gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / sound / soc / codecs / sta350.c
blobccb7100b66444cb9bb72933d9aa4889dfa05469b
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Codec driver for ST STA350 2.1-channel high-efficiency digital audio system
5 * Copyright: 2014 Raumfeld GmbH
6 * Author: Sven Brandau <info@brandau.biz>
8 * based on code from:
9 * Raumfeld GmbH
10 * Johannes Stezenbach <js@sig21.net>
11 * Wolfson Microelectronics PLC.
12 * Mark Brown <broonie@opensource.wolfsonmicro.com>
13 * Freescale Semiconductor, Inc.
14 * Timur Tabi <timur@freescale.com>
17 #define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__
19 #include <linux/module.h>
20 #include <linux/moduleparam.h>
21 #include <linux/init.h>
22 #include <linux/delay.h>
23 #include <linux/pm.h>
24 #include <linux/i2c.h>
25 #include <linux/of_device.h>
26 #include <linux/of_gpio.h>
27 #include <linux/regmap.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/gpio/consumer.h>
30 #include <linux/slab.h>
31 #include <sound/core.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/soc.h>
35 #include <sound/soc-dapm.h>
36 #include <sound/initval.h>
37 #include <sound/tlv.h>
39 #include <sound/sta350.h>
40 #include "sta350.h"
42 #define STA350_RATES (SNDRV_PCM_RATE_32000 | \
43 SNDRV_PCM_RATE_44100 | \
44 SNDRV_PCM_RATE_48000 | \
45 SNDRV_PCM_RATE_88200 | \
46 SNDRV_PCM_RATE_96000 | \
47 SNDRV_PCM_RATE_176400 | \
48 SNDRV_PCM_RATE_192000)
50 #define STA350_FORMATS \
51 (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE | \
52 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE | \
53 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE | \
54 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_3BE | \
55 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE | \
56 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE)
58 /* Power-up register defaults */
59 static const struct reg_default sta350_regs[] = {
60 { 0x0, 0x63 },
61 { 0x1, 0x80 },
62 { 0x2, 0xdf },
63 { 0x3, 0x40 },
64 { 0x4, 0xc2 },
65 { 0x5, 0x5c },
66 { 0x6, 0x00 },
67 { 0x7, 0xff },
68 { 0x8, 0x60 },
69 { 0x9, 0x60 },
70 { 0xa, 0x60 },
71 { 0xb, 0x00 },
72 { 0xc, 0x00 },
73 { 0xd, 0x00 },
74 { 0xe, 0x00 },
75 { 0xf, 0x40 },
76 { 0x10, 0x80 },
77 { 0x11, 0x77 },
78 { 0x12, 0x6a },
79 { 0x13, 0x69 },
80 { 0x14, 0x6a },
81 { 0x15, 0x69 },
82 { 0x16, 0x00 },
83 { 0x17, 0x00 },
84 { 0x18, 0x00 },
85 { 0x19, 0x00 },
86 { 0x1a, 0x00 },
87 { 0x1b, 0x00 },
88 { 0x1c, 0x00 },
89 { 0x1d, 0x00 },
90 { 0x1e, 0x00 },
91 { 0x1f, 0x00 },
92 { 0x20, 0x00 },
93 { 0x21, 0x00 },
94 { 0x22, 0x00 },
95 { 0x23, 0x00 },
96 { 0x24, 0x00 },
97 { 0x25, 0x00 },
98 { 0x26, 0x00 },
99 { 0x27, 0x2a },
100 { 0x28, 0xc0 },
101 { 0x29, 0xf3 },
102 { 0x2a, 0x33 },
103 { 0x2b, 0x00 },
104 { 0x2c, 0x0c },
105 { 0x31, 0x00 },
106 { 0x36, 0x00 },
107 { 0x37, 0x00 },
108 { 0x38, 0x00 },
109 { 0x39, 0x01 },
110 { 0x3a, 0xee },
111 { 0x3b, 0xff },
112 { 0x3c, 0x7e },
113 { 0x3d, 0xc0 },
114 { 0x3e, 0x26 },
115 { 0x3f, 0x00 },
116 { 0x48, 0x00 },
117 { 0x49, 0x00 },
118 { 0x4a, 0x00 },
119 { 0x4b, 0x04 },
120 { 0x4c, 0x00 },
123 static const struct regmap_range sta350_write_regs_range[] = {
124 regmap_reg_range(STA350_CONFA, STA350_AUTO2),
125 regmap_reg_range(STA350_C1CFG, STA350_FDRC2),
126 regmap_reg_range(STA350_EQCFG, STA350_EVOLRES),
127 regmap_reg_range(STA350_NSHAPE, STA350_MISC2),
130 static const struct regmap_range sta350_read_regs_range[] = {
131 regmap_reg_range(STA350_CONFA, STA350_AUTO2),
132 regmap_reg_range(STA350_C1CFG, STA350_STATUS),
133 regmap_reg_range(STA350_EQCFG, STA350_EVOLRES),
134 regmap_reg_range(STA350_NSHAPE, STA350_MISC2),
137 static const struct regmap_range sta350_volatile_regs_range[] = {
138 regmap_reg_range(STA350_CFADDR2, STA350_CFUD),
139 regmap_reg_range(STA350_STATUS, STA350_STATUS),
142 static const struct regmap_access_table sta350_write_regs = {
143 .yes_ranges = sta350_write_regs_range,
144 .n_yes_ranges = ARRAY_SIZE(sta350_write_regs_range),
147 static const struct regmap_access_table sta350_read_regs = {
148 .yes_ranges = sta350_read_regs_range,
149 .n_yes_ranges = ARRAY_SIZE(sta350_read_regs_range),
152 static const struct regmap_access_table sta350_volatile_regs = {
153 .yes_ranges = sta350_volatile_regs_range,
154 .n_yes_ranges = ARRAY_SIZE(sta350_volatile_regs_range),
157 /* regulator power supply names */
158 static const char * const sta350_supply_names[] = {
159 "vdd-dig", /* digital supply, 3.3V */
160 "vdd-pll", /* pll supply, 3.3V */
161 "vcc" /* power amp supply, 5V - 26V */
164 /* codec private data */
165 struct sta350_priv {
166 struct regmap *regmap;
167 struct regulator_bulk_data supplies[ARRAY_SIZE(sta350_supply_names)];
168 struct sta350_platform_data *pdata;
170 unsigned int mclk;
171 unsigned int format;
173 u32 coef_shadow[STA350_COEF_COUNT];
174 int shutdown;
176 struct gpio_desc *gpiod_nreset;
177 struct gpio_desc *gpiod_power_down;
179 struct mutex coeff_lock;
182 static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12750, 50, 1);
183 static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1);
184 static const DECLARE_TLV_DB_SCALE(tone_tlv, -1200, 200, 0);
186 static const char * const sta350_drc_ac[] = {
187 "Anti-Clipping", "Dynamic Range Compression"
189 static const char * const sta350_auto_gc_mode[] = {
190 "User", "AC no clipping", "AC limited clipping (10%)",
191 "DRC nighttime listening mode"
193 static const char * const sta350_auto_xo_mode[] = {
194 "User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz",
195 "200Hz", "220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz",
196 "340Hz", "360Hz"
198 static const char * const sta350_binary_output[] = {
199 "FFX 3-state output - normal operation", "Binary output"
201 static const char * const sta350_limiter_select[] = {
202 "Limiter Disabled", "Limiter #1", "Limiter #2"
204 static const char * const sta350_limiter_attack_rate[] = {
205 "3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024",
206 "0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752",
207 "0.0645", "0.0564", "0.0501", "0.0451"
209 static const char * const sta350_limiter_release_rate[] = {
210 "0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299",
211 "0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137",
212 "0.0134", "0.0117", "0.0110", "0.0104"
214 static const char * const sta350_noise_shaper_type[] = {
215 "Third order", "Fourth order"
218 static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_attack_tlv,
219 0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0),
220 8, 16, TLV_DB_SCALE_ITEM(300, 100, 0),
223 static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_release_tlv,
224 0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
225 1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0),
226 2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0),
227 3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0),
228 8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0),
231 static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_attack_tlv,
232 0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0),
233 8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0),
234 14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0),
237 static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_release_tlv,
238 0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
239 1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0),
240 3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0),
241 5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0),
242 13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0),
245 static SOC_ENUM_SINGLE_DECL(sta350_drc_ac_enum,
246 STA350_CONFD, STA350_CONFD_DRC_SHIFT,
247 sta350_drc_ac);
248 static SOC_ENUM_SINGLE_DECL(sta350_noise_shaper_enum,
249 STA350_CONFE, STA350_CONFE_NSBW_SHIFT,
250 sta350_noise_shaper_type);
251 static SOC_ENUM_SINGLE_DECL(sta350_auto_gc_enum,
252 STA350_AUTO1, STA350_AUTO1_AMGC_SHIFT,
253 sta350_auto_gc_mode);
254 static SOC_ENUM_SINGLE_DECL(sta350_auto_xo_enum,
255 STA350_AUTO2, STA350_AUTO2_XO_SHIFT,
256 sta350_auto_xo_mode);
257 static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch1_enum,
258 STA350_C1CFG, STA350_CxCFG_BO_SHIFT,
259 sta350_binary_output);
260 static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch2_enum,
261 STA350_C2CFG, STA350_CxCFG_BO_SHIFT,
262 sta350_binary_output);
263 static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch3_enum,
264 STA350_C3CFG, STA350_CxCFG_BO_SHIFT,
265 sta350_binary_output);
266 static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch1_enum,
267 STA350_C1CFG, STA350_CxCFG_LS_SHIFT,
268 sta350_limiter_select);
269 static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch2_enum,
270 STA350_C2CFG, STA350_CxCFG_LS_SHIFT,
271 sta350_limiter_select);
272 static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch3_enum,
273 STA350_C3CFG, STA350_CxCFG_LS_SHIFT,
274 sta350_limiter_select);
275 static SOC_ENUM_SINGLE_DECL(sta350_limiter1_attack_rate_enum,
276 STA350_L1AR, STA350_LxA_SHIFT,
277 sta350_limiter_attack_rate);
278 static SOC_ENUM_SINGLE_DECL(sta350_limiter2_attack_rate_enum,
279 STA350_L2AR, STA350_LxA_SHIFT,
280 sta350_limiter_attack_rate);
281 static SOC_ENUM_SINGLE_DECL(sta350_limiter1_release_rate_enum,
282 STA350_L1AR, STA350_LxR_SHIFT,
283 sta350_limiter_release_rate);
284 static SOC_ENUM_SINGLE_DECL(sta350_limiter2_release_rate_enum,
285 STA350_L2AR, STA350_LxR_SHIFT,
286 sta350_limiter_release_rate);
289 * byte array controls for setting biquad, mixer, scaling coefficients;
290 * for biquads all five coefficients need to be set in one go,
291 * mixer and pre/postscale coefs can be set individually;
292 * each coef is 24bit, the bytes are ordered in the same way
293 * as given in the STA350 data sheet (big endian; b1, b2, a1, a2, b0)
296 static int sta350_coefficient_info(struct snd_kcontrol *kcontrol,
297 struct snd_ctl_elem_info *uinfo)
299 int numcoef = kcontrol->private_value >> 16;
300 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
301 uinfo->count = 3 * numcoef;
302 return 0;
305 static int sta350_coefficient_get(struct snd_kcontrol *kcontrol,
306 struct snd_ctl_elem_value *ucontrol)
308 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
309 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
310 int numcoef = kcontrol->private_value >> 16;
311 int index = kcontrol->private_value & 0xffff;
312 unsigned int cfud, val;
313 int i, ret = 0;
315 mutex_lock(&sta350->coeff_lock);
317 /* preserve reserved bits in STA350_CFUD */
318 regmap_read(sta350->regmap, STA350_CFUD, &cfud);
319 cfud &= 0xf0;
321 * chip documentation does not say if the bits are self clearing,
322 * so do it explicitly
324 regmap_write(sta350->regmap, STA350_CFUD, cfud);
326 regmap_write(sta350->regmap, STA350_CFADDR2, index);
327 if (numcoef == 1) {
328 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x04);
329 } else if (numcoef == 5) {
330 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x08);
331 } else {
332 ret = -EINVAL;
333 goto exit_unlock;
336 for (i = 0; i < 3 * numcoef; i++) {
337 regmap_read(sta350->regmap, STA350_B1CF1 + i, &val);
338 ucontrol->value.bytes.data[i] = val;
341 exit_unlock:
342 mutex_unlock(&sta350->coeff_lock);
344 return ret;
347 static int sta350_coefficient_put(struct snd_kcontrol *kcontrol,
348 struct snd_ctl_elem_value *ucontrol)
350 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
351 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
352 int numcoef = kcontrol->private_value >> 16;
353 int index = kcontrol->private_value & 0xffff;
354 unsigned int cfud;
355 int i;
357 /* preserve reserved bits in STA350_CFUD */
358 regmap_read(sta350->regmap, STA350_CFUD, &cfud);
359 cfud &= 0xf0;
361 * chip documentation does not say if the bits are self clearing,
362 * so do it explicitly
364 regmap_write(sta350->regmap, STA350_CFUD, cfud);
366 regmap_write(sta350->regmap, STA350_CFADDR2, index);
367 for (i = 0; i < numcoef && (index + i < STA350_COEF_COUNT); i++)
368 sta350->coef_shadow[index + i] =
369 (ucontrol->value.bytes.data[3 * i] << 16)
370 | (ucontrol->value.bytes.data[3 * i + 1] << 8)
371 | (ucontrol->value.bytes.data[3 * i + 2]);
372 for (i = 0; i < 3 * numcoef; i++)
373 regmap_write(sta350->regmap, STA350_B1CF1 + i,
374 ucontrol->value.bytes.data[i]);
375 if (numcoef == 1)
376 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01);
377 else if (numcoef == 5)
378 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x02);
379 else
380 return -EINVAL;
382 return 0;
385 static int sta350_sync_coef_shadow(struct snd_soc_component *component)
387 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
388 unsigned int cfud;
389 int i;
391 /* preserve reserved bits in STA350_CFUD */
392 regmap_read(sta350->regmap, STA350_CFUD, &cfud);
393 cfud &= 0xf0;
395 for (i = 0; i < STA350_COEF_COUNT; i++) {
396 regmap_write(sta350->regmap, STA350_CFADDR2, i);
397 regmap_write(sta350->regmap, STA350_B1CF1,
398 (sta350->coef_shadow[i] >> 16) & 0xff);
399 regmap_write(sta350->regmap, STA350_B1CF2,
400 (sta350->coef_shadow[i] >> 8) & 0xff);
401 regmap_write(sta350->regmap, STA350_B1CF3,
402 (sta350->coef_shadow[i]) & 0xff);
404 * chip documentation does not say if the bits are
405 * self-clearing, so do it explicitly
407 regmap_write(sta350->regmap, STA350_CFUD, cfud);
408 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01);
410 return 0;
413 static int sta350_cache_sync(struct snd_soc_component *component)
415 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
416 unsigned int mute;
417 int rc;
419 /* mute during register sync */
420 regmap_read(sta350->regmap, STA350_CFUD, &mute);
421 regmap_write(sta350->regmap, STA350_MMUTE, mute | STA350_MMUTE_MMUTE);
422 sta350_sync_coef_shadow(component);
423 rc = regcache_sync(sta350->regmap);
424 regmap_write(sta350->regmap, STA350_MMUTE, mute);
425 return rc;
428 #define SINGLE_COEF(xname, index) \
429 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
430 .info = sta350_coefficient_info, \
431 .get = sta350_coefficient_get,\
432 .put = sta350_coefficient_put, \
433 .private_value = index | (1 << 16) }
435 #define BIQUAD_COEFS(xname, index) \
436 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
437 .info = sta350_coefficient_info, \
438 .get = sta350_coefficient_get,\
439 .put = sta350_coefficient_put, \
440 .private_value = index | (5 << 16) }
442 static const struct snd_kcontrol_new sta350_snd_controls[] = {
443 SOC_SINGLE_TLV("Master Volume", STA350_MVOL, 0, 0xff, 1, mvol_tlv),
444 /* VOL */
445 SOC_SINGLE_TLV("Ch1 Volume", STA350_C1VOL, 0, 0xff, 1, chvol_tlv),
446 SOC_SINGLE_TLV("Ch2 Volume", STA350_C2VOL, 0, 0xff, 1, chvol_tlv),
447 SOC_SINGLE_TLV("Ch3 Volume", STA350_C3VOL, 0, 0xff, 1, chvol_tlv),
448 /* CONFD */
449 SOC_SINGLE("High Pass Filter Bypass Switch",
450 STA350_CONFD, STA350_CONFD_HPB_SHIFT, 1, 1),
451 SOC_SINGLE("De-emphasis Filter Switch",
452 STA350_CONFD, STA350_CONFD_DEMP_SHIFT, 1, 0),
453 SOC_SINGLE("DSP Bypass Switch",
454 STA350_CONFD, STA350_CONFD_DSPB_SHIFT, 1, 0),
455 SOC_SINGLE("Post-scale Link Switch",
456 STA350_CONFD, STA350_CONFD_PSL_SHIFT, 1, 0),
457 SOC_SINGLE("Biquad Coefficient Link Switch",
458 STA350_CONFD, STA350_CONFD_BQL_SHIFT, 1, 0),
459 SOC_ENUM("Compressor/Limiter Switch", sta350_drc_ac_enum),
460 SOC_ENUM("Noise Shaper Bandwidth", sta350_noise_shaper_enum),
461 SOC_SINGLE("Zero-detect Mute Enable Switch",
462 STA350_CONFD, STA350_CONFD_ZDE_SHIFT, 1, 0),
463 SOC_SINGLE("Submix Mode Switch",
464 STA350_CONFD, STA350_CONFD_SME_SHIFT, 1, 0),
465 /* CONFE */
466 SOC_SINGLE("Zero Cross Switch", STA350_CONFE, STA350_CONFE_ZCE_SHIFT, 1, 0),
467 SOC_SINGLE("Soft Ramp Switch", STA350_CONFE, STA350_CONFE_SVE_SHIFT, 1, 0),
468 /* MUTE */
469 SOC_SINGLE("Master Switch", STA350_MMUTE, STA350_MMUTE_MMUTE_SHIFT, 1, 1),
470 SOC_SINGLE("Ch1 Switch", STA350_MMUTE, STA350_MMUTE_C1M_SHIFT, 1, 1),
471 SOC_SINGLE("Ch2 Switch", STA350_MMUTE, STA350_MMUTE_C2M_SHIFT, 1, 1),
472 SOC_SINGLE("Ch3 Switch", STA350_MMUTE, STA350_MMUTE_C3M_SHIFT, 1, 1),
473 /* AUTOx */
474 SOC_ENUM("Automode GC", sta350_auto_gc_enum),
475 SOC_ENUM("Automode XO", sta350_auto_xo_enum),
476 /* CxCFG */
477 SOC_SINGLE("Ch1 Tone Control Bypass Switch",
478 STA350_C1CFG, STA350_CxCFG_TCB_SHIFT, 1, 0),
479 SOC_SINGLE("Ch2 Tone Control Bypass Switch",
480 STA350_C2CFG, STA350_CxCFG_TCB_SHIFT, 1, 0),
481 SOC_SINGLE("Ch1 EQ Bypass Switch",
482 STA350_C1CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0),
483 SOC_SINGLE("Ch2 EQ Bypass Switch",
484 STA350_C2CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0),
485 SOC_SINGLE("Ch1 Master Volume Bypass Switch",
486 STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
487 SOC_SINGLE("Ch2 Master Volume Bypass Switch",
488 STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
489 SOC_SINGLE("Ch3 Master Volume Bypass Switch",
490 STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
491 SOC_ENUM("Ch1 Binary Output Select", sta350_binary_output_ch1_enum),
492 SOC_ENUM("Ch2 Binary Output Select", sta350_binary_output_ch2_enum),
493 SOC_ENUM("Ch3 Binary Output Select", sta350_binary_output_ch3_enum),
494 SOC_ENUM("Ch1 Limiter Select", sta350_limiter_ch1_enum),
495 SOC_ENUM("Ch2 Limiter Select", sta350_limiter_ch2_enum),
496 SOC_ENUM("Ch3 Limiter Select", sta350_limiter_ch3_enum),
497 /* TONE */
498 SOC_SINGLE_RANGE_TLV("Bass Tone Control Volume",
499 STA350_TONE, STA350_TONE_BTC_SHIFT, 1, 13, 0, tone_tlv),
500 SOC_SINGLE_RANGE_TLV("Treble Tone Control Volume",
501 STA350_TONE, STA350_TONE_TTC_SHIFT, 1, 13, 0, tone_tlv),
502 SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta350_limiter1_attack_rate_enum),
503 SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta350_limiter2_attack_rate_enum),
504 SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta350_limiter1_release_rate_enum),
505 SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta350_limiter2_release_rate_enum),
508 * depending on mode, the attack/release thresholds have
509 * two different enum definitions; provide both
511 SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)",
512 STA350_L1ATRT, STA350_LxA_SHIFT,
513 16, 0, sta350_limiter_ac_attack_tlv),
514 SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)",
515 STA350_L2ATRT, STA350_LxA_SHIFT,
516 16, 0, sta350_limiter_ac_attack_tlv),
517 SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)",
518 STA350_L1ATRT, STA350_LxR_SHIFT,
519 16, 0, sta350_limiter_ac_release_tlv),
520 SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)",
521 STA350_L2ATRT, STA350_LxR_SHIFT,
522 16, 0, sta350_limiter_ac_release_tlv),
523 SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)",
524 STA350_L1ATRT, STA350_LxA_SHIFT,
525 16, 0, sta350_limiter_drc_attack_tlv),
526 SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)",
527 STA350_L2ATRT, STA350_LxA_SHIFT,
528 16, 0, sta350_limiter_drc_attack_tlv),
529 SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)",
530 STA350_L1ATRT, STA350_LxR_SHIFT,
531 16, 0, sta350_limiter_drc_release_tlv),
532 SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)",
533 STA350_L2ATRT, STA350_LxR_SHIFT,
534 16, 0, sta350_limiter_drc_release_tlv),
536 BIQUAD_COEFS("Ch1 - Biquad 1", 0),
537 BIQUAD_COEFS("Ch1 - Biquad 2", 5),
538 BIQUAD_COEFS("Ch1 - Biquad 3", 10),
539 BIQUAD_COEFS("Ch1 - Biquad 4", 15),
540 BIQUAD_COEFS("Ch2 - Biquad 1", 20),
541 BIQUAD_COEFS("Ch2 - Biquad 2", 25),
542 BIQUAD_COEFS("Ch2 - Biquad 3", 30),
543 BIQUAD_COEFS("Ch2 - Biquad 4", 35),
544 BIQUAD_COEFS("High-pass", 40),
545 BIQUAD_COEFS("Low-pass", 45),
546 SINGLE_COEF("Ch1 - Prescale", 50),
547 SINGLE_COEF("Ch2 - Prescale", 51),
548 SINGLE_COEF("Ch1 - Postscale", 52),
549 SINGLE_COEF("Ch2 - Postscale", 53),
550 SINGLE_COEF("Ch3 - Postscale", 54),
551 SINGLE_COEF("Thermal warning - Postscale", 55),
552 SINGLE_COEF("Ch1 - Mix 1", 56),
553 SINGLE_COEF("Ch1 - Mix 2", 57),
554 SINGLE_COEF("Ch2 - Mix 1", 58),
555 SINGLE_COEF("Ch2 - Mix 2", 59),
556 SINGLE_COEF("Ch3 - Mix 1", 60),
557 SINGLE_COEF("Ch3 - Mix 2", 61),
560 static const struct snd_soc_dapm_widget sta350_dapm_widgets[] = {
561 SND_SOC_DAPM_DAC("DAC", NULL, SND_SOC_NOPM, 0, 0),
562 SND_SOC_DAPM_OUTPUT("LEFT"),
563 SND_SOC_DAPM_OUTPUT("RIGHT"),
564 SND_SOC_DAPM_OUTPUT("SUB"),
567 static const struct snd_soc_dapm_route sta350_dapm_routes[] = {
568 { "LEFT", NULL, "DAC" },
569 { "RIGHT", NULL, "DAC" },
570 { "SUB", NULL, "DAC" },
571 { "DAC", NULL, "Playback" },
574 /* MCLK interpolation ratio per fs */
575 static struct {
576 int fs;
577 int ir;
578 } interpolation_ratios[] = {
579 { 32000, 0 },
580 { 44100, 0 },
581 { 48000, 0 },
582 { 88200, 1 },
583 { 96000, 1 },
584 { 176400, 2 },
585 { 192000, 2 },
588 /* MCLK to fs clock ratios */
589 static int mcs_ratio_table[3][6] = {
590 { 768, 512, 384, 256, 128, 576 },
591 { 384, 256, 192, 128, 64, 0 },
592 { 192, 128, 96, 64, 32, 0 },
596 * sta350_set_dai_sysclk - configure MCLK
597 * @codec_dai: the codec DAI
598 * @clk_id: the clock ID (ignored)
599 * @freq: the MCLK input frequency
600 * @dir: the clock direction (ignored)
602 * The value of MCLK is used to determine which sample rates are supported
603 * by the STA350, based on the mcs_ratio_table.
605 * This function must be called by the machine driver's 'startup' function,
606 * otherwise the list of supported sample rates will not be available in
607 * time for ALSA.
609 static int sta350_set_dai_sysclk(struct snd_soc_dai *codec_dai,
610 int clk_id, unsigned int freq, int dir)
612 struct snd_soc_component *component = codec_dai->component;
613 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
615 dev_dbg(component->dev, "mclk=%u\n", freq);
616 sta350->mclk = freq;
618 return 0;
622 * sta350_set_dai_fmt - configure the codec for the selected audio format
623 * @codec_dai: the codec DAI
624 * @fmt: a SND_SOC_DAIFMT_x value indicating the data format
626 * This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the
627 * codec accordingly.
629 static int sta350_set_dai_fmt(struct snd_soc_dai *codec_dai,
630 unsigned int fmt)
632 struct snd_soc_component *component = codec_dai->component;
633 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
634 unsigned int confb = 0;
636 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
637 case SND_SOC_DAIFMT_CBS_CFS:
638 break;
639 default:
640 return -EINVAL;
643 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
644 case SND_SOC_DAIFMT_I2S:
645 case SND_SOC_DAIFMT_RIGHT_J:
646 case SND_SOC_DAIFMT_LEFT_J:
647 sta350->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
648 break;
649 default:
650 return -EINVAL;
653 switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
654 case SND_SOC_DAIFMT_NB_NF:
655 confb |= STA350_CONFB_C2IM;
656 break;
657 case SND_SOC_DAIFMT_NB_IF:
658 confb |= STA350_CONFB_C1IM;
659 break;
660 default:
661 return -EINVAL;
664 return regmap_update_bits(sta350->regmap, STA350_CONFB,
665 STA350_CONFB_C1IM | STA350_CONFB_C2IM, confb);
669 * sta350_hw_params - program the STA350 with the given hardware parameters.
670 * @substream: the audio stream
671 * @params: the hardware parameters to set
672 * @dai: the SOC DAI (ignored)
674 * This function programs the hardware with the values provided.
675 * Specifically, the sample rate and the data format.
677 static int sta350_hw_params(struct snd_pcm_substream *substream,
678 struct snd_pcm_hw_params *params,
679 struct snd_soc_dai *dai)
681 struct snd_soc_component *component = dai->component;
682 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
683 int i, mcs = -EINVAL, ir = -EINVAL;
684 unsigned int confa, confb;
685 unsigned int rate, ratio;
686 int ret;
688 if (!sta350->mclk) {
689 dev_err(component->dev,
690 "sta350->mclk is unset. Unable to determine ratio\n");
691 return -EIO;
694 rate = params_rate(params);
695 ratio = sta350->mclk / rate;
696 dev_dbg(component->dev, "rate: %u, ratio: %u\n", rate, ratio);
698 for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) {
699 if (interpolation_ratios[i].fs == rate) {
700 ir = interpolation_ratios[i].ir;
701 break;
705 if (ir < 0) {
706 dev_err(component->dev, "Unsupported samplerate: %u\n", rate);
707 return -EINVAL;
710 for (i = 0; i < 6; i++) {
711 if (mcs_ratio_table[ir][i] == ratio) {
712 mcs = i;
713 break;
717 if (mcs < 0) {
718 dev_err(component->dev, "Unresolvable ratio: %u\n", ratio);
719 return -EINVAL;
722 confa = (ir << STA350_CONFA_IR_SHIFT) |
723 (mcs << STA350_CONFA_MCS_SHIFT);
724 confb = 0;
726 switch (params_width(params)) {
727 case 24:
728 dev_dbg(component->dev, "24bit\n");
729 /* fall through */
730 case 32:
731 dev_dbg(component->dev, "24bit or 32bit\n");
732 switch (sta350->format) {
733 case SND_SOC_DAIFMT_I2S:
734 confb |= 0x0;
735 break;
736 case SND_SOC_DAIFMT_LEFT_J:
737 confb |= 0x1;
738 break;
739 case SND_SOC_DAIFMT_RIGHT_J:
740 confb |= 0x2;
741 break;
744 break;
745 case 20:
746 dev_dbg(component->dev, "20bit\n");
747 switch (sta350->format) {
748 case SND_SOC_DAIFMT_I2S:
749 confb |= 0x4;
750 break;
751 case SND_SOC_DAIFMT_LEFT_J:
752 confb |= 0x5;
753 break;
754 case SND_SOC_DAIFMT_RIGHT_J:
755 confb |= 0x6;
756 break;
759 break;
760 case 18:
761 dev_dbg(component->dev, "18bit\n");
762 switch (sta350->format) {
763 case SND_SOC_DAIFMT_I2S:
764 confb |= 0x8;
765 break;
766 case SND_SOC_DAIFMT_LEFT_J:
767 confb |= 0x9;
768 break;
769 case SND_SOC_DAIFMT_RIGHT_J:
770 confb |= 0xa;
771 break;
774 break;
775 case 16:
776 dev_dbg(component->dev, "16bit\n");
777 switch (sta350->format) {
778 case SND_SOC_DAIFMT_I2S:
779 confb |= 0x0;
780 break;
781 case SND_SOC_DAIFMT_LEFT_J:
782 confb |= 0xd;
783 break;
784 case SND_SOC_DAIFMT_RIGHT_J:
785 confb |= 0xe;
786 break;
789 break;
790 default:
791 return -EINVAL;
794 ret = regmap_update_bits(sta350->regmap, STA350_CONFA,
795 STA350_CONFA_MCS_MASK | STA350_CONFA_IR_MASK,
796 confa);
797 if (ret < 0)
798 return ret;
800 ret = regmap_update_bits(sta350->regmap, STA350_CONFB,
801 STA350_CONFB_SAI_MASK | STA350_CONFB_SAIFB,
802 confb);
803 if (ret < 0)
804 return ret;
806 return 0;
809 static int sta350_startup_sequence(struct sta350_priv *sta350)
811 if (sta350->gpiod_power_down)
812 gpiod_set_value(sta350->gpiod_power_down, 1);
814 if (sta350->gpiod_nreset) {
815 gpiod_set_value(sta350->gpiod_nreset, 0);
816 mdelay(1);
817 gpiod_set_value(sta350->gpiod_nreset, 1);
818 mdelay(1);
821 return 0;
825 * sta350_set_bias_level - DAPM callback
826 * @component: the component device
827 * @level: DAPM power level
829 * This is called by ALSA to put the component into low power mode
830 * or to wake it up. If the component is powered off completely
831 * all registers must be restored after power on.
833 static int sta350_set_bias_level(struct snd_soc_component *component,
834 enum snd_soc_bias_level level)
836 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
837 int ret;
839 dev_dbg(component->dev, "level = %d\n", level);
840 switch (level) {
841 case SND_SOC_BIAS_ON:
842 break;
844 case SND_SOC_BIAS_PREPARE:
845 /* Full power on */
846 regmap_update_bits(sta350->regmap, STA350_CONFF,
847 STA350_CONFF_PWDN | STA350_CONFF_EAPD,
848 STA350_CONFF_PWDN | STA350_CONFF_EAPD);
849 break;
851 case SND_SOC_BIAS_STANDBY:
852 if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) {
853 ret = regulator_bulk_enable(
854 ARRAY_SIZE(sta350->supplies),
855 sta350->supplies);
856 if (ret < 0) {
857 dev_err(component->dev,
858 "Failed to enable supplies: %d\n",
859 ret);
860 return ret;
862 sta350_startup_sequence(sta350);
863 sta350_cache_sync(component);
866 /* Power down */
867 regmap_update_bits(sta350->regmap, STA350_CONFF,
868 STA350_CONFF_PWDN | STA350_CONFF_EAPD,
871 break;
873 case SND_SOC_BIAS_OFF:
874 /* The chip runs through the power down sequence for us */
875 regmap_update_bits(sta350->regmap, STA350_CONFF,
876 STA350_CONFF_PWDN | STA350_CONFF_EAPD, 0);
878 /* power down: low */
879 if (sta350->gpiod_power_down)
880 gpiod_set_value(sta350->gpiod_power_down, 0);
882 if (sta350->gpiod_nreset)
883 gpiod_set_value(sta350->gpiod_nreset, 0);
885 regulator_bulk_disable(ARRAY_SIZE(sta350->supplies),
886 sta350->supplies);
887 break;
889 return 0;
892 static const struct snd_soc_dai_ops sta350_dai_ops = {
893 .hw_params = sta350_hw_params,
894 .set_sysclk = sta350_set_dai_sysclk,
895 .set_fmt = sta350_set_dai_fmt,
898 static struct snd_soc_dai_driver sta350_dai = {
899 .name = "sta350-hifi",
900 .playback = {
901 .stream_name = "Playback",
902 .channels_min = 2,
903 .channels_max = 2,
904 .rates = STA350_RATES,
905 .formats = STA350_FORMATS,
907 .ops = &sta350_dai_ops,
910 static int sta350_probe(struct snd_soc_component *component)
912 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
913 struct sta350_platform_data *pdata = sta350->pdata;
914 int i, ret = 0, thermal = 0;
916 ret = regulator_bulk_enable(ARRAY_SIZE(sta350->supplies),
917 sta350->supplies);
918 if (ret < 0) {
919 dev_err(component->dev, "Failed to enable supplies: %d\n", ret);
920 return ret;
923 ret = sta350_startup_sequence(sta350);
924 if (ret < 0) {
925 dev_err(component->dev, "Failed to startup device\n");
926 return ret;
929 /* CONFA */
930 if (!pdata->thermal_warning_recovery)
931 thermal |= STA350_CONFA_TWAB;
932 if (!pdata->thermal_warning_adjustment)
933 thermal |= STA350_CONFA_TWRB;
934 if (!pdata->fault_detect_recovery)
935 thermal |= STA350_CONFA_FDRB;
936 regmap_update_bits(sta350->regmap, STA350_CONFA,
937 STA350_CONFA_TWAB | STA350_CONFA_TWRB |
938 STA350_CONFA_FDRB,
939 thermal);
941 /* CONFC */
942 regmap_update_bits(sta350->regmap, STA350_CONFC,
943 STA350_CONFC_OM_MASK,
944 pdata->ffx_power_output_mode
945 << STA350_CONFC_OM_SHIFT);
946 regmap_update_bits(sta350->regmap, STA350_CONFC,
947 STA350_CONFC_CSZ_MASK,
948 pdata->drop_compensation_ns
949 << STA350_CONFC_CSZ_SHIFT);
950 regmap_update_bits(sta350->regmap,
951 STA350_CONFC,
952 STA350_CONFC_OCRB,
953 pdata->oc_warning_adjustment ?
954 STA350_CONFC_OCRB : 0);
956 /* CONFE */
957 regmap_update_bits(sta350->regmap, STA350_CONFE,
958 STA350_CONFE_MPCV,
959 pdata->max_power_use_mpcc ?
960 STA350_CONFE_MPCV : 0);
961 regmap_update_bits(sta350->regmap, STA350_CONFE,
962 STA350_CONFE_MPC,
963 pdata->max_power_correction ?
964 STA350_CONFE_MPC : 0);
965 regmap_update_bits(sta350->regmap, STA350_CONFE,
966 STA350_CONFE_AME,
967 pdata->am_reduction_mode ?
968 STA350_CONFE_AME : 0);
969 regmap_update_bits(sta350->regmap, STA350_CONFE,
970 STA350_CONFE_PWMS,
971 pdata->odd_pwm_speed_mode ?
972 STA350_CONFE_PWMS : 0);
973 regmap_update_bits(sta350->regmap, STA350_CONFE,
974 STA350_CONFE_DCCV,
975 pdata->distortion_compensation ?
976 STA350_CONFE_DCCV : 0);
977 /* CONFF */
978 regmap_update_bits(sta350->regmap, STA350_CONFF,
979 STA350_CONFF_IDE,
980 pdata->invalid_input_detect_mute ?
981 STA350_CONFF_IDE : 0);
982 regmap_update_bits(sta350->regmap, STA350_CONFF,
983 STA350_CONFF_OCFG_MASK,
984 pdata->output_conf
985 << STA350_CONFF_OCFG_SHIFT);
987 /* channel to output mapping */
988 regmap_update_bits(sta350->regmap, STA350_C1CFG,
989 STA350_CxCFG_OM_MASK,
990 pdata->ch1_output_mapping
991 << STA350_CxCFG_OM_SHIFT);
992 regmap_update_bits(sta350->regmap, STA350_C2CFG,
993 STA350_CxCFG_OM_MASK,
994 pdata->ch2_output_mapping
995 << STA350_CxCFG_OM_SHIFT);
996 regmap_update_bits(sta350->regmap, STA350_C3CFG,
997 STA350_CxCFG_OM_MASK,
998 pdata->ch3_output_mapping
999 << STA350_CxCFG_OM_SHIFT);
1001 /* miscellaneous registers */
1002 regmap_update_bits(sta350->regmap, STA350_MISC1,
1003 STA350_MISC1_CPWMEN,
1004 pdata->activate_mute_output ?
1005 STA350_MISC1_CPWMEN : 0);
1006 regmap_update_bits(sta350->regmap, STA350_MISC1,
1007 STA350_MISC1_BRIDGOFF,
1008 pdata->bridge_immediate_off ?
1009 STA350_MISC1_BRIDGOFF : 0);
1010 regmap_update_bits(sta350->regmap, STA350_MISC1,
1011 STA350_MISC1_NSHHPEN,
1012 pdata->noise_shape_dc_cut ?
1013 STA350_MISC1_NSHHPEN : 0);
1014 regmap_update_bits(sta350->regmap, STA350_MISC1,
1015 STA350_MISC1_RPDNEN,
1016 pdata->powerdown_master_vol ?
1017 STA350_MISC1_RPDNEN: 0);
1019 regmap_update_bits(sta350->regmap, STA350_MISC2,
1020 STA350_MISC2_PNDLSL_MASK,
1021 pdata->powerdown_delay_divider
1022 << STA350_MISC2_PNDLSL_SHIFT);
1024 /* initialize coefficient shadow RAM with reset values */
1025 for (i = 4; i <= 49; i += 5)
1026 sta350->coef_shadow[i] = 0x400000;
1027 for (i = 50; i <= 54; i++)
1028 sta350->coef_shadow[i] = 0x7fffff;
1029 sta350->coef_shadow[55] = 0x5a9df7;
1030 sta350->coef_shadow[56] = 0x7fffff;
1031 sta350->coef_shadow[59] = 0x7fffff;
1032 sta350->coef_shadow[60] = 0x400000;
1033 sta350->coef_shadow[61] = 0x400000;
1035 snd_soc_component_force_bias_level(component, SND_SOC_BIAS_STANDBY);
1036 /* Bias level configuration will have done an extra enable */
1037 regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies);
1039 return 0;
1042 static void sta350_remove(struct snd_soc_component *component)
1044 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
1046 regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies);
1049 static const struct snd_soc_component_driver sta350_component = {
1050 .probe = sta350_probe,
1051 .remove = sta350_remove,
1052 .set_bias_level = sta350_set_bias_level,
1053 .controls = sta350_snd_controls,
1054 .num_controls = ARRAY_SIZE(sta350_snd_controls),
1055 .dapm_widgets = sta350_dapm_widgets,
1056 .num_dapm_widgets = ARRAY_SIZE(sta350_dapm_widgets),
1057 .dapm_routes = sta350_dapm_routes,
1058 .num_dapm_routes = ARRAY_SIZE(sta350_dapm_routes),
1059 .suspend_bias_off = 1,
1060 .idle_bias_on = 1,
1061 .use_pmdown_time = 1,
1062 .endianness = 1,
1063 .non_legacy_dai_naming = 1,
1066 static const struct regmap_config sta350_regmap = {
1067 .reg_bits = 8,
1068 .val_bits = 8,
1069 .max_register = STA350_MISC2,
1070 .reg_defaults = sta350_regs,
1071 .num_reg_defaults = ARRAY_SIZE(sta350_regs),
1072 .cache_type = REGCACHE_RBTREE,
1073 .wr_table = &sta350_write_regs,
1074 .rd_table = &sta350_read_regs,
1075 .volatile_table = &sta350_volatile_regs,
1078 #ifdef CONFIG_OF
1079 static const struct of_device_id st350_dt_ids[] = {
1080 { .compatible = "st,sta350", },
1083 MODULE_DEVICE_TABLE(of, st350_dt_ids);
1085 static const char * const sta350_ffx_modes[] = {
1086 [STA350_FFX_PM_DROP_COMP] = "drop-compensation",
1087 [STA350_FFX_PM_TAPERED_COMP] = "tapered-compensation",
1088 [STA350_FFX_PM_FULL_POWER] = "full-power-mode",
1089 [STA350_FFX_PM_VARIABLE_DROP_COMP] = "variable-drop-compensation",
1092 static int sta350_probe_dt(struct device *dev, struct sta350_priv *sta350)
1094 struct device_node *np = dev->of_node;
1095 struct sta350_platform_data *pdata;
1096 const char *ffx_power_mode;
1097 u16 tmp;
1098 u8 tmp8;
1100 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1101 if (!pdata)
1102 return -ENOMEM;
1104 of_property_read_u8(np, "st,output-conf",
1105 &pdata->output_conf);
1106 of_property_read_u8(np, "st,ch1-output-mapping",
1107 &pdata->ch1_output_mapping);
1108 of_property_read_u8(np, "st,ch2-output-mapping",
1109 &pdata->ch2_output_mapping);
1110 of_property_read_u8(np, "st,ch3-output-mapping",
1111 &pdata->ch3_output_mapping);
1113 if (of_get_property(np, "st,thermal-warning-recovery", NULL))
1114 pdata->thermal_warning_recovery = 1;
1115 if (of_get_property(np, "st,thermal-warning-adjustment", NULL))
1116 pdata->thermal_warning_adjustment = 1;
1117 if (of_get_property(np, "st,fault-detect-recovery", NULL))
1118 pdata->fault_detect_recovery = 1;
1120 pdata->ffx_power_output_mode = STA350_FFX_PM_VARIABLE_DROP_COMP;
1121 if (!of_property_read_string(np, "st,ffx-power-output-mode",
1122 &ffx_power_mode)) {
1123 int i, mode = -EINVAL;
1125 for (i = 0; i < ARRAY_SIZE(sta350_ffx_modes); i++)
1126 if (!strcasecmp(ffx_power_mode, sta350_ffx_modes[i]))
1127 mode = i;
1129 if (mode < 0)
1130 dev_warn(dev, "Unsupported ffx output mode: %s\n",
1131 ffx_power_mode);
1132 else
1133 pdata->ffx_power_output_mode = mode;
1136 tmp = 140;
1137 of_property_read_u16(np, "st,drop-compensation-ns", &tmp);
1138 pdata->drop_compensation_ns = clamp_t(u16, tmp, 0, 300) / 20;
1140 if (of_get_property(np, "st,overcurrent-warning-adjustment", NULL))
1141 pdata->oc_warning_adjustment = 1;
1143 /* CONFE */
1144 if (of_get_property(np, "st,max-power-use-mpcc", NULL))
1145 pdata->max_power_use_mpcc = 1;
1147 if (of_get_property(np, "st,max-power-correction", NULL))
1148 pdata->max_power_correction = 1;
1150 if (of_get_property(np, "st,am-reduction-mode", NULL))
1151 pdata->am_reduction_mode = 1;
1153 if (of_get_property(np, "st,odd-pwm-speed-mode", NULL))
1154 pdata->odd_pwm_speed_mode = 1;
1156 if (of_get_property(np, "st,distortion-compensation", NULL))
1157 pdata->distortion_compensation = 1;
1159 /* CONFF */
1160 if (of_get_property(np, "st,invalid-input-detect-mute", NULL))
1161 pdata->invalid_input_detect_mute = 1;
1163 /* MISC */
1164 if (of_get_property(np, "st,activate-mute-output", NULL))
1165 pdata->activate_mute_output = 1;
1167 if (of_get_property(np, "st,bridge-immediate-off", NULL))
1168 pdata->bridge_immediate_off = 1;
1170 if (of_get_property(np, "st,noise-shape-dc-cut", NULL))
1171 pdata->noise_shape_dc_cut = 1;
1173 if (of_get_property(np, "st,powerdown-master-volume", NULL))
1174 pdata->powerdown_master_vol = 1;
1176 if (!of_property_read_u8(np, "st,powerdown-delay-divider", &tmp8)) {
1177 if (is_power_of_2(tmp8) && tmp8 >= 1 && tmp8 <= 128)
1178 pdata->powerdown_delay_divider = ilog2(tmp8);
1179 else
1180 dev_warn(dev, "Unsupported powerdown delay divider %d\n",
1181 tmp8);
1184 sta350->pdata = pdata;
1186 return 0;
1188 #endif
1190 static int sta350_i2c_probe(struct i2c_client *i2c,
1191 const struct i2c_device_id *id)
1193 struct device *dev = &i2c->dev;
1194 struct sta350_priv *sta350;
1195 int ret, i;
1197 sta350 = devm_kzalloc(dev, sizeof(struct sta350_priv), GFP_KERNEL);
1198 if (!sta350)
1199 return -ENOMEM;
1201 mutex_init(&sta350->coeff_lock);
1202 sta350->pdata = dev_get_platdata(dev);
1204 #ifdef CONFIG_OF
1205 if (dev->of_node) {
1206 ret = sta350_probe_dt(dev, sta350);
1207 if (ret < 0)
1208 return ret;
1210 #endif
1212 /* GPIOs */
1213 sta350->gpiod_nreset = devm_gpiod_get_optional(dev, "reset",
1214 GPIOD_OUT_LOW);
1215 if (IS_ERR(sta350->gpiod_nreset))
1216 return PTR_ERR(sta350->gpiod_nreset);
1218 sta350->gpiod_power_down = devm_gpiod_get_optional(dev, "power-down",
1219 GPIOD_OUT_LOW);
1220 if (IS_ERR(sta350->gpiod_power_down))
1221 return PTR_ERR(sta350->gpiod_power_down);
1223 /* regulators */
1224 for (i = 0; i < ARRAY_SIZE(sta350->supplies); i++)
1225 sta350->supplies[i].supply = sta350_supply_names[i];
1227 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(sta350->supplies),
1228 sta350->supplies);
1229 if (ret < 0) {
1230 dev_err(dev, "Failed to request supplies: %d\n", ret);
1231 return ret;
1234 sta350->regmap = devm_regmap_init_i2c(i2c, &sta350_regmap);
1235 if (IS_ERR(sta350->regmap)) {
1236 ret = PTR_ERR(sta350->regmap);
1237 dev_err(dev, "Failed to init regmap: %d\n", ret);
1238 return ret;
1241 i2c_set_clientdata(i2c, sta350);
1243 ret = devm_snd_soc_register_component(dev, &sta350_component, &sta350_dai, 1);
1244 if (ret < 0)
1245 dev_err(dev, "Failed to register component (%d)\n", ret);
1247 return ret;
1250 static int sta350_i2c_remove(struct i2c_client *client)
1252 return 0;
1255 static const struct i2c_device_id sta350_i2c_id[] = {
1256 { "sta350", 0 },
1259 MODULE_DEVICE_TABLE(i2c, sta350_i2c_id);
1261 static struct i2c_driver sta350_i2c_driver = {
1262 .driver = {
1263 .name = "sta350",
1264 .of_match_table = of_match_ptr(st350_dt_ids),
1266 .probe = sta350_i2c_probe,
1267 .remove = sta350_i2c_remove,
1268 .id_table = sta350_i2c_id,
1271 module_i2c_driver(sta350_i2c_driver);
1273 MODULE_DESCRIPTION("ASoC STA350 driver");
1274 MODULE_AUTHOR("Sven Brandau <info@brandau.biz>");
1275 MODULE_LICENSE("GPL");