btrfs: use file:line format for assertion report
[linux/fpc-iii.git] / fs / ext4 / readpage.c
blobc916017db3344ef3988f6328a1b86e06d73bbe38
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/readpage.c
5 * Copyright (C) 2002, Linus Torvalds.
6 * Copyright (C) 2015, Google, Inc.
8 * This was originally taken from fs/mpage.c
10 * The intent is the ext4_mpage_readpages() function here is intended
11 * to replace mpage_readpages() in the general case, not just for
12 * encrypted files. It has some limitations (see below), where it
13 * will fall back to read_block_full_page(), but these limitations
14 * should only be hit when page_size != block_size.
16 * This will allow us to attach a callback function to support ext4
17 * encryption.
19 * If anything unusual happens, such as:
21 * - encountering a page which has buffers
22 * - encountering a page which has a non-hole after a hole
23 * - encountering a page with non-contiguous blocks
25 * then this code just gives up and calls the buffer_head-based read function.
26 * It does handle a page which has holes at the end - that is a common case:
27 * the end-of-file on blocksize < PAGE_SIZE setups.
31 #include <linux/kernel.h>
32 #include <linux/export.h>
33 #include <linux/mm.h>
34 #include <linux/kdev_t.h>
35 #include <linux/gfp.h>
36 #include <linux/bio.h>
37 #include <linux/fs.h>
38 #include <linux/buffer_head.h>
39 #include <linux/blkdev.h>
40 #include <linux/highmem.h>
41 #include <linux/prefetch.h>
42 #include <linux/mpage.h>
43 #include <linux/writeback.h>
44 #include <linux/backing-dev.h>
45 #include <linux/pagevec.h>
46 #include <linux/cleancache.h>
48 #include "ext4.h"
50 static inline bool ext4_bio_encrypted(struct bio *bio)
52 #ifdef CONFIG_FS_ENCRYPTION
53 return unlikely(bio->bi_private != NULL);
54 #else
55 return false;
56 #endif
60 * I/O completion handler for multipage BIOs.
62 * The mpage code never puts partial pages into a BIO (except for end-of-file).
63 * If a page does not map to a contiguous run of blocks then it simply falls
64 * back to block_read_full_page().
66 * Why is this? If a page's completion depends on a number of different BIOs
67 * which can complete in any order (or at the same time) then determining the
68 * status of that page is hard. See end_buffer_async_read() for the details.
69 * There is no point in duplicating all that complexity.
71 static void mpage_end_io(struct bio *bio)
73 struct bio_vec *bv;
74 struct bvec_iter_all iter_all;
76 if (ext4_bio_encrypted(bio)) {
77 if (bio->bi_status) {
78 fscrypt_release_ctx(bio->bi_private);
79 } else {
80 fscrypt_enqueue_decrypt_bio(bio->bi_private, bio);
81 return;
84 bio_for_each_segment_all(bv, bio, iter_all) {
85 struct page *page = bv->bv_page;
87 if (!bio->bi_status) {
88 SetPageUptodate(page);
89 } else {
90 ClearPageUptodate(page);
91 SetPageError(page);
93 unlock_page(page);
96 bio_put(bio);
99 int ext4_mpage_readpages(struct address_space *mapping,
100 struct list_head *pages, struct page *page,
101 unsigned nr_pages, bool is_readahead)
103 struct bio *bio = NULL;
104 sector_t last_block_in_bio = 0;
106 struct inode *inode = mapping->host;
107 const unsigned blkbits = inode->i_blkbits;
108 const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
109 const unsigned blocksize = 1 << blkbits;
110 sector_t block_in_file;
111 sector_t last_block;
112 sector_t last_block_in_file;
113 sector_t blocks[MAX_BUF_PER_PAGE];
114 unsigned page_block;
115 struct block_device *bdev = inode->i_sb->s_bdev;
116 int length;
117 unsigned relative_block = 0;
118 struct ext4_map_blocks map;
120 map.m_pblk = 0;
121 map.m_lblk = 0;
122 map.m_len = 0;
123 map.m_flags = 0;
125 for (; nr_pages; nr_pages--) {
126 int fully_mapped = 1;
127 unsigned first_hole = blocks_per_page;
129 if (pages) {
130 page = lru_to_page(pages);
132 prefetchw(&page->flags);
133 list_del(&page->lru);
134 if (add_to_page_cache_lru(page, mapping, page->index,
135 readahead_gfp_mask(mapping)))
136 goto next_page;
139 if (page_has_buffers(page))
140 goto confused;
142 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
143 last_block = block_in_file + nr_pages * blocks_per_page;
144 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
145 if (last_block > last_block_in_file)
146 last_block = last_block_in_file;
147 page_block = 0;
150 * Map blocks using the previous result first.
152 if ((map.m_flags & EXT4_MAP_MAPPED) &&
153 block_in_file > map.m_lblk &&
154 block_in_file < (map.m_lblk + map.m_len)) {
155 unsigned map_offset = block_in_file - map.m_lblk;
156 unsigned last = map.m_len - map_offset;
158 for (relative_block = 0; ; relative_block++) {
159 if (relative_block == last) {
160 /* needed? */
161 map.m_flags &= ~EXT4_MAP_MAPPED;
162 break;
164 if (page_block == blocks_per_page)
165 break;
166 blocks[page_block] = map.m_pblk + map_offset +
167 relative_block;
168 page_block++;
169 block_in_file++;
174 * Then do more ext4_map_blocks() calls until we are
175 * done with this page.
177 while (page_block < blocks_per_page) {
178 if (block_in_file < last_block) {
179 map.m_lblk = block_in_file;
180 map.m_len = last_block - block_in_file;
182 if (ext4_map_blocks(NULL, inode, &map, 0) < 0) {
183 set_error_page:
184 SetPageError(page);
185 zero_user_segment(page, 0,
186 PAGE_SIZE);
187 unlock_page(page);
188 goto next_page;
191 if ((map.m_flags & EXT4_MAP_MAPPED) == 0) {
192 fully_mapped = 0;
193 if (first_hole == blocks_per_page)
194 first_hole = page_block;
195 page_block++;
196 block_in_file++;
197 continue;
199 if (first_hole != blocks_per_page)
200 goto confused; /* hole -> non-hole */
202 /* Contiguous blocks? */
203 if (page_block && blocks[page_block-1] != map.m_pblk-1)
204 goto confused;
205 for (relative_block = 0; ; relative_block++) {
206 if (relative_block == map.m_len) {
207 /* needed? */
208 map.m_flags &= ~EXT4_MAP_MAPPED;
209 break;
210 } else if (page_block == blocks_per_page)
211 break;
212 blocks[page_block] = map.m_pblk+relative_block;
213 page_block++;
214 block_in_file++;
217 if (first_hole != blocks_per_page) {
218 zero_user_segment(page, first_hole << blkbits,
219 PAGE_SIZE);
220 if (first_hole == 0) {
221 SetPageUptodate(page);
222 unlock_page(page);
223 goto next_page;
225 } else if (fully_mapped) {
226 SetPageMappedToDisk(page);
228 if (fully_mapped && blocks_per_page == 1 &&
229 !PageUptodate(page) && cleancache_get_page(page) == 0) {
230 SetPageUptodate(page);
231 goto confused;
235 * This page will go to BIO. Do we need to send this
236 * BIO off first?
238 if (bio && (last_block_in_bio != blocks[0] - 1)) {
239 submit_and_realloc:
240 submit_bio(bio);
241 bio = NULL;
243 if (bio == NULL) {
244 struct fscrypt_ctx *ctx = NULL;
246 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) {
247 ctx = fscrypt_get_ctx(GFP_NOFS);
248 if (IS_ERR(ctx))
249 goto set_error_page;
251 bio = bio_alloc(GFP_KERNEL,
252 min_t(int, nr_pages, BIO_MAX_PAGES));
253 if (!bio) {
254 if (ctx)
255 fscrypt_release_ctx(ctx);
256 goto set_error_page;
258 bio_set_dev(bio, bdev);
259 bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
260 bio->bi_end_io = mpage_end_io;
261 bio->bi_private = ctx;
262 bio_set_op_attrs(bio, REQ_OP_READ,
263 is_readahead ? REQ_RAHEAD : 0);
266 length = first_hole << blkbits;
267 if (bio_add_page(bio, page, length, 0) < length)
268 goto submit_and_realloc;
270 if (((map.m_flags & EXT4_MAP_BOUNDARY) &&
271 (relative_block == map.m_len)) ||
272 (first_hole != blocks_per_page)) {
273 submit_bio(bio);
274 bio = NULL;
275 } else
276 last_block_in_bio = blocks[blocks_per_page - 1];
277 goto next_page;
278 confused:
279 if (bio) {
280 submit_bio(bio);
281 bio = NULL;
283 if (!PageUptodate(page))
284 block_read_full_page(page, ext4_get_block);
285 else
286 unlock_page(page);
287 next_page:
288 if (pages)
289 put_page(page);
291 BUG_ON(pages && !list_empty(pages));
292 if (bio)
293 submit_bio(bio);
294 return 0;