb
= ERR_PTR(set_error
);
1042 db
= kmemdup(fw
->data
, fw
->size
, GFP_KERNEL
);
1045 restore
= context
&& query_regdb(context
);
1052 restore_regulatory_settings(true, false);
1058 release_firmware(fw
);
1061 static int query_regdb_file(const char *alpha2
)
1066 return query_regdb(alpha2
);
1068 alpha2
= kmemdup(alpha2
, 2, GFP_KERNEL
);
1072 return request_firmware_nowait(THIS_MODULE
, true, "regulatory.db",
1073 ®_pdev
->dev
, GFP_KERNEL
,
1074 (void *)alpha2
, regdb_fw_cb
);
1077 int reg_reload_regdb(void)
1079 const struct firmware
*fw
;
1083 err
= request_firmware(&fw
, "regulatory.db", ®_pdev
->dev
);
1087 if (!valid_regdb(fw
->data
, fw
->size
)) {
1092 db
= kmemdup(fw
->data
, fw
->size
, GFP_KERNEL
);
1099 if (!IS_ERR_OR_NULL(regdb
))
1105 release_firmware(fw
);
1109 static bool reg_query_database(struct regulatory_request
*request
)
1111 if (query_regdb_file(request
->alpha2
) == 0)
1114 if (call_crda(request
->alpha2
) == 0)
1120 bool reg_is_valid_request(const char *alpha2
)
1122 struct regulatory_request
*lr
= get_last_request();
1124 if (!lr
|| lr
->processed
)
1127 return alpha2_equal(lr
->alpha2
, alpha2
);
1130 static const struct ieee80211_regdomain
*reg_get_regdomain(struct wiphy
*wiphy
)
1132 struct regulatory_request
*lr
= get_last_request();
1135 * Follow the driver's regulatory domain, if present, unless a country
1136 * IE has been processed or a user wants to help complaince further
1138 if (lr
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1139 lr
->initiator
!= NL80211_REGDOM_SET_BY_USER
&&
1141 return get_wiphy_regdom(wiphy
);
1143 return get_cfg80211_regdom();
1147 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain
*rd
,
1148 const struct ieee80211_reg_rule
*rule
)
1150 const struct ieee80211_freq_range
*freq_range
= &rule
->freq_range
;
1151 const struct ieee80211_freq_range
*freq_range_tmp
;
1152 const struct ieee80211_reg_rule
*tmp
;
1153 u32 start_freq
, end_freq
, idx
, no
;
1155 for (idx
= 0; idx
< rd
->n_reg_rules
; idx
++)
1156 if (rule
== &rd
->reg_rules
[idx
])
1159 if (idx
== rd
->n_reg_rules
)
1162 /* get start_freq */
1166 tmp
= &rd
->reg_rules
[--no
];
1167 freq_range_tmp
= &tmp
->freq_range
;
1169 if (freq_range_tmp
->end_freq_khz
< freq_range
->start_freq_khz
)
1172 freq_range
= freq_range_tmp
;
1175 start_freq
= freq_range
->start_freq_khz
;
1178 freq_range
= &rule
->freq_range
;
1181 while (no
< rd
->n_reg_rules
- 1) {
1182 tmp
= &rd
->reg_rules
[++no
];
1183 freq_range_tmp
= &tmp
->freq_range
;
1185 if (freq_range_tmp
->start_freq_khz
> freq_range
->end_freq_khz
)
1188 freq_range
= freq_range_tmp
;
1191 end_freq
= freq_range
->end_freq_khz
;
1193 return end_freq
- start_freq
;
1196 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain
*rd
,
1197 const struct ieee80211_reg_rule
*rule
)
1199 unsigned int bw
= reg_get_max_bandwidth_from_range(rd
, rule
);
1201 if (rule
->flags
& NL80211_RRF_NO_160MHZ
)
1202 bw
= min_t(unsigned int, bw
, MHZ_TO_KHZ(80));
1203 if (rule
->flags
& NL80211_RRF_NO_80MHZ
)
1204 bw
= min_t(unsigned int, bw
, MHZ_TO_KHZ(40));
1207 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1210 if (rule
->flags
& NL80211_RRF_NO_HT40MINUS
&&
1211 rule
->flags
& NL80211_RRF_NO_HT40PLUS
)
1212 bw
= min_t(unsigned int, bw
, MHZ_TO_KHZ(20));
1217 /* Sanity check on a regulatory rule */
1218 static bool is_valid_reg_rule(const struct ieee80211_reg_rule
*rule
)
1220 const struct ieee80211_freq_range
*freq_range
= &rule
->freq_range
;
1223 if (freq_range
->start_freq_khz
<= 0 || freq_range
->end_freq_khz
<= 0)
1226 if (freq_range
->start_freq_khz
> freq_range
->end_freq_khz
)
1229 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
1231 if (freq_range
->end_freq_khz
<= freq_range
->start_freq_khz
||
1232 freq_range
->max_bandwidth_khz
> freq_diff
)
1238 static bool is_valid_rd(const struct ieee80211_regdomain
*rd
)
1240 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1243 if (!rd
->n_reg_rules
)
1246 if (WARN_ON(rd
->n_reg_rules
> NL80211_MAX_SUPP_REG_RULES
))
1249 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
1250 reg_rule
= &rd
->reg_rules
[i
];
1251 if (!is_valid_reg_rule(reg_rule
))
1259 * freq_in_rule_band - tells us if a frequency is in a frequency band
1260 * @freq_range: frequency rule we want to query
1261 * @freq_khz: frequency we are inquiring about
1263 * This lets us know if a specific frequency rule is or is not relevant to
1264 * a specific frequency's band. Bands are device specific and artificial
1265 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1266 * however it is safe for now to assume that a frequency rule should not be
1267 * part of a frequency's band if the start freq or end freq are off by more
1268 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1270 * This resolution can be lowered and should be considered as we add
1271 * regulatory rule support for other "bands".
1273 static bool freq_in_rule_band(const struct ieee80211_freq_range
*freq_range
,
1276 #define ONE_GHZ_IN_KHZ 1000000
1278 * From 802.11ad: directional multi-gigabit (DMG):
1279 * Pertaining to operation in a frequency band containing a channel
1280 * with the Channel starting frequency above 45 GHz.
1282 u32 limit
= freq_khz
> 45 * ONE_GHZ_IN_KHZ
?
1283 20 * ONE_GHZ_IN_KHZ
: 2 * ONE_GHZ_IN_KHZ
;
1284 if (abs(freq_khz
- freq_range
->start_freq_khz
) <= limit
)
1286 if (abs(freq_khz
- freq_range
->end_freq_khz
) <= limit
)
1289 #undef ONE_GHZ_IN_KHZ
1293 * Later on we can perhaps use the more restrictive DFS
1294 * region but we don't have information for that yet so
1295 * for now simply disallow conflicts.
1297 static enum nl80211_dfs_regions
1298 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1
,
1299 const enum nl80211_dfs_regions dfs_region2
)
1301 if (dfs_region1
!= dfs_region2
)
1302 return NL80211_DFS_UNSET
;
1306 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac
*wmm_ac1
,
1307 const struct ieee80211_wmm_ac
*wmm_ac2
,
1308 struct ieee80211_wmm_ac
*intersect
)
1310 intersect
->cw_min
= max_t(u16
, wmm_ac1
->cw_min
, wmm_ac2
->cw_min
);
1311 intersect
->cw_max
= max_t(u16
, wmm_ac1
->cw_max
, wmm_ac2
->cw_max
);
1312 intersect
->cot
= min_t(u16
, wmm_ac1
->cot
, wmm_ac2
->cot
);
1313 intersect
->aifsn
= max_t(u8
, wmm_ac1
->aifsn
, wmm_ac2
->aifsn
);
1317 * Helper for regdom_intersect(), this does the real
1318 * mathematical intersection fun
1320 static int reg_rules_intersect(const struct ieee80211_regdomain
*rd1
,
1321 const struct ieee80211_regdomain
*rd2
,
1322 const struct ieee80211_reg_rule
*rule1
,
1323 const struct ieee80211_reg_rule
*rule2
,
1324 struct ieee80211_reg_rule
*intersected_rule
)
1326 const struct ieee80211_freq_range
*freq_range1
, *freq_range2
;
1327 struct ieee80211_freq_range
*freq_range
;
1328 const struct ieee80211_power_rule
*power_rule1
, *power_rule2
;
1329 struct ieee80211_power_rule
*power_rule
;
1330 const struct ieee80211_wmm_rule
*wmm_rule1
, *wmm_rule2
;
1331 struct ieee80211_wmm_rule
*wmm_rule
;
1332 u32 freq_diff
, max_bandwidth1
, max_bandwidth2
;
1334 freq_range1
= &rule1
->freq_range
;
1335 freq_range2
= &rule2
->freq_range
;
1336 freq_range
= &intersected_rule
->freq_range
;
1338 power_rule1
= &rule1
->power_rule
;
1339 power_rule2
= &rule2
->power_rule
;
1340 power_rule
= &intersected_rule
->power_rule
;
1342 wmm_rule1
= &rule1
->wmm_rule
;
1343 wmm_rule2
= &rule2
->wmm_rule
;
1344 wmm_rule
= &intersected_rule
->wmm_rule
;
1346 freq_range
->start_freq_khz
= max(freq_range1
->start_freq_khz
,
1347 freq_range2
->start_freq_khz
);
1348 freq_range
->end_freq_khz
= min(freq_range1
->end_freq_khz
,
1349 freq_range2
->end_freq_khz
);
1351 max_bandwidth1
= freq_range1
->max_bandwidth_khz
;
1352 max_bandwidth2
= freq_range2
->max_bandwidth_khz
;
1354 if (rule1
->flags
& NL80211_RRF_AUTO_BW
)
1355 max_bandwidth1
= reg_get_max_bandwidth(rd1
, rule1
);
1356 if (rule2
->flags
& NL80211_RRF_AUTO_BW
)
1357 max_bandwidth2
= reg_get_max_bandwidth(rd2
, rule2
);
1359 freq_range
->max_bandwidth_khz
= min(max_bandwidth1
, max_bandwidth2
);
1361 intersected_rule
->flags
= rule1
->flags
| rule2
->flags
;
1364 * In case NL80211_RRF_AUTO_BW requested for both rules
1365 * set AUTO_BW in intersected rule also. Next we will
1366 * calculate BW correctly in handle_channel function.
1367 * In other case remove AUTO_BW flag while we calculate
1368 * maximum bandwidth correctly and auto calculation is
1371 if ((rule1
->flags
& NL80211_RRF_AUTO_BW
) &&
1372 (rule2
->flags
& NL80211_RRF_AUTO_BW
))
1373 intersected_rule
->flags
|= NL80211_RRF_AUTO_BW
;
1375 intersected_rule
->flags
&= ~NL80211_RRF_AUTO_BW
;
1377 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
1378 if (freq_range
->max_bandwidth_khz
> freq_diff
)
1379 freq_range
->max_bandwidth_khz
= freq_diff
;
1381 power_rule
->max_eirp
= min(power_rule1
->max_eirp
,
1382 power_rule2
->max_eirp
);
1383 power_rule
->max_antenna_gain
= min(power_rule1
->max_antenna_gain
,
1384 power_rule2
->max_antenna_gain
);
1386 intersected_rule
->dfs_cac_ms
= max(rule1
->dfs_cac_ms
,
1389 if (rule1
->has_wmm
&& rule2
->has_wmm
) {
1392 for (ac
= 0; ac
< IEEE80211_NUM_ACS
; ac
++) {
1393 reg_wmm_rules_intersect(&wmm_rule1
->client
[ac
],
1394 &wmm_rule2
->client
[ac
],
1395 &wmm_rule
->client
[ac
]);
1396 reg_wmm_rules_intersect(&wmm_rule1
->ap
[ac
],
1401 intersected_rule
->has_wmm
= true;
1402 } else if (rule1
->has_wmm
) {
1403 *wmm_rule
= *wmm_rule1
;
1404 intersected_rule
->has_wmm
= true;
1405 } else if (rule2
->has_wmm
) {
1406 *wmm_rule
= *wmm_rule2
;
1407 intersected_rule
->has_wmm
= true;
1409 intersected_rule
->has_wmm
= false;
1412 if (!is_valid_reg_rule(intersected_rule
))
1418 /* check whether old rule contains new rule */
1419 static bool rule_contains(struct ieee80211_reg_rule
*r1
,
1420 struct ieee80211_reg_rule
*r2
)
1422 /* for simplicity, currently consider only same flags */
1423 if (r1
->flags
!= r2
->flags
)
1426 /* verify r1 is more restrictive */
1427 if ((r1
->power_rule
.max_antenna_gain
>
1428 r2
->power_rule
.max_antenna_gain
) ||
1429 r1
->power_rule
.max_eirp
> r2
->power_rule
.max_eirp
)
1432 /* make sure r2's range is contained within r1 */
1433 if (r1
->freq_range
.start_freq_khz
> r2
->freq_range
.start_freq_khz
||
1434 r1
->freq_range
.end_freq_khz
< r2
->freq_range
.end_freq_khz
)
1437 /* and finally verify that r1.max_bw >= r2.max_bw */
1438 if (r1
->freq_range
.max_bandwidth_khz
<
1439 r2
->freq_range
.max_bandwidth_khz
)
1445 /* add or extend current rules. do nothing if rule is already contained */
1446 static void add_rule(struct ieee80211_reg_rule
*rule
,
1447 struct ieee80211_reg_rule
*reg_rules
, u32
*n_rules
)
1449 struct ieee80211_reg_rule
*tmp_rule
;
1452 for (i
= 0; i
< *n_rules
; i
++) {
1453 tmp_rule
= ®_rules
[i
];
1454 /* rule is already contained - do nothing */
1455 if (rule_contains(tmp_rule
, rule
))
1458 /* extend rule if possible */
1459 if (rule_contains(rule
, tmp_rule
)) {
1460 memcpy(tmp_rule
, rule
, sizeof(*rule
));
1465 memcpy(®_rules
[*n_rules
], rule
, sizeof(*rule
));
1470 * regdom_intersect - do the intersection between two regulatory domains
1471 * @rd1: first regulatory domain
1472 * @rd2: second regulatory domain
1474 * Use this function to get the intersection between two regulatory domains.
1475 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1476 * as no one single alpha2 can represent this regulatory domain.
1478 * Returns a pointer to the regulatory domain structure which will hold the
1479 * resulting intersection of rules between rd1 and rd2. We will
1480 * kzalloc() this structure for you.
1482 static struct ieee80211_regdomain
*
1483 regdom_intersect(const struct ieee80211_regdomain
*rd1
,
1484 const struct ieee80211_regdomain
*rd2
)
1488 unsigned int num_rules
= 0;
1489 const struct ieee80211_reg_rule
*rule1
, *rule2
;
1490 struct ieee80211_reg_rule intersected_rule
;
1491 struct ieee80211_regdomain
*rd
;
1497 * First we get a count of the rules we'll need, then we actually
1498 * build them. This is to so we can malloc() and free() a
1499 * regdomain once. The reason we use reg_rules_intersect() here
1500 * is it will return -EINVAL if the rule computed makes no sense.
1501 * All rules that do check out OK are valid.
1504 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
1505 rule1
= &rd1
->reg_rules
[x
];
1506 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
1507 rule2
= &rd2
->reg_rules
[y
];
1508 if (!reg_rules_intersect(rd1
, rd2
, rule1
, rule2
,
1517 rd
= kzalloc(struct_size(rd
, reg_rules
, num_rules
), GFP_KERNEL
);
1521 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
1522 rule1
= &rd1
->reg_rules
[x
];
1523 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
1524 rule2
= &rd2
->reg_rules
[y
];
1525 r
= reg_rules_intersect(rd1
, rd2
, rule1
, rule2
,
1528 * No need to memset here the intersected rule here as
1529 * we're not using the stack anymore
1534 add_rule(&intersected_rule
, rd
->reg_rules
,
1539 rd
->alpha2
[0] = '9';
1540 rd
->alpha2
[1] = '8';
1541 rd
->dfs_region
= reg_intersect_dfs_region(rd1
->dfs_region
,
1548 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1549 * want to just have the channel structure use these
1551 static u32
map_regdom_flags(u32 rd_flags
)
1553 u32 channel_flags
= 0;
1554 if (rd_flags
& NL80211_RRF_NO_IR_ALL
)
1555 channel_flags
|= IEEE80211_CHAN_NO_IR
;
1556 if (rd_flags
& NL80211_RRF_DFS
)
1557 channel_flags
|= IEEE80211_CHAN_RADAR
;
1558 if (rd_flags
& NL80211_RRF_NO_OFDM
)
1559 channel_flags
|= IEEE80211_CHAN_NO_OFDM
;
1560 if (rd_flags
& NL80211_RRF_NO_OUTDOOR
)
1561 channel_flags
|= IEEE80211_CHAN_INDOOR_ONLY
;
1562 if (rd_flags
& NL80211_RRF_IR_CONCURRENT
)
1563 channel_flags
|= IEEE80211_CHAN_IR_CONCURRENT
;
1564 if (rd_flags
& NL80211_RRF_NO_HT40MINUS
)
1565 channel_flags
|= IEEE80211_CHAN_NO_HT40MINUS
;
1566 if (rd_flags
& NL80211_RRF_NO_HT40PLUS
)
1567 channel_flags
|= IEEE80211_CHAN_NO_HT40PLUS
;
1568 if (rd_flags
& NL80211_RRF_NO_80MHZ
)
1569 channel_flags
|= IEEE80211_CHAN_NO_80MHZ
;
1570 if (rd_flags
& NL80211_RRF_NO_160MHZ
)
1571 channel_flags
|= IEEE80211_CHAN_NO_160MHZ
;
1572 if (rd_flags
& NL80211_RRF_NO_HE
)
1573 channel_flags
|= IEEE80211_CHAN_NO_HE
;
1574 return channel_flags
;
1577 static const struct ieee80211_reg_rule
*
1578 freq_reg_info_regd(u32 center_freq
,
1579 const struct ieee80211_regdomain
*regd
, u32 bw
)
1582 bool band_rule_found
= false;
1583 bool bw_fits
= false;
1586 return ERR_PTR(-EINVAL
);
1588 for (i
= 0; i
< regd
->n_reg_rules
; i
++) {
1589 const struct ieee80211_reg_rule
*rr
;
1590 const struct ieee80211_freq_range
*fr
= NULL
;
1592 rr
= ®d
->reg_rules
[i
];
1593 fr
= &rr
->freq_range
;
1596 * We only need to know if one frequency rule was
1597 * was in center_freq's band, that's enough, so lets
1598 * not overwrite it once found
1600 if (!band_rule_found
)
1601 band_rule_found
= freq_in_rule_band(fr
, center_freq
);
1603 bw_fits
= cfg80211_does_bw_fit_range(fr
, center_freq
, bw
);
1605 if (band_rule_found
&& bw_fits
)
1609 if (!band_rule_found
)
1610 return ERR_PTR(-ERANGE
);
1612 return ERR_PTR(-EINVAL
);
1615 static const struct ieee80211_reg_rule
*
1616 __freq_reg_info(struct wiphy
*wiphy
, u32 center_freq
, u32 min_bw
)
1618 const struct ieee80211_regdomain
*regd
= reg_get_regdomain(wiphy
);
1619 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1622 for (bw
= MHZ_TO_KHZ(20); bw
>= min_bw
; bw
= bw
/ 2) {
1623 reg_rule
= freq_reg_info_regd(center_freq
, regd
, bw
);
1624 if (!IS_ERR(reg_rule
))
1631 const struct ieee80211_reg_rule
*freq_reg_info(struct wiphy
*wiphy
,
1634 return __freq_reg_info(wiphy
, center_freq
, MHZ_TO_KHZ(20));
1636 EXPORT_SYMBOL(freq_reg_info
);
1638 const char *reg_initiator_name(enum nl80211_reg_initiator initiator
)
1640 switch (initiator
) {
1641 case NL80211_REGDOM_SET_BY_CORE
:
1643 case NL80211_REGDOM_SET_BY_USER
:
1645 case NL80211_REGDOM_SET_BY_DRIVER
:
1647 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
1648 return "country element";
1654 EXPORT_SYMBOL(reg_initiator_name
);
1656 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain
*regd
,
1657 const struct ieee80211_reg_rule
*reg_rule
,
1658 const struct ieee80211_channel
*chan
)
1660 const struct ieee80211_freq_range
*freq_range
= NULL
;
1661 u32 max_bandwidth_khz
, bw_flags
= 0;
1663 freq_range
= ®_rule
->freq_range
;
1665 max_bandwidth_khz
= freq_range
->max_bandwidth_khz
;
1666 /* Check if auto calculation requested */
1667 if (reg_rule
->flags
& NL80211_RRF_AUTO_BW
)
1668 max_bandwidth_khz
= reg_get_max_bandwidth(regd
, reg_rule
);
1670 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1671 if (!cfg80211_does_bw_fit_range(freq_range
,
1672 MHZ_TO_KHZ(chan
->center_freq
),
1674 bw_flags
|= IEEE80211_CHAN_NO_10MHZ
;
1675 if (!cfg80211_does_bw_fit_range(freq_range
,
1676 MHZ_TO_KHZ(chan
->center_freq
),
1678 bw_flags
|= IEEE80211_CHAN_NO_20MHZ
;
1680 if (max_bandwidth_khz
< MHZ_TO_KHZ(10))
1681 bw_flags
|= IEEE80211_CHAN_NO_10MHZ
;
1682 if (max_bandwidth_khz
< MHZ_TO_KHZ(20))
1683 bw_flags
|= IEEE80211_CHAN_NO_20MHZ
;
1684 if (max_bandwidth_khz
< MHZ_TO_KHZ(40))
1685 bw_flags
|= IEEE80211_CHAN_NO_HT40
;
1686 if (max_bandwidth_khz
< MHZ_TO_KHZ(80))
1687 bw_flags
|= IEEE80211_CHAN_NO_80MHZ
;
1688 if (max_bandwidth_khz
< MHZ_TO_KHZ(160))
1689 bw_flags
|= IEEE80211_CHAN_NO_160MHZ
;
1694 * Note that right now we assume the desired channel bandwidth
1695 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1696 * per channel, the primary and the extension channel).
1698 static void handle_channel(struct wiphy
*wiphy
,
1699 enum nl80211_reg_initiator initiator
,
1700 struct ieee80211_channel
*chan
)
1702 u32 flags
, bw_flags
= 0;
1703 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1704 const struct ieee80211_power_rule
*power_rule
= NULL
;
1705 struct wiphy
*request_wiphy
= NULL
;
1706 struct regulatory_request
*lr
= get_last_request();
1707 const struct ieee80211_regdomain
*regd
;
1709 request_wiphy
= wiphy_idx_to_wiphy(lr
->wiphy_idx
);
1711 flags
= chan
->orig_flags
;
1713 reg_rule
= freq_reg_info(wiphy
, MHZ_TO_KHZ(chan
->center_freq
));
1714 if (IS_ERR(reg_rule
)) {
1716 * We will disable all channels that do not match our
1717 * received regulatory rule unless the hint is coming
1718 * from a Country IE and the Country IE had no information
1719 * about a band. The IEEE 802.11 spec allows for an AP
1720 * to send only a subset of the regulatory rules allowed,
1721 * so an AP in the US that only supports 2.4 GHz may only send
1722 * a country IE with information for the 2.4 GHz band
1723 * while 5 GHz is still supported.
1725 if (initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1726 PTR_ERR(reg_rule
) == -ERANGE
)
1729 if (lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1730 request_wiphy
&& request_wiphy
== wiphy
&&
1731 request_wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
) {
1732 pr_debug("Disabling freq %d MHz for good\n",
1734 chan
->orig_flags
|= IEEE80211_CHAN_DISABLED
;
1735 chan
->flags
= chan
->orig_flags
;
1737 pr_debug("Disabling freq %d MHz\n",
1739 chan
->flags
|= IEEE80211_CHAN_DISABLED
;
1744 regd
= reg_get_regdomain(wiphy
);
1746 power_rule
= ®_rule
->power_rule
;
1747 bw_flags
= reg_rule_to_chan_bw_flags(regd
, reg_rule
, chan
);
1749 if (lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1750 request_wiphy
&& request_wiphy
== wiphy
&&
1751 request_wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
) {
1753 * This guarantees the driver's requested regulatory domain
1754 * will always be used as a base for further regulatory
1757 chan
->flags
= chan
->orig_flags
=
1758 map_regdom_flags(reg_rule
->flags
) | bw_flags
;
1759 chan
->max_antenna_gain
= chan
->orig_mag
=
1760 (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
1761 chan
->max_reg_power
= chan
->max_power
= chan
->orig_mpwr
=
1762 (int) MBM_TO_DBM(power_rule
->max_eirp
);
1764 if (chan
->flags
& IEEE80211_CHAN_RADAR
) {
1765 chan
->dfs_cac_ms
= IEEE80211_DFS_MIN_CAC_TIME_MS
;
1766 if (reg_rule
->dfs_cac_ms
)
1767 chan
->dfs_cac_ms
= reg_rule
->dfs_cac_ms
;
1773 chan
->dfs_state
= NL80211_DFS_USABLE
;
1774 chan
->dfs_state_entered
= jiffies
;
1776 chan
->beacon_found
= false;
1777 chan
->flags
= flags
| bw_flags
| map_regdom_flags(reg_rule
->flags
);
1778 chan
->max_antenna_gain
=
1779 min_t(int, chan
->orig_mag
,
1780 MBI_TO_DBI(power_rule
->max_antenna_gain
));
1781 chan
->max_reg_power
= (int) MBM_TO_DBM(power_rule
->max_eirp
);
1783 if (chan
->flags
& IEEE80211_CHAN_RADAR
) {
1784 if (reg_rule
->dfs_cac_ms
)
1785 chan
->dfs_cac_ms
= reg_rule
->dfs_cac_ms
;
1787 chan
->dfs_cac_ms
= IEEE80211_DFS_MIN_CAC_TIME_MS
;
1790 if (chan
->orig_mpwr
) {
1792 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1793 * will always follow the passed country IE power settings.
1795 if (initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1796 wiphy
->regulatory_flags
& REGULATORY_COUNTRY_IE_FOLLOW_POWER
)
1797 chan
->max_power
= chan
->max_reg_power
;
1799 chan
->max_power
= min(chan
->orig_mpwr
,
1800 chan
->max_reg_power
);
1802 chan
->max_power
= chan
->max_reg_power
;
1805 static void handle_band(struct wiphy
*wiphy
,
1806 enum nl80211_reg_initiator initiator
,
1807 struct ieee80211_supported_band
*sband
)
1814 for (i
= 0; i
< sband
->n_channels
; i
++)
1815 handle_channel(wiphy
, initiator
, &sband
->channels
[i
]);
1818 static bool reg_request_cell_base(struct regulatory_request
*request
)
1820 if (request
->initiator
!= NL80211_REGDOM_SET_BY_USER
)
1822 return request
->user_reg_hint_type
== NL80211_USER_REG_HINT_CELL_BASE
;
1825 bool reg_last_request_cell_base(void)
1827 return reg_request_cell_base(get_last_request());
1830 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1831 /* Core specific check */
1832 static enum reg_request_treatment
1833 reg_ignore_cell_hint(struct regulatory_request
*pending_request
)
1835 struct regulatory_request
*lr
= get_last_request();
1837 if (!reg_num_devs_support_basehint
)
1838 return REG_REQ_IGNORE
;
1840 if (reg_request_cell_base(lr
) &&
1841 !regdom_changes(pending_request
->alpha2
))
1842 return REG_REQ_ALREADY_SET
;
1847 /* Device specific check */
1848 static bool reg_dev_ignore_cell_hint(struct wiphy
*wiphy
)
1850 return !(wiphy
->features
& NL80211_FEATURE_CELL_BASE_REG_HINTS
);
1853 static enum reg_request_treatment
1854 reg_ignore_cell_hint(struct regulatory_request
*pending_request
)
1856 return REG_REQ_IGNORE
;
1859 static bool reg_dev_ignore_cell_hint(struct wiphy
*wiphy
)
1865 static bool wiphy_strict_alpha2_regd(struct wiphy
*wiphy
)
1867 if (wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
&&
1868 !(wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
))
1873 static bool ignore_reg_update(struct wiphy
*wiphy
,
1874 enum nl80211_reg_initiator initiator
)
1876 struct regulatory_request
*lr
= get_last_request();
1878 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
1882 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1883 reg_initiator_name(initiator
));
1887 if (initiator
== NL80211_REGDOM_SET_BY_CORE
&&
1888 wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
) {
1889 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1890 reg_initiator_name(initiator
));
1895 * wiphy->regd will be set once the device has its own
1896 * desired regulatory domain set
1898 if (wiphy_strict_alpha2_regd(wiphy
) && !wiphy
->regd
&&
1899 initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1900 !is_world_regdom(lr
->alpha2
)) {
1901 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1902 reg_initiator_name(initiator
));
1906 if (reg_request_cell_base(lr
))
1907 return reg_dev_ignore_cell_hint(wiphy
);
1912 static bool reg_is_world_roaming(struct wiphy
*wiphy
)
1914 const struct ieee80211_regdomain
*cr
= get_cfg80211_regdom();
1915 const struct ieee80211_regdomain
*wr
= get_wiphy_regdom(wiphy
);
1916 struct regulatory_request
*lr
= get_last_request();
1918 if (is_world_regdom(cr
->alpha2
) || (wr
&& is_world_regdom(wr
->alpha2
)))
1921 if (lr
&& lr
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1922 wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
)
1928 static void handle_reg_beacon(struct wiphy
*wiphy
, unsigned int chan_idx
,
1929 struct reg_beacon
*reg_beacon
)
1931 struct ieee80211_supported_band
*sband
;
1932 struct ieee80211_channel
*chan
;
1933 bool channel_changed
= false;
1934 struct ieee80211_channel chan_before
;
1936 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1937 chan
= &sband
->channels
[chan_idx
];
1939 if (likely(chan
->center_freq
!= reg_beacon
->chan
.center_freq
))
1942 if (chan
->beacon_found
)
1945 chan
->beacon_found
= true;
1947 if (!reg_is_world_roaming(wiphy
))
1950 if (wiphy
->regulatory_flags
& REGULATORY_DISABLE_BEACON_HINTS
)
1953 chan_before
= *chan
;
1955 if (chan
->flags
& IEEE80211_CHAN_NO_IR
) {
1956 chan
->flags
&= ~IEEE80211_CHAN_NO_IR
;
1957 channel_changed
= true;
1960 if (channel_changed
)
1961 nl80211_send_beacon_hint_event(wiphy
, &chan_before
, chan
);
1965 * Called when a scan on a wiphy finds a beacon on
1968 static void wiphy_update_new_beacon(struct wiphy
*wiphy
,
1969 struct reg_beacon
*reg_beacon
)
1972 struct ieee80211_supported_band
*sband
;
1974 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
1977 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1979 for (i
= 0; i
< sband
->n_channels
; i
++)
1980 handle_reg_beacon(wiphy
, i
, reg_beacon
);
1984 * Called upon reg changes or a new wiphy is added
1986 static void wiphy_update_beacon_reg(struct wiphy
*wiphy
)
1989 struct ieee80211_supported_band
*sband
;
1990 struct reg_beacon
*reg_beacon
;
1992 list_for_each_entry(reg_beacon
, ®_beacon_list
, list
) {
1993 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
1995 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1996 for (i
= 0; i
< sband
->n_channels
; i
++)
1997 handle_reg_beacon(wiphy
, i
, reg_beacon
);
2001 /* Reap the advantages of previously found beacons */
2002 static void reg_process_beacons(struct wiphy
*wiphy
)
2005 * Means we are just firing up cfg80211, so no beacons would
2006 * have been processed yet.
2010 wiphy_update_beacon_reg(wiphy
);
2013 static bool is_ht40_allowed(struct ieee80211_channel
*chan
)
2017 if (chan
->flags
& IEEE80211_CHAN_DISABLED
)
2019 /* This would happen when regulatory rules disallow HT40 completely */
2020 if ((chan
->flags
& IEEE80211_CHAN_NO_HT40
) == IEEE80211_CHAN_NO_HT40
)
2025 static void reg_process_ht_flags_channel(struct wiphy
*wiphy
,
2026 struct ieee80211_channel
*channel
)
2028 struct ieee80211_supported_band
*sband
= wiphy
->bands
[channel
->band
];
2029 struct ieee80211_channel
*channel_before
= NULL
, *channel_after
= NULL
;
2030 const struct ieee80211_regdomain
*regd
;
2034 if (!is_ht40_allowed(channel
)) {
2035 channel
->flags
|= IEEE80211_CHAN_NO_HT40
;
2040 * We need to ensure the extension channels exist to
2041 * be able to use HT40- or HT40+, this finds them (or not)
2043 for (i
= 0; i
< sband
->n_channels
; i
++) {
2044 struct ieee80211_channel
*c
= &sband
->channels
[i
];
2046 if (c
->center_freq
== (channel
->center_freq
- 20))
2048 if (c
->center_freq
== (channel
->center_freq
+ 20))
2053 regd
= get_wiphy_regdom(wiphy
);
2055 const struct ieee80211_reg_rule
*reg_rule
=
2056 freq_reg_info_regd(MHZ_TO_KHZ(channel
->center_freq
),
2057 regd
, MHZ_TO_KHZ(20));
2059 if (!IS_ERR(reg_rule
))
2060 flags
= reg_rule
->flags
;
2064 * Please note that this assumes target bandwidth is 20 MHz,
2065 * if that ever changes we also need to change the below logic
2066 * to include that as well.
2068 if (!is_ht40_allowed(channel_before
) ||
2069 flags
& NL80211_RRF_NO_HT40MINUS
)
2070 channel
->flags
|= IEEE80211_CHAN_NO_HT40MINUS
;
2072 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40MINUS
;
2074 if (!is_ht40_allowed(channel_after
) ||
2075 flags
& NL80211_RRF_NO_HT40PLUS
)
2076 channel
->flags
|= IEEE80211_CHAN_NO_HT40PLUS
;
2078 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40PLUS
;
2081 static void reg_process_ht_flags_band(struct wiphy
*wiphy
,
2082 struct ieee80211_supported_band
*sband
)
2089 for (i
= 0; i
< sband
->n_channels
; i
++)
2090 reg_process_ht_flags_channel(wiphy
, &sband
->channels
[i
]);
2093 static void reg_process_ht_flags(struct wiphy
*wiphy
)
2095 enum nl80211_band band
;
2100 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++)
2101 reg_process_ht_flags_band(wiphy
, wiphy
->bands
[band
]);
2104 static void reg_call_notifier(struct wiphy
*wiphy
,
2105 struct regulatory_request
*request
)
2107 if (wiphy
->reg_notifier
)
2108 wiphy
->reg_notifier(wiphy
, request
);
2111 static bool reg_wdev_chan_valid(struct wiphy
*wiphy
, struct wireless_dev
*wdev
)
2113 struct cfg80211_chan_def chandef
= {};
2114 struct cfg80211_registered_device
*rdev
= wiphy_to_rdev(wiphy
);
2115 enum nl80211_iftype iftype
;
2118 iftype
= wdev
->iftype
;
2120 /* make sure the interface is active */
2121 if (!wdev
->netdev
|| !netif_running(wdev
->netdev
))
2122 goto wdev_inactive_unlock
;
2125 case NL80211_IFTYPE_AP
:
2126 case NL80211_IFTYPE_P2P_GO
:
2127 if (!wdev
->beacon_interval
)
2128 goto wdev_inactive_unlock
;
2129 chandef
= wdev
->chandef
;
2131 case NL80211_IFTYPE_ADHOC
:
2132 if (!wdev
->ssid_len
)
2133 goto wdev_inactive_unlock
;
2134 chandef
= wdev
->chandef
;
2136 case NL80211_IFTYPE_STATION
:
2137 case NL80211_IFTYPE_P2P_CLIENT
:
2138 if (!wdev
->current_bss
||
2139 !wdev
->current_bss
->pub
.channel
)
2140 goto wdev_inactive_unlock
;
2142 if (!rdev
->ops
->get_channel
||
2143 rdev_get_channel(rdev
, wdev
, &chandef
))
2144 cfg80211_chandef_create(&chandef
,
2145 wdev
->current_bss
->pub
.channel
,
2146 NL80211_CHAN_NO_HT
);
2148 case NL80211_IFTYPE_MONITOR
:
2149 case NL80211_IFTYPE_AP_VLAN
:
2150 case NL80211_IFTYPE_P2P_DEVICE
:
2151 /* no enforcement required */
2154 /* others not implemented for now */
2162 case NL80211_IFTYPE_AP
:
2163 case NL80211_IFTYPE_P2P_GO
:
2164 case NL80211_IFTYPE_ADHOC
:
2165 return cfg80211_reg_can_beacon_relax(wiphy
, &chandef
, iftype
);
2166 case NL80211_IFTYPE_STATION
:
2167 case NL80211_IFTYPE_P2P_CLIENT
:
2168 return cfg80211_chandef_usable(wiphy
, &chandef
,
2169 IEEE80211_CHAN_DISABLED
);
2176 wdev_inactive_unlock
:
2181 static void reg_leave_invalid_chans(struct wiphy
*wiphy
)
2183 struct wireless_dev
*wdev
;
2184 struct cfg80211_registered_device
*rdev
= wiphy_to_rdev(wiphy
);
2188 list_for_each_entry(wdev
, &rdev
->wiphy
.wdev_list
, list
)
2189 if (!reg_wdev_chan_valid(wiphy
, wdev
))
2190 cfg80211_leave(rdev
, wdev
);
2193 static void reg_check_chans_work(struct work_struct
*work
)
2195 struct cfg80211_registered_device
*rdev
;
2197 pr_debug("Verifying active interfaces after reg change\n");
2200 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
)
2201 if (!(rdev
->wiphy
.regulatory_flags
&
2202 REGULATORY_IGNORE_STALE_KICKOFF
))
2203 reg_leave_invalid_chans(&rdev
->wiphy
);
2208 static void reg_check_channels(void)
2211 * Give usermode a chance to do something nicer (move to another
2212 * channel, orderly disconnection), before forcing a disconnection.
2214 mod_delayed_work(system_power_efficient_wq
,
2216 msecs_to_jiffies(REG_ENFORCE_GRACE_MS
));
2219 static void wiphy_update_regulatory(struct wiphy
*wiphy
,
2220 enum nl80211_reg_initiator initiator
)
2222 enum nl80211_band band
;
2223 struct regulatory_request
*lr
= get_last_request();
2225 if (ignore_reg_update(wiphy
, initiator
)) {
2227 * Regulatory updates set by CORE are ignored for custom
2228 * regulatory cards. Let us notify the changes to the driver,
2229 * as some drivers used this to restore its orig_* reg domain.
2231 if (initiator
== NL80211_REGDOM_SET_BY_CORE
&&
2232 wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
&&
2233 !(wiphy
->regulatory_flags
&
2234 REGULATORY_WIPHY_SELF_MANAGED
))
2235 reg_call_notifier(wiphy
, lr
);
2239 lr
->dfs_region
= get_cfg80211_regdom()->dfs_region
;
2241 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++)
2242 handle_band(wiphy
, initiator
, wiphy
->bands
[band
]);
2244 reg_process_beacons(wiphy
);
2245 reg_process_ht_flags(wiphy
);
2246 reg_call_notifier(wiphy
, lr
);
2249 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator
)
2251 struct cfg80211_registered_device
*rdev
;
2252 struct wiphy
*wiphy
;
2256 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
2257 wiphy
= &rdev
->wiphy
;
2258 wiphy_update_regulatory(wiphy
, initiator
);
2261 reg_check_channels();
2264 static void handle_channel_custom(struct wiphy
*wiphy
,
2265 struct ieee80211_channel
*chan
,
2266 const struct ieee80211_regdomain
*regd
,
2270 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
2271 const struct ieee80211_power_rule
*power_rule
= NULL
;
2274 for (bw
= MHZ_TO_KHZ(20); bw
>= min_bw
; bw
= bw
/ 2) {
2275 reg_rule
= freq_reg_info_regd(MHZ_TO_KHZ(chan
->center_freq
),
2277 if (!IS_ERR(reg_rule
))
2281 if (IS_ERR_OR_NULL(reg_rule
)) {
2282 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2284 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
) {
2285 chan
->flags
|= IEEE80211_CHAN_DISABLED
;
2287 chan
->orig_flags
|= IEEE80211_CHAN_DISABLED
;
2288 chan
->flags
= chan
->orig_flags
;
2293 power_rule
= ®_rule
->power_rule
;
2294 bw_flags
= reg_rule_to_chan_bw_flags(regd
, reg_rule
, chan
);
2296 chan
->dfs_state_entered
= jiffies
;
2297 chan
->dfs_state
= NL80211_DFS_USABLE
;
2299 chan
->beacon_found
= false;
2301 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
2302 chan
->flags
= chan
->orig_flags
| bw_flags
|
2303 map_regdom_flags(reg_rule
->flags
);
2305 chan
->flags
|= map_regdom_flags(reg_rule
->flags
) | bw_flags
;
2307 chan
->max_antenna_gain
= (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
2308 chan
->max_reg_power
= chan
->max_power
=
2309 (int) MBM_TO_DBM(power_rule
->max_eirp
);
2311 if (chan
->flags
& IEEE80211_CHAN_RADAR
) {
2312 if (reg_rule
->dfs_cac_ms
)
2313 chan
->dfs_cac_ms
= reg_rule
->dfs_cac_ms
;
2315 chan
->dfs_cac_ms
= IEEE80211_DFS_MIN_CAC_TIME_MS
;
2318 chan
->max_power
= chan
->max_reg_power
;
2321 static void handle_band_custom(struct wiphy
*wiphy
,
2322 struct ieee80211_supported_band
*sband
,
2323 const struct ieee80211_regdomain
*regd
)
2331 * We currently assume that you always want at least 20 MHz,
2332 * otherwise channel 12 might get enabled if this rule is
2333 * compatible to US, which permits 2402 - 2472 MHz.
2335 for (i
= 0; i
< sband
->n_channels
; i
++)
2336 handle_channel_custom(wiphy
, &sband
->channels
[i
], regd
,
2340 /* Used by drivers prior to wiphy registration */
2341 void wiphy_apply_custom_regulatory(struct wiphy
*wiphy
,
2342 const struct ieee80211_regdomain
*regd
)
2344 enum nl80211_band band
;
2345 unsigned int bands_set
= 0;
2347 WARN(!(wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
),
2348 "wiphy should have REGULATORY_CUSTOM_REG\n");
2349 wiphy
->regulatory_flags
|= REGULATORY_CUSTOM_REG
;
2351 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++) {
2352 if (!wiphy
->bands
[band
])
2354 handle_band_custom(wiphy
, wiphy
->bands
[band
], regd
);
2359 * no point in calling this if it won't have any effect
2360 * on your device's supported bands.
2362 WARN_ON(!bands_set
);
2364 EXPORT_SYMBOL(wiphy_apply_custom_regulatory
);
2366 static void reg_set_request_processed(void)
2368 bool need_more_processing
= false;
2369 struct regulatory_request
*lr
= get_last_request();
2371 lr
->processed
= true;
2373 spin_lock(®_requests_lock
);
2374 if (!list_empty(®_requests_list
))
2375 need_more_processing
= true;
2376 spin_unlock(®_requests_lock
);
2378 cancel_crda_timeout();
2380 if (need_more_processing
)
2381 schedule_work(®_work
);
2385 * reg_process_hint_core - process core regulatory requests
2386 * @pending_request: a pending core regulatory request
2388 * The wireless subsystem can use this function to process
2389 * a regulatory request issued by the regulatory core.
2391 static enum reg_request_treatment
2392 reg_process_hint_core(struct regulatory_request
*core_request
)
2394 if (reg_query_database(core_request
)) {
2395 core_request
->intersect
= false;
2396 core_request
->processed
= false;
2397 reg_update_last_request(core_request
);
2401 return REG_REQ_IGNORE
;
2404 static enum reg_request_treatment
2405 __reg_process_hint_user(struct regulatory_request
*user_request
)
2407 struct regulatory_request
*lr
= get_last_request();
2409 if (reg_request_cell_base(user_request
))
2410 return reg_ignore_cell_hint(user_request
);
2412 if (reg_request_cell_base(lr
))
2413 return REG_REQ_IGNORE
;
2415 if (lr
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
)
2416 return REG_REQ_INTERSECT
;
2418 * If the user knows better the user should set the regdom
2419 * to their country before the IE is picked up
2421 if (lr
->initiator
== NL80211_REGDOM_SET_BY_USER
&&
2423 return REG_REQ_IGNORE
;
2425 * Process user requests only after previous user/driver/core
2426 * requests have been processed
2428 if ((lr
->initiator
== NL80211_REGDOM_SET_BY_CORE
||
2429 lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
||
2430 lr
->initiator
== NL80211_REGDOM_SET_BY_USER
) &&
2431 regdom_changes(lr
->alpha2
))
2432 return REG_REQ_IGNORE
;
2434 if (!regdom_changes(user_request
->alpha2
))
2435 return REG_REQ_ALREADY_SET
;
2441 * reg_process_hint_user - process user regulatory requests
2442 * @user_request: a pending user regulatory request
2444 * The wireless subsystem can use this function to process
2445 * a regulatory request initiated by userspace.
2447 static enum reg_request_treatment
2448 reg_process_hint_user(struct regulatory_request
*user_request
)
2450 enum reg_request_treatment treatment
;
2452 treatment
= __reg_process_hint_user(user_request
);
2453 if (treatment
== REG_REQ_IGNORE
||
2454 treatment
== REG_REQ_ALREADY_SET
)
2455 return REG_REQ_IGNORE
;
2457 user_request
->intersect
= treatment
== REG_REQ_INTERSECT
;
2458 user_request
->processed
= false;
2460 if (reg_query_database(user_request
)) {
2461 reg_update_last_request(user_request
);
2462 user_alpha2
[0] = user_request
->alpha2
[0];
2463 user_alpha2
[1] = user_request
->alpha2
[1];
2467 return REG_REQ_IGNORE
;
2470 static enum reg_request_treatment
2471 __reg_process_hint_driver(struct regulatory_request
*driver_request
)
2473 struct regulatory_request
*lr
= get_last_request();
2475 if (lr
->initiator
== NL80211_REGDOM_SET_BY_CORE
) {
2476 if (regdom_changes(driver_request
->alpha2
))
2478 return REG_REQ_ALREADY_SET
;
2482 * This would happen if you unplug and plug your card
2483 * back in or if you add a new device for which the previously
2484 * loaded card also agrees on the regulatory domain.
2486 if (lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
2487 !regdom_changes(driver_request
->alpha2
))
2488 return REG_REQ_ALREADY_SET
;
2490 return REG_REQ_INTERSECT
;
2494 * reg_process_hint_driver - process driver regulatory requests
2495 * @driver_request: a pending driver regulatory request
2497 * The wireless subsystem can use this function to process
2498 * a regulatory request issued by an 802.11 driver.
2500 * Returns one of the different reg request treatment values.
2502 static enum reg_request_treatment
2503 reg_process_hint_driver(struct wiphy
*wiphy
,
2504 struct regulatory_request
*driver_request
)
2506 const struct ieee80211_regdomain
*regd
, *tmp
;
2507 enum reg_request_treatment treatment
;
2509 treatment
= __reg_process_hint_driver(driver_request
);
2511 switch (treatment
) {
2514 case REG_REQ_IGNORE
:
2515 return REG_REQ_IGNORE
;
2516 case REG_REQ_INTERSECT
:
2517 case REG_REQ_ALREADY_SET
:
2518 regd
= reg_copy_regd(get_cfg80211_regdom());
2520 return REG_REQ_IGNORE
;
2522 tmp
= get_wiphy_regdom(wiphy
);
2523 rcu_assign_pointer(wiphy
->regd
, regd
);
2524 rcu_free_regdom(tmp
);
2528 driver_request
->intersect
= treatment
== REG_REQ_INTERSECT
;
2529 driver_request
->processed
= false;
2532 * Since CRDA will not be called in this case as we already
2533 * have applied the requested regulatory domain before we just
2534 * inform userspace we have processed the request
2536 if (treatment
== REG_REQ_ALREADY_SET
) {
2537 nl80211_send_reg_change_event(driver_request
);
2538 reg_update_last_request(driver_request
);
2539 reg_set_request_processed();
2540 return REG_REQ_ALREADY_SET
;
2543 if (reg_query_database(driver_request
)) {
2544 reg_update_last_request(driver_request
);
2548 return REG_REQ_IGNORE
;
2551 static enum reg_request_treatment
2552 __reg_process_hint_country_ie(struct wiphy
*wiphy
,
2553 struct regulatory_request
*country_ie_request
)
2555 struct wiphy
*last_wiphy
= NULL
;
2556 struct regulatory_request
*lr
= get_last_request();
2558 if (reg_request_cell_base(lr
)) {
2559 /* Trust a Cell base station over the AP's country IE */
2560 if (regdom_changes(country_ie_request
->alpha2
))
2561 return REG_REQ_IGNORE
;
2562 return REG_REQ_ALREADY_SET
;
2564 if (wiphy
->regulatory_flags
& REGULATORY_COUNTRY_IE_IGNORE
)
2565 return REG_REQ_IGNORE
;
2568 if (unlikely(!is_an_alpha2(country_ie_request
->alpha2
)))
2571 if (lr
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
)
2574 last_wiphy
= wiphy_idx_to_wiphy(lr
->wiphy_idx
);
2576 if (last_wiphy
!= wiphy
) {
2578 * Two cards with two APs claiming different
2579 * Country IE alpha2s. We could
2580 * intersect them, but that seems unlikely
2581 * to be correct. Reject second one for now.
2583 if (regdom_changes(country_ie_request
->alpha2
))
2584 return REG_REQ_IGNORE
;
2585 return REG_REQ_ALREADY_SET
;
2588 if (regdom_changes(country_ie_request
->alpha2
))
2590 return REG_REQ_ALREADY_SET
;
2594 * reg_process_hint_country_ie - process regulatory requests from country IEs
2595 * @country_ie_request: a regulatory request from a country IE
2597 * The wireless subsystem can use this function to process
2598 * a regulatory request issued by a country Information Element.
2600 * Returns one of the different reg request treatment values.
2602 static enum reg_request_treatment
2603 reg_process_hint_country_ie(struct wiphy
*wiphy
,
2604 struct regulatory_request
*country_ie_request
)
2606 enum reg_request_treatment treatment
;
2608 treatment
= __reg_process_hint_country_ie(wiphy
, country_ie_request
);
2610 switch (treatment
) {
2613 case REG_REQ_IGNORE
:
2614 return REG_REQ_IGNORE
;
2615 case REG_REQ_ALREADY_SET
:
2616 reg_free_request(country_ie_request
);
2617 return REG_REQ_ALREADY_SET
;
2618 case REG_REQ_INTERSECT
:
2620 * This doesn't happen yet, not sure we
2621 * ever want to support it for this case.
2623 WARN_ONCE(1, "Unexpected intersection for country elements");
2624 return REG_REQ_IGNORE
;
2627 country_ie_request
->intersect
= false;
2628 country_ie_request
->processed
= false;
2630 if (reg_query_database(country_ie_request
)) {
2631 reg_update_last_request(country_ie_request
);
2635 return REG_REQ_IGNORE
;
2638 bool reg_dfs_domain_same(struct wiphy
*wiphy1
, struct wiphy
*wiphy2
)
2640 const struct ieee80211_regdomain
*wiphy1_regd
= NULL
;
2641 const struct ieee80211_regdomain
*wiphy2_regd
= NULL
;
2642 const struct ieee80211_regdomain
*cfg80211_regd
= NULL
;
2643 bool dfs_domain_same
;
2647 cfg80211_regd
= rcu_dereference(cfg80211_regdomain
);
2648 wiphy1_regd
= rcu_dereference(wiphy1
->regd
);
2650 wiphy1_regd
= cfg80211_regd
;
2652 wiphy2_regd
= rcu_dereference(wiphy2
->regd
);
2654 wiphy2_regd
= cfg80211_regd
;
2656 dfs_domain_same
= wiphy1_regd
->dfs_region
== wiphy2_regd
->dfs_region
;
2660 return dfs_domain_same
;
2663 static void reg_copy_dfs_chan_state(struct ieee80211_channel
*dst_chan
,
2664 struct ieee80211_channel
*src_chan
)
2666 if (!(dst_chan
->flags
& IEEE80211_CHAN_RADAR
) ||
2667 !(src_chan
->flags
& IEEE80211_CHAN_RADAR
))
2670 if (dst_chan
->flags
& IEEE80211_CHAN_DISABLED
||
2671 src_chan
->flags
& IEEE80211_CHAN_DISABLED
)
2674 if (src_chan
->center_freq
== dst_chan
->center_freq
&&
2675 dst_chan
->dfs_state
== NL80211_DFS_USABLE
) {
2676 dst_chan
->dfs_state
= src_chan
->dfs_state
;
2677 dst_chan
->dfs_state_entered
= src_chan
->dfs_state_entered
;
2681 static void wiphy_share_dfs_chan_state(struct wiphy
*dst_wiphy
,
2682 struct wiphy
*src_wiphy
)
2684 struct ieee80211_supported_band
*src_sband
, *dst_sband
;
2685 struct ieee80211_channel
*src_chan
, *dst_chan
;
2688 if (!reg_dfs_domain_same(dst_wiphy
, src_wiphy
))
2691 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++) {
2692 dst_sband
= dst_wiphy
->bands
[band
];
2693 src_sband
= src_wiphy
->bands
[band
];
2694 if (!dst_sband
|| !src_sband
)
2697 for (i
= 0; i
< dst_sband
->n_channels
; i
++) {
2698 dst_chan
= &dst_sband
->channels
[i
];
2699 for (j
= 0; j
< src_sband
->n_channels
; j
++) {
2700 src_chan
= &src_sband
->channels
[j
];
2701 reg_copy_dfs_chan_state(dst_chan
, src_chan
);
2707 static void wiphy_all_share_dfs_chan_state(struct wiphy
*wiphy
)
2709 struct cfg80211_registered_device
*rdev
;
2713 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
2714 if (wiphy
== &rdev
->wiphy
)
2716 wiphy_share_dfs_chan_state(wiphy
, &rdev
->wiphy
);
2720 /* This processes *all* regulatory hints */
2721 static void reg_process_hint(struct regulatory_request
*reg_request
)
2723 struct wiphy
*wiphy
= NULL
;
2724 enum reg_request_treatment treatment
;
2725 enum nl80211_reg_initiator initiator
= reg_request
->initiator
;
2727 if (reg_request
->wiphy_idx
!= WIPHY_IDX_INVALID
)
2728 wiphy
= wiphy_idx_to_wiphy(reg_request
->wiphy_idx
);
2730 switch (initiator
) {
2731 case NL80211_REGDOM_SET_BY_CORE
:
2732 treatment
= reg_process_hint_core(reg_request
);
2734 case NL80211_REGDOM_SET_BY_USER
:
2735 treatment
= reg_process_hint_user(reg_request
);
2737 case NL80211_REGDOM_SET_BY_DRIVER
:
2740 treatment
= reg_process_hint_driver(wiphy
, reg_request
);
2742 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
2745 treatment
= reg_process_hint_country_ie(wiphy
, reg_request
);
2748 WARN(1, "invalid initiator %d\n", initiator
);
2752 if (treatment
== REG_REQ_IGNORE
)
2755 WARN(treatment
!= REG_REQ_OK
&& treatment
!= REG_REQ_ALREADY_SET
,
2756 "unexpected treatment value %d\n", treatment
);
2758 /* This is required so that the orig_* parameters are saved.
2759 * NOTE: treatment must be set for any case that reaches here!
2761 if (treatment
== REG_REQ_ALREADY_SET
&& wiphy
&&
2762 wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
) {
2763 wiphy_update_regulatory(wiphy
, initiator
);
2764 wiphy_all_share_dfs_chan_state(wiphy
);
2765 reg_check_channels();
2771 reg_free_request(reg_request
);
2774 static void notify_self_managed_wiphys(struct regulatory_request
*request
)
2776 struct cfg80211_registered_device
*rdev
;
2777 struct wiphy
*wiphy
;
2779 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
2780 wiphy
= &rdev
->wiphy
;
2781 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
&&
2782 request
->initiator
== NL80211_REGDOM_SET_BY_USER
)
2783 reg_call_notifier(wiphy
, request
);
2788 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2789 * Regulatory hints come on a first come first serve basis and we
2790 * must process each one atomically.
2792 static void reg_process_pending_hints(void)
2794 struct regulatory_request
*reg_request
, *lr
;
2796 lr
= get_last_request();
2798 /* When last_request->processed becomes true this will be rescheduled */
2799 if (lr
&& !lr
->processed
) {
2800 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
2804 spin_lock(®_requests_lock
);
2806 if (list_empty(®_requests_list
)) {
2807 spin_unlock(®_requests_lock
);
2811 reg_request
= list_first_entry(®_requests_list
,
2812 struct regulatory_request
,
2814 list_del_init(®_request
->list
);
2816 spin_unlock(®_requests_lock
);
2818 notify_self_managed_wiphys(reg_request
);
2820 reg_process_hint(reg_request
);
2822 lr
= get_last_request();
2824 spin_lock(®_requests_lock
);
2825 if (!list_empty(®_requests_list
) && lr
&& lr
->processed
)
2826 schedule_work(®_work
);
2827 spin_unlock(®_requests_lock
);
2830 /* Processes beacon hints -- this has nothing to do with country IEs */
2831 static void reg_process_pending_beacon_hints(void)
2833 struct cfg80211_registered_device
*rdev
;
2834 struct reg_beacon
*pending_beacon
, *tmp
;
2836 /* This goes through the _pending_ beacon list */
2837 spin_lock_bh(®_pending_beacons_lock
);
2839 list_for_each_entry_safe(pending_beacon
, tmp
,
2840 ®_pending_beacons
, list
) {
2841 list_del_init(&pending_beacon
->list
);
2843 /* Applies the beacon hint to current wiphys */
2844 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
)
2845 wiphy_update_new_beacon(&rdev
->wiphy
, pending_beacon
);
2847 /* Remembers the beacon hint for new wiphys or reg changes */
2848 list_add_tail(&pending_beacon
->list
, ®_beacon_list
);
2851 spin_unlock_bh(®_pending_beacons_lock
);
2854 static void reg_process_self_managed_hints(void)
2856 struct cfg80211_registered_device
*rdev
;
2857 struct wiphy
*wiphy
;
2858 const struct ieee80211_regdomain
*tmp
;
2859 const struct ieee80211_regdomain
*regd
;
2860 enum nl80211_band band
;
2861 struct regulatory_request request
= {};
2863 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
2864 wiphy
= &rdev
->wiphy
;
2866 spin_lock(®_requests_lock
);
2867 regd
= rdev
->requested_regd
;
2868 rdev
->requested_regd
= NULL
;
2869 spin_unlock(®_requests_lock
);
2874 tmp
= get_wiphy_regdom(wiphy
);
2875 rcu_assign_pointer(wiphy
->regd
, regd
);
2876 rcu_free_regdom(tmp
);
2878 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++)
2879 handle_band_custom(wiphy
, wiphy
->bands
[band
], regd
);
2881 reg_process_ht_flags(wiphy
);
2883 request
.wiphy_idx
= get_wiphy_idx(wiphy
);
2884 request
.alpha2
[0] = regd
->alpha2
[0];
2885 request
.alpha2
[1] = regd
->alpha2
[1];
2886 request
.initiator
= NL80211_REGDOM_SET_BY_DRIVER
;
2888 nl80211_send_wiphy_reg_change_event(&request
);
2891 reg_check_channels();
2894 static void reg_todo(struct work_struct
*work
)
2897 reg_process_pending_hints();
2898 reg_process_pending_beacon_hints();
2899 reg_process_self_managed_hints();
2903 static void queue_regulatory_request(struct regulatory_request
*request
)
2905 request
->alpha2
[0] = toupper(request
->alpha2
[0]);
2906 request
->alpha2
[1] = toupper(request
->alpha2
[1]);
2908 spin_lock(®_requests_lock
);
2909 list_add_tail(&request
->list
, ®_requests_list
);
2910 spin_unlock(®_requests_lock
);
2912 schedule_work(®_work
);
2916 * Core regulatory hint -- happens during cfg80211_init()
2917 * and when we restore regulatory settings.
2919 static int regulatory_hint_core(const char *alpha2
)
2921 struct regulatory_request
*request
;
2923 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
2927 request
->alpha2
[0] = alpha2
[0];
2928 request
->alpha2
[1] = alpha2
[1];
2929 request
->initiator
= NL80211_REGDOM_SET_BY_CORE
;
2930 request
->wiphy_idx
= WIPHY_IDX_INVALID
;
2932 queue_regulatory_request(request
);
2938 int regulatory_hint_user(const char *alpha2
,
2939 enum nl80211_user_reg_hint_type user_reg_hint_type
)
2941 struct regulatory_request
*request
;
2943 if (WARN_ON(!alpha2
))
2946 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
2950 request
->wiphy_idx
= WIPHY_IDX_INVALID
;
2951 request
->alpha2
[0] = alpha2
[0];
2952 request
->alpha2
[1] = alpha2
[1];
2953 request
->initiator
= NL80211_REGDOM_SET_BY_USER
;
2954 request
->user_reg_hint_type
= user_reg_hint_type
;
2956 /* Allow calling CRDA again */
2957 reset_crda_timeouts();
2959 queue_regulatory_request(request
);
2964 int regulatory_hint_indoor(bool is_indoor
, u32 portid
)
2966 spin_lock(®_indoor_lock
);
2968 /* It is possible that more than one user space process is trying to
2969 * configure the indoor setting. To handle such cases, clear the indoor
2970 * setting in case that some process does not think that the device
2971 * is operating in an indoor environment. In addition, if a user space
2972 * process indicates that it is controlling the indoor setting, save its
2973 * portid, i.e., make it the owner.
2975 reg_is_indoor
= is_indoor
;
2976 if (reg_is_indoor
) {
2977 if (!reg_is_indoor_portid
)
2978 reg_is_indoor_portid
= portid
;
2980 reg_is_indoor_portid
= 0;
2983 spin_unlock(®_indoor_lock
);
2986 reg_check_channels();
2991 void regulatory_netlink_notify(u32 portid
)
2993 spin_lock(®_indoor_lock
);
2995 if (reg_is_indoor_portid
!= portid
) {
2996 spin_unlock(®_indoor_lock
);
3000 reg_is_indoor
= false;
3001 reg_is_indoor_portid
= 0;
3003 spin_unlock(®_indoor_lock
);
3005 reg_check_channels();
3009 int regulatory_hint(struct wiphy
*wiphy
, const char *alpha2
)
3011 struct regulatory_request
*request
;
3013 if (WARN_ON(!alpha2
|| !wiphy
))
3016 wiphy
->regulatory_flags
&= ~REGULATORY_CUSTOM_REG
;
3018 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
3022 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
3024 request
->alpha2
[0] = alpha2
[0];
3025 request
->alpha2
[1] = alpha2
[1];
3026 request
->initiator
= NL80211_REGDOM_SET_BY_DRIVER
;
3028 /* Allow calling CRDA again */
3029 reset_crda_timeouts();
3031 queue_regulatory_request(request
);
3035 EXPORT_SYMBOL(regulatory_hint
);
3037 void regulatory_hint_country_ie(struct wiphy
*wiphy
, enum nl80211_band band
,
3038 const u8
*country_ie
, u8 country_ie_len
)
3041 enum environment_cap env
= ENVIRON_ANY
;
3042 struct regulatory_request
*request
= NULL
, *lr
;
3044 /* IE len must be evenly divisible by 2 */
3045 if (country_ie_len
& 0x01)
3048 if (country_ie_len
< IEEE80211_COUNTRY_IE_MIN_LEN
)
3051 request
= kzalloc(sizeof(*request
), GFP_KERNEL
);
3055 alpha2
[0] = country_ie
[0];
3056 alpha2
[1] = country_ie
[1];
3058 if (country_ie
[2] == 'I')
3059 env
= ENVIRON_INDOOR
;
3060 else if (country_ie
[2] == 'O')
3061 env
= ENVIRON_OUTDOOR
;
3064 lr
= get_last_request();
3070 * We will run this only upon a successful connection on cfg80211.
3071 * We leave conflict resolution to the workqueue, where can hold
3074 if (lr
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
3075 lr
->wiphy_idx
!= WIPHY_IDX_INVALID
)
3078 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
3079 request
->alpha2
[0] = alpha2
[0];
3080 request
->alpha2
[1] = alpha2
[1];
3081 request
->initiator
= NL80211_REGDOM_SET_BY_COUNTRY_IE
;
3082 request
->country_ie_env
= env
;
3084 /* Allow calling CRDA again */
3085 reset_crda_timeouts();
3087 queue_regulatory_request(request
);
3094 static void restore_alpha2(char *alpha2
, bool reset_user
)
3096 /* indicates there is no alpha2 to consider for restoration */
3100 /* The user setting has precedence over the module parameter */
3101 if (is_user_regdom_saved()) {
3102 /* Unless we're asked to ignore it and reset it */
3104 pr_debug("Restoring regulatory settings including user preference\n");
3105 user_alpha2
[0] = '9';
3106 user_alpha2
[1] = '7';
3109 * If we're ignoring user settings, we still need to
3110 * check the module parameter to ensure we put things
3111 * back as they were for a full restore.
3113 if (!is_world_regdom(ieee80211_regdom
)) {
3114 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3115 ieee80211_regdom
[0], ieee80211_regdom
[1]);
3116 alpha2
[0] = ieee80211_regdom
[0];
3117 alpha2
[1] = ieee80211_regdom
[1];
3120 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3121 user_alpha2
[0], user_alpha2
[1]);
3122 alpha2
[0] = user_alpha2
[0];
3123 alpha2
[1] = user_alpha2
[1];
3125 } else if (!is_world_regdom(ieee80211_regdom
)) {
3126 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3127 ieee80211_regdom
[0], ieee80211_regdom
[1]);
3128 alpha2
[0] = ieee80211_regdom
[0];
3129 alpha2
[1] = ieee80211_regdom
[1];
3131 pr_debug("Restoring regulatory settings\n");
3134 static void restore_custom_reg_settings(struct wiphy
*wiphy
)
3136 struct ieee80211_supported_band
*sband
;
3137 enum nl80211_band band
;
3138 struct ieee80211_channel
*chan
;
3141 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++) {
3142 sband
= wiphy
->bands
[band
];
3145 for (i
= 0; i
< sband
->n_channels
; i
++) {
3146 chan
= &sband
->channels
[i
];
3147 chan
->flags
= chan
->orig_flags
;
3148 chan
->max_antenna_gain
= chan
->orig_mag
;
3149 chan
->max_power
= chan
->orig_mpwr
;
3150 chan
->beacon_found
= false;
3156 * Restoring regulatory settings involves ingoring any
3157 * possibly stale country IE information and user regulatory
3158 * settings if so desired, this includes any beacon hints
3159 * learned as we could have traveled outside to another country
3160 * after disconnection. To restore regulatory settings we do
3161 * exactly what we did at bootup:
3163 * - send a core regulatory hint
3164 * - send a user regulatory hint if applicable
3166 * Device drivers that send a regulatory hint for a specific country
3167 * keep their own regulatory domain on wiphy->regd so that does does
3168 * not need to be remembered.
3170 static void restore_regulatory_settings(bool reset_user
, bool cached
)
3173 char world_alpha2
[2];
3174 struct reg_beacon
*reg_beacon
, *btmp
;
3175 LIST_HEAD(tmp_reg_req_list
);
3176 struct cfg80211_registered_device
*rdev
;
3181 * Clear the indoor setting in case that it is not controlled by user
3182 * space, as otherwise there is no guarantee that the device is still
3183 * operating in an indoor environment.
3185 spin_lock(®_indoor_lock
);
3186 if (reg_is_indoor
&& !reg_is_indoor_portid
) {
3187 reg_is_indoor
= false;
3188 reg_check_channels();
3190 spin_unlock(®_indoor_lock
);
3192 reset_regdomains(true, &world_regdom
);
3193 restore_alpha2(alpha2
, reset_user
);
3196 * If there's any pending requests we simply
3197 * stash them to a temporary pending queue and
3198 * add then after we've restored regulatory
3201 spin_lock(®_requests_lock
);
3202 list_splice_tail_init(®_requests_list
, &tmp_reg_req_list
);
3203 spin_unlock(®_requests_lock
);
3205 /* Clear beacon hints */
3206 spin_lock_bh(®_pending_beacons_lock
);
3207 list_for_each_entry_safe(reg_beacon
, btmp
, ®_pending_beacons
, list
) {
3208 list_del(®_beacon
->list
);
3211 spin_unlock_bh(®_pending_beacons_lock
);
3213 list_for_each_entry_safe(reg_beacon
, btmp
, ®_beacon_list
, list
) {
3214 list_del(®_beacon
->list
);
3218 /* First restore to the basic regulatory settings */
3219 world_alpha2
[0] = cfg80211_world_regdom
->alpha2
[0];
3220 world_alpha2
[1] = cfg80211_world_regdom
->alpha2
[1];
3222 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
3223 if (rdev
->wiphy
.regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
3225 if (rdev
->wiphy
.regulatory_flags
& REGULATORY_CUSTOM_REG
)
3226 restore_custom_reg_settings(&rdev
->wiphy
);
3229 if (cached
&& (!is_an_alpha2(alpha2
) ||
3230 !IS_ERR_OR_NULL(cfg80211_user_regdom
))) {
3231 reset_regdomains(false, cfg80211_world_regdom
);
3232 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE
);
3233 print_regdomain(get_cfg80211_regdom());
3234 nl80211_send_reg_change_event(&core_request_world
);
3235 reg_set_request_processed();
3237 if (is_an_alpha2(alpha2
) &&
3238 !regulatory_hint_user(alpha2
, NL80211_USER_REG_HINT_USER
)) {
3239 struct regulatory_request
*ureq
;
3241 spin_lock(®_requests_lock
);
3242 ureq
= list_last_entry(®_requests_list
,
3243 struct regulatory_request
,
3245 list_del(&ureq
->list
);
3246 spin_unlock(®_requests_lock
);
3248 notify_self_managed_wiphys(ureq
);
3249 reg_update_last_request(ureq
);
3250 set_regdom(reg_copy_regd(cfg80211_user_regdom
),
3251 REGD_SOURCE_CACHED
);
3254 regulatory_hint_core(world_alpha2
);
3257 * This restores the ieee80211_regdom module parameter
3258 * preference or the last user requested regulatory
3259 * settings, user regulatory settings takes precedence.
3261 if (is_an_alpha2(alpha2
))
3262 regulatory_hint_user(alpha2
, NL80211_USER_REG_HINT_USER
);
3265 spin_lock(®_requests_lock
);
3266 list_splice_tail_init(&tmp_reg_req_list
, ®_requests_list
);
3267 spin_unlock(®_requests_lock
);
3269 pr_debug("Kicking the queue\n");
3271 schedule_work(®_work
);
3274 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag
)
3276 struct cfg80211_registered_device
*rdev
;
3277 struct wireless_dev
*wdev
;
3279 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
3280 list_for_each_entry(wdev
, &rdev
->wiphy
.wdev_list
, list
) {
3282 if (!(wdev
->wiphy
->regulatory_flags
& flag
)) {
3293 void regulatory_hint_disconnect(void)
3295 /* Restore of regulatory settings is not required when wiphy(s)
3296 * ignore IE from connected access point but clearance of beacon hints
3297 * is required when wiphy(s) supports beacon hints.
3299 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE
)) {
3300 struct reg_beacon
*reg_beacon
, *btmp
;
3302 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS
))
3305 spin_lock_bh(®_pending_beacons_lock
);
3306 list_for_each_entry_safe(reg_beacon
, btmp
,
3307 ®_pending_beacons
, list
) {
3308 list_del(®_beacon
->list
);
3311 spin_unlock_bh(®_pending_beacons_lock
);
3313 list_for_each_entry_safe(reg_beacon
, btmp
,
3314 ®_beacon_list
, list
) {
3315 list_del(®_beacon
->list
);
3322 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3323 restore_regulatory_settings(false, true);
3326 static bool freq_is_chan_12_13_14(u32 freq
)
3328 if (freq
== ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ
) ||
3329 freq
== ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ
) ||
3330 freq
== ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ
))
3335 static bool pending_reg_beacon(struct ieee80211_channel
*beacon_chan
)
3337 struct reg_beacon
*pending_beacon
;
3339 list_for_each_entry(pending_beacon
, ®_pending_beacons
, list
)
3340 if (beacon_chan
->center_freq
==
3341 pending_beacon
->chan
.center_freq
)
3346 int regulatory_hint_found_beacon(struct wiphy
*wiphy
,
3347 struct ieee80211_channel
*beacon_chan
,
3350 struct reg_beacon
*reg_beacon
;
3353 if (beacon_chan
->beacon_found
||
3354 beacon_chan
->flags
& IEEE80211_CHAN_RADAR
||
3355 (beacon_chan
->band
== NL80211_BAND_2GHZ
&&
3356 !freq_is_chan_12_13_14(beacon_chan
->center_freq
)))
3359 spin_lock_bh(®_pending_beacons_lock
);
3360 processing
= pending_reg_beacon(beacon_chan
);
3361 spin_unlock_bh(®_pending_beacons_lock
);
3366 reg_beacon
= kzalloc(sizeof(struct reg_beacon
), gfp
);
3370 pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3371 beacon_chan
->center_freq
,
3372 ieee80211_frequency_to_channel(beacon_chan
->center_freq
),
3375 memcpy(®_beacon
->chan
, beacon_chan
,
3376 sizeof(struct ieee80211_channel
));
3379 * Since we can be called from BH or and non-BH context
3380 * we must use spin_lock_bh()
3382 spin_lock_bh(®_pending_beacons_lock
);
3383 list_add_tail(®_beacon
->list
, ®_pending_beacons
);
3384 spin_unlock_bh(®_pending_beacons_lock
);
3386 schedule_work(®_work
);
3391 static void print_rd_rules(const struct ieee80211_regdomain
*rd
)
3394 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
3395 const struct ieee80211_freq_range
*freq_range
= NULL
;
3396 const struct ieee80211_power_rule
*power_rule
= NULL
;
3397 char bw
[32], cac_time
[32];
3399 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3401 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
3402 reg_rule
= &rd
->reg_rules
[i
];
3403 freq_range
= ®_rule
->freq_range
;
3404 power_rule
= ®_rule
->power_rule
;
3406 if (reg_rule
->flags
& NL80211_RRF_AUTO_BW
)
3407 snprintf(bw
, sizeof(bw
), "%d KHz, %d KHz AUTO",
3408 freq_range
->max_bandwidth_khz
,
3409 reg_get_max_bandwidth(rd
, reg_rule
));
3411 snprintf(bw
, sizeof(bw
), "%d KHz",
3412 freq_range
->max_bandwidth_khz
);
3414 if (reg_rule
->flags
& NL80211_RRF_DFS
)
3415 scnprintf(cac_time
, sizeof(cac_time
), "%u s",
3416 reg_rule
->dfs_cac_ms
/1000);
3418 scnprintf(cac_time
, sizeof(cac_time
), "N/A");
3422 * There may not be documentation for max antenna gain
3423 * in certain regions
3425 if (power_rule
->max_antenna_gain
)
3426 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3427 freq_range
->start_freq_khz
,
3428 freq_range
->end_freq_khz
,
3430 power_rule
->max_antenna_gain
,
3431 power_rule
->max_eirp
,
3434 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3435 freq_range
->start_freq_khz
,
3436 freq_range
->end_freq_khz
,
3438 power_rule
->max_eirp
,
3443 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region
)
3445 switch (dfs_region
) {
3446 case NL80211_DFS_UNSET
:
3447 case NL80211_DFS_FCC
:
3448 case NL80211_DFS_ETSI
:
3449 case NL80211_DFS_JP
:
3452 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region
);
3457 static void print_regdomain(const struct ieee80211_regdomain
*rd
)
3459 struct regulatory_request
*lr
= get_last_request();
3461 if (is_intersected_alpha2(rd
->alpha2
)) {
3462 if (lr
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
3463 struct cfg80211_registered_device
*rdev
;
3464 rdev
= cfg80211_rdev_by_wiphy_idx(lr
->wiphy_idx
);
3466 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3467 rdev
->country_ie_alpha2
[0],
3468 rdev
->country_ie_alpha2
[1]);
3470 pr_debug("Current regulatory domain intersected:\n");
3472 pr_debug("Current regulatory domain intersected:\n");
3473 } else if (is_world_regdom(rd
->alpha2
)) {
3474 pr_debug("World regulatory domain updated:\n");
3476 if (is_unknown_alpha2(rd
->alpha2
))
3477 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3479 if (reg_request_cell_base(lr
))
3480 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3481 rd
->alpha2
[0], rd
->alpha2
[1]);
3483 pr_debug("Regulatory domain changed to country: %c%c\n",
3484 rd
->alpha2
[0], rd
->alpha2
[1]);
3488 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd
->dfs_region
));
3492 static void print_regdomain_info(const struct ieee80211_regdomain
*rd
)
3494 pr_debug("Regulatory domain: %c%c\n", rd
->alpha2
[0], rd
->alpha2
[1]);
3498 static int reg_set_rd_core(const struct ieee80211_regdomain
*rd
)
3500 if (!is_world_regdom(rd
->alpha2
))
3502 update_world_regdomain(rd
);
3506 static int reg_set_rd_user(const struct ieee80211_regdomain
*rd
,
3507 struct regulatory_request
*user_request
)
3509 const struct ieee80211_regdomain
*intersected_rd
= NULL
;
3511 if (!regdom_changes(rd
->alpha2
))
3514 if (!is_valid_rd(rd
)) {
3515 pr_err("Invalid regulatory domain detected: %c%c\n",
3516 rd
->alpha2
[0], rd
->alpha2
[1]);
3517 print_regdomain_info(rd
);
3521 if (!user_request
->intersect
) {
3522 reset_regdomains(false, rd
);
3526 intersected_rd
= regdom_intersect(rd
, get_cfg80211_regdom());
3527 if (!intersected_rd
)
3532 reset_regdomains(false, intersected_rd
);
3537 static int reg_set_rd_driver(const struct ieee80211_regdomain
*rd
,
3538 struct regulatory_request
*driver_request
)
3540 const struct ieee80211_regdomain
*regd
;
3541 const struct ieee80211_regdomain
*intersected_rd
= NULL
;
3542 const struct ieee80211_regdomain
*tmp
;
3543 struct wiphy
*request_wiphy
;
3545 if (is_world_regdom(rd
->alpha2
))
3548 if (!regdom_changes(rd
->alpha2
))
3551 if (!is_valid_rd(rd
)) {
3552 pr_err("Invalid regulatory domain detected: %c%c\n",
3553 rd
->alpha2
[0], rd
->alpha2
[1]);
3554 print_regdomain_info(rd
);
3558 request_wiphy
= wiphy_idx_to_wiphy(driver_request
->wiphy_idx
);
3562 if (!driver_request
->intersect
) {
3563 if (request_wiphy
->regd
)
3566 regd
= reg_copy_regd(rd
);
3568 return PTR_ERR(regd
);
3570 rcu_assign_pointer(request_wiphy
->regd
, regd
);
3571 reset_regdomains(false, rd
);
3575 intersected_rd
= regdom_intersect(rd
, get_cfg80211_regdom());
3576 if (!intersected_rd
)
3580 * We can trash what CRDA provided now.
3581 * However if a driver requested this specific regulatory
3582 * domain we keep it for its private use
3584 tmp
= get_wiphy_regdom(request_wiphy
);
3585 rcu_assign_pointer(request_wiphy
->regd
, rd
);
3586 rcu_free_regdom(tmp
);
3590 reset_regdomains(false, intersected_rd
);
3595 static int reg_set_rd_country_ie(const struct ieee80211_regdomain
*rd
,
3596 struct regulatory_request
*country_ie_request
)
3598 struct wiphy
*request_wiphy
;
3600 if (!is_alpha2_set(rd
->alpha2
) && !is_an_alpha2(rd
->alpha2
) &&
3601 !is_unknown_alpha2(rd
->alpha2
))
3605 * Lets only bother proceeding on the same alpha2 if the current
3606 * rd is non static (it means CRDA was present and was used last)
3607 * and the pending request came in from a country IE
3610 if (!is_valid_rd(rd
)) {
3611 pr_err("Invalid regulatory domain detected: %c%c\n",
3612 rd
->alpha2
[0], rd
->alpha2
[1]);
3613 print_regdomain_info(rd
);
3617 request_wiphy
= wiphy_idx_to_wiphy(country_ie_request
->wiphy_idx
);
3621 if (country_ie_request
->intersect
)
3624 reset_regdomains(false, rd
);
3629 * Use this call to set the current regulatory domain. Conflicts with
3630 * multiple drivers can be ironed out later. Caller must've already
3631 * kmalloc'd the rd structure.
3633 int set_regdom(const struct ieee80211_regdomain
*rd
,
3634 enum ieee80211_regd_source regd_src
)
3636 struct regulatory_request
*lr
;
3637 bool user_reset
= false;
3640 if (IS_ERR_OR_NULL(rd
))
3643 if (!reg_is_valid_request(rd
->alpha2
)) {
3648 if (regd_src
== REGD_SOURCE_CRDA
)
3649 reset_crda_timeouts();
3651 lr
= get_last_request();
3653 /* Note that this doesn't update the wiphys, this is done below */
3654 switch (lr
->initiator
) {
3655 case NL80211_REGDOM_SET_BY_CORE
:
3656 r
= reg_set_rd_core(rd
);
3658 case NL80211_REGDOM_SET_BY_USER
:
3659 cfg80211_save_user_regdom(rd
);
3660 r
= reg_set_rd_user(rd
, lr
);
3663 case NL80211_REGDOM_SET_BY_DRIVER
:
3664 r
= reg_set_rd_driver(rd
, lr
);
3666 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
3667 r
= reg_set_rd_country_ie(rd
, lr
);
3670 WARN(1, "invalid initiator %d\n", lr
->initiator
);
3678 reg_set_request_processed();
3681 /* Back to world regulatory in case of errors */
3682 restore_regulatory_settings(user_reset
, false);
3689 /* This would make this whole thing pointless */
3690 if (WARN_ON(!lr
->intersect
&& rd
!= get_cfg80211_regdom()))
3693 /* update all wiphys now with the new established regulatory domain */
3694 update_all_wiphy_regulatory(lr
->initiator
);
3696 print_regdomain(get_cfg80211_regdom());
3698 nl80211_send_reg_change_event(lr
);
3700 reg_set_request_processed();
3705 static int __regulatory_set_wiphy_regd(struct wiphy
*wiphy
,
3706 struct ieee80211_regdomain
*rd
)
3708 const struct ieee80211_regdomain
*regd
;
3709 const struct ieee80211_regdomain
*prev_regd
;
3710 struct cfg80211_registered_device
*rdev
;
3712 if (WARN_ON(!wiphy
|| !rd
))
3715 if (WARN(!(wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
),
3716 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3719 if (WARN(!is_valid_rd(rd
), "Invalid regulatory domain detected\n")) {
3720 print_regdomain_info(rd
);
3724 regd
= reg_copy_regd(rd
);
3726 return PTR_ERR(regd
);
3728 rdev
= wiphy_to_rdev(wiphy
);
3730 spin_lock(®_requests_lock
);
3731 prev_regd
= rdev
->requested_regd
;
3732 rdev
->requested_regd
= regd
;
3733 spin_unlock(®_requests_lock
);
3739 int regulatory_set_wiphy_regd(struct wiphy
*wiphy
,
3740 struct ieee80211_regdomain
*rd
)
3742 int ret
= __regulatory_set_wiphy_regd(wiphy
, rd
);
3747 schedule_work(®_work
);
3750 EXPORT_SYMBOL(regulatory_set_wiphy_regd
);
3752 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy
*wiphy
,
3753 struct ieee80211_regdomain
*rd
)
3759 ret
= __regulatory_set_wiphy_regd(wiphy
, rd
);
3763 /* process the request immediately */
3764 reg_process_self_managed_hints();
3767 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl
);
3769 void wiphy_regulatory_register(struct wiphy
*wiphy
)
3771 struct regulatory_request
*lr
= get_last_request();
3773 /* self-managed devices ignore beacon hints and country IE */
3774 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
) {
3775 wiphy
->regulatory_flags
|= REGULATORY_DISABLE_BEACON_HINTS
|
3776 REGULATORY_COUNTRY_IE_IGNORE
;
3779 * The last request may have been received before this
3780 * registration call. Call the driver notifier if
3781 * initiator is USER.
3783 if (lr
->initiator
== NL80211_REGDOM_SET_BY_USER
)
3784 reg_call_notifier(wiphy
, lr
);
3787 if (!reg_dev_ignore_cell_hint(wiphy
))
3788 reg_num_devs_support_basehint
++;
3790 wiphy_update_regulatory(wiphy
, lr
->initiator
);
3791 wiphy_all_share_dfs_chan_state(wiphy
);
3794 void wiphy_regulatory_deregister(struct wiphy
*wiphy
)
3796 struct wiphy
*request_wiphy
= NULL
;
3797 struct regulatory_request
*lr
;
3799 lr
= get_last_request();
3801 if (!reg_dev_ignore_cell_hint(wiphy
))
3802 reg_num_devs_support_basehint
--;
3804 rcu_free_regdom(get_wiphy_regdom(wiphy
));
3805 RCU_INIT_POINTER(wiphy
->regd
, NULL
);
3808 request_wiphy
= wiphy_idx_to_wiphy(lr
->wiphy_idx
);
3810 if (!request_wiphy
|| request_wiphy
!= wiphy
)
3813 lr
->wiphy_idx
= WIPHY_IDX_INVALID
;
3814 lr
->country_ie_env
= ENVIRON_ANY
;
3818 * See FCC notices for UNII band definitions
3819 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
3820 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
3822 int cfg80211_get_unii(int freq
)
3825 if (freq
>= 5150 && freq
<= 5250)
3829 if (freq
> 5250 && freq
<= 5350)
3833 if (freq
> 5350 && freq
<= 5470)
3837 if (freq
> 5470 && freq
<= 5725)
3841 if (freq
> 5725 && freq
<= 5825)
3845 if (freq
> 5925 && freq
<= 6425)
3849 if (freq
> 6425 && freq
<= 6525)
3853 if (freq
> 6525 && freq
<= 6875)
3857 if (freq
> 6875 && freq
<= 7125)
3863 bool regulatory_indoor_allowed(void)
3865 return reg_is_indoor
;
3868 bool regulatory_pre_cac_allowed(struct wiphy
*wiphy
)
3870 const struct ieee80211_regdomain
*regd
= NULL
;
3871 const struct ieee80211_regdomain
*wiphy_regd
= NULL
;
3872 bool pre_cac_allowed
= false;
3876 regd
= rcu_dereference(cfg80211_regdomain
);
3877 wiphy_regd
= rcu_dereference(wiphy
->regd
);
3879 if (regd
->dfs_region
== NL80211_DFS_ETSI
)
3880 pre_cac_allowed
= true;
3884 return pre_cac_allowed
;
3887 if (regd
->dfs_region
== wiphy_regd
->dfs_region
&&
3888 wiphy_regd
->dfs_region
== NL80211_DFS_ETSI
)
3889 pre_cac_allowed
= true;
3893 return pre_cac_allowed
;
3895 EXPORT_SYMBOL(regulatory_pre_cac_allowed
);
3897 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device
*rdev
)
3899 struct wireless_dev
*wdev
;
3900 /* If we finished CAC or received radar, we should end any
3901 * CAC running on the same channels.
3902 * the check !cfg80211_chandef_dfs_usable contain 2 options:
3903 * either all channels are available - those the CAC_FINISHED
3904 * event has effected another wdev state, or there is a channel
3905 * in unavailable state in wdev chandef - those the RADAR_DETECTED
3906 * event has effected another wdev state.
3907 * In both cases we should end the CAC on the wdev.
3909 list_for_each_entry(wdev
, &rdev
->wiphy
.wdev_list
, list
) {
3910 if (wdev
->cac_started
&&
3911 !cfg80211_chandef_dfs_usable(&rdev
->wiphy
, &wdev
->chandef
))
3912 rdev_end_cac(rdev
, wdev
->netdev
);
3916 void regulatory_propagate_dfs_state(struct wiphy
*wiphy
,
3917 struct cfg80211_chan_def
*chandef
,
3918 enum nl80211_dfs_state dfs_state
,
3919 enum nl80211_radar_event event
)
3921 struct cfg80211_registered_device
*rdev
;
3925 if (WARN_ON(!cfg80211_chandef_valid(chandef
)))
3928 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
3929 if (wiphy
== &rdev
->wiphy
)
3932 if (!reg_dfs_domain_same(wiphy
, &rdev
->wiphy
))
3935 if (!ieee80211_get_channel(&rdev
->wiphy
,
3936 chandef
->chan
->center_freq
))
3939 cfg80211_set_dfs_state(&rdev
->wiphy
, chandef
, dfs_state
);
3941 if (event
== NL80211_RADAR_DETECTED
||
3942 event
== NL80211_RADAR_CAC_FINISHED
) {
3943 cfg80211_sched_dfs_chan_update(rdev
);
3944 cfg80211_check_and_end_cac(rdev
);
3947 nl80211_radar_notify(rdev
, chandef
, event
, NULL
, GFP_KERNEL
);
3951 static int __init
regulatory_init_db(void)
3956 * It's possible that - due to other bugs/issues - cfg80211
3957 * never called regulatory_init() below, or that it failed;
3958 * in that case, don't try to do any further work here as
3959 * it's doomed to lead to crashes.
3961 if (IS_ERR_OR_NULL(reg_pdev
))
3964 err
= load_builtin_regdb_keys();
3968 /* We always try to get an update for the static regdomain */
3969 err
= regulatory_hint_core(cfg80211_world_regdom
->alpha2
);
3971 if (err
== -ENOMEM
) {
3972 platform_device_unregister(reg_pdev
);
3976 * N.B. kobject_uevent_env() can fail mainly for when we're out
3977 * memory which is handled and propagated appropriately above
3978 * but it can also fail during a netlink_broadcast() or during
3979 * early boot for call_usermodehelper(). For now treat these
3980 * errors as non-fatal.
3982 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3986 * Finally, if the user set the module parameter treat it
3989 if (!is_world_regdom(ieee80211_regdom
))
3990 regulatory_hint_user(ieee80211_regdom
,
3991 NL80211_USER_REG_HINT_USER
);
3996 late_initcall(regulatory_init_db
);
3999 int __init
regulatory_init(void)
4001 reg_pdev
= platform_device_register_simple("regulatory", 0, NULL
, 0);
4002 if (IS_ERR(reg_pdev
))
4003 return PTR_ERR(reg_pdev
);
4005 spin_lock_init(®_requests_lock
);
4006 spin_lock_init(®_pending_beacons_lock
);
4007 spin_lock_init(®_indoor_lock
);
4009 rcu_assign_pointer(cfg80211_regdomain
, cfg80211_world_regdom
);
4011 user_alpha2
[0] = '9';
4012 user_alpha2
[1] = '7';
4015 return regulatory_init_db();
4021 void regulatory_exit(void)
4023 struct regulatory_request
*reg_request
, *tmp
;
4024 struct reg_beacon
*reg_beacon
, *btmp
;
4026 cancel_work_sync(®_work
);
4027 cancel_crda_timeout_sync();
4028 cancel_delayed_work_sync(®_check_chans
);
4030 /* Lock to suppress warnings */
4032 reset_regdomains(true, NULL
);
4035 dev_set_uevent_suppress(®_pdev
->dev
, true);
4037 platform_device_unregister(reg_pdev
);
4039 list_for_each_entry_safe(reg_beacon
, btmp
, ®_pending_beacons
, list
) {
4040 list_del(®_beacon
->list
);
4044 list_for_each_entry_safe(reg_beacon
, btmp
, ®_beacon_list
, list
) {
4045 list_del(®_beacon
->list
);
4049 list_for_each_entry_safe(reg_request
, tmp
, ®_requests_list
, list
) {
4050 list_del(®_request
->list
);
4054 if (!IS_ERR_OR_NULL(regdb
))
4056 if (!IS_ERR_OR_NULL(cfg80211_user_regdom
))
4057 kfree(cfg80211_user_regdom
);
4059 free_regdb_keyring();