btrfs: use file:line format for assertion report
[linux/fpc-iii.git] / fs / ext4 / mballoc.c
blob99ba720dbb7af0655962255645f7dd7543a51b53
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4 * Written by Alex Tomas <alex@clusterfs.com>
5 */
8 /*
9 * mballoc.c contains the multiblocks allocation routines
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <trace/events/ext4.h>
21 #ifdef CONFIG_EXT4_DEBUG
22 ushort ext4_mballoc_debug __read_mostly;
24 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
25 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
26 #endif
29 * MUSTDO:
30 * - test ext4_ext_search_left() and ext4_ext_search_right()
31 * - search for metadata in few groups
33 * TODO v4:
34 * - normalization should take into account whether file is still open
35 * - discard preallocations if no free space left (policy?)
36 * - don't normalize tails
37 * - quota
38 * - reservation for superuser
40 * TODO v3:
41 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
42 * - track min/max extents in each group for better group selection
43 * - mb_mark_used() may allocate chunk right after splitting buddy
44 * - tree of groups sorted by number of free blocks
45 * - error handling
49 * The allocation request involve request for multiple number of blocks
50 * near to the goal(block) value specified.
52 * During initialization phase of the allocator we decide to use the
53 * group preallocation or inode preallocation depending on the size of
54 * the file. The size of the file could be the resulting file size we
55 * would have after allocation, or the current file size, which ever
56 * is larger. If the size is less than sbi->s_mb_stream_request we
57 * select to use the group preallocation. The default value of
58 * s_mb_stream_request is 16 blocks. This can also be tuned via
59 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
60 * terms of number of blocks.
62 * The main motivation for having small file use group preallocation is to
63 * ensure that we have small files closer together on the disk.
65 * First stage the allocator looks at the inode prealloc list,
66 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
67 * spaces for this particular inode. The inode prealloc space is
68 * represented as:
70 * pa_lstart -> the logical start block for this prealloc space
71 * pa_pstart -> the physical start block for this prealloc space
72 * pa_len -> length for this prealloc space (in clusters)
73 * pa_free -> free space available in this prealloc space (in clusters)
75 * The inode preallocation space is used looking at the _logical_ start
76 * block. If only the logical file block falls within the range of prealloc
77 * space we will consume the particular prealloc space. This makes sure that
78 * we have contiguous physical blocks representing the file blocks
80 * The important thing to be noted in case of inode prealloc space is that
81 * we don't modify the values associated to inode prealloc space except
82 * pa_free.
84 * If we are not able to find blocks in the inode prealloc space and if we
85 * have the group allocation flag set then we look at the locality group
86 * prealloc space. These are per CPU prealloc list represented as
88 * ext4_sb_info.s_locality_groups[smp_processor_id()]
90 * The reason for having a per cpu locality group is to reduce the contention
91 * between CPUs. It is possible to get scheduled at this point.
93 * The locality group prealloc space is used looking at whether we have
94 * enough free space (pa_free) within the prealloc space.
96 * If we can't allocate blocks via inode prealloc or/and locality group
97 * prealloc then we look at the buddy cache. The buddy cache is represented
98 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
99 * mapped to the buddy and bitmap information regarding different
100 * groups. The buddy information is attached to buddy cache inode so that
101 * we can access them through the page cache. The information regarding
102 * each group is loaded via ext4_mb_load_buddy. The information involve
103 * block bitmap and buddy information. The information are stored in the
104 * inode as:
106 * { page }
107 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
110 * one block each for bitmap and buddy information. So for each group we
111 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
112 * blocksize) blocks. So it can have information regarding groups_per_page
113 * which is blocks_per_page/2
115 * The buddy cache inode is not stored on disk. The inode is thrown
116 * away when the filesystem is unmounted.
118 * We look for count number of blocks in the buddy cache. If we were able
119 * to locate that many free blocks we return with additional information
120 * regarding rest of the contiguous physical block available
122 * Before allocating blocks via buddy cache we normalize the request
123 * blocks. This ensure we ask for more blocks that we needed. The extra
124 * blocks that we get after allocation is added to the respective prealloc
125 * list. In case of inode preallocation we follow a list of heuristics
126 * based on file size. This can be found in ext4_mb_normalize_request. If
127 * we are doing a group prealloc we try to normalize the request to
128 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
129 * dependent on the cluster size; for non-bigalloc file systems, it is
130 * 512 blocks. This can be tuned via
131 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
132 * terms of number of blocks. If we have mounted the file system with -O
133 * stripe=<value> option the group prealloc request is normalized to the
134 * the smallest multiple of the stripe value (sbi->s_stripe) which is
135 * greater than the default mb_group_prealloc.
137 * The regular allocator (using the buddy cache) supports a few tunables.
139 * /sys/fs/ext4/<partition>/mb_min_to_scan
140 * /sys/fs/ext4/<partition>/mb_max_to_scan
141 * /sys/fs/ext4/<partition>/mb_order2_req
143 * The regular allocator uses buddy scan only if the request len is power of
144 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
145 * value of s_mb_order2_reqs can be tuned via
146 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
147 * stripe size (sbi->s_stripe), we try to search for contiguous block in
148 * stripe size. This should result in better allocation on RAID setups. If
149 * not, we search in the specific group using bitmap for best extents. The
150 * tunable min_to_scan and max_to_scan control the behaviour here.
151 * min_to_scan indicate how long the mballoc __must__ look for a best
152 * extent and max_to_scan indicates how long the mballoc __can__ look for a
153 * best extent in the found extents. Searching for the blocks starts with
154 * the group specified as the goal value in allocation context via
155 * ac_g_ex. Each group is first checked based on the criteria whether it
156 * can be used for allocation. ext4_mb_good_group explains how the groups are
157 * checked.
159 * Both the prealloc space are getting populated as above. So for the first
160 * request we will hit the buddy cache which will result in this prealloc
161 * space getting filled. The prealloc space is then later used for the
162 * subsequent request.
166 * mballoc operates on the following data:
167 * - on-disk bitmap
168 * - in-core buddy (actually includes buddy and bitmap)
169 * - preallocation descriptors (PAs)
171 * there are two types of preallocations:
172 * - inode
173 * assiged to specific inode and can be used for this inode only.
174 * it describes part of inode's space preallocated to specific
175 * physical blocks. any block from that preallocated can be used
176 * independent. the descriptor just tracks number of blocks left
177 * unused. so, before taking some block from descriptor, one must
178 * make sure corresponded logical block isn't allocated yet. this
179 * also means that freeing any block within descriptor's range
180 * must discard all preallocated blocks.
181 * - locality group
182 * assigned to specific locality group which does not translate to
183 * permanent set of inodes: inode can join and leave group. space
184 * from this type of preallocation can be used for any inode. thus
185 * it's consumed from the beginning to the end.
187 * relation between them can be expressed as:
188 * in-core buddy = on-disk bitmap + preallocation descriptors
190 * this mean blocks mballoc considers used are:
191 * - allocated blocks (persistent)
192 * - preallocated blocks (non-persistent)
194 * consistency in mballoc world means that at any time a block is either
195 * free or used in ALL structures. notice: "any time" should not be read
196 * literally -- time is discrete and delimited by locks.
198 * to keep it simple, we don't use block numbers, instead we count number of
199 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
201 * all operations can be expressed as:
202 * - init buddy: buddy = on-disk + PAs
203 * - new PA: buddy += N; PA = N
204 * - use inode PA: on-disk += N; PA -= N
205 * - discard inode PA buddy -= on-disk - PA; PA = 0
206 * - use locality group PA on-disk += N; PA -= N
207 * - discard locality group PA buddy -= PA; PA = 0
208 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
209 * is used in real operation because we can't know actual used
210 * bits from PA, only from on-disk bitmap
212 * if we follow this strict logic, then all operations above should be atomic.
213 * given some of them can block, we'd have to use something like semaphores
214 * killing performance on high-end SMP hardware. let's try to relax it using
215 * the following knowledge:
216 * 1) if buddy is referenced, it's already initialized
217 * 2) while block is used in buddy and the buddy is referenced,
218 * nobody can re-allocate that block
219 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
220 * bit set and PA claims same block, it's OK. IOW, one can set bit in
221 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
222 * block
224 * so, now we're building a concurrency table:
225 * - init buddy vs.
226 * - new PA
227 * blocks for PA are allocated in the buddy, buddy must be referenced
228 * until PA is linked to allocation group to avoid concurrent buddy init
229 * - use inode PA
230 * we need to make sure that either on-disk bitmap or PA has uptodate data
231 * given (3) we care that PA-=N operation doesn't interfere with init
232 * - discard inode PA
233 * the simplest way would be to have buddy initialized by the discard
234 * - use locality group PA
235 * again PA-=N must be serialized with init
236 * - discard locality group PA
237 * the simplest way would be to have buddy initialized by the discard
238 * - new PA vs.
239 * - use inode PA
240 * i_data_sem serializes them
241 * - discard inode PA
242 * discard process must wait until PA isn't used by another process
243 * - use locality group PA
244 * some mutex should serialize them
245 * - discard locality group PA
246 * discard process must wait until PA isn't used by another process
247 * - use inode PA
248 * - use inode PA
249 * i_data_sem or another mutex should serializes them
250 * - discard inode PA
251 * discard process must wait until PA isn't used by another process
252 * - use locality group PA
253 * nothing wrong here -- they're different PAs covering different blocks
254 * - discard locality group PA
255 * discard process must wait until PA isn't used by another process
257 * now we're ready to make few consequences:
258 * - PA is referenced and while it is no discard is possible
259 * - PA is referenced until block isn't marked in on-disk bitmap
260 * - PA changes only after on-disk bitmap
261 * - discard must not compete with init. either init is done before
262 * any discard or they're serialized somehow
263 * - buddy init as sum of on-disk bitmap and PAs is done atomically
265 * a special case when we've used PA to emptiness. no need to modify buddy
266 * in this case, but we should care about concurrent init
271 * Logic in few words:
273 * - allocation:
274 * load group
275 * find blocks
276 * mark bits in on-disk bitmap
277 * release group
279 * - use preallocation:
280 * find proper PA (per-inode or group)
281 * load group
282 * mark bits in on-disk bitmap
283 * release group
284 * release PA
286 * - free:
287 * load group
288 * mark bits in on-disk bitmap
289 * release group
291 * - discard preallocations in group:
292 * mark PAs deleted
293 * move them onto local list
294 * load on-disk bitmap
295 * load group
296 * remove PA from object (inode or locality group)
297 * mark free blocks in-core
299 * - discard inode's preallocations:
303 * Locking rules
305 * Locks:
306 * - bitlock on a group (group)
307 * - object (inode/locality) (object)
308 * - per-pa lock (pa)
310 * Paths:
311 * - new pa
312 * object
313 * group
315 * - find and use pa:
316 * pa
318 * - release consumed pa:
319 * pa
320 * group
321 * object
323 * - generate in-core bitmap:
324 * group
325 * pa
327 * - discard all for given object (inode, locality group):
328 * object
329 * pa
330 * group
332 * - discard all for given group:
333 * group
334 * pa
335 * group
336 * object
339 static struct kmem_cache *ext4_pspace_cachep;
340 static struct kmem_cache *ext4_ac_cachep;
341 static struct kmem_cache *ext4_free_data_cachep;
343 /* We create slab caches for groupinfo data structures based on the
344 * superblock block size. There will be one per mounted filesystem for
345 * each unique s_blocksize_bits */
346 #define NR_GRPINFO_CACHES 8
347 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
349 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
350 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
351 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
352 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
355 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
356 ext4_group_t group);
357 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
358 ext4_group_t group);
360 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
362 #if BITS_PER_LONG == 64
363 *bit += ((unsigned long) addr & 7UL) << 3;
364 addr = (void *) ((unsigned long) addr & ~7UL);
365 #elif BITS_PER_LONG == 32
366 *bit += ((unsigned long) addr & 3UL) << 3;
367 addr = (void *) ((unsigned long) addr & ~3UL);
368 #else
369 #error "how many bits you are?!"
370 #endif
371 return addr;
374 static inline int mb_test_bit(int bit, void *addr)
377 * ext4_test_bit on architecture like powerpc
378 * needs unsigned long aligned address
380 addr = mb_correct_addr_and_bit(&bit, addr);
381 return ext4_test_bit(bit, addr);
384 static inline void mb_set_bit(int bit, void *addr)
386 addr = mb_correct_addr_and_bit(&bit, addr);
387 ext4_set_bit(bit, addr);
390 static inline void mb_clear_bit(int bit, void *addr)
392 addr = mb_correct_addr_and_bit(&bit, addr);
393 ext4_clear_bit(bit, addr);
396 static inline int mb_test_and_clear_bit(int bit, void *addr)
398 addr = mb_correct_addr_and_bit(&bit, addr);
399 return ext4_test_and_clear_bit(bit, addr);
402 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
404 int fix = 0, ret, tmpmax;
405 addr = mb_correct_addr_and_bit(&fix, addr);
406 tmpmax = max + fix;
407 start += fix;
409 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
410 if (ret > max)
411 return max;
412 return ret;
415 static inline int mb_find_next_bit(void *addr, int max, int start)
417 int fix = 0, ret, tmpmax;
418 addr = mb_correct_addr_and_bit(&fix, addr);
419 tmpmax = max + fix;
420 start += fix;
422 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
423 if (ret > max)
424 return max;
425 return ret;
428 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
430 char *bb;
432 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
433 BUG_ON(max == NULL);
435 if (order > e4b->bd_blkbits + 1) {
436 *max = 0;
437 return NULL;
440 /* at order 0 we see each particular block */
441 if (order == 0) {
442 *max = 1 << (e4b->bd_blkbits + 3);
443 return e4b->bd_bitmap;
446 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
447 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
449 return bb;
452 #ifdef DOUBLE_CHECK
453 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
454 int first, int count)
456 int i;
457 struct super_block *sb = e4b->bd_sb;
459 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
460 return;
461 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
462 for (i = 0; i < count; i++) {
463 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
464 ext4_fsblk_t blocknr;
466 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
467 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
468 ext4_grp_locked_error(sb, e4b->bd_group,
469 inode ? inode->i_ino : 0,
470 blocknr,
471 "freeing block already freed "
472 "(bit %u)",
473 first + i);
474 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
475 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
477 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
481 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
483 int i;
485 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
486 return;
487 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
488 for (i = 0; i < count; i++) {
489 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
490 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
494 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
496 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
497 unsigned char *b1, *b2;
498 int i;
499 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
500 b2 = (unsigned char *) bitmap;
501 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
502 if (b1[i] != b2[i]) {
503 ext4_msg(e4b->bd_sb, KERN_ERR,
504 "corruption in group %u "
505 "at byte %u(%u): %x in copy != %x "
506 "on disk/prealloc",
507 e4b->bd_group, i, i * 8, b1[i], b2[i]);
508 BUG();
514 #else
515 static inline void mb_free_blocks_double(struct inode *inode,
516 struct ext4_buddy *e4b, int first, int count)
518 return;
520 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
521 int first, int count)
523 return;
525 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
527 return;
529 #endif
531 #ifdef AGGRESSIVE_CHECK
533 #define MB_CHECK_ASSERT(assert) \
534 do { \
535 if (!(assert)) { \
536 printk(KERN_EMERG \
537 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
538 function, file, line, # assert); \
539 BUG(); \
541 } while (0)
543 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
544 const char *function, int line)
546 struct super_block *sb = e4b->bd_sb;
547 int order = e4b->bd_blkbits + 1;
548 int max;
549 int max2;
550 int i;
551 int j;
552 int k;
553 int count;
554 struct ext4_group_info *grp;
555 int fragments = 0;
556 int fstart;
557 struct list_head *cur;
558 void *buddy;
559 void *buddy2;
562 static int mb_check_counter;
563 if (mb_check_counter++ % 100 != 0)
564 return 0;
567 while (order > 1) {
568 buddy = mb_find_buddy(e4b, order, &max);
569 MB_CHECK_ASSERT(buddy);
570 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
571 MB_CHECK_ASSERT(buddy2);
572 MB_CHECK_ASSERT(buddy != buddy2);
573 MB_CHECK_ASSERT(max * 2 == max2);
575 count = 0;
576 for (i = 0; i < max; i++) {
578 if (mb_test_bit(i, buddy)) {
579 /* only single bit in buddy2 may be 1 */
580 if (!mb_test_bit(i << 1, buddy2)) {
581 MB_CHECK_ASSERT(
582 mb_test_bit((i<<1)+1, buddy2));
583 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
584 MB_CHECK_ASSERT(
585 mb_test_bit(i << 1, buddy2));
587 continue;
590 /* both bits in buddy2 must be 1 */
591 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
592 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
594 for (j = 0; j < (1 << order); j++) {
595 k = (i * (1 << order)) + j;
596 MB_CHECK_ASSERT(
597 !mb_test_bit(k, e4b->bd_bitmap));
599 count++;
601 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
602 order--;
605 fstart = -1;
606 buddy = mb_find_buddy(e4b, 0, &max);
607 for (i = 0; i < max; i++) {
608 if (!mb_test_bit(i, buddy)) {
609 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
610 if (fstart == -1) {
611 fragments++;
612 fstart = i;
614 continue;
616 fstart = -1;
617 /* check used bits only */
618 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
619 buddy2 = mb_find_buddy(e4b, j, &max2);
620 k = i >> j;
621 MB_CHECK_ASSERT(k < max2);
622 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
625 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
626 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
628 grp = ext4_get_group_info(sb, e4b->bd_group);
629 list_for_each(cur, &grp->bb_prealloc_list) {
630 ext4_group_t groupnr;
631 struct ext4_prealloc_space *pa;
632 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
633 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
634 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
635 for (i = 0; i < pa->pa_len; i++)
636 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
638 return 0;
640 #undef MB_CHECK_ASSERT
641 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
642 __FILE__, __func__, __LINE__)
643 #else
644 #define mb_check_buddy(e4b)
645 #endif
648 * Divide blocks started from @first with length @len into
649 * smaller chunks with power of 2 blocks.
650 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
651 * then increase bb_counters[] for corresponded chunk size.
653 static void ext4_mb_mark_free_simple(struct super_block *sb,
654 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
655 struct ext4_group_info *grp)
657 struct ext4_sb_info *sbi = EXT4_SB(sb);
658 ext4_grpblk_t min;
659 ext4_grpblk_t max;
660 ext4_grpblk_t chunk;
661 unsigned int border;
663 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
665 border = 2 << sb->s_blocksize_bits;
667 while (len > 0) {
668 /* find how many blocks can be covered since this position */
669 max = ffs(first | border) - 1;
671 /* find how many blocks of power 2 we need to mark */
672 min = fls(len) - 1;
674 if (max < min)
675 min = max;
676 chunk = 1 << min;
678 /* mark multiblock chunks only */
679 grp->bb_counters[min]++;
680 if (min > 0)
681 mb_clear_bit(first >> min,
682 buddy + sbi->s_mb_offsets[min]);
684 len -= chunk;
685 first += chunk;
690 * Cache the order of the largest free extent we have available in this block
691 * group.
693 static void
694 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
696 int i;
697 int bits;
699 grp->bb_largest_free_order = -1; /* uninit */
701 bits = sb->s_blocksize_bits + 1;
702 for (i = bits; i >= 0; i--) {
703 if (grp->bb_counters[i] > 0) {
704 grp->bb_largest_free_order = i;
705 break;
710 static noinline_for_stack
711 void ext4_mb_generate_buddy(struct super_block *sb,
712 void *buddy, void *bitmap, ext4_group_t group)
714 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
715 struct ext4_sb_info *sbi = EXT4_SB(sb);
716 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
717 ext4_grpblk_t i = 0;
718 ext4_grpblk_t first;
719 ext4_grpblk_t len;
720 unsigned free = 0;
721 unsigned fragments = 0;
722 unsigned long long period = get_cycles();
724 /* initialize buddy from bitmap which is aggregation
725 * of on-disk bitmap and preallocations */
726 i = mb_find_next_zero_bit(bitmap, max, 0);
727 grp->bb_first_free = i;
728 while (i < max) {
729 fragments++;
730 first = i;
731 i = mb_find_next_bit(bitmap, max, i);
732 len = i - first;
733 free += len;
734 if (len > 1)
735 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
736 else
737 grp->bb_counters[0]++;
738 if (i < max)
739 i = mb_find_next_zero_bit(bitmap, max, i);
741 grp->bb_fragments = fragments;
743 if (free != grp->bb_free) {
744 ext4_grp_locked_error(sb, group, 0, 0,
745 "block bitmap and bg descriptor "
746 "inconsistent: %u vs %u free clusters",
747 free, grp->bb_free);
749 * If we intend to continue, we consider group descriptor
750 * corrupt and update bb_free using bitmap value
752 grp->bb_free = free;
753 ext4_mark_group_bitmap_corrupted(sb, group,
754 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
756 mb_set_largest_free_order(sb, grp);
758 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
760 period = get_cycles() - period;
761 spin_lock(&sbi->s_bal_lock);
762 sbi->s_mb_buddies_generated++;
763 sbi->s_mb_generation_time += period;
764 spin_unlock(&sbi->s_bal_lock);
767 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
769 int count;
770 int order = 1;
771 void *buddy;
773 while ((buddy = mb_find_buddy(e4b, order++, &count))) {
774 ext4_set_bits(buddy, 0, count);
776 e4b->bd_info->bb_fragments = 0;
777 memset(e4b->bd_info->bb_counters, 0,
778 sizeof(*e4b->bd_info->bb_counters) *
779 (e4b->bd_sb->s_blocksize_bits + 2));
781 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
782 e4b->bd_bitmap, e4b->bd_group);
785 /* The buddy information is attached the buddy cache inode
786 * for convenience. The information regarding each group
787 * is loaded via ext4_mb_load_buddy. The information involve
788 * block bitmap and buddy information. The information are
789 * stored in the inode as
791 * { page }
792 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
795 * one block each for bitmap and buddy information.
796 * So for each group we take up 2 blocks. A page can
797 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks.
798 * So it can have information regarding groups_per_page which
799 * is blocks_per_page/2
801 * Locking note: This routine takes the block group lock of all groups
802 * for this page; do not hold this lock when calling this routine!
805 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
807 ext4_group_t ngroups;
808 int blocksize;
809 int blocks_per_page;
810 int groups_per_page;
811 int err = 0;
812 int i;
813 ext4_group_t first_group, group;
814 int first_block;
815 struct super_block *sb;
816 struct buffer_head *bhs;
817 struct buffer_head **bh = NULL;
818 struct inode *inode;
819 char *data;
820 char *bitmap;
821 struct ext4_group_info *grinfo;
823 mb_debug(1, "init page %lu\n", page->index);
825 inode = page->mapping->host;
826 sb = inode->i_sb;
827 ngroups = ext4_get_groups_count(sb);
828 blocksize = i_blocksize(inode);
829 blocks_per_page = PAGE_SIZE / blocksize;
831 groups_per_page = blocks_per_page >> 1;
832 if (groups_per_page == 0)
833 groups_per_page = 1;
835 /* allocate buffer_heads to read bitmaps */
836 if (groups_per_page > 1) {
837 i = sizeof(struct buffer_head *) * groups_per_page;
838 bh = kzalloc(i, gfp);
839 if (bh == NULL) {
840 err = -ENOMEM;
841 goto out;
843 } else
844 bh = &bhs;
846 first_group = page->index * blocks_per_page / 2;
848 /* read all groups the page covers into the cache */
849 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
850 if (group >= ngroups)
851 break;
853 grinfo = ext4_get_group_info(sb, group);
855 * If page is uptodate then we came here after online resize
856 * which added some new uninitialized group info structs, so
857 * we must skip all initialized uptodate buddies on the page,
858 * which may be currently in use by an allocating task.
860 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
861 bh[i] = NULL;
862 continue;
864 bh[i] = ext4_read_block_bitmap_nowait(sb, group);
865 if (IS_ERR(bh[i])) {
866 err = PTR_ERR(bh[i]);
867 bh[i] = NULL;
868 goto out;
870 mb_debug(1, "read bitmap for group %u\n", group);
873 /* wait for I/O completion */
874 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
875 int err2;
877 if (!bh[i])
878 continue;
879 err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
880 if (!err)
881 err = err2;
884 first_block = page->index * blocks_per_page;
885 for (i = 0; i < blocks_per_page; i++) {
886 group = (first_block + i) >> 1;
887 if (group >= ngroups)
888 break;
890 if (!bh[group - first_group])
891 /* skip initialized uptodate buddy */
892 continue;
894 if (!buffer_verified(bh[group - first_group]))
895 /* Skip faulty bitmaps */
896 continue;
897 err = 0;
900 * data carry information regarding this
901 * particular group in the format specified
902 * above
905 data = page_address(page) + (i * blocksize);
906 bitmap = bh[group - first_group]->b_data;
909 * We place the buddy block and bitmap block
910 * close together
912 if ((first_block + i) & 1) {
913 /* this is block of buddy */
914 BUG_ON(incore == NULL);
915 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
916 group, page->index, i * blocksize);
917 trace_ext4_mb_buddy_bitmap_load(sb, group);
918 grinfo = ext4_get_group_info(sb, group);
919 grinfo->bb_fragments = 0;
920 memset(grinfo->bb_counters, 0,
921 sizeof(*grinfo->bb_counters) *
922 (sb->s_blocksize_bits+2));
924 * incore got set to the group block bitmap below
926 ext4_lock_group(sb, group);
927 /* init the buddy */
928 memset(data, 0xff, blocksize);
929 ext4_mb_generate_buddy(sb, data, incore, group);
930 ext4_unlock_group(sb, group);
931 incore = NULL;
932 } else {
933 /* this is block of bitmap */
934 BUG_ON(incore != NULL);
935 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
936 group, page->index, i * blocksize);
937 trace_ext4_mb_bitmap_load(sb, group);
939 /* see comments in ext4_mb_put_pa() */
940 ext4_lock_group(sb, group);
941 memcpy(data, bitmap, blocksize);
943 /* mark all preallocated blks used in in-core bitmap */
944 ext4_mb_generate_from_pa(sb, data, group);
945 ext4_mb_generate_from_freelist(sb, data, group);
946 ext4_unlock_group(sb, group);
948 /* set incore so that the buddy information can be
949 * generated using this
951 incore = data;
954 SetPageUptodate(page);
956 out:
957 if (bh) {
958 for (i = 0; i < groups_per_page; i++)
959 brelse(bh[i]);
960 if (bh != &bhs)
961 kfree(bh);
963 return err;
967 * Lock the buddy and bitmap pages. This make sure other parallel init_group
968 * on the same buddy page doesn't happen whild holding the buddy page lock.
969 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
970 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
972 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
973 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
975 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
976 int block, pnum, poff;
977 int blocks_per_page;
978 struct page *page;
980 e4b->bd_buddy_page = NULL;
981 e4b->bd_bitmap_page = NULL;
983 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
985 * the buddy cache inode stores the block bitmap
986 * and buddy information in consecutive blocks.
987 * So for each group we need two blocks.
989 block = group * 2;
990 pnum = block / blocks_per_page;
991 poff = block % blocks_per_page;
992 page = find_or_create_page(inode->i_mapping, pnum, gfp);
993 if (!page)
994 return -ENOMEM;
995 BUG_ON(page->mapping != inode->i_mapping);
996 e4b->bd_bitmap_page = page;
997 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
999 if (blocks_per_page >= 2) {
1000 /* buddy and bitmap are on the same page */
1001 return 0;
1004 block++;
1005 pnum = block / blocks_per_page;
1006 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1007 if (!page)
1008 return -ENOMEM;
1009 BUG_ON(page->mapping != inode->i_mapping);
1010 e4b->bd_buddy_page = page;
1011 return 0;
1014 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1016 if (e4b->bd_bitmap_page) {
1017 unlock_page(e4b->bd_bitmap_page);
1018 put_page(e4b->bd_bitmap_page);
1020 if (e4b->bd_buddy_page) {
1021 unlock_page(e4b->bd_buddy_page);
1022 put_page(e4b->bd_buddy_page);
1027 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1028 * block group lock of all groups for this page; do not hold the BG lock when
1029 * calling this routine!
1031 static noinline_for_stack
1032 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1035 struct ext4_group_info *this_grp;
1036 struct ext4_buddy e4b;
1037 struct page *page;
1038 int ret = 0;
1040 might_sleep();
1041 mb_debug(1, "init group %u\n", group);
1042 this_grp = ext4_get_group_info(sb, group);
1044 * This ensures that we don't reinit the buddy cache
1045 * page which map to the group from which we are already
1046 * allocating. If we are looking at the buddy cache we would
1047 * have taken a reference using ext4_mb_load_buddy and that
1048 * would have pinned buddy page to page cache.
1049 * The call to ext4_mb_get_buddy_page_lock will mark the
1050 * page accessed.
1052 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1053 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1055 * somebody initialized the group
1056 * return without doing anything
1058 goto err;
1061 page = e4b.bd_bitmap_page;
1062 ret = ext4_mb_init_cache(page, NULL, gfp);
1063 if (ret)
1064 goto err;
1065 if (!PageUptodate(page)) {
1066 ret = -EIO;
1067 goto err;
1070 if (e4b.bd_buddy_page == NULL) {
1072 * If both the bitmap and buddy are in
1073 * the same page we don't need to force
1074 * init the buddy
1076 ret = 0;
1077 goto err;
1079 /* init buddy cache */
1080 page = e4b.bd_buddy_page;
1081 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1082 if (ret)
1083 goto err;
1084 if (!PageUptodate(page)) {
1085 ret = -EIO;
1086 goto err;
1088 err:
1089 ext4_mb_put_buddy_page_lock(&e4b);
1090 return ret;
1094 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1095 * block group lock of all groups for this page; do not hold the BG lock when
1096 * calling this routine!
1098 static noinline_for_stack int
1099 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1100 struct ext4_buddy *e4b, gfp_t gfp)
1102 int blocks_per_page;
1103 int block;
1104 int pnum;
1105 int poff;
1106 struct page *page;
1107 int ret;
1108 struct ext4_group_info *grp;
1109 struct ext4_sb_info *sbi = EXT4_SB(sb);
1110 struct inode *inode = sbi->s_buddy_cache;
1112 might_sleep();
1113 mb_debug(1, "load group %u\n", group);
1115 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1116 grp = ext4_get_group_info(sb, group);
1118 e4b->bd_blkbits = sb->s_blocksize_bits;
1119 e4b->bd_info = grp;
1120 e4b->bd_sb = sb;
1121 e4b->bd_group = group;
1122 e4b->bd_buddy_page = NULL;
1123 e4b->bd_bitmap_page = NULL;
1125 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1127 * we need full data about the group
1128 * to make a good selection
1130 ret = ext4_mb_init_group(sb, group, gfp);
1131 if (ret)
1132 return ret;
1136 * the buddy cache inode stores the block bitmap
1137 * and buddy information in consecutive blocks.
1138 * So for each group we need two blocks.
1140 block = group * 2;
1141 pnum = block / blocks_per_page;
1142 poff = block % blocks_per_page;
1144 /* we could use find_or_create_page(), but it locks page
1145 * what we'd like to avoid in fast path ... */
1146 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1147 if (page == NULL || !PageUptodate(page)) {
1148 if (page)
1150 * drop the page reference and try
1151 * to get the page with lock. If we
1152 * are not uptodate that implies
1153 * somebody just created the page but
1154 * is yet to initialize the same. So
1155 * wait for it to initialize.
1157 put_page(page);
1158 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1159 if (page) {
1160 BUG_ON(page->mapping != inode->i_mapping);
1161 if (!PageUptodate(page)) {
1162 ret = ext4_mb_init_cache(page, NULL, gfp);
1163 if (ret) {
1164 unlock_page(page);
1165 goto err;
1167 mb_cmp_bitmaps(e4b, page_address(page) +
1168 (poff * sb->s_blocksize));
1170 unlock_page(page);
1173 if (page == NULL) {
1174 ret = -ENOMEM;
1175 goto err;
1177 if (!PageUptodate(page)) {
1178 ret = -EIO;
1179 goto err;
1182 /* Pages marked accessed already */
1183 e4b->bd_bitmap_page = page;
1184 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1186 block++;
1187 pnum = block / blocks_per_page;
1188 poff = block % blocks_per_page;
1190 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1191 if (page == NULL || !PageUptodate(page)) {
1192 if (page)
1193 put_page(page);
1194 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1195 if (page) {
1196 BUG_ON(page->mapping != inode->i_mapping);
1197 if (!PageUptodate(page)) {
1198 ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1199 gfp);
1200 if (ret) {
1201 unlock_page(page);
1202 goto err;
1205 unlock_page(page);
1208 if (page == NULL) {
1209 ret = -ENOMEM;
1210 goto err;
1212 if (!PageUptodate(page)) {
1213 ret = -EIO;
1214 goto err;
1217 /* Pages marked accessed already */
1218 e4b->bd_buddy_page = page;
1219 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1221 BUG_ON(e4b->bd_bitmap_page == NULL);
1222 BUG_ON(e4b->bd_buddy_page == NULL);
1224 return 0;
1226 err:
1227 if (page)
1228 put_page(page);
1229 if (e4b->bd_bitmap_page)
1230 put_page(e4b->bd_bitmap_page);
1231 if (e4b->bd_buddy_page)
1232 put_page(e4b->bd_buddy_page);
1233 e4b->bd_buddy = NULL;
1234 e4b->bd_bitmap = NULL;
1235 return ret;
1238 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1239 struct ext4_buddy *e4b)
1241 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1244 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1246 if (e4b->bd_bitmap_page)
1247 put_page(e4b->bd_bitmap_page);
1248 if (e4b->bd_buddy_page)
1249 put_page(e4b->bd_buddy_page);
1253 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1255 int order = 1;
1256 int bb_incr = 1 << (e4b->bd_blkbits - 1);
1257 void *bb;
1259 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1260 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1262 bb = e4b->bd_buddy;
1263 while (order <= e4b->bd_blkbits + 1) {
1264 block = block >> 1;
1265 if (!mb_test_bit(block, bb)) {
1266 /* this block is part of buddy of order 'order' */
1267 return order;
1269 bb += bb_incr;
1270 bb_incr >>= 1;
1271 order++;
1273 return 0;
1276 static void mb_clear_bits(void *bm, int cur, int len)
1278 __u32 *addr;
1280 len = cur + len;
1281 while (cur < len) {
1282 if ((cur & 31) == 0 && (len - cur) >= 32) {
1283 /* fast path: clear whole word at once */
1284 addr = bm + (cur >> 3);
1285 *addr = 0;
1286 cur += 32;
1287 continue;
1289 mb_clear_bit(cur, bm);
1290 cur++;
1294 /* clear bits in given range
1295 * will return first found zero bit if any, -1 otherwise
1297 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1299 __u32 *addr;
1300 int zero_bit = -1;
1302 len = cur + len;
1303 while (cur < len) {
1304 if ((cur & 31) == 0 && (len - cur) >= 32) {
1305 /* fast path: clear whole word at once */
1306 addr = bm + (cur >> 3);
1307 if (*addr != (__u32)(-1) && zero_bit == -1)
1308 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1309 *addr = 0;
1310 cur += 32;
1311 continue;
1313 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1314 zero_bit = cur;
1315 cur++;
1318 return zero_bit;
1321 void ext4_set_bits(void *bm, int cur, int len)
1323 __u32 *addr;
1325 len = cur + len;
1326 while (cur < len) {
1327 if ((cur & 31) == 0 && (len - cur) >= 32) {
1328 /* fast path: set whole word at once */
1329 addr = bm + (cur >> 3);
1330 *addr = 0xffffffff;
1331 cur += 32;
1332 continue;
1334 mb_set_bit(cur, bm);
1335 cur++;
1340 * _________________________________________________________________ */
1342 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1344 if (mb_test_bit(*bit + side, bitmap)) {
1345 mb_clear_bit(*bit, bitmap);
1346 (*bit) -= side;
1347 return 1;
1349 else {
1350 (*bit) += side;
1351 mb_set_bit(*bit, bitmap);
1352 return -1;
1356 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1358 int max;
1359 int order = 1;
1360 void *buddy = mb_find_buddy(e4b, order, &max);
1362 while (buddy) {
1363 void *buddy2;
1365 /* Bits in range [first; last] are known to be set since
1366 * corresponding blocks were allocated. Bits in range
1367 * (first; last) will stay set because they form buddies on
1368 * upper layer. We just deal with borders if they don't
1369 * align with upper layer and then go up.
1370 * Releasing entire group is all about clearing
1371 * single bit of highest order buddy.
1374 /* Example:
1375 * ---------------------------------
1376 * | 1 | 1 | 1 | 1 |
1377 * ---------------------------------
1378 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1379 * ---------------------------------
1380 * 0 1 2 3 4 5 6 7
1381 * \_____________________/
1383 * Neither [1] nor [6] is aligned to above layer.
1384 * Left neighbour [0] is free, so mark it busy,
1385 * decrease bb_counters and extend range to
1386 * [0; 6]
1387 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1388 * mark [6] free, increase bb_counters and shrink range to
1389 * [0; 5].
1390 * Then shift range to [0; 2], go up and do the same.
1394 if (first & 1)
1395 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1396 if (!(last & 1))
1397 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1398 if (first > last)
1399 break;
1400 order++;
1402 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1403 mb_clear_bits(buddy, first, last - first + 1);
1404 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1405 break;
1407 first >>= 1;
1408 last >>= 1;
1409 buddy = buddy2;
1413 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1414 int first, int count)
1416 int left_is_free = 0;
1417 int right_is_free = 0;
1418 int block;
1419 int last = first + count - 1;
1420 struct super_block *sb = e4b->bd_sb;
1422 if (WARN_ON(count == 0))
1423 return;
1424 BUG_ON(last >= (sb->s_blocksize << 3));
1425 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1426 /* Don't bother if the block group is corrupt. */
1427 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1428 return;
1430 mb_check_buddy(e4b);
1431 mb_free_blocks_double(inode, e4b, first, count);
1433 e4b->bd_info->bb_free += count;
1434 if (first < e4b->bd_info->bb_first_free)
1435 e4b->bd_info->bb_first_free = first;
1437 /* access memory sequentially: check left neighbour,
1438 * clear range and then check right neighbour
1440 if (first != 0)
1441 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1442 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1443 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1444 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1446 if (unlikely(block != -1)) {
1447 struct ext4_sb_info *sbi = EXT4_SB(sb);
1448 ext4_fsblk_t blocknr;
1450 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1451 blocknr += EXT4_C2B(sbi, block);
1452 ext4_grp_locked_error(sb, e4b->bd_group,
1453 inode ? inode->i_ino : 0,
1454 blocknr,
1455 "freeing already freed block "
1456 "(bit %u); block bitmap corrupt.",
1457 block);
1458 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1459 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1460 mb_regenerate_buddy(e4b);
1461 goto done;
1464 /* let's maintain fragments counter */
1465 if (left_is_free && right_is_free)
1466 e4b->bd_info->bb_fragments--;
1467 else if (!left_is_free && !right_is_free)
1468 e4b->bd_info->bb_fragments++;
1470 /* buddy[0] == bd_bitmap is a special case, so handle
1471 * it right away and let mb_buddy_mark_free stay free of
1472 * zero order checks.
1473 * Check if neighbours are to be coaleasced,
1474 * adjust bitmap bb_counters and borders appropriately.
1476 if (first & 1) {
1477 first += !left_is_free;
1478 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1480 if (!(last & 1)) {
1481 last -= !right_is_free;
1482 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1485 if (first <= last)
1486 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1488 done:
1489 mb_set_largest_free_order(sb, e4b->bd_info);
1490 mb_check_buddy(e4b);
1493 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1494 int needed, struct ext4_free_extent *ex)
1496 int next = block;
1497 int max, order;
1498 void *buddy;
1500 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1501 BUG_ON(ex == NULL);
1503 buddy = mb_find_buddy(e4b, 0, &max);
1504 BUG_ON(buddy == NULL);
1505 BUG_ON(block >= max);
1506 if (mb_test_bit(block, buddy)) {
1507 ex->fe_len = 0;
1508 ex->fe_start = 0;
1509 ex->fe_group = 0;
1510 return 0;
1513 /* find actual order */
1514 order = mb_find_order_for_block(e4b, block);
1515 block = block >> order;
1517 ex->fe_len = 1 << order;
1518 ex->fe_start = block << order;
1519 ex->fe_group = e4b->bd_group;
1521 /* calc difference from given start */
1522 next = next - ex->fe_start;
1523 ex->fe_len -= next;
1524 ex->fe_start += next;
1526 while (needed > ex->fe_len &&
1527 mb_find_buddy(e4b, order, &max)) {
1529 if (block + 1 >= max)
1530 break;
1532 next = (block + 1) * (1 << order);
1533 if (mb_test_bit(next, e4b->bd_bitmap))
1534 break;
1536 order = mb_find_order_for_block(e4b, next);
1538 block = next >> order;
1539 ex->fe_len += 1 << order;
1542 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
1543 /* Should never happen! (but apparently sometimes does?!?) */
1544 WARN_ON(1);
1545 ext4_error(e4b->bd_sb, "corruption or bug in mb_find_extent "
1546 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
1547 block, order, needed, ex->fe_group, ex->fe_start,
1548 ex->fe_len, ex->fe_logical);
1549 ex->fe_len = 0;
1550 ex->fe_start = 0;
1551 ex->fe_group = 0;
1553 return ex->fe_len;
1556 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1558 int ord;
1559 int mlen = 0;
1560 int max = 0;
1561 int cur;
1562 int start = ex->fe_start;
1563 int len = ex->fe_len;
1564 unsigned ret = 0;
1565 int len0 = len;
1566 void *buddy;
1568 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1569 BUG_ON(e4b->bd_group != ex->fe_group);
1570 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1571 mb_check_buddy(e4b);
1572 mb_mark_used_double(e4b, start, len);
1574 e4b->bd_info->bb_free -= len;
1575 if (e4b->bd_info->bb_first_free == start)
1576 e4b->bd_info->bb_first_free += len;
1578 /* let's maintain fragments counter */
1579 if (start != 0)
1580 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1581 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1582 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1583 if (mlen && max)
1584 e4b->bd_info->bb_fragments++;
1585 else if (!mlen && !max)
1586 e4b->bd_info->bb_fragments--;
1588 /* let's maintain buddy itself */
1589 while (len) {
1590 ord = mb_find_order_for_block(e4b, start);
1592 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1593 /* the whole chunk may be allocated at once! */
1594 mlen = 1 << ord;
1595 buddy = mb_find_buddy(e4b, ord, &max);
1596 BUG_ON((start >> ord) >= max);
1597 mb_set_bit(start >> ord, buddy);
1598 e4b->bd_info->bb_counters[ord]--;
1599 start += mlen;
1600 len -= mlen;
1601 BUG_ON(len < 0);
1602 continue;
1605 /* store for history */
1606 if (ret == 0)
1607 ret = len | (ord << 16);
1609 /* we have to split large buddy */
1610 BUG_ON(ord <= 0);
1611 buddy = mb_find_buddy(e4b, ord, &max);
1612 mb_set_bit(start >> ord, buddy);
1613 e4b->bd_info->bb_counters[ord]--;
1615 ord--;
1616 cur = (start >> ord) & ~1U;
1617 buddy = mb_find_buddy(e4b, ord, &max);
1618 mb_clear_bit(cur, buddy);
1619 mb_clear_bit(cur + 1, buddy);
1620 e4b->bd_info->bb_counters[ord]++;
1621 e4b->bd_info->bb_counters[ord]++;
1623 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1625 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1626 mb_check_buddy(e4b);
1628 return ret;
1632 * Must be called under group lock!
1634 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1635 struct ext4_buddy *e4b)
1637 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1638 int ret;
1640 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1641 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1643 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1644 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1645 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1647 /* preallocation can change ac_b_ex, thus we store actually
1648 * allocated blocks for history */
1649 ac->ac_f_ex = ac->ac_b_ex;
1651 ac->ac_status = AC_STATUS_FOUND;
1652 ac->ac_tail = ret & 0xffff;
1653 ac->ac_buddy = ret >> 16;
1656 * take the page reference. We want the page to be pinned
1657 * so that we don't get a ext4_mb_init_cache_call for this
1658 * group until we update the bitmap. That would mean we
1659 * double allocate blocks. The reference is dropped
1660 * in ext4_mb_release_context
1662 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1663 get_page(ac->ac_bitmap_page);
1664 ac->ac_buddy_page = e4b->bd_buddy_page;
1665 get_page(ac->ac_buddy_page);
1666 /* store last allocated for subsequent stream allocation */
1667 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1668 spin_lock(&sbi->s_md_lock);
1669 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1670 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1671 spin_unlock(&sbi->s_md_lock);
1676 * regular allocator, for general purposes allocation
1679 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1680 struct ext4_buddy *e4b,
1681 int finish_group)
1683 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1684 struct ext4_free_extent *bex = &ac->ac_b_ex;
1685 struct ext4_free_extent *gex = &ac->ac_g_ex;
1686 struct ext4_free_extent ex;
1687 int max;
1689 if (ac->ac_status == AC_STATUS_FOUND)
1690 return;
1692 * We don't want to scan for a whole year
1694 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1695 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1696 ac->ac_status = AC_STATUS_BREAK;
1697 return;
1701 * Haven't found good chunk so far, let's continue
1703 if (bex->fe_len < gex->fe_len)
1704 return;
1706 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1707 && bex->fe_group == e4b->bd_group) {
1708 /* recheck chunk's availability - we don't know
1709 * when it was found (within this lock-unlock
1710 * period or not) */
1711 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1712 if (max >= gex->fe_len) {
1713 ext4_mb_use_best_found(ac, e4b);
1714 return;
1720 * The routine checks whether found extent is good enough. If it is,
1721 * then the extent gets marked used and flag is set to the context
1722 * to stop scanning. Otherwise, the extent is compared with the
1723 * previous found extent and if new one is better, then it's stored
1724 * in the context. Later, the best found extent will be used, if
1725 * mballoc can't find good enough extent.
1727 * FIXME: real allocation policy is to be designed yet!
1729 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1730 struct ext4_free_extent *ex,
1731 struct ext4_buddy *e4b)
1733 struct ext4_free_extent *bex = &ac->ac_b_ex;
1734 struct ext4_free_extent *gex = &ac->ac_g_ex;
1736 BUG_ON(ex->fe_len <= 0);
1737 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1738 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1739 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1741 ac->ac_found++;
1744 * The special case - take what you catch first
1746 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1747 *bex = *ex;
1748 ext4_mb_use_best_found(ac, e4b);
1749 return;
1753 * Let's check whether the chuck is good enough
1755 if (ex->fe_len == gex->fe_len) {
1756 *bex = *ex;
1757 ext4_mb_use_best_found(ac, e4b);
1758 return;
1762 * If this is first found extent, just store it in the context
1764 if (bex->fe_len == 0) {
1765 *bex = *ex;
1766 return;
1770 * If new found extent is better, store it in the context
1772 if (bex->fe_len < gex->fe_len) {
1773 /* if the request isn't satisfied, any found extent
1774 * larger than previous best one is better */
1775 if (ex->fe_len > bex->fe_len)
1776 *bex = *ex;
1777 } else if (ex->fe_len > gex->fe_len) {
1778 /* if the request is satisfied, then we try to find
1779 * an extent that still satisfy the request, but is
1780 * smaller than previous one */
1781 if (ex->fe_len < bex->fe_len)
1782 *bex = *ex;
1785 ext4_mb_check_limits(ac, e4b, 0);
1788 static noinline_for_stack
1789 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1790 struct ext4_buddy *e4b)
1792 struct ext4_free_extent ex = ac->ac_b_ex;
1793 ext4_group_t group = ex.fe_group;
1794 int max;
1795 int err;
1797 BUG_ON(ex.fe_len <= 0);
1798 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1799 if (err)
1800 return err;
1802 ext4_lock_group(ac->ac_sb, group);
1803 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1805 if (max > 0) {
1806 ac->ac_b_ex = ex;
1807 ext4_mb_use_best_found(ac, e4b);
1810 ext4_unlock_group(ac->ac_sb, group);
1811 ext4_mb_unload_buddy(e4b);
1813 return 0;
1816 static noinline_for_stack
1817 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1818 struct ext4_buddy *e4b)
1820 ext4_group_t group = ac->ac_g_ex.fe_group;
1821 int max;
1822 int err;
1823 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1824 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1825 struct ext4_free_extent ex;
1827 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1828 return 0;
1829 if (grp->bb_free == 0)
1830 return 0;
1832 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1833 if (err)
1834 return err;
1836 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1837 ext4_mb_unload_buddy(e4b);
1838 return 0;
1841 ext4_lock_group(ac->ac_sb, group);
1842 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1843 ac->ac_g_ex.fe_len, &ex);
1844 ex.fe_logical = 0xDEADFA11; /* debug value */
1846 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1847 ext4_fsblk_t start;
1849 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1850 ex.fe_start;
1851 /* use do_div to get remainder (would be 64-bit modulo) */
1852 if (do_div(start, sbi->s_stripe) == 0) {
1853 ac->ac_found++;
1854 ac->ac_b_ex = ex;
1855 ext4_mb_use_best_found(ac, e4b);
1857 } else if (max >= ac->ac_g_ex.fe_len) {
1858 BUG_ON(ex.fe_len <= 0);
1859 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1860 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1861 ac->ac_found++;
1862 ac->ac_b_ex = ex;
1863 ext4_mb_use_best_found(ac, e4b);
1864 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1865 /* Sometimes, caller may want to merge even small
1866 * number of blocks to an existing extent */
1867 BUG_ON(ex.fe_len <= 0);
1868 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1869 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1870 ac->ac_found++;
1871 ac->ac_b_ex = ex;
1872 ext4_mb_use_best_found(ac, e4b);
1874 ext4_unlock_group(ac->ac_sb, group);
1875 ext4_mb_unload_buddy(e4b);
1877 return 0;
1881 * The routine scans buddy structures (not bitmap!) from given order
1882 * to max order and tries to find big enough chunk to satisfy the req
1884 static noinline_for_stack
1885 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1886 struct ext4_buddy *e4b)
1888 struct super_block *sb = ac->ac_sb;
1889 struct ext4_group_info *grp = e4b->bd_info;
1890 void *buddy;
1891 int i;
1892 int k;
1893 int max;
1895 BUG_ON(ac->ac_2order <= 0);
1896 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1897 if (grp->bb_counters[i] == 0)
1898 continue;
1900 buddy = mb_find_buddy(e4b, i, &max);
1901 BUG_ON(buddy == NULL);
1903 k = mb_find_next_zero_bit(buddy, max, 0);
1904 BUG_ON(k >= max);
1906 ac->ac_found++;
1908 ac->ac_b_ex.fe_len = 1 << i;
1909 ac->ac_b_ex.fe_start = k << i;
1910 ac->ac_b_ex.fe_group = e4b->bd_group;
1912 ext4_mb_use_best_found(ac, e4b);
1914 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1916 if (EXT4_SB(sb)->s_mb_stats)
1917 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1919 break;
1924 * The routine scans the group and measures all found extents.
1925 * In order to optimize scanning, caller must pass number of
1926 * free blocks in the group, so the routine can know upper limit.
1928 static noinline_for_stack
1929 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1930 struct ext4_buddy *e4b)
1932 struct super_block *sb = ac->ac_sb;
1933 void *bitmap = e4b->bd_bitmap;
1934 struct ext4_free_extent ex;
1935 int i;
1936 int free;
1938 free = e4b->bd_info->bb_free;
1939 BUG_ON(free <= 0);
1941 i = e4b->bd_info->bb_first_free;
1943 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1944 i = mb_find_next_zero_bit(bitmap,
1945 EXT4_CLUSTERS_PER_GROUP(sb), i);
1946 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1948 * IF we have corrupt bitmap, we won't find any
1949 * free blocks even though group info says we
1950 * we have free blocks
1952 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1953 "%d free clusters as per "
1954 "group info. But bitmap says 0",
1955 free);
1956 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1957 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1958 break;
1961 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1962 BUG_ON(ex.fe_len <= 0);
1963 if (free < ex.fe_len) {
1964 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1965 "%d free clusters as per "
1966 "group info. But got %d blocks",
1967 free, ex.fe_len);
1968 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1969 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1971 * The number of free blocks differs. This mostly
1972 * indicate that the bitmap is corrupt. So exit
1973 * without claiming the space.
1975 break;
1977 ex.fe_logical = 0xDEADC0DE; /* debug value */
1978 ext4_mb_measure_extent(ac, &ex, e4b);
1980 i += ex.fe_len;
1981 free -= ex.fe_len;
1984 ext4_mb_check_limits(ac, e4b, 1);
1988 * This is a special case for storages like raid5
1989 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1991 static noinline_for_stack
1992 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1993 struct ext4_buddy *e4b)
1995 struct super_block *sb = ac->ac_sb;
1996 struct ext4_sb_info *sbi = EXT4_SB(sb);
1997 void *bitmap = e4b->bd_bitmap;
1998 struct ext4_free_extent ex;
1999 ext4_fsblk_t first_group_block;
2000 ext4_fsblk_t a;
2001 ext4_grpblk_t i;
2002 int max;
2004 BUG_ON(sbi->s_stripe == 0);
2006 /* find first stripe-aligned block in group */
2007 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2009 a = first_group_block + sbi->s_stripe - 1;
2010 do_div(a, sbi->s_stripe);
2011 i = (a * sbi->s_stripe) - first_group_block;
2013 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2014 if (!mb_test_bit(i, bitmap)) {
2015 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2016 if (max >= sbi->s_stripe) {
2017 ac->ac_found++;
2018 ex.fe_logical = 0xDEADF00D; /* debug value */
2019 ac->ac_b_ex = ex;
2020 ext4_mb_use_best_found(ac, e4b);
2021 break;
2024 i += sbi->s_stripe;
2029 * This is now called BEFORE we load the buddy bitmap.
2030 * Returns either 1 or 0 indicating that the group is either suitable
2031 * for the allocation or not. In addition it can also return negative
2032 * error code when something goes wrong.
2034 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2035 ext4_group_t group, int cr)
2037 unsigned free, fragments;
2038 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2039 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2041 BUG_ON(cr < 0 || cr >= 4);
2043 free = grp->bb_free;
2044 if (free == 0)
2045 return 0;
2046 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2047 return 0;
2049 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2050 return 0;
2052 /* We only do this if the grp has never been initialized */
2053 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2054 int ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS);
2055 if (ret)
2056 return ret;
2059 fragments = grp->bb_fragments;
2060 if (fragments == 0)
2061 return 0;
2063 switch (cr) {
2064 case 0:
2065 BUG_ON(ac->ac_2order == 0);
2067 /* Avoid using the first bg of a flexgroup for data files */
2068 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2069 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2070 ((group % flex_size) == 0))
2071 return 0;
2073 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2074 (free / fragments) >= ac->ac_g_ex.fe_len)
2075 return 1;
2077 if (grp->bb_largest_free_order < ac->ac_2order)
2078 return 0;
2080 return 1;
2081 case 1:
2082 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2083 return 1;
2084 break;
2085 case 2:
2086 if (free >= ac->ac_g_ex.fe_len)
2087 return 1;
2088 break;
2089 case 3:
2090 return 1;
2091 default:
2092 BUG();
2095 return 0;
2098 static noinline_for_stack int
2099 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2101 ext4_group_t ngroups, group, i;
2102 int cr;
2103 int err = 0, first_err = 0;
2104 struct ext4_sb_info *sbi;
2105 struct super_block *sb;
2106 struct ext4_buddy e4b;
2108 sb = ac->ac_sb;
2109 sbi = EXT4_SB(sb);
2110 ngroups = ext4_get_groups_count(sb);
2111 /* non-extent files are limited to low blocks/groups */
2112 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2113 ngroups = sbi->s_blockfile_groups;
2115 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2117 /* first, try the goal */
2118 err = ext4_mb_find_by_goal(ac, &e4b);
2119 if (err || ac->ac_status == AC_STATUS_FOUND)
2120 goto out;
2122 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2123 goto out;
2126 * ac->ac2_order is set only if the fe_len is a power of 2
2127 * if ac2_order is set we also set criteria to 0 so that we
2128 * try exact allocation using buddy.
2130 i = fls(ac->ac_g_ex.fe_len);
2131 ac->ac_2order = 0;
2133 * We search using buddy data only if the order of the request
2134 * is greater than equal to the sbi_s_mb_order2_reqs
2135 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2136 * We also support searching for power-of-two requests only for
2137 * requests upto maximum buddy size we have constructed.
2139 if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) {
2141 * This should tell if fe_len is exactly power of 2
2143 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2144 ac->ac_2order = array_index_nospec(i - 1,
2145 sb->s_blocksize_bits + 2);
2148 /* if stream allocation is enabled, use global goal */
2149 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2150 /* TBD: may be hot point */
2151 spin_lock(&sbi->s_md_lock);
2152 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2153 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2154 spin_unlock(&sbi->s_md_lock);
2157 /* Let's just scan groups to find more-less suitable blocks */
2158 cr = ac->ac_2order ? 0 : 1;
2160 * cr == 0 try to get exact allocation,
2161 * cr == 3 try to get anything
2163 repeat:
2164 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2165 ac->ac_criteria = cr;
2167 * searching for the right group start
2168 * from the goal value specified
2170 group = ac->ac_g_ex.fe_group;
2172 for (i = 0; i < ngroups; group++, i++) {
2173 int ret = 0;
2174 cond_resched();
2176 * Artificially restricted ngroups for non-extent
2177 * files makes group > ngroups possible on first loop.
2179 if (group >= ngroups)
2180 group = 0;
2182 /* This now checks without needing the buddy page */
2183 ret = ext4_mb_good_group(ac, group, cr);
2184 if (ret <= 0) {
2185 if (!first_err)
2186 first_err = ret;
2187 continue;
2190 err = ext4_mb_load_buddy(sb, group, &e4b);
2191 if (err)
2192 goto out;
2194 ext4_lock_group(sb, group);
2197 * We need to check again after locking the
2198 * block group
2200 ret = ext4_mb_good_group(ac, group, cr);
2201 if (ret <= 0) {
2202 ext4_unlock_group(sb, group);
2203 ext4_mb_unload_buddy(&e4b);
2204 if (!first_err)
2205 first_err = ret;
2206 continue;
2209 ac->ac_groups_scanned++;
2210 if (cr == 0)
2211 ext4_mb_simple_scan_group(ac, &e4b);
2212 else if (cr == 1 && sbi->s_stripe &&
2213 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2214 ext4_mb_scan_aligned(ac, &e4b);
2215 else
2216 ext4_mb_complex_scan_group(ac, &e4b);
2218 ext4_unlock_group(sb, group);
2219 ext4_mb_unload_buddy(&e4b);
2221 if (ac->ac_status != AC_STATUS_CONTINUE)
2222 break;
2226 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2227 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2229 * We've been searching too long. Let's try to allocate
2230 * the best chunk we've found so far
2233 ext4_mb_try_best_found(ac, &e4b);
2234 if (ac->ac_status != AC_STATUS_FOUND) {
2236 * Someone more lucky has already allocated it.
2237 * The only thing we can do is just take first
2238 * found block(s)
2239 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2241 ac->ac_b_ex.fe_group = 0;
2242 ac->ac_b_ex.fe_start = 0;
2243 ac->ac_b_ex.fe_len = 0;
2244 ac->ac_status = AC_STATUS_CONTINUE;
2245 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2246 cr = 3;
2247 atomic_inc(&sbi->s_mb_lost_chunks);
2248 goto repeat;
2251 out:
2252 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2253 err = first_err;
2254 return err;
2257 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2259 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2260 ext4_group_t group;
2262 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2263 return NULL;
2264 group = *pos + 1;
2265 return (void *) ((unsigned long) group);
2268 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2270 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2271 ext4_group_t group;
2273 ++*pos;
2274 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2275 return NULL;
2276 group = *pos + 1;
2277 return (void *) ((unsigned long) group);
2280 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2282 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2283 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2284 int i;
2285 int err, buddy_loaded = 0;
2286 struct ext4_buddy e4b;
2287 struct ext4_group_info *grinfo;
2288 unsigned char blocksize_bits = min_t(unsigned char,
2289 sb->s_blocksize_bits,
2290 EXT4_MAX_BLOCK_LOG_SIZE);
2291 struct sg {
2292 struct ext4_group_info info;
2293 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2294 } sg;
2296 group--;
2297 if (group == 0)
2298 seq_puts(seq, "#group: free frags first ["
2299 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 "
2300 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n");
2302 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2303 sizeof(struct ext4_group_info);
2305 grinfo = ext4_get_group_info(sb, group);
2306 /* Load the group info in memory only if not already loaded. */
2307 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2308 err = ext4_mb_load_buddy(sb, group, &e4b);
2309 if (err) {
2310 seq_printf(seq, "#%-5u: I/O error\n", group);
2311 return 0;
2313 buddy_loaded = 1;
2316 memcpy(&sg, ext4_get_group_info(sb, group), i);
2318 if (buddy_loaded)
2319 ext4_mb_unload_buddy(&e4b);
2321 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2322 sg.info.bb_fragments, sg.info.bb_first_free);
2323 for (i = 0; i <= 13; i++)
2324 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
2325 sg.info.bb_counters[i] : 0);
2326 seq_printf(seq, " ]\n");
2328 return 0;
2331 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2335 const struct seq_operations ext4_mb_seq_groups_ops = {
2336 .start = ext4_mb_seq_groups_start,
2337 .next = ext4_mb_seq_groups_next,
2338 .stop = ext4_mb_seq_groups_stop,
2339 .show = ext4_mb_seq_groups_show,
2342 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2344 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2345 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2347 BUG_ON(!cachep);
2348 return cachep;
2352 * Allocate the top-level s_group_info array for the specified number
2353 * of groups
2355 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2357 struct ext4_sb_info *sbi = EXT4_SB(sb);
2358 unsigned size;
2359 struct ext4_group_info ***new_groupinfo;
2361 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2362 EXT4_DESC_PER_BLOCK_BITS(sb);
2363 if (size <= sbi->s_group_info_size)
2364 return 0;
2366 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2367 new_groupinfo = kvzalloc(size, GFP_KERNEL);
2368 if (!new_groupinfo) {
2369 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2370 return -ENOMEM;
2372 if (sbi->s_group_info) {
2373 memcpy(new_groupinfo, sbi->s_group_info,
2374 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2375 kvfree(sbi->s_group_info);
2377 sbi->s_group_info = new_groupinfo;
2378 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2379 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2380 sbi->s_group_info_size);
2381 return 0;
2384 /* Create and initialize ext4_group_info data for the given group. */
2385 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2386 struct ext4_group_desc *desc)
2388 int i;
2389 int metalen = 0;
2390 struct ext4_sb_info *sbi = EXT4_SB(sb);
2391 struct ext4_group_info **meta_group_info;
2392 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2395 * First check if this group is the first of a reserved block.
2396 * If it's true, we have to allocate a new table of pointers
2397 * to ext4_group_info structures
2399 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2400 metalen = sizeof(*meta_group_info) <<
2401 EXT4_DESC_PER_BLOCK_BITS(sb);
2402 meta_group_info = kmalloc(metalen, GFP_NOFS);
2403 if (meta_group_info == NULL) {
2404 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2405 "for a buddy group");
2406 goto exit_meta_group_info;
2408 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2409 meta_group_info;
2412 meta_group_info =
2413 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2414 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2416 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2417 if (meta_group_info[i] == NULL) {
2418 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2419 goto exit_group_info;
2421 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2422 &(meta_group_info[i]->bb_state));
2425 * initialize bb_free to be able to skip
2426 * empty groups without initialization
2428 if (ext4_has_group_desc_csum(sb) &&
2429 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
2430 meta_group_info[i]->bb_free =
2431 ext4_free_clusters_after_init(sb, group, desc);
2432 } else {
2433 meta_group_info[i]->bb_free =
2434 ext4_free_group_clusters(sb, desc);
2437 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2438 init_rwsem(&meta_group_info[i]->alloc_sem);
2439 meta_group_info[i]->bb_free_root = RB_ROOT;
2440 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2442 #ifdef DOUBLE_CHECK
2444 struct buffer_head *bh;
2445 meta_group_info[i]->bb_bitmap =
2446 kmalloc(sb->s_blocksize, GFP_NOFS);
2447 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2448 bh = ext4_read_block_bitmap(sb, group);
2449 BUG_ON(IS_ERR_OR_NULL(bh));
2450 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2451 sb->s_blocksize);
2452 put_bh(bh);
2454 #endif
2456 return 0;
2458 exit_group_info:
2459 /* If a meta_group_info table has been allocated, release it now */
2460 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2461 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2462 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2464 exit_meta_group_info:
2465 return -ENOMEM;
2466 } /* ext4_mb_add_groupinfo */
2468 static int ext4_mb_init_backend(struct super_block *sb)
2470 ext4_group_t ngroups = ext4_get_groups_count(sb);
2471 ext4_group_t i;
2472 struct ext4_sb_info *sbi = EXT4_SB(sb);
2473 int err;
2474 struct ext4_group_desc *desc;
2475 struct kmem_cache *cachep;
2477 err = ext4_mb_alloc_groupinfo(sb, ngroups);
2478 if (err)
2479 return err;
2481 sbi->s_buddy_cache = new_inode(sb);
2482 if (sbi->s_buddy_cache == NULL) {
2483 ext4_msg(sb, KERN_ERR, "can't get new inode");
2484 goto err_freesgi;
2486 /* To avoid potentially colliding with an valid on-disk inode number,
2487 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2488 * not in the inode hash, so it should never be found by iget(), but
2489 * this will avoid confusion if it ever shows up during debugging. */
2490 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2491 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2492 for (i = 0; i < ngroups; i++) {
2493 cond_resched();
2494 desc = ext4_get_group_desc(sb, i, NULL);
2495 if (desc == NULL) {
2496 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2497 goto err_freebuddy;
2499 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2500 goto err_freebuddy;
2503 return 0;
2505 err_freebuddy:
2506 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2507 while (i-- > 0)
2508 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2509 i = sbi->s_group_info_size;
2510 while (i-- > 0)
2511 kfree(sbi->s_group_info[i]);
2512 iput(sbi->s_buddy_cache);
2513 err_freesgi:
2514 kvfree(sbi->s_group_info);
2515 return -ENOMEM;
2518 static void ext4_groupinfo_destroy_slabs(void)
2520 int i;
2522 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2523 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2524 ext4_groupinfo_caches[i] = NULL;
2528 static int ext4_groupinfo_create_slab(size_t size)
2530 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2531 int slab_size;
2532 int blocksize_bits = order_base_2(size);
2533 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2534 struct kmem_cache *cachep;
2536 if (cache_index >= NR_GRPINFO_CACHES)
2537 return -EINVAL;
2539 if (unlikely(cache_index < 0))
2540 cache_index = 0;
2542 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2543 if (ext4_groupinfo_caches[cache_index]) {
2544 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2545 return 0; /* Already created */
2548 slab_size = offsetof(struct ext4_group_info,
2549 bb_counters[blocksize_bits + 2]);
2551 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2552 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2553 NULL);
2555 ext4_groupinfo_caches[cache_index] = cachep;
2557 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2558 if (!cachep) {
2559 printk(KERN_EMERG
2560 "EXT4-fs: no memory for groupinfo slab cache\n");
2561 return -ENOMEM;
2564 return 0;
2567 int ext4_mb_init(struct super_block *sb)
2569 struct ext4_sb_info *sbi = EXT4_SB(sb);
2570 unsigned i, j;
2571 unsigned offset, offset_incr;
2572 unsigned max;
2573 int ret;
2575 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2577 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2578 if (sbi->s_mb_offsets == NULL) {
2579 ret = -ENOMEM;
2580 goto out;
2583 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2584 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2585 if (sbi->s_mb_maxs == NULL) {
2586 ret = -ENOMEM;
2587 goto out;
2590 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2591 if (ret < 0)
2592 goto out;
2594 /* order 0 is regular bitmap */
2595 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2596 sbi->s_mb_offsets[0] = 0;
2598 i = 1;
2599 offset = 0;
2600 offset_incr = 1 << (sb->s_blocksize_bits - 1);
2601 max = sb->s_blocksize << 2;
2602 do {
2603 sbi->s_mb_offsets[i] = offset;
2604 sbi->s_mb_maxs[i] = max;
2605 offset += offset_incr;
2606 offset_incr = offset_incr >> 1;
2607 max = max >> 1;
2608 i++;
2609 } while (i <= sb->s_blocksize_bits + 1);
2611 spin_lock_init(&sbi->s_md_lock);
2612 spin_lock_init(&sbi->s_bal_lock);
2613 sbi->s_mb_free_pending = 0;
2614 INIT_LIST_HEAD(&sbi->s_freed_data_list);
2616 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2617 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2618 sbi->s_mb_stats = MB_DEFAULT_STATS;
2619 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2620 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2622 * The default group preallocation is 512, which for 4k block
2623 * sizes translates to 2 megabytes. However for bigalloc file
2624 * systems, this is probably too big (i.e, if the cluster size
2625 * is 1 megabyte, then group preallocation size becomes half a
2626 * gigabyte!). As a default, we will keep a two megabyte
2627 * group pralloc size for cluster sizes up to 64k, and after
2628 * that, we will force a minimum group preallocation size of
2629 * 32 clusters. This translates to 8 megs when the cluster
2630 * size is 256k, and 32 megs when the cluster size is 1 meg,
2631 * which seems reasonable as a default.
2633 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2634 sbi->s_cluster_bits, 32);
2636 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2637 * to the lowest multiple of s_stripe which is bigger than
2638 * the s_mb_group_prealloc as determined above. We want
2639 * the preallocation size to be an exact multiple of the
2640 * RAID stripe size so that preallocations don't fragment
2641 * the stripes.
2643 if (sbi->s_stripe > 1) {
2644 sbi->s_mb_group_prealloc = roundup(
2645 sbi->s_mb_group_prealloc, sbi->s_stripe);
2648 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2649 if (sbi->s_locality_groups == NULL) {
2650 ret = -ENOMEM;
2651 goto out;
2653 for_each_possible_cpu(i) {
2654 struct ext4_locality_group *lg;
2655 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2656 mutex_init(&lg->lg_mutex);
2657 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2658 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2659 spin_lock_init(&lg->lg_prealloc_lock);
2662 /* init file for buddy data */
2663 ret = ext4_mb_init_backend(sb);
2664 if (ret != 0)
2665 goto out_free_locality_groups;
2667 return 0;
2669 out_free_locality_groups:
2670 free_percpu(sbi->s_locality_groups);
2671 sbi->s_locality_groups = NULL;
2672 out:
2673 kfree(sbi->s_mb_offsets);
2674 sbi->s_mb_offsets = NULL;
2675 kfree(sbi->s_mb_maxs);
2676 sbi->s_mb_maxs = NULL;
2677 return ret;
2680 /* need to called with the ext4 group lock held */
2681 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2683 struct ext4_prealloc_space *pa;
2684 struct list_head *cur, *tmp;
2685 int count = 0;
2687 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2688 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2689 list_del(&pa->pa_group_list);
2690 count++;
2691 kmem_cache_free(ext4_pspace_cachep, pa);
2693 if (count)
2694 mb_debug(1, "mballoc: %u PAs left\n", count);
2698 int ext4_mb_release(struct super_block *sb)
2700 ext4_group_t ngroups = ext4_get_groups_count(sb);
2701 ext4_group_t i;
2702 int num_meta_group_infos;
2703 struct ext4_group_info *grinfo;
2704 struct ext4_sb_info *sbi = EXT4_SB(sb);
2705 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2707 if (sbi->s_group_info) {
2708 for (i = 0; i < ngroups; i++) {
2709 cond_resched();
2710 grinfo = ext4_get_group_info(sb, i);
2711 #ifdef DOUBLE_CHECK
2712 kfree(grinfo->bb_bitmap);
2713 #endif
2714 ext4_lock_group(sb, i);
2715 ext4_mb_cleanup_pa(grinfo);
2716 ext4_unlock_group(sb, i);
2717 kmem_cache_free(cachep, grinfo);
2719 num_meta_group_infos = (ngroups +
2720 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2721 EXT4_DESC_PER_BLOCK_BITS(sb);
2722 for (i = 0; i < num_meta_group_infos; i++)
2723 kfree(sbi->s_group_info[i]);
2724 kvfree(sbi->s_group_info);
2726 kfree(sbi->s_mb_offsets);
2727 kfree(sbi->s_mb_maxs);
2728 iput(sbi->s_buddy_cache);
2729 if (sbi->s_mb_stats) {
2730 ext4_msg(sb, KERN_INFO,
2731 "mballoc: %u blocks %u reqs (%u success)",
2732 atomic_read(&sbi->s_bal_allocated),
2733 atomic_read(&sbi->s_bal_reqs),
2734 atomic_read(&sbi->s_bal_success));
2735 ext4_msg(sb, KERN_INFO,
2736 "mballoc: %u extents scanned, %u goal hits, "
2737 "%u 2^N hits, %u breaks, %u lost",
2738 atomic_read(&sbi->s_bal_ex_scanned),
2739 atomic_read(&sbi->s_bal_goals),
2740 atomic_read(&sbi->s_bal_2orders),
2741 atomic_read(&sbi->s_bal_breaks),
2742 atomic_read(&sbi->s_mb_lost_chunks));
2743 ext4_msg(sb, KERN_INFO,
2744 "mballoc: %lu generated and it took %Lu",
2745 sbi->s_mb_buddies_generated,
2746 sbi->s_mb_generation_time);
2747 ext4_msg(sb, KERN_INFO,
2748 "mballoc: %u preallocated, %u discarded",
2749 atomic_read(&sbi->s_mb_preallocated),
2750 atomic_read(&sbi->s_mb_discarded));
2753 free_percpu(sbi->s_locality_groups);
2755 return 0;
2758 static inline int ext4_issue_discard(struct super_block *sb,
2759 ext4_group_t block_group, ext4_grpblk_t cluster, int count,
2760 struct bio **biop)
2762 ext4_fsblk_t discard_block;
2764 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2765 ext4_group_first_block_no(sb, block_group));
2766 count = EXT4_C2B(EXT4_SB(sb), count);
2767 trace_ext4_discard_blocks(sb,
2768 (unsigned long long) discard_block, count);
2769 if (biop) {
2770 return __blkdev_issue_discard(sb->s_bdev,
2771 (sector_t)discard_block << (sb->s_blocksize_bits - 9),
2772 (sector_t)count << (sb->s_blocksize_bits - 9),
2773 GFP_NOFS, 0, biop);
2774 } else
2775 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2778 static void ext4_free_data_in_buddy(struct super_block *sb,
2779 struct ext4_free_data *entry)
2781 struct ext4_buddy e4b;
2782 struct ext4_group_info *db;
2783 int err, count = 0, count2 = 0;
2785 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2786 entry->efd_count, entry->efd_group, entry);
2788 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2789 /* we expect to find existing buddy because it's pinned */
2790 BUG_ON(err != 0);
2792 spin_lock(&EXT4_SB(sb)->s_md_lock);
2793 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
2794 spin_unlock(&EXT4_SB(sb)->s_md_lock);
2796 db = e4b.bd_info;
2797 /* there are blocks to put in buddy to make them really free */
2798 count += entry->efd_count;
2799 count2++;
2800 ext4_lock_group(sb, entry->efd_group);
2801 /* Take it out of per group rb tree */
2802 rb_erase(&entry->efd_node, &(db->bb_free_root));
2803 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2806 * Clear the trimmed flag for the group so that the next
2807 * ext4_trim_fs can trim it.
2808 * If the volume is mounted with -o discard, online discard
2809 * is supported and the free blocks will be trimmed online.
2811 if (!test_opt(sb, DISCARD))
2812 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2814 if (!db->bb_free_root.rb_node) {
2815 /* No more items in the per group rb tree
2816 * balance refcounts from ext4_mb_free_metadata()
2818 put_page(e4b.bd_buddy_page);
2819 put_page(e4b.bd_bitmap_page);
2821 ext4_unlock_group(sb, entry->efd_group);
2822 kmem_cache_free(ext4_free_data_cachep, entry);
2823 ext4_mb_unload_buddy(&e4b);
2825 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2829 * This function is called by the jbd2 layer once the commit has finished,
2830 * so we know we can free the blocks that were released with that commit.
2832 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
2834 struct ext4_sb_info *sbi = EXT4_SB(sb);
2835 struct ext4_free_data *entry, *tmp;
2836 struct bio *discard_bio = NULL;
2837 struct list_head freed_data_list;
2838 struct list_head *cut_pos = NULL;
2839 int err;
2841 INIT_LIST_HEAD(&freed_data_list);
2843 spin_lock(&sbi->s_md_lock);
2844 list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
2845 if (entry->efd_tid != commit_tid)
2846 break;
2847 cut_pos = &entry->efd_list;
2849 if (cut_pos)
2850 list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
2851 cut_pos);
2852 spin_unlock(&sbi->s_md_lock);
2854 if (test_opt(sb, DISCARD)) {
2855 list_for_each_entry(entry, &freed_data_list, efd_list) {
2856 err = ext4_issue_discard(sb, entry->efd_group,
2857 entry->efd_start_cluster,
2858 entry->efd_count,
2859 &discard_bio);
2860 if (err && err != -EOPNOTSUPP) {
2861 ext4_msg(sb, KERN_WARNING, "discard request in"
2862 " group:%d block:%d count:%d failed"
2863 " with %d", entry->efd_group,
2864 entry->efd_start_cluster,
2865 entry->efd_count, err);
2866 } else if (err == -EOPNOTSUPP)
2867 break;
2870 if (discard_bio) {
2871 submit_bio_wait(discard_bio);
2872 bio_put(discard_bio);
2876 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
2877 ext4_free_data_in_buddy(sb, entry);
2880 int __init ext4_init_mballoc(void)
2882 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2883 SLAB_RECLAIM_ACCOUNT);
2884 if (ext4_pspace_cachep == NULL)
2885 return -ENOMEM;
2887 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2888 SLAB_RECLAIM_ACCOUNT);
2889 if (ext4_ac_cachep == NULL) {
2890 kmem_cache_destroy(ext4_pspace_cachep);
2891 return -ENOMEM;
2894 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2895 SLAB_RECLAIM_ACCOUNT);
2896 if (ext4_free_data_cachep == NULL) {
2897 kmem_cache_destroy(ext4_pspace_cachep);
2898 kmem_cache_destroy(ext4_ac_cachep);
2899 return -ENOMEM;
2901 return 0;
2904 void ext4_exit_mballoc(void)
2907 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2908 * before destroying the slab cache.
2910 rcu_barrier();
2911 kmem_cache_destroy(ext4_pspace_cachep);
2912 kmem_cache_destroy(ext4_ac_cachep);
2913 kmem_cache_destroy(ext4_free_data_cachep);
2914 ext4_groupinfo_destroy_slabs();
2919 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2920 * Returns 0 if success or error code
2922 static noinline_for_stack int
2923 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2924 handle_t *handle, unsigned int reserv_clstrs)
2926 struct buffer_head *bitmap_bh = NULL;
2927 struct ext4_group_desc *gdp;
2928 struct buffer_head *gdp_bh;
2929 struct ext4_sb_info *sbi;
2930 struct super_block *sb;
2931 ext4_fsblk_t block;
2932 int err, len;
2934 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2935 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2937 sb = ac->ac_sb;
2938 sbi = EXT4_SB(sb);
2940 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2941 if (IS_ERR(bitmap_bh)) {
2942 err = PTR_ERR(bitmap_bh);
2943 bitmap_bh = NULL;
2944 goto out_err;
2947 BUFFER_TRACE(bitmap_bh, "getting write access");
2948 err = ext4_journal_get_write_access(handle, bitmap_bh);
2949 if (err)
2950 goto out_err;
2952 err = -EIO;
2953 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2954 if (!gdp)
2955 goto out_err;
2957 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2958 ext4_free_group_clusters(sb, gdp));
2960 BUFFER_TRACE(gdp_bh, "get_write_access");
2961 err = ext4_journal_get_write_access(handle, gdp_bh);
2962 if (err)
2963 goto out_err;
2965 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2967 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2968 if (!ext4_data_block_valid(sbi, block, len)) {
2969 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2970 "fs metadata", block, block+len);
2971 /* File system mounted not to panic on error
2972 * Fix the bitmap and return EFSCORRUPTED
2973 * We leak some of the blocks here.
2975 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2976 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2977 ac->ac_b_ex.fe_len);
2978 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2979 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2980 if (!err)
2981 err = -EFSCORRUPTED;
2982 goto out_err;
2985 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2986 #ifdef AGGRESSIVE_CHECK
2988 int i;
2989 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2990 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2991 bitmap_bh->b_data));
2994 #endif
2995 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2996 ac->ac_b_ex.fe_len);
2997 if (ext4_has_group_desc_csum(sb) &&
2998 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
2999 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3000 ext4_free_group_clusters_set(sb, gdp,
3001 ext4_free_clusters_after_init(sb,
3002 ac->ac_b_ex.fe_group, gdp));
3004 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
3005 ext4_free_group_clusters_set(sb, gdp, len);
3006 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
3007 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
3009 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3010 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
3012 * Now reduce the dirty block count also. Should not go negative
3014 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3015 /* release all the reserved blocks if non delalloc */
3016 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
3017 reserv_clstrs);
3019 if (sbi->s_log_groups_per_flex) {
3020 ext4_group_t flex_group = ext4_flex_group(sbi,
3021 ac->ac_b_ex.fe_group);
3022 atomic64_sub(ac->ac_b_ex.fe_len,
3023 &sbi->s_flex_groups[flex_group].free_clusters);
3026 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3027 if (err)
3028 goto out_err;
3029 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3031 out_err:
3032 brelse(bitmap_bh);
3033 return err;
3037 * here we normalize request for locality group
3038 * Group request are normalized to s_mb_group_prealloc, which goes to
3039 * s_strip if we set the same via mount option.
3040 * s_mb_group_prealloc can be configured via
3041 * /sys/fs/ext4/<partition>/mb_group_prealloc
3043 * XXX: should we try to preallocate more than the group has now?
3045 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3047 struct super_block *sb = ac->ac_sb;
3048 struct ext4_locality_group *lg = ac->ac_lg;
3050 BUG_ON(lg == NULL);
3051 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3052 mb_debug(1, "#%u: goal %u blocks for locality group\n",
3053 current->pid, ac->ac_g_ex.fe_len);
3057 * Normalization means making request better in terms of
3058 * size and alignment
3060 static noinline_for_stack void
3061 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3062 struct ext4_allocation_request *ar)
3064 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3065 int bsbits, max;
3066 ext4_lblk_t end;
3067 loff_t size, start_off;
3068 loff_t orig_size __maybe_unused;
3069 ext4_lblk_t start;
3070 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3071 struct ext4_prealloc_space *pa;
3073 /* do normalize only data requests, metadata requests
3074 do not need preallocation */
3075 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3076 return;
3078 /* sometime caller may want exact blocks */
3079 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3080 return;
3082 /* caller may indicate that preallocation isn't
3083 * required (it's a tail, for example) */
3084 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3085 return;
3087 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3088 ext4_mb_normalize_group_request(ac);
3089 return ;
3092 bsbits = ac->ac_sb->s_blocksize_bits;
3094 /* first, let's learn actual file size
3095 * given current request is allocated */
3096 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3097 size = size << bsbits;
3098 if (size < i_size_read(ac->ac_inode))
3099 size = i_size_read(ac->ac_inode);
3100 orig_size = size;
3102 /* max size of free chunks */
3103 max = 2 << bsbits;
3105 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3106 (req <= (size) || max <= (chunk_size))
3108 /* first, try to predict filesize */
3109 /* XXX: should this table be tunable? */
3110 start_off = 0;
3111 if (size <= 16 * 1024) {
3112 size = 16 * 1024;
3113 } else if (size <= 32 * 1024) {
3114 size = 32 * 1024;
3115 } else if (size <= 64 * 1024) {
3116 size = 64 * 1024;
3117 } else if (size <= 128 * 1024) {
3118 size = 128 * 1024;
3119 } else if (size <= 256 * 1024) {
3120 size = 256 * 1024;
3121 } else if (size <= 512 * 1024) {
3122 size = 512 * 1024;
3123 } else if (size <= 1024 * 1024) {
3124 size = 1024 * 1024;
3125 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3126 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3127 (21 - bsbits)) << 21;
3128 size = 2 * 1024 * 1024;
3129 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3130 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3131 (22 - bsbits)) << 22;
3132 size = 4 * 1024 * 1024;
3133 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3134 (8<<20)>>bsbits, max, 8 * 1024)) {
3135 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3136 (23 - bsbits)) << 23;
3137 size = 8 * 1024 * 1024;
3138 } else {
3139 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3140 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3141 ac->ac_o_ex.fe_len) << bsbits;
3143 size = size >> bsbits;
3144 start = start_off >> bsbits;
3146 /* don't cover already allocated blocks in selected range */
3147 if (ar->pleft && start <= ar->lleft) {
3148 size -= ar->lleft + 1 - start;
3149 start = ar->lleft + 1;
3151 if (ar->pright && start + size - 1 >= ar->lright)
3152 size -= start + size - ar->lright;
3155 * Trim allocation request for filesystems with artificially small
3156 * groups.
3158 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
3159 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
3161 end = start + size;
3163 /* check we don't cross already preallocated blocks */
3164 rcu_read_lock();
3165 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3166 ext4_lblk_t pa_end;
3168 if (pa->pa_deleted)
3169 continue;
3170 spin_lock(&pa->pa_lock);
3171 if (pa->pa_deleted) {
3172 spin_unlock(&pa->pa_lock);
3173 continue;
3176 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3177 pa->pa_len);
3179 /* PA must not overlap original request */
3180 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3181 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3183 /* skip PAs this normalized request doesn't overlap with */
3184 if (pa->pa_lstart >= end || pa_end <= start) {
3185 spin_unlock(&pa->pa_lock);
3186 continue;
3188 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3190 /* adjust start or end to be adjacent to this pa */
3191 if (pa_end <= ac->ac_o_ex.fe_logical) {
3192 BUG_ON(pa_end < start);
3193 start = pa_end;
3194 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3195 BUG_ON(pa->pa_lstart > end);
3196 end = pa->pa_lstart;
3198 spin_unlock(&pa->pa_lock);
3200 rcu_read_unlock();
3201 size = end - start;
3203 /* XXX: extra loop to check we really don't overlap preallocations */
3204 rcu_read_lock();
3205 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3206 ext4_lblk_t pa_end;
3208 spin_lock(&pa->pa_lock);
3209 if (pa->pa_deleted == 0) {
3210 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3211 pa->pa_len);
3212 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3214 spin_unlock(&pa->pa_lock);
3216 rcu_read_unlock();
3218 if (start + size <= ac->ac_o_ex.fe_logical &&
3219 start > ac->ac_o_ex.fe_logical) {
3220 ext4_msg(ac->ac_sb, KERN_ERR,
3221 "start %lu, size %lu, fe_logical %lu",
3222 (unsigned long) start, (unsigned long) size,
3223 (unsigned long) ac->ac_o_ex.fe_logical);
3224 BUG();
3226 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3228 /* now prepare goal request */
3230 /* XXX: is it better to align blocks WRT to logical
3231 * placement or satisfy big request as is */
3232 ac->ac_g_ex.fe_logical = start;
3233 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3235 /* define goal start in order to merge */
3236 if (ar->pright && (ar->lright == (start + size))) {
3237 /* merge to the right */
3238 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3239 &ac->ac_f_ex.fe_group,
3240 &ac->ac_f_ex.fe_start);
3241 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3243 if (ar->pleft && (ar->lleft + 1 == start)) {
3244 /* merge to the left */
3245 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3246 &ac->ac_f_ex.fe_group,
3247 &ac->ac_f_ex.fe_start);
3248 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3251 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3252 (unsigned) orig_size, (unsigned) start);
3255 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3257 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3259 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3260 atomic_inc(&sbi->s_bal_reqs);
3261 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3262 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3263 atomic_inc(&sbi->s_bal_success);
3264 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3265 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3266 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3267 atomic_inc(&sbi->s_bal_goals);
3268 if (ac->ac_found > sbi->s_mb_max_to_scan)
3269 atomic_inc(&sbi->s_bal_breaks);
3272 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3273 trace_ext4_mballoc_alloc(ac);
3274 else
3275 trace_ext4_mballoc_prealloc(ac);
3279 * Called on failure; free up any blocks from the inode PA for this
3280 * context. We don't need this for MB_GROUP_PA because we only change
3281 * pa_free in ext4_mb_release_context(), but on failure, we've already
3282 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3284 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3286 struct ext4_prealloc_space *pa = ac->ac_pa;
3287 struct ext4_buddy e4b;
3288 int err;
3290 if (pa == NULL) {
3291 if (ac->ac_f_ex.fe_len == 0)
3292 return;
3293 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3294 if (err) {
3296 * This should never happen since we pin the
3297 * pages in the ext4_allocation_context so
3298 * ext4_mb_load_buddy() should never fail.
3300 WARN(1, "mb_load_buddy failed (%d)", err);
3301 return;
3303 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3304 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3305 ac->ac_f_ex.fe_len);
3306 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3307 ext4_mb_unload_buddy(&e4b);
3308 return;
3310 if (pa->pa_type == MB_INODE_PA)
3311 pa->pa_free += ac->ac_b_ex.fe_len;
3315 * use blocks preallocated to inode
3317 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3318 struct ext4_prealloc_space *pa)
3320 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3321 ext4_fsblk_t start;
3322 ext4_fsblk_t end;
3323 int len;
3325 /* found preallocated blocks, use them */
3326 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3327 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3328 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3329 len = EXT4_NUM_B2C(sbi, end - start);
3330 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3331 &ac->ac_b_ex.fe_start);
3332 ac->ac_b_ex.fe_len = len;
3333 ac->ac_status = AC_STATUS_FOUND;
3334 ac->ac_pa = pa;
3336 BUG_ON(start < pa->pa_pstart);
3337 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3338 BUG_ON(pa->pa_free < len);
3339 pa->pa_free -= len;
3341 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3345 * use blocks preallocated to locality group
3347 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3348 struct ext4_prealloc_space *pa)
3350 unsigned int len = ac->ac_o_ex.fe_len;
3352 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3353 &ac->ac_b_ex.fe_group,
3354 &ac->ac_b_ex.fe_start);
3355 ac->ac_b_ex.fe_len = len;
3356 ac->ac_status = AC_STATUS_FOUND;
3357 ac->ac_pa = pa;
3359 /* we don't correct pa_pstart or pa_plen here to avoid
3360 * possible race when the group is being loaded concurrently
3361 * instead we correct pa later, after blocks are marked
3362 * in on-disk bitmap -- see ext4_mb_release_context()
3363 * Other CPUs are prevented from allocating from this pa by lg_mutex
3365 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3369 * Return the prealloc space that have minimal distance
3370 * from the goal block. @cpa is the prealloc
3371 * space that is having currently known minimal distance
3372 * from the goal block.
3374 static struct ext4_prealloc_space *
3375 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3376 struct ext4_prealloc_space *pa,
3377 struct ext4_prealloc_space *cpa)
3379 ext4_fsblk_t cur_distance, new_distance;
3381 if (cpa == NULL) {
3382 atomic_inc(&pa->pa_count);
3383 return pa;
3385 cur_distance = abs(goal_block - cpa->pa_pstart);
3386 new_distance = abs(goal_block - pa->pa_pstart);
3388 if (cur_distance <= new_distance)
3389 return cpa;
3391 /* drop the previous reference */
3392 atomic_dec(&cpa->pa_count);
3393 atomic_inc(&pa->pa_count);
3394 return pa;
3398 * search goal blocks in preallocated space
3400 static noinline_for_stack int
3401 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3403 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3404 int order, i;
3405 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3406 struct ext4_locality_group *lg;
3407 struct ext4_prealloc_space *pa, *cpa = NULL;
3408 ext4_fsblk_t goal_block;
3410 /* only data can be preallocated */
3411 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3412 return 0;
3414 /* first, try per-file preallocation */
3415 rcu_read_lock();
3416 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3418 /* all fields in this condition don't change,
3419 * so we can skip locking for them */
3420 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3421 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3422 EXT4_C2B(sbi, pa->pa_len)))
3423 continue;
3425 /* non-extent files can't have physical blocks past 2^32 */
3426 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3427 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3428 EXT4_MAX_BLOCK_FILE_PHYS))
3429 continue;
3431 /* found preallocated blocks, use them */
3432 spin_lock(&pa->pa_lock);
3433 if (pa->pa_deleted == 0 && pa->pa_free) {
3434 atomic_inc(&pa->pa_count);
3435 ext4_mb_use_inode_pa(ac, pa);
3436 spin_unlock(&pa->pa_lock);
3437 ac->ac_criteria = 10;
3438 rcu_read_unlock();
3439 return 1;
3441 spin_unlock(&pa->pa_lock);
3443 rcu_read_unlock();
3445 /* can we use group allocation? */
3446 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3447 return 0;
3449 /* inode may have no locality group for some reason */
3450 lg = ac->ac_lg;
3451 if (lg == NULL)
3452 return 0;
3453 order = fls(ac->ac_o_ex.fe_len) - 1;
3454 if (order > PREALLOC_TB_SIZE - 1)
3455 /* The max size of hash table is PREALLOC_TB_SIZE */
3456 order = PREALLOC_TB_SIZE - 1;
3458 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3460 * search for the prealloc space that is having
3461 * minimal distance from the goal block.
3463 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3464 rcu_read_lock();
3465 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3466 pa_inode_list) {
3467 spin_lock(&pa->pa_lock);
3468 if (pa->pa_deleted == 0 &&
3469 pa->pa_free >= ac->ac_o_ex.fe_len) {
3471 cpa = ext4_mb_check_group_pa(goal_block,
3472 pa, cpa);
3474 spin_unlock(&pa->pa_lock);
3476 rcu_read_unlock();
3478 if (cpa) {
3479 ext4_mb_use_group_pa(ac, cpa);
3480 ac->ac_criteria = 20;
3481 return 1;
3483 return 0;
3487 * the function goes through all block freed in the group
3488 * but not yet committed and marks them used in in-core bitmap.
3489 * buddy must be generated from this bitmap
3490 * Need to be called with the ext4 group lock held
3492 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3493 ext4_group_t group)
3495 struct rb_node *n;
3496 struct ext4_group_info *grp;
3497 struct ext4_free_data *entry;
3499 grp = ext4_get_group_info(sb, group);
3500 n = rb_first(&(grp->bb_free_root));
3502 while (n) {
3503 entry = rb_entry(n, struct ext4_free_data, efd_node);
3504 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3505 n = rb_next(n);
3507 return;
3511 * the function goes through all preallocation in this group and marks them
3512 * used in in-core bitmap. buddy must be generated from this bitmap
3513 * Need to be called with ext4 group lock held
3515 static noinline_for_stack
3516 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3517 ext4_group_t group)
3519 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3520 struct ext4_prealloc_space *pa;
3521 struct list_head *cur;
3522 ext4_group_t groupnr;
3523 ext4_grpblk_t start;
3524 int preallocated = 0;
3525 int len;
3527 /* all form of preallocation discards first load group,
3528 * so the only competing code is preallocation use.
3529 * we don't need any locking here
3530 * notice we do NOT ignore preallocations with pa_deleted
3531 * otherwise we could leave used blocks available for
3532 * allocation in buddy when concurrent ext4_mb_put_pa()
3533 * is dropping preallocation
3535 list_for_each(cur, &grp->bb_prealloc_list) {
3536 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3537 spin_lock(&pa->pa_lock);
3538 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3539 &groupnr, &start);
3540 len = pa->pa_len;
3541 spin_unlock(&pa->pa_lock);
3542 if (unlikely(len == 0))
3543 continue;
3544 BUG_ON(groupnr != group);
3545 ext4_set_bits(bitmap, start, len);
3546 preallocated += len;
3548 mb_debug(1, "preallocated %u for group %u\n", preallocated, group);
3551 static void ext4_mb_pa_callback(struct rcu_head *head)
3553 struct ext4_prealloc_space *pa;
3554 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3556 BUG_ON(atomic_read(&pa->pa_count));
3557 BUG_ON(pa->pa_deleted == 0);
3558 kmem_cache_free(ext4_pspace_cachep, pa);
3562 * drops a reference to preallocated space descriptor
3563 * if this was the last reference and the space is consumed
3565 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3566 struct super_block *sb, struct ext4_prealloc_space *pa)
3568 ext4_group_t grp;
3569 ext4_fsblk_t grp_blk;
3571 /* in this short window concurrent discard can set pa_deleted */
3572 spin_lock(&pa->pa_lock);
3573 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3574 spin_unlock(&pa->pa_lock);
3575 return;
3578 if (pa->pa_deleted == 1) {
3579 spin_unlock(&pa->pa_lock);
3580 return;
3583 pa->pa_deleted = 1;
3584 spin_unlock(&pa->pa_lock);
3586 grp_blk = pa->pa_pstart;
3588 * If doing group-based preallocation, pa_pstart may be in the
3589 * next group when pa is used up
3591 if (pa->pa_type == MB_GROUP_PA)
3592 grp_blk--;
3594 grp = ext4_get_group_number(sb, grp_blk);
3597 * possible race:
3599 * P1 (buddy init) P2 (regular allocation)
3600 * find block B in PA
3601 * copy on-disk bitmap to buddy
3602 * mark B in on-disk bitmap
3603 * drop PA from group
3604 * mark all PAs in buddy
3606 * thus, P1 initializes buddy with B available. to prevent this
3607 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3608 * against that pair
3610 ext4_lock_group(sb, grp);
3611 list_del(&pa->pa_group_list);
3612 ext4_unlock_group(sb, grp);
3614 spin_lock(pa->pa_obj_lock);
3615 list_del_rcu(&pa->pa_inode_list);
3616 spin_unlock(pa->pa_obj_lock);
3618 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3622 * creates new preallocated space for given inode
3624 static noinline_for_stack int
3625 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3627 struct super_block *sb = ac->ac_sb;
3628 struct ext4_sb_info *sbi = EXT4_SB(sb);
3629 struct ext4_prealloc_space *pa;
3630 struct ext4_group_info *grp;
3631 struct ext4_inode_info *ei;
3633 /* preallocate only when found space is larger then requested */
3634 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3635 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3636 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3638 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3639 if (pa == NULL)
3640 return -ENOMEM;
3642 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3643 int winl;
3644 int wins;
3645 int win;
3646 int offs;
3648 /* we can't allocate as much as normalizer wants.
3649 * so, found space must get proper lstart
3650 * to cover original request */
3651 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3652 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3654 /* we're limited by original request in that
3655 * logical block must be covered any way
3656 * winl is window we can move our chunk within */
3657 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3659 /* also, we should cover whole original request */
3660 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3662 /* the smallest one defines real window */
3663 win = min(winl, wins);
3665 offs = ac->ac_o_ex.fe_logical %
3666 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3667 if (offs && offs < win)
3668 win = offs;
3670 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3671 EXT4_NUM_B2C(sbi, win);
3672 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3673 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3676 /* preallocation can change ac_b_ex, thus we store actually
3677 * allocated blocks for history */
3678 ac->ac_f_ex = ac->ac_b_ex;
3680 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3681 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3682 pa->pa_len = ac->ac_b_ex.fe_len;
3683 pa->pa_free = pa->pa_len;
3684 atomic_set(&pa->pa_count, 1);
3685 spin_lock_init(&pa->pa_lock);
3686 INIT_LIST_HEAD(&pa->pa_inode_list);
3687 INIT_LIST_HEAD(&pa->pa_group_list);
3688 pa->pa_deleted = 0;
3689 pa->pa_type = MB_INODE_PA;
3691 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3692 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3693 trace_ext4_mb_new_inode_pa(ac, pa);
3695 ext4_mb_use_inode_pa(ac, pa);
3696 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3698 ei = EXT4_I(ac->ac_inode);
3699 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3701 pa->pa_obj_lock = &ei->i_prealloc_lock;
3702 pa->pa_inode = ac->ac_inode;
3704 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3705 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3706 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3708 spin_lock(pa->pa_obj_lock);
3709 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3710 spin_unlock(pa->pa_obj_lock);
3712 return 0;
3716 * creates new preallocated space for locality group inodes belongs to
3718 static noinline_for_stack int
3719 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3721 struct super_block *sb = ac->ac_sb;
3722 struct ext4_locality_group *lg;
3723 struct ext4_prealloc_space *pa;
3724 struct ext4_group_info *grp;
3726 /* preallocate only when found space is larger then requested */
3727 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3728 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3729 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3731 BUG_ON(ext4_pspace_cachep == NULL);
3732 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3733 if (pa == NULL)
3734 return -ENOMEM;
3736 /* preallocation can change ac_b_ex, thus we store actually
3737 * allocated blocks for history */
3738 ac->ac_f_ex = ac->ac_b_ex;
3740 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3741 pa->pa_lstart = pa->pa_pstart;
3742 pa->pa_len = ac->ac_b_ex.fe_len;
3743 pa->pa_free = pa->pa_len;
3744 atomic_set(&pa->pa_count, 1);
3745 spin_lock_init(&pa->pa_lock);
3746 INIT_LIST_HEAD(&pa->pa_inode_list);
3747 INIT_LIST_HEAD(&pa->pa_group_list);
3748 pa->pa_deleted = 0;
3749 pa->pa_type = MB_GROUP_PA;
3751 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3752 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3753 trace_ext4_mb_new_group_pa(ac, pa);
3755 ext4_mb_use_group_pa(ac, pa);
3756 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3758 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3759 lg = ac->ac_lg;
3760 BUG_ON(lg == NULL);
3762 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3763 pa->pa_inode = NULL;
3765 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3766 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3767 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3770 * We will later add the new pa to the right bucket
3771 * after updating the pa_free in ext4_mb_release_context
3773 return 0;
3776 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3778 int err;
3780 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3781 err = ext4_mb_new_group_pa(ac);
3782 else
3783 err = ext4_mb_new_inode_pa(ac);
3784 return err;
3788 * finds all unused blocks in on-disk bitmap, frees them in
3789 * in-core bitmap and buddy.
3790 * @pa must be unlinked from inode and group lists, so that
3791 * nobody else can find/use it.
3792 * the caller MUST hold group/inode locks.
3793 * TODO: optimize the case when there are no in-core structures yet
3795 static noinline_for_stack int
3796 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3797 struct ext4_prealloc_space *pa)
3799 struct super_block *sb = e4b->bd_sb;
3800 struct ext4_sb_info *sbi = EXT4_SB(sb);
3801 unsigned int end;
3802 unsigned int next;
3803 ext4_group_t group;
3804 ext4_grpblk_t bit;
3805 unsigned long long grp_blk_start;
3806 int free = 0;
3808 BUG_ON(pa->pa_deleted == 0);
3809 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3810 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3811 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3812 end = bit + pa->pa_len;
3814 while (bit < end) {
3815 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3816 if (bit >= end)
3817 break;
3818 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3819 mb_debug(1, " free preallocated %u/%u in group %u\n",
3820 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3821 (unsigned) next - bit, (unsigned) group);
3822 free += next - bit;
3824 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3825 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3826 EXT4_C2B(sbi, bit)),
3827 next - bit);
3828 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3829 bit = next + 1;
3831 if (free != pa->pa_free) {
3832 ext4_msg(e4b->bd_sb, KERN_CRIT,
3833 "pa %p: logic %lu, phys. %lu, len %lu",
3834 pa, (unsigned long) pa->pa_lstart,
3835 (unsigned long) pa->pa_pstart,
3836 (unsigned long) pa->pa_len);
3837 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3838 free, pa->pa_free);
3840 * pa is already deleted so we use the value obtained
3841 * from the bitmap and continue.
3844 atomic_add(free, &sbi->s_mb_discarded);
3846 return 0;
3849 static noinline_for_stack int
3850 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3851 struct ext4_prealloc_space *pa)
3853 struct super_block *sb = e4b->bd_sb;
3854 ext4_group_t group;
3855 ext4_grpblk_t bit;
3857 trace_ext4_mb_release_group_pa(sb, pa);
3858 BUG_ON(pa->pa_deleted == 0);
3859 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3860 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3861 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3862 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3863 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3865 return 0;
3869 * releases all preallocations in given group
3871 * first, we need to decide discard policy:
3872 * - when do we discard
3873 * 1) ENOSPC
3874 * - how many do we discard
3875 * 1) how many requested
3877 static noinline_for_stack int
3878 ext4_mb_discard_group_preallocations(struct super_block *sb,
3879 ext4_group_t group, int needed)
3881 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3882 struct buffer_head *bitmap_bh = NULL;
3883 struct ext4_prealloc_space *pa, *tmp;
3884 struct list_head list;
3885 struct ext4_buddy e4b;
3886 int err;
3887 int busy = 0;
3888 int free = 0;
3890 mb_debug(1, "discard preallocation for group %u\n", group);
3892 if (list_empty(&grp->bb_prealloc_list))
3893 return 0;
3895 bitmap_bh = ext4_read_block_bitmap(sb, group);
3896 if (IS_ERR(bitmap_bh)) {
3897 err = PTR_ERR(bitmap_bh);
3898 ext4_error(sb, "Error %d reading block bitmap for %u",
3899 err, group);
3900 return 0;
3903 err = ext4_mb_load_buddy(sb, group, &e4b);
3904 if (err) {
3905 ext4_warning(sb, "Error %d loading buddy information for %u",
3906 err, group);
3907 put_bh(bitmap_bh);
3908 return 0;
3911 if (needed == 0)
3912 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3914 INIT_LIST_HEAD(&list);
3915 repeat:
3916 ext4_lock_group(sb, group);
3917 list_for_each_entry_safe(pa, tmp,
3918 &grp->bb_prealloc_list, pa_group_list) {
3919 spin_lock(&pa->pa_lock);
3920 if (atomic_read(&pa->pa_count)) {
3921 spin_unlock(&pa->pa_lock);
3922 busy = 1;
3923 continue;
3925 if (pa->pa_deleted) {
3926 spin_unlock(&pa->pa_lock);
3927 continue;
3930 /* seems this one can be freed ... */
3931 pa->pa_deleted = 1;
3933 /* we can trust pa_free ... */
3934 free += pa->pa_free;
3936 spin_unlock(&pa->pa_lock);
3938 list_del(&pa->pa_group_list);
3939 list_add(&pa->u.pa_tmp_list, &list);
3942 /* if we still need more blocks and some PAs were used, try again */
3943 if (free < needed && busy) {
3944 busy = 0;
3945 ext4_unlock_group(sb, group);
3946 cond_resched();
3947 goto repeat;
3950 /* found anything to free? */
3951 if (list_empty(&list)) {
3952 BUG_ON(free != 0);
3953 goto out;
3956 /* now free all selected PAs */
3957 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3959 /* remove from object (inode or locality group) */
3960 spin_lock(pa->pa_obj_lock);
3961 list_del_rcu(&pa->pa_inode_list);
3962 spin_unlock(pa->pa_obj_lock);
3964 if (pa->pa_type == MB_GROUP_PA)
3965 ext4_mb_release_group_pa(&e4b, pa);
3966 else
3967 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3969 list_del(&pa->u.pa_tmp_list);
3970 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3973 out:
3974 ext4_unlock_group(sb, group);
3975 ext4_mb_unload_buddy(&e4b);
3976 put_bh(bitmap_bh);
3977 return free;
3981 * releases all non-used preallocated blocks for given inode
3983 * It's important to discard preallocations under i_data_sem
3984 * We don't want another block to be served from the prealloc
3985 * space when we are discarding the inode prealloc space.
3987 * FIXME!! Make sure it is valid at all the call sites
3989 void ext4_discard_preallocations(struct inode *inode)
3991 struct ext4_inode_info *ei = EXT4_I(inode);
3992 struct super_block *sb = inode->i_sb;
3993 struct buffer_head *bitmap_bh = NULL;
3994 struct ext4_prealloc_space *pa, *tmp;
3995 ext4_group_t group = 0;
3996 struct list_head list;
3997 struct ext4_buddy e4b;
3998 int err;
4000 if (!S_ISREG(inode->i_mode)) {
4001 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4002 return;
4005 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
4006 trace_ext4_discard_preallocations(inode);
4008 INIT_LIST_HEAD(&list);
4010 repeat:
4011 /* first, collect all pa's in the inode */
4012 spin_lock(&ei->i_prealloc_lock);
4013 while (!list_empty(&ei->i_prealloc_list)) {
4014 pa = list_entry(ei->i_prealloc_list.next,
4015 struct ext4_prealloc_space, pa_inode_list);
4016 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4017 spin_lock(&pa->pa_lock);
4018 if (atomic_read(&pa->pa_count)) {
4019 /* this shouldn't happen often - nobody should
4020 * use preallocation while we're discarding it */
4021 spin_unlock(&pa->pa_lock);
4022 spin_unlock(&ei->i_prealloc_lock);
4023 ext4_msg(sb, KERN_ERR,
4024 "uh-oh! used pa while discarding");
4025 WARN_ON(1);
4026 schedule_timeout_uninterruptible(HZ);
4027 goto repeat;
4030 if (pa->pa_deleted == 0) {
4031 pa->pa_deleted = 1;
4032 spin_unlock(&pa->pa_lock);
4033 list_del_rcu(&pa->pa_inode_list);
4034 list_add(&pa->u.pa_tmp_list, &list);
4035 continue;
4038 /* someone is deleting pa right now */
4039 spin_unlock(&pa->pa_lock);
4040 spin_unlock(&ei->i_prealloc_lock);
4042 /* we have to wait here because pa_deleted
4043 * doesn't mean pa is already unlinked from
4044 * the list. as we might be called from
4045 * ->clear_inode() the inode will get freed
4046 * and concurrent thread which is unlinking
4047 * pa from inode's list may access already
4048 * freed memory, bad-bad-bad */
4050 /* XXX: if this happens too often, we can
4051 * add a flag to force wait only in case
4052 * of ->clear_inode(), but not in case of
4053 * regular truncate */
4054 schedule_timeout_uninterruptible(HZ);
4055 goto repeat;
4057 spin_unlock(&ei->i_prealloc_lock);
4059 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4060 BUG_ON(pa->pa_type != MB_INODE_PA);
4061 group = ext4_get_group_number(sb, pa->pa_pstart);
4063 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4064 GFP_NOFS|__GFP_NOFAIL);
4065 if (err) {
4066 ext4_error(sb, "Error %d loading buddy information for %u",
4067 err, group);
4068 continue;
4071 bitmap_bh = ext4_read_block_bitmap(sb, group);
4072 if (IS_ERR(bitmap_bh)) {
4073 err = PTR_ERR(bitmap_bh);
4074 ext4_error(sb, "Error %d reading block bitmap for %u",
4075 err, group);
4076 ext4_mb_unload_buddy(&e4b);
4077 continue;
4080 ext4_lock_group(sb, group);
4081 list_del(&pa->pa_group_list);
4082 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4083 ext4_unlock_group(sb, group);
4085 ext4_mb_unload_buddy(&e4b);
4086 put_bh(bitmap_bh);
4088 list_del(&pa->u.pa_tmp_list);
4089 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4093 #ifdef CONFIG_EXT4_DEBUG
4094 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4096 struct super_block *sb = ac->ac_sb;
4097 ext4_group_t ngroups, i;
4099 if (!ext4_mballoc_debug ||
4100 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4101 return;
4103 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4104 " Allocation context details:");
4105 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4106 ac->ac_status, ac->ac_flags);
4107 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4108 "goal %lu/%lu/%lu@%lu, "
4109 "best %lu/%lu/%lu@%lu cr %d",
4110 (unsigned long)ac->ac_o_ex.fe_group,
4111 (unsigned long)ac->ac_o_ex.fe_start,
4112 (unsigned long)ac->ac_o_ex.fe_len,
4113 (unsigned long)ac->ac_o_ex.fe_logical,
4114 (unsigned long)ac->ac_g_ex.fe_group,
4115 (unsigned long)ac->ac_g_ex.fe_start,
4116 (unsigned long)ac->ac_g_ex.fe_len,
4117 (unsigned long)ac->ac_g_ex.fe_logical,
4118 (unsigned long)ac->ac_b_ex.fe_group,
4119 (unsigned long)ac->ac_b_ex.fe_start,
4120 (unsigned long)ac->ac_b_ex.fe_len,
4121 (unsigned long)ac->ac_b_ex.fe_logical,
4122 (int)ac->ac_criteria);
4123 ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4124 ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4125 ngroups = ext4_get_groups_count(sb);
4126 for (i = 0; i < ngroups; i++) {
4127 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4128 struct ext4_prealloc_space *pa;
4129 ext4_grpblk_t start;
4130 struct list_head *cur;
4131 ext4_lock_group(sb, i);
4132 list_for_each(cur, &grp->bb_prealloc_list) {
4133 pa = list_entry(cur, struct ext4_prealloc_space,
4134 pa_group_list);
4135 spin_lock(&pa->pa_lock);
4136 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4137 NULL, &start);
4138 spin_unlock(&pa->pa_lock);
4139 printk(KERN_ERR "PA:%u:%d:%u \n", i,
4140 start, pa->pa_len);
4142 ext4_unlock_group(sb, i);
4144 if (grp->bb_free == 0)
4145 continue;
4146 printk(KERN_ERR "%u: %d/%d \n",
4147 i, grp->bb_free, grp->bb_fragments);
4149 printk(KERN_ERR "\n");
4151 #else
4152 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4154 return;
4156 #endif
4159 * We use locality group preallocation for small size file. The size of the
4160 * file is determined by the current size or the resulting size after
4161 * allocation which ever is larger
4163 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4165 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4167 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4168 int bsbits = ac->ac_sb->s_blocksize_bits;
4169 loff_t size, isize;
4171 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4172 return;
4174 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4175 return;
4177 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4178 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4179 >> bsbits;
4181 if ((size == isize) && !ext4_fs_is_busy(sbi) &&
4182 !inode_is_open_for_write(ac->ac_inode)) {
4183 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4184 return;
4187 if (sbi->s_mb_group_prealloc <= 0) {
4188 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4189 return;
4192 /* don't use group allocation for large files */
4193 size = max(size, isize);
4194 if (size > sbi->s_mb_stream_request) {
4195 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4196 return;
4199 BUG_ON(ac->ac_lg != NULL);
4201 * locality group prealloc space are per cpu. The reason for having
4202 * per cpu locality group is to reduce the contention between block
4203 * request from multiple CPUs.
4205 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4207 /* we're going to use group allocation */
4208 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4210 /* serialize all allocations in the group */
4211 mutex_lock(&ac->ac_lg->lg_mutex);
4214 static noinline_for_stack int
4215 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4216 struct ext4_allocation_request *ar)
4218 struct super_block *sb = ar->inode->i_sb;
4219 struct ext4_sb_info *sbi = EXT4_SB(sb);
4220 struct ext4_super_block *es = sbi->s_es;
4221 ext4_group_t group;
4222 unsigned int len;
4223 ext4_fsblk_t goal;
4224 ext4_grpblk_t block;
4226 /* we can't allocate > group size */
4227 len = ar->len;
4229 /* just a dirty hack to filter too big requests */
4230 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4231 len = EXT4_CLUSTERS_PER_GROUP(sb);
4233 /* start searching from the goal */
4234 goal = ar->goal;
4235 if (goal < le32_to_cpu(es->s_first_data_block) ||
4236 goal >= ext4_blocks_count(es))
4237 goal = le32_to_cpu(es->s_first_data_block);
4238 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4240 /* set up allocation goals */
4241 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4242 ac->ac_status = AC_STATUS_CONTINUE;
4243 ac->ac_sb = sb;
4244 ac->ac_inode = ar->inode;
4245 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4246 ac->ac_o_ex.fe_group = group;
4247 ac->ac_o_ex.fe_start = block;
4248 ac->ac_o_ex.fe_len = len;
4249 ac->ac_g_ex = ac->ac_o_ex;
4250 ac->ac_flags = ar->flags;
4252 /* we have to define context: we'll we work with a file or
4253 * locality group. this is a policy, actually */
4254 ext4_mb_group_or_file(ac);
4256 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4257 "left: %u/%u, right %u/%u to %swritable\n",
4258 (unsigned) ar->len, (unsigned) ar->logical,
4259 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4260 (unsigned) ar->lleft, (unsigned) ar->pleft,
4261 (unsigned) ar->lright, (unsigned) ar->pright,
4262 inode_is_open_for_write(ar->inode) ? "" : "non-");
4263 return 0;
4267 static noinline_for_stack void
4268 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4269 struct ext4_locality_group *lg,
4270 int order, int total_entries)
4272 ext4_group_t group = 0;
4273 struct ext4_buddy e4b;
4274 struct list_head discard_list;
4275 struct ext4_prealloc_space *pa, *tmp;
4277 mb_debug(1, "discard locality group preallocation\n");
4279 INIT_LIST_HEAD(&discard_list);
4281 spin_lock(&lg->lg_prealloc_lock);
4282 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4283 pa_inode_list) {
4284 spin_lock(&pa->pa_lock);
4285 if (atomic_read(&pa->pa_count)) {
4287 * This is the pa that we just used
4288 * for block allocation. So don't
4289 * free that
4291 spin_unlock(&pa->pa_lock);
4292 continue;
4294 if (pa->pa_deleted) {
4295 spin_unlock(&pa->pa_lock);
4296 continue;
4298 /* only lg prealloc space */
4299 BUG_ON(pa->pa_type != MB_GROUP_PA);
4301 /* seems this one can be freed ... */
4302 pa->pa_deleted = 1;
4303 spin_unlock(&pa->pa_lock);
4305 list_del_rcu(&pa->pa_inode_list);
4306 list_add(&pa->u.pa_tmp_list, &discard_list);
4308 total_entries--;
4309 if (total_entries <= 5) {
4311 * we want to keep only 5 entries
4312 * allowing it to grow to 8. This
4313 * mak sure we don't call discard
4314 * soon for this list.
4316 break;
4319 spin_unlock(&lg->lg_prealloc_lock);
4321 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4322 int err;
4324 group = ext4_get_group_number(sb, pa->pa_pstart);
4325 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4326 GFP_NOFS|__GFP_NOFAIL);
4327 if (err) {
4328 ext4_error(sb, "Error %d loading buddy information for %u",
4329 err, group);
4330 continue;
4332 ext4_lock_group(sb, group);
4333 list_del(&pa->pa_group_list);
4334 ext4_mb_release_group_pa(&e4b, pa);
4335 ext4_unlock_group(sb, group);
4337 ext4_mb_unload_buddy(&e4b);
4338 list_del(&pa->u.pa_tmp_list);
4339 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4344 * We have incremented pa_count. So it cannot be freed at this
4345 * point. Also we hold lg_mutex. So no parallel allocation is
4346 * possible from this lg. That means pa_free cannot be updated.
4348 * A parallel ext4_mb_discard_group_preallocations is possible.
4349 * which can cause the lg_prealloc_list to be updated.
4352 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4354 int order, added = 0, lg_prealloc_count = 1;
4355 struct super_block *sb = ac->ac_sb;
4356 struct ext4_locality_group *lg = ac->ac_lg;
4357 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4359 order = fls(pa->pa_free) - 1;
4360 if (order > PREALLOC_TB_SIZE - 1)
4361 /* The max size of hash table is PREALLOC_TB_SIZE */
4362 order = PREALLOC_TB_SIZE - 1;
4363 /* Add the prealloc space to lg */
4364 spin_lock(&lg->lg_prealloc_lock);
4365 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4366 pa_inode_list) {
4367 spin_lock(&tmp_pa->pa_lock);
4368 if (tmp_pa->pa_deleted) {
4369 spin_unlock(&tmp_pa->pa_lock);
4370 continue;
4372 if (!added && pa->pa_free < tmp_pa->pa_free) {
4373 /* Add to the tail of the previous entry */
4374 list_add_tail_rcu(&pa->pa_inode_list,
4375 &tmp_pa->pa_inode_list);
4376 added = 1;
4378 * we want to count the total
4379 * number of entries in the list
4382 spin_unlock(&tmp_pa->pa_lock);
4383 lg_prealloc_count++;
4385 if (!added)
4386 list_add_tail_rcu(&pa->pa_inode_list,
4387 &lg->lg_prealloc_list[order]);
4388 spin_unlock(&lg->lg_prealloc_lock);
4390 /* Now trim the list to be not more than 8 elements */
4391 if (lg_prealloc_count > 8) {
4392 ext4_mb_discard_lg_preallocations(sb, lg,
4393 order, lg_prealloc_count);
4394 return;
4396 return ;
4400 * release all resource we used in allocation
4402 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4404 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4405 struct ext4_prealloc_space *pa = ac->ac_pa;
4406 if (pa) {
4407 if (pa->pa_type == MB_GROUP_PA) {
4408 /* see comment in ext4_mb_use_group_pa() */
4409 spin_lock(&pa->pa_lock);
4410 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4411 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4412 pa->pa_free -= ac->ac_b_ex.fe_len;
4413 pa->pa_len -= ac->ac_b_ex.fe_len;
4414 spin_unlock(&pa->pa_lock);
4417 if (pa) {
4419 * We want to add the pa to the right bucket.
4420 * Remove it from the list and while adding
4421 * make sure the list to which we are adding
4422 * doesn't grow big.
4424 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4425 spin_lock(pa->pa_obj_lock);
4426 list_del_rcu(&pa->pa_inode_list);
4427 spin_unlock(pa->pa_obj_lock);
4428 ext4_mb_add_n_trim(ac);
4430 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4432 if (ac->ac_bitmap_page)
4433 put_page(ac->ac_bitmap_page);
4434 if (ac->ac_buddy_page)
4435 put_page(ac->ac_buddy_page);
4436 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4437 mutex_unlock(&ac->ac_lg->lg_mutex);
4438 ext4_mb_collect_stats(ac);
4439 return 0;
4442 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4444 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4445 int ret;
4446 int freed = 0;
4448 trace_ext4_mb_discard_preallocations(sb, needed);
4449 for (i = 0; i < ngroups && needed > 0; i++) {
4450 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4451 freed += ret;
4452 needed -= ret;
4455 return freed;
4459 * Main entry point into mballoc to allocate blocks
4460 * it tries to use preallocation first, then falls back
4461 * to usual allocation
4463 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4464 struct ext4_allocation_request *ar, int *errp)
4466 int freed;
4467 struct ext4_allocation_context *ac = NULL;
4468 struct ext4_sb_info *sbi;
4469 struct super_block *sb;
4470 ext4_fsblk_t block = 0;
4471 unsigned int inquota = 0;
4472 unsigned int reserv_clstrs = 0;
4474 might_sleep();
4475 sb = ar->inode->i_sb;
4476 sbi = EXT4_SB(sb);
4478 trace_ext4_request_blocks(ar);
4480 /* Allow to use superuser reservation for quota file */
4481 if (ext4_is_quota_file(ar->inode))
4482 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4484 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4485 /* Without delayed allocation we need to verify
4486 * there is enough free blocks to do block allocation
4487 * and verify allocation doesn't exceed the quota limits.
4489 while (ar->len &&
4490 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4492 /* let others to free the space */
4493 cond_resched();
4494 ar->len = ar->len >> 1;
4496 if (!ar->len) {
4497 *errp = -ENOSPC;
4498 return 0;
4500 reserv_clstrs = ar->len;
4501 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4502 dquot_alloc_block_nofail(ar->inode,
4503 EXT4_C2B(sbi, ar->len));
4504 } else {
4505 while (ar->len &&
4506 dquot_alloc_block(ar->inode,
4507 EXT4_C2B(sbi, ar->len))) {
4509 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4510 ar->len--;
4513 inquota = ar->len;
4514 if (ar->len == 0) {
4515 *errp = -EDQUOT;
4516 goto out;
4520 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4521 if (!ac) {
4522 ar->len = 0;
4523 *errp = -ENOMEM;
4524 goto out;
4527 *errp = ext4_mb_initialize_context(ac, ar);
4528 if (*errp) {
4529 ar->len = 0;
4530 goto out;
4533 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4534 if (!ext4_mb_use_preallocated(ac)) {
4535 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4536 ext4_mb_normalize_request(ac, ar);
4537 repeat:
4538 /* allocate space in core */
4539 *errp = ext4_mb_regular_allocator(ac);
4540 if (*errp)
4541 goto discard_and_exit;
4543 /* as we've just preallocated more space than
4544 * user requested originally, we store allocated
4545 * space in a special descriptor */
4546 if (ac->ac_status == AC_STATUS_FOUND &&
4547 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4548 *errp = ext4_mb_new_preallocation(ac);
4549 if (*errp) {
4550 discard_and_exit:
4551 ext4_discard_allocated_blocks(ac);
4552 goto errout;
4555 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4556 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4557 if (*errp) {
4558 ext4_discard_allocated_blocks(ac);
4559 goto errout;
4560 } else {
4561 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4562 ar->len = ac->ac_b_ex.fe_len;
4564 } else {
4565 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4566 if (freed)
4567 goto repeat;
4568 *errp = -ENOSPC;
4571 errout:
4572 if (*errp) {
4573 ac->ac_b_ex.fe_len = 0;
4574 ar->len = 0;
4575 ext4_mb_show_ac(ac);
4577 ext4_mb_release_context(ac);
4578 out:
4579 if (ac)
4580 kmem_cache_free(ext4_ac_cachep, ac);
4581 if (inquota && ar->len < inquota)
4582 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4583 if (!ar->len) {
4584 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4585 /* release all the reserved blocks if non delalloc */
4586 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4587 reserv_clstrs);
4590 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4592 return block;
4596 * We can merge two free data extents only if the physical blocks
4597 * are contiguous, AND the extents were freed by the same transaction,
4598 * AND the blocks are associated with the same group.
4600 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
4601 struct ext4_free_data *entry,
4602 struct ext4_free_data *new_entry,
4603 struct rb_root *entry_rb_root)
4605 if ((entry->efd_tid != new_entry->efd_tid) ||
4606 (entry->efd_group != new_entry->efd_group))
4607 return;
4608 if (entry->efd_start_cluster + entry->efd_count ==
4609 new_entry->efd_start_cluster) {
4610 new_entry->efd_start_cluster = entry->efd_start_cluster;
4611 new_entry->efd_count += entry->efd_count;
4612 } else if (new_entry->efd_start_cluster + new_entry->efd_count ==
4613 entry->efd_start_cluster) {
4614 new_entry->efd_count += entry->efd_count;
4615 } else
4616 return;
4617 spin_lock(&sbi->s_md_lock);
4618 list_del(&entry->efd_list);
4619 spin_unlock(&sbi->s_md_lock);
4620 rb_erase(&entry->efd_node, entry_rb_root);
4621 kmem_cache_free(ext4_free_data_cachep, entry);
4624 static noinline_for_stack int
4625 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4626 struct ext4_free_data *new_entry)
4628 ext4_group_t group = e4b->bd_group;
4629 ext4_grpblk_t cluster;
4630 ext4_grpblk_t clusters = new_entry->efd_count;
4631 struct ext4_free_data *entry;
4632 struct ext4_group_info *db = e4b->bd_info;
4633 struct super_block *sb = e4b->bd_sb;
4634 struct ext4_sb_info *sbi = EXT4_SB(sb);
4635 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4636 struct rb_node *parent = NULL, *new_node;
4638 BUG_ON(!ext4_handle_valid(handle));
4639 BUG_ON(e4b->bd_bitmap_page == NULL);
4640 BUG_ON(e4b->bd_buddy_page == NULL);
4642 new_node = &new_entry->efd_node;
4643 cluster = new_entry->efd_start_cluster;
4645 if (!*n) {
4646 /* first free block exent. We need to
4647 protect buddy cache from being freed,
4648 * otherwise we'll refresh it from
4649 * on-disk bitmap and lose not-yet-available
4650 * blocks */
4651 get_page(e4b->bd_buddy_page);
4652 get_page(e4b->bd_bitmap_page);
4654 while (*n) {
4655 parent = *n;
4656 entry = rb_entry(parent, struct ext4_free_data, efd_node);
4657 if (cluster < entry->efd_start_cluster)
4658 n = &(*n)->rb_left;
4659 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4660 n = &(*n)->rb_right;
4661 else {
4662 ext4_grp_locked_error(sb, group, 0,
4663 ext4_group_first_block_no(sb, group) +
4664 EXT4_C2B(sbi, cluster),
4665 "Block already on to-be-freed list");
4666 return 0;
4670 rb_link_node(new_node, parent, n);
4671 rb_insert_color(new_node, &db->bb_free_root);
4673 /* Now try to see the extent can be merged to left and right */
4674 node = rb_prev(new_node);
4675 if (node) {
4676 entry = rb_entry(node, struct ext4_free_data, efd_node);
4677 ext4_try_merge_freed_extent(sbi, entry, new_entry,
4678 &(db->bb_free_root));
4681 node = rb_next(new_node);
4682 if (node) {
4683 entry = rb_entry(node, struct ext4_free_data, efd_node);
4684 ext4_try_merge_freed_extent(sbi, entry, new_entry,
4685 &(db->bb_free_root));
4688 spin_lock(&sbi->s_md_lock);
4689 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
4690 sbi->s_mb_free_pending += clusters;
4691 spin_unlock(&sbi->s_md_lock);
4692 return 0;
4696 * ext4_free_blocks() -- Free given blocks and update quota
4697 * @handle: handle for this transaction
4698 * @inode: inode
4699 * @block: start physical block to free
4700 * @count: number of blocks to count
4701 * @flags: flags used by ext4_free_blocks
4703 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4704 struct buffer_head *bh, ext4_fsblk_t block,
4705 unsigned long count, int flags)
4707 struct buffer_head *bitmap_bh = NULL;
4708 struct super_block *sb = inode->i_sb;
4709 struct ext4_group_desc *gdp;
4710 unsigned int overflow;
4711 ext4_grpblk_t bit;
4712 struct buffer_head *gd_bh;
4713 ext4_group_t block_group;
4714 struct ext4_sb_info *sbi;
4715 struct ext4_buddy e4b;
4716 unsigned int count_clusters;
4717 int err = 0;
4718 int ret;
4720 might_sleep();
4721 if (bh) {
4722 if (block)
4723 BUG_ON(block != bh->b_blocknr);
4724 else
4725 block = bh->b_blocknr;
4728 sbi = EXT4_SB(sb);
4729 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4730 !ext4_data_block_valid(sbi, block, count)) {
4731 ext4_error(sb, "Freeing blocks not in datazone - "
4732 "block = %llu, count = %lu", block, count);
4733 goto error_return;
4736 ext4_debug("freeing block %llu\n", block);
4737 trace_ext4_free_blocks(inode, block, count, flags);
4739 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4740 BUG_ON(count > 1);
4742 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4743 inode, bh, block);
4747 * If the extent to be freed does not begin on a cluster
4748 * boundary, we need to deal with partial clusters at the
4749 * beginning and end of the extent. Normally we will free
4750 * blocks at the beginning or the end unless we are explicitly
4751 * requested to avoid doing so.
4753 overflow = EXT4_PBLK_COFF(sbi, block);
4754 if (overflow) {
4755 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4756 overflow = sbi->s_cluster_ratio - overflow;
4757 block += overflow;
4758 if (count > overflow)
4759 count -= overflow;
4760 else
4761 return;
4762 } else {
4763 block -= overflow;
4764 count += overflow;
4767 overflow = EXT4_LBLK_COFF(sbi, count);
4768 if (overflow) {
4769 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4770 if (count > overflow)
4771 count -= overflow;
4772 else
4773 return;
4774 } else
4775 count += sbi->s_cluster_ratio - overflow;
4778 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4779 int i;
4780 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
4782 for (i = 0; i < count; i++) {
4783 cond_resched();
4784 if (is_metadata)
4785 bh = sb_find_get_block(inode->i_sb, block + i);
4786 ext4_forget(handle, is_metadata, inode, bh, block + i);
4790 do_more:
4791 overflow = 0;
4792 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4794 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4795 ext4_get_group_info(sb, block_group))))
4796 return;
4799 * Check to see if we are freeing blocks across a group
4800 * boundary.
4802 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4803 overflow = EXT4_C2B(sbi, bit) + count -
4804 EXT4_BLOCKS_PER_GROUP(sb);
4805 count -= overflow;
4807 count_clusters = EXT4_NUM_B2C(sbi, count);
4808 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4809 if (IS_ERR(bitmap_bh)) {
4810 err = PTR_ERR(bitmap_bh);
4811 bitmap_bh = NULL;
4812 goto error_return;
4814 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4815 if (!gdp) {
4816 err = -EIO;
4817 goto error_return;
4820 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4821 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4822 in_range(block, ext4_inode_table(sb, gdp),
4823 sbi->s_itb_per_group) ||
4824 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4825 sbi->s_itb_per_group)) {
4827 ext4_error(sb, "Freeing blocks in system zone - "
4828 "Block = %llu, count = %lu", block, count);
4829 /* err = 0. ext4_std_error should be a no op */
4830 goto error_return;
4833 BUFFER_TRACE(bitmap_bh, "getting write access");
4834 err = ext4_journal_get_write_access(handle, bitmap_bh);
4835 if (err)
4836 goto error_return;
4839 * We are about to modify some metadata. Call the journal APIs
4840 * to unshare ->b_data if a currently-committing transaction is
4841 * using it
4843 BUFFER_TRACE(gd_bh, "get_write_access");
4844 err = ext4_journal_get_write_access(handle, gd_bh);
4845 if (err)
4846 goto error_return;
4847 #ifdef AGGRESSIVE_CHECK
4849 int i;
4850 for (i = 0; i < count_clusters; i++)
4851 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4853 #endif
4854 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4856 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
4857 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
4858 GFP_NOFS|__GFP_NOFAIL);
4859 if (err)
4860 goto error_return;
4863 * We need to make sure we don't reuse the freed block until after the
4864 * transaction is committed. We make an exception if the inode is to be
4865 * written in writeback mode since writeback mode has weak data
4866 * consistency guarantees.
4868 if (ext4_handle_valid(handle) &&
4869 ((flags & EXT4_FREE_BLOCKS_METADATA) ||
4870 !ext4_should_writeback_data(inode))) {
4871 struct ext4_free_data *new_entry;
4873 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4874 * to fail.
4876 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4877 GFP_NOFS|__GFP_NOFAIL);
4878 new_entry->efd_start_cluster = bit;
4879 new_entry->efd_group = block_group;
4880 new_entry->efd_count = count_clusters;
4881 new_entry->efd_tid = handle->h_transaction->t_tid;
4883 ext4_lock_group(sb, block_group);
4884 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4885 ext4_mb_free_metadata(handle, &e4b, new_entry);
4886 } else {
4887 /* need to update group_info->bb_free and bitmap
4888 * with group lock held. generate_buddy look at
4889 * them with group lock_held
4891 if (test_opt(sb, DISCARD)) {
4892 err = ext4_issue_discard(sb, block_group, bit, count,
4893 NULL);
4894 if (err && err != -EOPNOTSUPP)
4895 ext4_msg(sb, KERN_WARNING, "discard request in"
4896 " group:%d block:%d count:%lu failed"
4897 " with %d", block_group, bit, count,
4898 err);
4899 } else
4900 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4902 ext4_lock_group(sb, block_group);
4903 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4904 mb_free_blocks(inode, &e4b, bit, count_clusters);
4907 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4908 ext4_free_group_clusters_set(sb, gdp, ret);
4909 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4910 ext4_group_desc_csum_set(sb, block_group, gdp);
4911 ext4_unlock_group(sb, block_group);
4913 if (sbi->s_log_groups_per_flex) {
4914 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4915 atomic64_add(count_clusters,
4916 &sbi->s_flex_groups[flex_group].free_clusters);
4920 * on a bigalloc file system, defer the s_freeclusters_counter
4921 * update to the caller (ext4_remove_space and friends) so they
4922 * can determine if a cluster freed here should be rereserved
4924 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
4925 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4926 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4927 percpu_counter_add(&sbi->s_freeclusters_counter,
4928 count_clusters);
4931 ext4_mb_unload_buddy(&e4b);
4933 /* We dirtied the bitmap block */
4934 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4935 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4937 /* And the group descriptor block */
4938 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4939 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4940 if (!err)
4941 err = ret;
4943 if (overflow && !err) {
4944 block += count;
4945 count = overflow;
4946 put_bh(bitmap_bh);
4947 goto do_more;
4949 error_return:
4950 brelse(bitmap_bh);
4951 ext4_std_error(sb, err);
4952 return;
4956 * ext4_group_add_blocks() -- Add given blocks to an existing group
4957 * @handle: handle to this transaction
4958 * @sb: super block
4959 * @block: start physical block to add to the block group
4960 * @count: number of blocks to free
4962 * This marks the blocks as free in the bitmap and buddy.
4964 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4965 ext4_fsblk_t block, unsigned long count)
4967 struct buffer_head *bitmap_bh = NULL;
4968 struct buffer_head *gd_bh;
4969 ext4_group_t block_group;
4970 ext4_grpblk_t bit;
4971 unsigned int i;
4972 struct ext4_group_desc *desc;
4973 struct ext4_sb_info *sbi = EXT4_SB(sb);
4974 struct ext4_buddy e4b;
4975 int err = 0, ret, free_clusters_count;
4976 ext4_grpblk_t clusters_freed;
4977 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
4978 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
4979 unsigned long cluster_count = last_cluster - first_cluster + 1;
4981 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4983 if (count == 0)
4984 return 0;
4986 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4988 * Check to see if we are freeing blocks across a group
4989 * boundary.
4991 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
4992 ext4_warning(sb, "too many blocks added to group %u",
4993 block_group);
4994 err = -EINVAL;
4995 goto error_return;
4998 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4999 if (IS_ERR(bitmap_bh)) {
5000 err = PTR_ERR(bitmap_bh);
5001 bitmap_bh = NULL;
5002 goto error_return;
5005 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
5006 if (!desc) {
5007 err = -EIO;
5008 goto error_return;
5011 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
5012 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
5013 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
5014 in_range(block + count - 1, ext4_inode_table(sb, desc),
5015 sbi->s_itb_per_group)) {
5016 ext4_error(sb, "Adding blocks in system zones - "
5017 "Block = %llu, count = %lu",
5018 block, count);
5019 err = -EINVAL;
5020 goto error_return;
5023 BUFFER_TRACE(bitmap_bh, "getting write access");
5024 err = ext4_journal_get_write_access(handle, bitmap_bh);
5025 if (err)
5026 goto error_return;
5029 * We are about to modify some metadata. Call the journal APIs
5030 * to unshare ->b_data if a currently-committing transaction is
5031 * using it
5033 BUFFER_TRACE(gd_bh, "get_write_access");
5034 err = ext4_journal_get_write_access(handle, gd_bh);
5035 if (err)
5036 goto error_return;
5038 for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
5039 BUFFER_TRACE(bitmap_bh, "clear bit");
5040 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
5041 ext4_error(sb, "bit already cleared for block %llu",
5042 (ext4_fsblk_t)(block + i));
5043 BUFFER_TRACE(bitmap_bh, "bit already cleared");
5044 } else {
5045 clusters_freed++;
5049 err = ext4_mb_load_buddy(sb, block_group, &e4b);
5050 if (err)
5051 goto error_return;
5054 * need to update group_info->bb_free and bitmap
5055 * with group lock held. generate_buddy look at
5056 * them with group lock_held
5058 ext4_lock_group(sb, block_group);
5059 mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
5060 mb_free_blocks(NULL, &e4b, bit, cluster_count);
5061 free_clusters_count = clusters_freed +
5062 ext4_free_group_clusters(sb, desc);
5063 ext4_free_group_clusters_set(sb, desc, free_clusters_count);
5064 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5065 ext4_group_desc_csum_set(sb, block_group, desc);
5066 ext4_unlock_group(sb, block_group);
5067 percpu_counter_add(&sbi->s_freeclusters_counter,
5068 clusters_freed);
5070 if (sbi->s_log_groups_per_flex) {
5071 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5072 atomic64_add(clusters_freed,
5073 &sbi->s_flex_groups[flex_group].free_clusters);
5076 ext4_mb_unload_buddy(&e4b);
5078 /* We dirtied the bitmap block */
5079 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5080 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5082 /* And the group descriptor block */
5083 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5084 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5085 if (!err)
5086 err = ret;
5088 error_return:
5089 brelse(bitmap_bh);
5090 ext4_std_error(sb, err);
5091 return err;
5095 * ext4_trim_extent -- function to TRIM one single free extent in the group
5096 * @sb: super block for the file system
5097 * @start: starting block of the free extent in the alloc. group
5098 * @count: number of blocks to TRIM
5099 * @group: alloc. group we are working with
5100 * @e4b: ext4 buddy for the group
5102 * Trim "count" blocks starting at "start" in the "group". To assure that no
5103 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5104 * be called with under the group lock.
5106 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5107 ext4_group_t group, struct ext4_buddy *e4b)
5108 __releases(bitlock)
5109 __acquires(bitlock)
5111 struct ext4_free_extent ex;
5112 int ret = 0;
5114 trace_ext4_trim_extent(sb, group, start, count);
5116 assert_spin_locked(ext4_group_lock_ptr(sb, group));
5118 ex.fe_start = start;
5119 ex.fe_group = group;
5120 ex.fe_len = count;
5123 * Mark blocks used, so no one can reuse them while
5124 * being trimmed.
5126 mb_mark_used(e4b, &ex);
5127 ext4_unlock_group(sb, group);
5128 ret = ext4_issue_discard(sb, group, start, count, NULL);
5129 ext4_lock_group(sb, group);
5130 mb_free_blocks(NULL, e4b, start, ex.fe_len);
5131 return ret;
5135 * ext4_trim_all_free -- function to trim all free space in alloc. group
5136 * @sb: super block for file system
5137 * @group: group to be trimmed
5138 * @start: first group block to examine
5139 * @max: last group block to examine
5140 * @minblocks: minimum extent block count
5142 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5143 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5144 * the extent.
5147 * ext4_trim_all_free walks through group's block bitmap searching for free
5148 * extents. When the free extent is found, mark it as used in group buddy
5149 * bitmap. Then issue a TRIM command on this extent and free the extent in
5150 * the group buddy bitmap. This is done until whole group is scanned.
5152 static ext4_grpblk_t
5153 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5154 ext4_grpblk_t start, ext4_grpblk_t max,
5155 ext4_grpblk_t minblocks)
5157 void *bitmap;
5158 ext4_grpblk_t next, count = 0, free_count = 0;
5159 struct ext4_buddy e4b;
5160 int ret = 0;
5162 trace_ext4_trim_all_free(sb, group, start, max);
5164 ret = ext4_mb_load_buddy(sb, group, &e4b);
5165 if (ret) {
5166 ext4_warning(sb, "Error %d loading buddy information for %u",
5167 ret, group);
5168 return ret;
5170 bitmap = e4b.bd_bitmap;
5172 ext4_lock_group(sb, group);
5173 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5174 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5175 goto out;
5177 start = (e4b.bd_info->bb_first_free > start) ?
5178 e4b.bd_info->bb_first_free : start;
5180 while (start <= max) {
5181 start = mb_find_next_zero_bit(bitmap, max + 1, start);
5182 if (start > max)
5183 break;
5184 next = mb_find_next_bit(bitmap, max + 1, start);
5186 if ((next - start) >= minblocks) {
5187 ret = ext4_trim_extent(sb, start,
5188 next - start, group, &e4b);
5189 if (ret && ret != -EOPNOTSUPP)
5190 break;
5191 ret = 0;
5192 count += next - start;
5194 free_count += next - start;
5195 start = next + 1;
5197 if (fatal_signal_pending(current)) {
5198 count = -ERESTARTSYS;
5199 break;
5202 if (need_resched()) {
5203 ext4_unlock_group(sb, group);
5204 cond_resched();
5205 ext4_lock_group(sb, group);
5208 if ((e4b.bd_info->bb_free - free_count) < minblocks)
5209 break;
5212 if (!ret) {
5213 ret = count;
5214 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5216 out:
5217 ext4_unlock_group(sb, group);
5218 ext4_mb_unload_buddy(&e4b);
5220 ext4_debug("trimmed %d blocks in the group %d\n",
5221 count, group);
5223 return ret;
5227 * ext4_trim_fs() -- trim ioctl handle function
5228 * @sb: superblock for filesystem
5229 * @range: fstrim_range structure
5231 * start: First Byte to trim
5232 * len: number of Bytes to trim from start
5233 * minlen: minimum extent length in Bytes
5234 * ext4_trim_fs goes through all allocation groups containing Bytes from
5235 * start to start+len. For each such a group ext4_trim_all_free function
5236 * is invoked to trim all free space.
5238 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5240 struct ext4_group_info *grp;
5241 ext4_group_t group, first_group, last_group;
5242 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5243 uint64_t start, end, minlen, trimmed = 0;
5244 ext4_fsblk_t first_data_blk =
5245 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5246 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5247 int ret = 0;
5249 start = range->start >> sb->s_blocksize_bits;
5250 end = start + (range->len >> sb->s_blocksize_bits) - 1;
5251 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5252 range->minlen >> sb->s_blocksize_bits);
5254 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5255 start >= max_blks ||
5256 range->len < sb->s_blocksize)
5257 return -EINVAL;
5258 if (end >= max_blks)
5259 end = max_blks - 1;
5260 if (end <= first_data_blk)
5261 goto out;
5262 if (start < first_data_blk)
5263 start = first_data_blk;
5265 /* Determine first and last group to examine based on start and end */
5266 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5267 &first_group, &first_cluster);
5268 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5269 &last_group, &last_cluster);
5271 /* end now represents the last cluster to discard in this group */
5272 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5274 for (group = first_group; group <= last_group; group++) {
5275 grp = ext4_get_group_info(sb, group);
5276 /* We only do this if the grp has never been initialized */
5277 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5278 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
5279 if (ret)
5280 break;
5284 * For all the groups except the last one, last cluster will
5285 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5286 * change it for the last group, note that last_cluster is
5287 * already computed earlier by ext4_get_group_no_and_offset()
5289 if (group == last_group)
5290 end = last_cluster;
5292 if (grp->bb_free >= minlen) {
5293 cnt = ext4_trim_all_free(sb, group, first_cluster,
5294 end, minlen);
5295 if (cnt < 0) {
5296 ret = cnt;
5297 break;
5299 trimmed += cnt;
5303 * For every group except the first one, we are sure
5304 * that the first cluster to discard will be cluster #0.
5306 first_cluster = 0;
5309 if (!ret)
5310 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5312 out:
5313 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5314 return ret;
5317 /* Iterate all the free extents in the group. */
5319 ext4_mballoc_query_range(
5320 struct super_block *sb,
5321 ext4_group_t group,
5322 ext4_grpblk_t start,
5323 ext4_grpblk_t end,
5324 ext4_mballoc_query_range_fn formatter,
5325 void *priv)
5327 void *bitmap;
5328 ext4_grpblk_t next;
5329 struct ext4_buddy e4b;
5330 int error;
5332 error = ext4_mb_load_buddy(sb, group, &e4b);
5333 if (error)
5334 return error;
5335 bitmap = e4b.bd_bitmap;
5337 ext4_lock_group(sb, group);
5339 start = (e4b.bd_info->bb_first_free > start) ?
5340 e4b.bd_info->bb_first_free : start;
5341 if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
5342 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5344 while (start <= end) {
5345 start = mb_find_next_zero_bit(bitmap, end + 1, start);
5346 if (start > end)
5347 break;
5348 next = mb_find_next_bit(bitmap, end + 1, start);
5350 ext4_unlock_group(sb, group);
5351 error = formatter(sb, group, start, next - start, priv);
5352 if (error)
5353 goto out_unload;
5354 ext4_lock_group(sb, group);
5356 start = next + 1;
5359 ext4_unlock_group(sb, group);
5360 out_unload:
5361 ext4_mb_unload_buddy(&e4b);
5363 return error;