1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
4 #include <linux/sort.h>
5 #include <linux/slab.h>
7 #include "mds_client.h"
8 #include <linux/ceph/decode.h>
10 /* unused map expires after 5 minutes */
11 #define CEPH_SNAPID_MAP_TIMEOUT (5 * 60 * HZ)
14 * Snapshots in ceph are driven in large part by cooperation from the
15 * client. In contrast to local file systems or file servers that
16 * implement snapshots at a single point in the system, ceph's
17 * distributed access to storage requires clients to help decide
18 * whether a write logically occurs before or after a recently created
21 * This provides a perfect instantanous client-wide snapshot. Between
22 * clients, however, snapshots may appear to be applied at slightly
23 * different points in time, depending on delays in delivering the
24 * snapshot notification.
26 * Snapshots are _not_ file system-wide. Instead, each snapshot
27 * applies to the subdirectory nested beneath some directory. This
28 * effectively divides the hierarchy into multiple "realms," where all
29 * of the files contained by each realm share the same set of
30 * snapshots. An individual realm's snap set contains snapshots
31 * explicitly created on that realm, as well as any snaps in its
32 * parent's snap set _after_ the point at which the parent became it's
33 * parent (due to, say, a rename). Similarly, snaps from prior parents
34 * during the time intervals during which they were the parent are included.
36 * The client is spared most of this detail, fortunately... it must only
37 * maintains a hierarchy of realms reflecting the current parent/child
38 * realm relationship, and for each realm has an explicit list of snaps
39 * inherited from prior parents.
41 * A snap_realm struct is maintained for realms containing every inode
42 * with an open cap in the system. (The needed snap realm information is
43 * provided by the MDS whenever a cap is issued, i.e., on open.) A 'seq'
44 * version number is used to ensure that as realm parameters change (new
45 * snapshot, new parent, etc.) the client's realm hierarchy is updated.
47 * The realm hierarchy drives the generation of a 'snap context' for each
48 * realm, which simply lists the resulting set of snaps for the realm. This
49 * is attached to any writes sent to OSDs.
52 * Unfortunately error handling is a bit mixed here. If we get a snap
53 * update, but don't have enough memory to update our realm hierarchy,
54 * it's not clear what we can do about it (besides complaining to the
60 * increase ref count for the realm
62 * caller must hold snap_rwsem for write.
64 void ceph_get_snap_realm(struct ceph_mds_client
*mdsc
,
65 struct ceph_snap_realm
*realm
)
67 dout("get_realm %p %d -> %d\n", realm
,
68 atomic_read(&realm
->nref
), atomic_read(&realm
->nref
)+1);
70 * since we _only_ increment realm refs or empty the empty
71 * list with snap_rwsem held, adjusting the empty list here is
72 * safe. we do need to protect against concurrent empty list
75 if (atomic_inc_return(&realm
->nref
) == 1) {
76 spin_lock(&mdsc
->snap_empty_lock
);
77 list_del_init(&realm
->empty_item
);
78 spin_unlock(&mdsc
->snap_empty_lock
);
82 static void __insert_snap_realm(struct rb_root
*root
,
83 struct ceph_snap_realm
*new)
85 struct rb_node
**p
= &root
->rb_node
;
86 struct rb_node
*parent
= NULL
;
87 struct ceph_snap_realm
*r
= NULL
;
91 r
= rb_entry(parent
, struct ceph_snap_realm
, node
);
92 if (new->ino
< r
->ino
)
94 else if (new->ino
> r
->ino
)
100 rb_link_node(&new->node
, parent
, p
);
101 rb_insert_color(&new->node
, root
);
105 * create and get the realm rooted at @ino and bump its ref count.
107 * caller must hold snap_rwsem for write.
109 static struct ceph_snap_realm
*ceph_create_snap_realm(
110 struct ceph_mds_client
*mdsc
,
113 struct ceph_snap_realm
*realm
;
115 realm
= kzalloc(sizeof(*realm
), GFP_NOFS
);
117 return ERR_PTR(-ENOMEM
);
119 atomic_set(&realm
->nref
, 1); /* for caller */
121 INIT_LIST_HEAD(&realm
->children
);
122 INIT_LIST_HEAD(&realm
->child_item
);
123 INIT_LIST_HEAD(&realm
->empty_item
);
124 INIT_LIST_HEAD(&realm
->dirty_item
);
125 INIT_LIST_HEAD(&realm
->inodes_with_caps
);
126 spin_lock_init(&realm
->inodes_with_caps_lock
);
127 __insert_snap_realm(&mdsc
->snap_realms
, realm
);
128 mdsc
->num_snap_realms
++;
130 dout("create_snap_realm %llx %p\n", realm
->ino
, realm
);
135 * lookup the realm rooted at @ino.
137 * caller must hold snap_rwsem for write.
139 static struct ceph_snap_realm
*__lookup_snap_realm(struct ceph_mds_client
*mdsc
,
142 struct rb_node
*n
= mdsc
->snap_realms
.rb_node
;
143 struct ceph_snap_realm
*r
;
146 r
= rb_entry(n
, struct ceph_snap_realm
, node
);
149 else if (ino
> r
->ino
)
152 dout("lookup_snap_realm %llx %p\n", r
->ino
, r
);
159 struct ceph_snap_realm
*ceph_lookup_snap_realm(struct ceph_mds_client
*mdsc
,
162 struct ceph_snap_realm
*r
;
163 r
= __lookup_snap_realm(mdsc
, ino
);
165 ceph_get_snap_realm(mdsc
, r
);
169 static void __put_snap_realm(struct ceph_mds_client
*mdsc
,
170 struct ceph_snap_realm
*realm
);
173 * called with snap_rwsem (write)
175 static void __destroy_snap_realm(struct ceph_mds_client
*mdsc
,
176 struct ceph_snap_realm
*realm
)
178 dout("__destroy_snap_realm %p %llx\n", realm
, realm
->ino
);
180 rb_erase(&realm
->node
, &mdsc
->snap_realms
);
181 mdsc
->num_snap_realms
--;
184 list_del_init(&realm
->child_item
);
185 __put_snap_realm(mdsc
, realm
->parent
);
188 kfree(realm
->prior_parent_snaps
);
190 ceph_put_snap_context(realm
->cached_context
);
195 * caller holds snap_rwsem (write)
197 static void __put_snap_realm(struct ceph_mds_client
*mdsc
,
198 struct ceph_snap_realm
*realm
)
200 dout("__put_snap_realm %llx %p %d -> %d\n", realm
->ino
, realm
,
201 atomic_read(&realm
->nref
), atomic_read(&realm
->nref
)-1);
202 if (atomic_dec_and_test(&realm
->nref
))
203 __destroy_snap_realm(mdsc
, realm
);
207 * caller needn't hold any locks
209 void ceph_put_snap_realm(struct ceph_mds_client
*mdsc
,
210 struct ceph_snap_realm
*realm
)
212 dout("put_snap_realm %llx %p %d -> %d\n", realm
->ino
, realm
,
213 atomic_read(&realm
->nref
), atomic_read(&realm
->nref
)-1);
214 if (!atomic_dec_and_test(&realm
->nref
))
217 if (down_write_trylock(&mdsc
->snap_rwsem
)) {
218 __destroy_snap_realm(mdsc
, realm
);
219 up_write(&mdsc
->snap_rwsem
);
221 spin_lock(&mdsc
->snap_empty_lock
);
222 list_add(&realm
->empty_item
, &mdsc
->snap_empty
);
223 spin_unlock(&mdsc
->snap_empty_lock
);
228 * Clean up any realms whose ref counts have dropped to zero. Note
229 * that this does not include realms who were created but not yet
232 * Called under snap_rwsem (write)
234 static void __cleanup_empty_realms(struct ceph_mds_client
*mdsc
)
236 struct ceph_snap_realm
*realm
;
238 spin_lock(&mdsc
->snap_empty_lock
);
239 while (!list_empty(&mdsc
->snap_empty
)) {
240 realm
= list_first_entry(&mdsc
->snap_empty
,
241 struct ceph_snap_realm
, empty_item
);
242 list_del(&realm
->empty_item
);
243 spin_unlock(&mdsc
->snap_empty_lock
);
244 __destroy_snap_realm(mdsc
, realm
);
245 spin_lock(&mdsc
->snap_empty_lock
);
247 spin_unlock(&mdsc
->snap_empty_lock
);
250 void ceph_cleanup_empty_realms(struct ceph_mds_client
*mdsc
)
252 down_write(&mdsc
->snap_rwsem
);
253 __cleanup_empty_realms(mdsc
);
254 up_write(&mdsc
->snap_rwsem
);
258 * adjust the parent realm of a given @realm. adjust child list, and parent
259 * pointers, and ref counts appropriately.
261 * return true if parent was changed, 0 if unchanged, <0 on error.
263 * caller must hold snap_rwsem for write.
265 static int adjust_snap_realm_parent(struct ceph_mds_client
*mdsc
,
266 struct ceph_snap_realm
*realm
,
269 struct ceph_snap_realm
*parent
;
271 if (realm
->parent_ino
== parentino
)
274 parent
= ceph_lookup_snap_realm(mdsc
, parentino
);
276 parent
= ceph_create_snap_realm(mdsc
, parentino
);
278 return PTR_ERR(parent
);
280 dout("adjust_snap_realm_parent %llx %p: %llx %p -> %llx %p\n",
281 realm
->ino
, realm
, realm
->parent_ino
, realm
->parent
,
284 list_del_init(&realm
->child_item
);
285 ceph_put_snap_realm(mdsc
, realm
->parent
);
287 realm
->parent_ino
= parentino
;
288 realm
->parent
= parent
;
289 list_add(&realm
->child_item
, &parent
->children
);
294 static int cmpu64_rev(const void *a
, const void *b
)
296 if (*(u64
*)a
< *(u64
*)b
)
298 if (*(u64
*)a
> *(u64
*)b
)
305 * build the snap context for a given realm.
307 static int build_snap_context(struct ceph_snap_realm
*realm
,
308 struct list_head
* dirty_realms
)
310 struct ceph_snap_realm
*parent
= realm
->parent
;
311 struct ceph_snap_context
*snapc
;
313 u32 num
= realm
->num_prior_parent_snaps
+ realm
->num_snaps
;
316 * build parent context, if it hasn't been built.
317 * conservatively estimate that all parent snaps might be
321 if (!parent
->cached_context
) {
322 err
= build_snap_context(parent
, dirty_realms
);
326 num
+= parent
->cached_context
->num_snaps
;
329 /* do i actually need to update? not if my context seq
330 matches realm seq, and my parents' does to. (this works
331 because we rebuild_snap_realms() works _downward_ in
332 hierarchy after each update.) */
333 if (realm
->cached_context
&&
334 realm
->cached_context
->seq
== realm
->seq
&&
336 realm
->cached_context
->seq
>= parent
->cached_context
->seq
)) {
337 dout("build_snap_context %llx %p: %p seq %lld (%u snaps)"
339 realm
->ino
, realm
, realm
->cached_context
,
340 realm
->cached_context
->seq
,
341 (unsigned int)realm
->cached_context
->num_snaps
);
345 /* alloc new snap context */
347 if (num
> (SIZE_MAX
- sizeof(*snapc
)) / sizeof(u64
))
349 snapc
= ceph_create_snap_context(num
, GFP_NOFS
);
353 /* build (reverse sorted) snap vector */
355 snapc
->seq
= realm
->seq
;
359 /* include any of parent's snaps occurring _after_ my
360 parent became my parent */
361 for (i
= 0; i
< parent
->cached_context
->num_snaps
; i
++)
362 if (parent
->cached_context
->snaps
[i
] >=
364 snapc
->snaps
[num
++] =
365 parent
->cached_context
->snaps
[i
];
366 if (parent
->cached_context
->seq
> snapc
->seq
)
367 snapc
->seq
= parent
->cached_context
->seq
;
369 memcpy(snapc
->snaps
+ num
, realm
->snaps
,
370 sizeof(u64
)*realm
->num_snaps
);
371 num
+= realm
->num_snaps
;
372 memcpy(snapc
->snaps
+ num
, realm
->prior_parent_snaps
,
373 sizeof(u64
)*realm
->num_prior_parent_snaps
);
374 num
+= realm
->num_prior_parent_snaps
;
376 sort(snapc
->snaps
, num
, sizeof(u64
), cmpu64_rev
, NULL
);
377 snapc
->num_snaps
= num
;
378 dout("build_snap_context %llx %p: %p seq %lld (%u snaps)\n",
379 realm
->ino
, realm
, snapc
, snapc
->seq
,
380 (unsigned int) snapc
->num_snaps
);
382 ceph_put_snap_context(realm
->cached_context
);
383 realm
->cached_context
= snapc
;
384 /* queue realm for cap_snap creation */
385 list_add_tail(&realm
->dirty_item
, dirty_realms
);
390 * if we fail, clear old (incorrect) cached_context... hopefully
391 * we'll have better luck building it later
393 if (realm
->cached_context
) {
394 ceph_put_snap_context(realm
->cached_context
);
395 realm
->cached_context
= NULL
;
397 pr_err("build_snap_context %llx %p fail %d\n", realm
->ino
,
403 * rebuild snap context for the given realm and all of its children.
405 static void rebuild_snap_realms(struct ceph_snap_realm
*realm
,
406 struct list_head
*dirty_realms
)
408 struct ceph_snap_realm
*child
;
410 dout("rebuild_snap_realms %llx %p\n", realm
->ino
, realm
);
411 build_snap_context(realm
, dirty_realms
);
413 list_for_each_entry(child
, &realm
->children
, child_item
)
414 rebuild_snap_realms(child
, dirty_realms
);
419 * helper to allocate and decode an array of snapids. free prior
422 static int dup_array(u64
**dst
, __le64
*src
, u32 num
)
428 *dst
= kcalloc(num
, sizeof(u64
), GFP_NOFS
);
431 for (i
= 0; i
< num
; i
++)
432 (*dst
)[i
] = get_unaligned_le64(src
+ i
);
439 static bool has_new_snaps(struct ceph_snap_context
*o
,
440 struct ceph_snap_context
*n
)
442 if (n
->num_snaps
== 0)
444 /* snaps are in descending order */
445 return n
->snaps
[0] > o
->seq
;
449 * When a snapshot is applied, the size/mtime inode metadata is queued
450 * in a ceph_cap_snap (one for each snapshot) until writeback
451 * completes and the metadata can be flushed back to the MDS.
453 * However, if a (sync) write is currently in-progress when we apply
454 * the snapshot, we have to wait until the write succeeds or fails
455 * (and a final size/mtime is known). In this case the
456 * cap_snap->writing = 1, and is said to be "pending." When the write
457 * finishes, we __ceph_finish_cap_snap().
459 * Caller must hold snap_rwsem for read (i.e., the realm topology won't
462 void ceph_queue_cap_snap(struct ceph_inode_info
*ci
)
464 struct inode
*inode
= &ci
->vfs_inode
;
465 struct ceph_cap_snap
*capsnap
;
466 struct ceph_snap_context
*old_snapc
, *new_snapc
;
469 capsnap
= kzalloc(sizeof(*capsnap
), GFP_NOFS
);
471 pr_err("ENOMEM allocating ceph_cap_snap on %p\n", inode
);
475 spin_lock(&ci
->i_ceph_lock
);
476 used
= __ceph_caps_used(ci
);
477 dirty
= __ceph_caps_dirty(ci
);
479 old_snapc
= ci
->i_head_snapc
;
480 new_snapc
= ci
->i_snap_realm
->cached_context
;
483 * If there is a write in progress, treat that as a dirty Fw,
484 * even though it hasn't completed yet; by the time we finish
485 * up this capsnap it will be.
487 if (used
& CEPH_CAP_FILE_WR
)
488 dirty
|= CEPH_CAP_FILE_WR
;
490 if (__ceph_have_pending_cap_snap(ci
)) {
491 /* there is no point in queuing multiple "pending" cap_snaps,
492 as no new writes are allowed to start when pending, so any
493 writes in progress now were started before the previous
494 cap_snap. lucky us. */
495 dout("queue_cap_snap %p already pending\n", inode
);
498 if (ci
->i_wrbuffer_ref_head
== 0 &&
499 !(dirty
& (CEPH_CAP_ANY_EXCL
|CEPH_CAP_FILE_WR
))) {
500 dout("queue_cap_snap %p nothing dirty|writing\n", inode
);
507 * There is no need to send FLUSHSNAP message to MDS if there is
508 * no new snapshot. But when there is dirty pages or on-going
509 * writes, we still need to create cap_snap. cap_snap is needed
510 * by the write path and page writeback path.
512 * also see ceph_try_drop_cap_snap()
514 if (has_new_snaps(old_snapc
, new_snapc
)) {
515 if (dirty
& (CEPH_CAP_ANY_EXCL
|CEPH_CAP_FILE_WR
))
516 capsnap
->need_flush
= true;
518 if (!(used
& CEPH_CAP_FILE_WR
) &&
519 ci
->i_wrbuffer_ref_head
== 0) {
520 dout("queue_cap_snap %p "
521 "no new_snap|dirty_page|writing\n", inode
);
526 dout("queue_cap_snap %p cap_snap %p queuing under %p %s %s\n",
527 inode
, capsnap
, old_snapc
, ceph_cap_string(dirty
),
528 capsnap
->need_flush
? "" : "no_flush");
531 refcount_set(&capsnap
->nref
, 1);
532 INIT_LIST_HEAD(&capsnap
->ci_item
);
534 capsnap
->follows
= old_snapc
->seq
;
535 capsnap
->issued
= __ceph_caps_issued(ci
, NULL
);
536 capsnap
->dirty
= dirty
;
538 capsnap
->mode
= inode
->i_mode
;
539 capsnap
->uid
= inode
->i_uid
;
540 capsnap
->gid
= inode
->i_gid
;
542 if (dirty
& CEPH_CAP_XATTR_EXCL
) {
543 __ceph_build_xattrs_blob(ci
);
544 capsnap
->xattr_blob
=
545 ceph_buffer_get(ci
->i_xattrs
.blob
);
546 capsnap
->xattr_version
= ci
->i_xattrs
.version
;
548 capsnap
->xattr_blob
= NULL
;
549 capsnap
->xattr_version
= 0;
552 capsnap
->inline_data
= ci
->i_inline_version
!= CEPH_INLINE_NONE
;
554 /* dirty page count moved from _head to this cap_snap;
555 all subsequent writes page dirties occur _after_ this
557 capsnap
->dirty_pages
= ci
->i_wrbuffer_ref_head
;
558 ci
->i_wrbuffer_ref_head
= 0;
559 capsnap
->context
= old_snapc
;
560 list_add_tail(&capsnap
->ci_item
, &ci
->i_cap_snaps
);
562 if (used
& CEPH_CAP_FILE_WR
) {
563 dout("queue_cap_snap %p cap_snap %p snapc %p"
564 " seq %llu used WR, now pending\n", inode
,
565 capsnap
, old_snapc
, old_snapc
->seq
);
566 capsnap
->writing
= 1;
568 /* note mtime, size NOW. */
569 __ceph_finish_cap_snap(ci
, capsnap
);
575 if (ci
->i_wrbuffer_ref_head
== 0 &&
577 ci
->i_dirty_caps
== 0 &&
578 ci
->i_flushing_caps
== 0) {
579 ci
->i_head_snapc
= NULL
;
581 ci
->i_head_snapc
= ceph_get_snap_context(new_snapc
);
582 dout(" new snapc is %p\n", new_snapc
);
584 spin_unlock(&ci
->i_ceph_lock
);
587 ceph_put_snap_context(old_snapc
);
591 * Finalize the size, mtime for a cap_snap.. that is, settle on final values
592 * to be used for the snapshot, to be flushed back to the mds.
594 * If capsnap can now be flushed, add to snap_flush list, and return 1.
596 * Caller must hold i_ceph_lock.
598 int __ceph_finish_cap_snap(struct ceph_inode_info
*ci
,
599 struct ceph_cap_snap
*capsnap
)
601 struct inode
*inode
= &ci
->vfs_inode
;
602 struct ceph_mds_client
*mdsc
= ceph_sb_to_client(inode
->i_sb
)->mdsc
;
604 BUG_ON(capsnap
->writing
);
605 capsnap
->size
= inode
->i_size
;
606 capsnap
->mtime
= inode
->i_mtime
;
607 capsnap
->atime
= inode
->i_atime
;
608 capsnap
->ctime
= inode
->i_ctime
;
609 capsnap
->time_warp_seq
= ci
->i_time_warp_seq
;
610 capsnap
->truncate_size
= ci
->i_truncate_size
;
611 capsnap
->truncate_seq
= ci
->i_truncate_seq
;
612 if (capsnap
->dirty_pages
) {
613 dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu "
614 "still has %d dirty pages\n", inode
, capsnap
,
615 capsnap
->context
, capsnap
->context
->seq
,
616 ceph_cap_string(capsnap
->dirty
), capsnap
->size
,
617 capsnap
->dirty_pages
);
621 ci
->i_ceph_flags
|= CEPH_I_FLUSH_SNAPS
;
622 dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu\n",
623 inode
, capsnap
, capsnap
->context
,
624 capsnap
->context
->seq
, ceph_cap_string(capsnap
->dirty
),
627 spin_lock(&mdsc
->snap_flush_lock
);
628 if (list_empty(&ci
->i_snap_flush_item
))
629 list_add_tail(&ci
->i_snap_flush_item
, &mdsc
->snap_flush_list
);
630 spin_unlock(&mdsc
->snap_flush_lock
);
631 return 1; /* caller may want to ceph_flush_snaps */
635 * Queue cap_snaps for snap writeback for this realm and its children.
636 * Called under snap_rwsem, so realm topology won't change.
638 static void queue_realm_cap_snaps(struct ceph_snap_realm
*realm
)
640 struct ceph_inode_info
*ci
;
641 struct inode
*lastinode
= NULL
;
643 dout("queue_realm_cap_snaps %p %llx inodes\n", realm
, realm
->ino
);
645 spin_lock(&realm
->inodes_with_caps_lock
);
646 list_for_each_entry(ci
, &realm
->inodes_with_caps
, i_snap_realm_item
) {
647 struct inode
*inode
= igrab(&ci
->vfs_inode
);
650 spin_unlock(&realm
->inodes_with_caps_lock
);
651 /* avoid calling iput_final() while holding
652 * mdsc->snap_rwsem or in mds dispatch threads */
653 ceph_async_iput(lastinode
);
655 ceph_queue_cap_snap(ci
);
656 spin_lock(&realm
->inodes_with_caps_lock
);
658 spin_unlock(&realm
->inodes_with_caps_lock
);
659 ceph_async_iput(lastinode
);
661 dout("queue_realm_cap_snaps %p %llx done\n", realm
, realm
->ino
);
665 * Parse and apply a snapblob "snap trace" from the MDS. This specifies
666 * the snap realm parameters from a given realm and all of its ancestors,
669 * Caller must hold snap_rwsem for write.
671 int ceph_update_snap_trace(struct ceph_mds_client
*mdsc
,
672 void *p
, void *e
, bool deletion
,
673 struct ceph_snap_realm
**realm_ret
)
675 struct ceph_mds_snap_realm
*ri
; /* encoded */
676 __le64
*snaps
; /* encoded */
677 __le64
*prior_parent_snaps
; /* encoded */
678 struct ceph_snap_realm
*realm
= NULL
;
679 struct ceph_snap_realm
*first_realm
= NULL
;
682 LIST_HEAD(dirty_realms
);
684 dout("update_snap_trace deletion=%d\n", deletion
);
686 ceph_decode_need(&p
, e
, sizeof(*ri
), bad
);
689 ceph_decode_need(&p
, e
, sizeof(u64
)*(le32_to_cpu(ri
->num_snaps
) +
690 le32_to_cpu(ri
->num_prior_parent_snaps
)), bad
);
692 p
+= sizeof(u64
) * le32_to_cpu(ri
->num_snaps
);
693 prior_parent_snaps
= p
;
694 p
+= sizeof(u64
) * le32_to_cpu(ri
->num_prior_parent_snaps
);
696 realm
= ceph_lookup_snap_realm(mdsc
, le64_to_cpu(ri
->ino
));
698 realm
= ceph_create_snap_realm(mdsc
, le64_to_cpu(ri
->ino
));
700 err
= PTR_ERR(realm
);
705 /* ensure the parent is correct */
706 err
= adjust_snap_realm_parent(mdsc
, realm
, le64_to_cpu(ri
->parent
));
711 if (le64_to_cpu(ri
->seq
) > realm
->seq
) {
712 dout("update_snap_trace updating %llx %p %lld -> %lld\n",
713 realm
->ino
, realm
, realm
->seq
, le64_to_cpu(ri
->seq
));
714 /* update realm parameters, snap lists */
715 realm
->seq
= le64_to_cpu(ri
->seq
);
716 realm
->created
= le64_to_cpu(ri
->created
);
717 realm
->parent_since
= le64_to_cpu(ri
->parent_since
);
719 realm
->num_snaps
= le32_to_cpu(ri
->num_snaps
);
720 err
= dup_array(&realm
->snaps
, snaps
, realm
->num_snaps
);
724 realm
->num_prior_parent_snaps
=
725 le32_to_cpu(ri
->num_prior_parent_snaps
);
726 err
= dup_array(&realm
->prior_parent_snaps
, prior_parent_snaps
,
727 realm
->num_prior_parent_snaps
);
731 if (realm
->seq
> mdsc
->last_snap_seq
)
732 mdsc
->last_snap_seq
= realm
->seq
;
735 } else if (!realm
->cached_context
) {
736 dout("update_snap_trace %llx %p seq %lld new\n",
737 realm
->ino
, realm
, realm
->seq
);
740 dout("update_snap_trace %llx %p seq %lld unchanged\n",
741 realm
->ino
, realm
, realm
->seq
);
744 dout("done with %llx %p, invalidated=%d, %p %p\n", realm
->ino
,
745 realm
, invalidate
, p
, e
);
747 /* invalidate when we reach the _end_ (root) of the trace */
748 if (invalidate
&& p
>= e
)
749 rebuild_snap_realms(realm
, &dirty_realms
);
754 ceph_put_snap_realm(mdsc
, realm
);
760 * queue cap snaps _after_ we've built the new snap contexts,
761 * so that i_head_snapc can be set appropriately.
763 while (!list_empty(&dirty_realms
)) {
764 realm
= list_first_entry(&dirty_realms
, struct ceph_snap_realm
,
766 list_del_init(&realm
->dirty_item
);
767 queue_realm_cap_snaps(realm
);
771 *realm_ret
= first_realm
;
773 ceph_put_snap_realm(mdsc
, first_realm
);
775 __cleanup_empty_realms(mdsc
);
781 if (realm
&& !IS_ERR(realm
))
782 ceph_put_snap_realm(mdsc
, realm
);
784 ceph_put_snap_realm(mdsc
, first_realm
);
785 pr_err("update_snap_trace error %d\n", err
);
791 * Send any cap_snaps that are queued for flush. Try to carry
792 * s_mutex across multiple snap flushes to avoid locking overhead.
794 * Caller holds no locks.
796 static void flush_snaps(struct ceph_mds_client
*mdsc
)
798 struct ceph_inode_info
*ci
;
800 struct ceph_mds_session
*session
= NULL
;
802 dout("flush_snaps\n");
803 spin_lock(&mdsc
->snap_flush_lock
);
804 while (!list_empty(&mdsc
->snap_flush_list
)) {
805 ci
= list_first_entry(&mdsc
->snap_flush_list
,
806 struct ceph_inode_info
, i_snap_flush_item
);
807 inode
= &ci
->vfs_inode
;
809 spin_unlock(&mdsc
->snap_flush_lock
);
810 ceph_flush_snaps(ci
, &session
);
811 /* avoid calling iput_final() while holding
812 * session->s_mutex or in mds dispatch threads */
813 ceph_async_iput(inode
);
814 spin_lock(&mdsc
->snap_flush_lock
);
816 spin_unlock(&mdsc
->snap_flush_lock
);
819 mutex_unlock(&session
->s_mutex
);
820 ceph_put_mds_session(session
);
822 dout("flush_snaps done\n");
827 * Handle a snap notification from the MDS.
829 * This can take two basic forms: the simplest is just a snap creation
830 * or deletion notification on an existing realm. This should update the
831 * realm and its children.
833 * The more difficult case is realm creation, due to snap creation at a
834 * new point in the file hierarchy, or due to a rename that moves a file or
835 * directory into another realm.
837 void ceph_handle_snap(struct ceph_mds_client
*mdsc
,
838 struct ceph_mds_session
*session
,
839 struct ceph_msg
*msg
)
841 struct super_block
*sb
= mdsc
->fsc
->sb
;
842 int mds
= session
->s_mds
;
846 struct ceph_snap_realm
*realm
= NULL
;
847 void *p
= msg
->front
.iov_base
;
848 void *e
= p
+ msg
->front
.iov_len
;
849 struct ceph_mds_snap_head
*h
;
850 int num_split_inos
, num_split_realms
;
851 __le64
*split_inos
= NULL
, *split_realms
= NULL
;
853 int locked_rwsem
= 0;
856 if (msg
->front
.iov_len
< sizeof(*h
))
859 op
= le32_to_cpu(h
->op
);
860 split
= le64_to_cpu(h
->split
); /* non-zero if we are splitting an
862 num_split_inos
= le32_to_cpu(h
->num_split_inos
);
863 num_split_realms
= le32_to_cpu(h
->num_split_realms
);
864 trace_len
= le32_to_cpu(h
->trace_len
);
867 dout("handle_snap from mds%d op %s split %llx tracelen %d\n", mds
,
868 ceph_snap_op_name(op
), split
, trace_len
);
870 mutex_lock(&session
->s_mutex
);
872 mutex_unlock(&session
->s_mutex
);
874 down_write(&mdsc
->snap_rwsem
);
877 if (op
== CEPH_SNAP_OP_SPLIT
) {
878 struct ceph_mds_snap_realm
*ri
;
881 * A "split" breaks part of an existing realm off into
882 * a new realm. The MDS provides a list of inodes
883 * (with caps) and child realms that belong to the new
887 p
+= sizeof(u64
) * num_split_inos
;
889 p
+= sizeof(u64
) * num_split_realms
;
890 ceph_decode_need(&p
, e
, sizeof(*ri
), bad
);
891 /* we will peek at realm info here, but will _not_
892 * advance p, as the realm update will occur below in
893 * ceph_update_snap_trace. */
896 realm
= ceph_lookup_snap_realm(mdsc
, split
);
898 realm
= ceph_create_snap_realm(mdsc
, split
);
903 dout("splitting snap_realm %llx %p\n", realm
->ino
, realm
);
904 for (i
= 0; i
< num_split_inos
; i
++) {
905 struct ceph_vino vino
= {
906 .ino
= le64_to_cpu(split_inos
[i
]),
909 struct inode
*inode
= ceph_find_inode(sb
, vino
);
910 struct ceph_inode_info
*ci
;
911 struct ceph_snap_realm
*oldrealm
;
915 ci
= ceph_inode(inode
);
917 spin_lock(&ci
->i_ceph_lock
);
918 if (!ci
->i_snap_realm
)
921 * If this inode belongs to a realm that was
922 * created after our new realm, we experienced
923 * a race (due to another split notifications
924 * arriving from a different MDS). So skip
927 if (ci
->i_snap_realm
->created
>
928 le64_to_cpu(ri
->created
)) {
929 dout(" leaving %p in newer realm %llx %p\n",
930 inode
, ci
->i_snap_realm
->ino
,
934 dout(" will move %p to split realm %llx %p\n",
935 inode
, realm
->ino
, realm
);
937 * Move the inode to the new realm
939 oldrealm
= ci
->i_snap_realm
;
940 spin_lock(&oldrealm
->inodes_with_caps_lock
);
941 list_del_init(&ci
->i_snap_realm_item
);
942 spin_unlock(&oldrealm
->inodes_with_caps_lock
);
944 spin_lock(&realm
->inodes_with_caps_lock
);
945 list_add(&ci
->i_snap_realm_item
,
946 &realm
->inodes_with_caps
);
947 ci
->i_snap_realm
= realm
;
948 if (realm
->ino
== ci
->i_vino
.ino
)
949 realm
->inode
= inode
;
950 spin_unlock(&realm
->inodes_with_caps_lock
);
952 spin_unlock(&ci
->i_ceph_lock
);
954 ceph_get_snap_realm(mdsc
, realm
);
955 ceph_put_snap_realm(mdsc
, oldrealm
);
957 /* avoid calling iput_final() while holding
958 * mdsc->snap_rwsem or mds in dispatch threads */
959 ceph_async_iput(inode
);
963 spin_unlock(&ci
->i_ceph_lock
);
964 ceph_async_iput(inode
);
967 /* we may have taken some of the old realm's children. */
968 for (i
= 0; i
< num_split_realms
; i
++) {
969 struct ceph_snap_realm
*child
=
970 __lookup_snap_realm(mdsc
,
971 le64_to_cpu(split_realms
[i
]));
974 adjust_snap_realm_parent(mdsc
, child
, realm
->ino
);
979 * update using the provided snap trace. if we are deleting a
980 * snap, we can avoid queueing cap_snaps.
982 ceph_update_snap_trace(mdsc
, p
, e
,
983 op
== CEPH_SNAP_OP_DESTROY
, NULL
);
985 if (op
== CEPH_SNAP_OP_SPLIT
)
986 /* we took a reference when we created the realm, above */
987 ceph_put_snap_realm(mdsc
, realm
);
989 __cleanup_empty_realms(mdsc
);
991 up_write(&mdsc
->snap_rwsem
);
997 pr_err("corrupt snap message from mds%d\n", mds
);
1001 up_write(&mdsc
->snap_rwsem
);
1005 struct ceph_snapid_map
* ceph_get_snapid_map(struct ceph_mds_client
*mdsc
,
1008 struct ceph_snapid_map
*sm
, *exist
;
1009 struct rb_node
**p
, *parent
;
1013 spin_lock(&mdsc
->snapid_map_lock
);
1014 p
= &mdsc
->snapid_map_tree
.rb_node
;
1016 exist
= rb_entry(*p
, struct ceph_snapid_map
, node
);
1017 if (snap
> exist
->snap
) {
1019 } else if (snap
< exist
->snap
) {
1020 p
= &(*p
)->rb_right
;
1022 if (atomic_inc_return(&exist
->ref
) == 1)
1023 list_del_init(&exist
->lru
);
1028 spin_unlock(&mdsc
->snapid_map_lock
);
1030 dout("found snapid map %llx -> %x\n", exist
->snap
, exist
->dev
);
1034 sm
= kmalloc(sizeof(*sm
), GFP_NOFS
);
1038 ret
= get_anon_bdev(&sm
->dev
);
1044 INIT_LIST_HEAD(&sm
->lru
);
1045 atomic_set(&sm
->ref
, 1);
1050 p
= &mdsc
->snapid_map_tree
.rb_node
;
1051 spin_lock(&mdsc
->snapid_map_lock
);
1054 exist
= rb_entry(*p
, struct ceph_snapid_map
, node
);
1055 if (snap
> exist
->snap
)
1057 else if (snap
< exist
->snap
)
1058 p
= &(*p
)->rb_right
;
1064 if (atomic_inc_return(&exist
->ref
) == 1)
1065 list_del_init(&exist
->lru
);
1067 rb_link_node(&sm
->node
, parent
, p
);
1068 rb_insert_color(&sm
->node
, &mdsc
->snapid_map_tree
);
1070 spin_unlock(&mdsc
->snapid_map_lock
);
1072 free_anon_bdev(sm
->dev
);
1074 dout("found snapid map %llx -> %x\n", exist
->snap
, exist
->dev
);
1078 dout("create snapid map %llx -> %x\n", sm
->snap
, sm
->dev
);
1082 void ceph_put_snapid_map(struct ceph_mds_client
* mdsc
,
1083 struct ceph_snapid_map
*sm
)
1087 if (atomic_dec_and_lock(&sm
->ref
, &mdsc
->snapid_map_lock
)) {
1088 if (!RB_EMPTY_NODE(&sm
->node
)) {
1089 sm
->last_used
= jiffies
;
1090 list_add_tail(&sm
->lru
, &mdsc
->snapid_map_lru
);
1091 spin_unlock(&mdsc
->snapid_map_lock
);
1093 /* already cleaned up by
1094 * ceph_cleanup_snapid_map() */
1095 spin_unlock(&mdsc
->snapid_map_lock
);
1101 void ceph_trim_snapid_map(struct ceph_mds_client
*mdsc
)
1103 struct ceph_snapid_map
*sm
;
1107 spin_lock(&mdsc
->snapid_map_lock
);
1110 while (!list_empty(&mdsc
->snapid_map_lru
)) {
1111 sm
= list_first_entry(&mdsc
->snapid_map_lru
,
1112 struct ceph_snapid_map
, lru
);
1113 if (time_after(sm
->last_used
+ CEPH_SNAPID_MAP_TIMEOUT
, now
))
1116 rb_erase(&sm
->node
, &mdsc
->snapid_map_tree
);
1117 list_move(&sm
->lru
, &to_free
);
1119 spin_unlock(&mdsc
->snapid_map_lock
);
1121 while (!list_empty(&to_free
)) {
1122 sm
= list_first_entry(&to_free
, struct ceph_snapid_map
, lru
);
1124 dout("trim snapid map %llx -> %x\n", sm
->snap
, sm
->dev
);
1125 free_anon_bdev(sm
->dev
);
1130 void ceph_cleanup_snapid_map(struct ceph_mds_client
*mdsc
)
1132 struct ceph_snapid_map
*sm
;
1136 spin_lock(&mdsc
->snapid_map_lock
);
1137 while ((p
= rb_first(&mdsc
->snapid_map_tree
))) {
1138 sm
= rb_entry(p
, struct ceph_snapid_map
, node
);
1139 rb_erase(p
, &mdsc
->snapid_map_tree
);
1141 list_move(&sm
->lru
, &to_free
);
1143 spin_unlock(&mdsc
->snapid_map_lock
);
1145 while (!list_empty(&to_free
)) {
1146 sm
= list_first_entry(&to_free
, struct ceph_snapid_map
, lru
);
1148 free_anon_bdev(sm
->dev
);
1149 if (WARN_ON_ONCE(atomic_read(&sm
->ref
))) {
1150 pr_err("snapid map %llx -> %x still in use\n",