gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / tools / perf / util / cs-etm.c
blob62d2f9b9ce1b5e14d5987978c4dff61fc9152047
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2015-2018 Linaro Limited.
5 * Author: Tor Jeremiassen <tor@ti.com>
6 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
7 */
9 #include <linux/bitops.h>
10 #include <linux/err.h>
11 #include <linux/kernel.h>
12 #include <linux/log2.h>
13 #include <linux/types.h>
14 #include <linux/zalloc.h>
16 #include <opencsd/ocsd_if_types.h>
17 #include <stdlib.h>
19 #include "auxtrace.h"
20 #include "color.h"
21 #include "cs-etm.h"
22 #include "cs-etm-decoder/cs-etm-decoder.h"
23 #include "debug.h"
24 #include "dso.h"
25 #include "evlist.h"
26 #include "intlist.h"
27 #include "machine.h"
28 #include "map.h"
29 #include "perf.h"
30 #include "session.h"
31 #include "map_symbol.h"
32 #include "branch.h"
33 #include "symbol.h"
34 #include "tool.h"
35 #include "thread.h"
36 #include "thread-stack.h"
37 #include <tools/libc_compat.h>
38 #include "util/synthetic-events.h"
40 #define MAX_TIMESTAMP (~0ULL)
42 struct cs_etm_auxtrace {
43 struct auxtrace auxtrace;
44 struct auxtrace_queues queues;
45 struct auxtrace_heap heap;
46 struct itrace_synth_opts synth_opts;
47 struct perf_session *session;
48 struct machine *machine;
49 struct thread *unknown_thread;
51 u8 timeless_decoding;
52 u8 snapshot_mode;
53 u8 data_queued;
54 u8 sample_branches;
55 u8 sample_instructions;
57 int num_cpu;
58 u32 auxtrace_type;
59 u64 branches_sample_type;
60 u64 branches_id;
61 u64 instructions_sample_type;
62 u64 instructions_sample_period;
63 u64 instructions_id;
64 u64 **metadata;
65 u64 kernel_start;
66 unsigned int pmu_type;
69 struct cs_etm_traceid_queue {
70 u8 trace_chan_id;
71 pid_t pid, tid;
72 u64 period_instructions;
73 size_t last_branch_pos;
74 union perf_event *event_buf;
75 struct thread *thread;
76 struct branch_stack *last_branch;
77 struct branch_stack *last_branch_rb;
78 struct cs_etm_packet *prev_packet;
79 struct cs_etm_packet *packet;
80 struct cs_etm_packet_queue packet_queue;
83 struct cs_etm_queue {
84 struct cs_etm_auxtrace *etm;
85 struct cs_etm_decoder *decoder;
86 struct auxtrace_buffer *buffer;
87 unsigned int queue_nr;
88 u8 pending_timestamp;
89 u64 offset;
90 const unsigned char *buf;
91 size_t buf_len, buf_used;
92 /* Conversion between traceID and index in traceid_queues array */
93 struct intlist *traceid_queues_list;
94 struct cs_etm_traceid_queue **traceid_queues;
97 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm);
98 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm);
99 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
100 pid_t tid);
101 static int cs_etm__get_data_block(struct cs_etm_queue *etmq);
102 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq);
104 /* PTMs ETMIDR [11:8] set to b0011 */
105 #define ETMIDR_PTM_VERSION 0x00000300
108 * A struct auxtrace_heap_item only has a queue_nr and a timestamp to
109 * work with. One option is to modify to auxtrace_heap_XYZ() API or simply
110 * encode the etm queue number as the upper 16 bit and the channel as
111 * the lower 16 bit.
113 #define TO_CS_QUEUE_NR(queue_nr, trace_chan_id) \
114 (queue_nr << 16 | trace_chan_id)
115 #define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16)
116 #define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff)
118 static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
120 etmidr &= ETMIDR_PTM_VERSION;
122 if (etmidr == ETMIDR_PTM_VERSION)
123 return CS_ETM_PROTO_PTM;
125 return CS_ETM_PROTO_ETMV3;
128 static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic)
130 struct int_node *inode;
131 u64 *metadata;
133 inode = intlist__find(traceid_list, trace_chan_id);
134 if (!inode)
135 return -EINVAL;
137 metadata = inode->priv;
138 *magic = metadata[CS_ETM_MAGIC];
139 return 0;
142 int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
144 struct int_node *inode;
145 u64 *metadata;
147 inode = intlist__find(traceid_list, trace_chan_id);
148 if (!inode)
149 return -EINVAL;
151 metadata = inode->priv;
152 *cpu = (int)metadata[CS_ETM_CPU];
153 return 0;
156 void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq,
157 u8 trace_chan_id)
160 * Wnen a timestamp packet is encountered the backend code
161 * is stopped so that the front end has time to process packets
162 * that were accumulated in the traceID queue. Since there can
163 * be more than one channel per cs_etm_queue, we need to specify
164 * what traceID queue needs servicing.
166 etmq->pending_timestamp = trace_chan_id;
169 static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq,
170 u8 *trace_chan_id)
172 struct cs_etm_packet_queue *packet_queue;
174 if (!etmq->pending_timestamp)
175 return 0;
177 if (trace_chan_id)
178 *trace_chan_id = etmq->pending_timestamp;
180 packet_queue = cs_etm__etmq_get_packet_queue(etmq,
181 etmq->pending_timestamp);
182 if (!packet_queue)
183 return 0;
185 /* Acknowledge pending status */
186 etmq->pending_timestamp = 0;
188 /* See function cs_etm_decoder__do_{hard|soft}_timestamp() */
189 return packet_queue->timestamp;
192 static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue)
194 int i;
196 queue->head = 0;
197 queue->tail = 0;
198 queue->packet_count = 0;
199 for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) {
200 queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN;
201 queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR;
202 queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR;
203 queue->packet_buffer[i].instr_count = 0;
204 queue->packet_buffer[i].last_instr_taken_branch = false;
205 queue->packet_buffer[i].last_instr_size = 0;
206 queue->packet_buffer[i].last_instr_type = 0;
207 queue->packet_buffer[i].last_instr_subtype = 0;
208 queue->packet_buffer[i].last_instr_cond = 0;
209 queue->packet_buffer[i].flags = 0;
210 queue->packet_buffer[i].exception_number = UINT32_MAX;
211 queue->packet_buffer[i].trace_chan_id = UINT8_MAX;
212 queue->packet_buffer[i].cpu = INT_MIN;
216 static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq)
218 int idx;
219 struct int_node *inode;
220 struct cs_etm_traceid_queue *tidq;
221 struct intlist *traceid_queues_list = etmq->traceid_queues_list;
223 intlist__for_each_entry(inode, traceid_queues_list) {
224 idx = (int)(intptr_t)inode->priv;
225 tidq = etmq->traceid_queues[idx];
226 cs_etm__clear_packet_queue(&tidq->packet_queue);
230 static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq,
231 struct cs_etm_traceid_queue *tidq,
232 u8 trace_chan_id)
234 int rc = -ENOMEM;
235 struct auxtrace_queue *queue;
236 struct cs_etm_auxtrace *etm = etmq->etm;
238 cs_etm__clear_packet_queue(&tidq->packet_queue);
240 queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
241 tidq->tid = queue->tid;
242 tidq->pid = -1;
243 tidq->trace_chan_id = trace_chan_id;
245 tidq->packet = zalloc(sizeof(struct cs_etm_packet));
246 if (!tidq->packet)
247 goto out;
249 tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet));
250 if (!tidq->prev_packet)
251 goto out_free;
253 if (etm->synth_opts.last_branch) {
254 size_t sz = sizeof(struct branch_stack);
256 sz += etm->synth_opts.last_branch_sz *
257 sizeof(struct branch_entry);
258 tidq->last_branch = zalloc(sz);
259 if (!tidq->last_branch)
260 goto out_free;
261 tidq->last_branch_rb = zalloc(sz);
262 if (!tidq->last_branch_rb)
263 goto out_free;
266 tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
267 if (!tidq->event_buf)
268 goto out_free;
270 return 0;
272 out_free:
273 zfree(&tidq->last_branch_rb);
274 zfree(&tidq->last_branch);
275 zfree(&tidq->prev_packet);
276 zfree(&tidq->packet);
277 out:
278 return rc;
281 static struct cs_etm_traceid_queue
282 *cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
284 int idx;
285 struct int_node *inode;
286 struct intlist *traceid_queues_list;
287 struct cs_etm_traceid_queue *tidq, **traceid_queues;
288 struct cs_etm_auxtrace *etm = etmq->etm;
290 if (etm->timeless_decoding)
291 trace_chan_id = CS_ETM_PER_THREAD_TRACEID;
293 traceid_queues_list = etmq->traceid_queues_list;
296 * Check if the traceid_queue exist for this traceID by looking
297 * in the queue list.
299 inode = intlist__find(traceid_queues_list, trace_chan_id);
300 if (inode) {
301 idx = (int)(intptr_t)inode->priv;
302 return etmq->traceid_queues[idx];
305 /* We couldn't find a traceid_queue for this traceID, allocate one */
306 tidq = malloc(sizeof(*tidq));
307 if (!tidq)
308 return NULL;
310 memset(tidq, 0, sizeof(*tidq));
312 /* Get a valid index for the new traceid_queue */
313 idx = intlist__nr_entries(traceid_queues_list);
314 /* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */
315 inode = intlist__findnew(traceid_queues_list, trace_chan_id);
316 if (!inode)
317 goto out_free;
319 /* Associate this traceID with this index */
320 inode->priv = (void *)(intptr_t)idx;
322 if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id))
323 goto out_free;
325 /* Grow the traceid_queues array by one unit */
326 traceid_queues = etmq->traceid_queues;
327 traceid_queues = reallocarray(traceid_queues,
328 idx + 1,
329 sizeof(*traceid_queues));
332 * On failure reallocarray() returns NULL and the original block of
333 * memory is left untouched.
335 if (!traceid_queues)
336 goto out_free;
338 traceid_queues[idx] = tidq;
339 etmq->traceid_queues = traceid_queues;
341 return etmq->traceid_queues[idx];
343 out_free:
345 * Function intlist__remove() removes the inode from the list
346 * and delete the memory associated to it.
348 intlist__remove(traceid_queues_list, inode);
349 free(tidq);
351 return NULL;
354 struct cs_etm_packet_queue
355 *cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
357 struct cs_etm_traceid_queue *tidq;
359 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
360 if (tidq)
361 return &tidq->packet_queue;
363 return NULL;
366 static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm,
367 struct cs_etm_traceid_queue *tidq)
369 struct cs_etm_packet *tmp;
371 if (etm->sample_branches || etm->synth_opts.last_branch ||
372 etm->sample_instructions) {
374 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
375 * the next incoming packet.
377 tmp = tidq->packet;
378 tidq->packet = tidq->prev_packet;
379 tidq->prev_packet = tmp;
383 static void cs_etm__packet_dump(const char *pkt_string)
385 const char *color = PERF_COLOR_BLUE;
386 int len = strlen(pkt_string);
388 if (len && (pkt_string[len-1] == '\n'))
389 color_fprintf(stdout, color, " %s", pkt_string);
390 else
391 color_fprintf(stdout, color, " %s\n", pkt_string);
393 fflush(stdout);
396 static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params,
397 struct cs_etm_auxtrace *etm, int idx,
398 u32 etmidr)
400 u64 **metadata = etm->metadata;
402 t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr);
403 t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR];
404 t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR];
407 static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params,
408 struct cs_etm_auxtrace *etm, int idx)
410 u64 **metadata = etm->metadata;
412 t_params[idx].protocol = CS_ETM_PROTO_ETMV4i;
413 t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
414 t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
415 t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
416 t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
417 t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
418 t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
421 static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params,
422 struct cs_etm_auxtrace *etm)
424 int i;
425 u32 etmidr;
426 u64 architecture;
428 for (i = 0; i < etm->num_cpu; i++) {
429 architecture = etm->metadata[i][CS_ETM_MAGIC];
431 switch (architecture) {
432 case __perf_cs_etmv3_magic:
433 etmidr = etm->metadata[i][CS_ETM_ETMIDR];
434 cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr);
435 break;
436 case __perf_cs_etmv4_magic:
437 cs_etm__set_trace_param_etmv4(t_params, etm, i);
438 break;
439 default:
440 return -EINVAL;
444 return 0;
447 static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params,
448 struct cs_etm_queue *etmq,
449 enum cs_etm_decoder_operation mode)
451 int ret = -EINVAL;
453 if (!(mode < CS_ETM_OPERATION_MAX))
454 goto out;
456 d_params->packet_printer = cs_etm__packet_dump;
457 d_params->operation = mode;
458 d_params->data = etmq;
459 d_params->formatted = true;
460 d_params->fsyncs = false;
461 d_params->hsyncs = false;
462 d_params->frame_aligned = true;
464 ret = 0;
465 out:
466 return ret;
469 static void cs_etm__dump_event(struct cs_etm_auxtrace *etm,
470 struct auxtrace_buffer *buffer)
472 int ret;
473 const char *color = PERF_COLOR_BLUE;
474 struct cs_etm_decoder_params d_params;
475 struct cs_etm_trace_params *t_params;
476 struct cs_etm_decoder *decoder;
477 size_t buffer_used = 0;
479 fprintf(stdout, "\n");
480 color_fprintf(stdout, color,
481 ". ... CoreSight ETM Trace data: size %zu bytes\n",
482 buffer->size);
484 /* Use metadata to fill in trace parameters for trace decoder */
485 t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
487 if (!t_params)
488 return;
490 if (cs_etm__init_trace_params(t_params, etm))
491 goto out_free;
493 /* Set decoder parameters to simply print the trace packets */
494 if (cs_etm__init_decoder_params(&d_params, NULL,
495 CS_ETM_OPERATION_PRINT))
496 goto out_free;
498 decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
500 if (!decoder)
501 goto out_free;
502 do {
503 size_t consumed;
505 ret = cs_etm_decoder__process_data_block(
506 decoder, buffer->offset,
507 &((u8 *)buffer->data)[buffer_used],
508 buffer->size - buffer_used, &consumed);
509 if (ret)
510 break;
512 buffer_used += consumed;
513 } while (buffer_used < buffer->size);
515 cs_etm_decoder__free(decoder);
517 out_free:
518 zfree(&t_params);
521 static int cs_etm__flush_events(struct perf_session *session,
522 struct perf_tool *tool)
524 int ret;
525 struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
526 struct cs_etm_auxtrace,
527 auxtrace);
528 if (dump_trace)
529 return 0;
531 if (!tool->ordered_events)
532 return -EINVAL;
534 ret = cs_etm__update_queues(etm);
536 if (ret < 0)
537 return ret;
539 if (etm->timeless_decoding)
540 return cs_etm__process_timeless_queues(etm, -1);
542 return cs_etm__process_queues(etm);
545 static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq)
547 int idx;
548 uintptr_t priv;
549 struct int_node *inode, *tmp;
550 struct cs_etm_traceid_queue *tidq;
551 struct intlist *traceid_queues_list = etmq->traceid_queues_list;
553 intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) {
554 priv = (uintptr_t)inode->priv;
555 idx = priv;
557 /* Free this traceid_queue from the array */
558 tidq = etmq->traceid_queues[idx];
559 thread__zput(tidq->thread);
560 zfree(&tidq->event_buf);
561 zfree(&tidq->last_branch);
562 zfree(&tidq->last_branch_rb);
563 zfree(&tidq->prev_packet);
564 zfree(&tidq->packet);
565 zfree(&tidq);
568 * Function intlist__remove() removes the inode from the list
569 * and delete the memory associated to it.
571 intlist__remove(traceid_queues_list, inode);
574 /* Then the RB tree itself */
575 intlist__delete(traceid_queues_list);
576 etmq->traceid_queues_list = NULL;
578 /* finally free the traceid_queues array */
579 zfree(&etmq->traceid_queues);
582 static void cs_etm__free_queue(void *priv)
584 struct cs_etm_queue *etmq = priv;
586 if (!etmq)
587 return;
589 cs_etm_decoder__free(etmq->decoder);
590 cs_etm__free_traceid_queues(etmq);
591 free(etmq);
594 static void cs_etm__free_events(struct perf_session *session)
596 unsigned int i;
597 struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
598 struct cs_etm_auxtrace,
599 auxtrace);
600 struct auxtrace_queues *queues = &aux->queues;
602 for (i = 0; i < queues->nr_queues; i++) {
603 cs_etm__free_queue(queues->queue_array[i].priv);
604 queues->queue_array[i].priv = NULL;
607 auxtrace_queues__free(queues);
610 static void cs_etm__free(struct perf_session *session)
612 int i;
613 struct int_node *inode, *tmp;
614 struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
615 struct cs_etm_auxtrace,
616 auxtrace);
617 cs_etm__free_events(session);
618 session->auxtrace = NULL;
620 /* First remove all traceID/metadata nodes for the RB tree */
621 intlist__for_each_entry_safe(inode, tmp, traceid_list)
622 intlist__remove(traceid_list, inode);
623 /* Then the RB tree itself */
624 intlist__delete(traceid_list);
626 for (i = 0; i < aux->num_cpu; i++)
627 zfree(&aux->metadata[i]);
629 thread__zput(aux->unknown_thread);
630 zfree(&aux->metadata);
631 zfree(&aux);
634 static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address)
636 struct machine *machine;
638 machine = etmq->etm->machine;
640 if (address >= etmq->etm->kernel_start) {
641 if (machine__is_host(machine))
642 return PERF_RECORD_MISC_KERNEL;
643 else
644 return PERF_RECORD_MISC_GUEST_KERNEL;
645 } else {
646 if (machine__is_host(machine))
647 return PERF_RECORD_MISC_USER;
648 else if (perf_guest)
649 return PERF_RECORD_MISC_GUEST_USER;
650 else
651 return PERF_RECORD_MISC_HYPERVISOR;
655 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id,
656 u64 address, size_t size, u8 *buffer)
658 u8 cpumode;
659 u64 offset;
660 int len;
661 struct thread *thread;
662 struct machine *machine;
663 struct addr_location al;
664 struct cs_etm_traceid_queue *tidq;
666 if (!etmq)
667 return 0;
669 machine = etmq->etm->machine;
670 cpumode = cs_etm__cpu_mode(etmq, address);
671 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
672 if (!tidq)
673 return 0;
675 thread = tidq->thread;
676 if (!thread) {
677 if (cpumode != PERF_RECORD_MISC_KERNEL)
678 return 0;
679 thread = etmq->etm->unknown_thread;
682 if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso)
683 return 0;
685 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
686 dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
687 return 0;
689 offset = al.map->map_ip(al.map, address);
691 map__load(al.map);
693 len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);
695 if (len <= 0)
696 return 0;
698 return len;
701 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm)
703 struct cs_etm_decoder_params d_params;
704 struct cs_etm_trace_params *t_params = NULL;
705 struct cs_etm_queue *etmq;
707 etmq = zalloc(sizeof(*etmq));
708 if (!etmq)
709 return NULL;
711 etmq->traceid_queues_list = intlist__new(NULL);
712 if (!etmq->traceid_queues_list)
713 goto out_free;
715 /* Use metadata to fill in trace parameters for trace decoder */
716 t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
718 if (!t_params)
719 goto out_free;
721 if (cs_etm__init_trace_params(t_params, etm))
722 goto out_free;
724 /* Set decoder parameters to decode trace packets */
725 if (cs_etm__init_decoder_params(&d_params, etmq,
726 CS_ETM_OPERATION_DECODE))
727 goto out_free;
729 etmq->decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
731 if (!etmq->decoder)
732 goto out_free;
735 * Register a function to handle all memory accesses required by
736 * the trace decoder library.
738 if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
739 0x0L, ((u64) -1L),
740 cs_etm__mem_access))
741 goto out_free_decoder;
743 zfree(&t_params);
744 return etmq;
746 out_free_decoder:
747 cs_etm_decoder__free(etmq->decoder);
748 out_free:
749 intlist__delete(etmq->traceid_queues_list);
750 free(etmq);
752 return NULL;
755 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
756 struct auxtrace_queue *queue,
757 unsigned int queue_nr)
759 int ret = 0;
760 unsigned int cs_queue_nr;
761 u8 trace_chan_id;
762 u64 timestamp;
763 struct cs_etm_queue *etmq = queue->priv;
765 if (list_empty(&queue->head) || etmq)
766 goto out;
768 etmq = cs_etm__alloc_queue(etm);
770 if (!etmq) {
771 ret = -ENOMEM;
772 goto out;
775 queue->priv = etmq;
776 etmq->etm = etm;
777 etmq->queue_nr = queue_nr;
778 etmq->offset = 0;
780 if (etm->timeless_decoding)
781 goto out;
784 * We are under a CPU-wide trace scenario. As such we need to know
785 * when the code that generated the traces started to execute so that
786 * it can be correlated with execution on other CPUs. So we get a
787 * handle on the beginning of traces and decode until we find a
788 * timestamp. The timestamp is then added to the auxtrace min heap
789 * in order to know what nibble (of all the etmqs) to decode first.
791 while (1) {
793 * Fetch an aux_buffer from this etmq. Bail if no more
794 * blocks or an error has been encountered.
796 ret = cs_etm__get_data_block(etmq);
797 if (ret <= 0)
798 goto out;
801 * Run decoder on the trace block. The decoder will stop when
802 * encountering a timestamp, a full packet queue or the end of
803 * trace for that block.
805 ret = cs_etm__decode_data_block(etmq);
806 if (ret)
807 goto out;
810 * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all
811 * the timestamp calculation for us.
813 timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
815 /* We found a timestamp, no need to continue. */
816 if (timestamp)
817 break;
820 * We didn't find a timestamp so empty all the traceid packet
821 * queues before looking for another timestamp packet, either
822 * in the current data block or a new one. Packets that were
823 * just decoded are useless since no timestamp has been
824 * associated with them. As such simply discard them.
826 cs_etm__clear_all_packet_queues(etmq);
830 * We have a timestamp. Add it to the min heap to reflect when
831 * instructions conveyed by the range packets of this traceID queue
832 * started to execute. Once the same has been done for all the traceID
833 * queues of each etmq, redenring and decoding can start in
834 * chronological order.
836 * Note that packets decoded above are still in the traceID's packet
837 * queue and will be processed in cs_etm__process_queues().
839 cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
840 ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, timestamp);
841 out:
842 return ret;
845 static int cs_etm__setup_queues(struct cs_etm_auxtrace *etm)
847 unsigned int i;
848 int ret;
850 if (!etm->kernel_start)
851 etm->kernel_start = machine__kernel_start(etm->machine);
853 for (i = 0; i < etm->queues.nr_queues; i++) {
854 ret = cs_etm__setup_queue(etm, &etm->queues.queue_array[i], i);
855 if (ret)
856 return ret;
859 return 0;
862 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm)
864 if (etm->queues.new_data) {
865 etm->queues.new_data = false;
866 return cs_etm__setup_queues(etm);
869 return 0;
872 static inline
873 void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq,
874 struct cs_etm_traceid_queue *tidq)
876 struct branch_stack *bs_src = tidq->last_branch_rb;
877 struct branch_stack *bs_dst = tidq->last_branch;
878 size_t nr = 0;
881 * Set the number of records before early exit: ->nr is used to
882 * determine how many branches to copy from ->entries.
884 bs_dst->nr = bs_src->nr;
887 * Early exit when there is nothing to copy.
889 if (!bs_src->nr)
890 return;
893 * As bs_src->entries is a circular buffer, we need to copy from it in
894 * two steps. First, copy the branches from the most recently inserted
895 * branch ->last_branch_pos until the end of bs_src->entries buffer.
897 nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos;
898 memcpy(&bs_dst->entries[0],
899 &bs_src->entries[tidq->last_branch_pos],
900 sizeof(struct branch_entry) * nr);
903 * If we wrapped around at least once, the branches from the beginning
904 * of the bs_src->entries buffer and until the ->last_branch_pos element
905 * are older valid branches: copy them over. The total number of
906 * branches copied over will be equal to the number of branches asked by
907 * the user in last_branch_sz.
909 if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
910 memcpy(&bs_dst->entries[nr],
911 &bs_src->entries[0],
912 sizeof(struct branch_entry) * tidq->last_branch_pos);
916 static inline
917 void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq)
919 tidq->last_branch_pos = 0;
920 tidq->last_branch_rb->nr = 0;
923 static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
924 u8 trace_chan_id, u64 addr)
926 u8 instrBytes[2];
928 cs_etm__mem_access(etmq, trace_chan_id, addr,
929 ARRAY_SIZE(instrBytes), instrBytes);
931 * T32 instruction size is indicated by bits[15:11] of the first
932 * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
933 * denote a 32-bit instruction.
935 return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
938 static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
940 /* Returns 0 for the CS_ETM_DISCONTINUITY packet */
941 if (packet->sample_type == CS_ETM_DISCONTINUITY)
942 return 0;
944 return packet->start_addr;
947 static inline
948 u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
950 /* Returns 0 for the CS_ETM_DISCONTINUITY packet */
951 if (packet->sample_type == CS_ETM_DISCONTINUITY)
952 return 0;
954 return packet->end_addr - packet->last_instr_size;
957 static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
958 u64 trace_chan_id,
959 const struct cs_etm_packet *packet,
960 u64 offset)
962 if (packet->isa == CS_ETM_ISA_T32) {
963 u64 addr = packet->start_addr;
965 while (offset) {
966 addr += cs_etm__t32_instr_size(etmq,
967 trace_chan_id, addr);
968 offset--;
970 return addr;
973 /* Assume a 4 byte instruction size (A32/A64) */
974 return packet->start_addr + offset * 4;
977 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq,
978 struct cs_etm_traceid_queue *tidq)
980 struct branch_stack *bs = tidq->last_branch_rb;
981 struct branch_entry *be;
984 * The branches are recorded in a circular buffer in reverse
985 * chronological order: we start recording from the last element of the
986 * buffer down. After writing the first element of the stack, move the
987 * insert position back to the end of the buffer.
989 if (!tidq->last_branch_pos)
990 tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
992 tidq->last_branch_pos -= 1;
994 be = &bs->entries[tidq->last_branch_pos];
995 be->from = cs_etm__last_executed_instr(tidq->prev_packet);
996 be->to = cs_etm__first_executed_instr(tidq->packet);
997 /* No support for mispredict */
998 be->flags.mispred = 0;
999 be->flags.predicted = 1;
1002 * Increment bs->nr until reaching the number of last branches asked by
1003 * the user on the command line.
1005 if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
1006 bs->nr += 1;
1009 static int cs_etm__inject_event(union perf_event *event,
1010 struct perf_sample *sample, u64 type)
1012 event->header.size = perf_event__sample_event_size(sample, type, 0);
1013 return perf_event__synthesize_sample(event, type, 0, sample);
1017 static int
1018 cs_etm__get_trace(struct cs_etm_queue *etmq)
1020 struct auxtrace_buffer *aux_buffer = etmq->buffer;
1021 struct auxtrace_buffer *old_buffer = aux_buffer;
1022 struct auxtrace_queue *queue;
1024 queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
1026 aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
1028 /* If no more data, drop the previous auxtrace_buffer and return */
1029 if (!aux_buffer) {
1030 if (old_buffer)
1031 auxtrace_buffer__drop_data(old_buffer);
1032 etmq->buf_len = 0;
1033 return 0;
1036 etmq->buffer = aux_buffer;
1038 /* If the aux_buffer doesn't have data associated, try to load it */
1039 if (!aux_buffer->data) {
1040 /* get the file desc associated with the perf data file */
1041 int fd = perf_data__fd(etmq->etm->session->data);
1043 aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
1044 if (!aux_buffer->data)
1045 return -ENOMEM;
1048 /* If valid, drop the previous buffer */
1049 if (old_buffer)
1050 auxtrace_buffer__drop_data(old_buffer);
1052 etmq->buf_used = 0;
1053 etmq->buf_len = aux_buffer->size;
1054 etmq->buf = aux_buffer->data;
1056 return etmq->buf_len;
1059 static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
1060 struct cs_etm_traceid_queue *tidq)
1062 if ((!tidq->thread) && (tidq->tid != -1))
1063 tidq->thread = machine__find_thread(etm->machine, -1,
1064 tidq->tid);
1066 if (tidq->thread)
1067 tidq->pid = tidq->thread->pid_;
1070 int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq,
1071 pid_t tid, u8 trace_chan_id)
1073 int cpu, err = -EINVAL;
1074 struct cs_etm_auxtrace *etm = etmq->etm;
1075 struct cs_etm_traceid_queue *tidq;
1077 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
1078 if (!tidq)
1079 return err;
1081 if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0)
1082 return err;
1084 err = machine__set_current_tid(etm->machine, cpu, tid, tid);
1085 if (err)
1086 return err;
1088 tidq->tid = tid;
1089 thread__zput(tidq->thread);
1091 cs_etm__set_pid_tid_cpu(etm, tidq);
1092 return 0;
1095 bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq)
1097 return !!etmq->etm->timeless_decoding;
1100 static void cs_etm__copy_insn(struct cs_etm_queue *etmq,
1101 u64 trace_chan_id,
1102 const struct cs_etm_packet *packet,
1103 struct perf_sample *sample)
1106 * It's pointless to read instructions for the CS_ETM_DISCONTINUITY
1107 * packet, so directly bail out with 'insn_len' = 0.
1109 if (packet->sample_type == CS_ETM_DISCONTINUITY) {
1110 sample->insn_len = 0;
1111 return;
1115 * T32 instruction size might be 32-bit or 16-bit, decide by calling
1116 * cs_etm__t32_instr_size().
1118 if (packet->isa == CS_ETM_ISA_T32)
1119 sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id,
1120 sample->ip);
1121 /* Otherwise, A64 and A32 instruction size are always 32-bit. */
1122 else
1123 sample->insn_len = 4;
1125 cs_etm__mem_access(etmq, trace_chan_id, sample->ip,
1126 sample->insn_len, (void *)sample->insn);
1129 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
1130 struct cs_etm_traceid_queue *tidq,
1131 u64 addr, u64 period)
1133 int ret = 0;
1134 struct cs_etm_auxtrace *etm = etmq->etm;
1135 union perf_event *event = tidq->event_buf;
1136 struct perf_sample sample = {.ip = 0,};
1138 event->sample.header.type = PERF_RECORD_SAMPLE;
1139 event->sample.header.misc = cs_etm__cpu_mode(etmq, addr);
1140 event->sample.header.size = sizeof(struct perf_event_header);
1142 sample.ip = addr;
1143 sample.pid = tidq->pid;
1144 sample.tid = tidq->tid;
1145 sample.id = etmq->etm->instructions_id;
1146 sample.stream_id = etmq->etm->instructions_id;
1147 sample.period = period;
1148 sample.cpu = tidq->packet->cpu;
1149 sample.flags = tidq->prev_packet->flags;
1150 sample.cpumode = event->sample.header.misc;
1152 cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample);
1154 if (etm->synth_opts.last_branch)
1155 sample.branch_stack = tidq->last_branch;
1157 if (etm->synth_opts.inject) {
1158 ret = cs_etm__inject_event(event, &sample,
1159 etm->instructions_sample_type);
1160 if (ret)
1161 return ret;
1164 ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1166 if (ret)
1167 pr_err(
1168 "CS ETM Trace: failed to deliver instruction event, error %d\n",
1169 ret);
1171 return ret;
1175 * The cs etm packet encodes an instruction range between a branch target
1176 * and the next taken branch. Generate sample accordingly.
1178 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq,
1179 struct cs_etm_traceid_queue *tidq)
1181 int ret = 0;
1182 struct cs_etm_auxtrace *etm = etmq->etm;
1183 struct perf_sample sample = {.ip = 0,};
1184 union perf_event *event = tidq->event_buf;
1185 struct dummy_branch_stack {
1186 u64 nr;
1187 u64 hw_idx;
1188 struct branch_entry entries;
1189 } dummy_bs;
1190 u64 ip;
1192 ip = cs_etm__last_executed_instr(tidq->prev_packet);
1194 event->sample.header.type = PERF_RECORD_SAMPLE;
1195 event->sample.header.misc = cs_etm__cpu_mode(etmq, ip);
1196 event->sample.header.size = sizeof(struct perf_event_header);
1198 sample.ip = ip;
1199 sample.pid = tidq->pid;
1200 sample.tid = tidq->tid;
1201 sample.addr = cs_etm__first_executed_instr(tidq->packet);
1202 sample.id = etmq->etm->branches_id;
1203 sample.stream_id = etmq->etm->branches_id;
1204 sample.period = 1;
1205 sample.cpu = tidq->packet->cpu;
1206 sample.flags = tidq->prev_packet->flags;
1207 sample.cpumode = event->sample.header.misc;
1209 cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet,
1210 &sample);
1213 * perf report cannot handle events without a branch stack
1215 if (etm->synth_opts.last_branch) {
1216 dummy_bs = (struct dummy_branch_stack){
1217 .nr = 1,
1218 .hw_idx = -1ULL,
1219 .entries = {
1220 .from = sample.ip,
1221 .to = sample.addr,
1224 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1227 if (etm->synth_opts.inject) {
1228 ret = cs_etm__inject_event(event, &sample,
1229 etm->branches_sample_type);
1230 if (ret)
1231 return ret;
1234 ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1236 if (ret)
1237 pr_err(
1238 "CS ETM Trace: failed to deliver instruction event, error %d\n",
1239 ret);
1241 return ret;
1244 struct cs_etm_synth {
1245 struct perf_tool dummy_tool;
1246 struct perf_session *session;
1249 static int cs_etm__event_synth(struct perf_tool *tool,
1250 union perf_event *event,
1251 struct perf_sample *sample __maybe_unused,
1252 struct machine *machine __maybe_unused)
1254 struct cs_etm_synth *cs_etm_synth =
1255 container_of(tool, struct cs_etm_synth, dummy_tool);
1257 return perf_session__deliver_synth_event(cs_etm_synth->session,
1258 event, NULL);
1261 static int cs_etm__synth_event(struct perf_session *session,
1262 struct perf_event_attr *attr, u64 id)
1264 struct cs_etm_synth cs_etm_synth;
1266 memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
1267 cs_etm_synth.session = session;
1269 return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
1270 &id, cs_etm__event_synth);
1273 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
1274 struct perf_session *session)
1276 struct evlist *evlist = session->evlist;
1277 struct evsel *evsel;
1278 struct perf_event_attr attr;
1279 bool found = false;
1280 u64 id;
1281 int err;
1283 evlist__for_each_entry(evlist, evsel) {
1284 if (evsel->core.attr.type == etm->pmu_type) {
1285 found = true;
1286 break;
1290 if (!found) {
1291 pr_debug("No selected events with CoreSight Trace data\n");
1292 return 0;
1295 memset(&attr, 0, sizeof(struct perf_event_attr));
1296 attr.size = sizeof(struct perf_event_attr);
1297 attr.type = PERF_TYPE_HARDWARE;
1298 attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
1299 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1300 PERF_SAMPLE_PERIOD;
1301 if (etm->timeless_decoding)
1302 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1303 else
1304 attr.sample_type |= PERF_SAMPLE_TIME;
1306 attr.exclude_user = evsel->core.attr.exclude_user;
1307 attr.exclude_kernel = evsel->core.attr.exclude_kernel;
1308 attr.exclude_hv = evsel->core.attr.exclude_hv;
1309 attr.exclude_host = evsel->core.attr.exclude_host;
1310 attr.exclude_guest = evsel->core.attr.exclude_guest;
1311 attr.sample_id_all = evsel->core.attr.sample_id_all;
1312 attr.read_format = evsel->core.attr.read_format;
1314 /* create new id val to be a fixed offset from evsel id */
1315 id = evsel->core.id[0] + 1000000000;
1317 if (!id)
1318 id = 1;
1320 if (etm->synth_opts.branches) {
1321 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
1322 attr.sample_period = 1;
1323 attr.sample_type |= PERF_SAMPLE_ADDR;
1324 err = cs_etm__synth_event(session, &attr, id);
1325 if (err)
1326 return err;
1327 etm->sample_branches = true;
1328 etm->branches_sample_type = attr.sample_type;
1329 etm->branches_id = id;
1330 id += 1;
1331 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
1334 if (etm->synth_opts.last_branch)
1335 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
1337 if (etm->synth_opts.instructions) {
1338 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1339 attr.sample_period = etm->synth_opts.period;
1340 etm->instructions_sample_period = attr.sample_period;
1341 err = cs_etm__synth_event(session, &attr, id);
1342 if (err)
1343 return err;
1344 etm->sample_instructions = true;
1345 etm->instructions_sample_type = attr.sample_type;
1346 etm->instructions_id = id;
1347 id += 1;
1350 return 0;
1353 static int cs_etm__sample(struct cs_etm_queue *etmq,
1354 struct cs_etm_traceid_queue *tidq)
1356 struct cs_etm_auxtrace *etm = etmq->etm;
1357 int ret;
1358 u8 trace_chan_id = tidq->trace_chan_id;
1359 u64 instrs_prev;
1361 /* Get instructions remainder from previous packet */
1362 instrs_prev = tidq->period_instructions;
1364 tidq->period_instructions += tidq->packet->instr_count;
1367 * Record a branch when the last instruction in
1368 * PREV_PACKET is a branch.
1370 if (etm->synth_opts.last_branch &&
1371 tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1372 tidq->prev_packet->last_instr_taken_branch)
1373 cs_etm__update_last_branch_rb(etmq, tidq);
1375 if (etm->sample_instructions &&
1376 tidq->period_instructions >= etm->instructions_sample_period) {
1378 * Emit instruction sample periodically
1379 * TODO: allow period to be defined in cycles and clock time
1383 * Below diagram demonstrates the instruction samples
1384 * generation flows:
1386 * Instrs Instrs Instrs Instrs
1387 * Sample(n) Sample(n+1) Sample(n+2) Sample(n+3)
1388 * | | | |
1389 * V V V V
1390 * --------------------------------------------------
1391 * ^ ^
1392 * | |
1393 * Period Period
1394 * instructions(Pi) instructions(Pi')
1396 * | |
1397 * \---------------- -----------------/
1399 * tidq->packet->instr_count
1401 * Instrs Sample(n...) are the synthesised samples occurring
1402 * every etm->instructions_sample_period instructions - as
1403 * defined on the perf command line. Sample(n) is being the
1404 * last sample before the current etm packet, n+1 to n+3
1405 * samples are generated from the current etm packet.
1407 * tidq->packet->instr_count represents the number of
1408 * instructions in the current etm packet.
1410 * Period instructions (Pi) contains the the number of
1411 * instructions executed after the sample point(n) from the
1412 * previous etm packet. This will always be less than
1413 * etm->instructions_sample_period.
1415 * When generate new samples, it combines with two parts
1416 * instructions, one is the tail of the old packet and another
1417 * is the head of the new coming packet, to generate
1418 * sample(n+1); sample(n+2) and sample(n+3) consume the
1419 * instructions with sample period. After sample(n+3), the rest
1420 * instructions will be used by later packet and it is assigned
1421 * to tidq->period_instructions for next round calculation.
1425 * Get the initial offset into the current packet instructions;
1426 * entry conditions ensure that instrs_prev is less than
1427 * etm->instructions_sample_period.
1429 u64 offset = etm->instructions_sample_period - instrs_prev;
1430 u64 addr;
1432 /* Prepare last branches for instruction sample */
1433 if (etm->synth_opts.last_branch)
1434 cs_etm__copy_last_branch_rb(etmq, tidq);
1436 while (tidq->period_instructions >=
1437 etm->instructions_sample_period) {
1439 * Calculate the address of the sampled instruction (-1
1440 * as sample is reported as though instruction has just
1441 * been executed, but PC has not advanced to next
1442 * instruction)
1444 addr = cs_etm__instr_addr(etmq, trace_chan_id,
1445 tidq->packet, offset - 1);
1446 ret = cs_etm__synth_instruction_sample(
1447 etmq, tidq, addr,
1448 etm->instructions_sample_period);
1449 if (ret)
1450 return ret;
1452 offset += etm->instructions_sample_period;
1453 tidq->period_instructions -=
1454 etm->instructions_sample_period;
1458 if (etm->sample_branches) {
1459 bool generate_sample = false;
1461 /* Generate sample for tracing on packet */
1462 if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1463 generate_sample = true;
1465 /* Generate sample for branch taken packet */
1466 if (tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1467 tidq->prev_packet->last_instr_taken_branch)
1468 generate_sample = true;
1470 if (generate_sample) {
1471 ret = cs_etm__synth_branch_sample(etmq, tidq);
1472 if (ret)
1473 return ret;
1477 cs_etm__packet_swap(etm, tidq);
1479 return 0;
1482 static int cs_etm__exception(struct cs_etm_traceid_queue *tidq)
1485 * When the exception packet is inserted, whether the last instruction
1486 * in previous range packet is taken branch or not, we need to force
1487 * to set 'prev_packet->last_instr_taken_branch' to true. This ensures
1488 * to generate branch sample for the instruction range before the
1489 * exception is trapped to kernel or before the exception returning.
1491 * The exception packet includes the dummy address values, so don't
1492 * swap PACKET with PREV_PACKET. This keeps PREV_PACKET to be useful
1493 * for generating instruction and branch samples.
1495 if (tidq->prev_packet->sample_type == CS_ETM_RANGE)
1496 tidq->prev_packet->last_instr_taken_branch = true;
1498 return 0;
1501 static int cs_etm__flush(struct cs_etm_queue *etmq,
1502 struct cs_etm_traceid_queue *tidq)
1504 int err = 0;
1505 struct cs_etm_auxtrace *etm = etmq->etm;
1507 /* Handle start tracing packet */
1508 if (tidq->prev_packet->sample_type == CS_ETM_EMPTY)
1509 goto swap_packet;
1511 if (etmq->etm->synth_opts.last_branch &&
1512 tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1513 u64 addr;
1515 /* Prepare last branches for instruction sample */
1516 cs_etm__copy_last_branch_rb(etmq, tidq);
1519 * Generate a last branch event for the branches left in the
1520 * circular buffer at the end of the trace.
1522 * Use the address of the end of the last reported execution
1523 * range
1525 addr = cs_etm__last_executed_instr(tidq->prev_packet);
1527 err = cs_etm__synth_instruction_sample(
1528 etmq, tidq, addr,
1529 tidq->period_instructions);
1530 if (err)
1531 return err;
1533 tidq->period_instructions = 0;
1537 if (etm->sample_branches &&
1538 tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1539 err = cs_etm__synth_branch_sample(etmq, tidq);
1540 if (err)
1541 return err;
1544 swap_packet:
1545 cs_etm__packet_swap(etm, tidq);
1547 /* Reset last branches after flush the trace */
1548 if (etm->synth_opts.last_branch)
1549 cs_etm__reset_last_branch_rb(tidq);
1551 return err;
1554 static int cs_etm__end_block(struct cs_etm_queue *etmq,
1555 struct cs_etm_traceid_queue *tidq)
1557 int err;
1560 * It has no new packet coming and 'etmq->packet' contains the stale
1561 * packet which was set at the previous time with packets swapping;
1562 * so skip to generate branch sample to avoid stale packet.
1564 * For this case only flush branch stack and generate a last branch
1565 * event for the branches left in the circular buffer at the end of
1566 * the trace.
1568 if (etmq->etm->synth_opts.last_branch &&
1569 tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1570 u64 addr;
1572 /* Prepare last branches for instruction sample */
1573 cs_etm__copy_last_branch_rb(etmq, tidq);
1576 * Use the address of the end of the last reported execution
1577 * range.
1579 addr = cs_etm__last_executed_instr(tidq->prev_packet);
1581 err = cs_etm__synth_instruction_sample(
1582 etmq, tidq, addr,
1583 tidq->period_instructions);
1584 if (err)
1585 return err;
1587 tidq->period_instructions = 0;
1590 return 0;
1593 * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue
1594 * if need be.
1595 * Returns: < 0 if error
1596 * = 0 if no more auxtrace_buffer to read
1597 * > 0 if the current buffer isn't empty yet
1599 static int cs_etm__get_data_block(struct cs_etm_queue *etmq)
1601 int ret;
1603 if (!etmq->buf_len) {
1604 ret = cs_etm__get_trace(etmq);
1605 if (ret <= 0)
1606 return ret;
1608 * We cannot assume consecutive blocks in the data file
1609 * are contiguous, reset the decoder to force re-sync.
1611 ret = cs_etm_decoder__reset(etmq->decoder);
1612 if (ret)
1613 return ret;
1616 return etmq->buf_len;
1619 static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id,
1620 struct cs_etm_packet *packet,
1621 u64 end_addr)
1623 /* Initialise to keep compiler happy */
1624 u16 instr16 = 0;
1625 u32 instr32 = 0;
1626 u64 addr;
1628 switch (packet->isa) {
1629 case CS_ETM_ISA_T32:
1631 * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247:
1633 * b'15 b'8
1634 * +-----------------+--------+
1635 * | 1 1 0 1 1 1 1 1 | imm8 |
1636 * +-----------------+--------+
1638 * According to the specifiction, it only defines SVC for T32
1639 * with 16 bits instruction and has no definition for 32bits;
1640 * so below only read 2 bytes as instruction size for T32.
1642 addr = end_addr - 2;
1643 cs_etm__mem_access(etmq, trace_chan_id, addr,
1644 sizeof(instr16), (u8 *)&instr16);
1645 if ((instr16 & 0xFF00) == 0xDF00)
1646 return true;
1648 break;
1649 case CS_ETM_ISA_A32:
1651 * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247:
1653 * b'31 b'28 b'27 b'24
1654 * +---------+---------+-------------------------+
1655 * | !1111 | 1 1 1 1 | imm24 |
1656 * +---------+---------+-------------------------+
1658 addr = end_addr - 4;
1659 cs_etm__mem_access(etmq, trace_chan_id, addr,
1660 sizeof(instr32), (u8 *)&instr32);
1661 if ((instr32 & 0x0F000000) == 0x0F000000 &&
1662 (instr32 & 0xF0000000) != 0xF0000000)
1663 return true;
1665 break;
1666 case CS_ETM_ISA_A64:
1668 * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294:
1670 * b'31 b'21 b'4 b'0
1671 * +-----------------------+---------+-----------+
1672 * | 1 1 0 1 0 1 0 0 0 0 0 | imm16 | 0 0 0 0 1 |
1673 * +-----------------------+---------+-----------+
1675 addr = end_addr - 4;
1676 cs_etm__mem_access(etmq, trace_chan_id, addr,
1677 sizeof(instr32), (u8 *)&instr32);
1678 if ((instr32 & 0xFFE0001F) == 0xd4000001)
1679 return true;
1681 break;
1682 case CS_ETM_ISA_UNKNOWN:
1683 default:
1684 break;
1687 return false;
1690 static bool cs_etm__is_syscall(struct cs_etm_queue *etmq,
1691 struct cs_etm_traceid_queue *tidq, u64 magic)
1693 u8 trace_chan_id = tidq->trace_chan_id;
1694 struct cs_etm_packet *packet = tidq->packet;
1695 struct cs_etm_packet *prev_packet = tidq->prev_packet;
1697 if (magic == __perf_cs_etmv3_magic)
1698 if (packet->exception_number == CS_ETMV3_EXC_SVC)
1699 return true;
1702 * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and
1703 * HVC cases; need to check if it's SVC instruction based on
1704 * packet address.
1706 if (magic == __perf_cs_etmv4_magic) {
1707 if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1708 cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1709 prev_packet->end_addr))
1710 return true;
1713 return false;
1716 static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq,
1717 u64 magic)
1719 struct cs_etm_packet *packet = tidq->packet;
1721 if (magic == __perf_cs_etmv3_magic)
1722 if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT ||
1723 packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT ||
1724 packet->exception_number == CS_ETMV3_EXC_PE_RESET ||
1725 packet->exception_number == CS_ETMV3_EXC_IRQ ||
1726 packet->exception_number == CS_ETMV3_EXC_FIQ)
1727 return true;
1729 if (magic == __perf_cs_etmv4_magic)
1730 if (packet->exception_number == CS_ETMV4_EXC_RESET ||
1731 packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT ||
1732 packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR ||
1733 packet->exception_number == CS_ETMV4_EXC_INST_DEBUG ||
1734 packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG ||
1735 packet->exception_number == CS_ETMV4_EXC_IRQ ||
1736 packet->exception_number == CS_ETMV4_EXC_FIQ)
1737 return true;
1739 return false;
1742 static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq,
1743 struct cs_etm_traceid_queue *tidq,
1744 u64 magic)
1746 u8 trace_chan_id = tidq->trace_chan_id;
1747 struct cs_etm_packet *packet = tidq->packet;
1748 struct cs_etm_packet *prev_packet = tidq->prev_packet;
1750 if (magic == __perf_cs_etmv3_magic)
1751 if (packet->exception_number == CS_ETMV3_EXC_SMC ||
1752 packet->exception_number == CS_ETMV3_EXC_HYP ||
1753 packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE ||
1754 packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR ||
1755 packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT ||
1756 packet->exception_number == CS_ETMV3_EXC_DATA_FAULT ||
1757 packet->exception_number == CS_ETMV3_EXC_GENERIC)
1758 return true;
1760 if (magic == __perf_cs_etmv4_magic) {
1761 if (packet->exception_number == CS_ETMV4_EXC_TRAP ||
1762 packet->exception_number == CS_ETMV4_EXC_ALIGNMENT ||
1763 packet->exception_number == CS_ETMV4_EXC_INST_FAULT ||
1764 packet->exception_number == CS_ETMV4_EXC_DATA_FAULT)
1765 return true;
1768 * For CS_ETMV4_EXC_CALL, except SVC other instructions
1769 * (SMC, HVC) are taken as sync exceptions.
1771 if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1772 !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1773 prev_packet->end_addr))
1774 return true;
1777 * ETMv4 has 5 bits for exception number; if the numbers
1778 * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ]
1779 * they are implementation defined exceptions.
1781 * For this case, simply take it as sync exception.
1783 if (packet->exception_number > CS_ETMV4_EXC_FIQ &&
1784 packet->exception_number <= CS_ETMV4_EXC_END)
1785 return true;
1788 return false;
1791 static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq,
1792 struct cs_etm_traceid_queue *tidq)
1794 struct cs_etm_packet *packet = tidq->packet;
1795 struct cs_etm_packet *prev_packet = tidq->prev_packet;
1796 u8 trace_chan_id = tidq->trace_chan_id;
1797 u64 magic;
1798 int ret;
1800 switch (packet->sample_type) {
1801 case CS_ETM_RANGE:
1803 * Immediate branch instruction without neither link nor
1804 * return flag, it's normal branch instruction within
1805 * the function.
1807 if (packet->last_instr_type == OCSD_INSTR_BR &&
1808 packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
1809 packet->flags = PERF_IP_FLAG_BRANCH;
1811 if (packet->last_instr_cond)
1812 packet->flags |= PERF_IP_FLAG_CONDITIONAL;
1816 * Immediate branch instruction with link (e.g. BL), this is
1817 * branch instruction for function call.
1819 if (packet->last_instr_type == OCSD_INSTR_BR &&
1820 packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1821 packet->flags = PERF_IP_FLAG_BRANCH |
1822 PERF_IP_FLAG_CALL;
1825 * Indirect branch instruction with link (e.g. BLR), this is
1826 * branch instruction for function call.
1828 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1829 packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1830 packet->flags = PERF_IP_FLAG_BRANCH |
1831 PERF_IP_FLAG_CALL;
1834 * Indirect branch instruction with subtype of
1835 * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
1836 * function return for A32/T32.
1838 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1839 packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
1840 packet->flags = PERF_IP_FLAG_BRANCH |
1841 PERF_IP_FLAG_RETURN;
1844 * Indirect branch instruction without link (e.g. BR), usually
1845 * this is used for function return, especially for functions
1846 * within dynamic link lib.
1848 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1849 packet->last_instr_subtype == OCSD_S_INSTR_NONE)
1850 packet->flags = PERF_IP_FLAG_BRANCH |
1851 PERF_IP_FLAG_RETURN;
1853 /* Return instruction for function return. */
1854 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1855 packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
1856 packet->flags = PERF_IP_FLAG_BRANCH |
1857 PERF_IP_FLAG_RETURN;
1860 * Decoder might insert a discontinuity in the middle of
1861 * instruction packets, fixup prev_packet with flag
1862 * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
1864 if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1865 prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1866 PERF_IP_FLAG_TRACE_BEGIN;
1869 * If the previous packet is an exception return packet
1870 * and the return address just follows SVC instuction,
1871 * it needs to calibrate the previous packet sample flags
1872 * as PERF_IP_FLAG_SYSCALLRET.
1874 if (prev_packet->flags == (PERF_IP_FLAG_BRANCH |
1875 PERF_IP_FLAG_RETURN |
1876 PERF_IP_FLAG_INTERRUPT) &&
1877 cs_etm__is_svc_instr(etmq, trace_chan_id,
1878 packet, packet->start_addr))
1879 prev_packet->flags = PERF_IP_FLAG_BRANCH |
1880 PERF_IP_FLAG_RETURN |
1881 PERF_IP_FLAG_SYSCALLRET;
1882 break;
1883 case CS_ETM_DISCONTINUITY:
1885 * The trace is discontinuous, if the previous packet is
1886 * instruction packet, set flag PERF_IP_FLAG_TRACE_END
1887 * for previous packet.
1889 if (prev_packet->sample_type == CS_ETM_RANGE)
1890 prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1891 PERF_IP_FLAG_TRACE_END;
1892 break;
1893 case CS_ETM_EXCEPTION:
1894 ret = cs_etm__get_magic(packet->trace_chan_id, &magic);
1895 if (ret)
1896 return ret;
1898 /* The exception is for system call. */
1899 if (cs_etm__is_syscall(etmq, tidq, magic))
1900 packet->flags = PERF_IP_FLAG_BRANCH |
1901 PERF_IP_FLAG_CALL |
1902 PERF_IP_FLAG_SYSCALLRET;
1904 * The exceptions are triggered by external signals from bus,
1905 * interrupt controller, debug module, PE reset or halt.
1907 else if (cs_etm__is_async_exception(tidq, magic))
1908 packet->flags = PERF_IP_FLAG_BRANCH |
1909 PERF_IP_FLAG_CALL |
1910 PERF_IP_FLAG_ASYNC |
1911 PERF_IP_FLAG_INTERRUPT;
1913 * Otherwise, exception is caused by trap, instruction &
1914 * data fault, or alignment errors.
1916 else if (cs_etm__is_sync_exception(etmq, tidq, magic))
1917 packet->flags = PERF_IP_FLAG_BRANCH |
1918 PERF_IP_FLAG_CALL |
1919 PERF_IP_FLAG_INTERRUPT;
1922 * When the exception packet is inserted, since exception
1923 * packet is not used standalone for generating samples
1924 * and it's affiliation to the previous instruction range
1925 * packet; so set previous range packet flags to tell perf
1926 * it is an exception taken branch.
1928 if (prev_packet->sample_type == CS_ETM_RANGE)
1929 prev_packet->flags = packet->flags;
1930 break;
1931 case CS_ETM_EXCEPTION_RET:
1933 * When the exception return packet is inserted, since
1934 * exception return packet is not used standalone for
1935 * generating samples and it's affiliation to the previous
1936 * instruction range packet; so set previous range packet
1937 * flags to tell perf it is an exception return branch.
1939 * The exception return can be for either system call or
1940 * other exception types; unfortunately the packet doesn't
1941 * contain exception type related info so we cannot decide
1942 * the exception type purely based on exception return packet.
1943 * If we record the exception number from exception packet and
1944 * reuse it for excpetion return packet, this is not reliable
1945 * due the trace can be discontinuity or the interrupt can
1946 * be nested, thus the recorded exception number cannot be
1947 * used for exception return packet for these two cases.
1949 * For exception return packet, we only need to distinguish the
1950 * packet is for system call or for other types. Thus the
1951 * decision can be deferred when receive the next packet which
1952 * contains the return address, based on the return address we
1953 * can read out the previous instruction and check if it's a
1954 * system call instruction and then calibrate the sample flag
1955 * as needed.
1957 if (prev_packet->sample_type == CS_ETM_RANGE)
1958 prev_packet->flags = PERF_IP_FLAG_BRANCH |
1959 PERF_IP_FLAG_RETURN |
1960 PERF_IP_FLAG_INTERRUPT;
1961 break;
1962 case CS_ETM_EMPTY:
1963 default:
1964 break;
1967 return 0;
1970 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq)
1972 int ret = 0;
1973 size_t processed = 0;
1976 * Packets are decoded and added to the decoder's packet queue
1977 * until the decoder packet processing callback has requested that
1978 * processing stops or there is nothing left in the buffer. Normal
1979 * operations that stop processing are a timestamp packet or a full
1980 * decoder buffer queue.
1982 ret = cs_etm_decoder__process_data_block(etmq->decoder,
1983 etmq->offset,
1984 &etmq->buf[etmq->buf_used],
1985 etmq->buf_len,
1986 &processed);
1987 if (ret)
1988 goto out;
1990 etmq->offset += processed;
1991 etmq->buf_used += processed;
1992 etmq->buf_len -= processed;
1994 out:
1995 return ret;
1998 static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq,
1999 struct cs_etm_traceid_queue *tidq)
2001 int ret;
2002 struct cs_etm_packet_queue *packet_queue;
2004 packet_queue = &tidq->packet_queue;
2006 /* Process each packet in this chunk */
2007 while (1) {
2008 ret = cs_etm_decoder__get_packet(packet_queue,
2009 tidq->packet);
2010 if (ret <= 0)
2012 * Stop processing this chunk on
2013 * end of data or error
2015 break;
2018 * Since packet addresses are swapped in packet
2019 * handling within below switch() statements,
2020 * thus setting sample flags must be called
2021 * prior to switch() statement to use address
2022 * information before packets swapping.
2024 ret = cs_etm__set_sample_flags(etmq, tidq);
2025 if (ret < 0)
2026 break;
2028 switch (tidq->packet->sample_type) {
2029 case CS_ETM_RANGE:
2031 * If the packet contains an instruction
2032 * range, generate instruction sequence
2033 * events.
2035 cs_etm__sample(etmq, tidq);
2036 break;
2037 case CS_ETM_EXCEPTION:
2038 case CS_ETM_EXCEPTION_RET:
2040 * If the exception packet is coming,
2041 * make sure the previous instruction
2042 * range packet to be handled properly.
2044 cs_etm__exception(tidq);
2045 break;
2046 case CS_ETM_DISCONTINUITY:
2048 * Discontinuity in trace, flush
2049 * previous branch stack
2051 cs_etm__flush(etmq, tidq);
2052 break;
2053 case CS_ETM_EMPTY:
2055 * Should not receive empty packet,
2056 * report error.
2058 pr_err("CS ETM Trace: empty packet\n");
2059 return -EINVAL;
2060 default:
2061 break;
2065 return ret;
2068 static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq)
2070 int idx;
2071 struct int_node *inode;
2072 struct cs_etm_traceid_queue *tidq;
2073 struct intlist *traceid_queues_list = etmq->traceid_queues_list;
2075 intlist__for_each_entry(inode, traceid_queues_list) {
2076 idx = (int)(intptr_t)inode->priv;
2077 tidq = etmq->traceid_queues[idx];
2079 /* Ignore return value */
2080 cs_etm__process_traceid_queue(etmq, tidq);
2083 * Generate an instruction sample with the remaining
2084 * branchstack entries.
2086 cs_etm__flush(etmq, tidq);
2090 static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
2092 int err = 0;
2093 struct cs_etm_traceid_queue *tidq;
2095 tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID);
2096 if (!tidq)
2097 return -EINVAL;
2099 /* Go through each buffer in the queue and decode them one by one */
2100 while (1) {
2101 err = cs_etm__get_data_block(etmq);
2102 if (err <= 0)
2103 return err;
2105 /* Run trace decoder until buffer consumed or end of trace */
2106 do {
2107 err = cs_etm__decode_data_block(etmq);
2108 if (err)
2109 return err;
2112 * Process each packet in this chunk, nothing to do if
2113 * an error occurs other than hoping the next one will
2114 * be better.
2116 err = cs_etm__process_traceid_queue(etmq, tidq);
2118 } while (etmq->buf_len);
2120 if (err == 0)
2121 /* Flush any remaining branch stack entries */
2122 err = cs_etm__end_block(etmq, tidq);
2125 return err;
2128 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
2129 pid_t tid)
2131 unsigned int i;
2132 struct auxtrace_queues *queues = &etm->queues;
2134 for (i = 0; i < queues->nr_queues; i++) {
2135 struct auxtrace_queue *queue = &etm->queues.queue_array[i];
2136 struct cs_etm_queue *etmq = queue->priv;
2137 struct cs_etm_traceid_queue *tidq;
2139 if (!etmq)
2140 continue;
2142 tidq = cs_etm__etmq_get_traceid_queue(etmq,
2143 CS_ETM_PER_THREAD_TRACEID);
2145 if (!tidq)
2146 continue;
2148 if ((tid == -1) || (tidq->tid == tid)) {
2149 cs_etm__set_pid_tid_cpu(etm, tidq);
2150 cs_etm__run_decoder(etmq);
2154 return 0;
2157 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm)
2159 int ret = 0;
2160 unsigned int cs_queue_nr, queue_nr;
2161 u8 trace_chan_id;
2162 u64 timestamp;
2163 struct auxtrace_queue *queue;
2164 struct cs_etm_queue *etmq;
2165 struct cs_etm_traceid_queue *tidq;
2167 while (1) {
2168 if (!etm->heap.heap_cnt)
2169 goto out;
2171 /* Take the entry at the top of the min heap */
2172 cs_queue_nr = etm->heap.heap_array[0].queue_nr;
2173 queue_nr = TO_QUEUE_NR(cs_queue_nr);
2174 trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr);
2175 queue = &etm->queues.queue_array[queue_nr];
2176 etmq = queue->priv;
2179 * Remove the top entry from the heap since we are about
2180 * to process it.
2182 auxtrace_heap__pop(&etm->heap);
2184 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
2185 if (!tidq) {
2187 * No traceID queue has been allocated for this traceID,
2188 * which means something somewhere went very wrong. No
2189 * other choice than simply exit.
2191 ret = -EINVAL;
2192 goto out;
2196 * Packets associated with this timestamp are already in
2197 * the etmq's traceID queue, so process them.
2199 ret = cs_etm__process_traceid_queue(etmq, tidq);
2200 if (ret < 0)
2201 goto out;
2204 * Packets for this timestamp have been processed, time to
2205 * move on to the next timestamp, fetching a new auxtrace_buffer
2206 * if need be.
2208 refetch:
2209 ret = cs_etm__get_data_block(etmq);
2210 if (ret < 0)
2211 goto out;
2214 * No more auxtrace_buffers to process in this etmq, simply
2215 * move on to another entry in the auxtrace_heap.
2217 if (!ret)
2218 continue;
2220 ret = cs_etm__decode_data_block(etmq);
2221 if (ret)
2222 goto out;
2224 timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
2226 if (!timestamp) {
2228 * Function cs_etm__decode_data_block() returns when
2229 * there is no more traces to decode in the current
2230 * auxtrace_buffer OR when a timestamp has been
2231 * encountered on any of the traceID queues. Since we
2232 * did not get a timestamp, there is no more traces to
2233 * process in this auxtrace_buffer. As such empty and
2234 * flush all traceID queues.
2236 cs_etm__clear_all_traceid_queues(etmq);
2238 /* Fetch another auxtrace_buffer for this etmq */
2239 goto refetch;
2243 * Add to the min heap the timestamp for packets that have
2244 * just been decoded. They will be processed and synthesized
2245 * during the next call to cs_etm__process_traceid_queue() for
2246 * this queue/traceID.
2248 cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
2249 ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, timestamp);
2252 out:
2253 return ret;
2256 static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm,
2257 union perf_event *event)
2259 struct thread *th;
2261 if (etm->timeless_decoding)
2262 return 0;
2265 * Add the tid/pid to the log so that we can get a match when
2266 * we get a contextID from the decoder.
2268 th = machine__findnew_thread(etm->machine,
2269 event->itrace_start.pid,
2270 event->itrace_start.tid);
2271 if (!th)
2272 return -ENOMEM;
2274 thread__put(th);
2276 return 0;
2279 static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm,
2280 union perf_event *event)
2282 struct thread *th;
2283 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2286 * Context switch in per-thread mode are irrelevant since perf
2287 * will start/stop tracing as the process is scheduled.
2289 if (etm->timeless_decoding)
2290 return 0;
2293 * SWITCH_IN events carry the next process to be switched out while
2294 * SWITCH_OUT events carry the process to be switched in. As such
2295 * we don't care about IN events.
2297 if (!out)
2298 return 0;
2301 * Add the tid/pid to the log so that we can get a match when
2302 * we get a contextID from the decoder.
2304 th = machine__findnew_thread(etm->machine,
2305 event->context_switch.next_prev_pid,
2306 event->context_switch.next_prev_tid);
2307 if (!th)
2308 return -ENOMEM;
2310 thread__put(th);
2312 return 0;
2315 static int cs_etm__process_event(struct perf_session *session,
2316 union perf_event *event,
2317 struct perf_sample *sample,
2318 struct perf_tool *tool)
2320 int err = 0;
2321 u64 timestamp;
2322 struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2323 struct cs_etm_auxtrace,
2324 auxtrace);
2326 if (dump_trace)
2327 return 0;
2329 if (!tool->ordered_events) {
2330 pr_err("CoreSight ETM Trace requires ordered events\n");
2331 return -EINVAL;
2334 if (sample->time && (sample->time != (u64) -1))
2335 timestamp = sample->time;
2336 else
2337 timestamp = 0;
2339 if (timestamp || etm->timeless_decoding) {
2340 err = cs_etm__update_queues(etm);
2341 if (err)
2342 return err;
2345 if (etm->timeless_decoding &&
2346 event->header.type == PERF_RECORD_EXIT)
2347 return cs_etm__process_timeless_queues(etm,
2348 event->fork.tid);
2350 if (event->header.type == PERF_RECORD_ITRACE_START)
2351 return cs_etm__process_itrace_start(etm, event);
2352 else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2353 return cs_etm__process_switch_cpu_wide(etm, event);
2355 if (!etm->timeless_decoding &&
2356 event->header.type == PERF_RECORD_AUX)
2357 return cs_etm__process_queues(etm);
2359 return 0;
2362 static int cs_etm__process_auxtrace_event(struct perf_session *session,
2363 union perf_event *event,
2364 struct perf_tool *tool __maybe_unused)
2366 struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2367 struct cs_etm_auxtrace,
2368 auxtrace);
2369 if (!etm->data_queued) {
2370 struct auxtrace_buffer *buffer;
2371 off_t data_offset;
2372 int fd = perf_data__fd(session->data);
2373 bool is_pipe = perf_data__is_pipe(session->data);
2374 int err;
2376 if (is_pipe)
2377 data_offset = 0;
2378 else {
2379 data_offset = lseek(fd, 0, SEEK_CUR);
2380 if (data_offset == -1)
2381 return -errno;
2384 err = auxtrace_queues__add_event(&etm->queues, session,
2385 event, data_offset, &buffer);
2386 if (err)
2387 return err;
2389 if (dump_trace)
2390 if (auxtrace_buffer__get_data(buffer, fd)) {
2391 cs_etm__dump_event(etm, buffer);
2392 auxtrace_buffer__put_data(buffer);
2396 return 0;
2399 static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm)
2401 struct evsel *evsel;
2402 struct evlist *evlist = etm->session->evlist;
2403 bool timeless_decoding = true;
2406 * Circle through the list of event and complain if we find one
2407 * with the time bit set.
2409 evlist__for_each_entry(evlist, evsel) {
2410 if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
2411 timeless_decoding = false;
2414 return timeless_decoding;
2417 static const char * const cs_etm_global_header_fmts[] = {
2418 [CS_HEADER_VERSION_0] = " Header version %llx\n",
2419 [CS_PMU_TYPE_CPUS] = " PMU type/num cpus %llx\n",
2420 [CS_ETM_SNAPSHOT] = " Snapshot %llx\n",
2423 static const char * const cs_etm_priv_fmts[] = {
2424 [CS_ETM_MAGIC] = " Magic number %llx\n",
2425 [CS_ETM_CPU] = " CPU %lld\n",
2426 [CS_ETM_ETMCR] = " ETMCR %llx\n",
2427 [CS_ETM_ETMTRACEIDR] = " ETMTRACEIDR %llx\n",
2428 [CS_ETM_ETMCCER] = " ETMCCER %llx\n",
2429 [CS_ETM_ETMIDR] = " ETMIDR %llx\n",
2432 static const char * const cs_etmv4_priv_fmts[] = {
2433 [CS_ETM_MAGIC] = " Magic number %llx\n",
2434 [CS_ETM_CPU] = " CPU %lld\n",
2435 [CS_ETMV4_TRCCONFIGR] = " TRCCONFIGR %llx\n",
2436 [CS_ETMV4_TRCTRACEIDR] = " TRCTRACEIDR %llx\n",
2437 [CS_ETMV4_TRCIDR0] = " TRCIDR0 %llx\n",
2438 [CS_ETMV4_TRCIDR1] = " TRCIDR1 %llx\n",
2439 [CS_ETMV4_TRCIDR2] = " TRCIDR2 %llx\n",
2440 [CS_ETMV4_TRCIDR8] = " TRCIDR8 %llx\n",
2441 [CS_ETMV4_TRCAUTHSTATUS] = " TRCAUTHSTATUS %llx\n",
2444 static void cs_etm__print_auxtrace_info(__u64 *val, int num)
2446 int i, j, cpu = 0;
2448 for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
2449 fprintf(stdout, cs_etm_global_header_fmts[i], val[i]);
2451 for (i = CS_HEADER_VERSION_0_MAX; cpu < num; cpu++) {
2452 if (val[i] == __perf_cs_etmv3_magic)
2453 for (j = 0; j < CS_ETM_PRIV_MAX; j++, i++)
2454 fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2455 else if (val[i] == __perf_cs_etmv4_magic)
2456 for (j = 0; j < CS_ETMV4_PRIV_MAX; j++, i++)
2457 fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2458 else
2459 /* failure.. return */
2460 return;
2464 int cs_etm__process_auxtrace_info(union perf_event *event,
2465 struct perf_session *session)
2467 struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
2468 struct cs_etm_auxtrace *etm = NULL;
2469 struct int_node *inode;
2470 unsigned int pmu_type;
2471 int event_header_size = sizeof(struct perf_event_header);
2472 int info_header_size;
2473 int total_size = auxtrace_info->header.size;
2474 int priv_size = 0;
2475 int num_cpu;
2476 int err = 0, idx = -1;
2477 int i, j, k;
2478 u64 *ptr, *hdr = NULL;
2479 u64 **metadata = NULL;
2482 * sizeof(auxtrace_info_event::type) +
2483 * sizeof(auxtrace_info_event::reserved) == 8
2485 info_header_size = 8;
2487 if (total_size < (event_header_size + info_header_size))
2488 return -EINVAL;
2490 priv_size = total_size - event_header_size - info_header_size;
2492 /* First the global part */
2493 ptr = (u64 *) auxtrace_info->priv;
2495 /* Look for version '0' of the header */
2496 if (ptr[0] != 0)
2497 return -EINVAL;
2499 hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_0_MAX);
2500 if (!hdr)
2501 return -ENOMEM;
2503 /* Extract header information - see cs-etm.h for format */
2504 for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
2505 hdr[i] = ptr[i];
2506 num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff;
2507 pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) &
2508 0xffffffff);
2511 * Create an RB tree for traceID-metadata tuple. Since the conversion
2512 * has to be made for each packet that gets decoded, optimizing access
2513 * in anything other than a sequential array is worth doing.
2515 traceid_list = intlist__new(NULL);
2516 if (!traceid_list) {
2517 err = -ENOMEM;
2518 goto err_free_hdr;
2521 metadata = zalloc(sizeof(*metadata) * num_cpu);
2522 if (!metadata) {
2523 err = -ENOMEM;
2524 goto err_free_traceid_list;
2528 * The metadata is stored in the auxtrace_info section and encodes
2529 * the configuration of the ARM embedded trace macrocell which is
2530 * required by the trace decoder to properly decode the trace due
2531 * to its highly compressed nature.
2533 for (j = 0; j < num_cpu; j++) {
2534 if (ptr[i] == __perf_cs_etmv3_magic) {
2535 metadata[j] = zalloc(sizeof(*metadata[j]) *
2536 CS_ETM_PRIV_MAX);
2537 if (!metadata[j]) {
2538 err = -ENOMEM;
2539 goto err_free_metadata;
2541 for (k = 0; k < CS_ETM_PRIV_MAX; k++)
2542 metadata[j][k] = ptr[i + k];
2544 /* The traceID is our handle */
2545 idx = metadata[j][CS_ETM_ETMTRACEIDR];
2546 i += CS_ETM_PRIV_MAX;
2547 } else if (ptr[i] == __perf_cs_etmv4_magic) {
2548 metadata[j] = zalloc(sizeof(*metadata[j]) *
2549 CS_ETMV4_PRIV_MAX);
2550 if (!metadata[j]) {
2551 err = -ENOMEM;
2552 goto err_free_metadata;
2554 for (k = 0; k < CS_ETMV4_PRIV_MAX; k++)
2555 metadata[j][k] = ptr[i + k];
2557 /* The traceID is our handle */
2558 idx = metadata[j][CS_ETMV4_TRCTRACEIDR];
2559 i += CS_ETMV4_PRIV_MAX;
2562 /* Get an RB node for this CPU */
2563 inode = intlist__findnew(traceid_list, idx);
2565 /* Something went wrong, no need to continue */
2566 if (!inode) {
2567 err = -ENOMEM;
2568 goto err_free_metadata;
2572 * The node for that CPU should not be taken.
2573 * Back out if that's the case.
2575 if (inode->priv) {
2576 err = -EINVAL;
2577 goto err_free_metadata;
2579 /* All good, associate the traceID with the metadata pointer */
2580 inode->priv = metadata[j];
2584 * Each of CS_HEADER_VERSION_0_MAX, CS_ETM_PRIV_MAX and
2585 * CS_ETMV4_PRIV_MAX mark how many double words are in the
2586 * global metadata, and each cpu's metadata respectively.
2587 * The following tests if the correct number of double words was
2588 * present in the auxtrace info section.
2590 if (i * 8 != priv_size) {
2591 err = -EINVAL;
2592 goto err_free_metadata;
2595 etm = zalloc(sizeof(*etm));
2597 if (!etm) {
2598 err = -ENOMEM;
2599 goto err_free_metadata;
2602 err = auxtrace_queues__init(&etm->queues);
2603 if (err)
2604 goto err_free_etm;
2606 etm->session = session;
2607 etm->machine = &session->machines.host;
2609 etm->num_cpu = num_cpu;
2610 etm->pmu_type = pmu_type;
2611 etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0);
2612 etm->metadata = metadata;
2613 etm->auxtrace_type = auxtrace_info->type;
2614 etm->timeless_decoding = cs_etm__is_timeless_decoding(etm);
2616 etm->auxtrace.process_event = cs_etm__process_event;
2617 etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
2618 etm->auxtrace.flush_events = cs_etm__flush_events;
2619 etm->auxtrace.free_events = cs_etm__free_events;
2620 etm->auxtrace.free = cs_etm__free;
2621 session->auxtrace = &etm->auxtrace;
2623 etm->unknown_thread = thread__new(999999999, 999999999);
2624 if (!etm->unknown_thread) {
2625 err = -ENOMEM;
2626 goto err_free_queues;
2630 * Initialize list node so that at thread__zput() we can avoid
2631 * segmentation fault at list_del_init().
2633 INIT_LIST_HEAD(&etm->unknown_thread->node);
2635 err = thread__set_comm(etm->unknown_thread, "unknown", 0);
2636 if (err)
2637 goto err_delete_thread;
2639 if (thread__init_maps(etm->unknown_thread, etm->machine)) {
2640 err = -ENOMEM;
2641 goto err_delete_thread;
2644 if (dump_trace) {
2645 cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
2646 return 0;
2649 if (session->itrace_synth_opts->set) {
2650 etm->synth_opts = *session->itrace_synth_opts;
2651 } else {
2652 itrace_synth_opts__set_default(&etm->synth_opts,
2653 session->itrace_synth_opts->default_no_sample);
2654 etm->synth_opts.callchain = false;
2657 err = cs_etm__synth_events(etm, session);
2658 if (err)
2659 goto err_delete_thread;
2661 err = auxtrace_queues__process_index(&etm->queues, session);
2662 if (err)
2663 goto err_delete_thread;
2665 etm->data_queued = etm->queues.populated;
2667 return 0;
2669 err_delete_thread:
2670 thread__zput(etm->unknown_thread);
2671 err_free_queues:
2672 auxtrace_queues__free(&etm->queues);
2673 session->auxtrace = NULL;
2674 err_free_etm:
2675 zfree(&etm);
2676 err_free_metadata:
2677 /* No need to check @metadata[j], free(NULL) is supported */
2678 for (j = 0; j < num_cpu; j++)
2679 zfree(&metadata[j]);
2680 zfree(&metadata);
2681 err_free_traceid_list:
2682 intlist__delete(traceid_list);
2683 err_free_hdr:
2684 zfree(&hdr);
2686 return err;