gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / tools / perf / util / header.c
blobacbd046bf95c3929991ca67c77a2475df3d4bf64
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <linux/compiler.h>
12 #include <linux/list.h>
13 #include <linux/kernel.h>
14 #include <linux/bitops.h>
15 #include <linux/string.h>
16 #include <linux/stringify.h>
17 #include <linux/zalloc.h>
18 #include <sys/stat.h>
19 #include <sys/utsname.h>
20 #include <linux/time64.h>
21 #include <dirent.h>
22 #include <bpf/libbpf.h>
23 #include <perf/cpumap.h>
25 #include "dso.h"
26 #include "evlist.h"
27 #include "evsel.h"
28 #include "util/evsel_fprintf.h"
29 #include "header.h"
30 #include "memswap.h"
31 #include "trace-event.h"
32 #include "session.h"
33 #include "symbol.h"
34 #include "debug.h"
35 #include "cpumap.h"
36 #include "pmu.h"
37 #include "vdso.h"
38 #include "strbuf.h"
39 #include "build-id.h"
40 #include "data.h"
41 #include <api/fs/fs.h>
42 #include "asm/bug.h"
43 #include "tool.h"
44 #include "time-utils.h"
45 #include "units.h"
46 #include "util/util.h" // perf_exe()
47 #include "cputopo.h"
48 #include "bpf-event.h"
50 #include <linux/ctype.h>
51 #include <internal/lib.h>
54 * magic2 = "PERFILE2"
55 * must be a numerical value to let the endianness
56 * determine the memory layout. That way we are able
57 * to detect endianness when reading the perf.data file
58 * back.
60 * we check for legacy (PERFFILE) format.
62 static const char *__perf_magic1 = "PERFFILE";
63 static const u64 __perf_magic2 = 0x32454c4946524550ULL;
64 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
66 #define PERF_MAGIC __perf_magic2
68 const char perf_version_string[] = PERF_VERSION;
70 struct perf_file_attr {
71 struct perf_event_attr attr;
72 struct perf_file_section ids;
75 void perf_header__set_feat(struct perf_header *header, int feat)
77 set_bit(feat, header->adds_features);
80 void perf_header__clear_feat(struct perf_header *header, int feat)
82 clear_bit(feat, header->adds_features);
85 bool perf_header__has_feat(const struct perf_header *header, int feat)
87 return test_bit(feat, header->adds_features);
90 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
92 ssize_t ret = writen(ff->fd, buf, size);
94 if (ret != (ssize_t)size)
95 return ret < 0 ? (int)ret : -1;
96 return 0;
99 static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size)
101 /* struct perf_event_header::size is u16 */
102 const size_t max_size = 0xffff - sizeof(struct perf_event_header);
103 size_t new_size = ff->size;
104 void *addr;
106 if (size + ff->offset > max_size)
107 return -E2BIG;
109 while (size > (new_size - ff->offset))
110 new_size <<= 1;
111 new_size = min(max_size, new_size);
113 if (ff->size < new_size) {
114 addr = realloc(ff->buf, new_size);
115 if (!addr)
116 return -ENOMEM;
117 ff->buf = addr;
118 ff->size = new_size;
121 memcpy(ff->buf + ff->offset, buf, size);
122 ff->offset += size;
124 return 0;
127 /* Return: 0 if succeded, -ERR if failed. */
128 int do_write(struct feat_fd *ff, const void *buf, size_t size)
130 if (!ff->buf)
131 return __do_write_fd(ff, buf, size);
132 return __do_write_buf(ff, buf, size);
135 /* Return: 0 if succeded, -ERR if failed. */
136 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
138 u64 *p = (u64 *) set;
139 int i, ret;
141 ret = do_write(ff, &size, sizeof(size));
142 if (ret < 0)
143 return ret;
145 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
146 ret = do_write(ff, p + i, sizeof(*p));
147 if (ret < 0)
148 return ret;
151 return 0;
154 /* Return: 0 if succeded, -ERR if failed. */
155 int write_padded(struct feat_fd *ff, const void *bf,
156 size_t count, size_t count_aligned)
158 static const char zero_buf[NAME_ALIGN];
159 int err = do_write(ff, bf, count);
161 if (!err)
162 err = do_write(ff, zero_buf, count_aligned - count);
164 return err;
167 #define string_size(str) \
168 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
170 /* Return: 0 if succeded, -ERR if failed. */
171 static int do_write_string(struct feat_fd *ff, const char *str)
173 u32 len, olen;
174 int ret;
176 olen = strlen(str) + 1;
177 len = PERF_ALIGN(olen, NAME_ALIGN);
179 /* write len, incl. \0 */
180 ret = do_write(ff, &len, sizeof(len));
181 if (ret < 0)
182 return ret;
184 return write_padded(ff, str, olen, len);
187 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
189 ssize_t ret = readn(ff->fd, addr, size);
191 if (ret != size)
192 return ret < 0 ? (int)ret : -1;
193 return 0;
196 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
198 if (size > (ssize_t)ff->size - ff->offset)
199 return -1;
201 memcpy(addr, ff->buf + ff->offset, size);
202 ff->offset += size;
204 return 0;
208 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
210 if (!ff->buf)
211 return __do_read_fd(ff, addr, size);
212 return __do_read_buf(ff, addr, size);
215 static int do_read_u32(struct feat_fd *ff, u32 *addr)
217 int ret;
219 ret = __do_read(ff, addr, sizeof(*addr));
220 if (ret)
221 return ret;
223 if (ff->ph->needs_swap)
224 *addr = bswap_32(*addr);
225 return 0;
228 static int do_read_u64(struct feat_fd *ff, u64 *addr)
230 int ret;
232 ret = __do_read(ff, addr, sizeof(*addr));
233 if (ret)
234 return ret;
236 if (ff->ph->needs_swap)
237 *addr = bswap_64(*addr);
238 return 0;
241 static char *do_read_string(struct feat_fd *ff)
243 u32 len;
244 char *buf;
246 if (do_read_u32(ff, &len))
247 return NULL;
249 buf = malloc(len);
250 if (!buf)
251 return NULL;
253 if (!__do_read(ff, buf, len)) {
255 * strings are padded by zeroes
256 * thus the actual strlen of buf
257 * may be less than len
259 return buf;
262 free(buf);
263 return NULL;
266 /* Return: 0 if succeded, -ERR if failed. */
267 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
269 unsigned long *set;
270 u64 size, *p;
271 int i, ret;
273 ret = do_read_u64(ff, &size);
274 if (ret)
275 return ret;
277 set = bitmap_alloc(size);
278 if (!set)
279 return -ENOMEM;
281 p = (u64 *) set;
283 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
284 ret = do_read_u64(ff, p + i);
285 if (ret < 0) {
286 free(set);
287 return ret;
291 *pset = set;
292 *psize = size;
293 return 0;
296 static int write_tracing_data(struct feat_fd *ff,
297 struct evlist *evlist)
299 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
300 return -1;
302 return read_tracing_data(ff->fd, &evlist->core.entries);
305 static int write_build_id(struct feat_fd *ff,
306 struct evlist *evlist __maybe_unused)
308 struct perf_session *session;
309 int err;
311 session = container_of(ff->ph, struct perf_session, header);
313 if (!perf_session__read_build_ids(session, true))
314 return -1;
316 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
317 return -1;
319 err = perf_session__write_buildid_table(session, ff);
320 if (err < 0) {
321 pr_debug("failed to write buildid table\n");
322 return err;
324 perf_session__cache_build_ids(session);
326 return 0;
329 static int write_hostname(struct feat_fd *ff,
330 struct evlist *evlist __maybe_unused)
332 struct utsname uts;
333 int ret;
335 ret = uname(&uts);
336 if (ret < 0)
337 return -1;
339 return do_write_string(ff, uts.nodename);
342 static int write_osrelease(struct feat_fd *ff,
343 struct evlist *evlist __maybe_unused)
345 struct utsname uts;
346 int ret;
348 ret = uname(&uts);
349 if (ret < 0)
350 return -1;
352 return do_write_string(ff, uts.release);
355 static int write_arch(struct feat_fd *ff,
356 struct evlist *evlist __maybe_unused)
358 struct utsname uts;
359 int ret;
361 ret = uname(&uts);
362 if (ret < 0)
363 return -1;
365 return do_write_string(ff, uts.machine);
368 static int write_version(struct feat_fd *ff,
369 struct evlist *evlist __maybe_unused)
371 return do_write_string(ff, perf_version_string);
374 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
376 FILE *file;
377 char *buf = NULL;
378 char *s, *p;
379 const char *search = cpuinfo_proc;
380 size_t len = 0;
381 int ret = -1;
383 if (!search)
384 return -1;
386 file = fopen("/proc/cpuinfo", "r");
387 if (!file)
388 return -1;
390 while (getline(&buf, &len, file) > 0) {
391 ret = strncmp(buf, search, strlen(search));
392 if (!ret)
393 break;
396 if (ret) {
397 ret = -1;
398 goto done;
401 s = buf;
403 p = strchr(buf, ':');
404 if (p && *(p+1) == ' ' && *(p+2))
405 s = p + 2;
406 p = strchr(s, '\n');
407 if (p)
408 *p = '\0';
410 /* squash extra space characters (branding string) */
411 p = s;
412 while (*p) {
413 if (isspace(*p)) {
414 char *r = p + 1;
415 char *q = skip_spaces(r);
416 *p = ' ';
417 if (q != (p+1))
418 while ((*r++ = *q++));
420 p++;
422 ret = do_write_string(ff, s);
423 done:
424 free(buf);
425 fclose(file);
426 return ret;
429 static int write_cpudesc(struct feat_fd *ff,
430 struct evlist *evlist __maybe_unused)
432 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
433 #define CPUINFO_PROC { "cpu", }
434 #elif defined(__s390__)
435 #define CPUINFO_PROC { "vendor_id", }
436 #elif defined(__sh__)
437 #define CPUINFO_PROC { "cpu type", }
438 #elif defined(__alpha__) || defined(__mips__)
439 #define CPUINFO_PROC { "cpu model", }
440 #elif defined(__arm__)
441 #define CPUINFO_PROC { "model name", "Processor", }
442 #elif defined(__arc__)
443 #define CPUINFO_PROC { "Processor", }
444 #elif defined(__xtensa__)
445 #define CPUINFO_PROC { "core ID", }
446 #else
447 #define CPUINFO_PROC { "model name", }
448 #endif
449 const char *cpuinfo_procs[] = CPUINFO_PROC;
450 #undef CPUINFO_PROC
451 unsigned int i;
453 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
454 int ret;
455 ret = __write_cpudesc(ff, cpuinfo_procs[i]);
456 if (ret >= 0)
457 return ret;
459 return -1;
463 static int write_nrcpus(struct feat_fd *ff,
464 struct evlist *evlist __maybe_unused)
466 long nr;
467 u32 nrc, nra;
468 int ret;
470 nrc = cpu__max_present_cpu();
472 nr = sysconf(_SC_NPROCESSORS_ONLN);
473 if (nr < 0)
474 return -1;
476 nra = (u32)(nr & UINT_MAX);
478 ret = do_write(ff, &nrc, sizeof(nrc));
479 if (ret < 0)
480 return ret;
482 return do_write(ff, &nra, sizeof(nra));
485 static int write_event_desc(struct feat_fd *ff,
486 struct evlist *evlist)
488 struct evsel *evsel;
489 u32 nre, nri, sz;
490 int ret;
492 nre = evlist->core.nr_entries;
495 * write number of events
497 ret = do_write(ff, &nre, sizeof(nre));
498 if (ret < 0)
499 return ret;
502 * size of perf_event_attr struct
504 sz = (u32)sizeof(evsel->core.attr);
505 ret = do_write(ff, &sz, sizeof(sz));
506 if (ret < 0)
507 return ret;
509 evlist__for_each_entry(evlist, evsel) {
510 ret = do_write(ff, &evsel->core.attr, sz);
511 if (ret < 0)
512 return ret;
514 * write number of unique id per event
515 * there is one id per instance of an event
517 * copy into an nri to be independent of the
518 * type of ids,
520 nri = evsel->core.ids;
521 ret = do_write(ff, &nri, sizeof(nri));
522 if (ret < 0)
523 return ret;
526 * write event string as passed on cmdline
528 ret = do_write_string(ff, perf_evsel__name(evsel));
529 if (ret < 0)
530 return ret;
532 * write unique ids for this event
534 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
535 if (ret < 0)
536 return ret;
538 return 0;
541 static int write_cmdline(struct feat_fd *ff,
542 struct evlist *evlist __maybe_unused)
544 char pbuf[MAXPATHLEN], *buf;
545 int i, ret, n;
547 /* actual path to perf binary */
548 buf = perf_exe(pbuf, MAXPATHLEN);
550 /* account for binary path */
551 n = perf_env.nr_cmdline + 1;
553 ret = do_write(ff, &n, sizeof(n));
554 if (ret < 0)
555 return ret;
557 ret = do_write_string(ff, buf);
558 if (ret < 0)
559 return ret;
561 for (i = 0 ; i < perf_env.nr_cmdline; i++) {
562 ret = do_write_string(ff, perf_env.cmdline_argv[i]);
563 if (ret < 0)
564 return ret;
566 return 0;
570 static int write_cpu_topology(struct feat_fd *ff,
571 struct evlist *evlist __maybe_unused)
573 struct cpu_topology *tp;
574 u32 i;
575 int ret, j;
577 tp = cpu_topology__new();
578 if (!tp)
579 return -1;
581 ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
582 if (ret < 0)
583 goto done;
585 for (i = 0; i < tp->core_sib; i++) {
586 ret = do_write_string(ff, tp->core_siblings[i]);
587 if (ret < 0)
588 goto done;
590 ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
591 if (ret < 0)
592 goto done;
594 for (i = 0; i < tp->thread_sib; i++) {
595 ret = do_write_string(ff, tp->thread_siblings[i]);
596 if (ret < 0)
597 break;
600 ret = perf_env__read_cpu_topology_map(&perf_env);
601 if (ret < 0)
602 goto done;
604 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
605 ret = do_write(ff, &perf_env.cpu[j].core_id,
606 sizeof(perf_env.cpu[j].core_id));
607 if (ret < 0)
608 return ret;
609 ret = do_write(ff, &perf_env.cpu[j].socket_id,
610 sizeof(perf_env.cpu[j].socket_id));
611 if (ret < 0)
612 return ret;
615 if (!tp->die_sib)
616 goto done;
618 ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
619 if (ret < 0)
620 goto done;
622 for (i = 0; i < tp->die_sib; i++) {
623 ret = do_write_string(ff, tp->die_siblings[i]);
624 if (ret < 0)
625 goto done;
628 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
629 ret = do_write(ff, &perf_env.cpu[j].die_id,
630 sizeof(perf_env.cpu[j].die_id));
631 if (ret < 0)
632 return ret;
635 done:
636 cpu_topology__delete(tp);
637 return ret;
642 static int write_total_mem(struct feat_fd *ff,
643 struct evlist *evlist __maybe_unused)
645 char *buf = NULL;
646 FILE *fp;
647 size_t len = 0;
648 int ret = -1, n;
649 uint64_t mem;
651 fp = fopen("/proc/meminfo", "r");
652 if (!fp)
653 return -1;
655 while (getline(&buf, &len, fp) > 0) {
656 ret = strncmp(buf, "MemTotal:", 9);
657 if (!ret)
658 break;
660 if (!ret) {
661 n = sscanf(buf, "%*s %"PRIu64, &mem);
662 if (n == 1)
663 ret = do_write(ff, &mem, sizeof(mem));
664 } else
665 ret = -1;
666 free(buf);
667 fclose(fp);
668 return ret;
671 static int write_numa_topology(struct feat_fd *ff,
672 struct evlist *evlist __maybe_unused)
674 struct numa_topology *tp;
675 int ret = -1;
676 u32 i;
678 tp = numa_topology__new();
679 if (!tp)
680 return -ENOMEM;
682 ret = do_write(ff, &tp->nr, sizeof(u32));
683 if (ret < 0)
684 goto err;
686 for (i = 0; i < tp->nr; i++) {
687 struct numa_topology_node *n = &tp->nodes[i];
689 ret = do_write(ff, &n->node, sizeof(u32));
690 if (ret < 0)
691 goto err;
693 ret = do_write(ff, &n->mem_total, sizeof(u64));
694 if (ret)
695 goto err;
697 ret = do_write(ff, &n->mem_free, sizeof(u64));
698 if (ret)
699 goto err;
701 ret = do_write_string(ff, n->cpus);
702 if (ret < 0)
703 goto err;
706 ret = 0;
708 err:
709 numa_topology__delete(tp);
710 return ret;
714 * File format:
716 * struct pmu_mappings {
717 * u32 pmu_num;
718 * struct pmu_map {
719 * u32 type;
720 * char name[];
721 * }[pmu_num];
722 * };
725 static int write_pmu_mappings(struct feat_fd *ff,
726 struct evlist *evlist __maybe_unused)
728 struct perf_pmu *pmu = NULL;
729 u32 pmu_num = 0;
730 int ret;
733 * Do a first pass to count number of pmu to avoid lseek so this
734 * works in pipe mode as well.
736 while ((pmu = perf_pmu__scan(pmu))) {
737 if (!pmu->name)
738 continue;
739 pmu_num++;
742 ret = do_write(ff, &pmu_num, sizeof(pmu_num));
743 if (ret < 0)
744 return ret;
746 while ((pmu = perf_pmu__scan(pmu))) {
747 if (!pmu->name)
748 continue;
750 ret = do_write(ff, &pmu->type, sizeof(pmu->type));
751 if (ret < 0)
752 return ret;
754 ret = do_write_string(ff, pmu->name);
755 if (ret < 0)
756 return ret;
759 return 0;
763 * File format:
765 * struct group_descs {
766 * u32 nr_groups;
767 * struct group_desc {
768 * char name[];
769 * u32 leader_idx;
770 * u32 nr_members;
771 * }[nr_groups];
772 * };
774 static int write_group_desc(struct feat_fd *ff,
775 struct evlist *evlist)
777 u32 nr_groups = evlist->nr_groups;
778 struct evsel *evsel;
779 int ret;
781 ret = do_write(ff, &nr_groups, sizeof(nr_groups));
782 if (ret < 0)
783 return ret;
785 evlist__for_each_entry(evlist, evsel) {
786 if (perf_evsel__is_group_leader(evsel) &&
787 evsel->core.nr_members > 1) {
788 const char *name = evsel->group_name ?: "{anon_group}";
789 u32 leader_idx = evsel->idx;
790 u32 nr_members = evsel->core.nr_members;
792 ret = do_write_string(ff, name);
793 if (ret < 0)
794 return ret;
796 ret = do_write(ff, &leader_idx, sizeof(leader_idx));
797 if (ret < 0)
798 return ret;
800 ret = do_write(ff, &nr_members, sizeof(nr_members));
801 if (ret < 0)
802 return ret;
805 return 0;
809 * Return the CPU id as a raw string.
811 * Each architecture should provide a more precise id string that
812 * can be use to match the architecture's "mapfile".
814 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
816 return NULL;
819 /* Return zero when the cpuid from the mapfile.csv matches the
820 * cpuid string generated on this platform.
821 * Otherwise return non-zero.
823 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
825 regex_t re;
826 regmatch_t pmatch[1];
827 int match;
829 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
830 /* Warn unable to generate match particular string. */
831 pr_info("Invalid regular expression %s\n", mapcpuid);
832 return 1;
835 match = !regexec(&re, cpuid, 1, pmatch, 0);
836 regfree(&re);
837 if (match) {
838 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
840 /* Verify the entire string matched. */
841 if (match_len == strlen(cpuid))
842 return 0;
844 return 1;
848 * default get_cpuid(): nothing gets recorded
849 * actual implementation must be in arch/$(SRCARCH)/util/header.c
851 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
853 return ENOSYS; /* Not implemented */
856 static int write_cpuid(struct feat_fd *ff,
857 struct evlist *evlist __maybe_unused)
859 char buffer[64];
860 int ret;
862 ret = get_cpuid(buffer, sizeof(buffer));
863 if (ret)
864 return -1;
866 return do_write_string(ff, buffer);
869 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
870 struct evlist *evlist __maybe_unused)
872 return 0;
875 static int write_auxtrace(struct feat_fd *ff,
876 struct evlist *evlist __maybe_unused)
878 struct perf_session *session;
879 int err;
881 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
882 return -1;
884 session = container_of(ff->ph, struct perf_session, header);
886 err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
887 if (err < 0)
888 pr_err("Failed to write auxtrace index\n");
889 return err;
892 static int write_clockid(struct feat_fd *ff,
893 struct evlist *evlist __maybe_unused)
895 return do_write(ff, &ff->ph->env.clockid_res_ns,
896 sizeof(ff->ph->env.clockid_res_ns));
899 static int write_dir_format(struct feat_fd *ff,
900 struct evlist *evlist __maybe_unused)
902 struct perf_session *session;
903 struct perf_data *data;
905 session = container_of(ff->ph, struct perf_session, header);
906 data = session->data;
908 if (WARN_ON(!perf_data__is_dir(data)))
909 return -1;
911 return do_write(ff, &data->dir.version, sizeof(data->dir.version));
914 #ifdef HAVE_LIBBPF_SUPPORT
915 static int write_bpf_prog_info(struct feat_fd *ff,
916 struct evlist *evlist __maybe_unused)
918 struct perf_env *env = &ff->ph->env;
919 struct rb_root *root;
920 struct rb_node *next;
921 int ret;
923 down_read(&env->bpf_progs.lock);
925 ret = do_write(ff, &env->bpf_progs.infos_cnt,
926 sizeof(env->bpf_progs.infos_cnt));
927 if (ret < 0)
928 goto out;
930 root = &env->bpf_progs.infos;
931 next = rb_first(root);
932 while (next) {
933 struct bpf_prog_info_node *node;
934 size_t len;
936 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
937 next = rb_next(&node->rb_node);
938 len = sizeof(struct bpf_prog_info_linear) +
939 node->info_linear->data_len;
941 /* before writing to file, translate address to offset */
942 bpf_program__bpil_addr_to_offs(node->info_linear);
943 ret = do_write(ff, node->info_linear, len);
945 * translate back to address even when do_write() fails,
946 * so that this function never changes the data.
948 bpf_program__bpil_offs_to_addr(node->info_linear);
949 if (ret < 0)
950 goto out;
952 out:
953 up_read(&env->bpf_progs.lock);
954 return ret;
956 #else // HAVE_LIBBPF_SUPPORT
957 static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
958 struct evlist *evlist __maybe_unused)
960 return 0;
962 #endif // HAVE_LIBBPF_SUPPORT
964 static int write_bpf_btf(struct feat_fd *ff,
965 struct evlist *evlist __maybe_unused)
967 struct perf_env *env = &ff->ph->env;
968 struct rb_root *root;
969 struct rb_node *next;
970 int ret;
972 down_read(&env->bpf_progs.lock);
974 ret = do_write(ff, &env->bpf_progs.btfs_cnt,
975 sizeof(env->bpf_progs.btfs_cnt));
977 if (ret < 0)
978 goto out;
980 root = &env->bpf_progs.btfs;
981 next = rb_first(root);
982 while (next) {
983 struct btf_node *node;
985 node = rb_entry(next, struct btf_node, rb_node);
986 next = rb_next(&node->rb_node);
987 ret = do_write(ff, &node->id,
988 sizeof(u32) * 2 + node->data_size);
989 if (ret < 0)
990 goto out;
992 out:
993 up_read(&env->bpf_progs.lock);
994 return ret;
997 static int cpu_cache_level__sort(const void *a, const void *b)
999 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1000 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1002 return cache_a->level - cache_b->level;
1005 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1007 if (a->level != b->level)
1008 return false;
1010 if (a->line_size != b->line_size)
1011 return false;
1013 if (a->sets != b->sets)
1014 return false;
1016 if (a->ways != b->ways)
1017 return false;
1019 if (strcmp(a->type, b->type))
1020 return false;
1022 if (strcmp(a->size, b->size))
1023 return false;
1025 if (strcmp(a->map, b->map))
1026 return false;
1028 return true;
1031 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1033 char path[PATH_MAX], file[PATH_MAX];
1034 struct stat st;
1035 size_t len;
1037 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1038 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1040 if (stat(file, &st))
1041 return 1;
1043 scnprintf(file, PATH_MAX, "%s/level", path);
1044 if (sysfs__read_int(file, (int *) &cache->level))
1045 return -1;
1047 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1048 if (sysfs__read_int(file, (int *) &cache->line_size))
1049 return -1;
1051 scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1052 if (sysfs__read_int(file, (int *) &cache->sets))
1053 return -1;
1055 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1056 if (sysfs__read_int(file, (int *) &cache->ways))
1057 return -1;
1059 scnprintf(file, PATH_MAX, "%s/type", path);
1060 if (sysfs__read_str(file, &cache->type, &len))
1061 return -1;
1063 cache->type[len] = 0;
1064 cache->type = strim(cache->type);
1066 scnprintf(file, PATH_MAX, "%s/size", path);
1067 if (sysfs__read_str(file, &cache->size, &len)) {
1068 zfree(&cache->type);
1069 return -1;
1072 cache->size[len] = 0;
1073 cache->size = strim(cache->size);
1075 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1076 if (sysfs__read_str(file, &cache->map, &len)) {
1077 zfree(&cache->size);
1078 zfree(&cache->type);
1079 return -1;
1082 cache->map[len] = 0;
1083 cache->map = strim(cache->map);
1084 return 0;
1087 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1089 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1092 #define MAX_CACHE_LVL 4
1094 static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1096 u32 i, cnt = 0;
1097 u32 nr, cpu;
1098 u16 level;
1100 nr = cpu__max_cpu();
1102 for (cpu = 0; cpu < nr; cpu++) {
1103 for (level = 0; level < MAX_CACHE_LVL; level++) {
1104 struct cpu_cache_level c;
1105 int err;
1107 err = cpu_cache_level__read(&c, cpu, level);
1108 if (err < 0)
1109 return err;
1111 if (err == 1)
1112 break;
1114 for (i = 0; i < cnt; i++) {
1115 if (cpu_cache_level__cmp(&c, &caches[i]))
1116 break;
1119 if (i == cnt)
1120 caches[cnt++] = c;
1121 else
1122 cpu_cache_level__free(&c);
1125 *cntp = cnt;
1126 return 0;
1129 static int write_cache(struct feat_fd *ff,
1130 struct evlist *evlist __maybe_unused)
1132 u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
1133 struct cpu_cache_level caches[max_caches];
1134 u32 cnt = 0, i, version = 1;
1135 int ret;
1137 ret = build_caches(caches, &cnt);
1138 if (ret)
1139 goto out;
1141 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1143 ret = do_write(ff, &version, sizeof(u32));
1144 if (ret < 0)
1145 goto out;
1147 ret = do_write(ff, &cnt, sizeof(u32));
1148 if (ret < 0)
1149 goto out;
1151 for (i = 0; i < cnt; i++) {
1152 struct cpu_cache_level *c = &caches[i];
1154 #define _W(v) \
1155 ret = do_write(ff, &c->v, sizeof(u32)); \
1156 if (ret < 0) \
1157 goto out;
1159 _W(level)
1160 _W(line_size)
1161 _W(sets)
1162 _W(ways)
1163 #undef _W
1165 #define _W(v) \
1166 ret = do_write_string(ff, (const char *) c->v); \
1167 if (ret < 0) \
1168 goto out;
1170 _W(type)
1171 _W(size)
1172 _W(map)
1173 #undef _W
1176 out:
1177 for (i = 0; i < cnt; i++)
1178 cpu_cache_level__free(&caches[i]);
1179 return ret;
1182 static int write_stat(struct feat_fd *ff __maybe_unused,
1183 struct evlist *evlist __maybe_unused)
1185 return 0;
1188 static int write_sample_time(struct feat_fd *ff,
1189 struct evlist *evlist)
1191 int ret;
1193 ret = do_write(ff, &evlist->first_sample_time,
1194 sizeof(evlist->first_sample_time));
1195 if (ret < 0)
1196 return ret;
1198 return do_write(ff, &evlist->last_sample_time,
1199 sizeof(evlist->last_sample_time));
1203 static int memory_node__read(struct memory_node *n, unsigned long idx)
1205 unsigned int phys, size = 0;
1206 char path[PATH_MAX];
1207 struct dirent *ent;
1208 DIR *dir;
1210 #define for_each_memory(mem, dir) \
1211 while ((ent = readdir(dir))) \
1212 if (strcmp(ent->d_name, ".") && \
1213 strcmp(ent->d_name, "..") && \
1214 sscanf(ent->d_name, "memory%u", &mem) == 1)
1216 scnprintf(path, PATH_MAX,
1217 "%s/devices/system/node/node%lu",
1218 sysfs__mountpoint(), idx);
1220 dir = opendir(path);
1221 if (!dir) {
1222 pr_warning("failed: cant' open memory sysfs data\n");
1223 return -1;
1226 for_each_memory(phys, dir) {
1227 size = max(phys, size);
1230 size++;
1232 n->set = bitmap_alloc(size);
1233 if (!n->set) {
1234 closedir(dir);
1235 return -ENOMEM;
1238 n->node = idx;
1239 n->size = size;
1241 rewinddir(dir);
1243 for_each_memory(phys, dir) {
1244 set_bit(phys, n->set);
1247 closedir(dir);
1248 return 0;
1251 static int memory_node__sort(const void *a, const void *b)
1253 const struct memory_node *na = a;
1254 const struct memory_node *nb = b;
1256 return na->node - nb->node;
1259 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1261 char path[PATH_MAX];
1262 struct dirent *ent;
1263 DIR *dir;
1264 u64 cnt = 0;
1265 int ret = 0;
1267 scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1268 sysfs__mountpoint());
1270 dir = opendir(path);
1271 if (!dir) {
1272 pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1273 __func__, path);
1274 return -1;
1277 while (!ret && (ent = readdir(dir))) {
1278 unsigned int idx;
1279 int r;
1281 if (!strcmp(ent->d_name, ".") ||
1282 !strcmp(ent->d_name, ".."))
1283 continue;
1285 r = sscanf(ent->d_name, "node%u", &idx);
1286 if (r != 1)
1287 continue;
1289 if (WARN_ONCE(cnt >= size,
1290 "failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1291 closedir(dir);
1292 return -1;
1295 ret = memory_node__read(&nodes[cnt++], idx);
1298 *cntp = cnt;
1299 closedir(dir);
1301 if (!ret)
1302 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1304 return ret;
1307 #define MAX_MEMORY_NODES 2000
1310 * The MEM_TOPOLOGY holds physical memory map for every
1311 * node in system. The format of data is as follows:
1313 * 0 - version | for future changes
1314 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1315 * 16 - count | number of nodes
1317 * For each node we store map of physical indexes for
1318 * each node:
1320 * 32 - node id | node index
1321 * 40 - size | size of bitmap
1322 * 48 - bitmap | bitmap of memory indexes that belongs to node
1324 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1325 struct evlist *evlist __maybe_unused)
1327 static struct memory_node nodes[MAX_MEMORY_NODES];
1328 u64 bsize, version = 1, i, nr;
1329 int ret;
1331 ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1332 (unsigned long long *) &bsize);
1333 if (ret)
1334 return ret;
1336 ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1337 if (ret)
1338 return ret;
1340 ret = do_write(ff, &version, sizeof(version));
1341 if (ret < 0)
1342 goto out;
1344 ret = do_write(ff, &bsize, sizeof(bsize));
1345 if (ret < 0)
1346 goto out;
1348 ret = do_write(ff, &nr, sizeof(nr));
1349 if (ret < 0)
1350 goto out;
1352 for (i = 0; i < nr; i++) {
1353 struct memory_node *n = &nodes[i];
1355 #define _W(v) \
1356 ret = do_write(ff, &n->v, sizeof(n->v)); \
1357 if (ret < 0) \
1358 goto out;
1360 _W(node)
1361 _W(size)
1363 #undef _W
1365 ret = do_write_bitmap(ff, n->set, n->size);
1366 if (ret < 0)
1367 goto out;
1370 out:
1371 return ret;
1374 static int write_compressed(struct feat_fd *ff __maybe_unused,
1375 struct evlist *evlist __maybe_unused)
1377 int ret;
1379 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1380 if (ret)
1381 return ret;
1383 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1384 if (ret)
1385 return ret;
1387 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1388 if (ret)
1389 return ret;
1391 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1392 if (ret)
1393 return ret;
1395 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1398 static void print_hostname(struct feat_fd *ff, FILE *fp)
1400 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1403 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1405 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1408 static void print_arch(struct feat_fd *ff, FILE *fp)
1410 fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1413 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1415 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1418 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1420 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1421 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1424 static void print_version(struct feat_fd *ff, FILE *fp)
1426 fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1429 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1431 int nr, i;
1433 nr = ff->ph->env.nr_cmdline;
1435 fprintf(fp, "# cmdline : ");
1437 for (i = 0; i < nr; i++) {
1438 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1439 if (!argv_i) {
1440 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1441 } else {
1442 char *mem = argv_i;
1443 do {
1444 char *quote = strchr(argv_i, '\'');
1445 if (!quote)
1446 break;
1447 *quote++ = '\0';
1448 fprintf(fp, "%s\\\'", argv_i);
1449 argv_i = quote;
1450 } while (1);
1451 fprintf(fp, "%s ", argv_i);
1452 free(mem);
1455 fputc('\n', fp);
1458 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1460 struct perf_header *ph = ff->ph;
1461 int cpu_nr = ph->env.nr_cpus_avail;
1462 int nr, i;
1463 char *str;
1465 nr = ph->env.nr_sibling_cores;
1466 str = ph->env.sibling_cores;
1468 for (i = 0; i < nr; i++) {
1469 fprintf(fp, "# sibling sockets : %s\n", str);
1470 str += strlen(str) + 1;
1473 if (ph->env.nr_sibling_dies) {
1474 nr = ph->env.nr_sibling_dies;
1475 str = ph->env.sibling_dies;
1477 for (i = 0; i < nr; i++) {
1478 fprintf(fp, "# sibling dies : %s\n", str);
1479 str += strlen(str) + 1;
1483 nr = ph->env.nr_sibling_threads;
1484 str = ph->env.sibling_threads;
1486 for (i = 0; i < nr; i++) {
1487 fprintf(fp, "# sibling threads : %s\n", str);
1488 str += strlen(str) + 1;
1491 if (ph->env.nr_sibling_dies) {
1492 if (ph->env.cpu != NULL) {
1493 for (i = 0; i < cpu_nr; i++)
1494 fprintf(fp, "# CPU %d: Core ID %d, "
1495 "Die ID %d, Socket ID %d\n",
1496 i, ph->env.cpu[i].core_id,
1497 ph->env.cpu[i].die_id,
1498 ph->env.cpu[i].socket_id);
1499 } else
1500 fprintf(fp, "# Core ID, Die ID and Socket ID "
1501 "information is not available\n");
1502 } else {
1503 if (ph->env.cpu != NULL) {
1504 for (i = 0; i < cpu_nr; i++)
1505 fprintf(fp, "# CPU %d: Core ID %d, "
1506 "Socket ID %d\n",
1507 i, ph->env.cpu[i].core_id,
1508 ph->env.cpu[i].socket_id);
1509 } else
1510 fprintf(fp, "# Core ID and Socket ID "
1511 "information is not available\n");
1515 static void print_clockid(struct feat_fd *ff, FILE *fp)
1517 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1518 ff->ph->env.clockid_res_ns * 1000);
1521 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1523 struct perf_session *session;
1524 struct perf_data *data;
1526 session = container_of(ff->ph, struct perf_session, header);
1527 data = session->data;
1529 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1532 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1534 struct perf_env *env = &ff->ph->env;
1535 struct rb_root *root;
1536 struct rb_node *next;
1538 down_read(&env->bpf_progs.lock);
1540 root = &env->bpf_progs.infos;
1541 next = rb_first(root);
1543 while (next) {
1544 struct bpf_prog_info_node *node;
1546 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1547 next = rb_next(&node->rb_node);
1549 bpf_event__print_bpf_prog_info(&node->info_linear->info,
1550 env, fp);
1553 up_read(&env->bpf_progs.lock);
1556 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1558 struct perf_env *env = &ff->ph->env;
1559 struct rb_root *root;
1560 struct rb_node *next;
1562 down_read(&env->bpf_progs.lock);
1564 root = &env->bpf_progs.btfs;
1565 next = rb_first(root);
1567 while (next) {
1568 struct btf_node *node;
1570 node = rb_entry(next, struct btf_node, rb_node);
1571 next = rb_next(&node->rb_node);
1572 fprintf(fp, "# btf info of id %u\n", node->id);
1575 up_read(&env->bpf_progs.lock);
1578 static void free_event_desc(struct evsel *events)
1580 struct evsel *evsel;
1582 if (!events)
1583 return;
1585 for (evsel = events; evsel->core.attr.size; evsel++) {
1586 zfree(&evsel->name);
1587 zfree(&evsel->core.id);
1590 free(events);
1593 static bool perf_attr_check(struct perf_event_attr *attr)
1595 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1596 pr_warning("Reserved bits are set unexpectedly. "
1597 "Please update perf tool.\n");
1598 return false;
1601 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1602 pr_warning("Unknown sample type (0x%llx) is detected. "
1603 "Please update perf tool.\n",
1604 attr->sample_type);
1605 return false;
1608 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1609 pr_warning("Unknown read format (0x%llx) is detected. "
1610 "Please update perf tool.\n",
1611 attr->read_format);
1612 return false;
1615 if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1616 (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1617 pr_warning("Unknown branch sample type (0x%llx) is detected. "
1618 "Please update perf tool.\n",
1619 attr->branch_sample_type);
1621 return false;
1624 return true;
1627 static struct evsel *read_event_desc(struct feat_fd *ff)
1629 struct evsel *evsel, *events = NULL;
1630 u64 *id;
1631 void *buf = NULL;
1632 u32 nre, sz, nr, i, j;
1633 size_t msz;
1635 /* number of events */
1636 if (do_read_u32(ff, &nre))
1637 goto error;
1639 if (do_read_u32(ff, &sz))
1640 goto error;
1642 /* buffer to hold on file attr struct */
1643 buf = malloc(sz);
1644 if (!buf)
1645 goto error;
1647 /* the last event terminates with evsel->core.attr.size == 0: */
1648 events = calloc(nre + 1, sizeof(*events));
1649 if (!events)
1650 goto error;
1652 msz = sizeof(evsel->core.attr);
1653 if (sz < msz)
1654 msz = sz;
1656 for (i = 0, evsel = events; i < nre; evsel++, i++) {
1657 evsel->idx = i;
1660 * must read entire on-file attr struct to
1661 * sync up with layout.
1663 if (__do_read(ff, buf, sz))
1664 goto error;
1666 if (ff->ph->needs_swap)
1667 perf_event__attr_swap(buf);
1669 memcpy(&evsel->core.attr, buf, msz);
1671 if (!perf_attr_check(&evsel->core.attr))
1672 goto error;
1674 if (do_read_u32(ff, &nr))
1675 goto error;
1677 if (ff->ph->needs_swap)
1678 evsel->needs_swap = true;
1680 evsel->name = do_read_string(ff);
1681 if (!evsel->name)
1682 goto error;
1684 if (!nr)
1685 continue;
1687 id = calloc(nr, sizeof(*id));
1688 if (!id)
1689 goto error;
1690 evsel->core.ids = nr;
1691 evsel->core.id = id;
1693 for (j = 0 ; j < nr; j++) {
1694 if (do_read_u64(ff, id))
1695 goto error;
1696 id++;
1699 out:
1700 free(buf);
1701 return events;
1702 error:
1703 free_event_desc(events);
1704 events = NULL;
1705 goto out;
1708 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1709 void *priv __maybe_unused)
1711 return fprintf(fp, ", %s = %s", name, val);
1714 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1716 struct evsel *evsel, *events;
1717 u32 j;
1718 u64 *id;
1720 if (ff->events)
1721 events = ff->events;
1722 else
1723 events = read_event_desc(ff);
1725 if (!events) {
1726 fprintf(fp, "# event desc: not available or unable to read\n");
1727 return;
1730 for (evsel = events; evsel->core.attr.size; evsel++) {
1731 fprintf(fp, "# event : name = %s, ", evsel->name);
1733 if (evsel->core.ids) {
1734 fprintf(fp, ", id = {");
1735 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1736 if (j)
1737 fputc(',', fp);
1738 fprintf(fp, " %"PRIu64, *id);
1740 fprintf(fp, " }");
1743 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1745 fputc('\n', fp);
1748 free_event_desc(events);
1749 ff->events = NULL;
1752 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1754 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1757 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1759 int i;
1760 struct numa_node *n;
1762 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1763 n = &ff->ph->env.numa_nodes[i];
1765 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB,"
1766 " free = %"PRIu64" kB\n",
1767 n->node, n->mem_total, n->mem_free);
1769 fprintf(fp, "# node%u cpu list : ", n->node);
1770 cpu_map__fprintf(n->map, fp);
1774 static void print_cpuid(struct feat_fd *ff, FILE *fp)
1776 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1779 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1781 fprintf(fp, "# contains samples with branch stack\n");
1784 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1786 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1789 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1791 fprintf(fp, "# contains stat data\n");
1794 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1796 int i;
1798 fprintf(fp, "# CPU cache info:\n");
1799 for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1800 fprintf(fp, "# ");
1801 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1805 static void print_compressed(struct feat_fd *ff, FILE *fp)
1807 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1808 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1809 ff->ph->env.comp_level, ff->ph->env.comp_ratio);
1812 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1814 const char *delimiter = "# pmu mappings: ";
1815 char *str, *tmp;
1816 u32 pmu_num;
1817 u32 type;
1819 pmu_num = ff->ph->env.nr_pmu_mappings;
1820 if (!pmu_num) {
1821 fprintf(fp, "# pmu mappings: not available\n");
1822 return;
1825 str = ff->ph->env.pmu_mappings;
1827 while (pmu_num) {
1828 type = strtoul(str, &tmp, 0);
1829 if (*tmp != ':')
1830 goto error;
1832 str = tmp + 1;
1833 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1835 delimiter = ", ";
1836 str += strlen(str) + 1;
1837 pmu_num--;
1840 fprintf(fp, "\n");
1842 if (!pmu_num)
1843 return;
1844 error:
1845 fprintf(fp, "# pmu mappings: unable to read\n");
1848 static void print_group_desc(struct feat_fd *ff, FILE *fp)
1850 struct perf_session *session;
1851 struct evsel *evsel;
1852 u32 nr = 0;
1854 session = container_of(ff->ph, struct perf_session, header);
1856 evlist__for_each_entry(session->evlist, evsel) {
1857 if (perf_evsel__is_group_leader(evsel) &&
1858 evsel->core.nr_members > 1) {
1859 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1860 perf_evsel__name(evsel));
1862 nr = evsel->core.nr_members - 1;
1863 } else if (nr) {
1864 fprintf(fp, ",%s", perf_evsel__name(evsel));
1866 if (--nr == 0)
1867 fprintf(fp, "}\n");
1872 static void print_sample_time(struct feat_fd *ff, FILE *fp)
1874 struct perf_session *session;
1875 char time_buf[32];
1876 double d;
1878 session = container_of(ff->ph, struct perf_session, header);
1880 timestamp__scnprintf_usec(session->evlist->first_sample_time,
1881 time_buf, sizeof(time_buf));
1882 fprintf(fp, "# time of first sample : %s\n", time_buf);
1884 timestamp__scnprintf_usec(session->evlist->last_sample_time,
1885 time_buf, sizeof(time_buf));
1886 fprintf(fp, "# time of last sample : %s\n", time_buf);
1888 d = (double)(session->evlist->last_sample_time -
1889 session->evlist->first_sample_time) / NSEC_PER_MSEC;
1891 fprintf(fp, "# sample duration : %10.3f ms\n", d);
1894 static void memory_node__fprintf(struct memory_node *n,
1895 unsigned long long bsize, FILE *fp)
1897 char buf_map[100], buf_size[50];
1898 unsigned long long size;
1900 size = bsize * bitmap_weight(n->set, n->size);
1901 unit_number__scnprintf(buf_size, 50, size);
1903 bitmap_scnprintf(n->set, n->size, buf_map, 100);
1904 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1907 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1909 struct memory_node *nodes;
1910 int i, nr;
1912 nodes = ff->ph->env.memory_nodes;
1913 nr = ff->ph->env.nr_memory_nodes;
1915 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1916 nr, ff->ph->env.memory_bsize);
1918 for (i = 0; i < nr; i++) {
1919 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1923 static int __event_process_build_id(struct perf_record_header_build_id *bev,
1924 char *filename,
1925 struct perf_session *session)
1927 int err = -1;
1928 struct machine *machine;
1929 u16 cpumode;
1930 struct dso *dso;
1931 enum dso_kernel_type dso_type;
1933 machine = perf_session__findnew_machine(session, bev->pid);
1934 if (!machine)
1935 goto out;
1937 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1939 switch (cpumode) {
1940 case PERF_RECORD_MISC_KERNEL:
1941 dso_type = DSO_TYPE_KERNEL;
1942 break;
1943 case PERF_RECORD_MISC_GUEST_KERNEL:
1944 dso_type = DSO_TYPE_GUEST_KERNEL;
1945 break;
1946 case PERF_RECORD_MISC_USER:
1947 case PERF_RECORD_MISC_GUEST_USER:
1948 dso_type = DSO_TYPE_USER;
1949 break;
1950 default:
1951 goto out;
1954 dso = machine__findnew_dso(machine, filename);
1955 if (dso != NULL) {
1956 char sbuild_id[SBUILD_ID_SIZE];
1958 dso__set_build_id(dso, &bev->build_id);
1960 if (dso_type != DSO_TYPE_USER) {
1961 struct kmod_path m = { .name = NULL, };
1963 if (!kmod_path__parse_name(&m, filename) && m.kmod)
1964 dso__set_module_info(dso, &m, machine);
1965 else
1966 dso->kernel = dso_type;
1968 free(m.name);
1971 build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1972 sbuild_id);
1973 pr_debug("build id event received for %s: %s\n",
1974 dso->long_name, sbuild_id);
1975 dso__put(dso);
1978 err = 0;
1979 out:
1980 return err;
1983 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1984 int input, u64 offset, u64 size)
1986 struct perf_session *session = container_of(header, struct perf_session, header);
1987 struct {
1988 struct perf_event_header header;
1989 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1990 char filename[0];
1991 } old_bev;
1992 struct perf_record_header_build_id bev;
1993 char filename[PATH_MAX];
1994 u64 limit = offset + size;
1996 while (offset < limit) {
1997 ssize_t len;
1999 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2000 return -1;
2002 if (header->needs_swap)
2003 perf_event_header__bswap(&old_bev.header);
2005 len = old_bev.header.size - sizeof(old_bev);
2006 if (readn(input, filename, len) != len)
2007 return -1;
2009 bev.header = old_bev.header;
2012 * As the pid is the missing value, we need to fill
2013 * it properly. The header.misc value give us nice hint.
2015 bev.pid = HOST_KERNEL_ID;
2016 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2017 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2018 bev.pid = DEFAULT_GUEST_KERNEL_ID;
2020 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2021 __event_process_build_id(&bev, filename, session);
2023 offset += bev.header.size;
2026 return 0;
2029 static int perf_header__read_build_ids(struct perf_header *header,
2030 int input, u64 offset, u64 size)
2032 struct perf_session *session = container_of(header, struct perf_session, header);
2033 struct perf_record_header_build_id bev;
2034 char filename[PATH_MAX];
2035 u64 limit = offset + size, orig_offset = offset;
2036 int err = -1;
2038 while (offset < limit) {
2039 ssize_t len;
2041 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2042 goto out;
2044 if (header->needs_swap)
2045 perf_event_header__bswap(&bev.header);
2047 len = bev.header.size - sizeof(bev);
2048 if (readn(input, filename, len) != len)
2049 goto out;
2051 * The a1645ce1 changeset:
2053 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2055 * Added a field to struct perf_record_header_build_id that broke the file
2056 * format.
2058 * Since the kernel build-id is the first entry, process the
2059 * table using the old format if the well known
2060 * '[kernel.kallsyms]' string for the kernel build-id has the
2061 * first 4 characters chopped off (where the pid_t sits).
2063 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2064 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2065 return -1;
2066 return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2069 __event_process_build_id(&bev, filename, session);
2071 offset += bev.header.size;
2073 err = 0;
2074 out:
2075 return err;
2078 /* Macro for features that simply need to read and store a string. */
2079 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2080 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2082 ff->ph->env.__feat_env = do_read_string(ff); \
2083 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2086 FEAT_PROCESS_STR_FUN(hostname, hostname);
2087 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2088 FEAT_PROCESS_STR_FUN(version, version);
2089 FEAT_PROCESS_STR_FUN(arch, arch);
2090 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2091 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2093 static int process_tracing_data(struct feat_fd *ff, void *data)
2095 ssize_t ret = trace_report(ff->fd, data, false);
2097 return ret < 0 ? -1 : 0;
2100 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2102 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2103 pr_debug("Failed to read buildids, continuing...\n");
2104 return 0;
2107 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2109 int ret;
2110 u32 nr_cpus_avail, nr_cpus_online;
2112 ret = do_read_u32(ff, &nr_cpus_avail);
2113 if (ret)
2114 return ret;
2116 ret = do_read_u32(ff, &nr_cpus_online);
2117 if (ret)
2118 return ret;
2119 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2120 ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2121 return 0;
2124 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2126 u64 total_mem;
2127 int ret;
2129 ret = do_read_u64(ff, &total_mem);
2130 if (ret)
2131 return -1;
2132 ff->ph->env.total_mem = (unsigned long long)total_mem;
2133 return 0;
2136 static struct evsel *
2137 perf_evlist__find_by_index(struct evlist *evlist, int idx)
2139 struct evsel *evsel;
2141 evlist__for_each_entry(evlist, evsel) {
2142 if (evsel->idx == idx)
2143 return evsel;
2146 return NULL;
2149 static void
2150 perf_evlist__set_event_name(struct evlist *evlist,
2151 struct evsel *event)
2153 struct evsel *evsel;
2155 if (!event->name)
2156 return;
2158 evsel = perf_evlist__find_by_index(evlist, event->idx);
2159 if (!evsel)
2160 return;
2162 if (evsel->name)
2163 return;
2165 evsel->name = strdup(event->name);
2168 static int
2169 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2171 struct perf_session *session;
2172 struct evsel *evsel, *events = read_event_desc(ff);
2174 if (!events)
2175 return 0;
2177 session = container_of(ff->ph, struct perf_session, header);
2179 if (session->data->is_pipe) {
2180 /* Save events for reading later by print_event_desc,
2181 * since they can't be read again in pipe mode. */
2182 ff->events = events;
2185 for (evsel = events; evsel->core.attr.size; evsel++)
2186 perf_evlist__set_event_name(session->evlist, evsel);
2188 if (!session->data->is_pipe)
2189 free_event_desc(events);
2191 return 0;
2194 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2196 char *str, *cmdline = NULL, **argv = NULL;
2197 u32 nr, i, len = 0;
2199 if (do_read_u32(ff, &nr))
2200 return -1;
2202 ff->ph->env.nr_cmdline = nr;
2204 cmdline = zalloc(ff->size + nr + 1);
2205 if (!cmdline)
2206 return -1;
2208 argv = zalloc(sizeof(char *) * (nr + 1));
2209 if (!argv)
2210 goto error;
2212 for (i = 0; i < nr; i++) {
2213 str = do_read_string(ff);
2214 if (!str)
2215 goto error;
2217 argv[i] = cmdline + len;
2218 memcpy(argv[i], str, strlen(str) + 1);
2219 len += strlen(str) + 1;
2220 free(str);
2222 ff->ph->env.cmdline = cmdline;
2223 ff->ph->env.cmdline_argv = (const char **) argv;
2224 return 0;
2226 error:
2227 free(argv);
2228 free(cmdline);
2229 return -1;
2232 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2234 u32 nr, i;
2235 char *str;
2236 struct strbuf sb;
2237 int cpu_nr = ff->ph->env.nr_cpus_avail;
2238 u64 size = 0;
2239 struct perf_header *ph = ff->ph;
2240 bool do_core_id_test = true;
2242 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2243 if (!ph->env.cpu)
2244 return -1;
2246 if (do_read_u32(ff, &nr))
2247 goto free_cpu;
2249 ph->env.nr_sibling_cores = nr;
2250 size += sizeof(u32);
2251 if (strbuf_init(&sb, 128) < 0)
2252 goto free_cpu;
2254 for (i = 0; i < nr; i++) {
2255 str = do_read_string(ff);
2256 if (!str)
2257 goto error;
2259 /* include a NULL character at the end */
2260 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2261 goto error;
2262 size += string_size(str);
2263 free(str);
2265 ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2267 if (do_read_u32(ff, &nr))
2268 return -1;
2270 ph->env.nr_sibling_threads = nr;
2271 size += sizeof(u32);
2273 for (i = 0; i < nr; i++) {
2274 str = do_read_string(ff);
2275 if (!str)
2276 goto error;
2278 /* include a NULL character at the end */
2279 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2280 goto error;
2281 size += string_size(str);
2282 free(str);
2284 ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2287 * The header may be from old perf,
2288 * which doesn't include core id and socket id information.
2290 if (ff->size <= size) {
2291 zfree(&ph->env.cpu);
2292 return 0;
2295 /* On s390 the socket_id number is not related to the numbers of cpus.
2296 * The socket_id number might be higher than the numbers of cpus.
2297 * This depends on the configuration.
2298 * AArch64 is the same.
2300 if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2301 || !strncmp(ph->env.arch, "aarch64", 7)))
2302 do_core_id_test = false;
2304 for (i = 0; i < (u32)cpu_nr; i++) {
2305 if (do_read_u32(ff, &nr))
2306 goto free_cpu;
2308 ph->env.cpu[i].core_id = nr;
2309 size += sizeof(u32);
2311 if (do_read_u32(ff, &nr))
2312 goto free_cpu;
2314 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2315 pr_debug("socket_id number is too big."
2316 "You may need to upgrade the perf tool.\n");
2317 goto free_cpu;
2320 ph->env.cpu[i].socket_id = nr;
2321 size += sizeof(u32);
2325 * The header may be from old perf,
2326 * which doesn't include die information.
2328 if (ff->size <= size)
2329 return 0;
2331 if (do_read_u32(ff, &nr))
2332 return -1;
2334 ph->env.nr_sibling_dies = nr;
2335 size += sizeof(u32);
2337 for (i = 0; i < nr; i++) {
2338 str = do_read_string(ff);
2339 if (!str)
2340 goto error;
2342 /* include a NULL character at the end */
2343 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2344 goto error;
2345 size += string_size(str);
2346 free(str);
2348 ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2350 for (i = 0; i < (u32)cpu_nr; i++) {
2351 if (do_read_u32(ff, &nr))
2352 goto free_cpu;
2354 ph->env.cpu[i].die_id = nr;
2357 return 0;
2359 error:
2360 strbuf_release(&sb);
2361 free_cpu:
2362 zfree(&ph->env.cpu);
2363 return -1;
2366 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2368 struct numa_node *nodes, *n;
2369 u32 nr, i;
2370 char *str;
2372 /* nr nodes */
2373 if (do_read_u32(ff, &nr))
2374 return -1;
2376 nodes = zalloc(sizeof(*nodes) * nr);
2377 if (!nodes)
2378 return -ENOMEM;
2380 for (i = 0; i < nr; i++) {
2381 n = &nodes[i];
2383 /* node number */
2384 if (do_read_u32(ff, &n->node))
2385 goto error;
2387 if (do_read_u64(ff, &n->mem_total))
2388 goto error;
2390 if (do_read_u64(ff, &n->mem_free))
2391 goto error;
2393 str = do_read_string(ff);
2394 if (!str)
2395 goto error;
2397 n->map = perf_cpu_map__new(str);
2398 if (!n->map)
2399 goto error;
2401 free(str);
2403 ff->ph->env.nr_numa_nodes = nr;
2404 ff->ph->env.numa_nodes = nodes;
2405 return 0;
2407 error:
2408 free(nodes);
2409 return -1;
2412 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2414 char *name;
2415 u32 pmu_num;
2416 u32 type;
2417 struct strbuf sb;
2419 if (do_read_u32(ff, &pmu_num))
2420 return -1;
2422 if (!pmu_num) {
2423 pr_debug("pmu mappings not available\n");
2424 return 0;
2427 ff->ph->env.nr_pmu_mappings = pmu_num;
2428 if (strbuf_init(&sb, 128) < 0)
2429 return -1;
2431 while (pmu_num) {
2432 if (do_read_u32(ff, &type))
2433 goto error;
2435 name = do_read_string(ff);
2436 if (!name)
2437 goto error;
2439 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2440 goto error;
2441 /* include a NULL character at the end */
2442 if (strbuf_add(&sb, "", 1) < 0)
2443 goto error;
2445 if (!strcmp(name, "msr"))
2446 ff->ph->env.msr_pmu_type = type;
2448 free(name);
2449 pmu_num--;
2451 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2452 return 0;
2454 error:
2455 strbuf_release(&sb);
2456 return -1;
2459 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2461 size_t ret = -1;
2462 u32 i, nr, nr_groups;
2463 struct perf_session *session;
2464 struct evsel *evsel, *leader = NULL;
2465 struct group_desc {
2466 char *name;
2467 u32 leader_idx;
2468 u32 nr_members;
2469 } *desc;
2471 if (do_read_u32(ff, &nr_groups))
2472 return -1;
2474 ff->ph->env.nr_groups = nr_groups;
2475 if (!nr_groups) {
2476 pr_debug("group desc not available\n");
2477 return 0;
2480 desc = calloc(nr_groups, sizeof(*desc));
2481 if (!desc)
2482 return -1;
2484 for (i = 0; i < nr_groups; i++) {
2485 desc[i].name = do_read_string(ff);
2486 if (!desc[i].name)
2487 goto out_free;
2489 if (do_read_u32(ff, &desc[i].leader_idx))
2490 goto out_free;
2492 if (do_read_u32(ff, &desc[i].nr_members))
2493 goto out_free;
2497 * Rebuild group relationship based on the group_desc
2499 session = container_of(ff->ph, struct perf_session, header);
2500 session->evlist->nr_groups = nr_groups;
2502 i = nr = 0;
2503 evlist__for_each_entry(session->evlist, evsel) {
2504 if (evsel->idx == (int) desc[i].leader_idx) {
2505 evsel->leader = evsel;
2506 /* {anon_group} is a dummy name */
2507 if (strcmp(desc[i].name, "{anon_group}")) {
2508 evsel->group_name = desc[i].name;
2509 desc[i].name = NULL;
2511 evsel->core.nr_members = desc[i].nr_members;
2513 if (i >= nr_groups || nr > 0) {
2514 pr_debug("invalid group desc\n");
2515 goto out_free;
2518 leader = evsel;
2519 nr = evsel->core.nr_members - 1;
2520 i++;
2521 } else if (nr) {
2522 /* This is a group member */
2523 evsel->leader = leader;
2525 nr--;
2529 if (i != nr_groups || nr != 0) {
2530 pr_debug("invalid group desc\n");
2531 goto out_free;
2534 ret = 0;
2535 out_free:
2536 for (i = 0; i < nr_groups; i++)
2537 zfree(&desc[i].name);
2538 free(desc);
2540 return ret;
2543 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2545 struct perf_session *session;
2546 int err;
2548 session = container_of(ff->ph, struct perf_session, header);
2550 err = auxtrace_index__process(ff->fd, ff->size, session,
2551 ff->ph->needs_swap);
2552 if (err < 0)
2553 pr_err("Failed to process auxtrace index\n");
2554 return err;
2557 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2559 struct cpu_cache_level *caches;
2560 u32 cnt, i, version;
2562 if (do_read_u32(ff, &version))
2563 return -1;
2565 if (version != 1)
2566 return -1;
2568 if (do_read_u32(ff, &cnt))
2569 return -1;
2571 caches = zalloc(sizeof(*caches) * cnt);
2572 if (!caches)
2573 return -1;
2575 for (i = 0; i < cnt; i++) {
2576 struct cpu_cache_level c;
2578 #define _R(v) \
2579 if (do_read_u32(ff, &c.v))\
2580 goto out_free_caches; \
2582 _R(level)
2583 _R(line_size)
2584 _R(sets)
2585 _R(ways)
2586 #undef _R
2588 #define _R(v) \
2589 c.v = do_read_string(ff); \
2590 if (!c.v) \
2591 goto out_free_caches;
2593 _R(type)
2594 _R(size)
2595 _R(map)
2596 #undef _R
2598 caches[i] = c;
2601 ff->ph->env.caches = caches;
2602 ff->ph->env.caches_cnt = cnt;
2603 return 0;
2604 out_free_caches:
2605 free(caches);
2606 return -1;
2609 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2611 struct perf_session *session;
2612 u64 first_sample_time, last_sample_time;
2613 int ret;
2615 session = container_of(ff->ph, struct perf_session, header);
2617 ret = do_read_u64(ff, &first_sample_time);
2618 if (ret)
2619 return -1;
2621 ret = do_read_u64(ff, &last_sample_time);
2622 if (ret)
2623 return -1;
2625 session->evlist->first_sample_time = first_sample_time;
2626 session->evlist->last_sample_time = last_sample_time;
2627 return 0;
2630 static int process_mem_topology(struct feat_fd *ff,
2631 void *data __maybe_unused)
2633 struct memory_node *nodes;
2634 u64 version, i, nr, bsize;
2635 int ret = -1;
2637 if (do_read_u64(ff, &version))
2638 return -1;
2640 if (version != 1)
2641 return -1;
2643 if (do_read_u64(ff, &bsize))
2644 return -1;
2646 if (do_read_u64(ff, &nr))
2647 return -1;
2649 nodes = zalloc(sizeof(*nodes) * nr);
2650 if (!nodes)
2651 return -1;
2653 for (i = 0; i < nr; i++) {
2654 struct memory_node n;
2656 #define _R(v) \
2657 if (do_read_u64(ff, &n.v)) \
2658 goto out; \
2660 _R(node)
2661 _R(size)
2663 #undef _R
2665 if (do_read_bitmap(ff, &n.set, &n.size))
2666 goto out;
2668 nodes[i] = n;
2671 ff->ph->env.memory_bsize = bsize;
2672 ff->ph->env.memory_nodes = nodes;
2673 ff->ph->env.nr_memory_nodes = nr;
2674 ret = 0;
2676 out:
2677 if (ret)
2678 free(nodes);
2679 return ret;
2682 static int process_clockid(struct feat_fd *ff,
2683 void *data __maybe_unused)
2685 if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
2686 return -1;
2688 return 0;
2691 static int process_dir_format(struct feat_fd *ff,
2692 void *_data __maybe_unused)
2694 struct perf_session *session;
2695 struct perf_data *data;
2697 session = container_of(ff->ph, struct perf_session, header);
2698 data = session->data;
2700 if (WARN_ON(!perf_data__is_dir(data)))
2701 return -1;
2703 return do_read_u64(ff, &data->dir.version);
2706 #ifdef HAVE_LIBBPF_SUPPORT
2707 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2709 struct bpf_prog_info_linear *info_linear;
2710 struct bpf_prog_info_node *info_node;
2711 struct perf_env *env = &ff->ph->env;
2712 u32 count, i;
2713 int err = -1;
2715 if (ff->ph->needs_swap) {
2716 pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2717 return 0;
2720 if (do_read_u32(ff, &count))
2721 return -1;
2723 down_write(&env->bpf_progs.lock);
2725 for (i = 0; i < count; ++i) {
2726 u32 info_len, data_len;
2728 info_linear = NULL;
2729 info_node = NULL;
2730 if (do_read_u32(ff, &info_len))
2731 goto out;
2732 if (do_read_u32(ff, &data_len))
2733 goto out;
2735 if (info_len > sizeof(struct bpf_prog_info)) {
2736 pr_warning("detected invalid bpf_prog_info\n");
2737 goto out;
2740 info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2741 data_len);
2742 if (!info_linear)
2743 goto out;
2744 info_linear->info_len = sizeof(struct bpf_prog_info);
2745 info_linear->data_len = data_len;
2746 if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2747 goto out;
2748 if (__do_read(ff, &info_linear->info, info_len))
2749 goto out;
2750 if (info_len < sizeof(struct bpf_prog_info))
2751 memset(((void *)(&info_linear->info)) + info_len, 0,
2752 sizeof(struct bpf_prog_info) - info_len);
2754 if (__do_read(ff, info_linear->data, data_len))
2755 goto out;
2757 info_node = malloc(sizeof(struct bpf_prog_info_node));
2758 if (!info_node)
2759 goto out;
2761 /* after reading from file, translate offset to address */
2762 bpf_program__bpil_offs_to_addr(info_linear);
2763 info_node->info_linear = info_linear;
2764 perf_env__insert_bpf_prog_info(env, info_node);
2767 up_write(&env->bpf_progs.lock);
2768 return 0;
2769 out:
2770 free(info_linear);
2771 free(info_node);
2772 up_write(&env->bpf_progs.lock);
2773 return err;
2775 #else // HAVE_LIBBPF_SUPPORT
2776 static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
2778 return 0;
2780 #endif // HAVE_LIBBPF_SUPPORT
2782 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2784 struct perf_env *env = &ff->ph->env;
2785 struct btf_node *node = NULL;
2786 u32 count, i;
2787 int err = -1;
2789 if (ff->ph->needs_swap) {
2790 pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2791 return 0;
2794 if (do_read_u32(ff, &count))
2795 return -1;
2797 down_write(&env->bpf_progs.lock);
2799 for (i = 0; i < count; ++i) {
2800 u32 id, data_size;
2802 if (do_read_u32(ff, &id))
2803 goto out;
2804 if (do_read_u32(ff, &data_size))
2805 goto out;
2807 node = malloc(sizeof(struct btf_node) + data_size);
2808 if (!node)
2809 goto out;
2811 node->id = id;
2812 node->data_size = data_size;
2814 if (__do_read(ff, node->data, data_size))
2815 goto out;
2817 perf_env__insert_btf(env, node);
2818 node = NULL;
2821 err = 0;
2822 out:
2823 up_write(&env->bpf_progs.lock);
2824 free(node);
2825 return err;
2828 static int process_compressed(struct feat_fd *ff,
2829 void *data __maybe_unused)
2831 if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
2832 return -1;
2834 if (do_read_u32(ff, &(ff->ph->env.comp_type)))
2835 return -1;
2837 if (do_read_u32(ff, &(ff->ph->env.comp_level)))
2838 return -1;
2840 if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
2841 return -1;
2843 if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
2844 return -1;
2846 return 0;
2849 #define FEAT_OPR(n, func, __full_only) \
2850 [HEADER_##n] = { \
2851 .name = __stringify(n), \
2852 .write = write_##func, \
2853 .print = print_##func, \
2854 .full_only = __full_only, \
2855 .process = process_##func, \
2856 .synthesize = true \
2859 #define FEAT_OPN(n, func, __full_only) \
2860 [HEADER_##n] = { \
2861 .name = __stringify(n), \
2862 .write = write_##func, \
2863 .print = print_##func, \
2864 .full_only = __full_only, \
2865 .process = process_##func \
2868 /* feature_ops not implemented: */
2869 #define print_tracing_data NULL
2870 #define print_build_id NULL
2872 #define process_branch_stack NULL
2873 #define process_stat NULL
2875 // Only used in util/synthetic-events.c
2876 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
2878 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2879 FEAT_OPN(TRACING_DATA, tracing_data, false),
2880 FEAT_OPN(BUILD_ID, build_id, false),
2881 FEAT_OPR(HOSTNAME, hostname, false),
2882 FEAT_OPR(OSRELEASE, osrelease, false),
2883 FEAT_OPR(VERSION, version, false),
2884 FEAT_OPR(ARCH, arch, false),
2885 FEAT_OPR(NRCPUS, nrcpus, false),
2886 FEAT_OPR(CPUDESC, cpudesc, false),
2887 FEAT_OPR(CPUID, cpuid, false),
2888 FEAT_OPR(TOTAL_MEM, total_mem, false),
2889 FEAT_OPR(EVENT_DESC, event_desc, false),
2890 FEAT_OPR(CMDLINE, cmdline, false),
2891 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true),
2892 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true),
2893 FEAT_OPN(BRANCH_STACK, branch_stack, false),
2894 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false),
2895 FEAT_OPR(GROUP_DESC, group_desc, false),
2896 FEAT_OPN(AUXTRACE, auxtrace, false),
2897 FEAT_OPN(STAT, stat, false),
2898 FEAT_OPN(CACHE, cache, true),
2899 FEAT_OPR(SAMPLE_TIME, sample_time, false),
2900 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true),
2901 FEAT_OPR(CLOCKID, clockid, false),
2902 FEAT_OPN(DIR_FORMAT, dir_format, false),
2903 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false),
2904 FEAT_OPR(BPF_BTF, bpf_btf, false),
2905 FEAT_OPR(COMPRESSED, compressed, false),
2908 struct header_print_data {
2909 FILE *fp;
2910 bool full; /* extended list of headers */
2913 static int perf_file_section__fprintf_info(struct perf_file_section *section,
2914 struct perf_header *ph,
2915 int feat, int fd, void *data)
2917 struct header_print_data *hd = data;
2918 struct feat_fd ff;
2920 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2921 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2922 "%d, continuing...\n", section->offset, feat);
2923 return 0;
2925 if (feat >= HEADER_LAST_FEATURE) {
2926 pr_warning("unknown feature %d\n", feat);
2927 return 0;
2929 if (!feat_ops[feat].print)
2930 return 0;
2932 ff = (struct feat_fd) {
2933 .fd = fd,
2934 .ph = ph,
2937 if (!feat_ops[feat].full_only || hd->full)
2938 feat_ops[feat].print(&ff, hd->fp);
2939 else
2940 fprintf(hd->fp, "# %s info available, use -I to display\n",
2941 feat_ops[feat].name);
2943 return 0;
2946 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2948 struct header_print_data hd;
2949 struct perf_header *header = &session->header;
2950 int fd = perf_data__fd(session->data);
2951 struct stat st;
2952 time_t stctime;
2953 int ret, bit;
2955 hd.fp = fp;
2956 hd.full = full;
2958 ret = fstat(fd, &st);
2959 if (ret == -1)
2960 return -1;
2962 stctime = st.st_mtime;
2963 fprintf(fp, "# captured on : %s", ctime(&stctime));
2965 fprintf(fp, "# header version : %u\n", header->version);
2966 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset);
2967 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size);
2968 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset);
2970 perf_header__process_sections(header, fd, &hd,
2971 perf_file_section__fprintf_info);
2973 if (session->data->is_pipe)
2974 return 0;
2976 fprintf(fp, "# missing features: ");
2977 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2978 if (bit)
2979 fprintf(fp, "%s ", feat_ops[bit].name);
2982 fprintf(fp, "\n");
2983 return 0;
2986 static int do_write_feat(struct feat_fd *ff, int type,
2987 struct perf_file_section **p,
2988 struct evlist *evlist)
2990 int err;
2991 int ret = 0;
2993 if (perf_header__has_feat(ff->ph, type)) {
2994 if (!feat_ops[type].write)
2995 return -1;
2997 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
2998 return -1;
3000 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3002 err = feat_ops[type].write(ff, evlist);
3003 if (err < 0) {
3004 pr_debug("failed to write feature %s\n", feat_ops[type].name);
3006 /* undo anything written */
3007 lseek(ff->fd, (*p)->offset, SEEK_SET);
3009 return -1;
3011 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3012 (*p)++;
3014 return ret;
3017 static int perf_header__adds_write(struct perf_header *header,
3018 struct evlist *evlist, int fd)
3020 int nr_sections;
3021 struct feat_fd ff;
3022 struct perf_file_section *feat_sec, *p;
3023 int sec_size;
3024 u64 sec_start;
3025 int feat;
3026 int err;
3028 ff = (struct feat_fd){
3029 .fd = fd,
3030 .ph = header,
3033 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3034 if (!nr_sections)
3035 return 0;
3037 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3038 if (feat_sec == NULL)
3039 return -ENOMEM;
3041 sec_size = sizeof(*feat_sec) * nr_sections;
3043 sec_start = header->feat_offset;
3044 lseek(fd, sec_start + sec_size, SEEK_SET);
3046 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3047 if (do_write_feat(&ff, feat, &p, evlist))
3048 perf_header__clear_feat(header, feat);
3051 lseek(fd, sec_start, SEEK_SET);
3053 * may write more than needed due to dropped feature, but
3054 * this is okay, reader will skip the missing entries
3056 err = do_write(&ff, feat_sec, sec_size);
3057 if (err < 0)
3058 pr_debug("failed to write feature section\n");
3059 free(feat_sec);
3060 return err;
3063 int perf_header__write_pipe(int fd)
3065 struct perf_pipe_file_header f_header;
3066 struct feat_fd ff;
3067 int err;
3069 ff = (struct feat_fd){ .fd = fd };
3071 f_header = (struct perf_pipe_file_header){
3072 .magic = PERF_MAGIC,
3073 .size = sizeof(f_header),
3076 err = do_write(&ff, &f_header, sizeof(f_header));
3077 if (err < 0) {
3078 pr_debug("failed to write perf pipe header\n");
3079 return err;
3082 return 0;
3085 int perf_session__write_header(struct perf_session *session,
3086 struct evlist *evlist,
3087 int fd, bool at_exit)
3089 struct perf_file_header f_header;
3090 struct perf_file_attr f_attr;
3091 struct perf_header *header = &session->header;
3092 struct evsel *evsel;
3093 struct feat_fd ff;
3094 u64 attr_offset;
3095 int err;
3097 ff = (struct feat_fd){ .fd = fd};
3098 lseek(fd, sizeof(f_header), SEEK_SET);
3100 evlist__for_each_entry(session->evlist, evsel) {
3101 evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3102 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3103 if (err < 0) {
3104 pr_debug("failed to write perf header\n");
3105 return err;
3109 attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3111 evlist__for_each_entry(evlist, evsel) {
3112 f_attr = (struct perf_file_attr){
3113 .attr = evsel->core.attr,
3114 .ids = {
3115 .offset = evsel->id_offset,
3116 .size = evsel->core.ids * sizeof(u64),
3119 err = do_write(&ff, &f_attr, sizeof(f_attr));
3120 if (err < 0) {
3121 pr_debug("failed to write perf header attribute\n");
3122 return err;
3126 if (!header->data_offset)
3127 header->data_offset = lseek(fd, 0, SEEK_CUR);
3128 header->feat_offset = header->data_offset + header->data_size;
3130 if (at_exit) {
3131 err = perf_header__adds_write(header, evlist, fd);
3132 if (err < 0)
3133 return err;
3136 f_header = (struct perf_file_header){
3137 .magic = PERF_MAGIC,
3138 .size = sizeof(f_header),
3139 .attr_size = sizeof(f_attr),
3140 .attrs = {
3141 .offset = attr_offset,
3142 .size = evlist->core.nr_entries * sizeof(f_attr),
3144 .data = {
3145 .offset = header->data_offset,
3146 .size = header->data_size,
3148 /* event_types is ignored, store zeros */
3151 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3153 lseek(fd, 0, SEEK_SET);
3154 err = do_write(&ff, &f_header, sizeof(f_header));
3155 if (err < 0) {
3156 pr_debug("failed to write perf header\n");
3157 return err;
3159 lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3161 return 0;
3164 static int perf_header__getbuffer64(struct perf_header *header,
3165 int fd, void *buf, size_t size)
3167 if (readn(fd, buf, size) <= 0)
3168 return -1;
3170 if (header->needs_swap)
3171 mem_bswap_64(buf, size);
3173 return 0;
3176 int perf_header__process_sections(struct perf_header *header, int fd,
3177 void *data,
3178 int (*process)(struct perf_file_section *section,
3179 struct perf_header *ph,
3180 int feat, int fd, void *data))
3182 struct perf_file_section *feat_sec, *sec;
3183 int nr_sections;
3184 int sec_size;
3185 int feat;
3186 int err;
3188 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3189 if (!nr_sections)
3190 return 0;
3192 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3193 if (!feat_sec)
3194 return -1;
3196 sec_size = sizeof(*feat_sec) * nr_sections;
3198 lseek(fd, header->feat_offset, SEEK_SET);
3200 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3201 if (err < 0)
3202 goto out_free;
3204 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3205 err = process(sec++, header, feat, fd, data);
3206 if (err < 0)
3207 goto out_free;
3209 err = 0;
3210 out_free:
3211 free(feat_sec);
3212 return err;
3215 static const int attr_file_abi_sizes[] = {
3216 [0] = PERF_ATTR_SIZE_VER0,
3217 [1] = PERF_ATTR_SIZE_VER1,
3218 [2] = PERF_ATTR_SIZE_VER2,
3219 [3] = PERF_ATTR_SIZE_VER3,
3220 [4] = PERF_ATTR_SIZE_VER4,
3225 * In the legacy file format, the magic number is not used to encode endianness.
3226 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3227 * on ABI revisions, we need to try all combinations for all endianness to
3228 * detect the endianness.
3230 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3232 uint64_t ref_size, attr_size;
3233 int i;
3235 for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3236 ref_size = attr_file_abi_sizes[i]
3237 + sizeof(struct perf_file_section);
3238 if (hdr_sz != ref_size) {
3239 attr_size = bswap_64(hdr_sz);
3240 if (attr_size != ref_size)
3241 continue;
3243 ph->needs_swap = true;
3245 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3247 ph->needs_swap);
3248 return 0;
3250 /* could not determine endianness */
3251 return -1;
3254 #define PERF_PIPE_HDR_VER0 16
3256 static const size_t attr_pipe_abi_sizes[] = {
3257 [0] = PERF_PIPE_HDR_VER0,
3262 * In the legacy pipe format, there is an implicit assumption that endiannesss
3263 * between host recording the samples, and host parsing the samples is the
3264 * same. This is not always the case given that the pipe output may always be
3265 * redirected into a file and analyzed on a different machine with possibly a
3266 * different endianness and perf_event ABI revsions in the perf tool itself.
3268 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3270 u64 attr_size;
3271 int i;
3273 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3274 if (hdr_sz != attr_pipe_abi_sizes[i]) {
3275 attr_size = bswap_64(hdr_sz);
3276 if (attr_size != hdr_sz)
3277 continue;
3279 ph->needs_swap = true;
3281 pr_debug("Pipe ABI%d perf.data file detected\n", i);
3282 return 0;
3284 return -1;
3287 bool is_perf_magic(u64 magic)
3289 if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3290 || magic == __perf_magic2
3291 || magic == __perf_magic2_sw)
3292 return true;
3294 return false;
3297 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3298 bool is_pipe, struct perf_header *ph)
3300 int ret;
3302 /* check for legacy format */
3303 ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3304 if (ret == 0) {
3305 ph->version = PERF_HEADER_VERSION_1;
3306 pr_debug("legacy perf.data format\n");
3307 if (is_pipe)
3308 return try_all_pipe_abis(hdr_sz, ph);
3310 return try_all_file_abis(hdr_sz, ph);
3313 * the new magic number serves two purposes:
3314 * - unique number to identify actual perf.data files
3315 * - encode endianness of file
3317 ph->version = PERF_HEADER_VERSION_2;
3319 /* check magic number with one endianness */
3320 if (magic == __perf_magic2)
3321 return 0;
3323 /* check magic number with opposite endianness */
3324 if (magic != __perf_magic2_sw)
3325 return -1;
3327 ph->needs_swap = true;
3329 return 0;
3332 int perf_file_header__read(struct perf_file_header *header,
3333 struct perf_header *ph, int fd)
3335 ssize_t ret;
3337 lseek(fd, 0, SEEK_SET);
3339 ret = readn(fd, header, sizeof(*header));
3340 if (ret <= 0)
3341 return -1;
3343 if (check_magic_endian(header->magic,
3344 header->attr_size, false, ph) < 0) {
3345 pr_debug("magic/endian check failed\n");
3346 return -1;
3349 if (ph->needs_swap) {
3350 mem_bswap_64(header, offsetof(struct perf_file_header,
3351 adds_features));
3354 if (header->size != sizeof(*header)) {
3355 /* Support the previous format */
3356 if (header->size == offsetof(typeof(*header), adds_features))
3357 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3358 else
3359 return -1;
3360 } else if (ph->needs_swap) {
3362 * feature bitmap is declared as an array of unsigned longs --
3363 * not good since its size can differ between the host that
3364 * generated the data file and the host analyzing the file.
3366 * We need to handle endianness, but we don't know the size of
3367 * the unsigned long where the file was generated. Take a best
3368 * guess at determining it: try 64-bit swap first (ie., file
3369 * created on a 64-bit host), and check if the hostname feature
3370 * bit is set (this feature bit is forced on as of fbe96f2).
3371 * If the bit is not, undo the 64-bit swap and try a 32-bit
3372 * swap. If the hostname bit is still not set (e.g., older data
3373 * file), punt and fallback to the original behavior --
3374 * clearing all feature bits and setting buildid.
3376 mem_bswap_64(&header->adds_features,
3377 BITS_TO_U64(HEADER_FEAT_BITS));
3379 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3380 /* unswap as u64 */
3381 mem_bswap_64(&header->adds_features,
3382 BITS_TO_U64(HEADER_FEAT_BITS));
3384 /* unswap as u32 */
3385 mem_bswap_32(&header->adds_features,
3386 BITS_TO_U32(HEADER_FEAT_BITS));
3389 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3390 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3391 set_bit(HEADER_BUILD_ID, header->adds_features);
3395 memcpy(&ph->adds_features, &header->adds_features,
3396 sizeof(ph->adds_features));
3398 ph->data_offset = header->data.offset;
3399 ph->data_size = header->data.size;
3400 ph->feat_offset = header->data.offset + header->data.size;
3401 return 0;
3404 static int perf_file_section__process(struct perf_file_section *section,
3405 struct perf_header *ph,
3406 int feat, int fd, void *data)
3408 struct feat_fd fdd = {
3409 .fd = fd,
3410 .ph = ph,
3411 .size = section->size,
3412 .offset = section->offset,
3415 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3416 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3417 "%d, continuing...\n", section->offset, feat);
3418 return 0;
3421 if (feat >= HEADER_LAST_FEATURE) {
3422 pr_debug("unknown feature %d, continuing...\n", feat);
3423 return 0;
3426 if (!feat_ops[feat].process)
3427 return 0;
3429 return feat_ops[feat].process(&fdd, data);
3432 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3433 struct perf_header *ph, int fd,
3434 bool repipe)
3436 struct feat_fd ff = {
3437 .fd = STDOUT_FILENO,
3438 .ph = ph,
3440 ssize_t ret;
3442 ret = readn(fd, header, sizeof(*header));
3443 if (ret <= 0)
3444 return -1;
3446 if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3447 pr_debug("endian/magic failed\n");
3448 return -1;
3451 if (ph->needs_swap)
3452 header->size = bswap_64(header->size);
3454 if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3455 return -1;
3457 return 0;
3460 static int perf_header__read_pipe(struct perf_session *session)
3462 struct perf_header *header = &session->header;
3463 struct perf_pipe_file_header f_header;
3465 if (perf_file_header__read_pipe(&f_header, header,
3466 perf_data__fd(session->data),
3467 session->repipe) < 0) {
3468 pr_debug("incompatible file format\n");
3469 return -EINVAL;
3472 return 0;
3475 static int read_attr(int fd, struct perf_header *ph,
3476 struct perf_file_attr *f_attr)
3478 struct perf_event_attr *attr = &f_attr->attr;
3479 size_t sz, left;
3480 size_t our_sz = sizeof(f_attr->attr);
3481 ssize_t ret;
3483 memset(f_attr, 0, sizeof(*f_attr));
3485 /* read minimal guaranteed structure */
3486 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3487 if (ret <= 0) {
3488 pr_debug("cannot read %d bytes of header attr\n",
3489 PERF_ATTR_SIZE_VER0);
3490 return -1;
3493 /* on file perf_event_attr size */
3494 sz = attr->size;
3496 if (ph->needs_swap)
3497 sz = bswap_32(sz);
3499 if (sz == 0) {
3500 /* assume ABI0 */
3501 sz = PERF_ATTR_SIZE_VER0;
3502 } else if (sz > our_sz) {
3503 pr_debug("file uses a more recent and unsupported ABI"
3504 " (%zu bytes extra)\n", sz - our_sz);
3505 return -1;
3507 /* what we have not yet read and that we know about */
3508 left = sz - PERF_ATTR_SIZE_VER0;
3509 if (left) {
3510 void *ptr = attr;
3511 ptr += PERF_ATTR_SIZE_VER0;
3513 ret = readn(fd, ptr, left);
3515 /* read perf_file_section, ids are read in caller */
3516 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3518 return ret <= 0 ? -1 : 0;
3521 static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3522 struct tep_handle *pevent)
3524 struct tep_event *event;
3525 char bf[128];
3527 /* already prepared */
3528 if (evsel->tp_format)
3529 return 0;
3531 if (pevent == NULL) {
3532 pr_debug("broken or missing trace data\n");
3533 return -1;
3536 event = tep_find_event(pevent, evsel->core.attr.config);
3537 if (event == NULL) {
3538 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3539 return -1;
3542 if (!evsel->name) {
3543 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3544 evsel->name = strdup(bf);
3545 if (evsel->name == NULL)
3546 return -1;
3549 evsel->tp_format = event;
3550 return 0;
3553 static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3554 struct tep_handle *pevent)
3556 struct evsel *pos;
3558 evlist__for_each_entry(evlist, pos) {
3559 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3560 perf_evsel__prepare_tracepoint_event(pos, pevent))
3561 return -1;
3564 return 0;
3567 int perf_session__read_header(struct perf_session *session)
3569 struct perf_data *data = session->data;
3570 struct perf_header *header = &session->header;
3571 struct perf_file_header f_header;
3572 struct perf_file_attr f_attr;
3573 u64 f_id;
3574 int nr_attrs, nr_ids, i, j;
3575 int fd = perf_data__fd(data);
3577 session->evlist = evlist__new();
3578 if (session->evlist == NULL)
3579 return -ENOMEM;
3581 session->evlist->env = &header->env;
3582 session->machines.host.env = &header->env;
3583 if (perf_data__is_pipe(data))
3584 return perf_header__read_pipe(session);
3586 if (perf_file_header__read(&f_header, header, fd) < 0)
3587 return -EINVAL;
3590 * Sanity check that perf.data was written cleanly; data size is
3591 * initialized to 0 and updated only if the on_exit function is run.
3592 * If data size is still 0 then the file contains only partial
3593 * information. Just warn user and process it as much as it can.
3595 if (f_header.data.size == 0) {
3596 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3597 "Was the 'perf record' command properly terminated?\n",
3598 data->file.path);
3601 if (f_header.attr_size == 0) {
3602 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
3603 "Was the 'perf record' command properly terminated?\n",
3604 data->file.path);
3605 return -EINVAL;
3608 nr_attrs = f_header.attrs.size / f_header.attr_size;
3609 lseek(fd, f_header.attrs.offset, SEEK_SET);
3611 for (i = 0; i < nr_attrs; i++) {
3612 struct evsel *evsel;
3613 off_t tmp;
3615 if (read_attr(fd, header, &f_attr) < 0)
3616 goto out_errno;
3618 if (header->needs_swap) {
3619 f_attr.ids.size = bswap_64(f_attr.ids.size);
3620 f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3621 perf_event__attr_swap(&f_attr.attr);
3624 tmp = lseek(fd, 0, SEEK_CUR);
3625 evsel = evsel__new(&f_attr.attr);
3627 if (evsel == NULL)
3628 goto out_delete_evlist;
3630 evsel->needs_swap = header->needs_swap;
3632 * Do it before so that if perf_evsel__alloc_id fails, this
3633 * entry gets purged too at evlist__delete().
3635 evlist__add(session->evlist, evsel);
3637 nr_ids = f_attr.ids.size / sizeof(u64);
3639 * We don't have the cpu and thread maps on the header, so
3640 * for allocating the perf_sample_id table we fake 1 cpu and
3641 * hattr->ids threads.
3643 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
3644 goto out_delete_evlist;
3646 lseek(fd, f_attr.ids.offset, SEEK_SET);
3648 for (j = 0; j < nr_ids; j++) {
3649 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3650 goto out_errno;
3652 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
3655 lseek(fd, tmp, SEEK_SET);
3658 perf_header__process_sections(header, fd, &session->tevent,
3659 perf_file_section__process);
3661 if (perf_evlist__prepare_tracepoint_events(session->evlist,
3662 session->tevent.pevent))
3663 goto out_delete_evlist;
3665 return 0;
3666 out_errno:
3667 return -errno;
3669 out_delete_evlist:
3670 evlist__delete(session->evlist);
3671 session->evlist = NULL;
3672 return -ENOMEM;
3675 int perf_event__process_feature(struct perf_session *session,
3676 union perf_event *event)
3678 struct perf_tool *tool = session->tool;
3679 struct feat_fd ff = { .fd = 0 };
3680 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
3681 int type = fe->header.type;
3682 u64 feat = fe->feat_id;
3684 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3685 pr_warning("invalid record type %d in pipe-mode\n", type);
3686 return 0;
3688 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3689 pr_warning("invalid record type %d in pipe-mode\n", type);
3690 return -1;
3693 if (!feat_ops[feat].process)
3694 return 0;
3696 ff.buf = (void *)fe->data;
3697 ff.size = event->header.size - sizeof(*fe);
3698 ff.ph = &session->header;
3700 if (feat_ops[feat].process(&ff, NULL))
3701 return -1;
3703 if (!feat_ops[feat].print || !tool->show_feat_hdr)
3704 return 0;
3706 if (!feat_ops[feat].full_only ||
3707 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3708 feat_ops[feat].print(&ff, stdout);
3709 } else {
3710 fprintf(stdout, "# %s info available, use -I to display\n",
3711 feat_ops[feat].name);
3714 return 0;
3717 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3719 struct perf_record_event_update *ev = &event->event_update;
3720 struct perf_record_event_update_scale *ev_scale;
3721 struct perf_record_event_update_cpus *ev_cpus;
3722 struct perf_cpu_map *map;
3723 size_t ret;
3725 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id);
3727 switch (ev->type) {
3728 case PERF_EVENT_UPDATE__SCALE:
3729 ev_scale = (struct perf_record_event_update_scale *)ev->data;
3730 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3731 break;
3732 case PERF_EVENT_UPDATE__UNIT:
3733 ret += fprintf(fp, "... unit: %s\n", ev->data);
3734 break;
3735 case PERF_EVENT_UPDATE__NAME:
3736 ret += fprintf(fp, "... name: %s\n", ev->data);
3737 break;
3738 case PERF_EVENT_UPDATE__CPUS:
3739 ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3740 ret += fprintf(fp, "... ");
3742 map = cpu_map__new_data(&ev_cpus->cpus);
3743 if (map)
3744 ret += cpu_map__fprintf(map, fp);
3745 else
3746 ret += fprintf(fp, "failed to get cpus\n");
3747 break;
3748 default:
3749 ret += fprintf(fp, "... unknown type\n");
3750 break;
3753 return ret;
3756 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3757 union perf_event *event,
3758 struct evlist **pevlist)
3760 u32 i, ids, n_ids;
3761 struct evsel *evsel;
3762 struct evlist *evlist = *pevlist;
3764 if (evlist == NULL) {
3765 *pevlist = evlist = evlist__new();
3766 if (evlist == NULL)
3767 return -ENOMEM;
3770 evsel = evsel__new(&event->attr.attr);
3771 if (evsel == NULL)
3772 return -ENOMEM;
3774 evlist__add(evlist, evsel);
3776 ids = event->header.size;
3777 ids -= (void *)&event->attr.id - (void *)event;
3778 n_ids = ids / sizeof(u64);
3780 * We don't have the cpu and thread maps on the header, so
3781 * for allocating the perf_sample_id table we fake 1 cpu and
3782 * hattr->ids threads.
3784 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
3785 return -ENOMEM;
3787 for (i = 0; i < n_ids; i++) {
3788 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
3791 return 0;
3794 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
3795 union perf_event *event,
3796 struct evlist **pevlist)
3798 struct perf_record_event_update *ev = &event->event_update;
3799 struct perf_record_event_update_scale *ev_scale;
3800 struct perf_record_event_update_cpus *ev_cpus;
3801 struct evlist *evlist;
3802 struct evsel *evsel;
3803 struct perf_cpu_map *map;
3805 if (!pevlist || *pevlist == NULL)
3806 return -EINVAL;
3808 evlist = *pevlist;
3810 evsel = perf_evlist__id2evsel(evlist, ev->id);
3811 if (evsel == NULL)
3812 return -EINVAL;
3814 switch (ev->type) {
3815 case PERF_EVENT_UPDATE__UNIT:
3816 evsel->unit = strdup(ev->data);
3817 break;
3818 case PERF_EVENT_UPDATE__NAME:
3819 evsel->name = strdup(ev->data);
3820 break;
3821 case PERF_EVENT_UPDATE__SCALE:
3822 ev_scale = (struct perf_record_event_update_scale *)ev->data;
3823 evsel->scale = ev_scale->scale;
3824 break;
3825 case PERF_EVENT_UPDATE__CPUS:
3826 ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3828 map = cpu_map__new_data(&ev_cpus->cpus);
3829 if (map)
3830 evsel->core.own_cpus = map;
3831 else
3832 pr_err("failed to get event_update cpus\n");
3833 default:
3834 break;
3837 return 0;
3840 int perf_event__process_tracing_data(struct perf_session *session,
3841 union perf_event *event)
3843 ssize_t size_read, padding, size = event->tracing_data.size;
3844 int fd = perf_data__fd(session->data);
3845 off_t offset = lseek(fd, 0, SEEK_CUR);
3846 char buf[BUFSIZ];
3848 /* setup for reading amidst mmap */
3849 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
3850 SEEK_SET);
3852 size_read = trace_report(fd, &session->tevent,
3853 session->repipe);
3854 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
3856 if (readn(fd, buf, padding) < 0) {
3857 pr_err("%s: reading input file", __func__);
3858 return -1;
3860 if (session->repipe) {
3861 int retw = write(STDOUT_FILENO, buf, padding);
3862 if (retw <= 0 || retw != padding) {
3863 pr_err("%s: repiping tracing data padding", __func__);
3864 return -1;
3868 if (size_read + padding != size) {
3869 pr_err("%s: tracing data size mismatch", __func__);
3870 return -1;
3873 perf_evlist__prepare_tracepoint_events(session->evlist,
3874 session->tevent.pevent);
3876 return size_read + padding;
3879 int perf_event__process_build_id(struct perf_session *session,
3880 union perf_event *event)
3882 __event_process_build_id(&event->build_id,
3883 event->build_id.filename,
3884 session);
3885 return 0;